1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <linux/bpf_mem_alloc.h> 30 #include <net/xdp.h> 31 #include <linux/trace_events.h> 32 #include <linux/kallsyms.h> 33 34 #include "disasm.h" 35 36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 38 [_id] = & _name ## _verifier_ops, 39 #define BPF_MAP_TYPE(_id, _ops) 40 #define BPF_LINK_TYPE(_id, _name) 41 #include <linux/bpf_types.h> 42 #undef BPF_PROG_TYPE 43 #undef BPF_MAP_TYPE 44 #undef BPF_LINK_TYPE 45 }; 46 47 struct bpf_mem_alloc bpf_global_percpu_ma; 48 static bool bpf_global_percpu_ma_set; 49 50 /* bpf_check() is a static code analyzer that walks eBPF program 51 * instruction by instruction and updates register/stack state. 52 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 53 * 54 * The first pass is depth-first-search to check that the program is a DAG. 55 * It rejects the following programs: 56 * - larger than BPF_MAXINSNS insns 57 * - if loop is present (detected via back-edge) 58 * - unreachable insns exist (shouldn't be a forest. program = one function) 59 * - out of bounds or malformed jumps 60 * The second pass is all possible path descent from the 1st insn. 61 * Since it's analyzing all paths through the program, the length of the 62 * analysis is limited to 64k insn, which may be hit even if total number of 63 * insn is less then 4K, but there are too many branches that change stack/regs. 64 * Number of 'branches to be analyzed' is limited to 1k 65 * 66 * On entry to each instruction, each register has a type, and the instruction 67 * changes the types of the registers depending on instruction semantics. 68 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 69 * copied to R1. 70 * 71 * All registers are 64-bit. 72 * R0 - return register 73 * R1-R5 argument passing registers 74 * R6-R9 callee saved registers 75 * R10 - frame pointer read-only 76 * 77 * At the start of BPF program the register R1 contains a pointer to bpf_context 78 * and has type PTR_TO_CTX. 79 * 80 * Verifier tracks arithmetic operations on pointers in case: 81 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 82 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 83 * 1st insn copies R10 (which has FRAME_PTR) type into R1 84 * and 2nd arithmetic instruction is pattern matched to recognize 85 * that it wants to construct a pointer to some element within stack. 86 * So after 2nd insn, the register R1 has type PTR_TO_STACK 87 * (and -20 constant is saved for further stack bounds checking). 88 * Meaning that this reg is a pointer to stack plus known immediate constant. 89 * 90 * Most of the time the registers have SCALAR_VALUE type, which 91 * means the register has some value, but it's not a valid pointer. 92 * (like pointer plus pointer becomes SCALAR_VALUE type) 93 * 94 * When verifier sees load or store instructions the type of base register 95 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 96 * four pointer types recognized by check_mem_access() function. 97 * 98 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 99 * and the range of [ptr, ptr + map's value_size) is accessible. 100 * 101 * registers used to pass values to function calls are checked against 102 * function argument constraints. 103 * 104 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 105 * It means that the register type passed to this function must be 106 * PTR_TO_STACK and it will be used inside the function as 107 * 'pointer to map element key' 108 * 109 * For example the argument constraints for bpf_map_lookup_elem(): 110 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 111 * .arg1_type = ARG_CONST_MAP_PTR, 112 * .arg2_type = ARG_PTR_TO_MAP_KEY, 113 * 114 * ret_type says that this function returns 'pointer to map elem value or null' 115 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 116 * 2nd argument should be a pointer to stack, which will be used inside 117 * the helper function as a pointer to map element key. 118 * 119 * On the kernel side the helper function looks like: 120 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 121 * { 122 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 123 * void *key = (void *) (unsigned long) r2; 124 * void *value; 125 * 126 * here kernel can access 'key' and 'map' pointers safely, knowing that 127 * [key, key + map->key_size) bytes are valid and were initialized on 128 * the stack of eBPF program. 129 * } 130 * 131 * Corresponding eBPF program may look like: 132 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 133 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 134 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 135 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 136 * here verifier looks at prototype of map_lookup_elem() and sees: 137 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 138 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 139 * 140 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 141 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 142 * and were initialized prior to this call. 143 * If it's ok, then verifier allows this BPF_CALL insn and looks at 144 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 145 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 146 * returns either pointer to map value or NULL. 147 * 148 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 149 * insn, the register holding that pointer in the true branch changes state to 150 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 151 * branch. See check_cond_jmp_op(). 152 * 153 * After the call R0 is set to return type of the function and registers R1-R5 154 * are set to NOT_INIT to indicate that they are no longer readable. 155 * 156 * The following reference types represent a potential reference to a kernel 157 * resource which, after first being allocated, must be checked and freed by 158 * the BPF program: 159 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 160 * 161 * When the verifier sees a helper call return a reference type, it allocates a 162 * pointer id for the reference and stores it in the current function state. 163 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 164 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 165 * passes through a NULL-check conditional. For the branch wherein the state is 166 * changed to CONST_IMM, the verifier releases the reference. 167 * 168 * For each helper function that allocates a reference, such as 169 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 170 * bpf_sk_release(). When a reference type passes into the release function, 171 * the verifier also releases the reference. If any unchecked or unreleased 172 * reference remains at the end of the program, the verifier rejects it. 173 */ 174 175 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 176 struct bpf_verifier_stack_elem { 177 /* verifier state is 'st' 178 * before processing instruction 'insn_idx' 179 * and after processing instruction 'prev_insn_idx' 180 */ 181 struct bpf_verifier_state st; 182 int insn_idx; 183 int prev_insn_idx; 184 struct bpf_verifier_stack_elem *next; 185 /* length of verifier log at the time this state was pushed on stack */ 186 u32 log_pos; 187 }; 188 189 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 190 #define BPF_COMPLEXITY_LIMIT_STATES 64 191 192 #define BPF_MAP_KEY_POISON (1ULL << 63) 193 #define BPF_MAP_KEY_SEEN (1ULL << 62) 194 195 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512 196 197 #define BPF_PRIV_STACK_MIN_SIZE 64 198 199 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx); 200 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id); 201 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 202 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 203 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 204 static int ref_set_non_owning(struct bpf_verifier_env *env, 205 struct bpf_reg_state *reg); 206 static void specialize_kfunc(struct bpf_verifier_env *env, 207 u32 func_id, u16 offset, unsigned long *addr); 208 static bool is_trusted_reg(const struct bpf_reg_state *reg); 209 210 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 211 { 212 return aux->map_ptr_state.poison; 213 } 214 215 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 216 { 217 return aux->map_ptr_state.unpriv; 218 } 219 220 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 221 struct bpf_map *map, 222 bool unpriv, bool poison) 223 { 224 unpriv |= bpf_map_ptr_unpriv(aux); 225 aux->map_ptr_state.unpriv = unpriv; 226 aux->map_ptr_state.poison = poison; 227 aux->map_ptr_state.map_ptr = map; 228 } 229 230 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 231 { 232 return aux->map_key_state & BPF_MAP_KEY_POISON; 233 } 234 235 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 236 { 237 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 238 } 239 240 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 241 { 242 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 243 } 244 245 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 246 { 247 bool poisoned = bpf_map_key_poisoned(aux); 248 249 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 250 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 251 } 252 253 static bool bpf_helper_call(const struct bpf_insn *insn) 254 { 255 return insn->code == (BPF_JMP | BPF_CALL) && 256 insn->src_reg == 0; 257 } 258 259 static bool bpf_pseudo_call(const struct bpf_insn *insn) 260 { 261 return insn->code == (BPF_JMP | BPF_CALL) && 262 insn->src_reg == BPF_PSEUDO_CALL; 263 } 264 265 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 266 { 267 return insn->code == (BPF_JMP | BPF_CALL) && 268 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 269 } 270 271 struct bpf_call_arg_meta { 272 struct bpf_map *map_ptr; 273 bool raw_mode; 274 bool pkt_access; 275 u8 release_regno; 276 int regno; 277 int access_size; 278 int mem_size; 279 u64 msize_max_value; 280 int ref_obj_id; 281 int dynptr_id; 282 int map_uid; 283 int func_id; 284 struct btf *btf; 285 u32 btf_id; 286 struct btf *ret_btf; 287 u32 ret_btf_id; 288 u32 subprogno; 289 struct btf_field *kptr_field; 290 s64 const_map_key; 291 }; 292 293 struct bpf_kfunc_call_arg_meta { 294 /* In parameters */ 295 struct btf *btf; 296 u32 func_id; 297 u32 kfunc_flags; 298 const struct btf_type *func_proto; 299 const char *func_name; 300 /* Out parameters */ 301 u32 ref_obj_id; 302 u8 release_regno; 303 bool r0_rdonly; 304 u32 ret_btf_id; 305 u64 r0_size; 306 u32 subprogno; 307 struct { 308 u64 value; 309 bool found; 310 } arg_constant; 311 312 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 313 * generally to pass info about user-defined local kptr types to later 314 * verification logic 315 * bpf_obj_drop/bpf_percpu_obj_drop 316 * Record the local kptr type to be drop'd 317 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 318 * Record the local kptr type to be refcount_incr'd and use 319 * arg_owning_ref to determine whether refcount_acquire should be 320 * fallible 321 */ 322 struct btf *arg_btf; 323 u32 arg_btf_id; 324 bool arg_owning_ref; 325 326 struct { 327 struct btf_field *field; 328 } arg_list_head; 329 struct { 330 struct btf_field *field; 331 } arg_rbtree_root; 332 struct { 333 enum bpf_dynptr_type type; 334 u32 id; 335 u32 ref_obj_id; 336 } initialized_dynptr; 337 struct { 338 u8 spi; 339 u8 frameno; 340 } iter; 341 struct { 342 struct bpf_map *ptr; 343 int uid; 344 } map; 345 u64 mem_size; 346 }; 347 348 struct btf *btf_vmlinux; 349 350 static const char *btf_type_name(const struct btf *btf, u32 id) 351 { 352 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 353 } 354 355 static DEFINE_MUTEX(bpf_verifier_lock); 356 static DEFINE_MUTEX(bpf_percpu_ma_lock); 357 358 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 359 { 360 struct bpf_verifier_env *env = private_data; 361 va_list args; 362 363 if (!bpf_verifier_log_needed(&env->log)) 364 return; 365 366 va_start(args, fmt); 367 bpf_verifier_vlog(&env->log, fmt, args); 368 va_end(args); 369 } 370 371 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 372 struct bpf_reg_state *reg, 373 struct bpf_retval_range range, const char *ctx, 374 const char *reg_name) 375 { 376 bool unknown = true; 377 378 verbose(env, "%s the register %s has", ctx, reg_name); 379 if (reg->smin_value > S64_MIN) { 380 verbose(env, " smin=%lld", reg->smin_value); 381 unknown = false; 382 } 383 if (reg->smax_value < S64_MAX) { 384 verbose(env, " smax=%lld", reg->smax_value); 385 unknown = false; 386 } 387 if (unknown) 388 verbose(env, " unknown scalar value"); 389 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); 390 } 391 392 static bool reg_not_null(const struct bpf_reg_state *reg) 393 { 394 enum bpf_reg_type type; 395 396 type = reg->type; 397 if (type_may_be_null(type)) 398 return false; 399 400 type = base_type(type); 401 return type == PTR_TO_SOCKET || 402 type == PTR_TO_TCP_SOCK || 403 type == PTR_TO_MAP_VALUE || 404 type == PTR_TO_MAP_KEY || 405 type == PTR_TO_SOCK_COMMON || 406 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 407 type == PTR_TO_MEM; 408 } 409 410 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 411 { 412 struct btf_record *rec = NULL; 413 struct btf_struct_meta *meta; 414 415 if (reg->type == PTR_TO_MAP_VALUE) { 416 rec = reg->map_ptr->record; 417 } else if (type_is_ptr_alloc_obj(reg->type)) { 418 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 419 if (meta) 420 rec = meta->record; 421 } 422 return rec; 423 } 424 425 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 426 { 427 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 428 429 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 430 } 431 432 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) 433 { 434 struct bpf_func_info *info; 435 436 if (!env->prog->aux->func_info) 437 return ""; 438 439 info = &env->prog->aux->func_info[subprog]; 440 return btf_type_name(env->prog->aux->btf, info->type_id); 441 } 442 443 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) 444 { 445 struct bpf_subprog_info *info = subprog_info(env, subprog); 446 447 info->is_cb = true; 448 info->is_async_cb = true; 449 info->is_exception_cb = true; 450 } 451 452 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) 453 { 454 return subprog_info(env, subprog)->is_exception_cb; 455 } 456 457 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 458 { 459 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 460 } 461 462 static bool type_is_rdonly_mem(u32 type) 463 { 464 return type & MEM_RDONLY; 465 } 466 467 static bool is_acquire_function(enum bpf_func_id func_id, 468 const struct bpf_map *map) 469 { 470 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 471 472 if (func_id == BPF_FUNC_sk_lookup_tcp || 473 func_id == BPF_FUNC_sk_lookup_udp || 474 func_id == BPF_FUNC_skc_lookup_tcp || 475 func_id == BPF_FUNC_ringbuf_reserve || 476 func_id == BPF_FUNC_kptr_xchg) 477 return true; 478 479 if (func_id == BPF_FUNC_map_lookup_elem && 480 (map_type == BPF_MAP_TYPE_SOCKMAP || 481 map_type == BPF_MAP_TYPE_SOCKHASH)) 482 return true; 483 484 return false; 485 } 486 487 static bool is_ptr_cast_function(enum bpf_func_id func_id) 488 { 489 return func_id == BPF_FUNC_tcp_sock || 490 func_id == BPF_FUNC_sk_fullsock || 491 func_id == BPF_FUNC_skc_to_tcp_sock || 492 func_id == BPF_FUNC_skc_to_tcp6_sock || 493 func_id == BPF_FUNC_skc_to_udp6_sock || 494 func_id == BPF_FUNC_skc_to_mptcp_sock || 495 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 496 func_id == BPF_FUNC_skc_to_tcp_request_sock; 497 } 498 499 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 500 { 501 return func_id == BPF_FUNC_dynptr_data; 502 } 503 504 static bool is_sync_callback_calling_kfunc(u32 btf_id); 505 static bool is_async_callback_calling_kfunc(u32 btf_id); 506 static bool is_callback_calling_kfunc(u32 btf_id); 507 static bool is_bpf_throw_kfunc(struct bpf_insn *insn); 508 509 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id); 510 511 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 512 { 513 return func_id == BPF_FUNC_for_each_map_elem || 514 func_id == BPF_FUNC_find_vma || 515 func_id == BPF_FUNC_loop || 516 func_id == BPF_FUNC_user_ringbuf_drain; 517 } 518 519 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 520 { 521 return func_id == BPF_FUNC_timer_set_callback; 522 } 523 524 static bool is_callback_calling_function(enum bpf_func_id func_id) 525 { 526 return is_sync_callback_calling_function(func_id) || 527 is_async_callback_calling_function(func_id); 528 } 529 530 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 531 { 532 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 533 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 534 } 535 536 static bool is_async_callback_calling_insn(struct bpf_insn *insn) 537 { 538 return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) || 539 (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm)); 540 } 541 542 static bool is_may_goto_insn(struct bpf_insn *insn) 543 { 544 return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO; 545 } 546 547 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx) 548 { 549 return is_may_goto_insn(&env->prog->insnsi[insn_idx]); 550 } 551 552 static bool is_storage_get_function(enum bpf_func_id func_id) 553 { 554 return func_id == BPF_FUNC_sk_storage_get || 555 func_id == BPF_FUNC_inode_storage_get || 556 func_id == BPF_FUNC_task_storage_get || 557 func_id == BPF_FUNC_cgrp_storage_get; 558 } 559 560 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 561 const struct bpf_map *map) 562 { 563 int ref_obj_uses = 0; 564 565 if (is_ptr_cast_function(func_id)) 566 ref_obj_uses++; 567 if (is_acquire_function(func_id, map)) 568 ref_obj_uses++; 569 if (is_dynptr_ref_function(func_id)) 570 ref_obj_uses++; 571 572 return ref_obj_uses > 1; 573 } 574 575 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 576 { 577 return BPF_CLASS(insn->code) == BPF_STX && 578 BPF_MODE(insn->code) == BPF_ATOMIC && 579 insn->imm == BPF_CMPXCHG; 580 } 581 582 static int __get_spi(s32 off) 583 { 584 return (-off - 1) / BPF_REG_SIZE; 585 } 586 587 static struct bpf_func_state *func(struct bpf_verifier_env *env, 588 const struct bpf_reg_state *reg) 589 { 590 struct bpf_verifier_state *cur = env->cur_state; 591 592 return cur->frame[reg->frameno]; 593 } 594 595 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 596 { 597 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 598 599 /* We need to check that slots between [spi - nr_slots + 1, spi] are 600 * within [0, allocated_stack). 601 * 602 * Please note that the spi grows downwards. For example, a dynptr 603 * takes the size of two stack slots; the first slot will be at 604 * spi and the second slot will be at spi - 1. 605 */ 606 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 607 } 608 609 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 610 const char *obj_kind, int nr_slots) 611 { 612 int off, spi; 613 614 if (!tnum_is_const(reg->var_off)) { 615 verbose(env, "%s has to be at a constant offset\n", obj_kind); 616 return -EINVAL; 617 } 618 619 off = reg->off + reg->var_off.value; 620 if (off % BPF_REG_SIZE) { 621 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 622 return -EINVAL; 623 } 624 625 spi = __get_spi(off); 626 if (spi + 1 < nr_slots) { 627 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 628 return -EINVAL; 629 } 630 631 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 632 return -ERANGE; 633 return spi; 634 } 635 636 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 637 { 638 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 639 } 640 641 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 642 { 643 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 644 } 645 646 static int irq_flag_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 647 { 648 return stack_slot_obj_get_spi(env, reg, "irq_flag", 1); 649 } 650 651 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 652 { 653 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 654 case DYNPTR_TYPE_LOCAL: 655 return BPF_DYNPTR_TYPE_LOCAL; 656 case DYNPTR_TYPE_RINGBUF: 657 return BPF_DYNPTR_TYPE_RINGBUF; 658 case DYNPTR_TYPE_SKB: 659 return BPF_DYNPTR_TYPE_SKB; 660 case DYNPTR_TYPE_XDP: 661 return BPF_DYNPTR_TYPE_XDP; 662 default: 663 return BPF_DYNPTR_TYPE_INVALID; 664 } 665 } 666 667 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 668 { 669 switch (type) { 670 case BPF_DYNPTR_TYPE_LOCAL: 671 return DYNPTR_TYPE_LOCAL; 672 case BPF_DYNPTR_TYPE_RINGBUF: 673 return DYNPTR_TYPE_RINGBUF; 674 case BPF_DYNPTR_TYPE_SKB: 675 return DYNPTR_TYPE_SKB; 676 case BPF_DYNPTR_TYPE_XDP: 677 return DYNPTR_TYPE_XDP; 678 default: 679 return 0; 680 } 681 } 682 683 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 684 { 685 return type == BPF_DYNPTR_TYPE_RINGBUF; 686 } 687 688 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 689 enum bpf_dynptr_type type, 690 bool first_slot, int dynptr_id); 691 692 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 693 struct bpf_reg_state *reg); 694 695 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 696 struct bpf_reg_state *sreg1, 697 struct bpf_reg_state *sreg2, 698 enum bpf_dynptr_type type) 699 { 700 int id = ++env->id_gen; 701 702 __mark_dynptr_reg(sreg1, type, true, id); 703 __mark_dynptr_reg(sreg2, type, false, id); 704 } 705 706 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 707 struct bpf_reg_state *reg, 708 enum bpf_dynptr_type type) 709 { 710 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 711 } 712 713 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 714 struct bpf_func_state *state, int spi); 715 716 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 717 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 718 { 719 struct bpf_func_state *state = func(env, reg); 720 enum bpf_dynptr_type type; 721 int spi, i, err; 722 723 spi = dynptr_get_spi(env, reg); 724 if (spi < 0) 725 return spi; 726 727 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 728 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 729 * to ensure that for the following example: 730 * [d1][d1][d2][d2] 731 * spi 3 2 1 0 732 * So marking spi = 2 should lead to destruction of both d1 and d2. In 733 * case they do belong to same dynptr, second call won't see slot_type 734 * as STACK_DYNPTR and will simply skip destruction. 735 */ 736 err = destroy_if_dynptr_stack_slot(env, state, spi); 737 if (err) 738 return err; 739 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 740 if (err) 741 return err; 742 743 for (i = 0; i < BPF_REG_SIZE; i++) { 744 state->stack[spi].slot_type[i] = STACK_DYNPTR; 745 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 746 } 747 748 type = arg_to_dynptr_type(arg_type); 749 if (type == BPF_DYNPTR_TYPE_INVALID) 750 return -EINVAL; 751 752 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 753 &state->stack[spi - 1].spilled_ptr, type); 754 755 if (dynptr_type_refcounted(type)) { 756 /* The id is used to track proper releasing */ 757 int id; 758 759 if (clone_ref_obj_id) 760 id = clone_ref_obj_id; 761 else 762 id = acquire_reference(env, insn_idx); 763 764 if (id < 0) 765 return id; 766 767 state->stack[spi].spilled_ptr.ref_obj_id = id; 768 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 769 } 770 771 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 772 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 773 774 return 0; 775 } 776 777 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 778 { 779 int i; 780 781 for (i = 0; i < BPF_REG_SIZE; i++) { 782 state->stack[spi].slot_type[i] = STACK_INVALID; 783 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 784 } 785 786 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 787 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 788 789 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 790 * 791 * While we don't allow reading STACK_INVALID, it is still possible to 792 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 793 * helpers or insns can do partial read of that part without failing, 794 * but check_stack_range_initialized, check_stack_read_var_off, and 795 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 796 * the slot conservatively. Hence we need to prevent those liveness 797 * marking walks. 798 * 799 * This was not a problem before because STACK_INVALID is only set by 800 * default (where the default reg state has its reg->parent as NULL), or 801 * in clean_live_states after REG_LIVE_DONE (at which point 802 * mark_reg_read won't walk reg->parent chain), but not randomly during 803 * verifier state exploration (like we did above). Hence, for our case 804 * parentage chain will still be live (i.e. reg->parent may be 805 * non-NULL), while earlier reg->parent was NULL, so we need 806 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 807 * done later on reads or by mark_dynptr_read as well to unnecessary 808 * mark registers in verifier state. 809 */ 810 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 811 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 812 } 813 814 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 815 { 816 struct bpf_func_state *state = func(env, reg); 817 int spi, ref_obj_id, i; 818 819 spi = dynptr_get_spi(env, reg); 820 if (spi < 0) 821 return spi; 822 823 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 824 invalidate_dynptr(env, state, spi); 825 return 0; 826 } 827 828 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 829 830 /* If the dynptr has a ref_obj_id, then we need to invalidate 831 * two things: 832 * 833 * 1) Any dynptrs with a matching ref_obj_id (clones) 834 * 2) Any slices derived from this dynptr. 835 */ 836 837 /* Invalidate any slices associated with this dynptr */ 838 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 839 840 /* Invalidate any dynptr clones */ 841 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 842 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 843 continue; 844 845 /* it should always be the case that if the ref obj id 846 * matches then the stack slot also belongs to a 847 * dynptr 848 */ 849 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 850 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 851 return -EFAULT; 852 } 853 if (state->stack[i].spilled_ptr.dynptr.first_slot) 854 invalidate_dynptr(env, state, i); 855 } 856 857 return 0; 858 } 859 860 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 861 struct bpf_reg_state *reg); 862 863 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 864 { 865 if (!env->allow_ptr_leaks) 866 __mark_reg_not_init(env, reg); 867 else 868 __mark_reg_unknown(env, reg); 869 } 870 871 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 872 struct bpf_func_state *state, int spi) 873 { 874 struct bpf_func_state *fstate; 875 struct bpf_reg_state *dreg; 876 int i, dynptr_id; 877 878 /* We always ensure that STACK_DYNPTR is never set partially, 879 * hence just checking for slot_type[0] is enough. This is 880 * different for STACK_SPILL, where it may be only set for 881 * 1 byte, so code has to use is_spilled_reg. 882 */ 883 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 884 return 0; 885 886 /* Reposition spi to first slot */ 887 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 888 spi = spi + 1; 889 890 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 891 verbose(env, "cannot overwrite referenced dynptr\n"); 892 return -EINVAL; 893 } 894 895 mark_stack_slot_scratched(env, spi); 896 mark_stack_slot_scratched(env, spi - 1); 897 898 /* Writing partially to one dynptr stack slot destroys both. */ 899 for (i = 0; i < BPF_REG_SIZE; i++) { 900 state->stack[spi].slot_type[i] = STACK_INVALID; 901 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 902 } 903 904 dynptr_id = state->stack[spi].spilled_ptr.id; 905 /* Invalidate any slices associated with this dynptr */ 906 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 907 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 908 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 909 continue; 910 if (dreg->dynptr_id == dynptr_id) 911 mark_reg_invalid(env, dreg); 912 })); 913 914 /* Do not release reference state, we are destroying dynptr on stack, 915 * not using some helper to release it. Just reset register. 916 */ 917 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 918 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 919 920 /* Same reason as unmark_stack_slots_dynptr above */ 921 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 922 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 923 924 return 0; 925 } 926 927 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 928 { 929 int spi; 930 931 if (reg->type == CONST_PTR_TO_DYNPTR) 932 return false; 933 934 spi = dynptr_get_spi(env, reg); 935 936 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 937 * error because this just means the stack state hasn't been updated yet. 938 * We will do check_mem_access to check and update stack bounds later. 939 */ 940 if (spi < 0 && spi != -ERANGE) 941 return false; 942 943 /* We don't need to check if the stack slots are marked by previous 944 * dynptr initializations because we allow overwriting existing unreferenced 945 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 946 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 947 * touching are completely destructed before we reinitialize them for a new 948 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 949 * instead of delaying it until the end where the user will get "Unreleased 950 * reference" error. 951 */ 952 return true; 953 } 954 955 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 956 { 957 struct bpf_func_state *state = func(env, reg); 958 int i, spi; 959 960 /* This already represents first slot of initialized bpf_dynptr. 961 * 962 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 963 * check_func_arg_reg_off's logic, so we don't need to check its 964 * offset and alignment. 965 */ 966 if (reg->type == CONST_PTR_TO_DYNPTR) 967 return true; 968 969 spi = dynptr_get_spi(env, reg); 970 if (spi < 0) 971 return false; 972 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 973 return false; 974 975 for (i = 0; i < BPF_REG_SIZE; i++) { 976 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 977 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 978 return false; 979 } 980 981 return true; 982 } 983 984 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 985 enum bpf_arg_type arg_type) 986 { 987 struct bpf_func_state *state = func(env, reg); 988 enum bpf_dynptr_type dynptr_type; 989 int spi; 990 991 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 992 if (arg_type == ARG_PTR_TO_DYNPTR) 993 return true; 994 995 dynptr_type = arg_to_dynptr_type(arg_type); 996 if (reg->type == CONST_PTR_TO_DYNPTR) { 997 return reg->dynptr.type == dynptr_type; 998 } else { 999 spi = dynptr_get_spi(env, reg); 1000 if (spi < 0) 1001 return false; 1002 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1003 } 1004 } 1005 1006 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1007 1008 static bool in_rcu_cs(struct bpf_verifier_env *env); 1009 1010 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); 1011 1012 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1013 struct bpf_kfunc_call_arg_meta *meta, 1014 struct bpf_reg_state *reg, int insn_idx, 1015 struct btf *btf, u32 btf_id, int nr_slots) 1016 { 1017 struct bpf_func_state *state = func(env, reg); 1018 int spi, i, j, id; 1019 1020 spi = iter_get_spi(env, reg, nr_slots); 1021 if (spi < 0) 1022 return spi; 1023 1024 id = acquire_reference(env, insn_idx); 1025 if (id < 0) 1026 return id; 1027 1028 for (i = 0; i < nr_slots; i++) { 1029 struct bpf_stack_state *slot = &state->stack[spi - i]; 1030 struct bpf_reg_state *st = &slot->spilled_ptr; 1031 1032 __mark_reg_known_zero(st); 1033 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1034 if (is_kfunc_rcu_protected(meta)) { 1035 if (in_rcu_cs(env)) 1036 st->type |= MEM_RCU; 1037 else 1038 st->type |= PTR_UNTRUSTED; 1039 } 1040 st->live |= REG_LIVE_WRITTEN; 1041 st->ref_obj_id = i == 0 ? id : 0; 1042 st->iter.btf = btf; 1043 st->iter.btf_id = btf_id; 1044 st->iter.state = BPF_ITER_STATE_ACTIVE; 1045 st->iter.depth = 0; 1046 1047 for (j = 0; j < BPF_REG_SIZE; j++) 1048 slot->slot_type[j] = STACK_ITER; 1049 1050 mark_stack_slot_scratched(env, spi - i); 1051 } 1052 1053 return 0; 1054 } 1055 1056 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1057 struct bpf_reg_state *reg, int nr_slots) 1058 { 1059 struct bpf_func_state *state = func(env, reg); 1060 int spi, i, j; 1061 1062 spi = iter_get_spi(env, reg, nr_slots); 1063 if (spi < 0) 1064 return spi; 1065 1066 for (i = 0; i < nr_slots; i++) { 1067 struct bpf_stack_state *slot = &state->stack[spi - i]; 1068 struct bpf_reg_state *st = &slot->spilled_ptr; 1069 1070 if (i == 0) 1071 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1072 1073 __mark_reg_not_init(env, st); 1074 1075 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1076 st->live |= REG_LIVE_WRITTEN; 1077 1078 for (j = 0; j < BPF_REG_SIZE; j++) 1079 slot->slot_type[j] = STACK_INVALID; 1080 1081 mark_stack_slot_scratched(env, spi - i); 1082 } 1083 1084 return 0; 1085 } 1086 1087 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1088 struct bpf_reg_state *reg, int nr_slots) 1089 { 1090 struct bpf_func_state *state = func(env, reg); 1091 int spi, i, j; 1092 1093 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1094 * will do check_mem_access to check and update stack bounds later, so 1095 * return true for that case. 1096 */ 1097 spi = iter_get_spi(env, reg, nr_slots); 1098 if (spi == -ERANGE) 1099 return true; 1100 if (spi < 0) 1101 return false; 1102 1103 for (i = 0; i < nr_slots; i++) { 1104 struct bpf_stack_state *slot = &state->stack[spi - i]; 1105 1106 for (j = 0; j < BPF_REG_SIZE; j++) 1107 if (slot->slot_type[j] == STACK_ITER) 1108 return false; 1109 } 1110 1111 return true; 1112 } 1113 1114 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1115 struct btf *btf, u32 btf_id, int nr_slots) 1116 { 1117 struct bpf_func_state *state = func(env, reg); 1118 int spi, i, j; 1119 1120 spi = iter_get_spi(env, reg, nr_slots); 1121 if (spi < 0) 1122 return -EINVAL; 1123 1124 for (i = 0; i < nr_slots; i++) { 1125 struct bpf_stack_state *slot = &state->stack[spi - i]; 1126 struct bpf_reg_state *st = &slot->spilled_ptr; 1127 1128 if (st->type & PTR_UNTRUSTED) 1129 return -EPROTO; 1130 /* only main (first) slot has ref_obj_id set */ 1131 if (i == 0 && !st->ref_obj_id) 1132 return -EINVAL; 1133 if (i != 0 && st->ref_obj_id) 1134 return -EINVAL; 1135 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1136 return -EINVAL; 1137 1138 for (j = 0; j < BPF_REG_SIZE; j++) 1139 if (slot->slot_type[j] != STACK_ITER) 1140 return -EINVAL; 1141 } 1142 1143 return 0; 1144 } 1145 1146 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx); 1147 static int release_irq_state(struct bpf_verifier_state *state, int id); 1148 1149 static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env, 1150 struct bpf_kfunc_call_arg_meta *meta, 1151 struct bpf_reg_state *reg, int insn_idx) 1152 { 1153 struct bpf_func_state *state = func(env, reg); 1154 struct bpf_stack_state *slot; 1155 struct bpf_reg_state *st; 1156 int spi, i, id; 1157 1158 spi = irq_flag_get_spi(env, reg); 1159 if (spi < 0) 1160 return spi; 1161 1162 id = acquire_irq_state(env, insn_idx); 1163 if (id < 0) 1164 return id; 1165 1166 slot = &state->stack[spi]; 1167 st = &slot->spilled_ptr; 1168 1169 __mark_reg_known_zero(st); 1170 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1171 st->live |= REG_LIVE_WRITTEN; 1172 st->ref_obj_id = id; 1173 1174 for (i = 0; i < BPF_REG_SIZE; i++) 1175 slot->slot_type[i] = STACK_IRQ_FLAG; 1176 1177 mark_stack_slot_scratched(env, spi); 1178 return 0; 1179 } 1180 1181 static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1182 { 1183 struct bpf_func_state *state = func(env, reg); 1184 struct bpf_stack_state *slot; 1185 struct bpf_reg_state *st; 1186 int spi, i, err; 1187 1188 spi = irq_flag_get_spi(env, reg); 1189 if (spi < 0) 1190 return spi; 1191 1192 slot = &state->stack[spi]; 1193 st = &slot->spilled_ptr; 1194 1195 err = release_irq_state(env->cur_state, st->ref_obj_id); 1196 WARN_ON_ONCE(err && err != -EACCES); 1197 if (err) { 1198 int insn_idx = 0; 1199 1200 for (int i = 0; i < env->cur_state->acquired_refs; i++) { 1201 if (env->cur_state->refs[i].id == env->cur_state->active_irq_id) { 1202 insn_idx = env->cur_state->refs[i].insn_idx; 1203 break; 1204 } 1205 } 1206 1207 verbose(env, "cannot restore irq state out of order, expected id=%d acquired at insn_idx=%d\n", 1208 env->cur_state->active_irq_id, insn_idx); 1209 return err; 1210 } 1211 1212 __mark_reg_not_init(env, st); 1213 1214 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1215 st->live |= REG_LIVE_WRITTEN; 1216 1217 for (i = 0; i < BPF_REG_SIZE; i++) 1218 slot->slot_type[i] = STACK_INVALID; 1219 1220 mark_stack_slot_scratched(env, spi); 1221 return 0; 1222 } 1223 1224 static bool is_irq_flag_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1225 { 1226 struct bpf_func_state *state = func(env, reg); 1227 struct bpf_stack_state *slot; 1228 int spi, i; 1229 1230 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1231 * will do check_mem_access to check and update stack bounds later, so 1232 * return true for that case. 1233 */ 1234 spi = irq_flag_get_spi(env, reg); 1235 if (spi == -ERANGE) 1236 return true; 1237 if (spi < 0) 1238 return false; 1239 1240 slot = &state->stack[spi]; 1241 1242 for (i = 0; i < BPF_REG_SIZE; i++) 1243 if (slot->slot_type[i] == STACK_IRQ_FLAG) 1244 return false; 1245 return true; 1246 } 1247 1248 static int is_irq_flag_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1249 { 1250 struct bpf_func_state *state = func(env, reg); 1251 struct bpf_stack_state *slot; 1252 struct bpf_reg_state *st; 1253 int spi, i; 1254 1255 spi = irq_flag_get_spi(env, reg); 1256 if (spi < 0) 1257 return -EINVAL; 1258 1259 slot = &state->stack[spi]; 1260 st = &slot->spilled_ptr; 1261 1262 if (!st->ref_obj_id) 1263 return -EINVAL; 1264 1265 for (i = 0; i < BPF_REG_SIZE; i++) 1266 if (slot->slot_type[i] != STACK_IRQ_FLAG) 1267 return -EINVAL; 1268 return 0; 1269 } 1270 1271 /* Check if given stack slot is "special": 1272 * - spilled register state (STACK_SPILL); 1273 * - dynptr state (STACK_DYNPTR); 1274 * - iter state (STACK_ITER). 1275 * - irq flag state (STACK_IRQ_FLAG) 1276 */ 1277 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1278 { 1279 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1280 1281 switch (type) { 1282 case STACK_SPILL: 1283 case STACK_DYNPTR: 1284 case STACK_ITER: 1285 case STACK_IRQ_FLAG: 1286 return true; 1287 case STACK_INVALID: 1288 case STACK_MISC: 1289 case STACK_ZERO: 1290 return false; 1291 default: 1292 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1293 return true; 1294 } 1295 } 1296 1297 /* The reg state of a pointer or a bounded scalar was saved when 1298 * it was spilled to the stack. 1299 */ 1300 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1301 { 1302 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1303 } 1304 1305 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1306 { 1307 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1308 stack->spilled_ptr.type == SCALAR_VALUE; 1309 } 1310 1311 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack) 1312 { 1313 return stack->slot_type[0] == STACK_SPILL && 1314 stack->spilled_ptr.type == SCALAR_VALUE; 1315 } 1316 1317 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which 1318 * case they are equivalent, or it's STACK_ZERO, in which case we preserve 1319 * more precise STACK_ZERO. 1320 * Regardless of allow_ptr_leaks setting (i.e., privileged or unprivileged 1321 * mode), we won't promote STACK_INVALID to STACK_MISC. In privileged case it is 1322 * unnecessary as both are considered equivalent when loading data and pruning, 1323 * in case of unprivileged mode it will be incorrect to allow reads of invalid 1324 * slots. 1325 */ 1326 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) 1327 { 1328 if (*stype == STACK_ZERO) 1329 return; 1330 if (*stype == STACK_INVALID) 1331 return; 1332 *stype = STACK_MISC; 1333 } 1334 1335 static void scrub_spilled_slot(u8 *stype) 1336 { 1337 if (*stype != STACK_INVALID) 1338 *stype = STACK_MISC; 1339 } 1340 1341 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1342 * small to hold src. This is different from krealloc since we don't want to preserve 1343 * the contents of dst. 1344 * 1345 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1346 * not be allocated. 1347 */ 1348 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1349 { 1350 size_t alloc_bytes; 1351 void *orig = dst; 1352 size_t bytes; 1353 1354 if (ZERO_OR_NULL_PTR(src)) 1355 goto out; 1356 1357 if (unlikely(check_mul_overflow(n, size, &bytes))) 1358 return NULL; 1359 1360 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1361 dst = krealloc(orig, alloc_bytes, flags); 1362 if (!dst) { 1363 kfree(orig); 1364 return NULL; 1365 } 1366 1367 memcpy(dst, src, bytes); 1368 out: 1369 return dst ? dst : ZERO_SIZE_PTR; 1370 } 1371 1372 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1373 * small to hold new_n items. new items are zeroed out if the array grows. 1374 * 1375 * Contrary to krealloc_array, does not free arr if new_n is zero. 1376 */ 1377 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1378 { 1379 size_t alloc_size; 1380 void *new_arr; 1381 1382 if (!new_n || old_n == new_n) 1383 goto out; 1384 1385 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1386 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1387 if (!new_arr) { 1388 kfree(arr); 1389 return NULL; 1390 } 1391 arr = new_arr; 1392 1393 if (new_n > old_n) 1394 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1395 1396 out: 1397 return arr ? arr : ZERO_SIZE_PTR; 1398 } 1399 1400 static int copy_reference_state(struct bpf_verifier_state *dst, const struct bpf_verifier_state *src) 1401 { 1402 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1403 sizeof(struct bpf_reference_state), GFP_KERNEL); 1404 if (!dst->refs) 1405 return -ENOMEM; 1406 1407 dst->acquired_refs = src->acquired_refs; 1408 dst->active_locks = src->active_locks; 1409 dst->active_preempt_locks = src->active_preempt_locks; 1410 dst->active_rcu_lock = src->active_rcu_lock; 1411 dst->active_irq_id = src->active_irq_id; 1412 return 0; 1413 } 1414 1415 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1416 { 1417 size_t n = src->allocated_stack / BPF_REG_SIZE; 1418 1419 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1420 GFP_KERNEL); 1421 if (!dst->stack) 1422 return -ENOMEM; 1423 1424 dst->allocated_stack = src->allocated_stack; 1425 return 0; 1426 } 1427 1428 static int resize_reference_state(struct bpf_verifier_state *state, size_t n) 1429 { 1430 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1431 sizeof(struct bpf_reference_state)); 1432 if (!state->refs) 1433 return -ENOMEM; 1434 1435 state->acquired_refs = n; 1436 return 0; 1437 } 1438 1439 /* Possibly update state->allocated_stack to be at least size bytes. Also 1440 * possibly update the function's high-water mark in its bpf_subprog_info. 1441 */ 1442 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1443 { 1444 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; 1445 1446 /* The stack size is always a multiple of BPF_REG_SIZE. */ 1447 size = round_up(size, BPF_REG_SIZE); 1448 n = size / BPF_REG_SIZE; 1449 1450 if (old_n >= n) 1451 return 0; 1452 1453 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1454 if (!state->stack) 1455 return -ENOMEM; 1456 1457 state->allocated_stack = size; 1458 1459 /* update known max for given subprogram */ 1460 if (env->subprog_info[state->subprogno].stack_depth < size) 1461 env->subprog_info[state->subprogno].stack_depth = size; 1462 1463 return 0; 1464 } 1465 1466 /* Acquire a pointer id from the env and update the state->refs to include 1467 * this new pointer reference. 1468 * On success, returns a valid pointer id to associate with the register 1469 * On failure, returns a negative errno. 1470 */ 1471 static struct bpf_reference_state *acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1472 { 1473 struct bpf_verifier_state *state = env->cur_state; 1474 int new_ofs = state->acquired_refs; 1475 int err; 1476 1477 err = resize_reference_state(state, state->acquired_refs + 1); 1478 if (err) 1479 return NULL; 1480 state->refs[new_ofs].insn_idx = insn_idx; 1481 1482 return &state->refs[new_ofs]; 1483 } 1484 1485 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx) 1486 { 1487 struct bpf_reference_state *s; 1488 1489 s = acquire_reference_state(env, insn_idx); 1490 if (!s) 1491 return -ENOMEM; 1492 s->type = REF_TYPE_PTR; 1493 s->id = ++env->id_gen; 1494 return s->id; 1495 } 1496 1497 static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type, 1498 int id, void *ptr) 1499 { 1500 struct bpf_verifier_state *state = env->cur_state; 1501 struct bpf_reference_state *s; 1502 1503 s = acquire_reference_state(env, insn_idx); 1504 if (!s) 1505 return -ENOMEM; 1506 s->type = type; 1507 s->id = id; 1508 s->ptr = ptr; 1509 1510 state->active_locks++; 1511 return 0; 1512 } 1513 1514 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx) 1515 { 1516 struct bpf_verifier_state *state = env->cur_state; 1517 struct bpf_reference_state *s; 1518 1519 s = acquire_reference_state(env, insn_idx); 1520 if (!s) 1521 return -ENOMEM; 1522 s->type = REF_TYPE_IRQ; 1523 s->id = ++env->id_gen; 1524 1525 state->active_irq_id = s->id; 1526 return s->id; 1527 } 1528 1529 static void release_reference_state(struct bpf_verifier_state *state, int idx) 1530 { 1531 int last_idx; 1532 size_t rem; 1533 1534 /* IRQ state requires the relative ordering of elements remaining the 1535 * same, since it relies on the refs array to behave as a stack, so that 1536 * it can detect out-of-order IRQ restore. Hence use memmove to shift 1537 * the array instead of swapping the final element into the deleted idx. 1538 */ 1539 last_idx = state->acquired_refs - 1; 1540 rem = state->acquired_refs - idx - 1; 1541 if (last_idx && idx != last_idx) 1542 memmove(&state->refs[idx], &state->refs[idx + 1], sizeof(*state->refs) * rem); 1543 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1544 state->acquired_refs--; 1545 return; 1546 } 1547 1548 static int release_lock_state(struct bpf_verifier_state *state, int type, int id, void *ptr) 1549 { 1550 int i; 1551 1552 for (i = 0; i < state->acquired_refs; i++) { 1553 if (state->refs[i].type != type) 1554 continue; 1555 if (state->refs[i].id == id && state->refs[i].ptr == ptr) { 1556 release_reference_state(state, i); 1557 state->active_locks--; 1558 return 0; 1559 } 1560 } 1561 return -EINVAL; 1562 } 1563 1564 static int release_irq_state(struct bpf_verifier_state *state, int id) 1565 { 1566 u32 prev_id = 0; 1567 int i; 1568 1569 if (id != state->active_irq_id) 1570 return -EACCES; 1571 1572 for (i = 0; i < state->acquired_refs; i++) { 1573 if (state->refs[i].type != REF_TYPE_IRQ) 1574 continue; 1575 if (state->refs[i].id == id) { 1576 release_reference_state(state, i); 1577 state->active_irq_id = prev_id; 1578 return 0; 1579 } else { 1580 prev_id = state->refs[i].id; 1581 } 1582 } 1583 return -EINVAL; 1584 } 1585 1586 static struct bpf_reference_state *find_lock_state(struct bpf_verifier_state *state, enum ref_state_type type, 1587 int id, void *ptr) 1588 { 1589 int i; 1590 1591 for (i = 0; i < state->acquired_refs; i++) { 1592 struct bpf_reference_state *s = &state->refs[i]; 1593 1594 if (s->type != type) 1595 continue; 1596 1597 if (s->id == id && s->ptr == ptr) 1598 return s; 1599 } 1600 return NULL; 1601 } 1602 1603 static void free_func_state(struct bpf_func_state *state) 1604 { 1605 if (!state) 1606 return; 1607 kfree(state->stack); 1608 kfree(state); 1609 } 1610 1611 static void free_verifier_state(struct bpf_verifier_state *state, 1612 bool free_self) 1613 { 1614 int i; 1615 1616 for (i = 0; i <= state->curframe; i++) { 1617 free_func_state(state->frame[i]); 1618 state->frame[i] = NULL; 1619 } 1620 kfree(state->refs); 1621 if (free_self) 1622 kfree(state); 1623 } 1624 1625 /* copy verifier state from src to dst growing dst stack space 1626 * when necessary to accommodate larger src stack 1627 */ 1628 static int copy_func_state(struct bpf_func_state *dst, 1629 const struct bpf_func_state *src) 1630 { 1631 memcpy(dst, src, offsetof(struct bpf_func_state, stack)); 1632 return copy_stack_state(dst, src); 1633 } 1634 1635 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1636 const struct bpf_verifier_state *src) 1637 { 1638 struct bpf_func_state *dst; 1639 int i, err; 1640 1641 /* if dst has more stack frames then src frame, free them, this is also 1642 * necessary in case of exceptional exits using bpf_throw. 1643 */ 1644 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1645 free_func_state(dst_state->frame[i]); 1646 dst_state->frame[i] = NULL; 1647 } 1648 err = copy_reference_state(dst_state, src); 1649 if (err) 1650 return err; 1651 dst_state->speculative = src->speculative; 1652 dst_state->in_sleepable = src->in_sleepable; 1653 dst_state->curframe = src->curframe; 1654 dst_state->branches = src->branches; 1655 dst_state->parent = src->parent; 1656 dst_state->first_insn_idx = src->first_insn_idx; 1657 dst_state->last_insn_idx = src->last_insn_idx; 1658 dst_state->insn_hist_start = src->insn_hist_start; 1659 dst_state->insn_hist_end = src->insn_hist_end; 1660 dst_state->dfs_depth = src->dfs_depth; 1661 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1662 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1663 dst_state->may_goto_depth = src->may_goto_depth; 1664 for (i = 0; i <= src->curframe; i++) { 1665 dst = dst_state->frame[i]; 1666 if (!dst) { 1667 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1668 if (!dst) 1669 return -ENOMEM; 1670 dst_state->frame[i] = dst; 1671 } 1672 err = copy_func_state(dst, src->frame[i]); 1673 if (err) 1674 return err; 1675 } 1676 return 0; 1677 } 1678 1679 static u32 state_htab_size(struct bpf_verifier_env *env) 1680 { 1681 return env->prog->len; 1682 } 1683 1684 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) 1685 { 1686 struct bpf_verifier_state *cur = env->cur_state; 1687 struct bpf_func_state *state = cur->frame[cur->curframe]; 1688 1689 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1690 } 1691 1692 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1693 { 1694 int fr; 1695 1696 if (a->curframe != b->curframe) 1697 return false; 1698 1699 for (fr = a->curframe; fr >= 0; fr--) 1700 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1701 return false; 1702 1703 return true; 1704 } 1705 1706 /* Open coded iterators allow back-edges in the state graph in order to 1707 * check unbounded loops that iterators. 1708 * 1709 * In is_state_visited() it is necessary to know if explored states are 1710 * part of some loops in order to decide whether non-exact states 1711 * comparison could be used: 1712 * - non-exact states comparison establishes sub-state relation and uses 1713 * read and precision marks to do so, these marks are propagated from 1714 * children states and thus are not guaranteed to be final in a loop; 1715 * - exact states comparison just checks if current and explored states 1716 * are identical (and thus form a back-edge). 1717 * 1718 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1719 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1720 * algorithm for loop structure detection and gives an overview of 1721 * relevant terminology. It also has helpful illustrations. 1722 * 1723 * [1] https://api.semanticscholar.org/CorpusID:15784067 1724 * 1725 * We use a similar algorithm but because loop nested structure is 1726 * irrelevant for verifier ours is significantly simpler and resembles 1727 * strongly connected components algorithm from Sedgewick's textbook. 1728 * 1729 * Define topmost loop entry as a first node of the loop traversed in a 1730 * depth first search starting from initial state. The goal of the loop 1731 * tracking algorithm is to associate topmost loop entries with states 1732 * derived from these entries. 1733 * 1734 * For each step in the DFS states traversal algorithm needs to identify 1735 * the following situations: 1736 * 1737 * initial initial initial 1738 * | | | 1739 * V V V 1740 * ... ... .---------> hdr 1741 * | | | | 1742 * V V | V 1743 * cur .-> succ | .------... 1744 * | | | | | | 1745 * V | V | V V 1746 * succ '-- cur | ... ... 1747 * | | | 1748 * | V V 1749 * | succ <- cur 1750 * | | 1751 * | V 1752 * | ... 1753 * | | 1754 * '----' 1755 * 1756 * (A) successor state of cur (B) successor state of cur or it's entry 1757 * not yet traversed are in current DFS path, thus cur and succ 1758 * are members of the same outermost loop 1759 * 1760 * initial initial 1761 * | | 1762 * V V 1763 * ... ... 1764 * | | 1765 * V V 1766 * .------... .------... 1767 * | | | | 1768 * V V V V 1769 * .-> hdr ... ... ... 1770 * | | | | | 1771 * | V V V V 1772 * | succ <- cur succ <- cur 1773 * | | | 1774 * | V V 1775 * | ... ... 1776 * | | | 1777 * '----' exit 1778 * 1779 * (C) successor state of cur is a part of some loop but this loop 1780 * does not include cur or successor state is not in a loop at all. 1781 * 1782 * Algorithm could be described as the following python code: 1783 * 1784 * traversed = set() # Set of traversed nodes 1785 * entries = {} # Mapping from node to loop entry 1786 * depths = {} # Depth level assigned to graph node 1787 * path = set() # Current DFS path 1788 * 1789 * # Find outermost loop entry known for n 1790 * def get_loop_entry(n): 1791 * h = entries.get(n, None) 1792 * while h in entries and entries[h] != h: 1793 * h = entries[h] 1794 * return h 1795 * 1796 * # Update n's loop entry if h's outermost entry comes 1797 * # before n's outermost entry in current DFS path. 1798 * def update_loop_entry(n, h): 1799 * n1 = get_loop_entry(n) or n 1800 * h1 = get_loop_entry(h) or h 1801 * if h1 in path and depths[h1] <= depths[n1]: 1802 * entries[n] = h1 1803 * 1804 * def dfs(n, depth): 1805 * traversed.add(n) 1806 * path.add(n) 1807 * depths[n] = depth 1808 * for succ in G.successors(n): 1809 * if succ not in traversed: 1810 * # Case A: explore succ and update cur's loop entry 1811 * # only if succ's entry is in current DFS path. 1812 * dfs(succ, depth + 1) 1813 * h = get_loop_entry(succ) 1814 * update_loop_entry(n, h) 1815 * else: 1816 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1817 * update_loop_entry(n, succ) 1818 * path.remove(n) 1819 * 1820 * To adapt this algorithm for use with verifier: 1821 * - use st->branch == 0 as a signal that DFS of succ had been finished 1822 * and cur's loop entry has to be updated (case A), handle this in 1823 * update_branch_counts(); 1824 * - use st->branch > 0 as a signal that st is in the current DFS path; 1825 * - handle cases B and C in is_state_visited(); 1826 * - update topmost loop entry for intermediate states in get_loop_entry(). 1827 */ 1828 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) 1829 { 1830 struct bpf_verifier_state *topmost = st->loop_entry, *old; 1831 1832 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) 1833 topmost = topmost->loop_entry; 1834 /* Update loop entries for intermediate states to avoid this 1835 * traversal in future get_loop_entry() calls. 1836 */ 1837 while (st && st->loop_entry != topmost) { 1838 old = st->loop_entry; 1839 st->loop_entry = topmost; 1840 st = old; 1841 } 1842 return topmost; 1843 } 1844 1845 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 1846 { 1847 struct bpf_verifier_state *cur1, *hdr1; 1848 1849 cur1 = get_loop_entry(cur) ?: cur; 1850 hdr1 = get_loop_entry(hdr) ?: hdr; 1851 /* The head1->branches check decides between cases B and C in 1852 * comment for get_loop_entry(). If hdr1->branches == 0 then 1853 * head's topmost loop entry is not in current DFS path, 1854 * hence 'cur' and 'hdr' are not in the same loop and there is 1855 * no need to update cur->loop_entry. 1856 */ 1857 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { 1858 cur->loop_entry = hdr; 1859 hdr->used_as_loop_entry = true; 1860 } 1861 } 1862 1863 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1864 { 1865 while (st) { 1866 u32 br = --st->branches; 1867 1868 /* br == 0 signals that DFS exploration for 'st' is finished, 1869 * thus it is necessary to update parent's loop entry if it 1870 * turned out that st is a part of some loop. 1871 * This is a part of 'case A' in get_loop_entry() comment. 1872 */ 1873 if (br == 0 && st->parent && st->loop_entry) 1874 update_loop_entry(st->parent, st->loop_entry); 1875 1876 /* WARN_ON(br > 1) technically makes sense here, 1877 * but see comment in push_stack(), hence: 1878 */ 1879 WARN_ONCE((int)br < 0, 1880 "BUG update_branch_counts:branches_to_explore=%d\n", 1881 br); 1882 if (br) 1883 break; 1884 st = st->parent; 1885 } 1886 } 1887 1888 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1889 int *insn_idx, bool pop_log) 1890 { 1891 struct bpf_verifier_state *cur = env->cur_state; 1892 struct bpf_verifier_stack_elem *elem, *head = env->head; 1893 int err; 1894 1895 if (env->head == NULL) 1896 return -ENOENT; 1897 1898 if (cur) { 1899 err = copy_verifier_state(cur, &head->st); 1900 if (err) 1901 return err; 1902 } 1903 if (pop_log) 1904 bpf_vlog_reset(&env->log, head->log_pos); 1905 if (insn_idx) 1906 *insn_idx = head->insn_idx; 1907 if (prev_insn_idx) 1908 *prev_insn_idx = head->prev_insn_idx; 1909 elem = head->next; 1910 free_verifier_state(&head->st, false); 1911 kfree(head); 1912 env->head = elem; 1913 env->stack_size--; 1914 return 0; 1915 } 1916 1917 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1918 int insn_idx, int prev_insn_idx, 1919 bool speculative) 1920 { 1921 struct bpf_verifier_state *cur = env->cur_state; 1922 struct bpf_verifier_stack_elem *elem; 1923 int err; 1924 1925 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1926 if (!elem) 1927 goto err; 1928 1929 elem->insn_idx = insn_idx; 1930 elem->prev_insn_idx = prev_insn_idx; 1931 elem->next = env->head; 1932 elem->log_pos = env->log.end_pos; 1933 env->head = elem; 1934 env->stack_size++; 1935 err = copy_verifier_state(&elem->st, cur); 1936 if (err) 1937 goto err; 1938 elem->st.speculative |= speculative; 1939 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1940 verbose(env, "The sequence of %d jumps is too complex.\n", 1941 env->stack_size); 1942 goto err; 1943 } 1944 if (elem->st.parent) { 1945 ++elem->st.parent->branches; 1946 /* WARN_ON(branches > 2) technically makes sense here, 1947 * but 1948 * 1. speculative states will bump 'branches' for non-branch 1949 * instructions 1950 * 2. is_state_visited() heuristics may decide not to create 1951 * a new state for a sequence of branches and all such current 1952 * and cloned states will be pointing to a single parent state 1953 * which might have large 'branches' count. 1954 */ 1955 } 1956 return &elem->st; 1957 err: 1958 free_verifier_state(env->cur_state, true); 1959 env->cur_state = NULL; 1960 /* pop all elements and return */ 1961 while (!pop_stack(env, NULL, NULL, false)); 1962 return NULL; 1963 } 1964 1965 #define CALLER_SAVED_REGS 6 1966 static const int caller_saved[CALLER_SAVED_REGS] = { 1967 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1968 }; 1969 1970 /* This helper doesn't clear reg->id */ 1971 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1972 { 1973 reg->var_off = tnum_const(imm); 1974 reg->smin_value = (s64)imm; 1975 reg->smax_value = (s64)imm; 1976 reg->umin_value = imm; 1977 reg->umax_value = imm; 1978 1979 reg->s32_min_value = (s32)imm; 1980 reg->s32_max_value = (s32)imm; 1981 reg->u32_min_value = (u32)imm; 1982 reg->u32_max_value = (u32)imm; 1983 } 1984 1985 /* Mark the unknown part of a register (variable offset or scalar value) as 1986 * known to have the value @imm. 1987 */ 1988 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1989 { 1990 /* Clear off and union(map_ptr, range) */ 1991 memset(((u8 *)reg) + sizeof(reg->type), 0, 1992 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1993 reg->id = 0; 1994 reg->ref_obj_id = 0; 1995 ___mark_reg_known(reg, imm); 1996 } 1997 1998 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1999 { 2000 reg->var_off = tnum_const_subreg(reg->var_off, imm); 2001 reg->s32_min_value = (s32)imm; 2002 reg->s32_max_value = (s32)imm; 2003 reg->u32_min_value = (u32)imm; 2004 reg->u32_max_value = (u32)imm; 2005 } 2006 2007 /* Mark the 'variable offset' part of a register as zero. This should be 2008 * used only on registers holding a pointer type. 2009 */ 2010 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 2011 { 2012 __mark_reg_known(reg, 0); 2013 } 2014 2015 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2016 { 2017 __mark_reg_known(reg, 0); 2018 reg->type = SCALAR_VALUE; 2019 /* all scalars are assumed imprecise initially (unless unprivileged, 2020 * in which case everything is forced to be precise) 2021 */ 2022 reg->precise = !env->bpf_capable; 2023 } 2024 2025 static void mark_reg_known_zero(struct bpf_verifier_env *env, 2026 struct bpf_reg_state *regs, u32 regno) 2027 { 2028 if (WARN_ON(regno >= MAX_BPF_REG)) { 2029 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 2030 /* Something bad happened, let's kill all regs */ 2031 for (regno = 0; regno < MAX_BPF_REG; regno++) 2032 __mark_reg_not_init(env, regs + regno); 2033 return; 2034 } 2035 __mark_reg_known_zero(regs + regno); 2036 } 2037 2038 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 2039 bool first_slot, int dynptr_id) 2040 { 2041 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 2042 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 2043 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 2044 */ 2045 __mark_reg_known_zero(reg); 2046 reg->type = CONST_PTR_TO_DYNPTR; 2047 /* Give each dynptr a unique id to uniquely associate slices to it. */ 2048 reg->id = dynptr_id; 2049 reg->dynptr.type = type; 2050 reg->dynptr.first_slot = first_slot; 2051 } 2052 2053 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 2054 { 2055 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 2056 const struct bpf_map *map = reg->map_ptr; 2057 2058 if (map->inner_map_meta) { 2059 reg->type = CONST_PTR_TO_MAP; 2060 reg->map_ptr = map->inner_map_meta; 2061 /* transfer reg's id which is unique for every map_lookup_elem 2062 * as UID of the inner map. 2063 */ 2064 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 2065 reg->map_uid = reg->id; 2066 if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE)) 2067 reg->map_uid = reg->id; 2068 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 2069 reg->type = PTR_TO_XDP_SOCK; 2070 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 2071 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 2072 reg->type = PTR_TO_SOCKET; 2073 } else { 2074 reg->type = PTR_TO_MAP_VALUE; 2075 } 2076 return; 2077 } 2078 2079 reg->type &= ~PTR_MAYBE_NULL; 2080 } 2081 2082 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 2083 struct btf_field_graph_root *ds_head) 2084 { 2085 __mark_reg_known_zero(®s[regno]); 2086 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 2087 regs[regno].btf = ds_head->btf; 2088 regs[regno].btf_id = ds_head->value_btf_id; 2089 regs[regno].off = ds_head->node_offset; 2090 } 2091 2092 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 2093 { 2094 return type_is_pkt_pointer(reg->type); 2095 } 2096 2097 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2098 { 2099 return reg_is_pkt_pointer(reg) || 2100 reg->type == PTR_TO_PACKET_END; 2101 } 2102 2103 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2104 { 2105 return base_type(reg->type) == PTR_TO_MEM && 2106 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2107 } 2108 2109 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2110 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2111 enum bpf_reg_type which) 2112 { 2113 /* The register can already have a range from prior markings. 2114 * This is fine as long as it hasn't been advanced from its 2115 * origin. 2116 */ 2117 return reg->type == which && 2118 reg->id == 0 && 2119 reg->off == 0 && 2120 tnum_equals_const(reg->var_off, 0); 2121 } 2122 2123 /* Reset the min/max bounds of a register */ 2124 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2125 { 2126 reg->smin_value = S64_MIN; 2127 reg->smax_value = S64_MAX; 2128 reg->umin_value = 0; 2129 reg->umax_value = U64_MAX; 2130 2131 reg->s32_min_value = S32_MIN; 2132 reg->s32_max_value = S32_MAX; 2133 reg->u32_min_value = 0; 2134 reg->u32_max_value = U32_MAX; 2135 } 2136 2137 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2138 { 2139 reg->smin_value = S64_MIN; 2140 reg->smax_value = S64_MAX; 2141 reg->umin_value = 0; 2142 reg->umax_value = U64_MAX; 2143 } 2144 2145 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2146 { 2147 reg->s32_min_value = S32_MIN; 2148 reg->s32_max_value = S32_MAX; 2149 reg->u32_min_value = 0; 2150 reg->u32_max_value = U32_MAX; 2151 } 2152 2153 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2154 { 2155 struct tnum var32_off = tnum_subreg(reg->var_off); 2156 2157 /* min signed is max(sign bit) | min(other bits) */ 2158 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2159 var32_off.value | (var32_off.mask & S32_MIN)); 2160 /* max signed is min(sign bit) | max(other bits) */ 2161 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2162 var32_off.value | (var32_off.mask & S32_MAX)); 2163 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2164 reg->u32_max_value = min(reg->u32_max_value, 2165 (u32)(var32_off.value | var32_off.mask)); 2166 } 2167 2168 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2169 { 2170 /* min signed is max(sign bit) | min(other bits) */ 2171 reg->smin_value = max_t(s64, reg->smin_value, 2172 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2173 /* max signed is min(sign bit) | max(other bits) */ 2174 reg->smax_value = min_t(s64, reg->smax_value, 2175 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2176 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2177 reg->umax_value = min(reg->umax_value, 2178 reg->var_off.value | reg->var_off.mask); 2179 } 2180 2181 static void __update_reg_bounds(struct bpf_reg_state *reg) 2182 { 2183 __update_reg32_bounds(reg); 2184 __update_reg64_bounds(reg); 2185 } 2186 2187 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2188 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2189 { 2190 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 2191 * bits to improve our u32/s32 boundaries. 2192 * 2193 * E.g., the case where we have upper 32 bits as zero ([10, 20] in 2194 * u64) is pretty trivial, it's obvious that in u32 we'll also have 2195 * [10, 20] range. But this property holds for any 64-bit range as 2196 * long as upper 32 bits in that entire range of values stay the same. 2197 * 2198 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] 2199 * in decimal) has the same upper 32 bits throughout all the values in 2200 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) 2201 * range. 2202 * 2203 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, 2204 * following the rules outlined below about u64/s64 correspondence 2205 * (which equally applies to u32 vs s32 correspondence). In general it 2206 * depends on actual hexadecimal values of 32-bit range. They can form 2207 * only valid u32, or only valid s32 ranges in some cases. 2208 * 2209 * So we use all these insights to derive bounds for subregisters here. 2210 */ 2211 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { 2212 /* u64 to u32 casting preserves validity of low 32 bits as 2213 * a range, if upper 32 bits are the same 2214 */ 2215 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); 2216 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); 2217 2218 if ((s32)reg->umin_value <= (s32)reg->umax_value) { 2219 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2220 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2221 } 2222 } 2223 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { 2224 /* low 32 bits should form a proper u32 range */ 2225 if ((u32)reg->smin_value <= (u32)reg->smax_value) { 2226 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); 2227 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); 2228 } 2229 /* low 32 bits should form a proper s32 range */ 2230 if ((s32)reg->smin_value <= (s32)reg->smax_value) { 2231 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2232 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2233 } 2234 } 2235 /* Special case where upper bits form a small sequence of two 2236 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to 2237 * 0x00000000 is also valid), while lower bits form a proper s32 range 2238 * going from negative numbers to positive numbers. E.g., let's say we 2239 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). 2240 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, 2241 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, 2242 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). 2243 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in 2244 * upper 32 bits. As a random example, s64 range 2245 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range 2246 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. 2247 */ 2248 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && 2249 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { 2250 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2251 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2252 } 2253 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && 2254 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { 2255 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2256 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2257 } 2258 /* if u32 range forms a valid s32 range (due to matching sign bit), 2259 * try to learn from that 2260 */ 2261 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { 2262 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); 2263 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); 2264 } 2265 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2266 * are the same, so combine. This works even in the negative case, e.g. 2267 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2268 */ 2269 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2270 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); 2271 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); 2272 } 2273 } 2274 2275 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2276 { 2277 /* If u64 range forms a valid s64 range (due to matching sign bit), 2278 * try to learn from that. Let's do a bit of ASCII art to see when 2279 * this is happening. Let's take u64 range first: 2280 * 2281 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2282 * |-------------------------------|--------------------------------| 2283 * 2284 * Valid u64 range is formed when umin and umax are anywhere in the 2285 * range [0, U64_MAX], and umin <= umax. u64 case is simple and 2286 * straightforward. Let's see how s64 range maps onto the same range 2287 * of values, annotated below the line for comparison: 2288 * 2289 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2290 * |-------------------------------|--------------------------------| 2291 * 0 S64_MAX S64_MIN -1 2292 * 2293 * So s64 values basically start in the middle and they are logically 2294 * contiguous to the right of it, wrapping around from -1 to 0, and 2295 * then finishing as S64_MAX (0x7fffffffffffffff) right before 2296 * S64_MIN. We can try drawing the continuity of u64 vs s64 values 2297 * more visually as mapped to sign-agnostic range of hex values. 2298 * 2299 * u64 start u64 end 2300 * _______________________________________________________________ 2301 * / \ 2302 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2303 * |-------------------------------|--------------------------------| 2304 * 0 S64_MAX S64_MIN -1 2305 * / \ 2306 * >------------------------------ -------------------------------> 2307 * s64 continues... s64 end s64 start s64 "midpoint" 2308 * 2309 * What this means is that, in general, we can't always derive 2310 * something new about u64 from any random s64 range, and vice versa. 2311 * 2312 * But we can do that in two particular cases. One is when entire 2313 * u64/s64 range is *entirely* contained within left half of the above 2314 * diagram or when it is *entirely* contained in the right half. I.e.: 2315 * 2316 * |-------------------------------|--------------------------------| 2317 * ^ ^ ^ ^ 2318 * A B C D 2319 * 2320 * [A, B] and [C, D] are contained entirely in their respective halves 2321 * and form valid contiguous ranges as both u64 and s64 values. [A, B] 2322 * will be non-negative both as u64 and s64 (and in fact it will be 2323 * identical ranges no matter the signedness). [C, D] treated as s64 2324 * will be a range of negative values, while in u64 it will be 2325 * non-negative range of values larger than 0x8000000000000000. 2326 * 2327 * Now, any other range here can't be represented in both u64 and s64 2328 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid 2329 * contiguous u64 ranges, but they are discontinuous in s64. [B, C] 2330 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], 2331 * for example. Similarly, valid s64 range [D, A] (going from negative 2332 * to positive values), would be two separate [D, U64_MAX] and [0, A] 2333 * ranges as u64. Currently reg_state can't represent two segments per 2334 * numeric domain, so in such situations we can only derive maximal 2335 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). 2336 * 2337 * So we use these facts to derive umin/umax from smin/smax and vice 2338 * versa only if they stay within the same "half". This is equivalent 2339 * to checking sign bit: lower half will have sign bit as zero, upper 2340 * half have sign bit 1. Below in code we simplify this by just 2341 * casting umin/umax as smin/smax and checking if they form valid 2342 * range, and vice versa. Those are equivalent checks. 2343 */ 2344 if ((s64)reg->umin_value <= (s64)reg->umax_value) { 2345 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); 2346 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); 2347 } 2348 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2349 * are the same, so combine. This works even in the negative case, e.g. 2350 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2351 */ 2352 if ((u64)reg->smin_value <= (u64)reg->smax_value) { 2353 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); 2354 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); 2355 } 2356 } 2357 2358 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) 2359 { 2360 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit 2361 * values on both sides of 64-bit range in hope to have tighter range. 2362 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from 2363 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. 2364 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound 2365 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of 2366 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a 2367 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. 2368 * We just need to make sure that derived bounds we are intersecting 2369 * with are well-formed ranges in respective s64 or u64 domain, just 2370 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. 2371 */ 2372 __u64 new_umin, new_umax; 2373 __s64 new_smin, new_smax; 2374 2375 /* u32 -> u64 tightening, it's always well-formed */ 2376 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; 2377 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; 2378 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2379 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2380 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ 2381 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; 2382 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; 2383 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2384 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2385 2386 /* if s32 can be treated as valid u32 range, we can use it as well */ 2387 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2388 /* s32 -> u64 tightening */ 2389 new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2390 new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2391 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2392 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2393 /* s32 -> s64 tightening */ 2394 new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2395 new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2396 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2397 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2398 } 2399 2400 /* Here we would like to handle a special case after sign extending load, 2401 * when upper bits for a 64-bit range are all 1s or all 0s. 2402 * 2403 * Upper bits are all 1s when register is in a range: 2404 * [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff] 2405 * Upper bits are all 0s when register is in a range: 2406 * [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff] 2407 * Together this forms are continuous range: 2408 * [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff] 2409 * 2410 * Now, suppose that register range is in fact tighter: 2411 * [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R) 2412 * Also suppose that it's 32-bit range is positive, 2413 * meaning that lower 32-bits of the full 64-bit register 2414 * are in the range: 2415 * [0x0000_0000, 0x7fff_ffff] (W) 2416 * 2417 * If this happens, then any value in a range: 2418 * [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff] 2419 * is smaller than a lowest bound of the range (R): 2420 * 0xffff_ffff_8000_0000 2421 * which means that upper bits of the full 64-bit register 2422 * can't be all 1s, when lower bits are in range (W). 2423 * 2424 * Note that: 2425 * - 0xffff_ffff_8000_0000 == (s64)S32_MIN 2426 * - 0x0000_0000_7fff_ffff == (s64)S32_MAX 2427 * These relations are used in the conditions below. 2428 */ 2429 if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) { 2430 reg->smin_value = reg->s32_min_value; 2431 reg->smax_value = reg->s32_max_value; 2432 reg->umin_value = reg->s32_min_value; 2433 reg->umax_value = reg->s32_max_value; 2434 reg->var_off = tnum_intersect(reg->var_off, 2435 tnum_range(reg->smin_value, reg->smax_value)); 2436 } 2437 } 2438 2439 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2440 { 2441 __reg32_deduce_bounds(reg); 2442 __reg64_deduce_bounds(reg); 2443 __reg_deduce_mixed_bounds(reg); 2444 } 2445 2446 /* Attempts to improve var_off based on unsigned min/max information */ 2447 static void __reg_bound_offset(struct bpf_reg_state *reg) 2448 { 2449 struct tnum var64_off = tnum_intersect(reg->var_off, 2450 tnum_range(reg->umin_value, 2451 reg->umax_value)); 2452 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2453 tnum_range(reg->u32_min_value, 2454 reg->u32_max_value)); 2455 2456 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2457 } 2458 2459 static void reg_bounds_sync(struct bpf_reg_state *reg) 2460 { 2461 /* We might have learned new bounds from the var_off. */ 2462 __update_reg_bounds(reg); 2463 /* We might have learned something about the sign bit. */ 2464 __reg_deduce_bounds(reg); 2465 __reg_deduce_bounds(reg); 2466 /* We might have learned some bits from the bounds. */ 2467 __reg_bound_offset(reg); 2468 /* Intersecting with the old var_off might have improved our bounds 2469 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2470 * then new var_off is (0; 0x7f...fc) which improves our umax. 2471 */ 2472 __update_reg_bounds(reg); 2473 } 2474 2475 static int reg_bounds_sanity_check(struct bpf_verifier_env *env, 2476 struct bpf_reg_state *reg, const char *ctx) 2477 { 2478 const char *msg; 2479 2480 if (reg->umin_value > reg->umax_value || 2481 reg->smin_value > reg->smax_value || 2482 reg->u32_min_value > reg->u32_max_value || 2483 reg->s32_min_value > reg->s32_max_value) { 2484 msg = "range bounds violation"; 2485 goto out; 2486 } 2487 2488 if (tnum_is_const(reg->var_off)) { 2489 u64 uval = reg->var_off.value; 2490 s64 sval = (s64)uval; 2491 2492 if (reg->umin_value != uval || reg->umax_value != uval || 2493 reg->smin_value != sval || reg->smax_value != sval) { 2494 msg = "const tnum out of sync with range bounds"; 2495 goto out; 2496 } 2497 } 2498 2499 if (tnum_subreg_is_const(reg->var_off)) { 2500 u32 uval32 = tnum_subreg(reg->var_off).value; 2501 s32 sval32 = (s32)uval32; 2502 2503 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || 2504 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { 2505 msg = "const subreg tnum out of sync with range bounds"; 2506 goto out; 2507 } 2508 } 2509 2510 return 0; 2511 out: 2512 verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " 2513 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n", 2514 ctx, msg, reg->umin_value, reg->umax_value, 2515 reg->smin_value, reg->smax_value, 2516 reg->u32_min_value, reg->u32_max_value, 2517 reg->s32_min_value, reg->s32_max_value, 2518 reg->var_off.value, reg->var_off.mask); 2519 if (env->test_reg_invariants) 2520 return -EFAULT; 2521 __mark_reg_unbounded(reg); 2522 return 0; 2523 } 2524 2525 static bool __reg32_bound_s64(s32 a) 2526 { 2527 return a >= 0 && a <= S32_MAX; 2528 } 2529 2530 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2531 { 2532 reg->umin_value = reg->u32_min_value; 2533 reg->umax_value = reg->u32_max_value; 2534 2535 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2536 * be positive otherwise set to worse case bounds and refine later 2537 * from tnum. 2538 */ 2539 if (__reg32_bound_s64(reg->s32_min_value) && 2540 __reg32_bound_s64(reg->s32_max_value)) { 2541 reg->smin_value = reg->s32_min_value; 2542 reg->smax_value = reg->s32_max_value; 2543 } else { 2544 reg->smin_value = 0; 2545 reg->smax_value = U32_MAX; 2546 } 2547 } 2548 2549 /* Mark a register as having a completely unknown (scalar) value. */ 2550 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg) 2551 { 2552 /* 2553 * Clear type, off, and union(map_ptr, range) and 2554 * padding between 'type' and union 2555 */ 2556 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2557 reg->type = SCALAR_VALUE; 2558 reg->id = 0; 2559 reg->ref_obj_id = 0; 2560 reg->var_off = tnum_unknown; 2561 reg->frameno = 0; 2562 reg->precise = false; 2563 __mark_reg_unbounded(reg); 2564 } 2565 2566 /* Mark a register as having a completely unknown (scalar) value, 2567 * initialize .precise as true when not bpf capable. 2568 */ 2569 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2570 struct bpf_reg_state *reg) 2571 { 2572 __mark_reg_unknown_imprecise(reg); 2573 reg->precise = !env->bpf_capable; 2574 } 2575 2576 static void mark_reg_unknown(struct bpf_verifier_env *env, 2577 struct bpf_reg_state *regs, u32 regno) 2578 { 2579 if (WARN_ON(regno >= MAX_BPF_REG)) { 2580 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2581 /* Something bad happened, let's kill all regs except FP */ 2582 for (regno = 0; regno < BPF_REG_FP; regno++) 2583 __mark_reg_not_init(env, regs + regno); 2584 return; 2585 } 2586 __mark_reg_unknown(env, regs + regno); 2587 } 2588 2589 static int __mark_reg_s32_range(struct bpf_verifier_env *env, 2590 struct bpf_reg_state *regs, 2591 u32 regno, 2592 s32 s32_min, 2593 s32 s32_max) 2594 { 2595 struct bpf_reg_state *reg = regs + regno; 2596 2597 reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min); 2598 reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max); 2599 2600 reg->smin_value = max_t(s64, reg->smin_value, s32_min); 2601 reg->smax_value = min_t(s64, reg->smax_value, s32_max); 2602 2603 reg_bounds_sync(reg); 2604 2605 return reg_bounds_sanity_check(env, reg, "s32_range"); 2606 } 2607 2608 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2609 struct bpf_reg_state *reg) 2610 { 2611 __mark_reg_unknown(env, reg); 2612 reg->type = NOT_INIT; 2613 } 2614 2615 static void mark_reg_not_init(struct bpf_verifier_env *env, 2616 struct bpf_reg_state *regs, u32 regno) 2617 { 2618 if (WARN_ON(regno >= MAX_BPF_REG)) { 2619 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2620 /* Something bad happened, let's kill all regs except FP */ 2621 for (regno = 0; regno < BPF_REG_FP; regno++) 2622 __mark_reg_not_init(env, regs + regno); 2623 return; 2624 } 2625 __mark_reg_not_init(env, regs + regno); 2626 } 2627 2628 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2629 struct bpf_reg_state *regs, u32 regno, 2630 enum bpf_reg_type reg_type, 2631 struct btf *btf, u32 btf_id, 2632 enum bpf_type_flag flag) 2633 { 2634 if (reg_type == SCALAR_VALUE) { 2635 mark_reg_unknown(env, regs, regno); 2636 return; 2637 } 2638 mark_reg_known_zero(env, regs, regno); 2639 regs[regno].type = PTR_TO_BTF_ID | flag; 2640 regs[regno].btf = btf; 2641 regs[regno].btf_id = btf_id; 2642 if (type_may_be_null(flag)) 2643 regs[regno].id = ++env->id_gen; 2644 } 2645 2646 #define DEF_NOT_SUBREG (0) 2647 static void init_reg_state(struct bpf_verifier_env *env, 2648 struct bpf_func_state *state) 2649 { 2650 struct bpf_reg_state *regs = state->regs; 2651 int i; 2652 2653 for (i = 0; i < MAX_BPF_REG; i++) { 2654 mark_reg_not_init(env, regs, i); 2655 regs[i].live = REG_LIVE_NONE; 2656 regs[i].parent = NULL; 2657 regs[i].subreg_def = DEF_NOT_SUBREG; 2658 } 2659 2660 /* frame pointer */ 2661 regs[BPF_REG_FP].type = PTR_TO_STACK; 2662 mark_reg_known_zero(env, regs, BPF_REG_FP); 2663 regs[BPF_REG_FP].frameno = state->frameno; 2664 } 2665 2666 static struct bpf_retval_range retval_range(s32 minval, s32 maxval) 2667 { 2668 return (struct bpf_retval_range){ minval, maxval }; 2669 } 2670 2671 #define BPF_MAIN_FUNC (-1) 2672 static void init_func_state(struct bpf_verifier_env *env, 2673 struct bpf_func_state *state, 2674 int callsite, int frameno, int subprogno) 2675 { 2676 state->callsite = callsite; 2677 state->frameno = frameno; 2678 state->subprogno = subprogno; 2679 state->callback_ret_range = retval_range(0, 0); 2680 init_reg_state(env, state); 2681 mark_verifier_state_scratched(env); 2682 } 2683 2684 /* Similar to push_stack(), but for async callbacks */ 2685 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2686 int insn_idx, int prev_insn_idx, 2687 int subprog, bool is_sleepable) 2688 { 2689 struct bpf_verifier_stack_elem *elem; 2690 struct bpf_func_state *frame; 2691 2692 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2693 if (!elem) 2694 goto err; 2695 2696 elem->insn_idx = insn_idx; 2697 elem->prev_insn_idx = prev_insn_idx; 2698 elem->next = env->head; 2699 elem->log_pos = env->log.end_pos; 2700 env->head = elem; 2701 env->stack_size++; 2702 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2703 verbose(env, 2704 "The sequence of %d jumps is too complex for async cb.\n", 2705 env->stack_size); 2706 goto err; 2707 } 2708 /* Unlike push_stack() do not copy_verifier_state(). 2709 * The caller state doesn't matter. 2710 * This is async callback. It starts in a fresh stack. 2711 * Initialize it similar to do_check_common(). 2712 * But we do need to make sure to not clobber insn_hist, so we keep 2713 * chaining insn_hist_start/insn_hist_end indices as for a normal 2714 * child state. 2715 */ 2716 elem->st.branches = 1; 2717 elem->st.in_sleepable = is_sleepable; 2718 elem->st.insn_hist_start = env->cur_state->insn_hist_end; 2719 elem->st.insn_hist_end = elem->st.insn_hist_start; 2720 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2721 if (!frame) 2722 goto err; 2723 init_func_state(env, frame, 2724 BPF_MAIN_FUNC /* callsite */, 2725 0 /* frameno within this callchain */, 2726 subprog /* subprog number within this prog */); 2727 elem->st.frame[0] = frame; 2728 return &elem->st; 2729 err: 2730 free_verifier_state(env->cur_state, true); 2731 env->cur_state = NULL; 2732 /* pop all elements and return */ 2733 while (!pop_stack(env, NULL, NULL, false)); 2734 return NULL; 2735 } 2736 2737 2738 enum reg_arg_type { 2739 SRC_OP, /* register is used as source operand */ 2740 DST_OP, /* register is used as destination operand */ 2741 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2742 }; 2743 2744 static int cmp_subprogs(const void *a, const void *b) 2745 { 2746 return ((struct bpf_subprog_info *)a)->start - 2747 ((struct bpf_subprog_info *)b)->start; 2748 } 2749 2750 /* Find subprogram that contains instruction at 'off' */ 2751 static struct bpf_subprog_info *find_containing_subprog(struct bpf_verifier_env *env, int off) 2752 { 2753 struct bpf_subprog_info *vals = env->subprog_info; 2754 int l, r, m; 2755 2756 if (off >= env->prog->len || off < 0 || env->subprog_cnt == 0) 2757 return NULL; 2758 2759 l = 0; 2760 r = env->subprog_cnt - 1; 2761 while (l < r) { 2762 m = l + (r - l + 1) / 2; 2763 if (vals[m].start <= off) 2764 l = m; 2765 else 2766 r = m - 1; 2767 } 2768 return &vals[l]; 2769 } 2770 2771 /* Find subprogram that starts exactly at 'off' */ 2772 static int find_subprog(struct bpf_verifier_env *env, int off) 2773 { 2774 struct bpf_subprog_info *p; 2775 2776 p = find_containing_subprog(env, off); 2777 if (!p || p->start != off) 2778 return -ENOENT; 2779 return p - env->subprog_info; 2780 } 2781 2782 static int add_subprog(struct bpf_verifier_env *env, int off) 2783 { 2784 int insn_cnt = env->prog->len; 2785 int ret; 2786 2787 if (off >= insn_cnt || off < 0) { 2788 verbose(env, "call to invalid destination\n"); 2789 return -EINVAL; 2790 } 2791 ret = find_subprog(env, off); 2792 if (ret >= 0) 2793 return ret; 2794 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2795 verbose(env, "too many subprograms\n"); 2796 return -E2BIG; 2797 } 2798 /* determine subprog starts. The end is one before the next starts */ 2799 env->subprog_info[env->subprog_cnt++].start = off; 2800 sort(env->subprog_info, env->subprog_cnt, 2801 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2802 return env->subprog_cnt - 1; 2803 } 2804 2805 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) 2806 { 2807 struct bpf_prog_aux *aux = env->prog->aux; 2808 struct btf *btf = aux->btf; 2809 const struct btf_type *t; 2810 u32 main_btf_id, id; 2811 const char *name; 2812 int ret, i; 2813 2814 /* Non-zero func_info_cnt implies valid btf */ 2815 if (!aux->func_info_cnt) 2816 return 0; 2817 main_btf_id = aux->func_info[0].type_id; 2818 2819 t = btf_type_by_id(btf, main_btf_id); 2820 if (!t) { 2821 verbose(env, "invalid btf id for main subprog in func_info\n"); 2822 return -EINVAL; 2823 } 2824 2825 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); 2826 if (IS_ERR(name)) { 2827 ret = PTR_ERR(name); 2828 /* If there is no tag present, there is no exception callback */ 2829 if (ret == -ENOENT) 2830 ret = 0; 2831 else if (ret == -EEXIST) 2832 verbose(env, "multiple exception callback tags for main subprog\n"); 2833 return ret; 2834 } 2835 2836 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); 2837 if (ret < 0) { 2838 verbose(env, "exception callback '%s' could not be found in BTF\n", name); 2839 return ret; 2840 } 2841 id = ret; 2842 t = btf_type_by_id(btf, id); 2843 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 2844 verbose(env, "exception callback '%s' must have global linkage\n", name); 2845 return -EINVAL; 2846 } 2847 ret = 0; 2848 for (i = 0; i < aux->func_info_cnt; i++) { 2849 if (aux->func_info[i].type_id != id) 2850 continue; 2851 ret = aux->func_info[i].insn_off; 2852 /* Further func_info and subprog checks will also happen 2853 * later, so assume this is the right insn_off for now. 2854 */ 2855 if (!ret) { 2856 verbose(env, "invalid exception callback insn_off in func_info: 0\n"); 2857 ret = -EINVAL; 2858 } 2859 } 2860 if (!ret) { 2861 verbose(env, "exception callback type id not found in func_info\n"); 2862 ret = -EINVAL; 2863 } 2864 return ret; 2865 } 2866 2867 #define MAX_KFUNC_DESCS 256 2868 #define MAX_KFUNC_BTFS 256 2869 2870 struct bpf_kfunc_desc { 2871 struct btf_func_model func_model; 2872 u32 func_id; 2873 s32 imm; 2874 u16 offset; 2875 unsigned long addr; 2876 }; 2877 2878 struct bpf_kfunc_btf { 2879 struct btf *btf; 2880 struct module *module; 2881 u16 offset; 2882 }; 2883 2884 struct bpf_kfunc_desc_tab { 2885 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2886 * verification. JITs do lookups by bpf_insn, where func_id may not be 2887 * available, therefore at the end of verification do_misc_fixups() 2888 * sorts this by imm and offset. 2889 */ 2890 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2891 u32 nr_descs; 2892 }; 2893 2894 struct bpf_kfunc_btf_tab { 2895 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2896 u32 nr_descs; 2897 }; 2898 2899 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2900 { 2901 const struct bpf_kfunc_desc *d0 = a; 2902 const struct bpf_kfunc_desc *d1 = b; 2903 2904 /* func_id is not greater than BTF_MAX_TYPE */ 2905 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2906 } 2907 2908 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2909 { 2910 const struct bpf_kfunc_btf *d0 = a; 2911 const struct bpf_kfunc_btf *d1 = b; 2912 2913 return d0->offset - d1->offset; 2914 } 2915 2916 static const struct bpf_kfunc_desc * 2917 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2918 { 2919 struct bpf_kfunc_desc desc = { 2920 .func_id = func_id, 2921 .offset = offset, 2922 }; 2923 struct bpf_kfunc_desc_tab *tab; 2924 2925 tab = prog->aux->kfunc_tab; 2926 return bsearch(&desc, tab->descs, tab->nr_descs, 2927 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2928 } 2929 2930 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2931 u16 btf_fd_idx, u8 **func_addr) 2932 { 2933 const struct bpf_kfunc_desc *desc; 2934 2935 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2936 if (!desc) 2937 return -EFAULT; 2938 2939 *func_addr = (u8 *)desc->addr; 2940 return 0; 2941 } 2942 2943 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2944 s16 offset) 2945 { 2946 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2947 struct bpf_kfunc_btf_tab *tab; 2948 struct bpf_kfunc_btf *b; 2949 struct module *mod; 2950 struct btf *btf; 2951 int btf_fd; 2952 2953 tab = env->prog->aux->kfunc_btf_tab; 2954 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2955 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2956 if (!b) { 2957 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2958 verbose(env, "too many different module BTFs\n"); 2959 return ERR_PTR(-E2BIG); 2960 } 2961 2962 if (bpfptr_is_null(env->fd_array)) { 2963 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2964 return ERR_PTR(-EPROTO); 2965 } 2966 2967 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2968 offset * sizeof(btf_fd), 2969 sizeof(btf_fd))) 2970 return ERR_PTR(-EFAULT); 2971 2972 btf = btf_get_by_fd(btf_fd); 2973 if (IS_ERR(btf)) { 2974 verbose(env, "invalid module BTF fd specified\n"); 2975 return btf; 2976 } 2977 2978 if (!btf_is_module(btf)) { 2979 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2980 btf_put(btf); 2981 return ERR_PTR(-EINVAL); 2982 } 2983 2984 mod = btf_try_get_module(btf); 2985 if (!mod) { 2986 btf_put(btf); 2987 return ERR_PTR(-ENXIO); 2988 } 2989 2990 b = &tab->descs[tab->nr_descs++]; 2991 b->btf = btf; 2992 b->module = mod; 2993 b->offset = offset; 2994 2995 /* sort() reorders entries by value, so b may no longer point 2996 * to the right entry after this 2997 */ 2998 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2999 kfunc_btf_cmp_by_off, NULL); 3000 } else { 3001 btf = b->btf; 3002 } 3003 3004 return btf; 3005 } 3006 3007 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 3008 { 3009 if (!tab) 3010 return; 3011 3012 while (tab->nr_descs--) { 3013 module_put(tab->descs[tab->nr_descs].module); 3014 btf_put(tab->descs[tab->nr_descs].btf); 3015 } 3016 kfree(tab); 3017 } 3018 3019 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 3020 { 3021 if (offset) { 3022 if (offset < 0) { 3023 /* In the future, this can be allowed to increase limit 3024 * of fd index into fd_array, interpreted as u16. 3025 */ 3026 verbose(env, "negative offset disallowed for kernel module function call\n"); 3027 return ERR_PTR(-EINVAL); 3028 } 3029 3030 return __find_kfunc_desc_btf(env, offset); 3031 } 3032 return btf_vmlinux ?: ERR_PTR(-ENOENT); 3033 } 3034 3035 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 3036 { 3037 const struct btf_type *func, *func_proto; 3038 struct bpf_kfunc_btf_tab *btf_tab; 3039 struct bpf_kfunc_desc_tab *tab; 3040 struct bpf_prog_aux *prog_aux; 3041 struct bpf_kfunc_desc *desc; 3042 const char *func_name; 3043 struct btf *desc_btf; 3044 unsigned long call_imm; 3045 unsigned long addr; 3046 int err; 3047 3048 prog_aux = env->prog->aux; 3049 tab = prog_aux->kfunc_tab; 3050 btf_tab = prog_aux->kfunc_btf_tab; 3051 if (!tab) { 3052 if (!btf_vmlinux) { 3053 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 3054 return -ENOTSUPP; 3055 } 3056 3057 if (!env->prog->jit_requested) { 3058 verbose(env, "JIT is required for calling kernel function\n"); 3059 return -ENOTSUPP; 3060 } 3061 3062 if (!bpf_jit_supports_kfunc_call()) { 3063 verbose(env, "JIT does not support calling kernel function\n"); 3064 return -ENOTSUPP; 3065 } 3066 3067 if (!env->prog->gpl_compatible) { 3068 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 3069 return -EINVAL; 3070 } 3071 3072 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 3073 if (!tab) 3074 return -ENOMEM; 3075 prog_aux->kfunc_tab = tab; 3076 } 3077 3078 /* func_id == 0 is always invalid, but instead of returning an error, be 3079 * conservative and wait until the code elimination pass before returning 3080 * error, so that invalid calls that get pruned out can be in BPF programs 3081 * loaded from userspace. It is also required that offset be untouched 3082 * for such calls. 3083 */ 3084 if (!func_id && !offset) 3085 return 0; 3086 3087 if (!btf_tab && offset) { 3088 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 3089 if (!btf_tab) 3090 return -ENOMEM; 3091 prog_aux->kfunc_btf_tab = btf_tab; 3092 } 3093 3094 desc_btf = find_kfunc_desc_btf(env, offset); 3095 if (IS_ERR(desc_btf)) { 3096 verbose(env, "failed to find BTF for kernel function\n"); 3097 return PTR_ERR(desc_btf); 3098 } 3099 3100 if (find_kfunc_desc(env->prog, func_id, offset)) 3101 return 0; 3102 3103 if (tab->nr_descs == MAX_KFUNC_DESCS) { 3104 verbose(env, "too many different kernel function calls\n"); 3105 return -E2BIG; 3106 } 3107 3108 func = btf_type_by_id(desc_btf, func_id); 3109 if (!func || !btf_type_is_func(func)) { 3110 verbose(env, "kernel btf_id %u is not a function\n", 3111 func_id); 3112 return -EINVAL; 3113 } 3114 func_proto = btf_type_by_id(desc_btf, func->type); 3115 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 3116 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 3117 func_id); 3118 return -EINVAL; 3119 } 3120 3121 func_name = btf_name_by_offset(desc_btf, func->name_off); 3122 addr = kallsyms_lookup_name(func_name); 3123 if (!addr) { 3124 verbose(env, "cannot find address for kernel function %s\n", 3125 func_name); 3126 return -EINVAL; 3127 } 3128 specialize_kfunc(env, func_id, offset, &addr); 3129 3130 if (bpf_jit_supports_far_kfunc_call()) { 3131 call_imm = func_id; 3132 } else { 3133 call_imm = BPF_CALL_IMM(addr); 3134 /* Check whether the relative offset overflows desc->imm */ 3135 if ((unsigned long)(s32)call_imm != call_imm) { 3136 verbose(env, "address of kernel function %s is out of range\n", 3137 func_name); 3138 return -EINVAL; 3139 } 3140 } 3141 3142 if (bpf_dev_bound_kfunc_id(func_id)) { 3143 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 3144 if (err) 3145 return err; 3146 } 3147 3148 desc = &tab->descs[tab->nr_descs++]; 3149 desc->func_id = func_id; 3150 desc->imm = call_imm; 3151 desc->offset = offset; 3152 desc->addr = addr; 3153 err = btf_distill_func_proto(&env->log, desc_btf, 3154 func_proto, func_name, 3155 &desc->func_model); 3156 if (!err) 3157 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3158 kfunc_desc_cmp_by_id_off, NULL); 3159 return err; 3160 } 3161 3162 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 3163 { 3164 const struct bpf_kfunc_desc *d0 = a; 3165 const struct bpf_kfunc_desc *d1 = b; 3166 3167 if (d0->imm != d1->imm) 3168 return d0->imm < d1->imm ? -1 : 1; 3169 if (d0->offset != d1->offset) 3170 return d0->offset < d1->offset ? -1 : 1; 3171 return 0; 3172 } 3173 3174 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 3175 { 3176 struct bpf_kfunc_desc_tab *tab; 3177 3178 tab = prog->aux->kfunc_tab; 3179 if (!tab) 3180 return; 3181 3182 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3183 kfunc_desc_cmp_by_imm_off, NULL); 3184 } 3185 3186 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 3187 { 3188 return !!prog->aux->kfunc_tab; 3189 } 3190 3191 const struct btf_func_model * 3192 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 3193 const struct bpf_insn *insn) 3194 { 3195 const struct bpf_kfunc_desc desc = { 3196 .imm = insn->imm, 3197 .offset = insn->off, 3198 }; 3199 const struct bpf_kfunc_desc *res; 3200 struct bpf_kfunc_desc_tab *tab; 3201 3202 tab = prog->aux->kfunc_tab; 3203 res = bsearch(&desc, tab->descs, tab->nr_descs, 3204 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 3205 3206 return res ? &res->func_model : NULL; 3207 } 3208 3209 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 3210 { 3211 struct bpf_subprog_info *subprog = env->subprog_info; 3212 int i, ret, insn_cnt = env->prog->len, ex_cb_insn; 3213 struct bpf_insn *insn = env->prog->insnsi; 3214 3215 /* Add entry function. */ 3216 ret = add_subprog(env, 0); 3217 if (ret) 3218 return ret; 3219 3220 for (i = 0; i < insn_cnt; i++, insn++) { 3221 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 3222 !bpf_pseudo_kfunc_call(insn)) 3223 continue; 3224 3225 if (!env->bpf_capable) { 3226 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 3227 return -EPERM; 3228 } 3229 3230 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 3231 ret = add_subprog(env, i + insn->imm + 1); 3232 else 3233 ret = add_kfunc_call(env, insn->imm, insn->off); 3234 3235 if (ret < 0) 3236 return ret; 3237 } 3238 3239 ret = bpf_find_exception_callback_insn_off(env); 3240 if (ret < 0) 3241 return ret; 3242 ex_cb_insn = ret; 3243 3244 /* If ex_cb_insn > 0, this means that the main program has a subprog 3245 * marked using BTF decl tag to serve as the exception callback. 3246 */ 3247 if (ex_cb_insn) { 3248 ret = add_subprog(env, ex_cb_insn); 3249 if (ret < 0) 3250 return ret; 3251 for (i = 1; i < env->subprog_cnt; i++) { 3252 if (env->subprog_info[i].start != ex_cb_insn) 3253 continue; 3254 env->exception_callback_subprog = i; 3255 mark_subprog_exc_cb(env, i); 3256 break; 3257 } 3258 } 3259 3260 /* Add a fake 'exit' subprog which could simplify subprog iteration 3261 * logic. 'subprog_cnt' should not be increased. 3262 */ 3263 subprog[env->subprog_cnt].start = insn_cnt; 3264 3265 if (env->log.level & BPF_LOG_LEVEL2) 3266 for (i = 0; i < env->subprog_cnt; i++) 3267 verbose(env, "func#%d @%d\n", i, subprog[i].start); 3268 3269 return 0; 3270 } 3271 3272 static int check_subprogs(struct bpf_verifier_env *env) 3273 { 3274 int i, subprog_start, subprog_end, off, cur_subprog = 0; 3275 struct bpf_subprog_info *subprog = env->subprog_info; 3276 struct bpf_insn *insn = env->prog->insnsi; 3277 int insn_cnt = env->prog->len; 3278 3279 /* now check that all jumps are within the same subprog */ 3280 subprog_start = subprog[cur_subprog].start; 3281 subprog_end = subprog[cur_subprog + 1].start; 3282 for (i = 0; i < insn_cnt; i++) { 3283 u8 code = insn[i].code; 3284 3285 if (code == (BPF_JMP | BPF_CALL) && 3286 insn[i].src_reg == 0 && 3287 insn[i].imm == BPF_FUNC_tail_call) { 3288 subprog[cur_subprog].has_tail_call = true; 3289 subprog[cur_subprog].tail_call_reachable = true; 3290 } 3291 if (BPF_CLASS(code) == BPF_LD && 3292 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 3293 subprog[cur_subprog].has_ld_abs = true; 3294 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 3295 goto next; 3296 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 3297 goto next; 3298 if (code == (BPF_JMP32 | BPF_JA)) 3299 off = i + insn[i].imm + 1; 3300 else 3301 off = i + insn[i].off + 1; 3302 if (off < subprog_start || off >= subprog_end) { 3303 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3304 return -EINVAL; 3305 } 3306 next: 3307 if (i == subprog_end - 1) { 3308 /* to avoid fall-through from one subprog into another 3309 * the last insn of the subprog should be either exit 3310 * or unconditional jump back or bpf_throw call 3311 */ 3312 if (code != (BPF_JMP | BPF_EXIT) && 3313 code != (BPF_JMP32 | BPF_JA) && 3314 code != (BPF_JMP | BPF_JA)) { 3315 verbose(env, "last insn is not an exit or jmp\n"); 3316 return -EINVAL; 3317 } 3318 subprog_start = subprog_end; 3319 cur_subprog++; 3320 if (cur_subprog < env->subprog_cnt) 3321 subprog_end = subprog[cur_subprog + 1].start; 3322 } 3323 } 3324 return 0; 3325 } 3326 3327 /* Parentage chain of this register (or stack slot) should take care of all 3328 * issues like callee-saved registers, stack slot allocation time, etc. 3329 */ 3330 static int mark_reg_read(struct bpf_verifier_env *env, 3331 const struct bpf_reg_state *state, 3332 struct bpf_reg_state *parent, u8 flag) 3333 { 3334 bool writes = parent == state->parent; /* Observe write marks */ 3335 int cnt = 0; 3336 3337 while (parent) { 3338 /* if read wasn't screened by an earlier write ... */ 3339 if (writes && state->live & REG_LIVE_WRITTEN) 3340 break; 3341 if (parent->live & REG_LIVE_DONE) { 3342 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 3343 reg_type_str(env, parent->type), 3344 parent->var_off.value, parent->off); 3345 return -EFAULT; 3346 } 3347 /* The first condition is more likely to be true than the 3348 * second, checked it first. 3349 */ 3350 if ((parent->live & REG_LIVE_READ) == flag || 3351 parent->live & REG_LIVE_READ64) 3352 /* The parentage chain never changes and 3353 * this parent was already marked as LIVE_READ. 3354 * There is no need to keep walking the chain again and 3355 * keep re-marking all parents as LIVE_READ. 3356 * This case happens when the same register is read 3357 * multiple times without writes into it in-between. 3358 * Also, if parent has the stronger REG_LIVE_READ64 set, 3359 * then no need to set the weak REG_LIVE_READ32. 3360 */ 3361 break; 3362 /* ... then we depend on parent's value */ 3363 parent->live |= flag; 3364 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3365 if (flag == REG_LIVE_READ64) 3366 parent->live &= ~REG_LIVE_READ32; 3367 state = parent; 3368 parent = state->parent; 3369 writes = true; 3370 cnt++; 3371 } 3372 3373 if (env->longest_mark_read_walk < cnt) 3374 env->longest_mark_read_walk = cnt; 3375 return 0; 3376 } 3377 3378 static int mark_stack_slot_obj_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3379 int spi, int nr_slots) 3380 { 3381 struct bpf_func_state *state = func(env, reg); 3382 int err, i; 3383 3384 for (i = 0; i < nr_slots; i++) { 3385 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3386 3387 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3388 if (err) 3389 return err; 3390 3391 mark_stack_slot_scratched(env, spi - i); 3392 } 3393 return 0; 3394 } 3395 3396 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3397 { 3398 int spi; 3399 3400 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3401 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3402 * check_kfunc_call. 3403 */ 3404 if (reg->type == CONST_PTR_TO_DYNPTR) 3405 return 0; 3406 spi = dynptr_get_spi(env, reg); 3407 if (spi < 0) 3408 return spi; 3409 /* Caller ensures dynptr is valid and initialized, which means spi is in 3410 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3411 * read. 3412 */ 3413 return mark_stack_slot_obj_read(env, reg, spi, BPF_DYNPTR_NR_SLOTS); 3414 } 3415 3416 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3417 int spi, int nr_slots) 3418 { 3419 return mark_stack_slot_obj_read(env, reg, spi, nr_slots); 3420 } 3421 3422 static int mark_irq_flag_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3423 { 3424 int spi; 3425 3426 spi = irq_flag_get_spi(env, reg); 3427 if (spi < 0) 3428 return spi; 3429 return mark_stack_slot_obj_read(env, reg, spi, 1); 3430 } 3431 3432 /* This function is supposed to be used by the following 32-bit optimization 3433 * code only. It returns TRUE if the source or destination register operates 3434 * on 64-bit, otherwise return FALSE. 3435 */ 3436 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3437 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3438 { 3439 u8 code, class, op; 3440 3441 code = insn->code; 3442 class = BPF_CLASS(code); 3443 op = BPF_OP(code); 3444 if (class == BPF_JMP) { 3445 /* BPF_EXIT for "main" will reach here. Return TRUE 3446 * conservatively. 3447 */ 3448 if (op == BPF_EXIT) 3449 return true; 3450 if (op == BPF_CALL) { 3451 /* BPF to BPF call will reach here because of marking 3452 * caller saved clobber with DST_OP_NO_MARK for which we 3453 * don't care the register def because they are anyway 3454 * marked as NOT_INIT already. 3455 */ 3456 if (insn->src_reg == BPF_PSEUDO_CALL) 3457 return false; 3458 /* Helper call will reach here because of arg type 3459 * check, conservatively return TRUE. 3460 */ 3461 if (t == SRC_OP) 3462 return true; 3463 3464 return false; 3465 } 3466 } 3467 3468 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3469 return false; 3470 3471 if (class == BPF_ALU64 || class == BPF_JMP || 3472 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3473 return true; 3474 3475 if (class == BPF_ALU || class == BPF_JMP32) 3476 return false; 3477 3478 if (class == BPF_LDX) { 3479 if (t != SRC_OP) 3480 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; 3481 /* LDX source must be ptr. */ 3482 return true; 3483 } 3484 3485 if (class == BPF_STX) { 3486 /* BPF_STX (including atomic variants) has multiple source 3487 * operands, one of which is a ptr. Check whether the caller is 3488 * asking about it. 3489 */ 3490 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3491 return true; 3492 return BPF_SIZE(code) == BPF_DW; 3493 } 3494 3495 if (class == BPF_LD) { 3496 u8 mode = BPF_MODE(code); 3497 3498 /* LD_IMM64 */ 3499 if (mode == BPF_IMM) 3500 return true; 3501 3502 /* Both LD_IND and LD_ABS return 32-bit data. */ 3503 if (t != SRC_OP) 3504 return false; 3505 3506 /* Implicit ctx ptr. */ 3507 if (regno == BPF_REG_6) 3508 return true; 3509 3510 /* Explicit source could be any width. */ 3511 return true; 3512 } 3513 3514 if (class == BPF_ST) 3515 /* The only source register for BPF_ST is a ptr. */ 3516 return true; 3517 3518 /* Conservatively return true at default. */ 3519 return true; 3520 } 3521 3522 /* Return the regno defined by the insn, or -1. */ 3523 static int insn_def_regno(const struct bpf_insn *insn) 3524 { 3525 switch (BPF_CLASS(insn->code)) { 3526 case BPF_JMP: 3527 case BPF_JMP32: 3528 case BPF_ST: 3529 return -1; 3530 case BPF_STX: 3531 if ((BPF_MODE(insn->code) == BPF_ATOMIC || 3532 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) && 3533 (insn->imm & BPF_FETCH)) { 3534 if (insn->imm == BPF_CMPXCHG) 3535 return BPF_REG_0; 3536 else 3537 return insn->src_reg; 3538 } else { 3539 return -1; 3540 } 3541 default: 3542 return insn->dst_reg; 3543 } 3544 } 3545 3546 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3547 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3548 { 3549 int dst_reg = insn_def_regno(insn); 3550 3551 if (dst_reg == -1) 3552 return false; 3553 3554 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3555 } 3556 3557 static void mark_insn_zext(struct bpf_verifier_env *env, 3558 struct bpf_reg_state *reg) 3559 { 3560 s32 def_idx = reg->subreg_def; 3561 3562 if (def_idx == DEF_NOT_SUBREG) 3563 return; 3564 3565 env->insn_aux_data[def_idx - 1].zext_dst = true; 3566 /* The dst will be zero extended, so won't be sub-register anymore. */ 3567 reg->subreg_def = DEF_NOT_SUBREG; 3568 } 3569 3570 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3571 enum reg_arg_type t) 3572 { 3573 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3574 struct bpf_reg_state *reg; 3575 bool rw64; 3576 3577 if (regno >= MAX_BPF_REG) { 3578 verbose(env, "R%d is invalid\n", regno); 3579 return -EINVAL; 3580 } 3581 3582 mark_reg_scratched(env, regno); 3583 3584 reg = ®s[regno]; 3585 rw64 = is_reg64(env, insn, regno, reg, t); 3586 if (t == SRC_OP) { 3587 /* check whether register used as source operand can be read */ 3588 if (reg->type == NOT_INIT) { 3589 verbose(env, "R%d !read_ok\n", regno); 3590 return -EACCES; 3591 } 3592 /* We don't need to worry about FP liveness because it's read-only */ 3593 if (regno == BPF_REG_FP) 3594 return 0; 3595 3596 if (rw64) 3597 mark_insn_zext(env, reg); 3598 3599 return mark_reg_read(env, reg, reg->parent, 3600 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3601 } else { 3602 /* check whether register used as dest operand can be written to */ 3603 if (regno == BPF_REG_FP) { 3604 verbose(env, "frame pointer is read only\n"); 3605 return -EACCES; 3606 } 3607 reg->live |= REG_LIVE_WRITTEN; 3608 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3609 if (t == DST_OP) 3610 mark_reg_unknown(env, regs, regno); 3611 } 3612 return 0; 3613 } 3614 3615 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3616 enum reg_arg_type t) 3617 { 3618 struct bpf_verifier_state *vstate = env->cur_state; 3619 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3620 3621 return __check_reg_arg(env, state->regs, regno, t); 3622 } 3623 3624 static int insn_stack_access_flags(int frameno, int spi) 3625 { 3626 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; 3627 } 3628 3629 static int insn_stack_access_spi(int insn_flags) 3630 { 3631 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; 3632 } 3633 3634 static int insn_stack_access_frameno(int insn_flags) 3635 { 3636 return insn_flags & INSN_F_FRAMENO_MASK; 3637 } 3638 3639 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3640 { 3641 env->insn_aux_data[idx].jmp_point = true; 3642 } 3643 3644 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3645 { 3646 return env->insn_aux_data[insn_idx].jmp_point; 3647 } 3648 3649 #define LR_FRAMENO_BITS 3 3650 #define LR_SPI_BITS 6 3651 #define LR_ENTRY_BITS (LR_SPI_BITS + LR_FRAMENO_BITS + 1) 3652 #define LR_SIZE_BITS 4 3653 #define LR_FRAMENO_MASK ((1ull << LR_FRAMENO_BITS) - 1) 3654 #define LR_SPI_MASK ((1ull << LR_SPI_BITS) - 1) 3655 #define LR_SIZE_MASK ((1ull << LR_SIZE_BITS) - 1) 3656 #define LR_SPI_OFF LR_FRAMENO_BITS 3657 #define LR_IS_REG_OFF (LR_SPI_BITS + LR_FRAMENO_BITS) 3658 #define LINKED_REGS_MAX 6 3659 3660 struct linked_reg { 3661 u8 frameno; 3662 union { 3663 u8 spi; 3664 u8 regno; 3665 }; 3666 bool is_reg; 3667 }; 3668 3669 struct linked_regs { 3670 int cnt; 3671 struct linked_reg entries[LINKED_REGS_MAX]; 3672 }; 3673 3674 static struct linked_reg *linked_regs_push(struct linked_regs *s) 3675 { 3676 if (s->cnt < LINKED_REGS_MAX) 3677 return &s->entries[s->cnt++]; 3678 3679 return NULL; 3680 } 3681 3682 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track 3683 * number of elements currently in stack. 3684 * Pack one history entry for linked registers as 10 bits in the following format: 3685 * - 3-bits frameno 3686 * - 6-bits spi_or_reg 3687 * - 1-bit is_reg 3688 */ 3689 static u64 linked_regs_pack(struct linked_regs *s) 3690 { 3691 u64 val = 0; 3692 int i; 3693 3694 for (i = 0; i < s->cnt; ++i) { 3695 struct linked_reg *e = &s->entries[i]; 3696 u64 tmp = 0; 3697 3698 tmp |= e->frameno; 3699 tmp |= e->spi << LR_SPI_OFF; 3700 tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF; 3701 3702 val <<= LR_ENTRY_BITS; 3703 val |= tmp; 3704 } 3705 val <<= LR_SIZE_BITS; 3706 val |= s->cnt; 3707 return val; 3708 } 3709 3710 static void linked_regs_unpack(u64 val, struct linked_regs *s) 3711 { 3712 int i; 3713 3714 s->cnt = val & LR_SIZE_MASK; 3715 val >>= LR_SIZE_BITS; 3716 3717 for (i = 0; i < s->cnt; ++i) { 3718 struct linked_reg *e = &s->entries[i]; 3719 3720 e->frameno = val & LR_FRAMENO_MASK; 3721 e->spi = (val >> LR_SPI_OFF) & LR_SPI_MASK; 3722 e->is_reg = (val >> LR_IS_REG_OFF) & 0x1; 3723 val >>= LR_ENTRY_BITS; 3724 } 3725 } 3726 3727 /* for any branch, call, exit record the history of jmps in the given state */ 3728 static int push_insn_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, 3729 int insn_flags, u64 linked_regs) 3730 { 3731 struct bpf_insn_hist_entry *p; 3732 size_t alloc_size; 3733 3734 /* combine instruction flags if we already recorded this instruction */ 3735 if (env->cur_hist_ent) { 3736 /* atomic instructions push insn_flags twice, for READ and 3737 * WRITE sides, but they should agree on stack slot 3738 */ 3739 WARN_ONCE((env->cur_hist_ent->flags & insn_flags) && 3740 (env->cur_hist_ent->flags & insn_flags) != insn_flags, 3741 "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n", 3742 env->insn_idx, env->cur_hist_ent->flags, insn_flags); 3743 env->cur_hist_ent->flags |= insn_flags; 3744 WARN_ONCE(env->cur_hist_ent->linked_regs != 0, 3745 "verifier insn history bug: insn_idx %d linked_regs != 0: %#llx\n", 3746 env->insn_idx, env->cur_hist_ent->linked_regs); 3747 env->cur_hist_ent->linked_regs = linked_regs; 3748 return 0; 3749 } 3750 3751 if (cur->insn_hist_end + 1 > env->insn_hist_cap) { 3752 alloc_size = size_mul(cur->insn_hist_end + 1, sizeof(*p)); 3753 p = kvrealloc(env->insn_hist, alloc_size, GFP_USER); 3754 if (!p) 3755 return -ENOMEM; 3756 env->insn_hist = p; 3757 env->insn_hist_cap = alloc_size / sizeof(*p); 3758 } 3759 3760 p = &env->insn_hist[cur->insn_hist_end]; 3761 p->idx = env->insn_idx; 3762 p->prev_idx = env->prev_insn_idx; 3763 p->flags = insn_flags; 3764 p->linked_regs = linked_regs; 3765 3766 cur->insn_hist_end++; 3767 env->cur_hist_ent = p; 3768 3769 return 0; 3770 } 3771 3772 static struct bpf_insn_hist_entry *get_insn_hist_entry(struct bpf_verifier_env *env, 3773 u32 hist_start, u32 hist_end, int insn_idx) 3774 { 3775 if (hist_end > hist_start && env->insn_hist[hist_end - 1].idx == insn_idx) 3776 return &env->insn_hist[hist_end - 1]; 3777 return NULL; 3778 } 3779 3780 /* Backtrack one insn at a time. If idx is not at the top of recorded 3781 * history then previous instruction came from straight line execution. 3782 * Return -ENOENT if we exhausted all instructions within given state. 3783 * 3784 * It's legal to have a bit of a looping with the same starting and ending 3785 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3786 * instruction index is the same as state's first_idx doesn't mean we are 3787 * done. If there is still some jump history left, we should keep going. We 3788 * need to take into account that we might have a jump history between given 3789 * state's parent and itself, due to checkpointing. In this case, we'll have 3790 * history entry recording a jump from last instruction of parent state and 3791 * first instruction of given state. 3792 */ 3793 static int get_prev_insn_idx(const struct bpf_verifier_env *env, 3794 struct bpf_verifier_state *st, 3795 int insn_idx, u32 hist_start, u32 *hist_endp) 3796 { 3797 u32 hist_end = *hist_endp; 3798 u32 cnt = hist_end - hist_start; 3799 3800 if (insn_idx == st->first_insn_idx) { 3801 if (cnt == 0) 3802 return -ENOENT; 3803 if (cnt == 1 && env->insn_hist[hist_start].idx == insn_idx) 3804 return -ENOENT; 3805 } 3806 3807 if (cnt && env->insn_hist[hist_end - 1].idx == insn_idx) { 3808 (*hist_endp)--; 3809 return env->insn_hist[hist_end - 1].prev_idx; 3810 } else { 3811 return insn_idx - 1; 3812 } 3813 } 3814 3815 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3816 { 3817 const struct btf_type *func; 3818 struct btf *desc_btf; 3819 3820 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3821 return NULL; 3822 3823 desc_btf = find_kfunc_desc_btf(data, insn->off); 3824 if (IS_ERR(desc_btf)) 3825 return "<error>"; 3826 3827 func = btf_type_by_id(desc_btf, insn->imm); 3828 return btf_name_by_offset(desc_btf, func->name_off); 3829 } 3830 3831 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3832 { 3833 bt->frame = frame; 3834 } 3835 3836 static inline void bt_reset(struct backtrack_state *bt) 3837 { 3838 struct bpf_verifier_env *env = bt->env; 3839 3840 memset(bt, 0, sizeof(*bt)); 3841 bt->env = env; 3842 } 3843 3844 static inline u32 bt_empty(struct backtrack_state *bt) 3845 { 3846 u64 mask = 0; 3847 int i; 3848 3849 for (i = 0; i <= bt->frame; i++) 3850 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3851 3852 return mask == 0; 3853 } 3854 3855 static inline int bt_subprog_enter(struct backtrack_state *bt) 3856 { 3857 if (bt->frame == MAX_CALL_FRAMES - 1) { 3858 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3859 WARN_ONCE(1, "verifier backtracking bug"); 3860 return -EFAULT; 3861 } 3862 bt->frame++; 3863 return 0; 3864 } 3865 3866 static inline int bt_subprog_exit(struct backtrack_state *bt) 3867 { 3868 if (bt->frame == 0) { 3869 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3870 WARN_ONCE(1, "verifier backtracking bug"); 3871 return -EFAULT; 3872 } 3873 bt->frame--; 3874 return 0; 3875 } 3876 3877 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3878 { 3879 bt->reg_masks[frame] |= 1 << reg; 3880 } 3881 3882 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3883 { 3884 bt->reg_masks[frame] &= ~(1 << reg); 3885 } 3886 3887 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3888 { 3889 bt_set_frame_reg(bt, bt->frame, reg); 3890 } 3891 3892 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3893 { 3894 bt_clear_frame_reg(bt, bt->frame, reg); 3895 } 3896 3897 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3898 { 3899 bt->stack_masks[frame] |= 1ull << slot; 3900 } 3901 3902 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3903 { 3904 bt->stack_masks[frame] &= ~(1ull << slot); 3905 } 3906 3907 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3908 { 3909 return bt->reg_masks[frame]; 3910 } 3911 3912 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3913 { 3914 return bt->reg_masks[bt->frame]; 3915 } 3916 3917 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3918 { 3919 return bt->stack_masks[frame]; 3920 } 3921 3922 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3923 { 3924 return bt->stack_masks[bt->frame]; 3925 } 3926 3927 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3928 { 3929 return bt->reg_masks[bt->frame] & (1 << reg); 3930 } 3931 3932 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg) 3933 { 3934 return bt->reg_masks[frame] & (1 << reg); 3935 } 3936 3937 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) 3938 { 3939 return bt->stack_masks[frame] & (1ull << slot); 3940 } 3941 3942 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3943 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3944 { 3945 DECLARE_BITMAP(mask, 64); 3946 bool first = true; 3947 int i, n; 3948 3949 buf[0] = '\0'; 3950 3951 bitmap_from_u64(mask, reg_mask); 3952 for_each_set_bit(i, mask, 32) { 3953 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3954 first = false; 3955 buf += n; 3956 buf_sz -= n; 3957 if (buf_sz < 0) 3958 break; 3959 } 3960 } 3961 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3962 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3963 { 3964 DECLARE_BITMAP(mask, 64); 3965 bool first = true; 3966 int i, n; 3967 3968 buf[0] = '\0'; 3969 3970 bitmap_from_u64(mask, stack_mask); 3971 for_each_set_bit(i, mask, 64) { 3972 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3973 first = false; 3974 buf += n; 3975 buf_sz -= n; 3976 if (buf_sz < 0) 3977 break; 3978 } 3979 } 3980 3981 /* If any register R in hist->linked_regs is marked as precise in bt, 3982 * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs. 3983 */ 3984 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_insn_hist_entry *hist) 3985 { 3986 struct linked_regs linked_regs; 3987 bool some_precise = false; 3988 int i; 3989 3990 if (!hist || hist->linked_regs == 0) 3991 return; 3992 3993 linked_regs_unpack(hist->linked_regs, &linked_regs); 3994 for (i = 0; i < linked_regs.cnt; ++i) { 3995 struct linked_reg *e = &linked_regs.entries[i]; 3996 3997 if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) || 3998 (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) { 3999 some_precise = true; 4000 break; 4001 } 4002 } 4003 4004 if (!some_precise) 4005 return; 4006 4007 for (i = 0; i < linked_regs.cnt; ++i) { 4008 struct linked_reg *e = &linked_regs.entries[i]; 4009 4010 if (e->is_reg) 4011 bt_set_frame_reg(bt, e->frameno, e->regno); 4012 else 4013 bt_set_frame_slot(bt, e->frameno, e->spi); 4014 } 4015 } 4016 4017 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 4018 4019 /* For given verifier state backtrack_insn() is called from the last insn to 4020 * the first insn. Its purpose is to compute a bitmask of registers and 4021 * stack slots that needs precision in the parent verifier state. 4022 * 4023 * @idx is an index of the instruction we are currently processing; 4024 * @subseq_idx is an index of the subsequent instruction that: 4025 * - *would be* executed next, if jump history is viewed in forward order; 4026 * - *was* processed previously during backtracking. 4027 */ 4028 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 4029 struct bpf_insn_hist_entry *hist, struct backtrack_state *bt) 4030 { 4031 const struct bpf_insn_cbs cbs = { 4032 .cb_call = disasm_kfunc_name, 4033 .cb_print = verbose, 4034 .private_data = env, 4035 }; 4036 struct bpf_insn *insn = env->prog->insnsi + idx; 4037 u8 class = BPF_CLASS(insn->code); 4038 u8 opcode = BPF_OP(insn->code); 4039 u8 mode = BPF_MODE(insn->code); 4040 u32 dreg = insn->dst_reg; 4041 u32 sreg = insn->src_reg; 4042 u32 spi, i, fr; 4043 4044 if (insn->code == 0) 4045 return 0; 4046 if (env->log.level & BPF_LOG_LEVEL2) { 4047 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 4048 verbose(env, "mark_precise: frame%d: regs=%s ", 4049 bt->frame, env->tmp_str_buf); 4050 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 4051 verbose(env, "stack=%s before ", env->tmp_str_buf); 4052 verbose(env, "%d: ", idx); 4053 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 4054 } 4055 4056 /* If there is a history record that some registers gained range at this insn, 4057 * propagate precision marks to those registers, so that bt_is_reg_set() 4058 * accounts for these registers. 4059 */ 4060 bt_sync_linked_regs(bt, hist); 4061 4062 if (class == BPF_ALU || class == BPF_ALU64) { 4063 if (!bt_is_reg_set(bt, dreg)) 4064 return 0; 4065 if (opcode == BPF_END || opcode == BPF_NEG) { 4066 /* sreg is reserved and unused 4067 * dreg still need precision before this insn 4068 */ 4069 return 0; 4070 } else if (opcode == BPF_MOV) { 4071 if (BPF_SRC(insn->code) == BPF_X) { 4072 /* dreg = sreg or dreg = (s8, s16, s32)sreg 4073 * dreg needs precision after this insn 4074 * sreg needs precision before this insn 4075 */ 4076 bt_clear_reg(bt, dreg); 4077 if (sreg != BPF_REG_FP) 4078 bt_set_reg(bt, sreg); 4079 } else { 4080 /* dreg = K 4081 * dreg needs precision after this insn. 4082 * Corresponding register is already marked 4083 * as precise=true in this verifier state. 4084 * No further markings in parent are necessary 4085 */ 4086 bt_clear_reg(bt, dreg); 4087 } 4088 } else { 4089 if (BPF_SRC(insn->code) == BPF_X) { 4090 /* dreg += sreg 4091 * both dreg and sreg need precision 4092 * before this insn 4093 */ 4094 if (sreg != BPF_REG_FP) 4095 bt_set_reg(bt, sreg); 4096 } /* else dreg += K 4097 * dreg still needs precision before this insn 4098 */ 4099 } 4100 } else if (class == BPF_LDX) { 4101 if (!bt_is_reg_set(bt, dreg)) 4102 return 0; 4103 bt_clear_reg(bt, dreg); 4104 4105 /* scalars can only be spilled into stack w/o losing precision. 4106 * Load from any other memory can be zero extended. 4107 * The desire to keep that precision is already indicated 4108 * by 'precise' mark in corresponding register of this state. 4109 * No further tracking necessary. 4110 */ 4111 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 4112 return 0; 4113 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 4114 * that [fp - off] slot contains scalar that needs to be 4115 * tracked with precision 4116 */ 4117 spi = insn_stack_access_spi(hist->flags); 4118 fr = insn_stack_access_frameno(hist->flags); 4119 bt_set_frame_slot(bt, fr, spi); 4120 } else if (class == BPF_STX || class == BPF_ST) { 4121 if (bt_is_reg_set(bt, dreg)) 4122 /* stx & st shouldn't be using _scalar_ dst_reg 4123 * to access memory. It means backtracking 4124 * encountered a case of pointer subtraction. 4125 */ 4126 return -ENOTSUPP; 4127 /* scalars can only be spilled into stack */ 4128 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 4129 return 0; 4130 spi = insn_stack_access_spi(hist->flags); 4131 fr = insn_stack_access_frameno(hist->flags); 4132 if (!bt_is_frame_slot_set(bt, fr, spi)) 4133 return 0; 4134 bt_clear_frame_slot(bt, fr, spi); 4135 if (class == BPF_STX) 4136 bt_set_reg(bt, sreg); 4137 } else if (class == BPF_JMP || class == BPF_JMP32) { 4138 if (bpf_pseudo_call(insn)) { 4139 int subprog_insn_idx, subprog; 4140 4141 subprog_insn_idx = idx + insn->imm + 1; 4142 subprog = find_subprog(env, subprog_insn_idx); 4143 if (subprog < 0) 4144 return -EFAULT; 4145 4146 if (subprog_is_global(env, subprog)) { 4147 /* check that jump history doesn't have any 4148 * extra instructions from subprog; the next 4149 * instruction after call to global subprog 4150 * should be literally next instruction in 4151 * caller program 4152 */ 4153 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 4154 /* r1-r5 are invalidated after subprog call, 4155 * so for global func call it shouldn't be set 4156 * anymore 4157 */ 4158 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4159 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 4160 WARN_ONCE(1, "verifier backtracking bug"); 4161 return -EFAULT; 4162 } 4163 /* global subprog always sets R0 */ 4164 bt_clear_reg(bt, BPF_REG_0); 4165 return 0; 4166 } else { 4167 /* static subprog call instruction, which 4168 * means that we are exiting current subprog, 4169 * so only r1-r5 could be still requested as 4170 * precise, r0 and r6-r10 or any stack slot in 4171 * the current frame should be zero by now 4172 */ 4173 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4174 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 4175 WARN_ONCE(1, "verifier backtracking bug"); 4176 return -EFAULT; 4177 } 4178 /* we are now tracking register spills correctly, 4179 * so any instance of leftover slots is a bug 4180 */ 4181 if (bt_stack_mask(bt) != 0) { 4182 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 4183 WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)"); 4184 return -EFAULT; 4185 } 4186 /* propagate r1-r5 to the caller */ 4187 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 4188 if (bt_is_reg_set(bt, i)) { 4189 bt_clear_reg(bt, i); 4190 bt_set_frame_reg(bt, bt->frame - 1, i); 4191 } 4192 } 4193 if (bt_subprog_exit(bt)) 4194 return -EFAULT; 4195 return 0; 4196 } 4197 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 4198 /* exit from callback subprog to callback-calling helper or 4199 * kfunc call. Use idx/subseq_idx check to discern it from 4200 * straight line code backtracking. 4201 * Unlike the subprog call handling above, we shouldn't 4202 * propagate precision of r1-r5 (if any requested), as they are 4203 * not actually arguments passed directly to callback subprogs 4204 */ 4205 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4206 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 4207 WARN_ONCE(1, "verifier backtracking bug"); 4208 return -EFAULT; 4209 } 4210 if (bt_stack_mask(bt) != 0) { 4211 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 4212 WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)"); 4213 return -EFAULT; 4214 } 4215 /* clear r1-r5 in callback subprog's mask */ 4216 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4217 bt_clear_reg(bt, i); 4218 if (bt_subprog_exit(bt)) 4219 return -EFAULT; 4220 return 0; 4221 } else if (opcode == BPF_CALL) { 4222 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 4223 * catch this error later. Make backtracking conservative 4224 * with ENOTSUPP. 4225 */ 4226 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 4227 return -ENOTSUPP; 4228 /* regular helper call sets R0 */ 4229 bt_clear_reg(bt, BPF_REG_0); 4230 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4231 /* if backtracing was looking for registers R1-R5 4232 * they should have been found already. 4233 */ 4234 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 4235 WARN_ONCE(1, "verifier backtracking bug"); 4236 return -EFAULT; 4237 } 4238 } else if (opcode == BPF_EXIT) { 4239 bool r0_precise; 4240 4241 /* Backtracking to a nested function call, 'idx' is a part of 4242 * the inner frame 'subseq_idx' is a part of the outer frame. 4243 * In case of a regular function call, instructions giving 4244 * precision to registers R1-R5 should have been found already. 4245 * In case of a callback, it is ok to have R1-R5 marked for 4246 * backtracking, as these registers are set by the function 4247 * invoking callback. 4248 */ 4249 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 4250 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4251 bt_clear_reg(bt, i); 4252 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4253 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 4254 WARN_ONCE(1, "verifier backtracking bug"); 4255 return -EFAULT; 4256 } 4257 4258 /* BPF_EXIT in subprog or callback always returns 4259 * right after the call instruction, so by checking 4260 * whether the instruction at subseq_idx-1 is subprog 4261 * call or not we can distinguish actual exit from 4262 * *subprog* from exit from *callback*. In the former 4263 * case, we need to propagate r0 precision, if 4264 * necessary. In the former we never do that. 4265 */ 4266 r0_precise = subseq_idx - 1 >= 0 && 4267 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 4268 bt_is_reg_set(bt, BPF_REG_0); 4269 4270 bt_clear_reg(bt, BPF_REG_0); 4271 if (bt_subprog_enter(bt)) 4272 return -EFAULT; 4273 4274 if (r0_precise) 4275 bt_set_reg(bt, BPF_REG_0); 4276 /* r6-r9 and stack slots will stay set in caller frame 4277 * bitmasks until we return back from callee(s) 4278 */ 4279 return 0; 4280 } else if (BPF_SRC(insn->code) == BPF_X) { 4281 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 4282 return 0; 4283 /* dreg <cond> sreg 4284 * Both dreg and sreg need precision before 4285 * this insn. If only sreg was marked precise 4286 * before it would be equally necessary to 4287 * propagate it to dreg. 4288 */ 4289 bt_set_reg(bt, dreg); 4290 bt_set_reg(bt, sreg); 4291 } else if (BPF_SRC(insn->code) == BPF_K) { 4292 /* dreg <cond> K 4293 * Only dreg still needs precision before 4294 * this insn, so for the K-based conditional 4295 * there is nothing new to be marked. 4296 */ 4297 } 4298 } else if (class == BPF_LD) { 4299 if (!bt_is_reg_set(bt, dreg)) 4300 return 0; 4301 bt_clear_reg(bt, dreg); 4302 /* It's ld_imm64 or ld_abs or ld_ind. 4303 * For ld_imm64 no further tracking of precision 4304 * into parent is necessary 4305 */ 4306 if (mode == BPF_IND || mode == BPF_ABS) 4307 /* to be analyzed */ 4308 return -ENOTSUPP; 4309 } 4310 /* Propagate precision marks to linked registers, to account for 4311 * registers marked as precise in this function. 4312 */ 4313 bt_sync_linked_regs(bt, hist); 4314 return 0; 4315 } 4316 4317 /* the scalar precision tracking algorithm: 4318 * . at the start all registers have precise=false. 4319 * . scalar ranges are tracked as normal through alu and jmp insns. 4320 * . once precise value of the scalar register is used in: 4321 * . ptr + scalar alu 4322 * . if (scalar cond K|scalar) 4323 * . helper_call(.., scalar, ...) where ARG_CONST is expected 4324 * backtrack through the verifier states and mark all registers and 4325 * stack slots with spilled constants that these scalar regisers 4326 * should be precise. 4327 * . during state pruning two registers (or spilled stack slots) 4328 * are equivalent if both are not precise. 4329 * 4330 * Note the verifier cannot simply walk register parentage chain, 4331 * since many different registers and stack slots could have been 4332 * used to compute single precise scalar. 4333 * 4334 * The approach of starting with precise=true for all registers and then 4335 * backtrack to mark a register as not precise when the verifier detects 4336 * that program doesn't care about specific value (e.g., when helper 4337 * takes register as ARG_ANYTHING parameter) is not safe. 4338 * 4339 * It's ok to walk single parentage chain of the verifier states. 4340 * It's possible that this backtracking will go all the way till 1st insn. 4341 * All other branches will be explored for needing precision later. 4342 * 4343 * The backtracking needs to deal with cases like: 4344 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 4345 * r9 -= r8 4346 * r5 = r9 4347 * if r5 > 0x79f goto pc+7 4348 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 4349 * r5 += 1 4350 * ... 4351 * call bpf_perf_event_output#25 4352 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 4353 * 4354 * and this case: 4355 * r6 = 1 4356 * call foo // uses callee's r6 inside to compute r0 4357 * r0 += r6 4358 * if r0 == 0 goto 4359 * 4360 * to track above reg_mask/stack_mask needs to be independent for each frame. 4361 * 4362 * Also if parent's curframe > frame where backtracking started, 4363 * the verifier need to mark registers in both frames, otherwise callees 4364 * may incorrectly prune callers. This is similar to 4365 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 4366 * 4367 * For now backtracking falls back into conservative marking. 4368 */ 4369 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 4370 struct bpf_verifier_state *st) 4371 { 4372 struct bpf_func_state *func; 4373 struct bpf_reg_state *reg; 4374 int i, j; 4375 4376 if (env->log.level & BPF_LOG_LEVEL2) { 4377 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 4378 st->curframe); 4379 } 4380 4381 /* big hammer: mark all scalars precise in this path. 4382 * pop_stack may still get !precise scalars. 4383 * We also skip current state and go straight to first parent state, 4384 * because precision markings in current non-checkpointed state are 4385 * not needed. See why in the comment in __mark_chain_precision below. 4386 */ 4387 for (st = st->parent; st; st = st->parent) { 4388 for (i = 0; i <= st->curframe; i++) { 4389 func = st->frame[i]; 4390 for (j = 0; j < BPF_REG_FP; j++) { 4391 reg = &func->regs[j]; 4392 if (reg->type != SCALAR_VALUE || reg->precise) 4393 continue; 4394 reg->precise = true; 4395 if (env->log.level & BPF_LOG_LEVEL2) { 4396 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 4397 i, j); 4398 } 4399 } 4400 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4401 if (!is_spilled_reg(&func->stack[j])) 4402 continue; 4403 reg = &func->stack[j].spilled_ptr; 4404 if (reg->type != SCALAR_VALUE || reg->precise) 4405 continue; 4406 reg->precise = true; 4407 if (env->log.level & BPF_LOG_LEVEL2) { 4408 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 4409 i, -(j + 1) * 8); 4410 } 4411 } 4412 } 4413 } 4414 } 4415 4416 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4417 { 4418 struct bpf_func_state *func; 4419 struct bpf_reg_state *reg; 4420 int i, j; 4421 4422 for (i = 0; i <= st->curframe; i++) { 4423 func = st->frame[i]; 4424 for (j = 0; j < BPF_REG_FP; j++) { 4425 reg = &func->regs[j]; 4426 if (reg->type != SCALAR_VALUE) 4427 continue; 4428 reg->precise = false; 4429 } 4430 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4431 if (!is_spilled_reg(&func->stack[j])) 4432 continue; 4433 reg = &func->stack[j].spilled_ptr; 4434 if (reg->type != SCALAR_VALUE) 4435 continue; 4436 reg->precise = false; 4437 } 4438 } 4439 } 4440 4441 /* 4442 * __mark_chain_precision() backtracks BPF program instruction sequence and 4443 * chain of verifier states making sure that register *regno* (if regno >= 0) 4444 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4445 * SCALARS, as well as any other registers and slots that contribute to 4446 * a tracked state of given registers/stack slots, depending on specific BPF 4447 * assembly instructions (see backtrack_insns() for exact instruction handling 4448 * logic). This backtracking relies on recorded insn_hist and is able to 4449 * traverse entire chain of parent states. This process ends only when all the 4450 * necessary registers/slots and their transitive dependencies are marked as 4451 * precise. 4452 * 4453 * One important and subtle aspect is that precise marks *do not matter* in 4454 * the currently verified state (current state). It is important to understand 4455 * why this is the case. 4456 * 4457 * First, note that current state is the state that is not yet "checkpointed", 4458 * i.e., it is not yet put into env->explored_states, and it has no children 4459 * states as well. It's ephemeral, and can end up either a) being discarded if 4460 * compatible explored state is found at some point or BPF_EXIT instruction is 4461 * reached or b) checkpointed and put into env->explored_states, branching out 4462 * into one or more children states. 4463 * 4464 * In the former case, precise markings in current state are completely 4465 * ignored by state comparison code (see regsafe() for details). Only 4466 * checkpointed ("old") state precise markings are important, and if old 4467 * state's register/slot is precise, regsafe() assumes current state's 4468 * register/slot as precise and checks value ranges exactly and precisely. If 4469 * states turn out to be compatible, current state's necessary precise 4470 * markings and any required parent states' precise markings are enforced 4471 * after the fact with propagate_precision() logic, after the fact. But it's 4472 * important to realize that in this case, even after marking current state 4473 * registers/slots as precise, we immediately discard current state. So what 4474 * actually matters is any of the precise markings propagated into current 4475 * state's parent states, which are always checkpointed (due to b) case above). 4476 * As such, for scenario a) it doesn't matter if current state has precise 4477 * markings set or not. 4478 * 4479 * Now, for the scenario b), checkpointing and forking into child(ren) 4480 * state(s). Note that before current state gets to checkpointing step, any 4481 * processed instruction always assumes precise SCALAR register/slot 4482 * knowledge: if precise value or range is useful to prune jump branch, BPF 4483 * verifier takes this opportunity enthusiastically. Similarly, when 4484 * register's value is used to calculate offset or memory address, exact 4485 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4486 * what we mentioned above about state comparison ignoring precise markings 4487 * during state comparison, BPF verifier ignores and also assumes precise 4488 * markings *at will* during instruction verification process. But as verifier 4489 * assumes precision, it also propagates any precision dependencies across 4490 * parent states, which are not yet finalized, so can be further restricted 4491 * based on new knowledge gained from restrictions enforced by their children 4492 * states. This is so that once those parent states are finalized, i.e., when 4493 * they have no more active children state, state comparison logic in 4494 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4495 * required for correctness. 4496 * 4497 * To build a bit more intuition, note also that once a state is checkpointed, 4498 * the path we took to get to that state is not important. This is crucial 4499 * property for state pruning. When state is checkpointed and finalized at 4500 * some instruction index, it can be correctly and safely used to "short 4501 * circuit" any *compatible* state that reaches exactly the same instruction 4502 * index. I.e., if we jumped to that instruction from a completely different 4503 * code path than original finalized state was derived from, it doesn't 4504 * matter, current state can be discarded because from that instruction 4505 * forward having a compatible state will ensure we will safely reach the 4506 * exit. States describe preconditions for further exploration, but completely 4507 * forget the history of how we got here. 4508 * 4509 * This also means that even if we needed precise SCALAR range to get to 4510 * finalized state, but from that point forward *that same* SCALAR register is 4511 * never used in a precise context (i.e., it's precise value is not needed for 4512 * correctness), it's correct and safe to mark such register as "imprecise" 4513 * (i.e., precise marking set to false). This is what we rely on when we do 4514 * not set precise marking in current state. If no child state requires 4515 * precision for any given SCALAR register, it's safe to dictate that it can 4516 * be imprecise. If any child state does require this register to be precise, 4517 * we'll mark it precise later retroactively during precise markings 4518 * propagation from child state to parent states. 4519 * 4520 * Skipping precise marking setting in current state is a mild version of 4521 * relying on the above observation. But we can utilize this property even 4522 * more aggressively by proactively forgetting any precise marking in the 4523 * current state (which we inherited from the parent state), right before we 4524 * checkpoint it and branch off into new child state. This is done by 4525 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4526 * finalized states which help in short circuiting more future states. 4527 */ 4528 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4529 { 4530 struct backtrack_state *bt = &env->bt; 4531 struct bpf_verifier_state *st = env->cur_state; 4532 int first_idx = st->first_insn_idx; 4533 int last_idx = env->insn_idx; 4534 int subseq_idx = -1; 4535 struct bpf_func_state *func; 4536 struct bpf_reg_state *reg; 4537 bool skip_first = true; 4538 int i, fr, err; 4539 4540 if (!env->bpf_capable) 4541 return 0; 4542 4543 /* set frame number from which we are starting to backtrack */ 4544 bt_init(bt, env->cur_state->curframe); 4545 4546 /* Do sanity checks against current state of register and/or stack 4547 * slot, but don't set precise flag in current state, as precision 4548 * tracking in the current state is unnecessary. 4549 */ 4550 func = st->frame[bt->frame]; 4551 if (regno >= 0) { 4552 reg = &func->regs[regno]; 4553 if (reg->type != SCALAR_VALUE) { 4554 WARN_ONCE(1, "backtracing misuse"); 4555 return -EFAULT; 4556 } 4557 bt_set_reg(bt, regno); 4558 } 4559 4560 if (bt_empty(bt)) 4561 return 0; 4562 4563 for (;;) { 4564 DECLARE_BITMAP(mask, 64); 4565 u32 hist_start = st->insn_hist_start; 4566 u32 hist_end = st->insn_hist_end; 4567 struct bpf_insn_hist_entry *hist; 4568 4569 if (env->log.level & BPF_LOG_LEVEL2) { 4570 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4571 bt->frame, last_idx, first_idx, subseq_idx); 4572 } 4573 4574 if (last_idx < 0) { 4575 /* we are at the entry into subprog, which 4576 * is expected for global funcs, but only if 4577 * requested precise registers are R1-R5 4578 * (which are global func's input arguments) 4579 */ 4580 if (st->curframe == 0 && 4581 st->frame[0]->subprogno > 0 && 4582 st->frame[0]->callsite == BPF_MAIN_FUNC && 4583 bt_stack_mask(bt) == 0 && 4584 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4585 bitmap_from_u64(mask, bt_reg_mask(bt)); 4586 for_each_set_bit(i, mask, 32) { 4587 reg = &st->frame[0]->regs[i]; 4588 bt_clear_reg(bt, i); 4589 if (reg->type == SCALAR_VALUE) 4590 reg->precise = true; 4591 } 4592 return 0; 4593 } 4594 4595 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4596 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4597 WARN_ONCE(1, "verifier backtracking bug"); 4598 return -EFAULT; 4599 } 4600 4601 for (i = last_idx;;) { 4602 if (skip_first) { 4603 err = 0; 4604 skip_first = false; 4605 } else { 4606 hist = get_insn_hist_entry(env, hist_start, hist_end, i); 4607 err = backtrack_insn(env, i, subseq_idx, hist, bt); 4608 } 4609 if (err == -ENOTSUPP) { 4610 mark_all_scalars_precise(env, env->cur_state); 4611 bt_reset(bt); 4612 return 0; 4613 } else if (err) { 4614 return err; 4615 } 4616 if (bt_empty(bt)) 4617 /* Found assignment(s) into tracked register in this state. 4618 * Since this state is already marked, just return. 4619 * Nothing to be tracked further in the parent state. 4620 */ 4621 return 0; 4622 subseq_idx = i; 4623 i = get_prev_insn_idx(env, st, i, hist_start, &hist_end); 4624 if (i == -ENOENT) 4625 break; 4626 if (i >= env->prog->len) { 4627 /* This can happen if backtracking reached insn 0 4628 * and there are still reg_mask or stack_mask 4629 * to backtrack. 4630 * It means the backtracking missed the spot where 4631 * particular register was initialized with a constant. 4632 */ 4633 verbose(env, "BUG backtracking idx %d\n", i); 4634 WARN_ONCE(1, "verifier backtracking bug"); 4635 return -EFAULT; 4636 } 4637 } 4638 st = st->parent; 4639 if (!st) 4640 break; 4641 4642 for (fr = bt->frame; fr >= 0; fr--) { 4643 func = st->frame[fr]; 4644 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4645 for_each_set_bit(i, mask, 32) { 4646 reg = &func->regs[i]; 4647 if (reg->type != SCALAR_VALUE) { 4648 bt_clear_frame_reg(bt, fr, i); 4649 continue; 4650 } 4651 if (reg->precise) 4652 bt_clear_frame_reg(bt, fr, i); 4653 else 4654 reg->precise = true; 4655 } 4656 4657 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4658 for_each_set_bit(i, mask, 64) { 4659 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4660 verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n", 4661 i, func->allocated_stack / BPF_REG_SIZE); 4662 WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)"); 4663 return -EFAULT; 4664 } 4665 4666 if (!is_spilled_scalar_reg(&func->stack[i])) { 4667 bt_clear_frame_slot(bt, fr, i); 4668 continue; 4669 } 4670 reg = &func->stack[i].spilled_ptr; 4671 if (reg->precise) 4672 bt_clear_frame_slot(bt, fr, i); 4673 else 4674 reg->precise = true; 4675 } 4676 if (env->log.level & BPF_LOG_LEVEL2) { 4677 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4678 bt_frame_reg_mask(bt, fr)); 4679 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4680 fr, env->tmp_str_buf); 4681 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4682 bt_frame_stack_mask(bt, fr)); 4683 verbose(env, "stack=%s: ", env->tmp_str_buf); 4684 print_verifier_state(env, st, fr, true); 4685 } 4686 } 4687 4688 if (bt_empty(bt)) 4689 return 0; 4690 4691 subseq_idx = first_idx; 4692 last_idx = st->last_insn_idx; 4693 first_idx = st->first_insn_idx; 4694 } 4695 4696 /* if we still have requested precise regs or slots, we missed 4697 * something (e.g., stack access through non-r10 register), so 4698 * fallback to marking all precise 4699 */ 4700 if (!bt_empty(bt)) { 4701 mark_all_scalars_precise(env, env->cur_state); 4702 bt_reset(bt); 4703 } 4704 4705 return 0; 4706 } 4707 4708 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4709 { 4710 return __mark_chain_precision(env, regno); 4711 } 4712 4713 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4714 * desired reg and stack masks across all relevant frames 4715 */ 4716 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4717 { 4718 return __mark_chain_precision(env, -1); 4719 } 4720 4721 static bool is_spillable_regtype(enum bpf_reg_type type) 4722 { 4723 switch (base_type(type)) { 4724 case PTR_TO_MAP_VALUE: 4725 case PTR_TO_STACK: 4726 case PTR_TO_CTX: 4727 case PTR_TO_PACKET: 4728 case PTR_TO_PACKET_META: 4729 case PTR_TO_PACKET_END: 4730 case PTR_TO_FLOW_KEYS: 4731 case CONST_PTR_TO_MAP: 4732 case PTR_TO_SOCKET: 4733 case PTR_TO_SOCK_COMMON: 4734 case PTR_TO_TCP_SOCK: 4735 case PTR_TO_XDP_SOCK: 4736 case PTR_TO_BTF_ID: 4737 case PTR_TO_BUF: 4738 case PTR_TO_MEM: 4739 case PTR_TO_FUNC: 4740 case PTR_TO_MAP_KEY: 4741 case PTR_TO_ARENA: 4742 return true; 4743 default: 4744 return false; 4745 } 4746 } 4747 4748 /* Does this register contain a constant zero? */ 4749 static bool register_is_null(struct bpf_reg_state *reg) 4750 { 4751 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4752 } 4753 4754 /* check if register is a constant scalar value */ 4755 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) 4756 { 4757 return reg->type == SCALAR_VALUE && 4758 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); 4759 } 4760 4761 /* assuming is_reg_const() is true, return constant value of a register */ 4762 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) 4763 { 4764 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; 4765 } 4766 4767 static bool __is_pointer_value(bool allow_ptr_leaks, 4768 const struct bpf_reg_state *reg) 4769 { 4770 if (allow_ptr_leaks) 4771 return false; 4772 4773 return reg->type != SCALAR_VALUE; 4774 } 4775 4776 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env, 4777 struct bpf_reg_state *src_reg) 4778 { 4779 if (src_reg->type != SCALAR_VALUE) 4780 return; 4781 4782 if (src_reg->id & BPF_ADD_CONST) { 4783 /* 4784 * The verifier is processing rX = rY insn and 4785 * rY->id has special linked register already. 4786 * Cleared it, since multiple rX += const are not supported. 4787 */ 4788 src_reg->id = 0; 4789 src_reg->off = 0; 4790 } 4791 4792 if (!src_reg->id && !tnum_is_const(src_reg->var_off)) 4793 /* Ensure that src_reg has a valid ID that will be copied to 4794 * dst_reg and then will be used by sync_linked_regs() to 4795 * propagate min/max range. 4796 */ 4797 src_reg->id = ++env->id_gen; 4798 } 4799 4800 /* Copy src state preserving dst->parent and dst->live fields */ 4801 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4802 { 4803 struct bpf_reg_state *parent = dst->parent; 4804 enum bpf_reg_liveness live = dst->live; 4805 4806 *dst = *src; 4807 dst->parent = parent; 4808 dst->live = live; 4809 } 4810 4811 static void save_register_state(struct bpf_verifier_env *env, 4812 struct bpf_func_state *state, 4813 int spi, struct bpf_reg_state *reg, 4814 int size) 4815 { 4816 int i; 4817 4818 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4819 if (size == BPF_REG_SIZE) 4820 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4821 4822 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4823 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4824 4825 /* size < 8 bytes spill */ 4826 for (; i; i--) 4827 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); 4828 } 4829 4830 static bool is_bpf_st_mem(struct bpf_insn *insn) 4831 { 4832 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4833 } 4834 4835 static int get_reg_width(struct bpf_reg_state *reg) 4836 { 4837 return fls64(reg->umax_value); 4838 } 4839 4840 /* See comment for mark_fastcall_pattern_for_call() */ 4841 static void check_fastcall_stack_contract(struct bpf_verifier_env *env, 4842 struct bpf_func_state *state, int insn_idx, int off) 4843 { 4844 struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno]; 4845 struct bpf_insn_aux_data *aux = env->insn_aux_data; 4846 int i; 4847 4848 if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern) 4849 return; 4850 /* access to the region [max_stack_depth .. fastcall_stack_off) 4851 * from something that is not a part of the fastcall pattern, 4852 * disable fastcall rewrites for current subprogram by setting 4853 * fastcall_stack_off to a value smaller than any possible offset. 4854 */ 4855 subprog->fastcall_stack_off = S16_MIN; 4856 /* reset fastcall aux flags within subprogram, 4857 * happens at most once per subprogram 4858 */ 4859 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 4860 aux[i].fastcall_spills_num = 0; 4861 aux[i].fastcall_pattern = 0; 4862 } 4863 } 4864 4865 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4866 * stack boundary and alignment are checked in check_mem_access() 4867 */ 4868 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4869 /* stack frame we're writing to */ 4870 struct bpf_func_state *state, 4871 int off, int size, int value_regno, 4872 int insn_idx) 4873 { 4874 struct bpf_func_state *cur; /* state of the current function */ 4875 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4876 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4877 struct bpf_reg_state *reg = NULL; 4878 int insn_flags = insn_stack_access_flags(state->frameno, spi); 4879 4880 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4881 * so it's aligned access and [off, off + size) are within stack limits 4882 */ 4883 if (!env->allow_ptr_leaks && 4884 is_spilled_reg(&state->stack[spi]) && 4885 !is_spilled_scalar_reg(&state->stack[spi]) && 4886 size != BPF_REG_SIZE) { 4887 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4888 return -EACCES; 4889 } 4890 4891 cur = env->cur_state->frame[env->cur_state->curframe]; 4892 if (value_regno >= 0) 4893 reg = &cur->regs[value_regno]; 4894 if (!env->bypass_spec_v4) { 4895 bool sanitize = reg && is_spillable_regtype(reg->type); 4896 4897 for (i = 0; i < size; i++) { 4898 u8 type = state->stack[spi].slot_type[i]; 4899 4900 if (type != STACK_MISC && type != STACK_ZERO) { 4901 sanitize = true; 4902 break; 4903 } 4904 } 4905 4906 if (sanitize) 4907 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4908 } 4909 4910 err = destroy_if_dynptr_stack_slot(env, state, spi); 4911 if (err) 4912 return err; 4913 4914 check_fastcall_stack_contract(env, state, insn_idx, off); 4915 mark_stack_slot_scratched(env, spi); 4916 if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) { 4917 bool reg_value_fits; 4918 4919 reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size; 4920 /* Make sure that reg had an ID to build a relation on spill. */ 4921 if (reg_value_fits) 4922 assign_scalar_id_before_mov(env, reg); 4923 save_register_state(env, state, spi, reg, size); 4924 /* Break the relation on a narrowing spill. */ 4925 if (!reg_value_fits) 4926 state->stack[spi].spilled_ptr.id = 0; 4927 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4928 env->bpf_capable) { 4929 struct bpf_reg_state *tmp_reg = &env->fake_reg[0]; 4930 4931 memset(tmp_reg, 0, sizeof(*tmp_reg)); 4932 __mark_reg_known(tmp_reg, insn->imm); 4933 tmp_reg->type = SCALAR_VALUE; 4934 save_register_state(env, state, spi, tmp_reg, size); 4935 } else if (reg && is_spillable_regtype(reg->type)) { 4936 /* register containing pointer is being spilled into stack */ 4937 if (size != BPF_REG_SIZE) { 4938 verbose_linfo(env, insn_idx, "; "); 4939 verbose(env, "invalid size of register spill\n"); 4940 return -EACCES; 4941 } 4942 if (state != cur && reg->type == PTR_TO_STACK) { 4943 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4944 return -EINVAL; 4945 } 4946 save_register_state(env, state, spi, reg, size); 4947 } else { 4948 u8 type = STACK_MISC; 4949 4950 /* regular write of data into stack destroys any spilled ptr */ 4951 state->stack[spi].spilled_ptr.type = NOT_INIT; 4952 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4953 if (is_stack_slot_special(&state->stack[spi])) 4954 for (i = 0; i < BPF_REG_SIZE; i++) 4955 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4956 4957 /* only mark the slot as written if all 8 bytes were written 4958 * otherwise read propagation may incorrectly stop too soon 4959 * when stack slots are partially written. 4960 * This heuristic means that read propagation will be 4961 * conservative, since it will add reg_live_read marks 4962 * to stack slots all the way to first state when programs 4963 * writes+reads less than 8 bytes 4964 */ 4965 if (size == BPF_REG_SIZE) 4966 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4967 4968 /* when we zero initialize stack slots mark them as such */ 4969 if ((reg && register_is_null(reg)) || 4970 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4971 /* STACK_ZERO case happened because register spill 4972 * wasn't properly aligned at the stack slot boundary, 4973 * so it's not a register spill anymore; force 4974 * originating register to be precise to make 4975 * STACK_ZERO correct for subsequent states 4976 */ 4977 err = mark_chain_precision(env, value_regno); 4978 if (err) 4979 return err; 4980 type = STACK_ZERO; 4981 } 4982 4983 /* Mark slots affected by this stack write. */ 4984 for (i = 0; i < size; i++) 4985 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; 4986 insn_flags = 0; /* not a register spill */ 4987 } 4988 4989 if (insn_flags) 4990 return push_insn_history(env, env->cur_state, insn_flags, 0); 4991 return 0; 4992 } 4993 4994 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4995 * known to contain a variable offset. 4996 * This function checks whether the write is permitted and conservatively 4997 * tracks the effects of the write, considering that each stack slot in the 4998 * dynamic range is potentially written to. 4999 * 5000 * 'off' includes 'regno->off'. 5001 * 'value_regno' can be -1, meaning that an unknown value is being written to 5002 * the stack. 5003 * 5004 * Spilled pointers in range are not marked as written because we don't know 5005 * what's going to be actually written. This means that read propagation for 5006 * future reads cannot be terminated by this write. 5007 * 5008 * For privileged programs, uninitialized stack slots are considered 5009 * initialized by this write (even though we don't know exactly what offsets 5010 * are going to be written to). The idea is that we don't want the verifier to 5011 * reject future reads that access slots written to through variable offsets. 5012 */ 5013 static int check_stack_write_var_off(struct bpf_verifier_env *env, 5014 /* func where register points to */ 5015 struct bpf_func_state *state, 5016 int ptr_regno, int off, int size, 5017 int value_regno, int insn_idx) 5018 { 5019 struct bpf_func_state *cur; /* state of the current function */ 5020 int min_off, max_off; 5021 int i, err; 5022 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 5023 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5024 bool writing_zero = false; 5025 /* set if the fact that we're writing a zero is used to let any 5026 * stack slots remain STACK_ZERO 5027 */ 5028 bool zero_used = false; 5029 5030 cur = env->cur_state->frame[env->cur_state->curframe]; 5031 ptr_reg = &cur->regs[ptr_regno]; 5032 min_off = ptr_reg->smin_value + off; 5033 max_off = ptr_reg->smax_value + off + size; 5034 if (value_regno >= 0) 5035 value_reg = &cur->regs[value_regno]; 5036 if ((value_reg && register_is_null(value_reg)) || 5037 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 5038 writing_zero = true; 5039 5040 for (i = min_off; i < max_off; i++) { 5041 int spi; 5042 5043 spi = __get_spi(i); 5044 err = destroy_if_dynptr_stack_slot(env, state, spi); 5045 if (err) 5046 return err; 5047 } 5048 5049 check_fastcall_stack_contract(env, state, insn_idx, min_off); 5050 /* Variable offset writes destroy any spilled pointers in range. */ 5051 for (i = min_off; i < max_off; i++) { 5052 u8 new_type, *stype; 5053 int slot, spi; 5054 5055 slot = -i - 1; 5056 spi = slot / BPF_REG_SIZE; 5057 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5058 mark_stack_slot_scratched(env, spi); 5059 5060 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 5061 /* Reject the write if range we may write to has not 5062 * been initialized beforehand. If we didn't reject 5063 * here, the ptr status would be erased below (even 5064 * though not all slots are actually overwritten), 5065 * possibly opening the door to leaks. 5066 * 5067 * We do however catch STACK_INVALID case below, and 5068 * only allow reading possibly uninitialized memory 5069 * later for CAP_PERFMON, as the write may not happen to 5070 * that slot. 5071 */ 5072 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 5073 insn_idx, i); 5074 return -EINVAL; 5075 } 5076 5077 /* If writing_zero and the spi slot contains a spill of value 0, 5078 * maintain the spill type. 5079 */ 5080 if (writing_zero && *stype == STACK_SPILL && 5081 is_spilled_scalar_reg(&state->stack[spi])) { 5082 struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr; 5083 5084 if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) { 5085 zero_used = true; 5086 continue; 5087 } 5088 } 5089 5090 /* Erase all other spilled pointers. */ 5091 state->stack[spi].spilled_ptr.type = NOT_INIT; 5092 5093 /* Update the slot type. */ 5094 new_type = STACK_MISC; 5095 if (writing_zero && *stype == STACK_ZERO) { 5096 new_type = STACK_ZERO; 5097 zero_used = true; 5098 } 5099 /* If the slot is STACK_INVALID, we check whether it's OK to 5100 * pretend that it will be initialized by this write. The slot 5101 * might not actually be written to, and so if we mark it as 5102 * initialized future reads might leak uninitialized memory. 5103 * For privileged programs, we will accept such reads to slots 5104 * that may or may not be written because, if we're reject 5105 * them, the error would be too confusing. 5106 */ 5107 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 5108 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 5109 insn_idx, i); 5110 return -EINVAL; 5111 } 5112 *stype = new_type; 5113 } 5114 if (zero_used) { 5115 /* backtracking doesn't work for STACK_ZERO yet. */ 5116 err = mark_chain_precision(env, value_regno); 5117 if (err) 5118 return err; 5119 } 5120 return 0; 5121 } 5122 5123 /* When register 'dst_regno' is assigned some values from stack[min_off, 5124 * max_off), we set the register's type according to the types of the 5125 * respective stack slots. If all the stack values are known to be zeros, then 5126 * so is the destination reg. Otherwise, the register is considered to be 5127 * SCALAR. This function does not deal with register filling; the caller must 5128 * ensure that all spilled registers in the stack range have been marked as 5129 * read. 5130 */ 5131 static void mark_reg_stack_read(struct bpf_verifier_env *env, 5132 /* func where src register points to */ 5133 struct bpf_func_state *ptr_state, 5134 int min_off, int max_off, int dst_regno) 5135 { 5136 struct bpf_verifier_state *vstate = env->cur_state; 5137 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5138 int i, slot, spi; 5139 u8 *stype; 5140 int zeros = 0; 5141 5142 for (i = min_off; i < max_off; i++) { 5143 slot = -i - 1; 5144 spi = slot / BPF_REG_SIZE; 5145 mark_stack_slot_scratched(env, spi); 5146 stype = ptr_state->stack[spi].slot_type; 5147 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 5148 break; 5149 zeros++; 5150 } 5151 if (zeros == max_off - min_off) { 5152 /* Any access_size read into register is zero extended, 5153 * so the whole register == const_zero. 5154 */ 5155 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5156 } else { 5157 /* have read misc data from the stack */ 5158 mark_reg_unknown(env, state->regs, dst_regno); 5159 } 5160 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5161 } 5162 5163 /* Read the stack at 'off' and put the results into the register indicated by 5164 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 5165 * spilled reg. 5166 * 5167 * 'dst_regno' can be -1, meaning that the read value is not going to a 5168 * register. 5169 * 5170 * The access is assumed to be within the current stack bounds. 5171 */ 5172 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 5173 /* func where src register points to */ 5174 struct bpf_func_state *reg_state, 5175 int off, int size, int dst_regno) 5176 { 5177 struct bpf_verifier_state *vstate = env->cur_state; 5178 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5179 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 5180 struct bpf_reg_state *reg; 5181 u8 *stype, type; 5182 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); 5183 5184 stype = reg_state->stack[spi].slot_type; 5185 reg = ®_state->stack[spi].spilled_ptr; 5186 5187 mark_stack_slot_scratched(env, spi); 5188 check_fastcall_stack_contract(env, state, env->insn_idx, off); 5189 5190 if (is_spilled_reg(®_state->stack[spi])) { 5191 u8 spill_size = 1; 5192 5193 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 5194 spill_size++; 5195 5196 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 5197 if (reg->type != SCALAR_VALUE) { 5198 verbose_linfo(env, env->insn_idx, "; "); 5199 verbose(env, "invalid size of register fill\n"); 5200 return -EACCES; 5201 } 5202 5203 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5204 if (dst_regno < 0) 5205 return 0; 5206 5207 if (size <= spill_size && 5208 bpf_stack_narrow_access_ok(off, size, spill_size)) { 5209 /* The earlier check_reg_arg() has decided the 5210 * subreg_def for this insn. Save it first. 5211 */ 5212 s32 subreg_def = state->regs[dst_regno].subreg_def; 5213 5214 copy_register_state(&state->regs[dst_regno], reg); 5215 state->regs[dst_regno].subreg_def = subreg_def; 5216 5217 /* Break the relation on a narrowing fill. 5218 * coerce_reg_to_size will adjust the boundaries. 5219 */ 5220 if (get_reg_width(reg) > size * BITS_PER_BYTE) 5221 state->regs[dst_regno].id = 0; 5222 } else { 5223 int spill_cnt = 0, zero_cnt = 0; 5224 5225 for (i = 0; i < size; i++) { 5226 type = stype[(slot - i) % BPF_REG_SIZE]; 5227 if (type == STACK_SPILL) { 5228 spill_cnt++; 5229 continue; 5230 } 5231 if (type == STACK_MISC) 5232 continue; 5233 if (type == STACK_ZERO) { 5234 zero_cnt++; 5235 continue; 5236 } 5237 if (type == STACK_INVALID && env->allow_uninit_stack) 5238 continue; 5239 verbose(env, "invalid read from stack off %d+%d size %d\n", 5240 off, i, size); 5241 return -EACCES; 5242 } 5243 5244 if (spill_cnt == size && 5245 tnum_is_const(reg->var_off) && reg->var_off.value == 0) { 5246 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5247 /* this IS register fill, so keep insn_flags */ 5248 } else if (zero_cnt == size) { 5249 /* similarly to mark_reg_stack_read(), preserve zeroes */ 5250 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5251 insn_flags = 0; /* not restoring original register state */ 5252 } else { 5253 mark_reg_unknown(env, state->regs, dst_regno); 5254 insn_flags = 0; /* not restoring original register state */ 5255 } 5256 } 5257 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5258 } else if (dst_regno >= 0) { 5259 /* restore register state from stack */ 5260 copy_register_state(&state->regs[dst_regno], reg); 5261 /* mark reg as written since spilled pointer state likely 5262 * has its liveness marks cleared by is_state_visited() 5263 * which resets stack/reg liveness for state transitions 5264 */ 5265 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5266 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 5267 /* If dst_regno==-1, the caller is asking us whether 5268 * it is acceptable to use this value as a SCALAR_VALUE 5269 * (e.g. for XADD). 5270 * We must not allow unprivileged callers to do that 5271 * with spilled pointers. 5272 */ 5273 verbose(env, "leaking pointer from stack off %d\n", 5274 off); 5275 return -EACCES; 5276 } 5277 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5278 } else { 5279 for (i = 0; i < size; i++) { 5280 type = stype[(slot - i) % BPF_REG_SIZE]; 5281 if (type == STACK_MISC) 5282 continue; 5283 if (type == STACK_ZERO) 5284 continue; 5285 if (type == STACK_INVALID && env->allow_uninit_stack) 5286 continue; 5287 verbose(env, "invalid read from stack off %d+%d size %d\n", 5288 off, i, size); 5289 return -EACCES; 5290 } 5291 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5292 if (dst_regno >= 0) 5293 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 5294 insn_flags = 0; /* we are not restoring spilled register */ 5295 } 5296 if (insn_flags) 5297 return push_insn_history(env, env->cur_state, insn_flags, 0); 5298 return 0; 5299 } 5300 5301 enum bpf_access_src { 5302 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 5303 ACCESS_HELPER = 2, /* the access is performed by a helper */ 5304 }; 5305 5306 static int check_stack_range_initialized(struct bpf_verifier_env *env, 5307 int regno, int off, int access_size, 5308 bool zero_size_allowed, 5309 enum bpf_access_type type, 5310 struct bpf_call_arg_meta *meta); 5311 5312 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 5313 { 5314 return cur_regs(env) + regno; 5315 } 5316 5317 /* Read the stack at 'ptr_regno + off' and put the result into the register 5318 * 'dst_regno'. 5319 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 5320 * but not its variable offset. 5321 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 5322 * 5323 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 5324 * filling registers (i.e. reads of spilled register cannot be detected when 5325 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 5326 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 5327 * offset; for a fixed offset check_stack_read_fixed_off should be used 5328 * instead. 5329 */ 5330 static int check_stack_read_var_off(struct bpf_verifier_env *env, 5331 int ptr_regno, int off, int size, int dst_regno) 5332 { 5333 /* The state of the source register. */ 5334 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5335 struct bpf_func_state *ptr_state = func(env, reg); 5336 int err; 5337 int min_off, max_off; 5338 5339 /* Note that we pass a NULL meta, so raw access will not be permitted. 5340 */ 5341 err = check_stack_range_initialized(env, ptr_regno, off, size, 5342 false, BPF_READ, NULL); 5343 if (err) 5344 return err; 5345 5346 min_off = reg->smin_value + off; 5347 max_off = reg->smax_value + off; 5348 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 5349 check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off); 5350 return 0; 5351 } 5352 5353 /* check_stack_read dispatches to check_stack_read_fixed_off or 5354 * check_stack_read_var_off. 5355 * 5356 * The caller must ensure that the offset falls within the allocated stack 5357 * bounds. 5358 * 5359 * 'dst_regno' is a register which will receive the value from the stack. It 5360 * can be -1, meaning that the read value is not going to a register. 5361 */ 5362 static int check_stack_read(struct bpf_verifier_env *env, 5363 int ptr_regno, int off, int size, 5364 int dst_regno) 5365 { 5366 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5367 struct bpf_func_state *state = func(env, reg); 5368 int err; 5369 /* Some accesses are only permitted with a static offset. */ 5370 bool var_off = !tnum_is_const(reg->var_off); 5371 5372 /* The offset is required to be static when reads don't go to a 5373 * register, in order to not leak pointers (see 5374 * check_stack_read_fixed_off). 5375 */ 5376 if (dst_regno < 0 && var_off) { 5377 char tn_buf[48]; 5378 5379 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5380 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5381 tn_buf, off, size); 5382 return -EACCES; 5383 } 5384 /* Variable offset is prohibited for unprivileged mode for simplicity 5385 * since it requires corresponding support in Spectre masking for stack 5386 * ALU. See also retrieve_ptr_limit(). The check in 5387 * check_stack_access_for_ptr_arithmetic() called by 5388 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5389 * with variable offsets, therefore no check is required here. Further, 5390 * just checking it here would be insufficient as speculative stack 5391 * writes could still lead to unsafe speculative behaviour. 5392 */ 5393 if (!var_off) { 5394 off += reg->var_off.value; 5395 err = check_stack_read_fixed_off(env, state, off, size, 5396 dst_regno); 5397 } else { 5398 /* Variable offset stack reads need more conservative handling 5399 * than fixed offset ones. Note that dst_regno >= 0 on this 5400 * branch. 5401 */ 5402 err = check_stack_read_var_off(env, ptr_regno, off, size, 5403 dst_regno); 5404 } 5405 return err; 5406 } 5407 5408 5409 /* check_stack_write dispatches to check_stack_write_fixed_off or 5410 * check_stack_write_var_off. 5411 * 5412 * 'ptr_regno' is the register used as a pointer into the stack. 5413 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5414 * 'value_regno' is the register whose value we're writing to the stack. It can 5415 * be -1, meaning that we're not writing from a register. 5416 * 5417 * The caller must ensure that the offset falls within the maximum stack size. 5418 */ 5419 static int check_stack_write(struct bpf_verifier_env *env, 5420 int ptr_regno, int off, int size, 5421 int value_regno, int insn_idx) 5422 { 5423 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5424 struct bpf_func_state *state = func(env, reg); 5425 int err; 5426 5427 if (tnum_is_const(reg->var_off)) { 5428 off += reg->var_off.value; 5429 err = check_stack_write_fixed_off(env, state, off, size, 5430 value_regno, insn_idx); 5431 } else { 5432 /* Variable offset stack reads need more conservative handling 5433 * than fixed offset ones. 5434 */ 5435 err = check_stack_write_var_off(env, state, 5436 ptr_regno, off, size, 5437 value_regno, insn_idx); 5438 } 5439 return err; 5440 } 5441 5442 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5443 int off, int size, enum bpf_access_type type) 5444 { 5445 struct bpf_reg_state *regs = cur_regs(env); 5446 struct bpf_map *map = regs[regno].map_ptr; 5447 u32 cap = bpf_map_flags_to_cap(map); 5448 5449 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5450 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5451 map->value_size, off, size); 5452 return -EACCES; 5453 } 5454 5455 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5456 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5457 map->value_size, off, size); 5458 return -EACCES; 5459 } 5460 5461 return 0; 5462 } 5463 5464 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5465 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5466 int off, int size, u32 mem_size, 5467 bool zero_size_allowed) 5468 { 5469 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5470 struct bpf_reg_state *reg; 5471 5472 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5473 return 0; 5474 5475 reg = &cur_regs(env)[regno]; 5476 switch (reg->type) { 5477 case PTR_TO_MAP_KEY: 5478 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5479 mem_size, off, size); 5480 break; 5481 case PTR_TO_MAP_VALUE: 5482 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5483 mem_size, off, size); 5484 break; 5485 case PTR_TO_PACKET: 5486 case PTR_TO_PACKET_META: 5487 case PTR_TO_PACKET_END: 5488 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5489 off, size, regno, reg->id, off, mem_size); 5490 break; 5491 case PTR_TO_MEM: 5492 default: 5493 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5494 mem_size, off, size); 5495 } 5496 5497 return -EACCES; 5498 } 5499 5500 /* check read/write into a memory region with possible variable offset */ 5501 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5502 int off, int size, u32 mem_size, 5503 bool zero_size_allowed) 5504 { 5505 struct bpf_verifier_state *vstate = env->cur_state; 5506 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5507 struct bpf_reg_state *reg = &state->regs[regno]; 5508 int err; 5509 5510 /* We may have adjusted the register pointing to memory region, so we 5511 * need to try adding each of min_value and max_value to off 5512 * to make sure our theoretical access will be safe. 5513 * 5514 * The minimum value is only important with signed 5515 * comparisons where we can't assume the floor of a 5516 * value is 0. If we are using signed variables for our 5517 * index'es we need to make sure that whatever we use 5518 * will have a set floor within our range. 5519 */ 5520 if (reg->smin_value < 0 && 5521 (reg->smin_value == S64_MIN || 5522 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5523 reg->smin_value + off < 0)) { 5524 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5525 regno); 5526 return -EACCES; 5527 } 5528 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5529 mem_size, zero_size_allowed); 5530 if (err) { 5531 verbose(env, "R%d min value is outside of the allowed memory range\n", 5532 regno); 5533 return err; 5534 } 5535 5536 /* If we haven't set a max value then we need to bail since we can't be 5537 * sure we won't do bad things. 5538 * If reg->umax_value + off could overflow, treat that as unbounded too. 5539 */ 5540 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5541 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5542 regno); 5543 return -EACCES; 5544 } 5545 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5546 mem_size, zero_size_allowed); 5547 if (err) { 5548 verbose(env, "R%d max value is outside of the allowed memory range\n", 5549 regno); 5550 return err; 5551 } 5552 5553 return 0; 5554 } 5555 5556 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5557 const struct bpf_reg_state *reg, int regno, 5558 bool fixed_off_ok) 5559 { 5560 /* Access to this pointer-typed register or passing it to a helper 5561 * is only allowed in its original, unmodified form. 5562 */ 5563 5564 if (reg->off < 0) { 5565 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5566 reg_type_str(env, reg->type), regno, reg->off); 5567 return -EACCES; 5568 } 5569 5570 if (!fixed_off_ok && reg->off) { 5571 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5572 reg_type_str(env, reg->type), regno, reg->off); 5573 return -EACCES; 5574 } 5575 5576 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5577 char tn_buf[48]; 5578 5579 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5580 verbose(env, "variable %s access var_off=%s disallowed\n", 5581 reg_type_str(env, reg->type), tn_buf); 5582 return -EACCES; 5583 } 5584 5585 return 0; 5586 } 5587 5588 static int check_ptr_off_reg(struct bpf_verifier_env *env, 5589 const struct bpf_reg_state *reg, int regno) 5590 { 5591 return __check_ptr_off_reg(env, reg, regno, false); 5592 } 5593 5594 static int map_kptr_match_type(struct bpf_verifier_env *env, 5595 struct btf_field *kptr_field, 5596 struct bpf_reg_state *reg, u32 regno) 5597 { 5598 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5599 int perm_flags; 5600 const char *reg_name = ""; 5601 5602 if (btf_is_kernel(reg->btf)) { 5603 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5604 5605 /* Only unreferenced case accepts untrusted pointers */ 5606 if (kptr_field->type == BPF_KPTR_UNREF) 5607 perm_flags |= PTR_UNTRUSTED; 5608 } else { 5609 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5610 if (kptr_field->type == BPF_KPTR_PERCPU) 5611 perm_flags |= MEM_PERCPU; 5612 } 5613 5614 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5615 goto bad_type; 5616 5617 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5618 reg_name = btf_type_name(reg->btf, reg->btf_id); 5619 5620 /* For ref_ptr case, release function check should ensure we get one 5621 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5622 * normal store of unreferenced kptr, we must ensure var_off is zero. 5623 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5624 * reg->off and reg->ref_obj_id are not needed here. 5625 */ 5626 if (__check_ptr_off_reg(env, reg, regno, true)) 5627 return -EACCES; 5628 5629 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5630 * we also need to take into account the reg->off. 5631 * 5632 * We want to support cases like: 5633 * 5634 * struct foo { 5635 * struct bar br; 5636 * struct baz bz; 5637 * }; 5638 * 5639 * struct foo *v; 5640 * v = func(); // PTR_TO_BTF_ID 5641 * val->foo = v; // reg->off is zero, btf and btf_id match type 5642 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5643 * // first member type of struct after comparison fails 5644 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5645 * // to match type 5646 * 5647 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5648 * is zero. We must also ensure that btf_struct_ids_match does not walk 5649 * the struct to match type against first member of struct, i.e. reject 5650 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5651 * strict mode to true for type match. 5652 */ 5653 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5654 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5655 kptr_field->type != BPF_KPTR_UNREF)) 5656 goto bad_type; 5657 return 0; 5658 bad_type: 5659 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5660 reg_type_str(env, reg->type), reg_name); 5661 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5662 if (kptr_field->type == BPF_KPTR_UNREF) 5663 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5664 targ_name); 5665 else 5666 verbose(env, "\n"); 5667 return -EINVAL; 5668 } 5669 5670 static bool in_sleepable(struct bpf_verifier_env *env) 5671 { 5672 return env->prog->sleepable || 5673 (env->cur_state && env->cur_state->in_sleepable); 5674 } 5675 5676 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5677 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5678 */ 5679 static bool in_rcu_cs(struct bpf_verifier_env *env) 5680 { 5681 return env->cur_state->active_rcu_lock || 5682 env->cur_state->active_locks || 5683 !in_sleepable(env); 5684 } 5685 5686 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5687 BTF_SET_START(rcu_protected_types) 5688 #ifdef CONFIG_NET 5689 BTF_ID(struct, prog_test_ref_kfunc) 5690 #endif 5691 #ifdef CONFIG_CGROUPS 5692 BTF_ID(struct, cgroup) 5693 #endif 5694 #ifdef CONFIG_BPF_JIT 5695 BTF_ID(struct, bpf_cpumask) 5696 #endif 5697 BTF_ID(struct, task_struct) 5698 #ifdef CONFIG_CRYPTO 5699 BTF_ID(struct, bpf_crypto_ctx) 5700 #endif 5701 BTF_SET_END(rcu_protected_types) 5702 5703 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5704 { 5705 if (!btf_is_kernel(btf)) 5706 return true; 5707 return btf_id_set_contains(&rcu_protected_types, btf_id); 5708 } 5709 5710 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) 5711 { 5712 struct btf_struct_meta *meta; 5713 5714 if (btf_is_kernel(kptr_field->kptr.btf)) 5715 return NULL; 5716 5717 meta = btf_find_struct_meta(kptr_field->kptr.btf, 5718 kptr_field->kptr.btf_id); 5719 5720 return meta ? meta->record : NULL; 5721 } 5722 5723 static bool rcu_safe_kptr(const struct btf_field *field) 5724 { 5725 const struct btf_field_kptr *kptr = &field->kptr; 5726 5727 return field->type == BPF_KPTR_PERCPU || 5728 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); 5729 } 5730 5731 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) 5732 { 5733 struct btf_record *rec; 5734 u32 ret; 5735 5736 ret = PTR_MAYBE_NULL; 5737 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { 5738 ret |= MEM_RCU; 5739 if (kptr_field->type == BPF_KPTR_PERCPU) 5740 ret |= MEM_PERCPU; 5741 else if (!btf_is_kernel(kptr_field->kptr.btf)) 5742 ret |= MEM_ALLOC; 5743 5744 rec = kptr_pointee_btf_record(kptr_field); 5745 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) 5746 ret |= NON_OWN_REF; 5747 } else { 5748 ret |= PTR_UNTRUSTED; 5749 } 5750 5751 return ret; 5752 } 5753 5754 static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno, 5755 struct btf_field *field) 5756 { 5757 struct bpf_reg_state *reg; 5758 const struct btf_type *t; 5759 5760 t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id); 5761 mark_reg_known_zero(env, cur_regs(env), regno); 5762 reg = reg_state(env, regno); 5763 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 5764 reg->mem_size = t->size; 5765 reg->id = ++env->id_gen; 5766 5767 return 0; 5768 } 5769 5770 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5771 int value_regno, int insn_idx, 5772 struct btf_field *kptr_field) 5773 { 5774 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5775 int class = BPF_CLASS(insn->code); 5776 struct bpf_reg_state *val_reg; 5777 5778 /* Things we already checked for in check_map_access and caller: 5779 * - Reject cases where variable offset may touch kptr 5780 * - size of access (must be BPF_DW) 5781 * - tnum_is_const(reg->var_off) 5782 * - kptr_field->offset == off + reg->var_off.value 5783 */ 5784 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5785 if (BPF_MODE(insn->code) != BPF_MEM) { 5786 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5787 return -EACCES; 5788 } 5789 5790 /* We only allow loading referenced kptr, since it will be marked as 5791 * untrusted, similar to unreferenced kptr. 5792 */ 5793 if (class != BPF_LDX && 5794 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { 5795 verbose(env, "store to referenced kptr disallowed\n"); 5796 return -EACCES; 5797 } 5798 if (class != BPF_LDX && kptr_field->type == BPF_UPTR) { 5799 verbose(env, "store to uptr disallowed\n"); 5800 return -EACCES; 5801 } 5802 5803 if (class == BPF_LDX) { 5804 if (kptr_field->type == BPF_UPTR) 5805 return mark_uptr_ld_reg(env, value_regno, kptr_field); 5806 5807 /* We can simply mark the value_regno receiving the pointer 5808 * value from map as PTR_TO_BTF_ID, with the correct type. 5809 */ 5810 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5811 kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field)); 5812 } else if (class == BPF_STX) { 5813 val_reg = reg_state(env, value_regno); 5814 if (!register_is_null(val_reg) && 5815 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5816 return -EACCES; 5817 } else if (class == BPF_ST) { 5818 if (insn->imm) { 5819 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5820 kptr_field->offset); 5821 return -EACCES; 5822 } 5823 } else { 5824 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5825 return -EACCES; 5826 } 5827 return 0; 5828 } 5829 5830 /* check read/write into a map element with possible variable offset */ 5831 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5832 int off, int size, bool zero_size_allowed, 5833 enum bpf_access_src src) 5834 { 5835 struct bpf_verifier_state *vstate = env->cur_state; 5836 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5837 struct bpf_reg_state *reg = &state->regs[regno]; 5838 struct bpf_map *map = reg->map_ptr; 5839 struct btf_record *rec; 5840 int err, i; 5841 5842 err = check_mem_region_access(env, regno, off, size, map->value_size, 5843 zero_size_allowed); 5844 if (err) 5845 return err; 5846 5847 if (IS_ERR_OR_NULL(map->record)) 5848 return 0; 5849 rec = map->record; 5850 for (i = 0; i < rec->cnt; i++) { 5851 struct btf_field *field = &rec->fields[i]; 5852 u32 p = field->offset; 5853 5854 /* If any part of a field can be touched by load/store, reject 5855 * this program. To check that [x1, x2) overlaps with [y1, y2), 5856 * it is sufficient to check x1 < y2 && y1 < x2. 5857 */ 5858 if (reg->smin_value + off < p + field->size && 5859 p < reg->umax_value + off + size) { 5860 switch (field->type) { 5861 case BPF_KPTR_UNREF: 5862 case BPF_KPTR_REF: 5863 case BPF_KPTR_PERCPU: 5864 case BPF_UPTR: 5865 if (src != ACCESS_DIRECT) { 5866 verbose(env, "%s cannot be accessed indirectly by helper\n", 5867 btf_field_type_name(field->type)); 5868 return -EACCES; 5869 } 5870 if (!tnum_is_const(reg->var_off)) { 5871 verbose(env, "%s access cannot have variable offset\n", 5872 btf_field_type_name(field->type)); 5873 return -EACCES; 5874 } 5875 if (p != off + reg->var_off.value) { 5876 verbose(env, "%s access misaligned expected=%u off=%llu\n", 5877 btf_field_type_name(field->type), 5878 p, off + reg->var_off.value); 5879 return -EACCES; 5880 } 5881 if (size != bpf_size_to_bytes(BPF_DW)) { 5882 verbose(env, "%s access size must be BPF_DW\n", 5883 btf_field_type_name(field->type)); 5884 return -EACCES; 5885 } 5886 break; 5887 default: 5888 verbose(env, "%s cannot be accessed directly by load/store\n", 5889 btf_field_type_name(field->type)); 5890 return -EACCES; 5891 } 5892 } 5893 } 5894 return 0; 5895 } 5896 5897 #define MAX_PACKET_OFF 0xffff 5898 5899 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5900 const struct bpf_call_arg_meta *meta, 5901 enum bpf_access_type t) 5902 { 5903 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5904 5905 switch (prog_type) { 5906 /* Program types only with direct read access go here! */ 5907 case BPF_PROG_TYPE_LWT_IN: 5908 case BPF_PROG_TYPE_LWT_OUT: 5909 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5910 case BPF_PROG_TYPE_SK_REUSEPORT: 5911 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5912 case BPF_PROG_TYPE_CGROUP_SKB: 5913 if (t == BPF_WRITE) 5914 return false; 5915 fallthrough; 5916 5917 /* Program types with direct read + write access go here! */ 5918 case BPF_PROG_TYPE_SCHED_CLS: 5919 case BPF_PROG_TYPE_SCHED_ACT: 5920 case BPF_PROG_TYPE_XDP: 5921 case BPF_PROG_TYPE_LWT_XMIT: 5922 case BPF_PROG_TYPE_SK_SKB: 5923 case BPF_PROG_TYPE_SK_MSG: 5924 if (meta) 5925 return meta->pkt_access; 5926 5927 env->seen_direct_write = true; 5928 return true; 5929 5930 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5931 if (t == BPF_WRITE) 5932 env->seen_direct_write = true; 5933 5934 return true; 5935 5936 default: 5937 return false; 5938 } 5939 } 5940 5941 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5942 int size, bool zero_size_allowed) 5943 { 5944 struct bpf_reg_state *regs = cur_regs(env); 5945 struct bpf_reg_state *reg = ®s[regno]; 5946 int err; 5947 5948 /* We may have added a variable offset to the packet pointer; but any 5949 * reg->range we have comes after that. We are only checking the fixed 5950 * offset. 5951 */ 5952 5953 /* We don't allow negative numbers, because we aren't tracking enough 5954 * detail to prove they're safe. 5955 */ 5956 if (reg->smin_value < 0) { 5957 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5958 regno); 5959 return -EACCES; 5960 } 5961 5962 err = reg->range < 0 ? -EINVAL : 5963 __check_mem_access(env, regno, off, size, reg->range, 5964 zero_size_allowed); 5965 if (err) { 5966 verbose(env, "R%d offset is outside of the packet\n", regno); 5967 return err; 5968 } 5969 5970 /* __check_mem_access has made sure "off + size - 1" is within u16. 5971 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5972 * otherwise find_good_pkt_pointers would have refused to set range info 5973 * that __check_mem_access would have rejected this pkt access. 5974 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5975 */ 5976 env->prog->aux->max_pkt_offset = 5977 max_t(u32, env->prog->aux->max_pkt_offset, 5978 off + reg->umax_value + size - 1); 5979 5980 return err; 5981 } 5982 5983 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5984 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5985 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5986 struct btf **btf, u32 *btf_id, bool *is_retval, bool is_ldsx) 5987 { 5988 struct bpf_insn_access_aux info = { 5989 .reg_type = *reg_type, 5990 .log = &env->log, 5991 .is_retval = false, 5992 .is_ldsx = is_ldsx, 5993 }; 5994 5995 if (env->ops->is_valid_access && 5996 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5997 /* A non zero info.ctx_field_size indicates that this field is a 5998 * candidate for later verifier transformation to load the whole 5999 * field and then apply a mask when accessed with a narrower 6000 * access than actual ctx access size. A zero info.ctx_field_size 6001 * will only allow for whole field access and rejects any other 6002 * type of narrower access. 6003 */ 6004 *reg_type = info.reg_type; 6005 *is_retval = info.is_retval; 6006 6007 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 6008 *btf = info.btf; 6009 *btf_id = info.btf_id; 6010 } else { 6011 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 6012 } 6013 /* remember the offset of last byte accessed in ctx */ 6014 if (env->prog->aux->max_ctx_offset < off + size) 6015 env->prog->aux->max_ctx_offset = off + size; 6016 return 0; 6017 } 6018 6019 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 6020 return -EACCES; 6021 } 6022 6023 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 6024 int size) 6025 { 6026 if (size < 0 || off < 0 || 6027 (u64)off + size > sizeof(struct bpf_flow_keys)) { 6028 verbose(env, "invalid access to flow keys off=%d size=%d\n", 6029 off, size); 6030 return -EACCES; 6031 } 6032 return 0; 6033 } 6034 6035 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 6036 u32 regno, int off, int size, 6037 enum bpf_access_type t) 6038 { 6039 struct bpf_reg_state *regs = cur_regs(env); 6040 struct bpf_reg_state *reg = ®s[regno]; 6041 struct bpf_insn_access_aux info = {}; 6042 bool valid; 6043 6044 if (reg->smin_value < 0) { 6045 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 6046 regno); 6047 return -EACCES; 6048 } 6049 6050 switch (reg->type) { 6051 case PTR_TO_SOCK_COMMON: 6052 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 6053 break; 6054 case PTR_TO_SOCKET: 6055 valid = bpf_sock_is_valid_access(off, size, t, &info); 6056 break; 6057 case PTR_TO_TCP_SOCK: 6058 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 6059 break; 6060 case PTR_TO_XDP_SOCK: 6061 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 6062 break; 6063 default: 6064 valid = false; 6065 } 6066 6067 6068 if (valid) { 6069 env->insn_aux_data[insn_idx].ctx_field_size = 6070 info.ctx_field_size; 6071 return 0; 6072 } 6073 6074 verbose(env, "R%d invalid %s access off=%d size=%d\n", 6075 regno, reg_type_str(env, reg->type), off, size); 6076 6077 return -EACCES; 6078 } 6079 6080 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 6081 { 6082 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 6083 } 6084 6085 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 6086 { 6087 const struct bpf_reg_state *reg = reg_state(env, regno); 6088 6089 return reg->type == PTR_TO_CTX; 6090 } 6091 6092 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 6093 { 6094 const struct bpf_reg_state *reg = reg_state(env, regno); 6095 6096 return type_is_sk_pointer(reg->type); 6097 } 6098 6099 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 6100 { 6101 const struct bpf_reg_state *reg = reg_state(env, regno); 6102 6103 return type_is_pkt_pointer(reg->type); 6104 } 6105 6106 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 6107 { 6108 const struct bpf_reg_state *reg = reg_state(env, regno); 6109 6110 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 6111 return reg->type == PTR_TO_FLOW_KEYS; 6112 } 6113 6114 static bool is_arena_reg(struct bpf_verifier_env *env, int regno) 6115 { 6116 const struct bpf_reg_state *reg = reg_state(env, regno); 6117 6118 return reg->type == PTR_TO_ARENA; 6119 } 6120 6121 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 6122 #ifdef CONFIG_NET 6123 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 6124 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 6125 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 6126 #endif 6127 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 6128 }; 6129 6130 static bool is_trusted_reg(const struct bpf_reg_state *reg) 6131 { 6132 /* A referenced register is always trusted. */ 6133 if (reg->ref_obj_id) 6134 return true; 6135 6136 /* Types listed in the reg2btf_ids are always trusted */ 6137 if (reg2btf_ids[base_type(reg->type)] && 6138 !bpf_type_has_unsafe_modifiers(reg->type)) 6139 return true; 6140 6141 /* If a register is not referenced, it is trusted if it has the 6142 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 6143 * other type modifiers may be safe, but we elect to take an opt-in 6144 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 6145 * not. 6146 * 6147 * Eventually, we should make PTR_TRUSTED the single source of truth 6148 * for whether a register is trusted. 6149 */ 6150 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 6151 !bpf_type_has_unsafe_modifiers(reg->type); 6152 } 6153 6154 static bool is_rcu_reg(const struct bpf_reg_state *reg) 6155 { 6156 return reg->type & MEM_RCU; 6157 } 6158 6159 static void clear_trusted_flags(enum bpf_type_flag *flag) 6160 { 6161 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 6162 } 6163 6164 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 6165 const struct bpf_reg_state *reg, 6166 int off, int size, bool strict) 6167 { 6168 struct tnum reg_off; 6169 int ip_align; 6170 6171 /* Byte size accesses are always allowed. */ 6172 if (!strict || size == 1) 6173 return 0; 6174 6175 /* For platforms that do not have a Kconfig enabling 6176 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 6177 * NET_IP_ALIGN is universally set to '2'. And on platforms 6178 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 6179 * to this code only in strict mode where we want to emulate 6180 * the NET_IP_ALIGN==2 checking. Therefore use an 6181 * unconditional IP align value of '2'. 6182 */ 6183 ip_align = 2; 6184 6185 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 6186 if (!tnum_is_aligned(reg_off, size)) { 6187 char tn_buf[48]; 6188 6189 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6190 verbose(env, 6191 "misaligned packet access off %d+%s+%d+%d size %d\n", 6192 ip_align, tn_buf, reg->off, off, size); 6193 return -EACCES; 6194 } 6195 6196 return 0; 6197 } 6198 6199 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 6200 const struct bpf_reg_state *reg, 6201 const char *pointer_desc, 6202 int off, int size, bool strict) 6203 { 6204 struct tnum reg_off; 6205 6206 /* Byte size accesses are always allowed. */ 6207 if (!strict || size == 1) 6208 return 0; 6209 6210 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 6211 if (!tnum_is_aligned(reg_off, size)) { 6212 char tn_buf[48]; 6213 6214 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6215 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 6216 pointer_desc, tn_buf, reg->off, off, size); 6217 return -EACCES; 6218 } 6219 6220 return 0; 6221 } 6222 6223 static int check_ptr_alignment(struct bpf_verifier_env *env, 6224 const struct bpf_reg_state *reg, int off, 6225 int size, bool strict_alignment_once) 6226 { 6227 bool strict = env->strict_alignment || strict_alignment_once; 6228 const char *pointer_desc = ""; 6229 6230 switch (reg->type) { 6231 case PTR_TO_PACKET: 6232 case PTR_TO_PACKET_META: 6233 /* Special case, because of NET_IP_ALIGN. Given metadata sits 6234 * right in front, treat it the very same way. 6235 */ 6236 return check_pkt_ptr_alignment(env, reg, off, size, strict); 6237 case PTR_TO_FLOW_KEYS: 6238 pointer_desc = "flow keys "; 6239 break; 6240 case PTR_TO_MAP_KEY: 6241 pointer_desc = "key "; 6242 break; 6243 case PTR_TO_MAP_VALUE: 6244 pointer_desc = "value "; 6245 break; 6246 case PTR_TO_CTX: 6247 pointer_desc = "context "; 6248 break; 6249 case PTR_TO_STACK: 6250 pointer_desc = "stack "; 6251 /* The stack spill tracking logic in check_stack_write_fixed_off() 6252 * and check_stack_read_fixed_off() relies on stack accesses being 6253 * aligned. 6254 */ 6255 strict = true; 6256 break; 6257 case PTR_TO_SOCKET: 6258 pointer_desc = "sock "; 6259 break; 6260 case PTR_TO_SOCK_COMMON: 6261 pointer_desc = "sock_common "; 6262 break; 6263 case PTR_TO_TCP_SOCK: 6264 pointer_desc = "tcp_sock "; 6265 break; 6266 case PTR_TO_XDP_SOCK: 6267 pointer_desc = "xdp_sock "; 6268 break; 6269 case PTR_TO_ARENA: 6270 return 0; 6271 default: 6272 break; 6273 } 6274 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 6275 strict); 6276 } 6277 6278 static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog) 6279 { 6280 if (!bpf_jit_supports_private_stack()) 6281 return NO_PRIV_STACK; 6282 6283 /* bpf_prog_check_recur() checks all prog types that use bpf trampoline 6284 * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked 6285 * explicitly. 6286 */ 6287 switch (prog->type) { 6288 case BPF_PROG_TYPE_KPROBE: 6289 case BPF_PROG_TYPE_TRACEPOINT: 6290 case BPF_PROG_TYPE_PERF_EVENT: 6291 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6292 return PRIV_STACK_ADAPTIVE; 6293 case BPF_PROG_TYPE_TRACING: 6294 case BPF_PROG_TYPE_LSM: 6295 case BPF_PROG_TYPE_STRUCT_OPS: 6296 if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog)) 6297 return PRIV_STACK_ADAPTIVE; 6298 fallthrough; 6299 default: 6300 break; 6301 } 6302 6303 return NO_PRIV_STACK; 6304 } 6305 6306 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth) 6307 { 6308 if (env->prog->jit_requested) 6309 return round_up(stack_depth, 16); 6310 6311 /* round up to 32-bytes, since this is granularity 6312 * of interpreter stack size 6313 */ 6314 return round_up(max_t(u32, stack_depth, 1), 32); 6315 } 6316 6317 /* starting from main bpf function walk all instructions of the function 6318 * and recursively walk all callees that given function can call. 6319 * Ignore jump and exit insns. 6320 * Since recursion is prevented by check_cfg() this algorithm 6321 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 6322 */ 6323 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx, 6324 bool priv_stack_supported) 6325 { 6326 struct bpf_subprog_info *subprog = env->subprog_info; 6327 struct bpf_insn *insn = env->prog->insnsi; 6328 int depth = 0, frame = 0, i, subprog_end, subprog_depth; 6329 bool tail_call_reachable = false; 6330 int ret_insn[MAX_CALL_FRAMES]; 6331 int ret_prog[MAX_CALL_FRAMES]; 6332 int j; 6333 6334 i = subprog[idx].start; 6335 if (!priv_stack_supported) 6336 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6337 process_func: 6338 /* protect against potential stack overflow that might happen when 6339 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 6340 * depth for such case down to 256 so that the worst case scenario 6341 * would result in 8k stack size (32 which is tailcall limit * 256 = 6342 * 8k). 6343 * 6344 * To get the idea what might happen, see an example: 6345 * func1 -> sub rsp, 128 6346 * subfunc1 -> sub rsp, 256 6347 * tailcall1 -> add rsp, 256 6348 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 6349 * subfunc2 -> sub rsp, 64 6350 * subfunc22 -> sub rsp, 128 6351 * tailcall2 -> add rsp, 128 6352 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 6353 * 6354 * tailcall will unwind the current stack frame but it will not get rid 6355 * of caller's stack as shown on the example above. 6356 */ 6357 if (idx && subprog[idx].has_tail_call && depth >= 256) { 6358 verbose(env, 6359 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 6360 depth); 6361 return -EACCES; 6362 } 6363 6364 subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth); 6365 if (priv_stack_supported) { 6366 /* Request private stack support only if the subprog stack 6367 * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to 6368 * avoid jit penalty if the stack usage is small. 6369 */ 6370 if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN && 6371 subprog_depth >= BPF_PRIV_STACK_MIN_SIZE) 6372 subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE; 6373 } 6374 6375 if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6376 if (subprog_depth > MAX_BPF_STACK) { 6377 verbose(env, "stack size of subprog %d is %d. Too large\n", 6378 idx, subprog_depth); 6379 return -EACCES; 6380 } 6381 } else { 6382 depth += subprog_depth; 6383 if (depth > MAX_BPF_STACK) { 6384 verbose(env, "combined stack size of %d calls is %d. Too large\n", 6385 frame + 1, depth); 6386 return -EACCES; 6387 } 6388 } 6389 continue_func: 6390 subprog_end = subprog[idx + 1].start; 6391 for (; i < subprog_end; i++) { 6392 int next_insn, sidx; 6393 6394 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { 6395 bool err = false; 6396 6397 if (!is_bpf_throw_kfunc(insn + i)) 6398 continue; 6399 if (subprog[idx].is_cb) 6400 err = true; 6401 for (int c = 0; c < frame && !err; c++) { 6402 if (subprog[ret_prog[c]].is_cb) { 6403 err = true; 6404 break; 6405 } 6406 } 6407 if (!err) 6408 continue; 6409 verbose(env, 6410 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", 6411 i, idx); 6412 return -EINVAL; 6413 } 6414 6415 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 6416 continue; 6417 /* remember insn and function to return to */ 6418 ret_insn[frame] = i + 1; 6419 ret_prog[frame] = idx; 6420 6421 /* find the callee */ 6422 next_insn = i + insn[i].imm + 1; 6423 sidx = find_subprog(env, next_insn); 6424 if (sidx < 0) { 6425 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 6426 next_insn); 6427 return -EFAULT; 6428 } 6429 if (subprog[sidx].is_async_cb) { 6430 if (subprog[sidx].has_tail_call) { 6431 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 6432 return -EFAULT; 6433 } 6434 /* async callbacks don't increase bpf prog stack size unless called directly */ 6435 if (!bpf_pseudo_call(insn + i)) 6436 continue; 6437 if (subprog[sidx].is_exception_cb) { 6438 verbose(env, "insn %d cannot call exception cb directly\n", i); 6439 return -EINVAL; 6440 } 6441 } 6442 i = next_insn; 6443 idx = sidx; 6444 if (!priv_stack_supported) 6445 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6446 6447 if (subprog[idx].has_tail_call) 6448 tail_call_reachable = true; 6449 6450 frame++; 6451 if (frame >= MAX_CALL_FRAMES) { 6452 verbose(env, "the call stack of %d frames is too deep !\n", 6453 frame); 6454 return -E2BIG; 6455 } 6456 goto process_func; 6457 } 6458 /* if tail call got detected across bpf2bpf calls then mark each of the 6459 * currently present subprog frames as tail call reachable subprogs; 6460 * this info will be utilized by JIT so that we will be preserving the 6461 * tail call counter throughout bpf2bpf calls combined with tailcalls 6462 */ 6463 if (tail_call_reachable) 6464 for (j = 0; j < frame; j++) { 6465 if (subprog[ret_prog[j]].is_exception_cb) { 6466 verbose(env, "cannot tail call within exception cb\n"); 6467 return -EINVAL; 6468 } 6469 subprog[ret_prog[j]].tail_call_reachable = true; 6470 } 6471 if (subprog[0].tail_call_reachable) 6472 env->prog->aux->tail_call_reachable = true; 6473 6474 /* end of for() loop means the last insn of the 'subprog' 6475 * was reached. Doesn't matter whether it was JA or EXIT 6476 */ 6477 if (frame == 0) 6478 return 0; 6479 if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE) 6480 depth -= round_up_stack_depth(env, subprog[idx].stack_depth); 6481 frame--; 6482 i = ret_insn[frame]; 6483 idx = ret_prog[frame]; 6484 goto continue_func; 6485 } 6486 6487 static int check_max_stack_depth(struct bpf_verifier_env *env) 6488 { 6489 enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN; 6490 struct bpf_subprog_info *si = env->subprog_info; 6491 bool priv_stack_supported; 6492 int ret; 6493 6494 for (int i = 0; i < env->subprog_cnt; i++) { 6495 if (si[i].has_tail_call) { 6496 priv_stack_mode = NO_PRIV_STACK; 6497 break; 6498 } 6499 } 6500 6501 if (priv_stack_mode == PRIV_STACK_UNKNOWN) 6502 priv_stack_mode = bpf_enable_priv_stack(env->prog); 6503 6504 /* All async_cb subprogs use normal kernel stack. If a particular 6505 * subprog appears in both main prog and async_cb subtree, that 6506 * subprog will use normal kernel stack to avoid potential nesting. 6507 * The reverse subprog traversal ensures when main prog subtree is 6508 * checked, the subprogs appearing in async_cb subtrees are already 6509 * marked as using normal kernel stack, so stack size checking can 6510 * be done properly. 6511 */ 6512 for (int i = env->subprog_cnt - 1; i >= 0; i--) { 6513 if (!i || si[i].is_async_cb) { 6514 priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE; 6515 ret = check_max_stack_depth_subprog(env, i, priv_stack_supported); 6516 if (ret < 0) 6517 return ret; 6518 } 6519 } 6520 6521 for (int i = 0; i < env->subprog_cnt; i++) { 6522 if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6523 env->prog->aux->jits_use_priv_stack = true; 6524 break; 6525 } 6526 } 6527 6528 return 0; 6529 } 6530 6531 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6532 static int get_callee_stack_depth(struct bpf_verifier_env *env, 6533 const struct bpf_insn *insn, int idx) 6534 { 6535 int start = idx + insn->imm + 1, subprog; 6536 6537 subprog = find_subprog(env, start); 6538 if (subprog < 0) { 6539 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 6540 start); 6541 return -EFAULT; 6542 } 6543 return env->subprog_info[subprog].stack_depth; 6544 } 6545 #endif 6546 6547 static int __check_buffer_access(struct bpf_verifier_env *env, 6548 const char *buf_info, 6549 const struct bpf_reg_state *reg, 6550 int regno, int off, int size) 6551 { 6552 if (off < 0) { 6553 verbose(env, 6554 "R%d invalid %s buffer access: off=%d, size=%d\n", 6555 regno, buf_info, off, size); 6556 return -EACCES; 6557 } 6558 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6559 char tn_buf[48]; 6560 6561 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6562 verbose(env, 6563 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 6564 regno, off, tn_buf); 6565 return -EACCES; 6566 } 6567 6568 return 0; 6569 } 6570 6571 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6572 const struct bpf_reg_state *reg, 6573 int regno, int off, int size) 6574 { 6575 int err; 6576 6577 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6578 if (err) 6579 return err; 6580 6581 if (off + size > env->prog->aux->max_tp_access) 6582 env->prog->aux->max_tp_access = off + size; 6583 6584 return 0; 6585 } 6586 6587 static int check_buffer_access(struct bpf_verifier_env *env, 6588 const struct bpf_reg_state *reg, 6589 int regno, int off, int size, 6590 bool zero_size_allowed, 6591 u32 *max_access) 6592 { 6593 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6594 int err; 6595 6596 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6597 if (err) 6598 return err; 6599 6600 if (off + size > *max_access) 6601 *max_access = off + size; 6602 6603 return 0; 6604 } 6605 6606 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6607 static void zext_32_to_64(struct bpf_reg_state *reg) 6608 { 6609 reg->var_off = tnum_subreg(reg->var_off); 6610 __reg_assign_32_into_64(reg); 6611 } 6612 6613 /* truncate register to smaller size (in bytes) 6614 * must be called with size < BPF_REG_SIZE 6615 */ 6616 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6617 { 6618 u64 mask; 6619 6620 /* clear high bits in bit representation */ 6621 reg->var_off = tnum_cast(reg->var_off, size); 6622 6623 /* fix arithmetic bounds */ 6624 mask = ((u64)1 << (size * 8)) - 1; 6625 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6626 reg->umin_value &= mask; 6627 reg->umax_value &= mask; 6628 } else { 6629 reg->umin_value = 0; 6630 reg->umax_value = mask; 6631 } 6632 reg->smin_value = reg->umin_value; 6633 reg->smax_value = reg->umax_value; 6634 6635 /* If size is smaller than 32bit register the 32bit register 6636 * values are also truncated so we push 64-bit bounds into 6637 * 32-bit bounds. Above were truncated < 32-bits already. 6638 */ 6639 if (size < 4) 6640 __mark_reg32_unbounded(reg); 6641 6642 reg_bounds_sync(reg); 6643 } 6644 6645 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6646 { 6647 if (size == 1) { 6648 reg->smin_value = reg->s32_min_value = S8_MIN; 6649 reg->smax_value = reg->s32_max_value = S8_MAX; 6650 } else if (size == 2) { 6651 reg->smin_value = reg->s32_min_value = S16_MIN; 6652 reg->smax_value = reg->s32_max_value = S16_MAX; 6653 } else { 6654 /* size == 4 */ 6655 reg->smin_value = reg->s32_min_value = S32_MIN; 6656 reg->smax_value = reg->s32_max_value = S32_MAX; 6657 } 6658 reg->umin_value = reg->u32_min_value = 0; 6659 reg->umax_value = U64_MAX; 6660 reg->u32_max_value = U32_MAX; 6661 reg->var_off = tnum_unknown; 6662 } 6663 6664 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6665 { 6666 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6667 u64 top_smax_value, top_smin_value; 6668 u64 num_bits = size * 8; 6669 6670 if (tnum_is_const(reg->var_off)) { 6671 u64_cval = reg->var_off.value; 6672 if (size == 1) 6673 reg->var_off = tnum_const((s8)u64_cval); 6674 else if (size == 2) 6675 reg->var_off = tnum_const((s16)u64_cval); 6676 else 6677 /* size == 4 */ 6678 reg->var_off = tnum_const((s32)u64_cval); 6679 6680 u64_cval = reg->var_off.value; 6681 reg->smax_value = reg->smin_value = u64_cval; 6682 reg->umax_value = reg->umin_value = u64_cval; 6683 reg->s32_max_value = reg->s32_min_value = u64_cval; 6684 reg->u32_max_value = reg->u32_min_value = u64_cval; 6685 return; 6686 } 6687 6688 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6689 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6690 6691 if (top_smax_value != top_smin_value) 6692 goto out; 6693 6694 /* find the s64_min and s64_min after sign extension */ 6695 if (size == 1) { 6696 init_s64_max = (s8)reg->smax_value; 6697 init_s64_min = (s8)reg->smin_value; 6698 } else if (size == 2) { 6699 init_s64_max = (s16)reg->smax_value; 6700 init_s64_min = (s16)reg->smin_value; 6701 } else { 6702 init_s64_max = (s32)reg->smax_value; 6703 init_s64_min = (s32)reg->smin_value; 6704 } 6705 6706 s64_max = max(init_s64_max, init_s64_min); 6707 s64_min = min(init_s64_max, init_s64_min); 6708 6709 /* both of s64_max/s64_min positive or negative */ 6710 if ((s64_max >= 0) == (s64_min >= 0)) { 6711 reg->s32_min_value = reg->smin_value = s64_min; 6712 reg->s32_max_value = reg->smax_value = s64_max; 6713 reg->u32_min_value = reg->umin_value = s64_min; 6714 reg->u32_max_value = reg->umax_value = s64_max; 6715 reg->var_off = tnum_range(s64_min, s64_max); 6716 return; 6717 } 6718 6719 out: 6720 set_sext64_default_val(reg, size); 6721 } 6722 6723 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6724 { 6725 if (size == 1) { 6726 reg->s32_min_value = S8_MIN; 6727 reg->s32_max_value = S8_MAX; 6728 } else { 6729 /* size == 2 */ 6730 reg->s32_min_value = S16_MIN; 6731 reg->s32_max_value = S16_MAX; 6732 } 6733 reg->u32_min_value = 0; 6734 reg->u32_max_value = U32_MAX; 6735 reg->var_off = tnum_subreg(tnum_unknown); 6736 } 6737 6738 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6739 { 6740 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6741 u32 top_smax_value, top_smin_value; 6742 u32 num_bits = size * 8; 6743 6744 if (tnum_is_const(reg->var_off)) { 6745 u32_val = reg->var_off.value; 6746 if (size == 1) 6747 reg->var_off = tnum_const((s8)u32_val); 6748 else 6749 reg->var_off = tnum_const((s16)u32_val); 6750 6751 u32_val = reg->var_off.value; 6752 reg->s32_min_value = reg->s32_max_value = u32_val; 6753 reg->u32_min_value = reg->u32_max_value = u32_val; 6754 return; 6755 } 6756 6757 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6758 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6759 6760 if (top_smax_value != top_smin_value) 6761 goto out; 6762 6763 /* find the s32_min and s32_min after sign extension */ 6764 if (size == 1) { 6765 init_s32_max = (s8)reg->s32_max_value; 6766 init_s32_min = (s8)reg->s32_min_value; 6767 } else { 6768 /* size == 2 */ 6769 init_s32_max = (s16)reg->s32_max_value; 6770 init_s32_min = (s16)reg->s32_min_value; 6771 } 6772 s32_max = max(init_s32_max, init_s32_min); 6773 s32_min = min(init_s32_max, init_s32_min); 6774 6775 if ((s32_min >= 0) == (s32_max >= 0)) { 6776 reg->s32_min_value = s32_min; 6777 reg->s32_max_value = s32_max; 6778 reg->u32_min_value = (u32)s32_min; 6779 reg->u32_max_value = (u32)s32_max; 6780 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max)); 6781 return; 6782 } 6783 6784 out: 6785 set_sext32_default_val(reg, size); 6786 } 6787 6788 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6789 { 6790 /* A map is considered read-only if the following condition are true: 6791 * 6792 * 1) BPF program side cannot change any of the map content. The 6793 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6794 * and was set at map creation time. 6795 * 2) The map value(s) have been initialized from user space by a 6796 * loader and then "frozen", such that no new map update/delete 6797 * operations from syscall side are possible for the rest of 6798 * the map's lifetime from that point onwards. 6799 * 3) Any parallel/pending map update/delete operations from syscall 6800 * side have been completed. Only after that point, it's safe to 6801 * assume that map value(s) are immutable. 6802 */ 6803 return (map->map_flags & BPF_F_RDONLY_PROG) && 6804 READ_ONCE(map->frozen) && 6805 !bpf_map_write_active(map); 6806 } 6807 6808 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6809 bool is_ldsx) 6810 { 6811 void *ptr; 6812 u64 addr; 6813 int err; 6814 6815 err = map->ops->map_direct_value_addr(map, &addr, off); 6816 if (err) 6817 return err; 6818 ptr = (void *)(long)addr + off; 6819 6820 switch (size) { 6821 case sizeof(u8): 6822 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6823 break; 6824 case sizeof(u16): 6825 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6826 break; 6827 case sizeof(u32): 6828 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6829 break; 6830 case sizeof(u64): 6831 *val = *(u64 *)ptr; 6832 break; 6833 default: 6834 return -EINVAL; 6835 } 6836 return 0; 6837 } 6838 6839 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6840 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6841 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6842 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null) 6843 6844 /* 6845 * Allow list few fields as RCU trusted or full trusted. 6846 * This logic doesn't allow mix tagging and will be removed once GCC supports 6847 * btf_type_tag. 6848 */ 6849 6850 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6851 BTF_TYPE_SAFE_RCU(struct task_struct) { 6852 const cpumask_t *cpus_ptr; 6853 struct css_set __rcu *cgroups; 6854 struct task_struct __rcu *real_parent; 6855 struct task_struct *group_leader; 6856 }; 6857 6858 BTF_TYPE_SAFE_RCU(struct cgroup) { 6859 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6860 struct kernfs_node *kn; 6861 }; 6862 6863 BTF_TYPE_SAFE_RCU(struct css_set) { 6864 struct cgroup *dfl_cgrp; 6865 }; 6866 6867 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6868 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6869 struct file __rcu *exe_file; 6870 }; 6871 6872 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6873 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6874 */ 6875 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6876 struct sock *sk; 6877 }; 6878 6879 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6880 struct sock *sk; 6881 }; 6882 6883 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6884 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6885 struct seq_file *seq; 6886 }; 6887 6888 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6889 struct bpf_iter_meta *meta; 6890 struct task_struct *task; 6891 }; 6892 6893 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6894 struct file *file; 6895 }; 6896 6897 BTF_TYPE_SAFE_TRUSTED(struct file) { 6898 struct inode *f_inode; 6899 }; 6900 6901 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6902 /* no negative dentry-s in places where bpf can see it */ 6903 struct inode *d_inode; 6904 }; 6905 6906 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) { 6907 struct sock *sk; 6908 }; 6909 6910 static bool type_is_rcu(struct bpf_verifier_env *env, 6911 struct bpf_reg_state *reg, 6912 const char *field_name, u32 btf_id) 6913 { 6914 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6915 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6916 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6917 6918 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6919 } 6920 6921 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6922 struct bpf_reg_state *reg, 6923 const char *field_name, u32 btf_id) 6924 { 6925 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6926 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6927 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6928 6929 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6930 } 6931 6932 static bool type_is_trusted(struct bpf_verifier_env *env, 6933 struct bpf_reg_state *reg, 6934 const char *field_name, u32 btf_id) 6935 { 6936 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6937 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6938 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6939 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6940 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6941 6942 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6943 } 6944 6945 static bool type_is_trusted_or_null(struct bpf_verifier_env *env, 6946 struct bpf_reg_state *reg, 6947 const char *field_name, u32 btf_id) 6948 { 6949 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)); 6950 6951 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, 6952 "__safe_trusted_or_null"); 6953 } 6954 6955 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6956 struct bpf_reg_state *regs, 6957 int regno, int off, int size, 6958 enum bpf_access_type atype, 6959 int value_regno) 6960 { 6961 struct bpf_reg_state *reg = regs + regno; 6962 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6963 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6964 const char *field_name = NULL; 6965 enum bpf_type_flag flag = 0; 6966 u32 btf_id = 0; 6967 int ret; 6968 6969 if (!env->allow_ptr_leaks) { 6970 verbose(env, 6971 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6972 tname); 6973 return -EPERM; 6974 } 6975 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6976 verbose(env, 6977 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6978 tname); 6979 return -EINVAL; 6980 } 6981 if (off < 0) { 6982 verbose(env, 6983 "R%d is ptr_%s invalid negative access: off=%d\n", 6984 regno, tname, off); 6985 return -EACCES; 6986 } 6987 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6988 char tn_buf[48]; 6989 6990 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6991 verbose(env, 6992 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6993 regno, tname, off, tn_buf); 6994 return -EACCES; 6995 } 6996 6997 if (reg->type & MEM_USER) { 6998 verbose(env, 6999 "R%d is ptr_%s access user memory: off=%d\n", 7000 regno, tname, off); 7001 return -EACCES; 7002 } 7003 7004 if (reg->type & MEM_PERCPU) { 7005 verbose(env, 7006 "R%d is ptr_%s access percpu memory: off=%d\n", 7007 regno, tname, off); 7008 return -EACCES; 7009 } 7010 7011 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 7012 if (!btf_is_kernel(reg->btf)) { 7013 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 7014 return -EFAULT; 7015 } 7016 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 7017 } else { 7018 /* Writes are permitted with default btf_struct_access for 7019 * program allocated objects (which always have ref_obj_id > 0), 7020 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 7021 */ 7022 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 7023 verbose(env, "only read is supported\n"); 7024 return -EACCES; 7025 } 7026 7027 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 7028 !(reg->type & MEM_RCU) && !reg->ref_obj_id) { 7029 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 7030 return -EFAULT; 7031 } 7032 7033 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 7034 } 7035 7036 if (ret < 0) 7037 return ret; 7038 7039 if (ret != PTR_TO_BTF_ID) { 7040 /* just mark; */ 7041 7042 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 7043 /* If this is an untrusted pointer, all pointers formed by walking it 7044 * also inherit the untrusted flag. 7045 */ 7046 flag = PTR_UNTRUSTED; 7047 7048 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 7049 /* By default any pointer obtained from walking a trusted pointer is no 7050 * longer trusted, unless the field being accessed has explicitly been 7051 * marked as inheriting its parent's state of trust (either full or RCU). 7052 * For example: 7053 * 'cgroups' pointer is untrusted if task->cgroups dereference 7054 * happened in a sleepable program outside of bpf_rcu_read_lock() 7055 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 7056 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 7057 * 7058 * A regular RCU-protected pointer with __rcu tag can also be deemed 7059 * trusted if we are in an RCU CS. Such pointer can be NULL. 7060 */ 7061 if (type_is_trusted(env, reg, field_name, btf_id)) { 7062 flag |= PTR_TRUSTED; 7063 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) { 7064 flag |= PTR_TRUSTED | PTR_MAYBE_NULL; 7065 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 7066 if (type_is_rcu(env, reg, field_name, btf_id)) { 7067 /* ignore __rcu tag and mark it MEM_RCU */ 7068 flag |= MEM_RCU; 7069 } else if (flag & MEM_RCU || 7070 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 7071 /* __rcu tagged pointers can be NULL */ 7072 flag |= MEM_RCU | PTR_MAYBE_NULL; 7073 7074 /* We always trust them */ 7075 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 7076 flag & PTR_UNTRUSTED) 7077 flag &= ~PTR_UNTRUSTED; 7078 } else if (flag & (MEM_PERCPU | MEM_USER)) { 7079 /* keep as-is */ 7080 } else { 7081 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 7082 clear_trusted_flags(&flag); 7083 } 7084 } else { 7085 /* 7086 * If not in RCU CS or MEM_RCU pointer can be NULL then 7087 * aggressively mark as untrusted otherwise such 7088 * pointers will be plain PTR_TO_BTF_ID without flags 7089 * and will be allowed to be passed into helpers for 7090 * compat reasons. 7091 */ 7092 flag = PTR_UNTRUSTED; 7093 } 7094 } else { 7095 /* Old compat. Deprecated */ 7096 clear_trusted_flags(&flag); 7097 } 7098 7099 if (atype == BPF_READ && value_regno >= 0) 7100 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 7101 7102 return 0; 7103 } 7104 7105 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 7106 struct bpf_reg_state *regs, 7107 int regno, int off, int size, 7108 enum bpf_access_type atype, 7109 int value_regno) 7110 { 7111 struct bpf_reg_state *reg = regs + regno; 7112 struct bpf_map *map = reg->map_ptr; 7113 struct bpf_reg_state map_reg; 7114 enum bpf_type_flag flag = 0; 7115 const struct btf_type *t; 7116 const char *tname; 7117 u32 btf_id; 7118 int ret; 7119 7120 if (!btf_vmlinux) { 7121 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 7122 return -ENOTSUPP; 7123 } 7124 7125 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 7126 verbose(env, "map_ptr access not supported for map type %d\n", 7127 map->map_type); 7128 return -ENOTSUPP; 7129 } 7130 7131 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 7132 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 7133 7134 if (!env->allow_ptr_leaks) { 7135 verbose(env, 7136 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 7137 tname); 7138 return -EPERM; 7139 } 7140 7141 if (off < 0) { 7142 verbose(env, "R%d is %s invalid negative access: off=%d\n", 7143 regno, tname, off); 7144 return -EACCES; 7145 } 7146 7147 if (atype != BPF_READ) { 7148 verbose(env, "only read from %s is supported\n", tname); 7149 return -EACCES; 7150 } 7151 7152 /* Simulate access to a PTR_TO_BTF_ID */ 7153 memset(&map_reg, 0, sizeof(map_reg)); 7154 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 7155 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 7156 if (ret < 0) 7157 return ret; 7158 7159 if (value_regno >= 0) 7160 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 7161 7162 return 0; 7163 } 7164 7165 /* Check that the stack access at the given offset is within bounds. The 7166 * maximum valid offset is -1. 7167 * 7168 * The minimum valid offset is -MAX_BPF_STACK for writes, and 7169 * -state->allocated_stack for reads. 7170 */ 7171 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 7172 s64 off, 7173 struct bpf_func_state *state, 7174 enum bpf_access_type t) 7175 { 7176 int min_valid_off; 7177 7178 if (t == BPF_WRITE || env->allow_uninit_stack) 7179 min_valid_off = -MAX_BPF_STACK; 7180 else 7181 min_valid_off = -state->allocated_stack; 7182 7183 if (off < min_valid_off || off > -1) 7184 return -EACCES; 7185 return 0; 7186 } 7187 7188 /* Check that the stack access at 'regno + off' falls within the maximum stack 7189 * bounds. 7190 * 7191 * 'off' includes `regno->offset`, but not its dynamic part (if any). 7192 */ 7193 static int check_stack_access_within_bounds( 7194 struct bpf_verifier_env *env, 7195 int regno, int off, int access_size, 7196 enum bpf_access_type type) 7197 { 7198 struct bpf_reg_state *regs = cur_regs(env); 7199 struct bpf_reg_state *reg = regs + regno; 7200 struct bpf_func_state *state = func(env, reg); 7201 s64 min_off, max_off; 7202 int err; 7203 char *err_extra; 7204 7205 if (type == BPF_READ) 7206 err_extra = " read from"; 7207 else 7208 err_extra = " write to"; 7209 7210 if (tnum_is_const(reg->var_off)) { 7211 min_off = (s64)reg->var_off.value + off; 7212 max_off = min_off + access_size; 7213 } else { 7214 if (reg->smax_value >= BPF_MAX_VAR_OFF || 7215 reg->smin_value <= -BPF_MAX_VAR_OFF) { 7216 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 7217 err_extra, regno); 7218 return -EACCES; 7219 } 7220 min_off = reg->smin_value + off; 7221 max_off = reg->smax_value + off + access_size; 7222 } 7223 7224 err = check_stack_slot_within_bounds(env, min_off, state, type); 7225 if (!err && max_off > 0) 7226 err = -EINVAL; /* out of stack access into non-negative offsets */ 7227 if (!err && access_size < 0) 7228 /* access_size should not be negative (or overflow an int); others checks 7229 * along the way should have prevented such an access. 7230 */ 7231 err = -EFAULT; /* invalid negative access size; integer overflow? */ 7232 7233 if (err) { 7234 if (tnum_is_const(reg->var_off)) { 7235 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 7236 err_extra, regno, off, access_size); 7237 } else { 7238 char tn_buf[48]; 7239 7240 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7241 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", 7242 err_extra, regno, tn_buf, off, access_size); 7243 } 7244 return err; 7245 } 7246 7247 /* Note that there is no stack access with offset zero, so the needed stack 7248 * size is -min_off, not -min_off+1. 7249 */ 7250 return grow_stack_state(env, state, -min_off /* size */); 7251 } 7252 7253 static bool get_func_retval_range(struct bpf_prog *prog, 7254 struct bpf_retval_range *range) 7255 { 7256 if (prog->type == BPF_PROG_TYPE_LSM && 7257 prog->expected_attach_type == BPF_LSM_MAC && 7258 !bpf_lsm_get_retval_range(prog, range)) { 7259 return true; 7260 } 7261 return false; 7262 } 7263 7264 /* check whether memory at (regno + off) is accessible for t = (read | write) 7265 * if t==write, value_regno is a register which value is stored into memory 7266 * if t==read, value_regno is a register which will receive the value from memory 7267 * if t==write && value_regno==-1, some unknown value is stored into memory 7268 * if t==read && value_regno==-1, don't care what we read from memory 7269 */ 7270 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 7271 int off, int bpf_size, enum bpf_access_type t, 7272 int value_regno, bool strict_alignment_once, bool is_ldsx) 7273 { 7274 struct bpf_reg_state *regs = cur_regs(env); 7275 struct bpf_reg_state *reg = regs + regno; 7276 int size, err = 0; 7277 7278 size = bpf_size_to_bytes(bpf_size); 7279 if (size < 0) 7280 return size; 7281 7282 /* alignment checks will add in reg->off themselves */ 7283 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 7284 if (err) 7285 return err; 7286 7287 /* for access checks, reg->off is just part of off */ 7288 off += reg->off; 7289 7290 if (reg->type == PTR_TO_MAP_KEY) { 7291 if (t == BPF_WRITE) { 7292 verbose(env, "write to change key R%d not allowed\n", regno); 7293 return -EACCES; 7294 } 7295 7296 err = check_mem_region_access(env, regno, off, size, 7297 reg->map_ptr->key_size, false); 7298 if (err) 7299 return err; 7300 if (value_regno >= 0) 7301 mark_reg_unknown(env, regs, value_regno); 7302 } else if (reg->type == PTR_TO_MAP_VALUE) { 7303 struct btf_field *kptr_field = NULL; 7304 7305 if (t == BPF_WRITE && value_regno >= 0 && 7306 is_pointer_value(env, value_regno)) { 7307 verbose(env, "R%d leaks addr into map\n", value_regno); 7308 return -EACCES; 7309 } 7310 err = check_map_access_type(env, regno, off, size, t); 7311 if (err) 7312 return err; 7313 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 7314 if (err) 7315 return err; 7316 if (tnum_is_const(reg->var_off)) 7317 kptr_field = btf_record_find(reg->map_ptr->record, 7318 off + reg->var_off.value, BPF_KPTR | BPF_UPTR); 7319 if (kptr_field) { 7320 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 7321 } else if (t == BPF_READ && value_regno >= 0) { 7322 struct bpf_map *map = reg->map_ptr; 7323 7324 /* if map is read-only, track its contents as scalars */ 7325 if (tnum_is_const(reg->var_off) && 7326 bpf_map_is_rdonly(map) && 7327 map->ops->map_direct_value_addr) { 7328 int map_off = off + reg->var_off.value; 7329 u64 val = 0; 7330 7331 err = bpf_map_direct_read(map, map_off, size, 7332 &val, is_ldsx); 7333 if (err) 7334 return err; 7335 7336 regs[value_regno].type = SCALAR_VALUE; 7337 __mark_reg_known(®s[value_regno], val); 7338 } else { 7339 mark_reg_unknown(env, regs, value_regno); 7340 } 7341 } 7342 } else if (base_type(reg->type) == PTR_TO_MEM) { 7343 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7344 7345 if (type_may_be_null(reg->type)) { 7346 verbose(env, "R%d invalid mem access '%s'\n", regno, 7347 reg_type_str(env, reg->type)); 7348 return -EACCES; 7349 } 7350 7351 if (t == BPF_WRITE && rdonly_mem) { 7352 verbose(env, "R%d cannot write into %s\n", 7353 regno, reg_type_str(env, reg->type)); 7354 return -EACCES; 7355 } 7356 7357 if (t == BPF_WRITE && value_regno >= 0 && 7358 is_pointer_value(env, value_regno)) { 7359 verbose(env, "R%d leaks addr into mem\n", value_regno); 7360 return -EACCES; 7361 } 7362 7363 err = check_mem_region_access(env, regno, off, size, 7364 reg->mem_size, false); 7365 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 7366 mark_reg_unknown(env, regs, value_regno); 7367 } else if (reg->type == PTR_TO_CTX) { 7368 bool is_retval = false; 7369 struct bpf_retval_range range; 7370 enum bpf_reg_type reg_type = SCALAR_VALUE; 7371 struct btf *btf = NULL; 7372 u32 btf_id = 0; 7373 7374 if (t == BPF_WRITE && value_regno >= 0 && 7375 is_pointer_value(env, value_regno)) { 7376 verbose(env, "R%d leaks addr into ctx\n", value_regno); 7377 return -EACCES; 7378 } 7379 7380 err = check_ptr_off_reg(env, reg, regno); 7381 if (err < 0) 7382 return err; 7383 7384 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 7385 &btf_id, &is_retval, is_ldsx); 7386 if (err) 7387 verbose_linfo(env, insn_idx, "; "); 7388 if (!err && t == BPF_READ && value_regno >= 0) { 7389 /* ctx access returns either a scalar, or a 7390 * PTR_TO_PACKET[_META,_END]. In the latter 7391 * case, we know the offset is zero. 7392 */ 7393 if (reg_type == SCALAR_VALUE) { 7394 if (is_retval && get_func_retval_range(env->prog, &range)) { 7395 err = __mark_reg_s32_range(env, regs, value_regno, 7396 range.minval, range.maxval); 7397 if (err) 7398 return err; 7399 } else { 7400 mark_reg_unknown(env, regs, value_regno); 7401 } 7402 } else { 7403 mark_reg_known_zero(env, regs, 7404 value_regno); 7405 if (type_may_be_null(reg_type)) 7406 regs[value_regno].id = ++env->id_gen; 7407 /* A load of ctx field could have different 7408 * actual load size with the one encoded in the 7409 * insn. When the dst is PTR, it is for sure not 7410 * a sub-register. 7411 */ 7412 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 7413 if (base_type(reg_type) == PTR_TO_BTF_ID) { 7414 regs[value_regno].btf = btf; 7415 regs[value_regno].btf_id = btf_id; 7416 } 7417 } 7418 regs[value_regno].type = reg_type; 7419 } 7420 7421 } else if (reg->type == PTR_TO_STACK) { 7422 /* Basic bounds checks. */ 7423 err = check_stack_access_within_bounds(env, regno, off, size, t); 7424 if (err) 7425 return err; 7426 7427 if (t == BPF_READ) 7428 err = check_stack_read(env, regno, off, size, 7429 value_regno); 7430 else 7431 err = check_stack_write(env, regno, off, size, 7432 value_regno, insn_idx); 7433 } else if (reg_is_pkt_pointer(reg)) { 7434 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 7435 verbose(env, "cannot write into packet\n"); 7436 return -EACCES; 7437 } 7438 if (t == BPF_WRITE && value_regno >= 0 && 7439 is_pointer_value(env, value_regno)) { 7440 verbose(env, "R%d leaks addr into packet\n", 7441 value_regno); 7442 return -EACCES; 7443 } 7444 err = check_packet_access(env, regno, off, size, false); 7445 if (!err && t == BPF_READ && value_regno >= 0) 7446 mark_reg_unknown(env, regs, value_regno); 7447 } else if (reg->type == PTR_TO_FLOW_KEYS) { 7448 if (t == BPF_WRITE && value_regno >= 0 && 7449 is_pointer_value(env, value_regno)) { 7450 verbose(env, "R%d leaks addr into flow keys\n", 7451 value_regno); 7452 return -EACCES; 7453 } 7454 7455 err = check_flow_keys_access(env, off, size); 7456 if (!err && t == BPF_READ && value_regno >= 0) 7457 mark_reg_unknown(env, regs, value_regno); 7458 } else if (type_is_sk_pointer(reg->type)) { 7459 if (t == BPF_WRITE) { 7460 verbose(env, "R%d cannot write into %s\n", 7461 regno, reg_type_str(env, reg->type)); 7462 return -EACCES; 7463 } 7464 err = check_sock_access(env, insn_idx, regno, off, size, t); 7465 if (!err && value_regno >= 0) 7466 mark_reg_unknown(env, regs, value_regno); 7467 } else if (reg->type == PTR_TO_TP_BUFFER) { 7468 err = check_tp_buffer_access(env, reg, regno, off, size); 7469 if (!err && t == BPF_READ && value_regno >= 0) 7470 mark_reg_unknown(env, regs, value_regno); 7471 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 7472 !type_may_be_null(reg->type)) { 7473 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 7474 value_regno); 7475 } else if (reg->type == CONST_PTR_TO_MAP) { 7476 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 7477 value_regno); 7478 } else if (base_type(reg->type) == PTR_TO_BUF) { 7479 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7480 u32 *max_access; 7481 7482 if (rdonly_mem) { 7483 if (t == BPF_WRITE) { 7484 verbose(env, "R%d cannot write into %s\n", 7485 regno, reg_type_str(env, reg->type)); 7486 return -EACCES; 7487 } 7488 max_access = &env->prog->aux->max_rdonly_access; 7489 } else { 7490 max_access = &env->prog->aux->max_rdwr_access; 7491 } 7492 7493 err = check_buffer_access(env, reg, regno, off, size, false, 7494 max_access); 7495 7496 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 7497 mark_reg_unknown(env, regs, value_regno); 7498 } else if (reg->type == PTR_TO_ARENA) { 7499 if (t == BPF_READ && value_regno >= 0) 7500 mark_reg_unknown(env, regs, value_regno); 7501 } else { 7502 verbose(env, "R%d invalid mem access '%s'\n", regno, 7503 reg_type_str(env, reg->type)); 7504 return -EACCES; 7505 } 7506 7507 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 7508 regs[value_regno].type == SCALAR_VALUE) { 7509 if (!is_ldsx) 7510 /* b/h/w load zero-extends, mark upper bits as known 0 */ 7511 coerce_reg_to_size(®s[value_regno], size); 7512 else 7513 coerce_reg_to_size_sx(®s[value_regno], size); 7514 } 7515 return err; 7516 } 7517 7518 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 7519 bool allow_trust_mismatch); 7520 7521 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 7522 { 7523 int load_reg; 7524 int err; 7525 7526 switch (insn->imm) { 7527 case BPF_ADD: 7528 case BPF_ADD | BPF_FETCH: 7529 case BPF_AND: 7530 case BPF_AND | BPF_FETCH: 7531 case BPF_OR: 7532 case BPF_OR | BPF_FETCH: 7533 case BPF_XOR: 7534 case BPF_XOR | BPF_FETCH: 7535 case BPF_XCHG: 7536 case BPF_CMPXCHG: 7537 break; 7538 default: 7539 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 7540 return -EINVAL; 7541 } 7542 7543 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 7544 verbose(env, "invalid atomic operand size\n"); 7545 return -EINVAL; 7546 } 7547 7548 /* check src1 operand */ 7549 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7550 if (err) 7551 return err; 7552 7553 /* check src2 operand */ 7554 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7555 if (err) 7556 return err; 7557 7558 if (insn->imm == BPF_CMPXCHG) { 7559 /* Check comparison of R0 with memory location */ 7560 const u32 aux_reg = BPF_REG_0; 7561 7562 err = check_reg_arg(env, aux_reg, SRC_OP); 7563 if (err) 7564 return err; 7565 7566 if (is_pointer_value(env, aux_reg)) { 7567 verbose(env, "R%d leaks addr into mem\n", aux_reg); 7568 return -EACCES; 7569 } 7570 } 7571 7572 if (is_pointer_value(env, insn->src_reg)) { 7573 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 7574 return -EACCES; 7575 } 7576 7577 if (is_ctx_reg(env, insn->dst_reg) || 7578 is_pkt_reg(env, insn->dst_reg) || 7579 is_flow_key_reg(env, insn->dst_reg) || 7580 is_sk_reg(env, insn->dst_reg) || 7581 (is_arena_reg(env, insn->dst_reg) && !bpf_jit_supports_insn(insn, true))) { 7582 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7583 insn->dst_reg, 7584 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7585 return -EACCES; 7586 } 7587 7588 if (insn->imm & BPF_FETCH) { 7589 if (insn->imm == BPF_CMPXCHG) 7590 load_reg = BPF_REG_0; 7591 else 7592 load_reg = insn->src_reg; 7593 7594 /* check and record load of old value */ 7595 err = check_reg_arg(env, load_reg, DST_OP); 7596 if (err) 7597 return err; 7598 } else { 7599 /* This instruction accesses a memory location but doesn't 7600 * actually load it into a register. 7601 */ 7602 load_reg = -1; 7603 } 7604 7605 /* Check whether we can read the memory, with second call for fetch 7606 * case to simulate the register fill. 7607 */ 7608 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7609 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 7610 if (!err && load_reg >= 0) 7611 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7612 BPF_SIZE(insn->code), BPF_READ, load_reg, 7613 true, false); 7614 if (err) 7615 return err; 7616 7617 if (is_arena_reg(env, insn->dst_reg)) { 7618 err = save_aux_ptr_type(env, PTR_TO_ARENA, false); 7619 if (err) 7620 return err; 7621 } 7622 /* Check whether we can write into the same memory. */ 7623 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7624 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7625 if (err) 7626 return err; 7627 return 0; 7628 } 7629 7630 /* When register 'regno' is used to read the stack (either directly or through 7631 * a helper function) make sure that it's within stack boundary and, depending 7632 * on the access type and privileges, that all elements of the stack are 7633 * initialized. 7634 * 7635 * 'off' includes 'regno->off', but not its dynamic part (if any). 7636 * 7637 * All registers that have been spilled on the stack in the slots within the 7638 * read offsets are marked as read. 7639 */ 7640 static int check_stack_range_initialized( 7641 struct bpf_verifier_env *env, int regno, int off, 7642 int access_size, bool zero_size_allowed, 7643 enum bpf_access_type type, struct bpf_call_arg_meta *meta) 7644 { 7645 struct bpf_reg_state *reg = reg_state(env, regno); 7646 struct bpf_func_state *state = func(env, reg); 7647 int err, min_off, max_off, i, j, slot, spi; 7648 /* Some accesses can write anything into the stack, others are 7649 * read-only. 7650 */ 7651 bool clobber = false; 7652 7653 if (access_size == 0 && !zero_size_allowed) { 7654 verbose(env, "invalid zero-sized read\n"); 7655 return -EACCES; 7656 } 7657 7658 if (type == BPF_WRITE) 7659 clobber = true; 7660 7661 err = check_stack_access_within_bounds(env, regno, off, access_size, type); 7662 if (err) 7663 return err; 7664 7665 7666 if (tnum_is_const(reg->var_off)) { 7667 min_off = max_off = reg->var_off.value + off; 7668 } else { 7669 /* Variable offset is prohibited for unprivileged mode for 7670 * simplicity since it requires corresponding support in 7671 * Spectre masking for stack ALU. 7672 * See also retrieve_ptr_limit(). 7673 */ 7674 if (!env->bypass_spec_v1) { 7675 char tn_buf[48]; 7676 7677 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7678 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 7679 regno, tn_buf); 7680 return -EACCES; 7681 } 7682 /* Only initialized buffer on stack is allowed to be accessed 7683 * with variable offset. With uninitialized buffer it's hard to 7684 * guarantee that whole memory is marked as initialized on 7685 * helper return since specific bounds are unknown what may 7686 * cause uninitialized stack leaking. 7687 */ 7688 if (meta && meta->raw_mode) 7689 meta = NULL; 7690 7691 min_off = reg->smin_value + off; 7692 max_off = reg->smax_value + off; 7693 } 7694 7695 if (meta && meta->raw_mode) { 7696 /* Ensure we won't be overwriting dynptrs when simulating byte 7697 * by byte access in check_helper_call using meta.access_size. 7698 * This would be a problem if we have a helper in the future 7699 * which takes: 7700 * 7701 * helper(uninit_mem, len, dynptr) 7702 * 7703 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7704 * may end up writing to dynptr itself when touching memory from 7705 * arg 1. This can be relaxed on a case by case basis for known 7706 * safe cases, but reject due to the possibilitiy of aliasing by 7707 * default. 7708 */ 7709 for (i = min_off; i < max_off + access_size; i++) { 7710 int stack_off = -i - 1; 7711 7712 spi = __get_spi(i); 7713 /* raw_mode may write past allocated_stack */ 7714 if (state->allocated_stack <= stack_off) 7715 continue; 7716 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7717 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7718 return -EACCES; 7719 } 7720 } 7721 meta->access_size = access_size; 7722 meta->regno = regno; 7723 return 0; 7724 } 7725 7726 for (i = min_off; i < max_off + access_size; i++) { 7727 u8 *stype; 7728 7729 slot = -i - 1; 7730 spi = slot / BPF_REG_SIZE; 7731 if (state->allocated_stack <= slot) { 7732 verbose(env, "verifier bug: allocated_stack too small\n"); 7733 return -EFAULT; 7734 } 7735 7736 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7737 if (*stype == STACK_MISC) 7738 goto mark; 7739 if ((*stype == STACK_ZERO) || 7740 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7741 if (clobber) { 7742 /* helper can write anything into the stack */ 7743 *stype = STACK_MISC; 7744 } 7745 goto mark; 7746 } 7747 7748 if (is_spilled_reg(&state->stack[spi]) && 7749 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7750 env->allow_ptr_leaks)) { 7751 if (clobber) { 7752 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 7753 for (j = 0; j < BPF_REG_SIZE; j++) 7754 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 7755 } 7756 goto mark; 7757 } 7758 7759 if (tnum_is_const(reg->var_off)) { 7760 verbose(env, "invalid read from stack R%d off %d+%d size %d\n", 7761 regno, min_off, i - min_off, access_size); 7762 } else { 7763 char tn_buf[48]; 7764 7765 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7766 verbose(env, "invalid read from stack R%d var_off %s+%d size %d\n", 7767 regno, tn_buf, i - min_off, access_size); 7768 } 7769 return -EACCES; 7770 mark: 7771 /* reading any byte out of 8-byte 'spill_slot' will cause 7772 * the whole slot to be marked as 'read' 7773 */ 7774 mark_reg_read(env, &state->stack[spi].spilled_ptr, 7775 state->stack[spi].spilled_ptr.parent, 7776 REG_LIVE_READ64); 7777 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 7778 * be sure that whether stack slot is written to or not. Hence, 7779 * we must still conservatively propagate reads upwards even if 7780 * helper may write to the entire memory range. 7781 */ 7782 } 7783 return 0; 7784 } 7785 7786 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 7787 int access_size, enum bpf_access_type access_type, 7788 bool zero_size_allowed, 7789 struct bpf_call_arg_meta *meta) 7790 { 7791 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7792 u32 *max_access; 7793 7794 switch (base_type(reg->type)) { 7795 case PTR_TO_PACKET: 7796 case PTR_TO_PACKET_META: 7797 return check_packet_access(env, regno, reg->off, access_size, 7798 zero_size_allowed); 7799 case PTR_TO_MAP_KEY: 7800 if (access_type == BPF_WRITE) { 7801 verbose(env, "R%d cannot write into %s\n", regno, 7802 reg_type_str(env, reg->type)); 7803 return -EACCES; 7804 } 7805 return check_mem_region_access(env, regno, reg->off, access_size, 7806 reg->map_ptr->key_size, false); 7807 case PTR_TO_MAP_VALUE: 7808 if (check_map_access_type(env, regno, reg->off, access_size, access_type)) 7809 return -EACCES; 7810 return check_map_access(env, regno, reg->off, access_size, 7811 zero_size_allowed, ACCESS_HELPER); 7812 case PTR_TO_MEM: 7813 if (type_is_rdonly_mem(reg->type)) { 7814 if (access_type == BPF_WRITE) { 7815 verbose(env, "R%d cannot write into %s\n", regno, 7816 reg_type_str(env, reg->type)); 7817 return -EACCES; 7818 } 7819 } 7820 return check_mem_region_access(env, regno, reg->off, 7821 access_size, reg->mem_size, 7822 zero_size_allowed); 7823 case PTR_TO_BUF: 7824 if (type_is_rdonly_mem(reg->type)) { 7825 if (access_type == BPF_WRITE) { 7826 verbose(env, "R%d cannot write into %s\n", regno, 7827 reg_type_str(env, reg->type)); 7828 return -EACCES; 7829 } 7830 7831 max_access = &env->prog->aux->max_rdonly_access; 7832 } else { 7833 max_access = &env->prog->aux->max_rdwr_access; 7834 } 7835 return check_buffer_access(env, reg, regno, reg->off, 7836 access_size, zero_size_allowed, 7837 max_access); 7838 case PTR_TO_STACK: 7839 return check_stack_range_initialized( 7840 env, 7841 regno, reg->off, access_size, 7842 zero_size_allowed, access_type, meta); 7843 case PTR_TO_BTF_ID: 7844 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7845 access_size, BPF_READ, -1); 7846 case PTR_TO_CTX: 7847 /* in case the function doesn't know how to access the context, 7848 * (because we are in a program of type SYSCALL for example), we 7849 * can not statically check its size. 7850 * Dynamically check it now. 7851 */ 7852 if (!env->ops->convert_ctx_access) { 7853 int offset = access_size - 1; 7854 7855 /* Allow zero-byte read from PTR_TO_CTX */ 7856 if (access_size == 0) 7857 return zero_size_allowed ? 0 : -EACCES; 7858 7859 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7860 access_type, -1, false, false); 7861 } 7862 7863 fallthrough; 7864 default: /* scalar_value or invalid ptr */ 7865 /* Allow zero-byte read from NULL, regardless of pointer type */ 7866 if (zero_size_allowed && access_size == 0 && 7867 register_is_null(reg)) 7868 return 0; 7869 7870 verbose(env, "R%d type=%s ", regno, 7871 reg_type_str(env, reg->type)); 7872 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7873 return -EACCES; 7874 } 7875 } 7876 7877 /* verify arguments to helpers or kfuncs consisting of a pointer and an access 7878 * size. 7879 * 7880 * @regno is the register containing the access size. regno-1 is the register 7881 * containing the pointer. 7882 */ 7883 static int check_mem_size_reg(struct bpf_verifier_env *env, 7884 struct bpf_reg_state *reg, u32 regno, 7885 enum bpf_access_type access_type, 7886 bool zero_size_allowed, 7887 struct bpf_call_arg_meta *meta) 7888 { 7889 int err; 7890 7891 /* This is used to refine r0 return value bounds for helpers 7892 * that enforce this value as an upper bound on return values. 7893 * See do_refine_retval_range() for helpers that can refine 7894 * the return value. C type of helper is u32 so we pull register 7895 * bound from umax_value however, if negative verifier errors 7896 * out. Only upper bounds can be learned because retval is an 7897 * int type and negative retvals are allowed. 7898 */ 7899 meta->msize_max_value = reg->umax_value; 7900 7901 /* The register is SCALAR_VALUE; the access check happens using 7902 * its boundaries. For unprivileged variable accesses, disable 7903 * raw mode so that the program is required to initialize all 7904 * the memory that the helper could just partially fill up. 7905 */ 7906 if (!tnum_is_const(reg->var_off)) 7907 meta = NULL; 7908 7909 if (reg->smin_value < 0) { 7910 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7911 regno); 7912 return -EACCES; 7913 } 7914 7915 if (reg->umin_value == 0 && !zero_size_allowed) { 7916 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", 7917 regno, reg->umin_value, reg->umax_value); 7918 return -EACCES; 7919 } 7920 7921 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7922 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7923 regno); 7924 return -EACCES; 7925 } 7926 err = check_helper_mem_access(env, regno - 1, reg->umax_value, 7927 access_type, zero_size_allowed, meta); 7928 if (!err) 7929 err = mark_chain_precision(env, regno); 7930 return err; 7931 } 7932 7933 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7934 u32 regno, u32 mem_size) 7935 { 7936 bool may_be_null = type_may_be_null(reg->type); 7937 struct bpf_reg_state saved_reg; 7938 int err; 7939 7940 if (register_is_null(reg)) 7941 return 0; 7942 7943 /* Assuming that the register contains a value check if the memory 7944 * access is safe. Temporarily save and restore the register's state as 7945 * the conversion shouldn't be visible to a caller. 7946 */ 7947 if (may_be_null) { 7948 saved_reg = *reg; 7949 mark_ptr_not_null_reg(reg); 7950 } 7951 7952 err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL); 7953 err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL); 7954 7955 if (may_be_null) 7956 *reg = saved_reg; 7957 7958 return err; 7959 } 7960 7961 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7962 u32 regno) 7963 { 7964 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7965 bool may_be_null = type_may_be_null(mem_reg->type); 7966 struct bpf_reg_state saved_reg; 7967 struct bpf_call_arg_meta meta; 7968 int err; 7969 7970 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7971 7972 memset(&meta, 0, sizeof(meta)); 7973 7974 if (may_be_null) { 7975 saved_reg = *mem_reg; 7976 mark_ptr_not_null_reg(mem_reg); 7977 } 7978 7979 err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta); 7980 err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta); 7981 7982 if (may_be_null) 7983 *mem_reg = saved_reg; 7984 7985 return err; 7986 } 7987 7988 /* Implementation details: 7989 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7990 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7991 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7992 * Two separate bpf_obj_new will also have different reg->id. 7993 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7994 * clears reg->id after value_or_null->value transition, since the verifier only 7995 * cares about the range of access to valid map value pointer and doesn't care 7996 * about actual address of the map element. 7997 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7998 * reg->id > 0 after value_or_null->value transition. By doing so 7999 * two bpf_map_lookups will be considered two different pointers that 8000 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 8001 * returned from bpf_obj_new. 8002 * The verifier allows taking only one bpf_spin_lock at a time to avoid 8003 * dead-locks. 8004 * Since only one bpf_spin_lock is allowed the checks are simpler than 8005 * reg_is_refcounted() logic. The verifier needs to remember only 8006 * one spin_lock instead of array of acquired_refs. 8007 * env->cur_state->active_locks remembers which map value element or allocated 8008 * object got locked and clears it after bpf_spin_unlock. 8009 */ 8010 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 8011 bool is_lock) 8012 { 8013 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8014 struct bpf_verifier_state *cur = env->cur_state; 8015 bool is_const = tnum_is_const(reg->var_off); 8016 u64 val = reg->var_off.value; 8017 struct bpf_map *map = NULL; 8018 struct btf *btf = NULL; 8019 struct btf_record *rec; 8020 int err; 8021 8022 if (!is_const) { 8023 verbose(env, 8024 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 8025 regno); 8026 return -EINVAL; 8027 } 8028 if (reg->type == PTR_TO_MAP_VALUE) { 8029 map = reg->map_ptr; 8030 if (!map->btf) { 8031 verbose(env, 8032 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 8033 map->name); 8034 return -EINVAL; 8035 } 8036 } else { 8037 btf = reg->btf; 8038 } 8039 8040 rec = reg_btf_record(reg); 8041 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 8042 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 8043 map ? map->name : "kptr"); 8044 return -EINVAL; 8045 } 8046 if (rec->spin_lock_off != val + reg->off) { 8047 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 8048 val + reg->off, rec->spin_lock_off); 8049 return -EINVAL; 8050 } 8051 if (is_lock) { 8052 void *ptr; 8053 8054 if (map) 8055 ptr = map; 8056 else 8057 ptr = btf; 8058 8059 if (cur->active_locks) { 8060 verbose(env, 8061 "Locking two bpf_spin_locks are not allowed\n"); 8062 return -EINVAL; 8063 } 8064 err = acquire_lock_state(env, env->insn_idx, REF_TYPE_LOCK, reg->id, ptr); 8065 if (err < 0) { 8066 verbose(env, "Failed to acquire lock state\n"); 8067 return err; 8068 } 8069 } else { 8070 void *ptr; 8071 8072 if (map) 8073 ptr = map; 8074 else 8075 ptr = btf; 8076 8077 if (!cur->active_locks) { 8078 verbose(env, "bpf_spin_unlock without taking a lock\n"); 8079 return -EINVAL; 8080 } 8081 8082 if (release_lock_state(env->cur_state, REF_TYPE_LOCK, reg->id, ptr)) { 8083 verbose(env, "bpf_spin_unlock of different lock\n"); 8084 return -EINVAL; 8085 } 8086 8087 invalidate_non_owning_refs(env); 8088 } 8089 return 0; 8090 } 8091 8092 static int process_timer_func(struct bpf_verifier_env *env, int regno, 8093 struct bpf_call_arg_meta *meta) 8094 { 8095 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8096 bool is_const = tnum_is_const(reg->var_off); 8097 struct bpf_map *map = reg->map_ptr; 8098 u64 val = reg->var_off.value; 8099 8100 if (!is_const) { 8101 verbose(env, 8102 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 8103 regno); 8104 return -EINVAL; 8105 } 8106 if (!map->btf) { 8107 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 8108 map->name); 8109 return -EINVAL; 8110 } 8111 if (!btf_record_has_field(map->record, BPF_TIMER)) { 8112 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 8113 return -EINVAL; 8114 } 8115 if (map->record->timer_off != val + reg->off) { 8116 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 8117 val + reg->off, map->record->timer_off); 8118 return -EINVAL; 8119 } 8120 if (meta->map_ptr) { 8121 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 8122 return -EFAULT; 8123 } 8124 meta->map_uid = reg->map_uid; 8125 meta->map_ptr = map; 8126 return 0; 8127 } 8128 8129 static int process_wq_func(struct bpf_verifier_env *env, int regno, 8130 struct bpf_kfunc_call_arg_meta *meta) 8131 { 8132 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8133 struct bpf_map *map = reg->map_ptr; 8134 u64 val = reg->var_off.value; 8135 8136 if (map->record->wq_off != val + reg->off) { 8137 verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n", 8138 val + reg->off, map->record->wq_off); 8139 return -EINVAL; 8140 } 8141 meta->map.uid = reg->map_uid; 8142 meta->map.ptr = map; 8143 return 0; 8144 } 8145 8146 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 8147 struct bpf_call_arg_meta *meta) 8148 { 8149 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8150 struct btf_field *kptr_field; 8151 struct bpf_map *map_ptr; 8152 struct btf_record *rec; 8153 u32 kptr_off; 8154 8155 if (type_is_ptr_alloc_obj(reg->type)) { 8156 rec = reg_btf_record(reg); 8157 } else { /* PTR_TO_MAP_VALUE */ 8158 map_ptr = reg->map_ptr; 8159 if (!map_ptr->btf) { 8160 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 8161 map_ptr->name); 8162 return -EINVAL; 8163 } 8164 rec = map_ptr->record; 8165 meta->map_ptr = map_ptr; 8166 } 8167 8168 if (!tnum_is_const(reg->var_off)) { 8169 verbose(env, 8170 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 8171 regno); 8172 return -EINVAL; 8173 } 8174 8175 if (!btf_record_has_field(rec, BPF_KPTR)) { 8176 verbose(env, "R%d has no valid kptr\n", regno); 8177 return -EINVAL; 8178 } 8179 8180 kptr_off = reg->off + reg->var_off.value; 8181 kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR); 8182 if (!kptr_field) { 8183 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 8184 return -EACCES; 8185 } 8186 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { 8187 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 8188 return -EACCES; 8189 } 8190 meta->kptr_field = kptr_field; 8191 return 0; 8192 } 8193 8194 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 8195 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 8196 * 8197 * In both cases we deal with the first 8 bytes, but need to mark the next 8 8198 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 8199 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 8200 * 8201 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 8202 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 8203 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 8204 * mutate the view of the dynptr and also possibly destroy it. In the latter 8205 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 8206 * memory that dynptr points to. 8207 * 8208 * The verifier will keep track both levels of mutation (bpf_dynptr's in 8209 * reg->type and the memory's in reg->dynptr.type), but there is no support for 8210 * readonly dynptr view yet, hence only the first case is tracked and checked. 8211 * 8212 * This is consistent with how C applies the const modifier to a struct object, 8213 * where the pointer itself inside bpf_dynptr becomes const but not what it 8214 * points to. 8215 * 8216 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 8217 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 8218 */ 8219 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 8220 enum bpf_arg_type arg_type, int clone_ref_obj_id) 8221 { 8222 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8223 int err; 8224 8225 if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) { 8226 verbose(env, 8227 "arg#%d expected pointer to stack or const struct bpf_dynptr\n", 8228 regno - 1); 8229 return -EINVAL; 8230 } 8231 8232 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 8233 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 8234 */ 8235 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 8236 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 8237 return -EFAULT; 8238 } 8239 8240 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 8241 * constructing a mutable bpf_dynptr object. 8242 * 8243 * Currently, this is only possible with PTR_TO_STACK 8244 * pointing to a region of at least 16 bytes which doesn't 8245 * contain an existing bpf_dynptr. 8246 * 8247 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 8248 * mutated or destroyed. However, the memory it points to 8249 * may be mutated. 8250 * 8251 * None - Points to a initialized dynptr that can be mutated and 8252 * destroyed, including mutation of the memory it points 8253 * to. 8254 */ 8255 if (arg_type & MEM_UNINIT) { 8256 int i; 8257 8258 if (!is_dynptr_reg_valid_uninit(env, reg)) { 8259 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 8260 return -EINVAL; 8261 } 8262 8263 /* we write BPF_DW bits (8 bytes) at a time */ 8264 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 8265 err = check_mem_access(env, insn_idx, regno, 8266 i, BPF_DW, BPF_WRITE, -1, false, false); 8267 if (err) 8268 return err; 8269 } 8270 8271 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 8272 } else /* MEM_RDONLY and None case from above */ { 8273 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 8274 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 8275 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 8276 return -EINVAL; 8277 } 8278 8279 if (!is_dynptr_reg_valid_init(env, reg)) { 8280 verbose(env, 8281 "Expected an initialized dynptr as arg #%d\n", 8282 regno - 1); 8283 return -EINVAL; 8284 } 8285 8286 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 8287 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 8288 verbose(env, 8289 "Expected a dynptr of type %s as arg #%d\n", 8290 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno - 1); 8291 return -EINVAL; 8292 } 8293 8294 err = mark_dynptr_read(env, reg); 8295 } 8296 return err; 8297 } 8298 8299 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 8300 { 8301 struct bpf_func_state *state = func(env, reg); 8302 8303 return state->stack[spi].spilled_ptr.ref_obj_id; 8304 } 8305 8306 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8307 { 8308 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 8309 } 8310 8311 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8312 { 8313 return meta->kfunc_flags & KF_ITER_NEW; 8314 } 8315 8316 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8317 { 8318 return meta->kfunc_flags & KF_ITER_NEXT; 8319 } 8320 8321 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8322 { 8323 return meta->kfunc_flags & KF_ITER_DESTROY; 8324 } 8325 8326 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx, 8327 const struct btf_param *arg) 8328 { 8329 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 8330 * kfunc is iter state pointer 8331 */ 8332 if (is_iter_kfunc(meta)) 8333 return arg_idx == 0; 8334 8335 /* iter passed as an argument to a generic kfunc */ 8336 return btf_param_match_suffix(meta->btf, arg, "__iter"); 8337 } 8338 8339 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 8340 struct bpf_kfunc_call_arg_meta *meta) 8341 { 8342 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8343 const struct btf_type *t; 8344 int spi, err, i, nr_slots, btf_id; 8345 8346 if (reg->type != PTR_TO_STACK) { 8347 verbose(env, "arg#%d expected pointer to an iterator on stack\n", regno - 1); 8348 return -EINVAL; 8349 } 8350 8351 /* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs() 8352 * ensures struct convention, so we wouldn't need to do any BTF 8353 * validation here. But given iter state can be passed as a parameter 8354 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more 8355 * conservative here. 8356 */ 8357 btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1); 8358 if (btf_id < 0) { 8359 verbose(env, "expected valid iter pointer as arg #%d\n", regno - 1); 8360 return -EINVAL; 8361 } 8362 t = btf_type_by_id(meta->btf, btf_id); 8363 nr_slots = t->size / BPF_REG_SIZE; 8364 8365 if (is_iter_new_kfunc(meta)) { 8366 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 8367 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 8368 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 8369 iter_type_str(meta->btf, btf_id), regno - 1); 8370 return -EINVAL; 8371 } 8372 8373 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 8374 err = check_mem_access(env, insn_idx, regno, 8375 i, BPF_DW, BPF_WRITE, -1, false, false); 8376 if (err) 8377 return err; 8378 } 8379 8380 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); 8381 if (err) 8382 return err; 8383 } else { 8384 /* iter_next() or iter_destroy(), as well as any kfunc 8385 * accepting iter argument, expect initialized iter state 8386 */ 8387 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); 8388 switch (err) { 8389 case 0: 8390 break; 8391 case -EINVAL: 8392 verbose(env, "expected an initialized iter_%s as arg #%d\n", 8393 iter_type_str(meta->btf, btf_id), regno - 1); 8394 return err; 8395 case -EPROTO: 8396 verbose(env, "expected an RCU CS when using %s\n", meta->func_name); 8397 return err; 8398 default: 8399 return err; 8400 } 8401 8402 spi = iter_get_spi(env, reg, nr_slots); 8403 if (spi < 0) 8404 return spi; 8405 8406 err = mark_iter_read(env, reg, spi, nr_slots); 8407 if (err) 8408 return err; 8409 8410 /* remember meta->iter info for process_iter_next_call() */ 8411 meta->iter.spi = spi; 8412 meta->iter.frameno = reg->frameno; 8413 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 8414 8415 if (is_iter_destroy_kfunc(meta)) { 8416 err = unmark_stack_slots_iter(env, reg, nr_slots); 8417 if (err) 8418 return err; 8419 } 8420 } 8421 8422 return 0; 8423 } 8424 8425 /* Look for a previous loop entry at insn_idx: nearest parent state 8426 * stopped at insn_idx with callsites matching those in cur->frame. 8427 */ 8428 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 8429 struct bpf_verifier_state *cur, 8430 int insn_idx) 8431 { 8432 struct bpf_verifier_state_list *sl; 8433 struct bpf_verifier_state *st; 8434 8435 /* Explored states are pushed in stack order, most recent states come first */ 8436 sl = *explored_state(env, insn_idx); 8437 for (; sl; sl = sl->next) { 8438 /* If st->branches != 0 state is a part of current DFS verification path, 8439 * hence cur & st for a loop. 8440 */ 8441 st = &sl->state; 8442 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 8443 st->dfs_depth < cur->dfs_depth) 8444 return st; 8445 } 8446 8447 return NULL; 8448 } 8449 8450 static void reset_idmap_scratch(struct bpf_verifier_env *env); 8451 static bool regs_exact(const struct bpf_reg_state *rold, 8452 const struct bpf_reg_state *rcur, 8453 struct bpf_idmap *idmap); 8454 8455 static void maybe_widen_reg(struct bpf_verifier_env *env, 8456 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 8457 struct bpf_idmap *idmap) 8458 { 8459 if (rold->type != SCALAR_VALUE) 8460 return; 8461 if (rold->type != rcur->type) 8462 return; 8463 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 8464 return; 8465 __mark_reg_unknown(env, rcur); 8466 } 8467 8468 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 8469 struct bpf_verifier_state *old, 8470 struct bpf_verifier_state *cur) 8471 { 8472 struct bpf_func_state *fold, *fcur; 8473 int i, fr; 8474 8475 reset_idmap_scratch(env); 8476 for (fr = old->curframe; fr >= 0; fr--) { 8477 fold = old->frame[fr]; 8478 fcur = cur->frame[fr]; 8479 8480 for (i = 0; i < MAX_BPF_REG; i++) 8481 maybe_widen_reg(env, 8482 &fold->regs[i], 8483 &fcur->regs[i], 8484 &env->idmap_scratch); 8485 8486 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 8487 if (!is_spilled_reg(&fold->stack[i]) || 8488 !is_spilled_reg(&fcur->stack[i])) 8489 continue; 8490 8491 maybe_widen_reg(env, 8492 &fold->stack[i].spilled_ptr, 8493 &fcur->stack[i].spilled_ptr, 8494 &env->idmap_scratch); 8495 } 8496 } 8497 return 0; 8498 } 8499 8500 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st, 8501 struct bpf_kfunc_call_arg_meta *meta) 8502 { 8503 int iter_frameno = meta->iter.frameno; 8504 int iter_spi = meta->iter.spi; 8505 8506 return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 8507 } 8508 8509 /* process_iter_next_call() is called when verifier gets to iterator's next 8510 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 8511 * to it as just "iter_next()" in comments below. 8512 * 8513 * BPF verifier relies on a crucial contract for any iter_next() 8514 * implementation: it should *eventually* return NULL, and once that happens 8515 * it should keep returning NULL. That is, once iterator exhausts elements to 8516 * iterate, it should never reset or spuriously return new elements. 8517 * 8518 * With the assumption of such contract, process_iter_next_call() simulates 8519 * a fork in the verifier state to validate loop logic correctness and safety 8520 * without having to simulate infinite amount of iterations. 8521 * 8522 * In current state, we first assume that iter_next() returned NULL and 8523 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 8524 * conditions we should not form an infinite loop and should eventually reach 8525 * exit. 8526 * 8527 * Besides that, we also fork current state and enqueue it for later 8528 * verification. In a forked state we keep iterator state as ACTIVE 8529 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 8530 * also bump iteration depth to prevent erroneous infinite loop detection 8531 * later on (see iter_active_depths_differ() comment for details). In this 8532 * state we assume that we'll eventually loop back to another iter_next() 8533 * calls (it could be in exactly same location or in some other instruction, 8534 * it doesn't matter, we don't make any unnecessary assumptions about this, 8535 * everything revolves around iterator state in a stack slot, not which 8536 * instruction is calling iter_next()). When that happens, we either will come 8537 * to iter_next() with equivalent state and can conclude that next iteration 8538 * will proceed in exactly the same way as we just verified, so it's safe to 8539 * assume that loop converges. If not, we'll go on another iteration 8540 * simulation with a different input state, until all possible starting states 8541 * are validated or we reach maximum number of instructions limit. 8542 * 8543 * This way, we will either exhaustively discover all possible input states 8544 * that iterator loop can start with and eventually will converge, or we'll 8545 * effectively regress into bounded loop simulation logic and either reach 8546 * maximum number of instructions if loop is not provably convergent, or there 8547 * is some statically known limit on number of iterations (e.g., if there is 8548 * an explicit `if n > 100 then break;` statement somewhere in the loop). 8549 * 8550 * Iteration convergence logic in is_state_visited() relies on exact 8551 * states comparison, which ignores read and precision marks. 8552 * This is necessary because read and precision marks are not finalized 8553 * while in the loop. Exact comparison might preclude convergence for 8554 * simple programs like below: 8555 * 8556 * i = 0; 8557 * while(iter_next(&it)) 8558 * i++; 8559 * 8560 * At each iteration step i++ would produce a new distinct state and 8561 * eventually instruction processing limit would be reached. 8562 * 8563 * To avoid such behavior speculatively forget (widen) range for 8564 * imprecise scalar registers, if those registers were not precise at the 8565 * end of the previous iteration and do not match exactly. 8566 * 8567 * This is a conservative heuristic that allows to verify wide range of programs, 8568 * however it precludes verification of programs that conjure an 8569 * imprecise value on the first loop iteration and use it as precise on a second. 8570 * For example, the following safe program would fail to verify: 8571 * 8572 * struct bpf_num_iter it; 8573 * int arr[10]; 8574 * int i = 0, a = 0; 8575 * bpf_iter_num_new(&it, 0, 10); 8576 * while (bpf_iter_num_next(&it)) { 8577 * if (a == 0) { 8578 * a = 1; 8579 * i = 7; // Because i changed verifier would forget 8580 * // it's range on second loop entry. 8581 * } else { 8582 * arr[i] = 42; // This would fail to verify. 8583 * } 8584 * } 8585 * bpf_iter_num_destroy(&it); 8586 */ 8587 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 8588 struct bpf_kfunc_call_arg_meta *meta) 8589 { 8590 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 8591 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 8592 struct bpf_reg_state *cur_iter, *queued_iter; 8593 8594 BTF_TYPE_EMIT(struct bpf_iter); 8595 8596 cur_iter = get_iter_from_state(cur_st, meta); 8597 8598 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 8599 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 8600 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 8601 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 8602 return -EFAULT; 8603 } 8604 8605 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 8606 /* Because iter_next() call is a checkpoint is_state_visitied() 8607 * should guarantee parent state with same call sites and insn_idx. 8608 */ 8609 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 8610 !same_callsites(cur_st->parent, cur_st)) { 8611 verbose(env, "bug: bad parent state for iter next call"); 8612 return -EFAULT; 8613 } 8614 /* Note cur_st->parent in the call below, it is necessary to skip 8615 * checkpoint created for cur_st by is_state_visited() 8616 * right at this instruction. 8617 */ 8618 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 8619 /* branch out active iter state */ 8620 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 8621 if (!queued_st) 8622 return -ENOMEM; 8623 8624 queued_iter = get_iter_from_state(queued_st, meta); 8625 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 8626 queued_iter->iter.depth++; 8627 if (prev_st) 8628 widen_imprecise_scalars(env, prev_st, queued_st); 8629 8630 queued_fr = queued_st->frame[queued_st->curframe]; 8631 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 8632 } 8633 8634 /* switch to DRAINED state, but keep the depth unchanged */ 8635 /* mark current iter state as drained and assume returned NULL */ 8636 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 8637 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); 8638 8639 return 0; 8640 } 8641 8642 static bool arg_type_is_mem_size(enum bpf_arg_type type) 8643 { 8644 return type == ARG_CONST_SIZE || 8645 type == ARG_CONST_SIZE_OR_ZERO; 8646 } 8647 8648 static bool arg_type_is_raw_mem(enum bpf_arg_type type) 8649 { 8650 return base_type(type) == ARG_PTR_TO_MEM && 8651 type & MEM_UNINIT; 8652 } 8653 8654 static bool arg_type_is_release(enum bpf_arg_type type) 8655 { 8656 return type & OBJ_RELEASE; 8657 } 8658 8659 static bool arg_type_is_dynptr(enum bpf_arg_type type) 8660 { 8661 return base_type(type) == ARG_PTR_TO_DYNPTR; 8662 } 8663 8664 static int resolve_map_arg_type(struct bpf_verifier_env *env, 8665 const struct bpf_call_arg_meta *meta, 8666 enum bpf_arg_type *arg_type) 8667 { 8668 if (!meta->map_ptr) { 8669 /* kernel subsystem misconfigured verifier */ 8670 verbose(env, "invalid map_ptr to access map->type\n"); 8671 return -EACCES; 8672 } 8673 8674 switch (meta->map_ptr->map_type) { 8675 case BPF_MAP_TYPE_SOCKMAP: 8676 case BPF_MAP_TYPE_SOCKHASH: 8677 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 8678 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 8679 } else { 8680 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 8681 return -EINVAL; 8682 } 8683 break; 8684 case BPF_MAP_TYPE_BLOOM_FILTER: 8685 if (meta->func_id == BPF_FUNC_map_peek_elem) 8686 *arg_type = ARG_PTR_TO_MAP_VALUE; 8687 break; 8688 default: 8689 break; 8690 } 8691 return 0; 8692 } 8693 8694 struct bpf_reg_types { 8695 const enum bpf_reg_type types[10]; 8696 u32 *btf_id; 8697 }; 8698 8699 static const struct bpf_reg_types sock_types = { 8700 .types = { 8701 PTR_TO_SOCK_COMMON, 8702 PTR_TO_SOCKET, 8703 PTR_TO_TCP_SOCK, 8704 PTR_TO_XDP_SOCK, 8705 }, 8706 }; 8707 8708 #ifdef CONFIG_NET 8709 static const struct bpf_reg_types btf_id_sock_common_types = { 8710 .types = { 8711 PTR_TO_SOCK_COMMON, 8712 PTR_TO_SOCKET, 8713 PTR_TO_TCP_SOCK, 8714 PTR_TO_XDP_SOCK, 8715 PTR_TO_BTF_ID, 8716 PTR_TO_BTF_ID | PTR_TRUSTED, 8717 }, 8718 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8719 }; 8720 #endif 8721 8722 static const struct bpf_reg_types mem_types = { 8723 .types = { 8724 PTR_TO_STACK, 8725 PTR_TO_PACKET, 8726 PTR_TO_PACKET_META, 8727 PTR_TO_MAP_KEY, 8728 PTR_TO_MAP_VALUE, 8729 PTR_TO_MEM, 8730 PTR_TO_MEM | MEM_RINGBUF, 8731 PTR_TO_BUF, 8732 PTR_TO_BTF_ID | PTR_TRUSTED, 8733 }, 8734 }; 8735 8736 static const struct bpf_reg_types spin_lock_types = { 8737 .types = { 8738 PTR_TO_MAP_VALUE, 8739 PTR_TO_BTF_ID | MEM_ALLOC, 8740 } 8741 }; 8742 8743 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 8744 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 8745 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 8746 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 8747 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 8748 static const struct bpf_reg_types btf_ptr_types = { 8749 .types = { 8750 PTR_TO_BTF_ID, 8751 PTR_TO_BTF_ID | PTR_TRUSTED, 8752 PTR_TO_BTF_ID | MEM_RCU, 8753 }, 8754 }; 8755 static const struct bpf_reg_types percpu_btf_ptr_types = { 8756 .types = { 8757 PTR_TO_BTF_ID | MEM_PERCPU, 8758 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, 8759 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 8760 } 8761 }; 8762 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 8763 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 8764 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8765 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 8766 static const struct bpf_reg_types kptr_xchg_dest_types = { 8767 .types = { 8768 PTR_TO_MAP_VALUE, 8769 PTR_TO_BTF_ID | MEM_ALLOC 8770 } 8771 }; 8772 static const struct bpf_reg_types dynptr_types = { 8773 .types = { 8774 PTR_TO_STACK, 8775 CONST_PTR_TO_DYNPTR, 8776 } 8777 }; 8778 8779 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 8780 [ARG_PTR_TO_MAP_KEY] = &mem_types, 8781 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 8782 [ARG_CONST_SIZE] = &scalar_types, 8783 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 8784 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 8785 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 8786 [ARG_PTR_TO_CTX] = &context_types, 8787 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 8788 #ifdef CONFIG_NET 8789 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 8790 #endif 8791 [ARG_PTR_TO_SOCKET] = &fullsock_types, 8792 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 8793 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 8794 [ARG_PTR_TO_MEM] = &mem_types, 8795 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 8796 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 8797 [ARG_PTR_TO_FUNC] = &func_ptr_types, 8798 [ARG_PTR_TO_STACK] = &stack_ptr_types, 8799 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 8800 [ARG_PTR_TO_TIMER] = &timer_types, 8801 [ARG_KPTR_XCHG_DEST] = &kptr_xchg_dest_types, 8802 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 8803 }; 8804 8805 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 8806 enum bpf_arg_type arg_type, 8807 const u32 *arg_btf_id, 8808 struct bpf_call_arg_meta *meta) 8809 { 8810 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8811 enum bpf_reg_type expected, type = reg->type; 8812 const struct bpf_reg_types *compatible; 8813 int i, j; 8814 8815 compatible = compatible_reg_types[base_type(arg_type)]; 8816 if (!compatible) { 8817 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 8818 return -EFAULT; 8819 } 8820 8821 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 8822 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 8823 * 8824 * Same for MAYBE_NULL: 8825 * 8826 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 8827 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 8828 * 8829 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 8830 * 8831 * Therefore we fold these flags depending on the arg_type before comparison. 8832 */ 8833 if (arg_type & MEM_RDONLY) 8834 type &= ~MEM_RDONLY; 8835 if (arg_type & PTR_MAYBE_NULL) 8836 type &= ~PTR_MAYBE_NULL; 8837 if (base_type(arg_type) == ARG_PTR_TO_MEM) 8838 type &= ~DYNPTR_TYPE_FLAG_MASK; 8839 8840 /* Local kptr types are allowed as the source argument of bpf_kptr_xchg */ 8841 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) { 8842 type &= ~MEM_ALLOC; 8843 type &= ~MEM_PERCPU; 8844 } 8845 8846 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 8847 expected = compatible->types[i]; 8848 if (expected == NOT_INIT) 8849 break; 8850 8851 if (type == expected) 8852 goto found; 8853 } 8854 8855 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 8856 for (j = 0; j + 1 < i; j++) 8857 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 8858 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 8859 return -EACCES; 8860 8861 found: 8862 if (base_type(reg->type) != PTR_TO_BTF_ID) 8863 return 0; 8864 8865 if (compatible == &mem_types) { 8866 if (!(arg_type & MEM_RDONLY)) { 8867 verbose(env, 8868 "%s() may write into memory pointed by R%d type=%s\n", 8869 func_id_name(meta->func_id), 8870 regno, reg_type_str(env, reg->type)); 8871 return -EACCES; 8872 } 8873 return 0; 8874 } 8875 8876 switch ((int)reg->type) { 8877 case PTR_TO_BTF_ID: 8878 case PTR_TO_BTF_ID | PTR_TRUSTED: 8879 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL: 8880 case PTR_TO_BTF_ID | MEM_RCU: 8881 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 8882 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 8883 { 8884 /* For bpf_sk_release, it needs to match against first member 8885 * 'struct sock_common', hence make an exception for it. This 8886 * allows bpf_sk_release to work for multiple socket types. 8887 */ 8888 bool strict_type_match = arg_type_is_release(arg_type) && 8889 meta->func_id != BPF_FUNC_sk_release; 8890 8891 if (type_may_be_null(reg->type) && 8892 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 8893 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 8894 return -EACCES; 8895 } 8896 8897 if (!arg_btf_id) { 8898 if (!compatible->btf_id) { 8899 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 8900 return -EFAULT; 8901 } 8902 arg_btf_id = compatible->btf_id; 8903 } 8904 8905 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8906 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8907 return -EACCES; 8908 } else { 8909 if (arg_btf_id == BPF_PTR_POISON) { 8910 verbose(env, "verifier internal error:"); 8911 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 8912 regno); 8913 return -EACCES; 8914 } 8915 8916 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 8917 btf_vmlinux, *arg_btf_id, 8918 strict_type_match)) { 8919 verbose(env, "R%d is of type %s but %s is expected\n", 8920 regno, btf_type_name(reg->btf, reg->btf_id), 8921 btf_type_name(btf_vmlinux, *arg_btf_id)); 8922 return -EACCES; 8923 } 8924 } 8925 break; 8926 } 8927 case PTR_TO_BTF_ID | MEM_ALLOC: 8928 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: 8929 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 8930 meta->func_id != BPF_FUNC_kptr_xchg) { 8931 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 8932 return -EFAULT; 8933 } 8934 /* Check if local kptr in src arg matches kptr in dst arg */ 8935 if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) { 8936 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8937 return -EACCES; 8938 } 8939 break; 8940 case PTR_TO_BTF_ID | MEM_PERCPU: 8941 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: 8942 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 8943 /* Handled by helper specific checks */ 8944 break; 8945 default: 8946 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 8947 return -EFAULT; 8948 } 8949 return 0; 8950 } 8951 8952 static struct btf_field * 8953 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 8954 { 8955 struct btf_field *field; 8956 struct btf_record *rec; 8957 8958 rec = reg_btf_record(reg); 8959 if (!rec) 8960 return NULL; 8961 8962 field = btf_record_find(rec, off, fields); 8963 if (!field) 8964 return NULL; 8965 8966 return field; 8967 } 8968 8969 static int check_func_arg_reg_off(struct bpf_verifier_env *env, 8970 const struct bpf_reg_state *reg, int regno, 8971 enum bpf_arg_type arg_type) 8972 { 8973 u32 type = reg->type; 8974 8975 /* When referenced register is passed to release function, its fixed 8976 * offset must be 0. 8977 * 8978 * We will check arg_type_is_release reg has ref_obj_id when storing 8979 * meta->release_regno. 8980 */ 8981 if (arg_type_is_release(arg_type)) { 8982 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 8983 * may not directly point to the object being released, but to 8984 * dynptr pointing to such object, which might be at some offset 8985 * on the stack. In that case, we simply to fallback to the 8986 * default handling. 8987 */ 8988 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 8989 return 0; 8990 8991 /* Doing check_ptr_off_reg check for the offset will catch this 8992 * because fixed_off_ok is false, but checking here allows us 8993 * to give the user a better error message. 8994 */ 8995 if (reg->off) { 8996 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8997 regno); 8998 return -EINVAL; 8999 } 9000 return __check_ptr_off_reg(env, reg, regno, false); 9001 } 9002 9003 switch (type) { 9004 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 9005 case PTR_TO_STACK: 9006 case PTR_TO_PACKET: 9007 case PTR_TO_PACKET_META: 9008 case PTR_TO_MAP_KEY: 9009 case PTR_TO_MAP_VALUE: 9010 case PTR_TO_MEM: 9011 case PTR_TO_MEM | MEM_RDONLY: 9012 case PTR_TO_MEM | MEM_RINGBUF: 9013 case PTR_TO_BUF: 9014 case PTR_TO_BUF | MEM_RDONLY: 9015 case PTR_TO_ARENA: 9016 case SCALAR_VALUE: 9017 return 0; 9018 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 9019 * fixed offset. 9020 */ 9021 case PTR_TO_BTF_ID: 9022 case PTR_TO_BTF_ID | MEM_ALLOC: 9023 case PTR_TO_BTF_ID | PTR_TRUSTED: 9024 case PTR_TO_BTF_ID | MEM_RCU: 9025 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 9026 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 9027 /* When referenced PTR_TO_BTF_ID is passed to release function, 9028 * its fixed offset must be 0. In the other cases, fixed offset 9029 * can be non-zero. This was already checked above. So pass 9030 * fixed_off_ok as true to allow fixed offset for all other 9031 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 9032 * still need to do checks instead of returning. 9033 */ 9034 return __check_ptr_off_reg(env, reg, regno, true); 9035 default: 9036 return __check_ptr_off_reg(env, reg, regno, false); 9037 } 9038 } 9039 9040 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 9041 const struct bpf_func_proto *fn, 9042 struct bpf_reg_state *regs) 9043 { 9044 struct bpf_reg_state *state = NULL; 9045 int i; 9046 9047 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 9048 if (arg_type_is_dynptr(fn->arg_type[i])) { 9049 if (state) { 9050 verbose(env, "verifier internal error: multiple dynptr args\n"); 9051 return NULL; 9052 } 9053 state = ®s[BPF_REG_1 + i]; 9054 } 9055 9056 if (!state) 9057 verbose(env, "verifier internal error: no dynptr arg found\n"); 9058 9059 return state; 9060 } 9061 9062 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9063 { 9064 struct bpf_func_state *state = func(env, reg); 9065 int spi; 9066 9067 if (reg->type == CONST_PTR_TO_DYNPTR) 9068 return reg->id; 9069 spi = dynptr_get_spi(env, reg); 9070 if (spi < 0) 9071 return spi; 9072 return state->stack[spi].spilled_ptr.id; 9073 } 9074 9075 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9076 { 9077 struct bpf_func_state *state = func(env, reg); 9078 int spi; 9079 9080 if (reg->type == CONST_PTR_TO_DYNPTR) 9081 return reg->ref_obj_id; 9082 spi = dynptr_get_spi(env, reg); 9083 if (spi < 0) 9084 return spi; 9085 return state->stack[spi].spilled_ptr.ref_obj_id; 9086 } 9087 9088 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 9089 struct bpf_reg_state *reg) 9090 { 9091 struct bpf_func_state *state = func(env, reg); 9092 int spi; 9093 9094 if (reg->type == CONST_PTR_TO_DYNPTR) 9095 return reg->dynptr.type; 9096 9097 spi = __get_spi(reg->off); 9098 if (spi < 0) { 9099 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 9100 return BPF_DYNPTR_TYPE_INVALID; 9101 } 9102 9103 return state->stack[spi].spilled_ptr.dynptr.type; 9104 } 9105 9106 static int check_reg_const_str(struct bpf_verifier_env *env, 9107 struct bpf_reg_state *reg, u32 regno) 9108 { 9109 struct bpf_map *map = reg->map_ptr; 9110 int err; 9111 int map_off; 9112 u64 map_addr; 9113 char *str_ptr; 9114 9115 if (reg->type != PTR_TO_MAP_VALUE) 9116 return -EINVAL; 9117 9118 if (!bpf_map_is_rdonly(map)) { 9119 verbose(env, "R%d does not point to a readonly map'\n", regno); 9120 return -EACCES; 9121 } 9122 9123 if (!tnum_is_const(reg->var_off)) { 9124 verbose(env, "R%d is not a constant address'\n", regno); 9125 return -EACCES; 9126 } 9127 9128 if (!map->ops->map_direct_value_addr) { 9129 verbose(env, "no direct value access support for this map type\n"); 9130 return -EACCES; 9131 } 9132 9133 err = check_map_access(env, regno, reg->off, 9134 map->value_size - reg->off, false, 9135 ACCESS_HELPER); 9136 if (err) 9137 return err; 9138 9139 map_off = reg->off + reg->var_off.value; 9140 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 9141 if (err) { 9142 verbose(env, "direct value access on string failed\n"); 9143 return err; 9144 } 9145 9146 str_ptr = (char *)(long)(map_addr); 9147 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 9148 verbose(env, "string is not zero-terminated\n"); 9149 return -EINVAL; 9150 } 9151 return 0; 9152 } 9153 9154 /* Returns constant key value in `value` if possible, else negative error */ 9155 static int get_constant_map_key(struct bpf_verifier_env *env, 9156 struct bpf_reg_state *key, 9157 u32 key_size, 9158 s64 *value) 9159 { 9160 struct bpf_func_state *state = func(env, key); 9161 struct bpf_reg_state *reg; 9162 int slot, spi, off; 9163 int spill_size = 0; 9164 int zero_size = 0; 9165 int stack_off; 9166 int i, err; 9167 u8 *stype; 9168 9169 if (!env->bpf_capable) 9170 return -EOPNOTSUPP; 9171 if (key->type != PTR_TO_STACK) 9172 return -EOPNOTSUPP; 9173 if (!tnum_is_const(key->var_off)) 9174 return -EOPNOTSUPP; 9175 9176 stack_off = key->off + key->var_off.value; 9177 slot = -stack_off - 1; 9178 spi = slot / BPF_REG_SIZE; 9179 off = slot % BPF_REG_SIZE; 9180 stype = state->stack[spi].slot_type; 9181 9182 /* First handle precisely tracked STACK_ZERO */ 9183 for (i = off; i >= 0 && stype[i] == STACK_ZERO; i--) 9184 zero_size++; 9185 if (zero_size >= key_size) { 9186 *value = 0; 9187 return 0; 9188 } 9189 9190 /* Check that stack contains a scalar spill of expected size */ 9191 if (!is_spilled_scalar_reg(&state->stack[spi])) 9192 return -EOPNOTSUPP; 9193 for (i = off; i >= 0 && stype[i] == STACK_SPILL; i--) 9194 spill_size++; 9195 if (spill_size != key_size) 9196 return -EOPNOTSUPP; 9197 9198 reg = &state->stack[spi].spilled_ptr; 9199 if (!tnum_is_const(reg->var_off)) 9200 /* Stack value not statically known */ 9201 return -EOPNOTSUPP; 9202 9203 /* We are relying on a constant value. So mark as precise 9204 * to prevent pruning on it. 9205 */ 9206 bt_set_frame_slot(&env->bt, key->frameno, spi); 9207 err = mark_chain_precision_batch(env); 9208 if (err < 0) 9209 return err; 9210 9211 *value = reg->var_off.value; 9212 return 0; 9213 } 9214 9215 static bool can_elide_value_nullness(enum bpf_map_type type); 9216 9217 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 9218 struct bpf_call_arg_meta *meta, 9219 const struct bpf_func_proto *fn, 9220 int insn_idx) 9221 { 9222 u32 regno = BPF_REG_1 + arg; 9223 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 9224 enum bpf_arg_type arg_type = fn->arg_type[arg]; 9225 enum bpf_reg_type type = reg->type; 9226 u32 *arg_btf_id = NULL; 9227 u32 key_size; 9228 int err = 0; 9229 9230 if (arg_type == ARG_DONTCARE) 9231 return 0; 9232 9233 err = check_reg_arg(env, regno, SRC_OP); 9234 if (err) 9235 return err; 9236 9237 if (arg_type == ARG_ANYTHING) { 9238 if (is_pointer_value(env, regno)) { 9239 verbose(env, "R%d leaks addr into helper function\n", 9240 regno); 9241 return -EACCES; 9242 } 9243 return 0; 9244 } 9245 9246 if (type_is_pkt_pointer(type) && 9247 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 9248 verbose(env, "helper access to the packet is not allowed\n"); 9249 return -EACCES; 9250 } 9251 9252 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 9253 err = resolve_map_arg_type(env, meta, &arg_type); 9254 if (err) 9255 return err; 9256 } 9257 9258 if (register_is_null(reg) && type_may_be_null(arg_type)) 9259 /* A NULL register has a SCALAR_VALUE type, so skip 9260 * type checking. 9261 */ 9262 goto skip_type_check; 9263 9264 /* arg_btf_id and arg_size are in a union. */ 9265 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 9266 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 9267 arg_btf_id = fn->arg_btf_id[arg]; 9268 9269 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 9270 if (err) 9271 return err; 9272 9273 err = check_func_arg_reg_off(env, reg, regno, arg_type); 9274 if (err) 9275 return err; 9276 9277 skip_type_check: 9278 if (arg_type_is_release(arg_type)) { 9279 if (arg_type_is_dynptr(arg_type)) { 9280 struct bpf_func_state *state = func(env, reg); 9281 int spi; 9282 9283 /* Only dynptr created on stack can be released, thus 9284 * the get_spi and stack state checks for spilled_ptr 9285 * should only be done before process_dynptr_func for 9286 * PTR_TO_STACK. 9287 */ 9288 if (reg->type == PTR_TO_STACK) { 9289 spi = dynptr_get_spi(env, reg); 9290 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 9291 verbose(env, "arg %d is an unacquired reference\n", regno); 9292 return -EINVAL; 9293 } 9294 } else { 9295 verbose(env, "cannot release unowned const bpf_dynptr\n"); 9296 return -EINVAL; 9297 } 9298 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 9299 verbose(env, "R%d must be referenced when passed to release function\n", 9300 regno); 9301 return -EINVAL; 9302 } 9303 if (meta->release_regno) { 9304 verbose(env, "verifier internal error: more than one release argument\n"); 9305 return -EFAULT; 9306 } 9307 meta->release_regno = regno; 9308 } 9309 9310 if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) { 9311 if (meta->ref_obj_id) { 9312 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 9313 regno, reg->ref_obj_id, 9314 meta->ref_obj_id); 9315 return -EFAULT; 9316 } 9317 meta->ref_obj_id = reg->ref_obj_id; 9318 } 9319 9320 switch (base_type(arg_type)) { 9321 case ARG_CONST_MAP_PTR: 9322 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 9323 if (meta->map_ptr) { 9324 /* Use map_uid (which is unique id of inner map) to reject: 9325 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 9326 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 9327 * if (inner_map1 && inner_map2) { 9328 * timer = bpf_map_lookup_elem(inner_map1); 9329 * if (timer) 9330 * // mismatch would have been allowed 9331 * bpf_timer_init(timer, inner_map2); 9332 * } 9333 * 9334 * Comparing map_ptr is enough to distinguish normal and outer maps. 9335 */ 9336 if (meta->map_ptr != reg->map_ptr || 9337 meta->map_uid != reg->map_uid) { 9338 verbose(env, 9339 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 9340 meta->map_uid, reg->map_uid); 9341 return -EINVAL; 9342 } 9343 } 9344 meta->map_ptr = reg->map_ptr; 9345 meta->map_uid = reg->map_uid; 9346 break; 9347 case ARG_PTR_TO_MAP_KEY: 9348 /* bpf_map_xxx(..., map_ptr, ..., key) call: 9349 * check that [key, key + map->key_size) are within 9350 * stack limits and initialized 9351 */ 9352 if (!meta->map_ptr) { 9353 /* in function declaration map_ptr must come before 9354 * map_key, so that it's verified and known before 9355 * we have to check map_key here. Otherwise it means 9356 * that kernel subsystem misconfigured verifier 9357 */ 9358 verbose(env, "invalid map_ptr to access map->key\n"); 9359 return -EACCES; 9360 } 9361 key_size = meta->map_ptr->key_size; 9362 err = check_helper_mem_access(env, regno, key_size, BPF_READ, false, NULL); 9363 if (err) 9364 return err; 9365 if (can_elide_value_nullness(meta->map_ptr->map_type)) { 9366 err = get_constant_map_key(env, reg, key_size, &meta->const_map_key); 9367 if (err < 0) { 9368 meta->const_map_key = -1; 9369 if (err == -EOPNOTSUPP) 9370 err = 0; 9371 else 9372 return err; 9373 } 9374 } 9375 break; 9376 case ARG_PTR_TO_MAP_VALUE: 9377 if (type_may_be_null(arg_type) && register_is_null(reg)) 9378 return 0; 9379 9380 /* bpf_map_xxx(..., map_ptr, ..., value) call: 9381 * check [value, value + map->value_size) validity 9382 */ 9383 if (!meta->map_ptr) { 9384 /* kernel subsystem misconfigured verifier */ 9385 verbose(env, "invalid map_ptr to access map->value\n"); 9386 return -EACCES; 9387 } 9388 meta->raw_mode = arg_type & MEM_UNINIT; 9389 err = check_helper_mem_access(env, regno, meta->map_ptr->value_size, 9390 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9391 false, meta); 9392 break; 9393 case ARG_PTR_TO_PERCPU_BTF_ID: 9394 if (!reg->btf_id) { 9395 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 9396 return -EACCES; 9397 } 9398 meta->ret_btf = reg->btf; 9399 meta->ret_btf_id = reg->btf_id; 9400 break; 9401 case ARG_PTR_TO_SPIN_LOCK: 9402 if (in_rbtree_lock_required_cb(env)) { 9403 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 9404 return -EACCES; 9405 } 9406 if (meta->func_id == BPF_FUNC_spin_lock) { 9407 err = process_spin_lock(env, regno, true); 9408 if (err) 9409 return err; 9410 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 9411 err = process_spin_lock(env, regno, false); 9412 if (err) 9413 return err; 9414 } else { 9415 verbose(env, "verifier internal error\n"); 9416 return -EFAULT; 9417 } 9418 break; 9419 case ARG_PTR_TO_TIMER: 9420 err = process_timer_func(env, regno, meta); 9421 if (err) 9422 return err; 9423 break; 9424 case ARG_PTR_TO_FUNC: 9425 meta->subprogno = reg->subprogno; 9426 break; 9427 case ARG_PTR_TO_MEM: 9428 /* The access to this pointer is only checked when we hit the 9429 * next is_mem_size argument below. 9430 */ 9431 meta->raw_mode = arg_type & MEM_UNINIT; 9432 if (arg_type & MEM_FIXED_SIZE) { 9433 err = check_helper_mem_access(env, regno, fn->arg_size[arg], 9434 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9435 false, meta); 9436 if (err) 9437 return err; 9438 if (arg_type & MEM_ALIGNED) 9439 err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true); 9440 } 9441 break; 9442 case ARG_CONST_SIZE: 9443 err = check_mem_size_reg(env, reg, regno, 9444 fn->arg_type[arg - 1] & MEM_WRITE ? 9445 BPF_WRITE : BPF_READ, 9446 false, meta); 9447 break; 9448 case ARG_CONST_SIZE_OR_ZERO: 9449 err = check_mem_size_reg(env, reg, regno, 9450 fn->arg_type[arg - 1] & MEM_WRITE ? 9451 BPF_WRITE : BPF_READ, 9452 true, meta); 9453 break; 9454 case ARG_PTR_TO_DYNPTR: 9455 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 9456 if (err) 9457 return err; 9458 break; 9459 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 9460 if (!tnum_is_const(reg->var_off)) { 9461 verbose(env, "R%d is not a known constant'\n", 9462 regno); 9463 return -EACCES; 9464 } 9465 meta->mem_size = reg->var_off.value; 9466 err = mark_chain_precision(env, regno); 9467 if (err) 9468 return err; 9469 break; 9470 case ARG_PTR_TO_CONST_STR: 9471 { 9472 err = check_reg_const_str(env, reg, regno); 9473 if (err) 9474 return err; 9475 break; 9476 } 9477 case ARG_KPTR_XCHG_DEST: 9478 err = process_kptr_func(env, regno, meta); 9479 if (err) 9480 return err; 9481 break; 9482 } 9483 9484 return err; 9485 } 9486 9487 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 9488 { 9489 enum bpf_attach_type eatype = env->prog->expected_attach_type; 9490 enum bpf_prog_type type = resolve_prog_type(env->prog); 9491 9492 if (func_id != BPF_FUNC_map_update_elem && 9493 func_id != BPF_FUNC_map_delete_elem) 9494 return false; 9495 9496 /* It's not possible to get access to a locked struct sock in these 9497 * contexts, so updating is safe. 9498 */ 9499 switch (type) { 9500 case BPF_PROG_TYPE_TRACING: 9501 if (eatype == BPF_TRACE_ITER) 9502 return true; 9503 break; 9504 case BPF_PROG_TYPE_SOCK_OPS: 9505 /* map_update allowed only via dedicated helpers with event type checks */ 9506 if (func_id == BPF_FUNC_map_delete_elem) 9507 return true; 9508 break; 9509 case BPF_PROG_TYPE_SOCKET_FILTER: 9510 case BPF_PROG_TYPE_SCHED_CLS: 9511 case BPF_PROG_TYPE_SCHED_ACT: 9512 case BPF_PROG_TYPE_XDP: 9513 case BPF_PROG_TYPE_SK_REUSEPORT: 9514 case BPF_PROG_TYPE_FLOW_DISSECTOR: 9515 case BPF_PROG_TYPE_SK_LOOKUP: 9516 return true; 9517 default: 9518 break; 9519 } 9520 9521 verbose(env, "cannot update sockmap in this context\n"); 9522 return false; 9523 } 9524 9525 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 9526 { 9527 return env->prog->jit_requested && 9528 bpf_jit_supports_subprog_tailcalls(); 9529 } 9530 9531 static int check_map_func_compatibility(struct bpf_verifier_env *env, 9532 struct bpf_map *map, int func_id) 9533 { 9534 if (!map) 9535 return 0; 9536 9537 /* We need a two way check, first is from map perspective ... */ 9538 switch (map->map_type) { 9539 case BPF_MAP_TYPE_PROG_ARRAY: 9540 if (func_id != BPF_FUNC_tail_call) 9541 goto error; 9542 break; 9543 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 9544 if (func_id != BPF_FUNC_perf_event_read && 9545 func_id != BPF_FUNC_perf_event_output && 9546 func_id != BPF_FUNC_skb_output && 9547 func_id != BPF_FUNC_perf_event_read_value && 9548 func_id != BPF_FUNC_xdp_output) 9549 goto error; 9550 break; 9551 case BPF_MAP_TYPE_RINGBUF: 9552 if (func_id != BPF_FUNC_ringbuf_output && 9553 func_id != BPF_FUNC_ringbuf_reserve && 9554 func_id != BPF_FUNC_ringbuf_query && 9555 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 9556 func_id != BPF_FUNC_ringbuf_submit_dynptr && 9557 func_id != BPF_FUNC_ringbuf_discard_dynptr) 9558 goto error; 9559 break; 9560 case BPF_MAP_TYPE_USER_RINGBUF: 9561 if (func_id != BPF_FUNC_user_ringbuf_drain) 9562 goto error; 9563 break; 9564 case BPF_MAP_TYPE_STACK_TRACE: 9565 if (func_id != BPF_FUNC_get_stackid) 9566 goto error; 9567 break; 9568 case BPF_MAP_TYPE_CGROUP_ARRAY: 9569 if (func_id != BPF_FUNC_skb_under_cgroup && 9570 func_id != BPF_FUNC_current_task_under_cgroup) 9571 goto error; 9572 break; 9573 case BPF_MAP_TYPE_CGROUP_STORAGE: 9574 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 9575 if (func_id != BPF_FUNC_get_local_storage) 9576 goto error; 9577 break; 9578 case BPF_MAP_TYPE_DEVMAP: 9579 case BPF_MAP_TYPE_DEVMAP_HASH: 9580 if (func_id != BPF_FUNC_redirect_map && 9581 func_id != BPF_FUNC_map_lookup_elem) 9582 goto error; 9583 break; 9584 /* Restrict bpf side of cpumap and xskmap, open when use-cases 9585 * appear. 9586 */ 9587 case BPF_MAP_TYPE_CPUMAP: 9588 if (func_id != BPF_FUNC_redirect_map) 9589 goto error; 9590 break; 9591 case BPF_MAP_TYPE_XSKMAP: 9592 if (func_id != BPF_FUNC_redirect_map && 9593 func_id != BPF_FUNC_map_lookup_elem) 9594 goto error; 9595 break; 9596 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 9597 case BPF_MAP_TYPE_HASH_OF_MAPS: 9598 if (func_id != BPF_FUNC_map_lookup_elem) 9599 goto error; 9600 break; 9601 case BPF_MAP_TYPE_SOCKMAP: 9602 if (func_id != BPF_FUNC_sk_redirect_map && 9603 func_id != BPF_FUNC_sock_map_update && 9604 func_id != BPF_FUNC_msg_redirect_map && 9605 func_id != BPF_FUNC_sk_select_reuseport && 9606 func_id != BPF_FUNC_map_lookup_elem && 9607 !may_update_sockmap(env, func_id)) 9608 goto error; 9609 break; 9610 case BPF_MAP_TYPE_SOCKHASH: 9611 if (func_id != BPF_FUNC_sk_redirect_hash && 9612 func_id != BPF_FUNC_sock_hash_update && 9613 func_id != BPF_FUNC_msg_redirect_hash && 9614 func_id != BPF_FUNC_sk_select_reuseport && 9615 func_id != BPF_FUNC_map_lookup_elem && 9616 !may_update_sockmap(env, func_id)) 9617 goto error; 9618 break; 9619 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 9620 if (func_id != BPF_FUNC_sk_select_reuseport) 9621 goto error; 9622 break; 9623 case BPF_MAP_TYPE_QUEUE: 9624 case BPF_MAP_TYPE_STACK: 9625 if (func_id != BPF_FUNC_map_peek_elem && 9626 func_id != BPF_FUNC_map_pop_elem && 9627 func_id != BPF_FUNC_map_push_elem) 9628 goto error; 9629 break; 9630 case BPF_MAP_TYPE_SK_STORAGE: 9631 if (func_id != BPF_FUNC_sk_storage_get && 9632 func_id != BPF_FUNC_sk_storage_delete && 9633 func_id != BPF_FUNC_kptr_xchg) 9634 goto error; 9635 break; 9636 case BPF_MAP_TYPE_INODE_STORAGE: 9637 if (func_id != BPF_FUNC_inode_storage_get && 9638 func_id != BPF_FUNC_inode_storage_delete && 9639 func_id != BPF_FUNC_kptr_xchg) 9640 goto error; 9641 break; 9642 case BPF_MAP_TYPE_TASK_STORAGE: 9643 if (func_id != BPF_FUNC_task_storage_get && 9644 func_id != BPF_FUNC_task_storage_delete && 9645 func_id != BPF_FUNC_kptr_xchg) 9646 goto error; 9647 break; 9648 case BPF_MAP_TYPE_CGRP_STORAGE: 9649 if (func_id != BPF_FUNC_cgrp_storage_get && 9650 func_id != BPF_FUNC_cgrp_storage_delete && 9651 func_id != BPF_FUNC_kptr_xchg) 9652 goto error; 9653 break; 9654 case BPF_MAP_TYPE_BLOOM_FILTER: 9655 if (func_id != BPF_FUNC_map_peek_elem && 9656 func_id != BPF_FUNC_map_push_elem) 9657 goto error; 9658 break; 9659 default: 9660 break; 9661 } 9662 9663 /* ... and second from the function itself. */ 9664 switch (func_id) { 9665 case BPF_FUNC_tail_call: 9666 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 9667 goto error; 9668 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 9669 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 9670 return -EINVAL; 9671 } 9672 break; 9673 case BPF_FUNC_perf_event_read: 9674 case BPF_FUNC_perf_event_output: 9675 case BPF_FUNC_perf_event_read_value: 9676 case BPF_FUNC_skb_output: 9677 case BPF_FUNC_xdp_output: 9678 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 9679 goto error; 9680 break; 9681 case BPF_FUNC_ringbuf_output: 9682 case BPF_FUNC_ringbuf_reserve: 9683 case BPF_FUNC_ringbuf_query: 9684 case BPF_FUNC_ringbuf_reserve_dynptr: 9685 case BPF_FUNC_ringbuf_submit_dynptr: 9686 case BPF_FUNC_ringbuf_discard_dynptr: 9687 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 9688 goto error; 9689 break; 9690 case BPF_FUNC_user_ringbuf_drain: 9691 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 9692 goto error; 9693 break; 9694 case BPF_FUNC_get_stackid: 9695 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 9696 goto error; 9697 break; 9698 case BPF_FUNC_current_task_under_cgroup: 9699 case BPF_FUNC_skb_under_cgroup: 9700 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 9701 goto error; 9702 break; 9703 case BPF_FUNC_redirect_map: 9704 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 9705 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 9706 map->map_type != BPF_MAP_TYPE_CPUMAP && 9707 map->map_type != BPF_MAP_TYPE_XSKMAP) 9708 goto error; 9709 break; 9710 case BPF_FUNC_sk_redirect_map: 9711 case BPF_FUNC_msg_redirect_map: 9712 case BPF_FUNC_sock_map_update: 9713 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 9714 goto error; 9715 break; 9716 case BPF_FUNC_sk_redirect_hash: 9717 case BPF_FUNC_msg_redirect_hash: 9718 case BPF_FUNC_sock_hash_update: 9719 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 9720 goto error; 9721 break; 9722 case BPF_FUNC_get_local_storage: 9723 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 9724 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 9725 goto error; 9726 break; 9727 case BPF_FUNC_sk_select_reuseport: 9728 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 9729 map->map_type != BPF_MAP_TYPE_SOCKMAP && 9730 map->map_type != BPF_MAP_TYPE_SOCKHASH) 9731 goto error; 9732 break; 9733 case BPF_FUNC_map_pop_elem: 9734 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9735 map->map_type != BPF_MAP_TYPE_STACK) 9736 goto error; 9737 break; 9738 case BPF_FUNC_map_peek_elem: 9739 case BPF_FUNC_map_push_elem: 9740 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9741 map->map_type != BPF_MAP_TYPE_STACK && 9742 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 9743 goto error; 9744 break; 9745 case BPF_FUNC_map_lookup_percpu_elem: 9746 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 9747 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 9748 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 9749 goto error; 9750 break; 9751 case BPF_FUNC_sk_storage_get: 9752 case BPF_FUNC_sk_storage_delete: 9753 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 9754 goto error; 9755 break; 9756 case BPF_FUNC_inode_storage_get: 9757 case BPF_FUNC_inode_storage_delete: 9758 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 9759 goto error; 9760 break; 9761 case BPF_FUNC_task_storage_get: 9762 case BPF_FUNC_task_storage_delete: 9763 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 9764 goto error; 9765 break; 9766 case BPF_FUNC_cgrp_storage_get: 9767 case BPF_FUNC_cgrp_storage_delete: 9768 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 9769 goto error; 9770 break; 9771 default: 9772 break; 9773 } 9774 9775 return 0; 9776 error: 9777 verbose(env, "cannot pass map_type %d into func %s#%d\n", 9778 map->map_type, func_id_name(func_id), func_id); 9779 return -EINVAL; 9780 } 9781 9782 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 9783 { 9784 int count = 0; 9785 9786 if (arg_type_is_raw_mem(fn->arg1_type)) 9787 count++; 9788 if (arg_type_is_raw_mem(fn->arg2_type)) 9789 count++; 9790 if (arg_type_is_raw_mem(fn->arg3_type)) 9791 count++; 9792 if (arg_type_is_raw_mem(fn->arg4_type)) 9793 count++; 9794 if (arg_type_is_raw_mem(fn->arg5_type)) 9795 count++; 9796 9797 /* We only support one arg being in raw mode at the moment, 9798 * which is sufficient for the helper functions we have 9799 * right now. 9800 */ 9801 return count <= 1; 9802 } 9803 9804 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 9805 { 9806 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 9807 bool has_size = fn->arg_size[arg] != 0; 9808 bool is_next_size = false; 9809 9810 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 9811 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 9812 9813 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 9814 return is_next_size; 9815 9816 return has_size == is_next_size || is_next_size == is_fixed; 9817 } 9818 9819 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 9820 { 9821 /* bpf_xxx(..., buf, len) call will access 'len' 9822 * bytes from memory 'buf'. Both arg types need 9823 * to be paired, so make sure there's no buggy 9824 * helper function specification. 9825 */ 9826 if (arg_type_is_mem_size(fn->arg1_type) || 9827 check_args_pair_invalid(fn, 0) || 9828 check_args_pair_invalid(fn, 1) || 9829 check_args_pair_invalid(fn, 2) || 9830 check_args_pair_invalid(fn, 3) || 9831 check_args_pair_invalid(fn, 4)) 9832 return false; 9833 9834 return true; 9835 } 9836 9837 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 9838 { 9839 int i; 9840 9841 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 9842 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 9843 return !!fn->arg_btf_id[i]; 9844 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 9845 return fn->arg_btf_id[i] == BPF_PTR_POISON; 9846 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 9847 /* arg_btf_id and arg_size are in a union. */ 9848 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 9849 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 9850 return false; 9851 } 9852 9853 return true; 9854 } 9855 9856 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 9857 { 9858 return check_raw_mode_ok(fn) && 9859 check_arg_pair_ok(fn) && 9860 check_btf_id_ok(fn) ? 0 : -EINVAL; 9861 } 9862 9863 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 9864 * are now invalid, so turn them into unknown SCALAR_VALUE. 9865 * 9866 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 9867 * since these slices point to packet data. 9868 */ 9869 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 9870 { 9871 struct bpf_func_state *state; 9872 struct bpf_reg_state *reg; 9873 9874 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9875 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 9876 mark_reg_invalid(env, reg); 9877 })); 9878 } 9879 9880 enum { 9881 AT_PKT_END = -1, 9882 BEYOND_PKT_END = -2, 9883 }; 9884 9885 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 9886 { 9887 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9888 struct bpf_reg_state *reg = &state->regs[regn]; 9889 9890 if (reg->type != PTR_TO_PACKET) 9891 /* PTR_TO_PACKET_META is not supported yet */ 9892 return; 9893 9894 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 9895 * How far beyond pkt_end it goes is unknown. 9896 * if (!range_open) it's the case of pkt >= pkt_end 9897 * if (range_open) it's the case of pkt > pkt_end 9898 * hence this pointer is at least 1 byte bigger than pkt_end 9899 */ 9900 if (range_open) 9901 reg->range = BEYOND_PKT_END; 9902 else 9903 reg->range = AT_PKT_END; 9904 } 9905 9906 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id) 9907 { 9908 int i; 9909 9910 for (i = 0; i < state->acquired_refs; i++) { 9911 if (state->refs[i].type != REF_TYPE_PTR) 9912 continue; 9913 if (state->refs[i].id == ref_obj_id) { 9914 release_reference_state(state, i); 9915 return 0; 9916 } 9917 } 9918 return -EINVAL; 9919 } 9920 9921 /* The pointer with the specified id has released its reference to kernel 9922 * resources. Identify all copies of the same pointer and clear the reference. 9923 * 9924 * This is the release function corresponding to acquire_reference(). Idempotent. 9925 */ 9926 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id) 9927 { 9928 struct bpf_verifier_state *vstate = env->cur_state; 9929 struct bpf_func_state *state; 9930 struct bpf_reg_state *reg; 9931 int err; 9932 9933 err = release_reference_nomark(vstate, ref_obj_id); 9934 if (err) 9935 return err; 9936 9937 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 9938 if (reg->ref_obj_id == ref_obj_id) 9939 mark_reg_invalid(env, reg); 9940 })); 9941 9942 return 0; 9943 } 9944 9945 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 9946 { 9947 struct bpf_func_state *unused; 9948 struct bpf_reg_state *reg; 9949 9950 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9951 if (type_is_non_owning_ref(reg->type)) 9952 mark_reg_invalid(env, reg); 9953 })); 9954 } 9955 9956 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 9957 struct bpf_reg_state *regs) 9958 { 9959 int i; 9960 9961 /* after the call registers r0 - r5 were scratched */ 9962 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9963 mark_reg_not_init(env, regs, caller_saved[i]); 9964 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 9965 } 9966 } 9967 9968 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 9969 struct bpf_func_state *caller, 9970 struct bpf_func_state *callee, 9971 int insn_idx); 9972 9973 static int set_callee_state(struct bpf_verifier_env *env, 9974 struct bpf_func_state *caller, 9975 struct bpf_func_state *callee, int insn_idx); 9976 9977 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 9978 set_callee_state_fn set_callee_state_cb, 9979 struct bpf_verifier_state *state) 9980 { 9981 struct bpf_func_state *caller, *callee; 9982 int err; 9983 9984 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 9985 verbose(env, "the call stack of %d frames is too deep\n", 9986 state->curframe + 2); 9987 return -E2BIG; 9988 } 9989 9990 if (state->frame[state->curframe + 1]) { 9991 verbose(env, "verifier bug. Frame %d already allocated\n", 9992 state->curframe + 1); 9993 return -EFAULT; 9994 } 9995 9996 caller = state->frame[state->curframe]; 9997 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 9998 if (!callee) 9999 return -ENOMEM; 10000 state->frame[state->curframe + 1] = callee; 10001 10002 /* callee cannot access r0, r6 - r9 for reading and has to write 10003 * into its own stack before reading from it. 10004 * callee can read/write into caller's stack 10005 */ 10006 init_func_state(env, callee, 10007 /* remember the callsite, it will be used by bpf_exit */ 10008 callsite, 10009 state->curframe + 1 /* frameno within this callchain */, 10010 subprog /* subprog number within this prog */); 10011 err = set_callee_state_cb(env, caller, callee, callsite); 10012 if (err) 10013 goto err_out; 10014 10015 /* only increment it after check_reg_arg() finished */ 10016 state->curframe++; 10017 10018 return 0; 10019 10020 err_out: 10021 free_func_state(callee); 10022 state->frame[state->curframe + 1] = NULL; 10023 return err; 10024 } 10025 10026 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 10027 const struct btf *btf, 10028 struct bpf_reg_state *regs) 10029 { 10030 struct bpf_subprog_info *sub = subprog_info(env, subprog); 10031 struct bpf_verifier_log *log = &env->log; 10032 u32 i; 10033 int ret; 10034 10035 ret = btf_prepare_func_args(env, subprog); 10036 if (ret) 10037 return ret; 10038 10039 /* check that BTF function arguments match actual types that the 10040 * verifier sees. 10041 */ 10042 for (i = 0; i < sub->arg_cnt; i++) { 10043 u32 regno = i + 1; 10044 struct bpf_reg_state *reg = ®s[regno]; 10045 struct bpf_subprog_arg_info *arg = &sub->args[i]; 10046 10047 if (arg->arg_type == ARG_ANYTHING) { 10048 if (reg->type != SCALAR_VALUE) { 10049 bpf_log(log, "R%d is not a scalar\n", regno); 10050 return -EINVAL; 10051 } 10052 } else if (arg->arg_type == ARG_PTR_TO_CTX) { 10053 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 10054 if (ret < 0) 10055 return ret; 10056 /* If function expects ctx type in BTF check that caller 10057 * is passing PTR_TO_CTX. 10058 */ 10059 if (reg->type != PTR_TO_CTX) { 10060 bpf_log(log, "arg#%d expects pointer to ctx\n", i); 10061 return -EINVAL; 10062 } 10063 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 10064 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 10065 if (ret < 0) 10066 return ret; 10067 if (check_mem_reg(env, reg, regno, arg->mem_size)) 10068 return -EINVAL; 10069 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { 10070 bpf_log(log, "arg#%d is expected to be non-NULL\n", i); 10071 return -EINVAL; 10072 } 10073 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 10074 /* 10075 * Can pass any value and the kernel won't crash, but 10076 * only PTR_TO_ARENA or SCALAR make sense. Everything 10077 * else is a bug in the bpf program. Point it out to 10078 * the user at the verification time instead of 10079 * run-time debug nightmare. 10080 */ 10081 if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) { 10082 bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno); 10083 return -EINVAL; 10084 } 10085 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 10086 ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR); 10087 if (ret) 10088 return ret; 10089 10090 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); 10091 if (ret) 10092 return ret; 10093 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 10094 struct bpf_call_arg_meta meta; 10095 int err; 10096 10097 if (register_is_null(reg) && type_may_be_null(arg->arg_type)) 10098 continue; 10099 10100 memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */ 10101 err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta); 10102 err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type); 10103 if (err) 10104 return err; 10105 } else { 10106 bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n", 10107 i, arg->arg_type); 10108 return -EFAULT; 10109 } 10110 } 10111 10112 return 0; 10113 } 10114 10115 /* Compare BTF of a function call with given bpf_reg_state. 10116 * Returns: 10117 * EFAULT - there is a verifier bug. Abort verification. 10118 * EINVAL - there is a type mismatch or BTF is not available. 10119 * 0 - BTF matches with what bpf_reg_state expects. 10120 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 10121 */ 10122 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 10123 struct bpf_reg_state *regs) 10124 { 10125 struct bpf_prog *prog = env->prog; 10126 struct btf *btf = prog->aux->btf; 10127 u32 btf_id; 10128 int err; 10129 10130 if (!prog->aux->func_info) 10131 return -EINVAL; 10132 10133 btf_id = prog->aux->func_info[subprog].type_id; 10134 if (!btf_id) 10135 return -EFAULT; 10136 10137 if (prog->aux->func_info_aux[subprog].unreliable) 10138 return -EINVAL; 10139 10140 err = btf_check_func_arg_match(env, subprog, btf, regs); 10141 /* Compiler optimizations can remove arguments from static functions 10142 * or mismatched type can be passed into a global function. 10143 * In such cases mark the function as unreliable from BTF point of view. 10144 */ 10145 if (err) 10146 prog->aux->func_info_aux[subprog].unreliable = true; 10147 return err; 10148 } 10149 10150 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10151 int insn_idx, int subprog, 10152 set_callee_state_fn set_callee_state_cb) 10153 { 10154 struct bpf_verifier_state *state = env->cur_state, *callback_state; 10155 struct bpf_func_state *caller, *callee; 10156 int err; 10157 10158 caller = state->frame[state->curframe]; 10159 err = btf_check_subprog_call(env, subprog, caller->regs); 10160 if (err == -EFAULT) 10161 return err; 10162 10163 /* set_callee_state is used for direct subprog calls, but we are 10164 * interested in validating only BPF helpers that can call subprogs as 10165 * callbacks 10166 */ 10167 env->subprog_info[subprog].is_cb = true; 10168 if (bpf_pseudo_kfunc_call(insn) && 10169 !is_callback_calling_kfunc(insn->imm)) { 10170 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 10171 func_id_name(insn->imm), insn->imm); 10172 return -EFAULT; 10173 } else if (!bpf_pseudo_kfunc_call(insn) && 10174 !is_callback_calling_function(insn->imm)) { /* helper */ 10175 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 10176 func_id_name(insn->imm), insn->imm); 10177 return -EFAULT; 10178 } 10179 10180 if (is_async_callback_calling_insn(insn)) { 10181 struct bpf_verifier_state *async_cb; 10182 10183 /* there is no real recursion here. timer and workqueue callbacks are async */ 10184 env->subprog_info[subprog].is_async_cb = true; 10185 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 10186 insn_idx, subprog, 10187 is_bpf_wq_set_callback_impl_kfunc(insn->imm)); 10188 if (!async_cb) 10189 return -EFAULT; 10190 callee = async_cb->frame[0]; 10191 callee->async_entry_cnt = caller->async_entry_cnt + 1; 10192 10193 /* Convert bpf_timer_set_callback() args into timer callback args */ 10194 err = set_callee_state_cb(env, caller, callee, insn_idx); 10195 if (err) 10196 return err; 10197 10198 return 0; 10199 } 10200 10201 /* for callback functions enqueue entry to callback and 10202 * proceed with next instruction within current frame. 10203 */ 10204 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 10205 if (!callback_state) 10206 return -ENOMEM; 10207 10208 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 10209 callback_state); 10210 if (err) 10211 return err; 10212 10213 callback_state->callback_unroll_depth++; 10214 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 10215 caller->callback_depth = 0; 10216 return 0; 10217 } 10218 10219 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10220 int *insn_idx) 10221 { 10222 struct bpf_verifier_state *state = env->cur_state; 10223 struct bpf_func_state *caller; 10224 int err, subprog, target_insn; 10225 10226 target_insn = *insn_idx + insn->imm + 1; 10227 subprog = find_subprog(env, target_insn); 10228 if (subprog < 0) { 10229 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); 10230 return -EFAULT; 10231 } 10232 10233 caller = state->frame[state->curframe]; 10234 err = btf_check_subprog_call(env, subprog, caller->regs); 10235 if (err == -EFAULT) 10236 return err; 10237 if (subprog_is_global(env, subprog)) { 10238 const char *sub_name = subprog_name(env, subprog); 10239 10240 /* Only global subprogs cannot be called with a lock held. */ 10241 if (env->cur_state->active_locks) { 10242 verbose(env, "global function calls are not allowed while holding a lock,\n" 10243 "use static function instead\n"); 10244 return -EINVAL; 10245 } 10246 10247 /* Only global subprogs cannot be called with preemption disabled. */ 10248 if (env->cur_state->active_preempt_locks) { 10249 verbose(env, "global function calls are not allowed with preemption disabled,\n" 10250 "use static function instead\n"); 10251 return -EINVAL; 10252 } 10253 10254 if (env->cur_state->active_irq_id) { 10255 verbose(env, "global function calls are not allowed with IRQs disabled,\n" 10256 "use static function instead\n"); 10257 return -EINVAL; 10258 } 10259 10260 if (err) { 10261 verbose(env, "Caller passes invalid args into func#%d ('%s')\n", 10262 subprog, sub_name); 10263 return err; 10264 } 10265 10266 verbose(env, "Func#%d ('%s') is global and assumed valid.\n", 10267 subprog, sub_name); 10268 if (env->subprog_info[subprog].changes_pkt_data) 10269 clear_all_pkt_pointers(env); 10270 /* mark global subprog for verifying after main prog */ 10271 subprog_aux(env, subprog)->called = true; 10272 clear_caller_saved_regs(env, caller->regs); 10273 10274 /* All global functions return a 64-bit SCALAR_VALUE */ 10275 mark_reg_unknown(env, caller->regs, BPF_REG_0); 10276 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10277 10278 /* continue with next insn after call */ 10279 return 0; 10280 } 10281 10282 /* for regular function entry setup new frame and continue 10283 * from that frame. 10284 */ 10285 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 10286 if (err) 10287 return err; 10288 10289 clear_caller_saved_regs(env, caller->regs); 10290 10291 /* and go analyze first insn of the callee */ 10292 *insn_idx = env->subprog_info[subprog].start - 1; 10293 10294 if (env->log.level & BPF_LOG_LEVEL) { 10295 verbose(env, "caller:\n"); 10296 print_verifier_state(env, state, caller->frameno, true); 10297 verbose(env, "callee:\n"); 10298 print_verifier_state(env, state, state->curframe, true); 10299 } 10300 10301 return 0; 10302 } 10303 10304 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 10305 struct bpf_func_state *caller, 10306 struct bpf_func_state *callee) 10307 { 10308 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 10309 * void *callback_ctx, u64 flags); 10310 * callback_fn(struct bpf_map *map, void *key, void *value, 10311 * void *callback_ctx); 10312 */ 10313 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 10314 10315 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10316 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10317 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10318 10319 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10320 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10321 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10322 10323 /* pointer to stack or null */ 10324 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 10325 10326 /* unused */ 10327 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10328 return 0; 10329 } 10330 10331 static int set_callee_state(struct bpf_verifier_env *env, 10332 struct bpf_func_state *caller, 10333 struct bpf_func_state *callee, int insn_idx) 10334 { 10335 int i; 10336 10337 /* copy r1 - r5 args that callee can access. The copy includes parent 10338 * pointers, which connects us up to the liveness chain 10339 */ 10340 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 10341 callee->regs[i] = caller->regs[i]; 10342 return 0; 10343 } 10344 10345 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 10346 struct bpf_func_state *caller, 10347 struct bpf_func_state *callee, 10348 int insn_idx) 10349 { 10350 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 10351 struct bpf_map *map; 10352 int err; 10353 10354 /* valid map_ptr and poison value does not matter */ 10355 map = insn_aux->map_ptr_state.map_ptr; 10356 if (!map->ops->map_set_for_each_callback_args || 10357 !map->ops->map_for_each_callback) { 10358 verbose(env, "callback function not allowed for map\n"); 10359 return -ENOTSUPP; 10360 } 10361 10362 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 10363 if (err) 10364 return err; 10365 10366 callee->in_callback_fn = true; 10367 callee->callback_ret_range = retval_range(0, 1); 10368 return 0; 10369 } 10370 10371 static int set_loop_callback_state(struct bpf_verifier_env *env, 10372 struct bpf_func_state *caller, 10373 struct bpf_func_state *callee, 10374 int insn_idx) 10375 { 10376 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 10377 * u64 flags); 10378 * callback_fn(u64 index, void *callback_ctx); 10379 */ 10380 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 10381 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10382 10383 /* unused */ 10384 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10385 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10386 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10387 10388 callee->in_callback_fn = true; 10389 callee->callback_ret_range = retval_range(0, 1); 10390 return 0; 10391 } 10392 10393 static int set_timer_callback_state(struct bpf_verifier_env *env, 10394 struct bpf_func_state *caller, 10395 struct bpf_func_state *callee, 10396 int insn_idx) 10397 { 10398 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 10399 10400 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 10401 * callback_fn(struct bpf_map *map, void *key, void *value); 10402 */ 10403 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 10404 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 10405 callee->regs[BPF_REG_1].map_ptr = map_ptr; 10406 10407 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10408 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10409 callee->regs[BPF_REG_2].map_ptr = map_ptr; 10410 10411 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10412 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10413 callee->regs[BPF_REG_3].map_ptr = map_ptr; 10414 10415 /* unused */ 10416 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10417 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10418 callee->in_async_callback_fn = true; 10419 callee->callback_ret_range = retval_range(0, 1); 10420 return 0; 10421 } 10422 10423 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 10424 struct bpf_func_state *caller, 10425 struct bpf_func_state *callee, 10426 int insn_idx) 10427 { 10428 /* bpf_find_vma(struct task_struct *task, u64 addr, 10429 * void *callback_fn, void *callback_ctx, u64 flags) 10430 * (callback_fn)(struct task_struct *task, 10431 * struct vm_area_struct *vma, void *callback_ctx); 10432 */ 10433 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 10434 10435 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 10436 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10437 callee->regs[BPF_REG_2].btf = btf_vmlinux; 10438 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; 10439 10440 /* pointer to stack or null */ 10441 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 10442 10443 /* unused */ 10444 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10445 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10446 callee->in_callback_fn = true; 10447 callee->callback_ret_range = retval_range(0, 1); 10448 return 0; 10449 } 10450 10451 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 10452 struct bpf_func_state *caller, 10453 struct bpf_func_state *callee, 10454 int insn_idx) 10455 { 10456 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 10457 * callback_ctx, u64 flags); 10458 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 10459 */ 10460 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 10461 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 10462 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10463 10464 /* unused */ 10465 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10466 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10467 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10468 10469 callee->in_callback_fn = true; 10470 callee->callback_ret_range = retval_range(0, 1); 10471 return 0; 10472 } 10473 10474 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 10475 struct bpf_func_state *caller, 10476 struct bpf_func_state *callee, 10477 int insn_idx) 10478 { 10479 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 10480 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 10481 * 10482 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 10483 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 10484 * by this point, so look at 'root' 10485 */ 10486 struct btf_field *field; 10487 10488 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 10489 BPF_RB_ROOT); 10490 if (!field || !field->graph_root.value_btf_id) 10491 return -EFAULT; 10492 10493 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 10494 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 10495 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 10496 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 10497 10498 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10499 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10500 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10501 callee->in_callback_fn = true; 10502 callee->callback_ret_range = retval_range(0, 1); 10503 return 0; 10504 } 10505 10506 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 10507 10508 /* Are we currently verifying the callback for a rbtree helper that must 10509 * be called with lock held? If so, no need to complain about unreleased 10510 * lock 10511 */ 10512 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 10513 { 10514 struct bpf_verifier_state *state = env->cur_state; 10515 struct bpf_insn *insn = env->prog->insnsi; 10516 struct bpf_func_state *callee; 10517 int kfunc_btf_id; 10518 10519 if (!state->curframe) 10520 return false; 10521 10522 callee = state->frame[state->curframe]; 10523 10524 if (!callee->in_callback_fn) 10525 return false; 10526 10527 kfunc_btf_id = insn[callee->callsite].imm; 10528 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 10529 } 10530 10531 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg, 10532 bool return_32bit) 10533 { 10534 if (return_32bit) 10535 return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval; 10536 else 10537 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; 10538 } 10539 10540 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 10541 { 10542 struct bpf_verifier_state *state = env->cur_state, *prev_st; 10543 struct bpf_func_state *caller, *callee; 10544 struct bpf_reg_state *r0; 10545 bool in_callback_fn; 10546 int err; 10547 10548 callee = state->frame[state->curframe]; 10549 r0 = &callee->regs[BPF_REG_0]; 10550 if (r0->type == PTR_TO_STACK) { 10551 /* technically it's ok to return caller's stack pointer 10552 * (or caller's caller's pointer) back to the caller, 10553 * since these pointers are valid. Only current stack 10554 * pointer will be invalid as soon as function exits, 10555 * but let's be conservative 10556 */ 10557 verbose(env, "cannot return stack pointer to the caller\n"); 10558 return -EINVAL; 10559 } 10560 10561 caller = state->frame[state->curframe - 1]; 10562 if (callee->in_callback_fn) { 10563 if (r0->type != SCALAR_VALUE) { 10564 verbose(env, "R0 not a scalar value\n"); 10565 return -EACCES; 10566 } 10567 10568 /* we are going to rely on register's precise value */ 10569 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); 10570 err = err ?: mark_chain_precision(env, BPF_REG_0); 10571 if (err) 10572 return err; 10573 10574 /* enforce R0 return value range, and bpf_callback_t returns 64bit */ 10575 if (!retval_range_within(callee->callback_ret_range, r0, false)) { 10576 verbose_invalid_scalar(env, r0, callee->callback_ret_range, 10577 "At callback return", "R0"); 10578 return -EINVAL; 10579 } 10580 if (!calls_callback(env, callee->callsite)) { 10581 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 10582 *insn_idx, callee->callsite); 10583 return -EFAULT; 10584 } 10585 } else { 10586 /* return to the caller whatever r0 had in the callee */ 10587 caller->regs[BPF_REG_0] = *r0; 10588 } 10589 10590 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 10591 * there function call logic would reschedule callback visit. If iteration 10592 * converges is_state_visited() would prune that visit eventually. 10593 */ 10594 in_callback_fn = callee->in_callback_fn; 10595 if (in_callback_fn) 10596 *insn_idx = callee->callsite; 10597 else 10598 *insn_idx = callee->callsite + 1; 10599 10600 if (env->log.level & BPF_LOG_LEVEL) { 10601 verbose(env, "returning from callee:\n"); 10602 print_verifier_state(env, state, callee->frameno, true); 10603 verbose(env, "to caller at %d:\n", *insn_idx); 10604 print_verifier_state(env, state, caller->frameno, true); 10605 } 10606 /* clear everything in the callee. In case of exceptional exits using 10607 * bpf_throw, this will be done by copy_verifier_state for extra frames. */ 10608 free_func_state(callee); 10609 state->frame[state->curframe--] = NULL; 10610 10611 /* for callbacks widen imprecise scalars to make programs like below verify: 10612 * 10613 * struct ctx { int i; } 10614 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 10615 * ... 10616 * struct ctx = { .i = 0; } 10617 * bpf_loop(100, cb, &ctx, 0); 10618 * 10619 * This is similar to what is done in process_iter_next_call() for open 10620 * coded iterators. 10621 */ 10622 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 10623 if (prev_st) { 10624 err = widen_imprecise_scalars(env, prev_st, state); 10625 if (err) 10626 return err; 10627 } 10628 return 0; 10629 } 10630 10631 static int do_refine_retval_range(struct bpf_verifier_env *env, 10632 struct bpf_reg_state *regs, int ret_type, 10633 int func_id, 10634 struct bpf_call_arg_meta *meta) 10635 { 10636 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 10637 10638 if (ret_type != RET_INTEGER) 10639 return 0; 10640 10641 switch (func_id) { 10642 case BPF_FUNC_get_stack: 10643 case BPF_FUNC_get_task_stack: 10644 case BPF_FUNC_probe_read_str: 10645 case BPF_FUNC_probe_read_kernel_str: 10646 case BPF_FUNC_probe_read_user_str: 10647 ret_reg->smax_value = meta->msize_max_value; 10648 ret_reg->s32_max_value = meta->msize_max_value; 10649 ret_reg->smin_value = -MAX_ERRNO; 10650 ret_reg->s32_min_value = -MAX_ERRNO; 10651 reg_bounds_sync(ret_reg); 10652 break; 10653 case BPF_FUNC_get_smp_processor_id: 10654 ret_reg->umax_value = nr_cpu_ids - 1; 10655 ret_reg->u32_max_value = nr_cpu_ids - 1; 10656 ret_reg->smax_value = nr_cpu_ids - 1; 10657 ret_reg->s32_max_value = nr_cpu_ids - 1; 10658 ret_reg->umin_value = 0; 10659 ret_reg->u32_min_value = 0; 10660 ret_reg->smin_value = 0; 10661 ret_reg->s32_min_value = 0; 10662 reg_bounds_sync(ret_reg); 10663 break; 10664 } 10665 10666 return reg_bounds_sanity_check(env, ret_reg, "retval"); 10667 } 10668 10669 static int 10670 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 10671 int func_id, int insn_idx) 10672 { 10673 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 10674 struct bpf_map *map = meta->map_ptr; 10675 10676 if (func_id != BPF_FUNC_tail_call && 10677 func_id != BPF_FUNC_map_lookup_elem && 10678 func_id != BPF_FUNC_map_update_elem && 10679 func_id != BPF_FUNC_map_delete_elem && 10680 func_id != BPF_FUNC_map_push_elem && 10681 func_id != BPF_FUNC_map_pop_elem && 10682 func_id != BPF_FUNC_map_peek_elem && 10683 func_id != BPF_FUNC_for_each_map_elem && 10684 func_id != BPF_FUNC_redirect_map && 10685 func_id != BPF_FUNC_map_lookup_percpu_elem) 10686 return 0; 10687 10688 if (map == NULL) { 10689 verbose(env, "kernel subsystem misconfigured verifier\n"); 10690 return -EINVAL; 10691 } 10692 10693 /* In case of read-only, some additional restrictions 10694 * need to be applied in order to prevent altering the 10695 * state of the map from program side. 10696 */ 10697 if ((map->map_flags & BPF_F_RDONLY_PROG) && 10698 (func_id == BPF_FUNC_map_delete_elem || 10699 func_id == BPF_FUNC_map_update_elem || 10700 func_id == BPF_FUNC_map_push_elem || 10701 func_id == BPF_FUNC_map_pop_elem)) { 10702 verbose(env, "write into map forbidden\n"); 10703 return -EACCES; 10704 } 10705 10706 if (!aux->map_ptr_state.map_ptr) 10707 bpf_map_ptr_store(aux, meta->map_ptr, 10708 !meta->map_ptr->bypass_spec_v1, false); 10709 else if (aux->map_ptr_state.map_ptr != meta->map_ptr) 10710 bpf_map_ptr_store(aux, meta->map_ptr, 10711 !meta->map_ptr->bypass_spec_v1, true); 10712 return 0; 10713 } 10714 10715 static int 10716 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 10717 int func_id, int insn_idx) 10718 { 10719 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 10720 struct bpf_reg_state *regs = cur_regs(env), *reg; 10721 struct bpf_map *map = meta->map_ptr; 10722 u64 val, max; 10723 int err; 10724 10725 if (func_id != BPF_FUNC_tail_call) 10726 return 0; 10727 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 10728 verbose(env, "kernel subsystem misconfigured verifier\n"); 10729 return -EINVAL; 10730 } 10731 10732 reg = ®s[BPF_REG_3]; 10733 val = reg->var_off.value; 10734 max = map->max_entries; 10735 10736 if (!(is_reg_const(reg, false) && val < max)) { 10737 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 10738 return 0; 10739 } 10740 10741 err = mark_chain_precision(env, BPF_REG_3); 10742 if (err) 10743 return err; 10744 if (bpf_map_key_unseen(aux)) 10745 bpf_map_key_store(aux, val); 10746 else if (!bpf_map_key_poisoned(aux) && 10747 bpf_map_key_immediate(aux) != val) 10748 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 10749 return 0; 10750 } 10751 10752 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) 10753 { 10754 struct bpf_verifier_state *state = env->cur_state; 10755 bool refs_lingering = false; 10756 int i; 10757 10758 if (!exception_exit && cur_func(env)->frameno) 10759 return 0; 10760 10761 for (i = 0; i < state->acquired_refs; i++) { 10762 if (state->refs[i].type != REF_TYPE_PTR) 10763 continue; 10764 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 10765 state->refs[i].id, state->refs[i].insn_idx); 10766 refs_lingering = true; 10767 } 10768 return refs_lingering ? -EINVAL : 0; 10769 } 10770 10771 static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix) 10772 { 10773 int err; 10774 10775 if (check_lock && env->cur_state->active_locks) { 10776 verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix); 10777 return -EINVAL; 10778 } 10779 10780 err = check_reference_leak(env, exception_exit); 10781 if (err) { 10782 verbose(env, "%s would lead to reference leak\n", prefix); 10783 return err; 10784 } 10785 10786 if (check_lock && env->cur_state->active_irq_id) { 10787 verbose(env, "%s cannot be used inside bpf_local_irq_save-ed region\n", prefix); 10788 return -EINVAL; 10789 } 10790 10791 if (check_lock && env->cur_state->active_rcu_lock) { 10792 verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix); 10793 return -EINVAL; 10794 } 10795 10796 if (check_lock && env->cur_state->active_preempt_locks) { 10797 verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix); 10798 return -EINVAL; 10799 } 10800 10801 return 0; 10802 } 10803 10804 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 10805 struct bpf_reg_state *regs) 10806 { 10807 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 10808 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 10809 struct bpf_map *fmt_map = fmt_reg->map_ptr; 10810 struct bpf_bprintf_data data = {}; 10811 int err, fmt_map_off, num_args; 10812 u64 fmt_addr; 10813 char *fmt; 10814 10815 /* data must be an array of u64 */ 10816 if (data_len_reg->var_off.value % 8) 10817 return -EINVAL; 10818 num_args = data_len_reg->var_off.value / 8; 10819 10820 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 10821 * and map_direct_value_addr is set. 10822 */ 10823 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 10824 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 10825 fmt_map_off); 10826 if (err) { 10827 verbose(env, "verifier bug\n"); 10828 return -EFAULT; 10829 } 10830 fmt = (char *)(long)fmt_addr + fmt_map_off; 10831 10832 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 10833 * can focus on validating the format specifiers. 10834 */ 10835 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 10836 if (err < 0) 10837 verbose(env, "Invalid format string\n"); 10838 10839 return err; 10840 } 10841 10842 static int check_get_func_ip(struct bpf_verifier_env *env) 10843 { 10844 enum bpf_prog_type type = resolve_prog_type(env->prog); 10845 int func_id = BPF_FUNC_get_func_ip; 10846 10847 if (type == BPF_PROG_TYPE_TRACING) { 10848 if (!bpf_prog_has_trampoline(env->prog)) { 10849 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 10850 func_id_name(func_id), func_id); 10851 return -ENOTSUPP; 10852 } 10853 return 0; 10854 } else if (type == BPF_PROG_TYPE_KPROBE) { 10855 return 0; 10856 } 10857 10858 verbose(env, "func %s#%d not supported for program type %d\n", 10859 func_id_name(func_id), func_id, type); 10860 return -ENOTSUPP; 10861 } 10862 10863 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 10864 { 10865 return &env->insn_aux_data[env->insn_idx]; 10866 } 10867 10868 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 10869 { 10870 struct bpf_reg_state *regs = cur_regs(env); 10871 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 10872 bool reg_is_null = register_is_null(reg); 10873 10874 if (reg_is_null) 10875 mark_chain_precision(env, BPF_REG_4); 10876 10877 return reg_is_null; 10878 } 10879 10880 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 10881 { 10882 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 10883 10884 if (!state->initialized) { 10885 state->initialized = 1; 10886 state->fit_for_inline = loop_flag_is_zero(env); 10887 state->callback_subprogno = subprogno; 10888 return; 10889 } 10890 10891 if (!state->fit_for_inline) 10892 return; 10893 10894 state->fit_for_inline = (loop_flag_is_zero(env) && 10895 state->callback_subprogno == subprogno); 10896 } 10897 10898 /* Returns whether or not the given map type can potentially elide 10899 * lookup return value nullness check. This is possible if the key 10900 * is statically known. 10901 */ 10902 static bool can_elide_value_nullness(enum bpf_map_type type) 10903 { 10904 switch (type) { 10905 case BPF_MAP_TYPE_ARRAY: 10906 case BPF_MAP_TYPE_PERCPU_ARRAY: 10907 return true; 10908 default: 10909 return false; 10910 } 10911 } 10912 10913 static int get_helper_proto(struct bpf_verifier_env *env, int func_id, 10914 const struct bpf_func_proto **ptr) 10915 { 10916 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) 10917 return -ERANGE; 10918 10919 if (!env->ops->get_func_proto) 10920 return -EINVAL; 10921 10922 *ptr = env->ops->get_func_proto(func_id, env->prog); 10923 return *ptr ? 0 : -EINVAL; 10924 } 10925 10926 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10927 int *insn_idx_p) 10928 { 10929 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10930 bool returns_cpu_specific_alloc_ptr = false; 10931 const struct bpf_func_proto *fn = NULL; 10932 enum bpf_return_type ret_type; 10933 enum bpf_type_flag ret_flag; 10934 struct bpf_reg_state *regs; 10935 struct bpf_call_arg_meta meta; 10936 int insn_idx = *insn_idx_p; 10937 bool changes_data; 10938 int i, err, func_id; 10939 10940 /* find function prototype */ 10941 func_id = insn->imm; 10942 err = get_helper_proto(env, insn->imm, &fn); 10943 if (err == -ERANGE) { 10944 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id); 10945 return -EINVAL; 10946 } 10947 10948 if (err) { 10949 verbose(env, "program of this type cannot use helper %s#%d\n", 10950 func_id_name(func_id), func_id); 10951 return err; 10952 } 10953 10954 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 10955 if (!env->prog->gpl_compatible && fn->gpl_only) { 10956 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 10957 return -EINVAL; 10958 } 10959 10960 if (fn->allowed && !fn->allowed(env->prog)) { 10961 verbose(env, "helper call is not allowed in probe\n"); 10962 return -EINVAL; 10963 } 10964 10965 if (!in_sleepable(env) && fn->might_sleep) { 10966 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 10967 return -EINVAL; 10968 } 10969 10970 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 10971 changes_data = bpf_helper_changes_pkt_data(func_id); 10972 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 10973 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 10974 func_id_name(func_id), func_id); 10975 return -EINVAL; 10976 } 10977 10978 memset(&meta, 0, sizeof(meta)); 10979 meta.pkt_access = fn->pkt_access; 10980 10981 err = check_func_proto(fn, func_id); 10982 if (err) { 10983 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 10984 func_id_name(func_id), func_id); 10985 return err; 10986 } 10987 10988 if (env->cur_state->active_rcu_lock) { 10989 if (fn->might_sleep) { 10990 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 10991 func_id_name(func_id), func_id); 10992 return -EINVAL; 10993 } 10994 10995 if (in_sleepable(env) && is_storage_get_function(func_id)) 10996 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10997 } 10998 10999 if (env->cur_state->active_preempt_locks) { 11000 if (fn->might_sleep) { 11001 verbose(env, "sleepable helper %s#%d in non-preemptible region\n", 11002 func_id_name(func_id), func_id); 11003 return -EINVAL; 11004 } 11005 11006 if (in_sleepable(env) && is_storage_get_function(func_id)) 11007 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 11008 } 11009 11010 if (env->cur_state->active_irq_id) { 11011 if (fn->might_sleep) { 11012 verbose(env, "sleepable helper %s#%d in IRQ-disabled region\n", 11013 func_id_name(func_id), func_id); 11014 return -EINVAL; 11015 } 11016 11017 if (in_sleepable(env) && is_storage_get_function(func_id)) 11018 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 11019 } 11020 11021 meta.func_id = func_id; 11022 /* check args */ 11023 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 11024 err = check_func_arg(env, i, &meta, fn, insn_idx); 11025 if (err) 11026 return err; 11027 } 11028 11029 err = record_func_map(env, &meta, func_id, insn_idx); 11030 if (err) 11031 return err; 11032 11033 err = record_func_key(env, &meta, func_id, insn_idx); 11034 if (err) 11035 return err; 11036 11037 /* Mark slots with STACK_MISC in case of raw mode, stack offset 11038 * is inferred from register state. 11039 */ 11040 for (i = 0; i < meta.access_size; i++) { 11041 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 11042 BPF_WRITE, -1, false, false); 11043 if (err) 11044 return err; 11045 } 11046 11047 regs = cur_regs(env); 11048 11049 if (meta.release_regno) { 11050 err = -EINVAL; 11051 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 11052 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 11053 * is safe to do directly. 11054 */ 11055 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 11056 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 11057 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 11058 return -EFAULT; 11059 } 11060 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 11061 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { 11062 u32 ref_obj_id = meta.ref_obj_id; 11063 bool in_rcu = in_rcu_cs(env); 11064 struct bpf_func_state *state; 11065 struct bpf_reg_state *reg; 11066 11067 err = release_reference_nomark(env->cur_state, ref_obj_id); 11068 if (!err) { 11069 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11070 if (reg->ref_obj_id == ref_obj_id) { 11071 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { 11072 reg->ref_obj_id = 0; 11073 reg->type &= ~MEM_ALLOC; 11074 reg->type |= MEM_RCU; 11075 } else { 11076 mark_reg_invalid(env, reg); 11077 } 11078 } 11079 })); 11080 } 11081 } else if (meta.ref_obj_id) { 11082 err = release_reference(env, meta.ref_obj_id); 11083 } else if (register_is_null(®s[meta.release_regno])) { 11084 /* meta.ref_obj_id can only be 0 if register that is meant to be 11085 * released is NULL, which must be > R0. 11086 */ 11087 err = 0; 11088 } 11089 if (err) { 11090 verbose(env, "func %s#%d reference has not been acquired before\n", 11091 func_id_name(func_id), func_id); 11092 return err; 11093 } 11094 } 11095 11096 switch (func_id) { 11097 case BPF_FUNC_tail_call: 11098 err = check_resource_leak(env, false, true, "tail_call"); 11099 if (err) 11100 return err; 11101 break; 11102 case BPF_FUNC_get_local_storage: 11103 /* check that flags argument in get_local_storage(map, flags) is 0, 11104 * this is required because get_local_storage() can't return an error. 11105 */ 11106 if (!register_is_null(®s[BPF_REG_2])) { 11107 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 11108 return -EINVAL; 11109 } 11110 break; 11111 case BPF_FUNC_for_each_map_elem: 11112 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11113 set_map_elem_callback_state); 11114 break; 11115 case BPF_FUNC_timer_set_callback: 11116 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11117 set_timer_callback_state); 11118 break; 11119 case BPF_FUNC_find_vma: 11120 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11121 set_find_vma_callback_state); 11122 break; 11123 case BPF_FUNC_snprintf: 11124 err = check_bpf_snprintf_call(env, regs); 11125 break; 11126 case BPF_FUNC_loop: 11127 update_loop_inline_state(env, meta.subprogno); 11128 /* Verifier relies on R1 value to determine if bpf_loop() iteration 11129 * is finished, thus mark it precise. 11130 */ 11131 err = mark_chain_precision(env, BPF_REG_1); 11132 if (err) 11133 return err; 11134 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 11135 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11136 set_loop_callback_state); 11137 } else { 11138 cur_func(env)->callback_depth = 0; 11139 if (env->log.level & BPF_LOG_LEVEL2) 11140 verbose(env, "frame%d bpf_loop iteration limit reached\n", 11141 env->cur_state->curframe); 11142 } 11143 break; 11144 case BPF_FUNC_dynptr_from_mem: 11145 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 11146 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 11147 reg_type_str(env, regs[BPF_REG_1].type)); 11148 return -EACCES; 11149 } 11150 break; 11151 case BPF_FUNC_set_retval: 11152 if (prog_type == BPF_PROG_TYPE_LSM && 11153 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 11154 if (!env->prog->aux->attach_func_proto->type) { 11155 /* Make sure programs that attach to void 11156 * hooks don't try to modify return value. 11157 */ 11158 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 11159 return -EINVAL; 11160 } 11161 } 11162 break; 11163 case BPF_FUNC_dynptr_data: 11164 { 11165 struct bpf_reg_state *reg; 11166 int id, ref_obj_id; 11167 11168 reg = get_dynptr_arg_reg(env, fn, regs); 11169 if (!reg) 11170 return -EFAULT; 11171 11172 11173 if (meta.dynptr_id) { 11174 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 11175 return -EFAULT; 11176 } 11177 if (meta.ref_obj_id) { 11178 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 11179 return -EFAULT; 11180 } 11181 11182 id = dynptr_id(env, reg); 11183 if (id < 0) { 11184 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11185 return id; 11186 } 11187 11188 ref_obj_id = dynptr_ref_obj_id(env, reg); 11189 if (ref_obj_id < 0) { 11190 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 11191 return ref_obj_id; 11192 } 11193 11194 meta.dynptr_id = id; 11195 meta.ref_obj_id = ref_obj_id; 11196 11197 break; 11198 } 11199 case BPF_FUNC_dynptr_write: 11200 { 11201 enum bpf_dynptr_type dynptr_type; 11202 struct bpf_reg_state *reg; 11203 11204 reg = get_dynptr_arg_reg(env, fn, regs); 11205 if (!reg) 11206 return -EFAULT; 11207 11208 dynptr_type = dynptr_get_type(env, reg); 11209 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 11210 return -EFAULT; 11211 11212 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 11213 /* this will trigger clear_all_pkt_pointers(), which will 11214 * invalidate all dynptr slices associated with the skb 11215 */ 11216 changes_data = true; 11217 11218 break; 11219 } 11220 case BPF_FUNC_per_cpu_ptr: 11221 case BPF_FUNC_this_cpu_ptr: 11222 { 11223 struct bpf_reg_state *reg = ®s[BPF_REG_1]; 11224 const struct btf_type *type; 11225 11226 if (reg->type & MEM_RCU) { 11227 type = btf_type_by_id(reg->btf, reg->btf_id); 11228 if (!type || !btf_type_is_struct(type)) { 11229 verbose(env, "Helper has invalid btf/btf_id in R1\n"); 11230 return -EFAULT; 11231 } 11232 returns_cpu_specific_alloc_ptr = true; 11233 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; 11234 } 11235 break; 11236 } 11237 case BPF_FUNC_user_ringbuf_drain: 11238 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11239 set_user_ringbuf_callback_state); 11240 break; 11241 } 11242 11243 if (err) 11244 return err; 11245 11246 /* reset caller saved regs */ 11247 for (i = 0; i < CALLER_SAVED_REGS; i++) { 11248 mark_reg_not_init(env, regs, caller_saved[i]); 11249 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 11250 } 11251 11252 /* helper call returns 64-bit value. */ 11253 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 11254 11255 /* update return register (already marked as written above) */ 11256 ret_type = fn->ret_type; 11257 ret_flag = type_flag(ret_type); 11258 11259 switch (base_type(ret_type)) { 11260 case RET_INTEGER: 11261 /* sets type to SCALAR_VALUE */ 11262 mark_reg_unknown(env, regs, BPF_REG_0); 11263 break; 11264 case RET_VOID: 11265 regs[BPF_REG_0].type = NOT_INIT; 11266 break; 11267 case RET_PTR_TO_MAP_VALUE: 11268 /* There is no offset yet applied, variable or fixed */ 11269 mark_reg_known_zero(env, regs, BPF_REG_0); 11270 /* remember map_ptr, so that check_map_access() 11271 * can check 'value_size' boundary of memory access 11272 * to map element returned from bpf_map_lookup_elem() 11273 */ 11274 if (meta.map_ptr == NULL) { 11275 verbose(env, 11276 "kernel subsystem misconfigured verifier\n"); 11277 return -EINVAL; 11278 } 11279 11280 if (func_id == BPF_FUNC_map_lookup_elem && 11281 can_elide_value_nullness(meta.map_ptr->map_type) && 11282 meta.const_map_key >= 0 && 11283 meta.const_map_key < meta.map_ptr->max_entries) 11284 ret_flag &= ~PTR_MAYBE_NULL; 11285 11286 regs[BPF_REG_0].map_ptr = meta.map_ptr; 11287 regs[BPF_REG_0].map_uid = meta.map_uid; 11288 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 11289 if (!type_may_be_null(ret_flag) && 11290 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 11291 regs[BPF_REG_0].id = ++env->id_gen; 11292 } 11293 break; 11294 case RET_PTR_TO_SOCKET: 11295 mark_reg_known_zero(env, regs, BPF_REG_0); 11296 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 11297 break; 11298 case RET_PTR_TO_SOCK_COMMON: 11299 mark_reg_known_zero(env, regs, BPF_REG_0); 11300 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 11301 break; 11302 case RET_PTR_TO_TCP_SOCK: 11303 mark_reg_known_zero(env, regs, BPF_REG_0); 11304 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 11305 break; 11306 case RET_PTR_TO_MEM: 11307 mark_reg_known_zero(env, regs, BPF_REG_0); 11308 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11309 regs[BPF_REG_0].mem_size = meta.mem_size; 11310 break; 11311 case RET_PTR_TO_MEM_OR_BTF_ID: 11312 { 11313 const struct btf_type *t; 11314 11315 mark_reg_known_zero(env, regs, BPF_REG_0); 11316 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 11317 if (!btf_type_is_struct(t)) { 11318 u32 tsize; 11319 const struct btf_type *ret; 11320 const char *tname; 11321 11322 /* resolve the type size of ksym. */ 11323 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 11324 if (IS_ERR(ret)) { 11325 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 11326 verbose(env, "unable to resolve the size of type '%s': %ld\n", 11327 tname, PTR_ERR(ret)); 11328 return -EINVAL; 11329 } 11330 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11331 regs[BPF_REG_0].mem_size = tsize; 11332 } else { 11333 if (returns_cpu_specific_alloc_ptr) { 11334 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; 11335 } else { 11336 /* MEM_RDONLY may be carried from ret_flag, but it 11337 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 11338 * it will confuse the check of PTR_TO_BTF_ID in 11339 * check_mem_access(). 11340 */ 11341 ret_flag &= ~MEM_RDONLY; 11342 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11343 } 11344 11345 regs[BPF_REG_0].btf = meta.ret_btf; 11346 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11347 } 11348 break; 11349 } 11350 case RET_PTR_TO_BTF_ID: 11351 { 11352 struct btf *ret_btf; 11353 int ret_btf_id; 11354 11355 mark_reg_known_zero(env, regs, BPF_REG_0); 11356 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11357 if (func_id == BPF_FUNC_kptr_xchg) { 11358 ret_btf = meta.kptr_field->kptr.btf; 11359 ret_btf_id = meta.kptr_field->kptr.btf_id; 11360 if (!btf_is_kernel(ret_btf)) { 11361 regs[BPF_REG_0].type |= MEM_ALLOC; 11362 if (meta.kptr_field->type == BPF_KPTR_PERCPU) 11363 regs[BPF_REG_0].type |= MEM_PERCPU; 11364 } 11365 } else { 11366 if (fn->ret_btf_id == BPF_PTR_POISON) { 11367 verbose(env, "verifier internal error:"); 11368 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 11369 func_id_name(func_id)); 11370 return -EINVAL; 11371 } 11372 ret_btf = btf_vmlinux; 11373 ret_btf_id = *fn->ret_btf_id; 11374 } 11375 if (ret_btf_id == 0) { 11376 verbose(env, "invalid return type %u of func %s#%d\n", 11377 base_type(ret_type), func_id_name(func_id), 11378 func_id); 11379 return -EINVAL; 11380 } 11381 regs[BPF_REG_0].btf = ret_btf; 11382 regs[BPF_REG_0].btf_id = ret_btf_id; 11383 break; 11384 } 11385 default: 11386 verbose(env, "unknown return type %u of func %s#%d\n", 11387 base_type(ret_type), func_id_name(func_id), func_id); 11388 return -EINVAL; 11389 } 11390 11391 if (type_may_be_null(regs[BPF_REG_0].type)) 11392 regs[BPF_REG_0].id = ++env->id_gen; 11393 11394 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 11395 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 11396 func_id_name(func_id), func_id); 11397 return -EFAULT; 11398 } 11399 11400 if (is_dynptr_ref_function(func_id)) 11401 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 11402 11403 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 11404 /* For release_reference() */ 11405 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11406 } else if (is_acquire_function(func_id, meta.map_ptr)) { 11407 int id = acquire_reference(env, insn_idx); 11408 11409 if (id < 0) 11410 return id; 11411 /* For mark_ptr_or_null_reg() */ 11412 regs[BPF_REG_0].id = id; 11413 /* For release_reference() */ 11414 regs[BPF_REG_0].ref_obj_id = id; 11415 } 11416 11417 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); 11418 if (err) 11419 return err; 11420 11421 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 11422 if (err) 11423 return err; 11424 11425 if ((func_id == BPF_FUNC_get_stack || 11426 func_id == BPF_FUNC_get_task_stack) && 11427 !env->prog->has_callchain_buf) { 11428 const char *err_str; 11429 11430 #ifdef CONFIG_PERF_EVENTS 11431 err = get_callchain_buffers(sysctl_perf_event_max_stack); 11432 err_str = "cannot get callchain buffer for func %s#%d\n"; 11433 #else 11434 err = -ENOTSUPP; 11435 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 11436 #endif 11437 if (err) { 11438 verbose(env, err_str, func_id_name(func_id), func_id); 11439 return err; 11440 } 11441 11442 env->prog->has_callchain_buf = true; 11443 } 11444 11445 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 11446 env->prog->call_get_stack = true; 11447 11448 if (func_id == BPF_FUNC_get_func_ip) { 11449 if (check_get_func_ip(env)) 11450 return -ENOTSUPP; 11451 env->prog->call_get_func_ip = true; 11452 } 11453 11454 if (changes_data) 11455 clear_all_pkt_pointers(env); 11456 return 0; 11457 } 11458 11459 /* mark_btf_func_reg_size() is used when the reg size is determined by 11460 * the BTF func_proto's return value size and argument. 11461 */ 11462 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 11463 size_t reg_size) 11464 { 11465 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 11466 11467 if (regno == BPF_REG_0) { 11468 /* Function return value */ 11469 reg->live |= REG_LIVE_WRITTEN; 11470 reg->subreg_def = reg_size == sizeof(u64) ? 11471 DEF_NOT_SUBREG : env->insn_idx + 1; 11472 } else { 11473 /* Function argument */ 11474 if (reg_size == sizeof(u64)) { 11475 mark_insn_zext(env, reg); 11476 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 11477 } else { 11478 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 11479 } 11480 } 11481 } 11482 11483 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 11484 { 11485 return meta->kfunc_flags & KF_ACQUIRE; 11486 } 11487 11488 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 11489 { 11490 return meta->kfunc_flags & KF_RELEASE; 11491 } 11492 11493 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 11494 { 11495 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 11496 } 11497 11498 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 11499 { 11500 return meta->kfunc_flags & KF_SLEEPABLE; 11501 } 11502 11503 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 11504 { 11505 return meta->kfunc_flags & KF_DESTRUCTIVE; 11506 } 11507 11508 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 11509 { 11510 return meta->kfunc_flags & KF_RCU; 11511 } 11512 11513 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) 11514 { 11515 return meta->kfunc_flags & KF_RCU_PROTECTED; 11516 } 11517 11518 static bool is_kfunc_arg_mem_size(const struct btf *btf, 11519 const struct btf_param *arg, 11520 const struct bpf_reg_state *reg) 11521 { 11522 const struct btf_type *t; 11523 11524 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11525 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11526 return false; 11527 11528 return btf_param_match_suffix(btf, arg, "__sz"); 11529 } 11530 11531 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 11532 const struct btf_param *arg, 11533 const struct bpf_reg_state *reg) 11534 { 11535 const struct btf_type *t; 11536 11537 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11538 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11539 return false; 11540 11541 return btf_param_match_suffix(btf, arg, "__szk"); 11542 } 11543 11544 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 11545 { 11546 return btf_param_match_suffix(btf, arg, "__opt"); 11547 } 11548 11549 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 11550 { 11551 return btf_param_match_suffix(btf, arg, "__k"); 11552 } 11553 11554 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 11555 { 11556 return btf_param_match_suffix(btf, arg, "__ign"); 11557 } 11558 11559 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg) 11560 { 11561 return btf_param_match_suffix(btf, arg, "__map"); 11562 } 11563 11564 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 11565 { 11566 return btf_param_match_suffix(btf, arg, "__alloc"); 11567 } 11568 11569 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 11570 { 11571 return btf_param_match_suffix(btf, arg, "__uninit"); 11572 } 11573 11574 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 11575 { 11576 return btf_param_match_suffix(btf, arg, "__refcounted_kptr"); 11577 } 11578 11579 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) 11580 { 11581 return btf_param_match_suffix(btf, arg, "__nullable"); 11582 } 11583 11584 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) 11585 { 11586 return btf_param_match_suffix(btf, arg, "__str"); 11587 } 11588 11589 static bool is_kfunc_arg_irq_flag(const struct btf *btf, const struct btf_param *arg) 11590 { 11591 return btf_param_match_suffix(btf, arg, "__irq_flag"); 11592 } 11593 11594 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 11595 const struct btf_param *arg, 11596 const char *name) 11597 { 11598 int len, target_len = strlen(name); 11599 const char *param_name; 11600 11601 param_name = btf_name_by_offset(btf, arg->name_off); 11602 if (str_is_empty(param_name)) 11603 return false; 11604 len = strlen(param_name); 11605 if (len != target_len) 11606 return false; 11607 if (strcmp(param_name, name)) 11608 return false; 11609 11610 return true; 11611 } 11612 11613 enum { 11614 KF_ARG_DYNPTR_ID, 11615 KF_ARG_LIST_HEAD_ID, 11616 KF_ARG_LIST_NODE_ID, 11617 KF_ARG_RB_ROOT_ID, 11618 KF_ARG_RB_NODE_ID, 11619 KF_ARG_WORKQUEUE_ID, 11620 }; 11621 11622 BTF_ID_LIST(kf_arg_btf_ids) 11623 BTF_ID(struct, bpf_dynptr) 11624 BTF_ID(struct, bpf_list_head) 11625 BTF_ID(struct, bpf_list_node) 11626 BTF_ID(struct, bpf_rb_root) 11627 BTF_ID(struct, bpf_rb_node) 11628 BTF_ID(struct, bpf_wq) 11629 11630 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 11631 const struct btf_param *arg, int type) 11632 { 11633 const struct btf_type *t; 11634 u32 res_id; 11635 11636 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11637 if (!t) 11638 return false; 11639 if (!btf_type_is_ptr(t)) 11640 return false; 11641 t = btf_type_skip_modifiers(btf, t->type, &res_id); 11642 if (!t) 11643 return false; 11644 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 11645 } 11646 11647 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 11648 { 11649 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 11650 } 11651 11652 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 11653 { 11654 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 11655 } 11656 11657 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 11658 { 11659 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 11660 } 11661 11662 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 11663 { 11664 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 11665 } 11666 11667 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 11668 { 11669 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 11670 } 11671 11672 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg) 11673 { 11674 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID); 11675 } 11676 11677 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 11678 const struct btf_param *arg) 11679 { 11680 const struct btf_type *t; 11681 11682 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 11683 if (!t) 11684 return false; 11685 11686 return true; 11687 } 11688 11689 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 11690 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 11691 const struct btf *btf, 11692 const struct btf_type *t, int rec) 11693 { 11694 const struct btf_type *member_type; 11695 const struct btf_member *member; 11696 u32 i; 11697 11698 if (!btf_type_is_struct(t)) 11699 return false; 11700 11701 for_each_member(i, t, member) { 11702 const struct btf_array *array; 11703 11704 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 11705 if (btf_type_is_struct(member_type)) { 11706 if (rec >= 3) { 11707 verbose(env, "max struct nesting depth exceeded\n"); 11708 return false; 11709 } 11710 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 11711 return false; 11712 continue; 11713 } 11714 if (btf_type_is_array(member_type)) { 11715 array = btf_array(member_type); 11716 if (!array->nelems) 11717 return false; 11718 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 11719 if (!btf_type_is_scalar(member_type)) 11720 return false; 11721 continue; 11722 } 11723 if (!btf_type_is_scalar(member_type)) 11724 return false; 11725 } 11726 return true; 11727 } 11728 11729 enum kfunc_ptr_arg_type { 11730 KF_ARG_PTR_TO_CTX, 11731 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 11732 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 11733 KF_ARG_PTR_TO_DYNPTR, 11734 KF_ARG_PTR_TO_ITER, 11735 KF_ARG_PTR_TO_LIST_HEAD, 11736 KF_ARG_PTR_TO_LIST_NODE, 11737 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 11738 KF_ARG_PTR_TO_MEM, 11739 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 11740 KF_ARG_PTR_TO_CALLBACK, 11741 KF_ARG_PTR_TO_RB_ROOT, 11742 KF_ARG_PTR_TO_RB_NODE, 11743 KF_ARG_PTR_TO_NULL, 11744 KF_ARG_PTR_TO_CONST_STR, 11745 KF_ARG_PTR_TO_MAP, 11746 KF_ARG_PTR_TO_WORKQUEUE, 11747 KF_ARG_PTR_TO_IRQ_FLAG, 11748 }; 11749 11750 enum special_kfunc_type { 11751 KF_bpf_obj_new_impl, 11752 KF_bpf_obj_drop_impl, 11753 KF_bpf_refcount_acquire_impl, 11754 KF_bpf_list_push_front_impl, 11755 KF_bpf_list_push_back_impl, 11756 KF_bpf_list_pop_front, 11757 KF_bpf_list_pop_back, 11758 KF_bpf_cast_to_kern_ctx, 11759 KF_bpf_rdonly_cast, 11760 KF_bpf_rcu_read_lock, 11761 KF_bpf_rcu_read_unlock, 11762 KF_bpf_rbtree_remove, 11763 KF_bpf_rbtree_add_impl, 11764 KF_bpf_rbtree_first, 11765 KF_bpf_dynptr_from_skb, 11766 KF_bpf_dynptr_from_xdp, 11767 KF_bpf_dynptr_slice, 11768 KF_bpf_dynptr_slice_rdwr, 11769 KF_bpf_dynptr_clone, 11770 KF_bpf_percpu_obj_new_impl, 11771 KF_bpf_percpu_obj_drop_impl, 11772 KF_bpf_throw, 11773 KF_bpf_wq_set_callback_impl, 11774 KF_bpf_preempt_disable, 11775 KF_bpf_preempt_enable, 11776 KF_bpf_iter_css_task_new, 11777 KF_bpf_session_cookie, 11778 KF_bpf_get_kmem_cache, 11779 KF_bpf_local_irq_save, 11780 KF_bpf_local_irq_restore, 11781 KF_bpf_iter_num_new, 11782 KF_bpf_iter_num_next, 11783 KF_bpf_iter_num_destroy, 11784 }; 11785 11786 BTF_SET_START(special_kfunc_set) 11787 BTF_ID(func, bpf_obj_new_impl) 11788 BTF_ID(func, bpf_obj_drop_impl) 11789 BTF_ID(func, bpf_refcount_acquire_impl) 11790 BTF_ID(func, bpf_list_push_front_impl) 11791 BTF_ID(func, bpf_list_push_back_impl) 11792 BTF_ID(func, bpf_list_pop_front) 11793 BTF_ID(func, bpf_list_pop_back) 11794 BTF_ID(func, bpf_cast_to_kern_ctx) 11795 BTF_ID(func, bpf_rdonly_cast) 11796 BTF_ID(func, bpf_rbtree_remove) 11797 BTF_ID(func, bpf_rbtree_add_impl) 11798 BTF_ID(func, bpf_rbtree_first) 11799 #ifdef CONFIG_NET 11800 BTF_ID(func, bpf_dynptr_from_skb) 11801 BTF_ID(func, bpf_dynptr_from_xdp) 11802 #endif 11803 BTF_ID(func, bpf_dynptr_slice) 11804 BTF_ID(func, bpf_dynptr_slice_rdwr) 11805 BTF_ID(func, bpf_dynptr_clone) 11806 BTF_ID(func, bpf_percpu_obj_new_impl) 11807 BTF_ID(func, bpf_percpu_obj_drop_impl) 11808 BTF_ID(func, bpf_throw) 11809 BTF_ID(func, bpf_wq_set_callback_impl) 11810 #ifdef CONFIG_CGROUPS 11811 BTF_ID(func, bpf_iter_css_task_new) 11812 #endif 11813 BTF_SET_END(special_kfunc_set) 11814 11815 BTF_ID_LIST(special_kfunc_list) 11816 BTF_ID(func, bpf_obj_new_impl) 11817 BTF_ID(func, bpf_obj_drop_impl) 11818 BTF_ID(func, bpf_refcount_acquire_impl) 11819 BTF_ID(func, bpf_list_push_front_impl) 11820 BTF_ID(func, bpf_list_push_back_impl) 11821 BTF_ID(func, bpf_list_pop_front) 11822 BTF_ID(func, bpf_list_pop_back) 11823 BTF_ID(func, bpf_cast_to_kern_ctx) 11824 BTF_ID(func, bpf_rdonly_cast) 11825 BTF_ID(func, bpf_rcu_read_lock) 11826 BTF_ID(func, bpf_rcu_read_unlock) 11827 BTF_ID(func, bpf_rbtree_remove) 11828 BTF_ID(func, bpf_rbtree_add_impl) 11829 BTF_ID(func, bpf_rbtree_first) 11830 #ifdef CONFIG_NET 11831 BTF_ID(func, bpf_dynptr_from_skb) 11832 BTF_ID(func, bpf_dynptr_from_xdp) 11833 #else 11834 BTF_ID_UNUSED 11835 BTF_ID_UNUSED 11836 #endif 11837 BTF_ID(func, bpf_dynptr_slice) 11838 BTF_ID(func, bpf_dynptr_slice_rdwr) 11839 BTF_ID(func, bpf_dynptr_clone) 11840 BTF_ID(func, bpf_percpu_obj_new_impl) 11841 BTF_ID(func, bpf_percpu_obj_drop_impl) 11842 BTF_ID(func, bpf_throw) 11843 BTF_ID(func, bpf_wq_set_callback_impl) 11844 BTF_ID(func, bpf_preempt_disable) 11845 BTF_ID(func, bpf_preempt_enable) 11846 #ifdef CONFIG_CGROUPS 11847 BTF_ID(func, bpf_iter_css_task_new) 11848 #else 11849 BTF_ID_UNUSED 11850 #endif 11851 #ifdef CONFIG_BPF_EVENTS 11852 BTF_ID(func, bpf_session_cookie) 11853 #else 11854 BTF_ID_UNUSED 11855 #endif 11856 BTF_ID(func, bpf_get_kmem_cache) 11857 BTF_ID(func, bpf_local_irq_save) 11858 BTF_ID(func, bpf_local_irq_restore) 11859 BTF_ID(func, bpf_iter_num_new) 11860 BTF_ID(func, bpf_iter_num_next) 11861 BTF_ID(func, bpf_iter_num_destroy) 11862 11863 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 11864 { 11865 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 11866 meta->arg_owning_ref) { 11867 return false; 11868 } 11869 11870 return meta->kfunc_flags & KF_RET_NULL; 11871 } 11872 11873 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 11874 { 11875 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 11876 } 11877 11878 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 11879 { 11880 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 11881 } 11882 11883 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta) 11884 { 11885 return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable]; 11886 } 11887 11888 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta) 11889 { 11890 return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable]; 11891 } 11892 11893 static enum kfunc_ptr_arg_type 11894 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 11895 struct bpf_kfunc_call_arg_meta *meta, 11896 const struct btf_type *t, const struct btf_type *ref_t, 11897 const char *ref_tname, const struct btf_param *args, 11898 int argno, int nargs) 11899 { 11900 u32 regno = argno + 1; 11901 struct bpf_reg_state *regs = cur_regs(env); 11902 struct bpf_reg_state *reg = ®s[regno]; 11903 bool arg_mem_size = false; 11904 11905 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 11906 return KF_ARG_PTR_TO_CTX; 11907 11908 /* In this function, we verify the kfunc's BTF as per the argument type, 11909 * leaving the rest of the verification with respect to the register 11910 * type to our caller. When a set of conditions hold in the BTF type of 11911 * arguments, we resolve it to a known kfunc_ptr_arg_type. 11912 */ 11913 if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 11914 return KF_ARG_PTR_TO_CTX; 11915 11916 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) 11917 return KF_ARG_PTR_TO_NULL; 11918 11919 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 11920 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 11921 11922 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 11923 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 11924 11925 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 11926 return KF_ARG_PTR_TO_DYNPTR; 11927 11928 if (is_kfunc_arg_iter(meta, argno, &args[argno])) 11929 return KF_ARG_PTR_TO_ITER; 11930 11931 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 11932 return KF_ARG_PTR_TO_LIST_HEAD; 11933 11934 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 11935 return KF_ARG_PTR_TO_LIST_NODE; 11936 11937 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 11938 return KF_ARG_PTR_TO_RB_ROOT; 11939 11940 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 11941 return KF_ARG_PTR_TO_RB_NODE; 11942 11943 if (is_kfunc_arg_const_str(meta->btf, &args[argno])) 11944 return KF_ARG_PTR_TO_CONST_STR; 11945 11946 if (is_kfunc_arg_map(meta->btf, &args[argno])) 11947 return KF_ARG_PTR_TO_MAP; 11948 11949 if (is_kfunc_arg_wq(meta->btf, &args[argno])) 11950 return KF_ARG_PTR_TO_WORKQUEUE; 11951 11952 if (is_kfunc_arg_irq_flag(meta->btf, &args[argno])) 11953 return KF_ARG_PTR_TO_IRQ_FLAG; 11954 11955 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 11956 if (!btf_type_is_struct(ref_t)) { 11957 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 11958 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 11959 return -EINVAL; 11960 } 11961 return KF_ARG_PTR_TO_BTF_ID; 11962 } 11963 11964 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 11965 return KF_ARG_PTR_TO_CALLBACK; 11966 11967 if (argno + 1 < nargs && 11968 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 11969 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 11970 arg_mem_size = true; 11971 11972 /* This is the catch all argument type of register types supported by 11973 * check_helper_mem_access. However, we only allow when argument type is 11974 * pointer to scalar, or struct composed (recursively) of scalars. When 11975 * arg_mem_size is true, the pointer can be void *. 11976 */ 11977 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 11978 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 11979 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 11980 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 11981 return -EINVAL; 11982 } 11983 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 11984 } 11985 11986 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 11987 struct bpf_reg_state *reg, 11988 const struct btf_type *ref_t, 11989 const char *ref_tname, u32 ref_id, 11990 struct bpf_kfunc_call_arg_meta *meta, 11991 int argno) 11992 { 11993 const struct btf_type *reg_ref_t; 11994 bool strict_type_match = false; 11995 const struct btf *reg_btf; 11996 const char *reg_ref_tname; 11997 bool taking_projection; 11998 bool struct_same; 11999 u32 reg_ref_id; 12000 12001 if (base_type(reg->type) == PTR_TO_BTF_ID) { 12002 reg_btf = reg->btf; 12003 reg_ref_id = reg->btf_id; 12004 } else { 12005 reg_btf = btf_vmlinux; 12006 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 12007 } 12008 12009 /* Enforce strict type matching for calls to kfuncs that are acquiring 12010 * or releasing a reference, or are no-cast aliases. We do _not_ 12011 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 12012 * as we want to enable BPF programs to pass types that are bitwise 12013 * equivalent without forcing them to explicitly cast with something 12014 * like bpf_cast_to_kern_ctx(). 12015 * 12016 * For example, say we had a type like the following: 12017 * 12018 * struct bpf_cpumask { 12019 * cpumask_t cpumask; 12020 * refcount_t usage; 12021 * }; 12022 * 12023 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 12024 * to a struct cpumask, so it would be safe to pass a struct 12025 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 12026 * 12027 * The philosophy here is similar to how we allow scalars of different 12028 * types to be passed to kfuncs as long as the size is the same. The 12029 * only difference here is that we're simply allowing 12030 * btf_struct_ids_match() to walk the struct at the 0th offset, and 12031 * resolve types. 12032 */ 12033 if ((is_kfunc_release(meta) && reg->ref_obj_id) || 12034 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 12035 strict_type_match = true; 12036 12037 WARN_ON_ONCE(is_kfunc_release(meta) && 12038 (reg->off || !tnum_is_const(reg->var_off) || 12039 reg->var_off.value)); 12040 12041 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 12042 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 12043 struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match); 12044 /* If kfunc is accepting a projection type (ie. __sk_buff), it cannot 12045 * actually use it -- it must cast to the underlying type. So we allow 12046 * caller to pass in the underlying type. 12047 */ 12048 taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname); 12049 if (!taking_projection && !struct_same) { 12050 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 12051 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 12052 btf_type_str(reg_ref_t), reg_ref_tname); 12053 return -EINVAL; 12054 } 12055 return 0; 12056 } 12057 12058 static int process_irq_flag(struct bpf_verifier_env *env, int regno, 12059 struct bpf_kfunc_call_arg_meta *meta) 12060 { 12061 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 12062 bool irq_save; 12063 int err; 12064 12065 if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_save]) { 12066 irq_save = true; 12067 } else if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_restore]) { 12068 irq_save = false; 12069 } else { 12070 verbose(env, "verifier internal error: unknown irq flags kfunc\n"); 12071 return -EFAULT; 12072 } 12073 12074 if (irq_save) { 12075 if (!is_irq_flag_reg_valid_uninit(env, reg)) { 12076 verbose(env, "expected uninitialized irq flag as arg#%d\n", regno - 1); 12077 return -EINVAL; 12078 } 12079 12080 err = check_mem_access(env, env->insn_idx, regno, 0, BPF_DW, BPF_WRITE, -1, false, false); 12081 if (err) 12082 return err; 12083 12084 err = mark_stack_slot_irq_flag(env, meta, reg, env->insn_idx); 12085 if (err) 12086 return err; 12087 } else { 12088 err = is_irq_flag_reg_valid_init(env, reg); 12089 if (err) { 12090 verbose(env, "expected an initialized irq flag as arg#%d\n", regno - 1); 12091 return err; 12092 } 12093 12094 err = mark_irq_flag_read(env, reg); 12095 if (err) 12096 return err; 12097 12098 err = unmark_stack_slot_irq_flag(env, reg); 12099 if (err) 12100 return err; 12101 } 12102 return 0; 12103 } 12104 12105 12106 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 12107 { 12108 struct btf_record *rec = reg_btf_record(reg); 12109 12110 if (!env->cur_state->active_locks) { 12111 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 12112 return -EFAULT; 12113 } 12114 12115 if (type_flag(reg->type) & NON_OWN_REF) { 12116 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 12117 return -EFAULT; 12118 } 12119 12120 reg->type |= NON_OWN_REF; 12121 if (rec->refcount_off >= 0) 12122 reg->type |= MEM_RCU; 12123 12124 return 0; 12125 } 12126 12127 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 12128 { 12129 struct bpf_verifier_state *state = env->cur_state; 12130 struct bpf_func_state *unused; 12131 struct bpf_reg_state *reg; 12132 int i; 12133 12134 if (!ref_obj_id) { 12135 verbose(env, "verifier internal error: ref_obj_id is zero for " 12136 "owning -> non-owning conversion\n"); 12137 return -EFAULT; 12138 } 12139 12140 for (i = 0; i < state->acquired_refs; i++) { 12141 if (state->refs[i].id != ref_obj_id) 12142 continue; 12143 12144 /* Clear ref_obj_id here so release_reference doesn't clobber 12145 * the whole reg 12146 */ 12147 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 12148 if (reg->ref_obj_id == ref_obj_id) { 12149 reg->ref_obj_id = 0; 12150 ref_set_non_owning(env, reg); 12151 } 12152 })); 12153 return 0; 12154 } 12155 12156 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 12157 return -EFAULT; 12158 } 12159 12160 /* Implementation details: 12161 * 12162 * Each register points to some region of memory, which we define as an 12163 * allocation. Each allocation may embed a bpf_spin_lock which protects any 12164 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 12165 * allocation. The lock and the data it protects are colocated in the same 12166 * memory region. 12167 * 12168 * Hence, everytime a register holds a pointer value pointing to such 12169 * allocation, the verifier preserves a unique reg->id for it. 12170 * 12171 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 12172 * bpf_spin_lock is called. 12173 * 12174 * To enable this, lock state in the verifier captures two values: 12175 * active_lock.ptr = Register's type specific pointer 12176 * active_lock.id = A unique ID for each register pointer value 12177 * 12178 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 12179 * supported register types. 12180 * 12181 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 12182 * allocated objects is the reg->btf pointer. 12183 * 12184 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 12185 * can establish the provenance of the map value statically for each distinct 12186 * lookup into such maps. They always contain a single map value hence unique 12187 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 12188 * 12189 * So, in case of global variables, they use array maps with max_entries = 1, 12190 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 12191 * into the same map value as max_entries is 1, as described above). 12192 * 12193 * In case of inner map lookups, the inner map pointer has same map_ptr as the 12194 * outer map pointer (in verifier context), but each lookup into an inner map 12195 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 12196 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 12197 * will get different reg->id assigned to each lookup, hence different 12198 * active_lock.id. 12199 * 12200 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 12201 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 12202 * returned from bpf_obj_new. Each allocation receives a new reg->id. 12203 */ 12204 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 12205 { 12206 struct bpf_reference_state *s; 12207 void *ptr; 12208 u32 id; 12209 12210 switch ((int)reg->type) { 12211 case PTR_TO_MAP_VALUE: 12212 ptr = reg->map_ptr; 12213 break; 12214 case PTR_TO_BTF_ID | MEM_ALLOC: 12215 ptr = reg->btf; 12216 break; 12217 default: 12218 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 12219 return -EFAULT; 12220 } 12221 id = reg->id; 12222 12223 if (!env->cur_state->active_locks) 12224 return -EINVAL; 12225 s = find_lock_state(env->cur_state, REF_TYPE_LOCK, id, ptr); 12226 if (!s) { 12227 verbose(env, "held lock and object are not in the same allocation\n"); 12228 return -EINVAL; 12229 } 12230 return 0; 12231 } 12232 12233 static bool is_bpf_list_api_kfunc(u32 btf_id) 12234 { 12235 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12236 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 12237 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 12238 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 12239 } 12240 12241 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 12242 { 12243 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 12244 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12245 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 12246 } 12247 12248 static bool is_bpf_iter_num_api_kfunc(u32 btf_id) 12249 { 12250 return btf_id == special_kfunc_list[KF_bpf_iter_num_new] || 12251 btf_id == special_kfunc_list[KF_bpf_iter_num_next] || 12252 btf_id == special_kfunc_list[KF_bpf_iter_num_destroy]; 12253 } 12254 12255 static bool is_bpf_graph_api_kfunc(u32 btf_id) 12256 { 12257 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 12258 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 12259 } 12260 12261 static bool kfunc_spin_allowed(u32 btf_id) 12262 { 12263 return is_bpf_graph_api_kfunc(btf_id) || is_bpf_iter_num_api_kfunc(btf_id); 12264 } 12265 12266 static bool is_sync_callback_calling_kfunc(u32 btf_id) 12267 { 12268 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 12269 } 12270 12271 static bool is_async_callback_calling_kfunc(u32 btf_id) 12272 { 12273 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 12274 } 12275 12276 static bool is_bpf_throw_kfunc(struct bpf_insn *insn) 12277 { 12278 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 12279 insn->imm == special_kfunc_list[KF_bpf_throw]; 12280 } 12281 12282 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id) 12283 { 12284 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 12285 } 12286 12287 static bool is_callback_calling_kfunc(u32 btf_id) 12288 { 12289 return is_sync_callback_calling_kfunc(btf_id) || 12290 is_async_callback_calling_kfunc(btf_id); 12291 } 12292 12293 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 12294 { 12295 return is_bpf_rbtree_api_kfunc(btf_id); 12296 } 12297 12298 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 12299 enum btf_field_type head_field_type, 12300 u32 kfunc_btf_id) 12301 { 12302 bool ret; 12303 12304 switch (head_field_type) { 12305 case BPF_LIST_HEAD: 12306 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 12307 break; 12308 case BPF_RB_ROOT: 12309 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 12310 break; 12311 default: 12312 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 12313 btf_field_type_name(head_field_type)); 12314 return false; 12315 } 12316 12317 if (!ret) 12318 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 12319 btf_field_type_name(head_field_type)); 12320 return ret; 12321 } 12322 12323 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 12324 enum btf_field_type node_field_type, 12325 u32 kfunc_btf_id) 12326 { 12327 bool ret; 12328 12329 switch (node_field_type) { 12330 case BPF_LIST_NODE: 12331 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12332 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 12333 break; 12334 case BPF_RB_NODE: 12335 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12336 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 12337 break; 12338 default: 12339 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 12340 btf_field_type_name(node_field_type)); 12341 return false; 12342 } 12343 12344 if (!ret) 12345 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 12346 btf_field_type_name(node_field_type)); 12347 return ret; 12348 } 12349 12350 static int 12351 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 12352 struct bpf_reg_state *reg, u32 regno, 12353 struct bpf_kfunc_call_arg_meta *meta, 12354 enum btf_field_type head_field_type, 12355 struct btf_field **head_field) 12356 { 12357 const char *head_type_name; 12358 struct btf_field *field; 12359 struct btf_record *rec; 12360 u32 head_off; 12361 12362 if (meta->btf != btf_vmlinux) { 12363 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 12364 return -EFAULT; 12365 } 12366 12367 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 12368 return -EFAULT; 12369 12370 head_type_name = btf_field_type_name(head_field_type); 12371 if (!tnum_is_const(reg->var_off)) { 12372 verbose(env, 12373 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 12374 regno, head_type_name); 12375 return -EINVAL; 12376 } 12377 12378 rec = reg_btf_record(reg); 12379 head_off = reg->off + reg->var_off.value; 12380 field = btf_record_find(rec, head_off, head_field_type); 12381 if (!field) { 12382 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 12383 return -EINVAL; 12384 } 12385 12386 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 12387 if (check_reg_allocation_locked(env, reg)) { 12388 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 12389 rec->spin_lock_off, head_type_name); 12390 return -EINVAL; 12391 } 12392 12393 if (*head_field) { 12394 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 12395 return -EFAULT; 12396 } 12397 *head_field = field; 12398 return 0; 12399 } 12400 12401 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 12402 struct bpf_reg_state *reg, u32 regno, 12403 struct bpf_kfunc_call_arg_meta *meta) 12404 { 12405 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 12406 &meta->arg_list_head.field); 12407 } 12408 12409 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 12410 struct bpf_reg_state *reg, u32 regno, 12411 struct bpf_kfunc_call_arg_meta *meta) 12412 { 12413 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 12414 &meta->arg_rbtree_root.field); 12415 } 12416 12417 static int 12418 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 12419 struct bpf_reg_state *reg, u32 regno, 12420 struct bpf_kfunc_call_arg_meta *meta, 12421 enum btf_field_type head_field_type, 12422 enum btf_field_type node_field_type, 12423 struct btf_field **node_field) 12424 { 12425 const char *node_type_name; 12426 const struct btf_type *et, *t; 12427 struct btf_field *field; 12428 u32 node_off; 12429 12430 if (meta->btf != btf_vmlinux) { 12431 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 12432 return -EFAULT; 12433 } 12434 12435 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 12436 return -EFAULT; 12437 12438 node_type_name = btf_field_type_name(node_field_type); 12439 if (!tnum_is_const(reg->var_off)) { 12440 verbose(env, 12441 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 12442 regno, node_type_name); 12443 return -EINVAL; 12444 } 12445 12446 node_off = reg->off + reg->var_off.value; 12447 field = reg_find_field_offset(reg, node_off, node_field_type); 12448 if (!field) { 12449 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 12450 return -EINVAL; 12451 } 12452 12453 field = *node_field; 12454 12455 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 12456 t = btf_type_by_id(reg->btf, reg->btf_id); 12457 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 12458 field->graph_root.value_btf_id, true)) { 12459 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 12460 "in struct %s, but arg is at offset=%d in struct %s\n", 12461 btf_field_type_name(head_field_type), 12462 btf_field_type_name(node_field_type), 12463 field->graph_root.node_offset, 12464 btf_name_by_offset(field->graph_root.btf, et->name_off), 12465 node_off, btf_name_by_offset(reg->btf, t->name_off)); 12466 return -EINVAL; 12467 } 12468 meta->arg_btf = reg->btf; 12469 meta->arg_btf_id = reg->btf_id; 12470 12471 if (node_off != field->graph_root.node_offset) { 12472 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 12473 node_off, btf_field_type_name(node_field_type), 12474 field->graph_root.node_offset, 12475 btf_name_by_offset(field->graph_root.btf, et->name_off)); 12476 return -EINVAL; 12477 } 12478 12479 return 0; 12480 } 12481 12482 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 12483 struct bpf_reg_state *reg, u32 regno, 12484 struct bpf_kfunc_call_arg_meta *meta) 12485 { 12486 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 12487 BPF_LIST_HEAD, BPF_LIST_NODE, 12488 &meta->arg_list_head.field); 12489 } 12490 12491 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 12492 struct bpf_reg_state *reg, u32 regno, 12493 struct bpf_kfunc_call_arg_meta *meta) 12494 { 12495 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 12496 BPF_RB_ROOT, BPF_RB_NODE, 12497 &meta->arg_rbtree_root.field); 12498 } 12499 12500 /* 12501 * css_task iter allowlist is needed to avoid dead locking on css_set_lock. 12502 * LSM hooks and iters (both sleepable and non-sleepable) are safe. 12503 * Any sleepable progs are also safe since bpf_check_attach_target() enforce 12504 * them can only be attached to some specific hook points. 12505 */ 12506 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) 12507 { 12508 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 12509 12510 switch (prog_type) { 12511 case BPF_PROG_TYPE_LSM: 12512 return true; 12513 case BPF_PROG_TYPE_TRACING: 12514 if (env->prog->expected_attach_type == BPF_TRACE_ITER) 12515 return true; 12516 fallthrough; 12517 default: 12518 return in_sleepable(env); 12519 } 12520 } 12521 12522 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 12523 int insn_idx) 12524 { 12525 const char *func_name = meta->func_name, *ref_tname; 12526 const struct btf *btf = meta->btf; 12527 const struct btf_param *args; 12528 struct btf_record *rec; 12529 u32 i, nargs; 12530 int ret; 12531 12532 args = (const struct btf_param *)(meta->func_proto + 1); 12533 nargs = btf_type_vlen(meta->func_proto); 12534 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 12535 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 12536 MAX_BPF_FUNC_REG_ARGS); 12537 return -EINVAL; 12538 } 12539 12540 /* Check that BTF function arguments match actual types that the 12541 * verifier sees. 12542 */ 12543 for (i = 0; i < nargs; i++) { 12544 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 12545 const struct btf_type *t, *ref_t, *resolve_ret; 12546 enum bpf_arg_type arg_type = ARG_DONTCARE; 12547 u32 regno = i + 1, ref_id, type_size; 12548 bool is_ret_buf_sz = false; 12549 int kf_arg_type; 12550 12551 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 12552 12553 if (is_kfunc_arg_ignore(btf, &args[i])) 12554 continue; 12555 12556 if (btf_type_is_scalar(t)) { 12557 if (reg->type != SCALAR_VALUE) { 12558 verbose(env, "R%d is not a scalar\n", regno); 12559 return -EINVAL; 12560 } 12561 12562 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 12563 if (meta->arg_constant.found) { 12564 verbose(env, "verifier internal error: only one constant argument permitted\n"); 12565 return -EFAULT; 12566 } 12567 if (!tnum_is_const(reg->var_off)) { 12568 verbose(env, "R%d must be a known constant\n", regno); 12569 return -EINVAL; 12570 } 12571 ret = mark_chain_precision(env, regno); 12572 if (ret < 0) 12573 return ret; 12574 meta->arg_constant.found = true; 12575 meta->arg_constant.value = reg->var_off.value; 12576 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 12577 meta->r0_rdonly = true; 12578 is_ret_buf_sz = true; 12579 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 12580 is_ret_buf_sz = true; 12581 } 12582 12583 if (is_ret_buf_sz) { 12584 if (meta->r0_size) { 12585 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 12586 return -EINVAL; 12587 } 12588 12589 if (!tnum_is_const(reg->var_off)) { 12590 verbose(env, "R%d is not a const\n", regno); 12591 return -EINVAL; 12592 } 12593 12594 meta->r0_size = reg->var_off.value; 12595 ret = mark_chain_precision(env, regno); 12596 if (ret) 12597 return ret; 12598 } 12599 continue; 12600 } 12601 12602 if (!btf_type_is_ptr(t)) { 12603 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 12604 return -EINVAL; 12605 } 12606 12607 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 12608 (register_is_null(reg) || type_may_be_null(reg->type)) && 12609 !is_kfunc_arg_nullable(meta->btf, &args[i])) { 12610 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 12611 return -EACCES; 12612 } 12613 12614 if (reg->ref_obj_id) { 12615 if (is_kfunc_release(meta) && meta->ref_obj_id) { 12616 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 12617 regno, reg->ref_obj_id, 12618 meta->ref_obj_id); 12619 return -EFAULT; 12620 } 12621 meta->ref_obj_id = reg->ref_obj_id; 12622 if (is_kfunc_release(meta)) 12623 meta->release_regno = regno; 12624 } 12625 12626 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 12627 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 12628 12629 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 12630 if (kf_arg_type < 0) 12631 return kf_arg_type; 12632 12633 switch (kf_arg_type) { 12634 case KF_ARG_PTR_TO_NULL: 12635 continue; 12636 case KF_ARG_PTR_TO_MAP: 12637 if (!reg->map_ptr) { 12638 verbose(env, "pointer in R%d isn't map pointer\n", regno); 12639 return -EINVAL; 12640 } 12641 if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) { 12642 /* Use map_uid (which is unique id of inner map) to reject: 12643 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 12644 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 12645 * if (inner_map1 && inner_map2) { 12646 * wq = bpf_map_lookup_elem(inner_map1); 12647 * if (wq) 12648 * // mismatch would have been allowed 12649 * bpf_wq_init(wq, inner_map2); 12650 * } 12651 * 12652 * Comparing map_ptr is enough to distinguish normal and outer maps. 12653 */ 12654 if (meta->map.ptr != reg->map_ptr || 12655 meta->map.uid != reg->map_uid) { 12656 verbose(env, 12657 "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 12658 meta->map.uid, reg->map_uid); 12659 return -EINVAL; 12660 } 12661 } 12662 meta->map.ptr = reg->map_ptr; 12663 meta->map.uid = reg->map_uid; 12664 fallthrough; 12665 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 12666 case KF_ARG_PTR_TO_BTF_ID: 12667 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 12668 break; 12669 12670 if (!is_trusted_reg(reg)) { 12671 if (!is_kfunc_rcu(meta)) { 12672 verbose(env, "R%d must be referenced or trusted\n", regno); 12673 return -EINVAL; 12674 } 12675 if (!is_rcu_reg(reg)) { 12676 verbose(env, "R%d must be a rcu pointer\n", regno); 12677 return -EINVAL; 12678 } 12679 } 12680 fallthrough; 12681 case KF_ARG_PTR_TO_CTX: 12682 case KF_ARG_PTR_TO_DYNPTR: 12683 case KF_ARG_PTR_TO_ITER: 12684 case KF_ARG_PTR_TO_LIST_HEAD: 12685 case KF_ARG_PTR_TO_LIST_NODE: 12686 case KF_ARG_PTR_TO_RB_ROOT: 12687 case KF_ARG_PTR_TO_RB_NODE: 12688 case KF_ARG_PTR_TO_MEM: 12689 case KF_ARG_PTR_TO_MEM_SIZE: 12690 case KF_ARG_PTR_TO_CALLBACK: 12691 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 12692 case KF_ARG_PTR_TO_CONST_STR: 12693 case KF_ARG_PTR_TO_WORKQUEUE: 12694 case KF_ARG_PTR_TO_IRQ_FLAG: 12695 break; 12696 default: 12697 WARN_ON_ONCE(1); 12698 return -EFAULT; 12699 } 12700 12701 if (is_kfunc_release(meta) && reg->ref_obj_id) 12702 arg_type |= OBJ_RELEASE; 12703 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 12704 if (ret < 0) 12705 return ret; 12706 12707 switch (kf_arg_type) { 12708 case KF_ARG_PTR_TO_CTX: 12709 if (reg->type != PTR_TO_CTX) { 12710 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", 12711 i, reg_type_str(env, reg->type)); 12712 return -EINVAL; 12713 } 12714 12715 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 12716 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 12717 if (ret < 0) 12718 return -EINVAL; 12719 meta->ret_btf_id = ret; 12720 } 12721 break; 12722 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 12723 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { 12724 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { 12725 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); 12726 return -EINVAL; 12727 } 12728 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { 12729 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 12730 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); 12731 return -EINVAL; 12732 } 12733 } else { 12734 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12735 return -EINVAL; 12736 } 12737 if (!reg->ref_obj_id) { 12738 verbose(env, "allocated object must be referenced\n"); 12739 return -EINVAL; 12740 } 12741 if (meta->btf == btf_vmlinux) { 12742 meta->arg_btf = reg->btf; 12743 meta->arg_btf_id = reg->btf_id; 12744 } 12745 break; 12746 case KF_ARG_PTR_TO_DYNPTR: 12747 { 12748 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 12749 int clone_ref_obj_id = 0; 12750 12751 if (reg->type == CONST_PTR_TO_DYNPTR) 12752 dynptr_arg_type |= MEM_RDONLY; 12753 12754 if (is_kfunc_arg_uninit(btf, &args[i])) 12755 dynptr_arg_type |= MEM_UNINIT; 12756 12757 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 12758 dynptr_arg_type |= DYNPTR_TYPE_SKB; 12759 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 12760 dynptr_arg_type |= DYNPTR_TYPE_XDP; 12761 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 12762 (dynptr_arg_type & MEM_UNINIT)) { 12763 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 12764 12765 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 12766 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 12767 return -EFAULT; 12768 } 12769 12770 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 12771 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 12772 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 12773 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 12774 return -EFAULT; 12775 } 12776 } 12777 12778 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 12779 if (ret < 0) 12780 return ret; 12781 12782 if (!(dynptr_arg_type & MEM_UNINIT)) { 12783 int id = dynptr_id(env, reg); 12784 12785 if (id < 0) { 12786 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 12787 return id; 12788 } 12789 meta->initialized_dynptr.id = id; 12790 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 12791 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 12792 } 12793 12794 break; 12795 } 12796 case KF_ARG_PTR_TO_ITER: 12797 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { 12798 if (!check_css_task_iter_allowlist(env)) { 12799 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); 12800 return -EINVAL; 12801 } 12802 } 12803 ret = process_iter_arg(env, regno, insn_idx, meta); 12804 if (ret < 0) 12805 return ret; 12806 break; 12807 case KF_ARG_PTR_TO_LIST_HEAD: 12808 if (reg->type != PTR_TO_MAP_VALUE && 12809 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12810 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 12811 return -EINVAL; 12812 } 12813 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 12814 verbose(env, "allocated object must be referenced\n"); 12815 return -EINVAL; 12816 } 12817 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 12818 if (ret < 0) 12819 return ret; 12820 break; 12821 case KF_ARG_PTR_TO_RB_ROOT: 12822 if (reg->type != PTR_TO_MAP_VALUE && 12823 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12824 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 12825 return -EINVAL; 12826 } 12827 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 12828 verbose(env, "allocated object must be referenced\n"); 12829 return -EINVAL; 12830 } 12831 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 12832 if (ret < 0) 12833 return ret; 12834 break; 12835 case KF_ARG_PTR_TO_LIST_NODE: 12836 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12837 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12838 return -EINVAL; 12839 } 12840 if (!reg->ref_obj_id) { 12841 verbose(env, "allocated object must be referenced\n"); 12842 return -EINVAL; 12843 } 12844 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 12845 if (ret < 0) 12846 return ret; 12847 break; 12848 case KF_ARG_PTR_TO_RB_NODE: 12849 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 12850 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 12851 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 12852 return -EINVAL; 12853 } 12854 if (in_rbtree_lock_required_cb(env)) { 12855 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 12856 return -EINVAL; 12857 } 12858 } else { 12859 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12860 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12861 return -EINVAL; 12862 } 12863 if (!reg->ref_obj_id) { 12864 verbose(env, "allocated object must be referenced\n"); 12865 return -EINVAL; 12866 } 12867 } 12868 12869 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 12870 if (ret < 0) 12871 return ret; 12872 break; 12873 case KF_ARG_PTR_TO_MAP: 12874 /* If argument has '__map' suffix expect 'struct bpf_map *' */ 12875 ref_id = *reg2btf_ids[CONST_PTR_TO_MAP]; 12876 ref_t = btf_type_by_id(btf_vmlinux, ref_id); 12877 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 12878 fallthrough; 12879 case KF_ARG_PTR_TO_BTF_ID: 12880 /* Only base_type is checked, further checks are done here */ 12881 if ((base_type(reg->type) != PTR_TO_BTF_ID || 12882 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 12883 !reg2btf_ids[base_type(reg->type)]) { 12884 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 12885 verbose(env, "expected %s or socket\n", 12886 reg_type_str(env, base_type(reg->type) | 12887 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 12888 return -EINVAL; 12889 } 12890 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 12891 if (ret < 0) 12892 return ret; 12893 break; 12894 case KF_ARG_PTR_TO_MEM: 12895 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 12896 if (IS_ERR(resolve_ret)) { 12897 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 12898 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 12899 return -EINVAL; 12900 } 12901 ret = check_mem_reg(env, reg, regno, type_size); 12902 if (ret < 0) 12903 return ret; 12904 break; 12905 case KF_ARG_PTR_TO_MEM_SIZE: 12906 { 12907 struct bpf_reg_state *buff_reg = ®s[regno]; 12908 const struct btf_param *buff_arg = &args[i]; 12909 struct bpf_reg_state *size_reg = ®s[regno + 1]; 12910 const struct btf_param *size_arg = &args[i + 1]; 12911 12912 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 12913 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 12914 if (ret < 0) { 12915 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 12916 return ret; 12917 } 12918 } 12919 12920 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 12921 if (meta->arg_constant.found) { 12922 verbose(env, "verifier internal error: only one constant argument permitted\n"); 12923 return -EFAULT; 12924 } 12925 if (!tnum_is_const(size_reg->var_off)) { 12926 verbose(env, "R%d must be a known constant\n", regno + 1); 12927 return -EINVAL; 12928 } 12929 meta->arg_constant.found = true; 12930 meta->arg_constant.value = size_reg->var_off.value; 12931 } 12932 12933 /* Skip next '__sz' or '__szk' argument */ 12934 i++; 12935 break; 12936 } 12937 case KF_ARG_PTR_TO_CALLBACK: 12938 if (reg->type != PTR_TO_FUNC) { 12939 verbose(env, "arg%d expected pointer to func\n", i); 12940 return -EINVAL; 12941 } 12942 meta->subprogno = reg->subprogno; 12943 break; 12944 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 12945 if (!type_is_ptr_alloc_obj(reg->type)) { 12946 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 12947 return -EINVAL; 12948 } 12949 if (!type_is_non_owning_ref(reg->type)) 12950 meta->arg_owning_ref = true; 12951 12952 rec = reg_btf_record(reg); 12953 if (!rec) { 12954 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 12955 return -EFAULT; 12956 } 12957 12958 if (rec->refcount_off < 0) { 12959 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 12960 return -EINVAL; 12961 } 12962 12963 meta->arg_btf = reg->btf; 12964 meta->arg_btf_id = reg->btf_id; 12965 break; 12966 case KF_ARG_PTR_TO_CONST_STR: 12967 if (reg->type != PTR_TO_MAP_VALUE) { 12968 verbose(env, "arg#%d doesn't point to a const string\n", i); 12969 return -EINVAL; 12970 } 12971 ret = check_reg_const_str(env, reg, regno); 12972 if (ret) 12973 return ret; 12974 break; 12975 case KF_ARG_PTR_TO_WORKQUEUE: 12976 if (reg->type != PTR_TO_MAP_VALUE) { 12977 verbose(env, "arg#%d doesn't point to a map value\n", i); 12978 return -EINVAL; 12979 } 12980 ret = process_wq_func(env, regno, meta); 12981 if (ret < 0) 12982 return ret; 12983 break; 12984 case KF_ARG_PTR_TO_IRQ_FLAG: 12985 if (reg->type != PTR_TO_STACK) { 12986 verbose(env, "arg#%d doesn't point to an irq flag on stack\n", i); 12987 return -EINVAL; 12988 } 12989 ret = process_irq_flag(env, regno, meta); 12990 if (ret < 0) 12991 return ret; 12992 break; 12993 } 12994 } 12995 12996 if (is_kfunc_release(meta) && !meta->release_regno) { 12997 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 12998 func_name); 12999 return -EINVAL; 13000 } 13001 13002 return 0; 13003 } 13004 13005 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 13006 struct bpf_insn *insn, 13007 struct bpf_kfunc_call_arg_meta *meta, 13008 const char **kfunc_name) 13009 { 13010 const struct btf_type *func, *func_proto; 13011 u32 func_id, *kfunc_flags; 13012 const char *func_name; 13013 struct btf *desc_btf; 13014 13015 if (kfunc_name) 13016 *kfunc_name = NULL; 13017 13018 if (!insn->imm) 13019 return -EINVAL; 13020 13021 desc_btf = find_kfunc_desc_btf(env, insn->off); 13022 if (IS_ERR(desc_btf)) 13023 return PTR_ERR(desc_btf); 13024 13025 func_id = insn->imm; 13026 func = btf_type_by_id(desc_btf, func_id); 13027 func_name = btf_name_by_offset(desc_btf, func->name_off); 13028 if (kfunc_name) 13029 *kfunc_name = func_name; 13030 func_proto = btf_type_by_id(desc_btf, func->type); 13031 13032 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 13033 if (!kfunc_flags) { 13034 return -EACCES; 13035 } 13036 13037 memset(meta, 0, sizeof(*meta)); 13038 meta->btf = desc_btf; 13039 meta->func_id = func_id; 13040 meta->kfunc_flags = *kfunc_flags; 13041 meta->func_proto = func_proto; 13042 meta->func_name = func_name; 13043 13044 return 0; 13045 } 13046 13047 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); 13048 13049 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 13050 int *insn_idx_p) 13051 { 13052 bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable; 13053 u32 i, nargs, ptr_type_id, release_ref_obj_id; 13054 struct bpf_reg_state *regs = cur_regs(env); 13055 const char *func_name, *ptr_type_name; 13056 const struct btf_type *t, *ptr_type; 13057 struct bpf_kfunc_call_arg_meta meta; 13058 struct bpf_insn_aux_data *insn_aux; 13059 int err, insn_idx = *insn_idx_p; 13060 const struct btf_param *args; 13061 const struct btf_type *ret_t; 13062 struct btf *desc_btf; 13063 13064 /* skip for now, but return error when we find this in fixup_kfunc_call */ 13065 if (!insn->imm) 13066 return 0; 13067 13068 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 13069 if (err == -EACCES && func_name) 13070 verbose(env, "calling kernel function %s is not allowed\n", func_name); 13071 if (err) 13072 return err; 13073 desc_btf = meta.btf; 13074 insn_aux = &env->insn_aux_data[insn_idx]; 13075 13076 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 13077 13078 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 13079 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 13080 return -EACCES; 13081 } 13082 13083 sleepable = is_kfunc_sleepable(&meta); 13084 if (sleepable && !in_sleepable(env)) { 13085 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 13086 return -EACCES; 13087 } 13088 13089 /* Check the arguments */ 13090 err = check_kfunc_args(env, &meta, insn_idx); 13091 if (err < 0) 13092 return err; 13093 13094 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 13095 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 13096 set_rbtree_add_callback_state); 13097 if (err) { 13098 verbose(env, "kfunc %s#%d failed callback verification\n", 13099 func_name, meta.func_id); 13100 return err; 13101 } 13102 } 13103 13104 if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) { 13105 meta.r0_size = sizeof(u64); 13106 meta.r0_rdonly = false; 13107 } 13108 13109 if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) { 13110 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 13111 set_timer_callback_state); 13112 if (err) { 13113 verbose(env, "kfunc %s#%d failed callback verification\n", 13114 func_name, meta.func_id); 13115 return err; 13116 } 13117 } 13118 13119 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 13120 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 13121 13122 preempt_disable = is_kfunc_bpf_preempt_disable(&meta); 13123 preempt_enable = is_kfunc_bpf_preempt_enable(&meta); 13124 13125 if (env->cur_state->active_rcu_lock) { 13126 struct bpf_func_state *state; 13127 struct bpf_reg_state *reg; 13128 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); 13129 13130 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 13131 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 13132 return -EACCES; 13133 } 13134 13135 if (rcu_lock) { 13136 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 13137 return -EINVAL; 13138 } else if (rcu_unlock) { 13139 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ 13140 if (reg->type & MEM_RCU) { 13141 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 13142 reg->type |= PTR_UNTRUSTED; 13143 } 13144 })); 13145 env->cur_state->active_rcu_lock = false; 13146 } else if (sleepable) { 13147 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 13148 return -EACCES; 13149 } 13150 } else if (rcu_lock) { 13151 env->cur_state->active_rcu_lock = true; 13152 } else if (rcu_unlock) { 13153 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 13154 return -EINVAL; 13155 } 13156 13157 if (env->cur_state->active_preempt_locks) { 13158 if (preempt_disable) { 13159 env->cur_state->active_preempt_locks++; 13160 } else if (preempt_enable) { 13161 env->cur_state->active_preempt_locks--; 13162 } else if (sleepable) { 13163 verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name); 13164 return -EACCES; 13165 } 13166 } else if (preempt_disable) { 13167 env->cur_state->active_preempt_locks++; 13168 } else if (preempt_enable) { 13169 verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name); 13170 return -EINVAL; 13171 } 13172 13173 if (env->cur_state->active_irq_id && sleepable) { 13174 verbose(env, "kernel func %s is sleepable within IRQ-disabled region\n", func_name); 13175 return -EACCES; 13176 } 13177 13178 /* In case of release function, we get register number of refcounted 13179 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 13180 */ 13181 if (meta.release_regno) { 13182 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 13183 if (err) { 13184 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 13185 func_name, meta.func_id); 13186 return err; 13187 } 13188 } 13189 13190 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 13191 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 13192 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 13193 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 13194 insn_aux->insert_off = regs[BPF_REG_2].off; 13195 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 13196 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 13197 if (err) { 13198 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 13199 func_name, meta.func_id); 13200 return err; 13201 } 13202 13203 err = release_reference(env, release_ref_obj_id); 13204 if (err) { 13205 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 13206 func_name, meta.func_id); 13207 return err; 13208 } 13209 } 13210 13211 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { 13212 if (!bpf_jit_supports_exceptions()) { 13213 verbose(env, "JIT does not support calling kfunc %s#%d\n", 13214 func_name, meta.func_id); 13215 return -ENOTSUPP; 13216 } 13217 env->seen_exception = true; 13218 13219 /* In the case of the default callback, the cookie value passed 13220 * to bpf_throw becomes the return value of the program. 13221 */ 13222 if (!env->exception_callback_subprog) { 13223 err = check_return_code(env, BPF_REG_1, "R1"); 13224 if (err < 0) 13225 return err; 13226 } 13227 } 13228 13229 for (i = 0; i < CALLER_SAVED_REGS; i++) 13230 mark_reg_not_init(env, regs, caller_saved[i]); 13231 13232 /* Check return type */ 13233 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 13234 13235 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 13236 /* Only exception is bpf_obj_new_impl */ 13237 if (meta.btf != btf_vmlinux || 13238 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 13239 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && 13240 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 13241 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 13242 return -EINVAL; 13243 } 13244 } 13245 13246 if (btf_type_is_scalar(t)) { 13247 mark_reg_unknown(env, regs, BPF_REG_0); 13248 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 13249 } else if (btf_type_is_ptr(t)) { 13250 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 13251 13252 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 13253 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 13254 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13255 struct btf_struct_meta *struct_meta; 13256 struct btf *ret_btf; 13257 u32 ret_btf_id; 13258 13259 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) 13260 return -ENOMEM; 13261 13262 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 13263 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 13264 return -EINVAL; 13265 } 13266 13267 ret_btf = env->prog->aux->btf; 13268 ret_btf_id = meta.arg_constant.value; 13269 13270 /* This may be NULL due to user not supplying a BTF */ 13271 if (!ret_btf) { 13272 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); 13273 return -EINVAL; 13274 } 13275 13276 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 13277 if (!ret_t || !__btf_type_is_struct(ret_t)) { 13278 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); 13279 return -EINVAL; 13280 } 13281 13282 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13283 if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) { 13284 verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n", 13285 ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE); 13286 return -EINVAL; 13287 } 13288 13289 if (!bpf_global_percpu_ma_set) { 13290 mutex_lock(&bpf_percpu_ma_lock); 13291 if (!bpf_global_percpu_ma_set) { 13292 /* Charge memory allocated with bpf_global_percpu_ma to 13293 * root memcg. The obj_cgroup for root memcg is NULL. 13294 */ 13295 err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL); 13296 if (!err) 13297 bpf_global_percpu_ma_set = true; 13298 } 13299 mutex_unlock(&bpf_percpu_ma_lock); 13300 if (err) 13301 return err; 13302 } 13303 13304 mutex_lock(&bpf_percpu_ma_lock); 13305 err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size); 13306 mutex_unlock(&bpf_percpu_ma_lock); 13307 if (err) 13308 return err; 13309 } 13310 13311 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); 13312 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13313 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { 13314 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); 13315 return -EINVAL; 13316 } 13317 13318 if (struct_meta) { 13319 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); 13320 return -EINVAL; 13321 } 13322 } 13323 13324 mark_reg_known_zero(env, regs, BPF_REG_0); 13325 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 13326 regs[BPF_REG_0].btf = ret_btf; 13327 regs[BPF_REG_0].btf_id = ret_btf_id; 13328 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) 13329 regs[BPF_REG_0].type |= MEM_PERCPU; 13330 13331 insn_aux->obj_new_size = ret_t->size; 13332 insn_aux->kptr_struct_meta = struct_meta; 13333 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 13334 mark_reg_known_zero(env, regs, BPF_REG_0); 13335 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 13336 regs[BPF_REG_0].btf = meta.arg_btf; 13337 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 13338 13339 insn_aux->kptr_struct_meta = 13340 btf_find_struct_meta(meta.arg_btf, 13341 meta.arg_btf_id); 13342 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 13343 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 13344 struct btf_field *field = meta.arg_list_head.field; 13345 13346 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 13347 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 13348 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 13349 struct btf_field *field = meta.arg_rbtree_root.field; 13350 13351 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 13352 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 13353 mark_reg_known_zero(env, regs, BPF_REG_0); 13354 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 13355 regs[BPF_REG_0].btf = desc_btf; 13356 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 13357 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 13358 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 13359 if (!ret_t || !btf_type_is_struct(ret_t)) { 13360 verbose(env, 13361 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 13362 return -EINVAL; 13363 } 13364 13365 mark_reg_known_zero(env, regs, BPF_REG_0); 13366 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 13367 regs[BPF_REG_0].btf = desc_btf; 13368 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 13369 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 13370 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 13371 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 13372 13373 mark_reg_known_zero(env, regs, BPF_REG_0); 13374 13375 if (!meta.arg_constant.found) { 13376 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 13377 return -EFAULT; 13378 } 13379 13380 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 13381 13382 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 13383 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 13384 13385 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 13386 regs[BPF_REG_0].type |= MEM_RDONLY; 13387 } else { 13388 /* this will set env->seen_direct_write to true */ 13389 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 13390 verbose(env, "the prog does not allow writes to packet data\n"); 13391 return -EINVAL; 13392 } 13393 } 13394 13395 if (!meta.initialized_dynptr.id) { 13396 verbose(env, "verifier internal error: no dynptr id\n"); 13397 return -EFAULT; 13398 } 13399 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 13400 13401 /* we don't need to set BPF_REG_0's ref obj id 13402 * because packet slices are not refcounted (see 13403 * dynptr_type_refcounted) 13404 */ 13405 } else { 13406 verbose(env, "kernel function %s unhandled dynamic return type\n", 13407 meta.func_name); 13408 return -EFAULT; 13409 } 13410 } else if (btf_type_is_void(ptr_type)) { 13411 /* kfunc returning 'void *' is equivalent to returning scalar */ 13412 mark_reg_unknown(env, regs, BPF_REG_0); 13413 } else if (!__btf_type_is_struct(ptr_type)) { 13414 if (!meta.r0_size) { 13415 __u32 sz; 13416 13417 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 13418 meta.r0_size = sz; 13419 meta.r0_rdonly = true; 13420 } 13421 } 13422 if (!meta.r0_size) { 13423 ptr_type_name = btf_name_by_offset(desc_btf, 13424 ptr_type->name_off); 13425 verbose(env, 13426 "kernel function %s returns pointer type %s %s is not supported\n", 13427 func_name, 13428 btf_type_str(ptr_type), 13429 ptr_type_name); 13430 return -EINVAL; 13431 } 13432 13433 mark_reg_known_zero(env, regs, BPF_REG_0); 13434 regs[BPF_REG_0].type = PTR_TO_MEM; 13435 regs[BPF_REG_0].mem_size = meta.r0_size; 13436 13437 if (meta.r0_rdonly) 13438 regs[BPF_REG_0].type |= MEM_RDONLY; 13439 13440 /* Ensures we don't access the memory after a release_reference() */ 13441 if (meta.ref_obj_id) 13442 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 13443 } else { 13444 mark_reg_known_zero(env, regs, BPF_REG_0); 13445 regs[BPF_REG_0].btf = desc_btf; 13446 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 13447 regs[BPF_REG_0].btf_id = ptr_type_id; 13448 13449 if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache]) 13450 regs[BPF_REG_0].type |= PTR_UNTRUSTED; 13451 13452 if (is_iter_next_kfunc(&meta)) { 13453 struct bpf_reg_state *cur_iter; 13454 13455 cur_iter = get_iter_from_state(env->cur_state, &meta); 13456 13457 if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */ 13458 regs[BPF_REG_0].type |= MEM_RCU; 13459 else 13460 regs[BPF_REG_0].type |= PTR_TRUSTED; 13461 } 13462 } 13463 13464 if (is_kfunc_ret_null(&meta)) { 13465 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 13466 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 13467 regs[BPF_REG_0].id = ++env->id_gen; 13468 } 13469 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 13470 if (is_kfunc_acquire(&meta)) { 13471 int id = acquire_reference(env, insn_idx); 13472 13473 if (id < 0) 13474 return id; 13475 if (is_kfunc_ret_null(&meta)) 13476 regs[BPF_REG_0].id = id; 13477 regs[BPF_REG_0].ref_obj_id = id; 13478 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 13479 ref_set_non_owning(env, ®s[BPF_REG_0]); 13480 } 13481 13482 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 13483 regs[BPF_REG_0].id = ++env->id_gen; 13484 } else if (btf_type_is_void(t)) { 13485 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 13486 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 13487 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 13488 insn_aux->kptr_struct_meta = 13489 btf_find_struct_meta(meta.arg_btf, 13490 meta.arg_btf_id); 13491 } 13492 } 13493 } 13494 13495 nargs = btf_type_vlen(meta.func_proto); 13496 args = (const struct btf_param *)(meta.func_proto + 1); 13497 for (i = 0; i < nargs; i++) { 13498 u32 regno = i + 1; 13499 13500 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 13501 if (btf_type_is_ptr(t)) 13502 mark_btf_func_reg_size(env, regno, sizeof(void *)); 13503 else 13504 /* scalar. ensured by btf_check_kfunc_arg_match() */ 13505 mark_btf_func_reg_size(env, regno, t->size); 13506 } 13507 13508 if (is_iter_next_kfunc(&meta)) { 13509 err = process_iter_next_call(env, insn_idx, &meta); 13510 if (err) 13511 return err; 13512 } 13513 13514 return 0; 13515 } 13516 13517 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 13518 const struct bpf_reg_state *reg, 13519 enum bpf_reg_type type) 13520 { 13521 bool known = tnum_is_const(reg->var_off); 13522 s64 val = reg->var_off.value; 13523 s64 smin = reg->smin_value; 13524 13525 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 13526 verbose(env, "math between %s pointer and %lld is not allowed\n", 13527 reg_type_str(env, type), val); 13528 return false; 13529 } 13530 13531 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 13532 verbose(env, "%s pointer offset %d is not allowed\n", 13533 reg_type_str(env, type), reg->off); 13534 return false; 13535 } 13536 13537 if (smin == S64_MIN) { 13538 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 13539 reg_type_str(env, type)); 13540 return false; 13541 } 13542 13543 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 13544 verbose(env, "value %lld makes %s pointer be out of bounds\n", 13545 smin, reg_type_str(env, type)); 13546 return false; 13547 } 13548 13549 return true; 13550 } 13551 13552 enum { 13553 REASON_BOUNDS = -1, 13554 REASON_TYPE = -2, 13555 REASON_PATHS = -3, 13556 REASON_LIMIT = -4, 13557 REASON_STACK = -5, 13558 }; 13559 13560 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 13561 u32 *alu_limit, bool mask_to_left) 13562 { 13563 u32 max = 0, ptr_limit = 0; 13564 13565 switch (ptr_reg->type) { 13566 case PTR_TO_STACK: 13567 /* Offset 0 is out-of-bounds, but acceptable start for the 13568 * left direction, see BPF_REG_FP. Also, unknown scalar 13569 * offset where we would need to deal with min/max bounds is 13570 * currently prohibited for unprivileged. 13571 */ 13572 max = MAX_BPF_STACK + mask_to_left; 13573 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 13574 break; 13575 case PTR_TO_MAP_VALUE: 13576 max = ptr_reg->map_ptr->value_size; 13577 ptr_limit = (mask_to_left ? 13578 ptr_reg->smin_value : 13579 ptr_reg->umax_value) + ptr_reg->off; 13580 break; 13581 default: 13582 return REASON_TYPE; 13583 } 13584 13585 if (ptr_limit >= max) 13586 return REASON_LIMIT; 13587 *alu_limit = ptr_limit; 13588 return 0; 13589 } 13590 13591 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 13592 const struct bpf_insn *insn) 13593 { 13594 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 13595 } 13596 13597 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 13598 u32 alu_state, u32 alu_limit) 13599 { 13600 /* If we arrived here from different branches with different 13601 * state or limits to sanitize, then this won't work. 13602 */ 13603 if (aux->alu_state && 13604 (aux->alu_state != alu_state || 13605 aux->alu_limit != alu_limit)) 13606 return REASON_PATHS; 13607 13608 /* Corresponding fixup done in do_misc_fixups(). */ 13609 aux->alu_state = alu_state; 13610 aux->alu_limit = alu_limit; 13611 return 0; 13612 } 13613 13614 static int sanitize_val_alu(struct bpf_verifier_env *env, 13615 struct bpf_insn *insn) 13616 { 13617 struct bpf_insn_aux_data *aux = cur_aux(env); 13618 13619 if (can_skip_alu_sanitation(env, insn)) 13620 return 0; 13621 13622 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 13623 } 13624 13625 static bool sanitize_needed(u8 opcode) 13626 { 13627 return opcode == BPF_ADD || opcode == BPF_SUB; 13628 } 13629 13630 struct bpf_sanitize_info { 13631 struct bpf_insn_aux_data aux; 13632 bool mask_to_left; 13633 }; 13634 13635 static struct bpf_verifier_state * 13636 sanitize_speculative_path(struct bpf_verifier_env *env, 13637 const struct bpf_insn *insn, 13638 u32 next_idx, u32 curr_idx) 13639 { 13640 struct bpf_verifier_state *branch; 13641 struct bpf_reg_state *regs; 13642 13643 branch = push_stack(env, next_idx, curr_idx, true); 13644 if (branch && insn) { 13645 regs = branch->frame[branch->curframe]->regs; 13646 if (BPF_SRC(insn->code) == BPF_K) { 13647 mark_reg_unknown(env, regs, insn->dst_reg); 13648 } else if (BPF_SRC(insn->code) == BPF_X) { 13649 mark_reg_unknown(env, regs, insn->dst_reg); 13650 mark_reg_unknown(env, regs, insn->src_reg); 13651 } 13652 } 13653 return branch; 13654 } 13655 13656 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 13657 struct bpf_insn *insn, 13658 const struct bpf_reg_state *ptr_reg, 13659 const struct bpf_reg_state *off_reg, 13660 struct bpf_reg_state *dst_reg, 13661 struct bpf_sanitize_info *info, 13662 const bool commit_window) 13663 { 13664 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 13665 struct bpf_verifier_state *vstate = env->cur_state; 13666 bool off_is_imm = tnum_is_const(off_reg->var_off); 13667 bool off_is_neg = off_reg->smin_value < 0; 13668 bool ptr_is_dst_reg = ptr_reg == dst_reg; 13669 u8 opcode = BPF_OP(insn->code); 13670 u32 alu_state, alu_limit; 13671 struct bpf_reg_state tmp; 13672 bool ret; 13673 int err; 13674 13675 if (can_skip_alu_sanitation(env, insn)) 13676 return 0; 13677 13678 /* We already marked aux for masking from non-speculative 13679 * paths, thus we got here in the first place. We only care 13680 * to explore bad access from here. 13681 */ 13682 if (vstate->speculative) 13683 goto do_sim; 13684 13685 if (!commit_window) { 13686 if (!tnum_is_const(off_reg->var_off) && 13687 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 13688 return REASON_BOUNDS; 13689 13690 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 13691 (opcode == BPF_SUB && !off_is_neg); 13692 } 13693 13694 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 13695 if (err < 0) 13696 return err; 13697 13698 if (commit_window) { 13699 /* In commit phase we narrow the masking window based on 13700 * the observed pointer move after the simulated operation. 13701 */ 13702 alu_state = info->aux.alu_state; 13703 alu_limit = abs(info->aux.alu_limit - alu_limit); 13704 } else { 13705 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 13706 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 13707 alu_state |= ptr_is_dst_reg ? 13708 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 13709 13710 /* Limit pruning on unknown scalars to enable deep search for 13711 * potential masking differences from other program paths. 13712 */ 13713 if (!off_is_imm) 13714 env->explore_alu_limits = true; 13715 } 13716 13717 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 13718 if (err < 0) 13719 return err; 13720 do_sim: 13721 /* If we're in commit phase, we're done here given we already 13722 * pushed the truncated dst_reg into the speculative verification 13723 * stack. 13724 * 13725 * Also, when register is a known constant, we rewrite register-based 13726 * operation to immediate-based, and thus do not need masking (and as 13727 * a consequence, do not need to simulate the zero-truncation either). 13728 */ 13729 if (commit_window || off_is_imm) 13730 return 0; 13731 13732 /* Simulate and find potential out-of-bounds access under 13733 * speculative execution from truncation as a result of 13734 * masking when off was not within expected range. If off 13735 * sits in dst, then we temporarily need to move ptr there 13736 * to simulate dst (== 0) +/-= ptr. Needed, for example, 13737 * for cases where we use K-based arithmetic in one direction 13738 * and truncated reg-based in the other in order to explore 13739 * bad access. 13740 */ 13741 if (!ptr_is_dst_reg) { 13742 tmp = *dst_reg; 13743 copy_register_state(dst_reg, ptr_reg); 13744 } 13745 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 13746 env->insn_idx); 13747 if (!ptr_is_dst_reg && ret) 13748 *dst_reg = tmp; 13749 return !ret ? REASON_STACK : 0; 13750 } 13751 13752 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 13753 { 13754 struct bpf_verifier_state *vstate = env->cur_state; 13755 13756 /* If we simulate paths under speculation, we don't update the 13757 * insn as 'seen' such that when we verify unreachable paths in 13758 * the non-speculative domain, sanitize_dead_code() can still 13759 * rewrite/sanitize them. 13760 */ 13761 if (!vstate->speculative) 13762 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 13763 } 13764 13765 static int sanitize_err(struct bpf_verifier_env *env, 13766 const struct bpf_insn *insn, int reason, 13767 const struct bpf_reg_state *off_reg, 13768 const struct bpf_reg_state *dst_reg) 13769 { 13770 static const char *err = "pointer arithmetic with it prohibited for !root"; 13771 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 13772 u32 dst = insn->dst_reg, src = insn->src_reg; 13773 13774 switch (reason) { 13775 case REASON_BOUNDS: 13776 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 13777 off_reg == dst_reg ? dst : src, err); 13778 break; 13779 case REASON_TYPE: 13780 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 13781 off_reg == dst_reg ? src : dst, err); 13782 break; 13783 case REASON_PATHS: 13784 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 13785 dst, op, err); 13786 break; 13787 case REASON_LIMIT: 13788 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 13789 dst, op, err); 13790 break; 13791 case REASON_STACK: 13792 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 13793 dst, err); 13794 break; 13795 default: 13796 verbose(env, "verifier internal error: unknown reason (%d)\n", 13797 reason); 13798 break; 13799 } 13800 13801 return -EACCES; 13802 } 13803 13804 /* check that stack access falls within stack limits and that 'reg' doesn't 13805 * have a variable offset. 13806 * 13807 * Variable offset is prohibited for unprivileged mode for simplicity since it 13808 * requires corresponding support in Spectre masking for stack ALU. See also 13809 * retrieve_ptr_limit(). 13810 * 13811 * 13812 * 'off' includes 'reg->off'. 13813 */ 13814 static int check_stack_access_for_ptr_arithmetic( 13815 struct bpf_verifier_env *env, 13816 int regno, 13817 const struct bpf_reg_state *reg, 13818 int off) 13819 { 13820 if (!tnum_is_const(reg->var_off)) { 13821 char tn_buf[48]; 13822 13823 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 13824 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 13825 regno, tn_buf, off); 13826 return -EACCES; 13827 } 13828 13829 if (off >= 0 || off < -MAX_BPF_STACK) { 13830 verbose(env, "R%d stack pointer arithmetic goes out of range, " 13831 "prohibited for !root; off=%d\n", regno, off); 13832 return -EACCES; 13833 } 13834 13835 return 0; 13836 } 13837 13838 static int sanitize_check_bounds(struct bpf_verifier_env *env, 13839 const struct bpf_insn *insn, 13840 const struct bpf_reg_state *dst_reg) 13841 { 13842 u32 dst = insn->dst_reg; 13843 13844 /* For unprivileged we require that resulting offset must be in bounds 13845 * in order to be able to sanitize access later on. 13846 */ 13847 if (env->bypass_spec_v1) 13848 return 0; 13849 13850 switch (dst_reg->type) { 13851 case PTR_TO_STACK: 13852 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 13853 dst_reg->off + dst_reg->var_off.value)) 13854 return -EACCES; 13855 break; 13856 case PTR_TO_MAP_VALUE: 13857 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 13858 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 13859 "prohibited for !root\n", dst); 13860 return -EACCES; 13861 } 13862 break; 13863 default: 13864 break; 13865 } 13866 13867 return 0; 13868 } 13869 13870 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 13871 * Caller should also handle BPF_MOV case separately. 13872 * If we return -EACCES, caller may want to try again treating pointer as a 13873 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 13874 */ 13875 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 13876 struct bpf_insn *insn, 13877 const struct bpf_reg_state *ptr_reg, 13878 const struct bpf_reg_state *off_reg) 13879 { 13880 struct bpf_verifier_state *vstate = env->cur_state; 13881 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13882 struct bpf_reg_state *regs = state->regs, *dst_reg; 13883 bool known = tnum_is_const(off_reg->var_off); 13884 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 13885 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 13886 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 13887 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 13888 struct bpf_sanitize_info info = {}; 13889 u8 opcode = BPF_OP(insn->code); 13890 u32 dst = insn->dst_reg; 13891 int ret; 13892 13893 dst_reg = ®s[dst]; 13894 13895 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 13896 smin_val > smax_val || umin_val > umax_val) { 13897 /* Taint dst register if offset had invalid bounds derived from 13898 * e.g. dead branches. 13899 */ 13900 __mark_reg_unknown(env, dst_reg); 13901 return 0; 13902 } 13903 13904 if (BPF_CLASS(insn->code) != BPF_ALU64) { 13905 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 13906 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13907 __mark_reg_unknown(env, dst_reg); 13908 return 0; 13909 } 13910 13911 verbose(env, 13912 "R%d 32-bit pointer arithmetic prohibited\n", 13913 dst); 13914 return -EACCES; 13915 } 13916 13917 if (ptr_reg->type & PTR_MAYBE_NULL) { 13918 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 13919 dst, reg_type_str(env, ptr_reg->type)); 13920 return -EACCES; 13921 } 13922 13923 switch (base_type(ptr_reg->type)) { 13924 case PTR_TO_CTX: 13925 case PTR_TO_MAP_VALUE: 13926 case PTR_TO_MAP_KEY: 13927 case PTR_TO_STACK: 13928 case PTR_TO_PACKET_META: 13929 case PTR_TO_PACKET: 13930 case PTR_TO_TP_BUFFER: 13931 case PTR_TO_BTF_ID: 13932 case PTR_TO_MEM: 13933 case PTR_TO_BUF: 13934 case PTR_TO_FUNC: 13935 case CONST_PTR_TO_DYNPTR: 13936 break; 13937 case PTR_TO_FLOW_KEYS: 13938 if (known) 13939 break; 13940 fallthrough; 13941 case CONST_PTR_TO_MAP: 13942 /* smin_val represents the known value */ 13943 if (known && smin_val == 0 && opcode == BPF_ADD) 13944 break; 13945 fallthrough; 13946 default: 13947 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 13948 dst, reg_type_str(env, ptr_reg->type)); 13949 return -EACCES; 13950 } 13951 13952 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 13953 * The id may be overwritten later if we create a new variable offset. 13954 */ 13955 dst_reg->type = ptr_reg->type; 13956 dst_reg->id = ptr_reg->id; 13957 13958 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 13959 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 13960 return -EINVAL; 13961 13962 /* pointer types do not carry 32-bit bounds at the moment. */ 13963 __mark_reg32_unbounded(dst_reg); 13964 13965 if (sanitize_needed(opcode)) { 13966 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 13967 &info, false); 13968 if (ret < 0) 13969 return sanitize_err(env, insn, ret, off_reg, dst_reg); 13970 } 13971 13972 switch (opcode) { 13973 case BPF_ADD: 13974 /* We can take a fixed offset as long as it doesn't overflow 13975 * the s32 'off' field 13976 */ 13977 if (known && (ptr_reg->off + smin_val == 13978 (s64)(s32)(ptr_reg->off + smin_val))) { 13979 /* pointer += K. Accumulate it into fixed offset */ 13980 dst_reg->smin_value = smin_ptr; 13981 dst_reg->smax_value = smax_ptr; 13982 dst_reg->umin_value = umin_ptr; 13983 dst_reg->umax_value = umax_ptr; 13984 dst_reg->var_off = ptr_reg->var_off; 13985 dst_reg->off = ptr_reg->off + smin_val; 13986 dst_reg->raw = ptr_reg->raw; 13987 break; 13988 } 13989 /* A new variable offset is created. Note that off_reg->off 13990 * == 0, since it's a scalar. 13991 * dst_reg gets the pointer type and since some positive 13992 * integer value was added to the pointer, give it a new 'id' 13993 * if it's a PTR_TO_PACKET. 13994 * this creates a new 'base' pointer, off_reg (variable) gets 13995 * added into the variable offset, and we copy the fixed offset 13996 * from ptr_reg. 13997 */ 13998 if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) || 13999 check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) { 14000 dst_reg->smin_value = S64_MIN; 14001 dst_reg->smax_value = S64_MAX; 14002 } 14003 if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) || 14004 check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) { 14005 dst_reg->umin_value = 0; 14006 dst_reg->umax_value = U64_MAX; 14007 } 14008 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 14009 dst_reg->off = ptr_reg->off; 14010 dst_reg->raw = ptr_reg->raw; 14011 if (reg_is_pkt_pointer(ptr_reg)) { 14012 dst_reg->id = ++env->id_gen; 14013 /* something was added to pkt_ptr, set range to zero */ 14014 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 14015 } 14016 break; 14017 case BPF_SUB: 14018 if (dst_reg == off_reg) { 14019 /* scalar -= pointer. Creates an unknown scalar */ 14020 verbose(env, "R%d tried to subtract pointer from scalar\n", 14021 dst); 14022 return -EACCES; 14023 } 14024 /* We don't allow subtraction from FP, because (according to 14025 * test_verifier.c test "invalid fp arithmetic", JITs might not 14026 * be able to deal with it. 14027 */ 14028 if (ptr_reg->type == PTR_TO_STACK) { 14029 verbose(env, "R%d subtraction from stack pointer prohibited\n", 14030 dst); 14031 return -EACCES; 14032 } 14033 if (known && (ptr_reg->off - smin_val == 14034 (s64)(s32)(ptr_reg->off - smin_val))) { 14035 /* pointer -= K. Subtract it from fixed offset */ 14036 dst_reg->smin_value = smin_ptr; 14037 dst_reg->smax_value = smax_ptr; 14038 dst_reg->umin_value = umin_ptr; 14039 dst_reg->umax_value = umax_ptr; 14040 dst_reg->var_off = ptr_reg->var_off; 14041 dst_reg->id = ptr_reg->id; 14042 dst_reg->off = ptr_reg->off - smin_val; 14043 dst_reg->raw = ptr_reg->raw; 14044 break; 14045 } 14046 /* A new variable offset is created. If the subtrahend is known 14047 * nonnegative, then any reg->range we had before is still good. 14048 */ 14049 if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) || 14050 check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) { 14051 /* Overflow possible, we know nothing */ 14052 dst_reg->smin_value = S64_MIN; 14053 dst_reg->smax_value = S64_MAX; 14054 } 14055 if (umin_ptr < umax_val) { 14056 /* Overflow possible, we know nothing */ 14057 dst_reg->umin_value = 0; 14058 dst_reg->umax_value = U64_MAX; 14059 } else { 14060 /* Cannot overflow (as long as bounds are consistent) */ 14061 dst_reg->umin_value = umin_ptr - umax_val; 14062 dst_reg->umax_value = umax_ptr - umin_val; 14063 } 14064 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 14065 dst_reg->off = ptr_reg->off; 14066 dst_reg->raw = ptr_reg->raw; 14067 if (reg_is_pkt_pointer(ptr_reg)) { 14068 dst_reg->id = ++env->id_gen; 14069 /* something was added to pkt_ptr, set range to zero */ 14070 if (smin_val < 0) 14071 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 14072 } 14073 break; 14074 case BPF_AND: 14075 case BPF_OR: 14076 case BPF_XOR: 14077 /* bitwise ops on pointers are troublesome, prohibit. */ 14078 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 14079 dst, bpf_alu_string[opcode >> 4]); 14080 return -EACCES; 14081 default: 14082 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 14083 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 14084 dst, bpf_alu_string[opcode >> 4]); 14085 return -EACCES; 14086 } 14087 14088 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 14089 return -EINVAL; 14090 reg_bounds_sync(dst_reg); 14091 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 14092 return -EACCES; 14093 if (sanitize_needed(opcode)) { 14094 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 14095 &info, true); 14096 if (ret < 0) 14097 return sanitize_err(env, insn, ret, off_reg, dst_reg); 14098 } 14099 14100 return 0; 14101 } 14102 14103 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 14104 struct bpf_reg_state *src_reg) 14105 { 14106 s32 *dst_smin = &dst_reg->s32_min_value; 14107 s32 *dst_smax = &dst_reg->s32_max_value; 14108 u32 *dst_umin = &dst_reg->u32_min_value; 14109 u32 *dst_umax = &dst_reg->u32_max_value; 14110 14111 if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) || 14112 check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) { 14113 *dst_smin = S32_MIN; 14114 *dst_smax = S32_MAX; 14115 } 14116 if (check_add_overflow(*dst_umin, src_reg->u32_min_value, dst_umin) || 14117 check_add_overflow(*dst_umax, src_reg->u32_max_value, dst_umax)) { 14118 *dst_umin = 0; 14119 *dst_umax = U32_MAX; 14120 } 14121 } 14122 14123 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 14124 struct bpf_reg_state *src_reg) 14125 { 14126 s64 *dst_smin = &dst_reg->smin_value; 14127 s64 *dst_smax = &dst_reg->smax_value; 14128 u64 *dst_umin = &dst_reg->umin_value; 14129 u64 *dst_umax = &dst_reg->umax_value; 14130 14131 if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) || 14132 check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) { 14133 *dst_smin = S64_MIN; 14134 *dst_smax = S64_MAX; 14135 } 14136 if (check_add_overflow(*dst_umin, src_reg->umin_value, dst_umin) || 14137 check_add_overflow(*dst_umax, src_reg->umax_value, dst_umax)) { 14138 *dst_umin = 0; 14139 *dst_umax = U64_MAX; 14140 } 14141 } 14142 14143 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 14144 struct bpf_reg_state *src_reg) 14145 { 14146 s32 *dst_smin = &dst_reg->s32_min_value; 14147 s32 *dst_smax = &dst_reg->s32_max_value; 14148 u32 umin_val = src_reg->u32_min_value; 14149 u32 umax_val = src_reg->u32_max_value; 14150 14151 if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) || 14152 check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) { 14153 /* Overflow possible, we know nothing */ 14154 *dst_smin = S32_MIN; 14155 *dst_smax = S32_MAX; 14156 } 14157 if (dst_reg->u32_min_value < umax_val) { 14158 /* Overflow possible, we know nothing */ 14159 dst_reg->u32_min_value = 0; 14160 dst_reg->u32_max_value = U32_MAX; 14161 } else { 14162 /* Cannot overflow (as long as bounds are consistent) */ 14163 dst_reg->u32_min_value -= umax_val; 14164 dst_reg->u32_max_value -= umin_val; 14165 } 14166 } 14167 14168 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 14169 struct bpf_reg_state *src_reg) 14170 { 14171 s64 *dst_smin = &dst_reg->smin_value; 14172 s64 *dst_smax = &dst_reg->smax_value; 14173 u64 umin_val = src_reg->umin_value; 14174 u64 umax_val = src_reg->umax_value; 14175 14176 if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) || 14177 check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) { 14178 /* Overflow possible, we know nothing */ 14179 *dst_smin = S64_MIN; 14180 *dst_smax = S64_MAX; 14181 } 14182 if (dst_reg->umin_value < umax_val) { 14183 /* Overflow possible, we know nothing */ 14184 dst_reg->umin_value = 0; 14185 dst_reg->umax_value = U64_MAX; 14186 } else { 14187 /* Cannot overflow (as long as bounds are consistent) */ 14188 dst_reg->umin_value -= umax_val; 14189 dst_reg->umax_value -= umin_val; 14190 } 14191 } 14192 14193 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 14194 struct bpf_reg_state *src_reg) 14195 { 14196 s32 *dst_smin = &dst_reg->s32_min_value; 14197 s32 *dst_smax = &dst_reg->s32_max_value; 14198 u32 *dst_umin = &dst_reg->u32_min_value; 14199 u32 *dst_umax = &dst_reg->u32_max_value; 14200 s32 tmp_prod[4]; 14201 14202 if (check_mul_overflow(*dst_umax, src_reg->u32_max_value, dst_umax) || 14203 check_mul_overflow(*dst_umin, src_reg->u32_min_value, dst_umin)) { 14204 /* Overflow possible, we know nothing */ 14205 *dst_umin = 0; 14206 *dst_umax = U32_MAX; 14207 } 14208 if (check_mul_overflow(*dst_smin, src_reg->s32_min_value, &tmp_prod[0]) || 14209 check_mul_overflow(*dst_smin, src_reg->s32_max_value, &tmp_prod[1]) || 14210 check_mul_overflow(*dst_smax, src_reg->s32_min_value, &tmp_prod[2]) || 14211 check_mul_overflow(*dst_smax, src_reg->s32_max_value, &tmp_prod[3])) { 14212 /* Overflow possible, we know nothing */ 14213 *dst_smin = S32_MIN; 14214 *dst_smax = S32_MAX; 14215 } else { 14216 *dst_smin = min_array(tmp_prod, 4); 14217 *dst_smax = max_array(tmp_prod, 4); 14218 } 14219 } 14220 14221 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 14222 struct bpf_reg_state *src_reg) 14223 { 14224 s64 *dst_smin = &dst_reg->smin_value; 14225 s64 *dst_smax = &dst_reg->smax_value; 14226 u64 *dst_umin = &dst_reg->umin_value; 14227 u64 *dst_umax = &dst_reg->umax_value; 14228 s64 tmp_prod[4]; 14229 14230 if (check_mul_overflow(*dst_umax, src_reg->umax_value, dst_umax) || 14231 check_mul_overflow(*dst_umin, src_reg->umin_value, dst_umin)) { 14232 /* Overflow possible, we know nothing */ 14233 *dst_umin = 0; 14234 *dst_umax = U64_MAX; 14235 } 14236 if (check_mul_overflow(*dst_smin, src_reg->smin_value, &tmp_prod[0]) || 14237 check_mul_overflow(*dst_smin, src_reg->smax_value, &tmp_prod[1]) || 14238 check_mul_overflow(*dst_smax, src_reg->smin_value, &tmp_prod[2]) || 14239 check_mul_overflow(*dst_smax, src_reg->smax_value, &tmp_prod[3])) { 14240 /* Overflow possible, we know nothing */ 14241 *dst_smin = S64_MIN; 14242 *dst_smax = S64_MAX; 14243 } else { 14244 *dst_smin = min_array(tmp_prod, 4); 14245 *dst_smax = max_array(tmp_prod, 4); 14246 } 14247 } 14248 14249 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 14250 struct bpf_reg_state *src_reg) 14251 { 14252 bool src_known = tnum_subreg_is_const(src_reg->var_off); 14253 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 14254 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 14255 u32 umax_val = src_reg->u32_max_value; 14256 14257 if (src_known && dst_known) { 14258 __mark_reg32_known(dst_reg, var32_off.value); 14259 return; 14260 } 14261 14262 /* We get our minimum from the var_off, since that's inherently 14263 * bitwise. Our maximum is the minimum of the operands' maxima. 14264 */ 14265 dst_reg->u32_min_value = var32_off.value; 14266 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 14267 14268 /* Safe to set s32 bounds by casting u32 result into s32 when u32 14269 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 14270 */ 14271 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 14272 dst_reg->s32_min_value = dst_reg->u32_min_value; 14273 dst_reg->s32_max_value = dst_reg->u32_max_value; 14274 } else { 14275 dst_reg->s32_min_value = S32_MIN; 14276 dst_reg->s32_max_value = S32_MAX; 14277 } 14278 } 14279 14280 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 14281 struct bpf_reg_state *src_reg) 14282 { 14283 bool src_known = tnum_is_const(src_reg->var_off); 14284 bool dst_known = tnum_is_const(dst_reg->var_off); 14285 u64 umax_val = src_reg->umax_value; 14286 14287 if (src_known && dst_known) { 14288 __mark_reg_known(dst_reg, dst_reg->var_off.value); 14289 return; 14290 } 14291 14292 /* We get our minimum from the var_off, since that's inherently 14293 * bitwise. Our maximum is the minimum of the operands' maxima. 14294 */ 14295 dst_reg->umin_value = dst_reg->var_off.value; 14296 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 14297 14298 /* Safe to set s64 bounds by casting u64 result into s64 when u64 14299 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 14300 */ 14301 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 14302 dst_reg->smin_value = dst_reg->umin_value; 14303 dst_reg->smax_value = dst_reg->umax_value; 14304 } else { 14305 dst_reg->smin_value = S64_MIN; 14306 dst_reg->smax_value = S64_MAX; 14307 } 14308 /* We may learn something more from the var_off */ 14309 __update_reg_bounds(dst_reg); 14310 } 14311 14312 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 14313 struct bpf_reg_state *src_reg) 14314 { 14315 bool src_known = tnum_subreg_is_const(src_reg->var_off); 14316 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 14317 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 14318 u32 umin_val = src_reg->u32_min_value; 14319 14320 if (src_known && dst_known) { 14321 __mark_reg32_known(dst_reg, var32_off.value); 14322 return; 14323 } 14324 14325 /* We get our maximum from the var_off, and our minimum is the 14326 * maximum of the operands' minima 14327 */ 14328 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 14329 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 14330 14331 /* Safe to set s32 bounds by casting u32 result into s32 when u32 14332 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 14333 */ 14334 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 14335 dst_reg->s32_min_value = dst_reg->u32_min_value; 14336 dst_reg->s32_max_value = dst_reg->u32_max_value; 14337 } else { 14338 dst_reg->s32_min_value = S32_MIN; 14339 dst_reg->s32_max_value = S32_MAX; 14340 } 14341 } 14342 14343 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 14344 struct bpf_reg_state *src_reg) 14345 { 14346 bool src_known = tnum_is_const(src_reg->var_off); 14347 bool dst_known = tnum_is_const(dst_reg->var_off); 14348 u64 umin_val = src_reg->umin_value; 14349 14350 if (src_known && dst_known) { 14351 __mark_reg_known(dst_reg, dst_reg->var_off.value); 14352 return; 14353 } 14354 14355 /* We get our maximum from the var_off, and our minimum is the 14356 * maximum of the operands' minima 14357 */ 14358 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 14359 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 14360 14361 /* Safe to set s64 bounds by casting u64 result into s64 when u64 14362 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 14363 */ 14364 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 14365 dst_reg->smin_value = dst_reg->umin_value; 14366 dst_reg->smax_value = dst_reg->umax_value; 14367 } else { 14368 dst_reg->smin_value = S64_MIN; 14369 dst_reg->smax_value = S64_MAX; 14370 } 14371 /* We may learn something more from the var_off */ 14372 __update_reg_bounds(dst_reg); 14373 } 14374 14375 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 14376 struct bpf_reg_state *src_reg) 14377 { 14378 bool src_known = tnum_subreg_is_const(src_reg->var_off); 14379 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 14380 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 14381 14382 if (src_known && dst_known) { 14383 __mark_reg32_known(dst_reg, var32_off.value); 14384 return; 14385 } 14386 14387 /* We get both minimum and maximum from the var32_off. */ 14388 dst_reg->u32_min_value = var32_off.value; 14389 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 14390 14391 /* Safe to set s32 bounds by casting u32 result into s32 when u32 14392 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 14393 */ 14394 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 14395 dst_reg->s32_min_value = dst_reg->u32_min_value; 14396 dst_reg->s32_max_value = dst_reg->u32_max_value; 14397 } else { 14398 dst_reg->s32_min_value = S32_MIN; 14399 dst_reg->s32_max_value = S32_MAX; 14400 } 14401 } 14402 14403 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 14404 struct bpf_reg_state *src_reg) 14405 { 14406 bool src_known = tnum_is_const(src_reg->var_off); 14407 bool dst_known = tnum_is_const(dst_reg->var_off); 14408 14409 if (src_known && dst_known) { 14410 /* dst_reg->var_off.value has been updated earlier */ 14411 __mark_reg_known(dst_reg, dst_reg->var_off.value); 14412 return; 14413 } 14414 14415 /* We get both minimum and maximum from the var_off. */ 14416 dst_reg->umin_value = dst_reg->var_off.value; 14417 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 14418 14419 /* Safe to set s64 bounds by casting u64 result into s64 when u64 14420 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 14421 */ 14422 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 14423 dst_reg->smin_value = dst_reg->umin_value; 14424 dst_reg->smax_value = dst_reg->umax_value; 14425 } else { 14426 dst_reg->smin_value = S64_MIN; 14427 dst_reg->smax_value = S64_MAX; 14428 } 14429 14430 __update_reg_bounds(dst_reg); 14431 } 14432 14433 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 14434 u64 umin_val, u64 umax_val) 14435 { 14436 /* We lose all sign bit information (except what we can pick 14437 * up from var_off) 14438 */ 14439 dst_reg->s32_min_value = S32_MIN; 14440 dst_reg->s32_max_value = S32_MAX; 14441 /* If we might shift our top bit out, then we know nothing */ 14442 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 14443 dst_reg->u32_min_value = 0; 14444 dst_reg->u32_max_value = U32_MAX; 14445 } else { 14446 dst_reg->u32_min_value <<= umin_val; 14447 dst_reg->u32_max_value <<= umax_val; 14448 } 14449 } 14450 14451 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 14452 struct bpf_reg_state *src_reg) 14453 { 14454 u32 umax_val = src_reg->u32_max_value; 14455 u32 umin_val = src_reg->u32_min_value; 14456 /* u32 alu operation will zext upper bits */ 14457 struct tnum subreg = tnum_subreg(dst_reg->var_off); 14458 14459 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 14460 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 14461 /* Not required but being careful mark reg64 bounds as unknown so 14462 * that we are forced to pick them up from tnum and zext later and 14463 * if some path skips this step we are still safe. 14464 */ 14465 __mark_reg64_unbounded(dst_reg); 14466 __update_reg32_bounds(dst_reg); 14467 } 14468 14469 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 14470 u64 umin_val, u64 umax_val) 14471 { 14472 /* Special case <<32 because it is a common compiler pattern to sign 14473 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 14474 * positive we know this shift will also be positive so we can track 14475 * bounds correctly. Otherwise we lose all sign bit information except 14476 * what we can pick up from var_off. Perhaps we can generalize this 14477 * later to shifts of any length. 14478 */ 14479 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 14480 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 14481 else 14482 dst_reg->smax_value = S64_MAX; 14483 14484 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 14485 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 14486 else 14487 dst_reg->smin_value = S64_MIN; 14488 14489 /* If we might shift our top bit out, then we know nothing */ 14490 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 14491 dst_reg->umin_value = 0; 14492 dst_reg->umax_value = U64_MAX; 14493 } else { 14494 dst_reg->umin_value <<= umin_val; 14495 dst_reg->umax_value <<= umax_val; 14496 } 14497 } 14498 14499 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 14500 struct bpf_reg_state *src_reg) 14501 { 14502 u64 umax_val = src_reg->umax_value; 14503 u64 umin_val = src_reg->umin_value; 14504 14505 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 14506 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 14507 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 14508 14509 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 14510 /* We may learn something more from the var_off */ 14511 __update_reg_bounds(dst_reg); 14512 } 14513 14514 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 14515 struct bpf_reg_state *src_reg) 14516 { 14517 struct tnum subreg = tnum_subreg(dst_reg->var_off); 14518 u32 umax_val = src_reg->u32_max_value; 14519 u32 umin_val = src_reg->u32_min_value; 14520 14521 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 14522 * be negative, then either: 14523 * 1) src_reg might be zero, so the sign bit of the result is 14524 * unknown, so we lose our signed bounds 14525 * 2) it's known negative, thus the unsigned bounds capture the 14526 * signed bounds 14527 * 3) the signed bounds cross zero, so they tell us nothing 14528 * about the result 14529 * If the value in dst_reg is known nonnegative, then again the 14530 * unsigned bounds capture the signed bounds. 14531 * Thus, in all cases it suffices to blow away our signed bounds 14532 * and rely on inferring new ones from the unsigned bounds and 14533 * var_off of the result. 14534 */ 14535 dst_reg->s32_min_value = S32_MIN; 14536 dst_reg->s32_max_value = S32_MAX; 14537 14538 dst_reg->var_off = tnum_rshift(subreg, umin_val); 14539 dst_reg->u32_min_value >>= umax_val; 14540 dst_reg->u32_max_value >>= umin_val; 14541 14542 __mark_reg64_unbounded(dst_reg); 14543 __update_reg32_bounds(dst_reg); 14544 } 14545 14546 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 14547 struct bpf_reg_state *src_reg) 14548 { 14549 u64 umax_val = src_reg->umax_value; 14550 u64 umin_val = src_reg->umin_value; 14551 14552 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 14553 * be negative, then either: 14554 * 1) src_reg might be zero, so the sign bit of the result is 14555 * unknown, so we lose our signed bounds 14556 * 2) it's known negative, thus the unsigned bounds capture the 14557 * signed bounds 14558 * 3) the signed bounds cross zero, so they tell us nothing 14559 * about the result 14560 * If the value in dst_reg is known nonnegative, then again the 14561 * unsigned bounds capture the signed bounds. 14562 * Thus, in all cases it suffices to blow away our signed bounds 14563 * and rely on inferring new ones from the unsigned bounds and 14564 * var_off of the result. 14565 */ 14566 dst_reg->smin_value = S64_MIN; 14567 dst_reg->smax_value = S64_MAX; 14568 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 14569 dst_reg->umin_value >>= umax_val; 14570 dst_reg->umax_value >>= umin_val; 14571 14572 /* Its not easy to operate on alu32 bounds here because it depends 14573 * on bits being shifted in. Take easy way out and mark unbounded 14574 * so we can recalculate later from tnum. 14575 */ 14576 __mark_reg32_unbounded(dst_reg); 14577 __update_reg_bounds(dst_reg); 14578 } 14579 14580 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 14581 struct bpf_reg_state *src_reg) 14582 { 14583 u64 umin_val = src_reg->u32_min_value; 14584 14585 /* Upon reaching here, src_known is true and 14586 * umax_val is equal to umin_val. 14587 */ 14588 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 14589 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 14590 14591 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 14592 14593 /* blow away the dst_reg umin_value/umax_value and rely on 14594 * dst_reg var_off to refine the result. 14595 */ 14596 dst_reg->u32_min_value = 0; 14597 dst_reg->u32_max_value = U32_MAX; 14598 14599 __mark_reg64_unbounded(dst_reg); 14600 __update_reg32_bounds(dst_reg); 14601 } 14602 14603 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 14604 struct bpf_reg_state *src_reg) 14605 { 14606 u64 umin_val = src_reg->umin_value; 14607 14608 /* Upon reaching here, src_known is true and umax_val is equal 14609 * to umin_val. 14610 */ 14611 dst_reg->smin_value >>= umin_val; 14612 dst_reg->smax_value >>= umin_val; 14613 14614 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 14615 14616 /* blow away the dst_reg umin_value/umax_value and rely on 14617 * dst_reg var_off to refine the result. 14618 */ 14619 dst_reg->umin_value = 0; 14620 dst_reg->umax_value = U64_MAX; 14621 14622 /* Its not easy to operate on alu32 bounds here because it depends 14623 * on bits being shifted in from upper 32-bits. Take easy way out 14624 * and mark unbounded so we can recalculate later from tnum. 14625 */ 14626 __mark_reg32_unbounded(dst_reg); 14627 __update_reg_bounds(dst_reg); 14628 } 14629 14630 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn, 14631 const struct bpf_reg_state *src_reg) 14632 { 14633 bool src_is_const = false; 14634 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 14635 14636 if (insn_bitness == 32) { 14637 if (tnum_subreg_is_const(src_reg->var_off) 14638 && src_reg->s32_min_value == src_reg->s32_max_value 14639 && src_reg->u32_min_value == src_reg->u32_max_value) 14640 src_is_const = true; 14641 } else { 14642 if (tnum_is_const(src_reg->var_off) 14643 && src_reg->smin_value == src_reg->smax_value 14644 && src_reg->umin_value == src_reg->umax_value) 14645 src_is_const = true; 14646 } 14647 14648 switch (BPF_OP(insn->code)) { 14649 case BPF_ADD: 14650 case BPF_SUB: 14651 case BPF_AND: 14652 case BPF_XOR: 14653 case BPF_OR: 14654 case BPF_MUL: 14655 return true; 14656 14657 /* Shift operators range is only computable if shift dimension operand 14658 * is a constant. Shifts greater than 31 or 63 are undefined. This 14659 * includes shifts by a negative number. 14660 */ 14661 case BPF_LSH: 14662 case BPF_RSH: 14663 case BPF_ARSH: 14664 return (src_is_const && src_reg->umax_value < insn_bitness); 14665 default: 14666 return false; 14667 } 14668 } 14669 14670 /* WARNING: This function does calculations on 64-bit values, but the actual 14671 * execution may occur on 32-bit values. Therefore, things like bitshifts 14672 * need extra checks in the 32-bit case. 14673 */ 14674 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 14675 struct bpf_insn *insn, 14676 struct bpf_reg_state *dst_reg, 14677 struct bpf_reg_state src_reg) 14678 { 14679 u8 opcode = BPF_OP(insn->code); 14680 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 14681 int ret; 14682 14683 if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) { 14684 __mark_reg_unknown(env, dst_reg); 14685 return 0; 14686 } 14687 14688 if (sanitize_needed(opcode)) { 14689 ret = sanitize_val_alu(env, insn); 14690 if (ret < 0) 14691 return sanitize_err(env, insn, ret, NULL, NULL); 14692 } 14693 14694 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 14695 * There are two classes of instructions: The first class we track both 14696 * alu32 and alu64 sign/unsigned bounds independently this provides the 14697 * greatest amount of precision when alu operations are mixed with jmp32 14698 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 14699 * and BPF_OR. This is possible because these ops have fairly easy to 14700 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 14701 * See alu32 verifier tests for examples. The second class of 14702 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 14703 * with regards to tracking sign/unsigned bounds because the bits may 14704 * cross subreg boundaries in the alu64 case. When this happens we mark 14705 * the reg unbounded in the subreg bound space and use the resulting 14706 * tnum to calculate an approximation of the sign/unsigned bounds. 14707 */ 14708 switch (opcode) { 14709 case BPF_ADD: 14710 scalar32_min_max_add(dst_reg, &src_reg); 14711 scalar_min_max_add(dst_reg, &src_reg); 14712 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 14713 break; 14714 case BPF_SUB: 14715 scalar32_min_max_sub(dst_reg, &src_reg); 14716 scalar_min_max_sub(dst_reg, &src_reg); 14717 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 14718 break; 14719 case BPF_MUL: 14720 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 14721 scalar32_min_max_mul(dst_reg, &src_reg); 14722 scalar_min_max_mul(dst_reg, &src_reg); 14723 break; 14724 case BPF_AND: 14725 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 14726 scalar32_min_max_and(dst_reg, &src_reg); 14727 scalar_min_max_and(dst_reg, &src_reg); 14728 break; 14729 case BPF_OR: 14730 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 14731 scalar32_min_max_or(dst_reg, &src_reg); 14732 scalar_min_max_or(dst_reg, &src_reg); 14733 break; 14734 case BPF_XOR: 14735 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 14736 scalar32_min_max_xor(dst_reg, &src_reg); 14737 scalar_min_max_xor(dst_reg, &src_reg); 14738 break; 14739 case BPF_LSH: 14740 if (alu32) 14741 scalar32_min_max_lsh(dst_reg, &src_reg); 14742 else 14743 scalar_min_max_lsh(dst_reg, &src_reg); 14744 break; 14745 case BPF_RSH: 14746 if (alu32) 14747 scalar32_min_max_rsh(dst_reg, &src_reg); 14748 else 14749 scalar_min_max_rsh(dst_reg, &src_reg); 14750 break; 14751 case BPF_ARSH: 14752 if (alu32) 14753 scalar32_min_max_arsh(dst_reg, &src_reg); 14754 else 14755 scalar_min_max_arsh(dst_reg, &src_reg); 14756 break; 14757 default: 14758 break; 14759 } 14760 14761 /* ALU32 ops are zero extended into 64bit register */ 14762 if (alu32) 14763 zext_32_to_64(dst_reg); 14764 reg_bounds_sync(dst_reg); 14765 return 0; 14766 } 14767 14768 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 14769 * and var_off. 14770 */ 14771 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 14772 struct bpf_insn *insn) 14773 { 14774 struct bpf_verifier_state *vstate = env->cur_state; 14775 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14776 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 14777 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 14778 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 14779 u8 opcode = BPF_OP(insn->code); 14780 int err; 14781 14782 dst_reg = ®s[insn->dst_reg]; 14783 src_reg = NULL; 14784 14785 if (dst_reg->type == PTR_TO_ARENA) { 14786 struct bpf_insn_aux_data *aux = cur_aux(env); 14787 14788 if (BPF_CLASS(insn->code) == BPF_ALU64) 14789 /* 14790 * 32-bit operations zero upper bits automatically. 14791 * 64-bit operations need to be converted to 32. 14792 */ 14793 aux->needs_zext = true; 14794 14795 /* Any arithmetic operations are allowed on arena pointers */ 14796 return 0; 14797 } 14798 14799 if (dst_reg->type != SCALAR_VALUE) 14800 ptr_reg = dst_reg; 14801 14802 if (BPF_SRC(insn->code) == BPF_X) { 14803 src_reg = ®s[insn->src_reg]; 14804 if (src_reg->type != SCALAR_VALUE) { 14805 if (dst_reg->type != SCALAR_VALUE) { 14806 /* Combining two pointers by any ALU op yields 14807 * an arbitrary scalar. Disallow all math except 14808 * pointer subtraction 14809 */ 14810 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 14811 mark_reg_unknown(env, regs, insn->dst_reg); 14812 return 0; 14813 } 14814 verbose(env, "R%d pointer %s pointer prohibited\n", 14815 insn->dst_reg, 14816 bpf_alu_string[opcode >> 4]); 14817 return -EACCES; 14818 } else { 14819 /* scalar += pointer 14820 * This is legal, but we have to reverse our 14821 * src/dest handling in computing the range 14822 */ 14823 err = mark_chain_precision(env, insn->dst_reg); 14824 if (err) 14825 return err; 14826 return adjust_ptr_min_max_vals(env, insn, 14827 src_reg, dst_reg); 14828 } 14829 } else if (ptr_reg) { 14830 /* pointer += scalar */ 14831 err = mark_chain_precision(env, insn->src_reg); 14832 if (err) 14833 return err; 14834 return adjust_ptr_min_max_vals(env, insn, 14835 dst_reg, src_reg); 14836 } else if (dst_reg->precise) { 14837 /* if dst_reg is precise, src_reg should be precise as well */ 14838 err = mark_chain_precision(env, insn->src_reg); 14839 if (err) 14840 return err; 14841 } 14842 } else { 14843 /* Pretend the src is a reg with a known value, since we only 14844 * need to be able to read from this state. 14845 */ 14846 off_reg.type = SCALAR_VALUE; 14847 __mark_reg_known(&off_reg, insn->imm); 14848 src_reg = &off_reg; 14849 if (ptr_reg) /* pointer += K */ 14850 return adjust_ptr_min_max_vals(env, insn, 14851 ptr_reg, src_reg); 14852 } 14853 14854 /* Got here implies adding two SCALAR_VALUEs */ 14855 if (WARN_ON_ONCE(ptr_reg)) { 14856 print_verifier_state(env, vstate, vstate->curframe, true); 14857 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 14858 return -EINVAL; 14859 } 14860 if (WARN_ON(!src_reg)) { 14861 print_verifier_state(env, vstate, vstate->curframe, true); 14862 verbose(env, "verifier internal error: no src_reg\n"); 14863 return -EINVAL; 14864 } 14865 err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 14866 if (err) 14867 return err; 14868 /* 14869 * Compilers can generate the code 14870 * r1 = r2 14871 * r1 += 0x1 14872 * if r2 < 1000 goto ... 14873 * use r1 in memory access 14874 * So for 64-bit alu remember constant delta between r2 and r1 and 14875 * update r1 after 'if' condition. 14876 */ 14877 if (env->bpf_capable && 14878 BPF_OP(insn->code) == BPF_ADD && !alu32 && 14879 dst_reg->id && is_reg_const(src_reg, false)) { 14880 u64 val = reg_const_value(src_reg, false); 14881 14882 if ((dst_reg->id & BPF_ADD_CONST) || 14883 /* prevent overflow in sync_linked_regs() later */ 14884 val > (u32)S32_MAX) { 14885 /* 14886 * If the register already went through rX += val 14887 * we cannot accumulate another val into rx->off. 14888 */ 14889 dst_reg->off = 0; 14890 dst_reg->id = 0; 14891 } else { 14892 dst_reg->id |= BPF_ADD_CONST; 14893 dst_reg->off = val; 14894 } 14895 } else { 14896 /* 14897 * Make sure ID is cleared otherwise dst_reg min/max could be 14898 * incorrectly propagated into other registers by sync_linked_regs() 14899 */ 14900 dst_reg->id = 0; 14901 } 14902 return 0; 14903 } 14904 14905 /* check validity of 32-bit and 64-bit arithmetic operations */ 14906 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 14907 { 14908 struct bpf_reg_state *regs = cur_regs(env); 14909 u8 opcode = BPF_OP(insn->code); 14910 int err; 14911 14912 if (opcode == BPF_END || opcode == BPF_NEG) { 14913 if (opcode == BPF_NEG) { 14914 if (BPF_SRC(insn->code) != BPF_K || 14915 insn->src_reg != BPF_REG_0 || 14916 insn->off != 0 || insn->imm != 0) { 14917 verbose(env, "BPF_NEG uses reserved fields\n"); 14918 return -EINVAL; 14919 } 14920 } else { 14921 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 14922 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 14923 (BPF_CLASS(insn->code) == BPF_ALU64 && 14924 BPF_SRC(insn->code) != BPF_TO_LE)) { 14925 verbose(env, "BPF_END uses reserved fields\n"); 14926 return -EINVAL; 14927 } 14928 } 14929 14930 /* check src operand */ 14931 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14932 if (err) 14933 return err; 14934 14935 if (is_pointer_value(env, insn->dst_reg)) { 14936 verbose(env, "R%d pointer arithmetic prohibited\n", 14937 insn->dst_reg); 14938 return -EACCES; 14939 } 14940 14941 /* check dest operand */ 14942 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14943 if (err) 14944 return err; 14945 14946 } else if (opcode == BPF_MOV) { 14947 14948 if (BPF_SRC(insn->code) == BPF_X) { 14949 if (BPF_CLASS(insn->code) == BPF_ALU) { 14950 if ((insn->off != 0 && insn->off != 8 && insn->off != 16) || 14951 insn->imm) { 14952 verbose(env, "BPF_MOV uses reserved fields\n"); 14953 return -EINVAL; 14954 } 14955 } else if (insn->off == BPF_ADDR_SPACE_CAST) { 14956 if (insn->imm != 1 && insn->imm != 1u << 16) { 14957 verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n"); 14958 return -EINVAL; 14959 } 14960 if (!env->prog->aux->arena) { 14961 verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n"); 14962 return -EINVAL; 14963 } 14964 } else { 14965 if ((insn->off != 0 && insn->off != 8 && insn->off != 16 && 14966 insn->off != 32) || insn->imm) { 14967 verbose(env, "BPF_MOV uses reserved fields\n"); 14968 return -EINVAL; 14969 } 14970 } 14971 14972 /* check src operand */ 14973 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14974 if (err) 14975 return err; 14976 } else { 14977 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 14978 verbose(env, "BPF_MOV uses reserved fields\n"); 14979 return -EINVAL; 14980 } 14981 } 14982 14983 /* check dest operand, mark as required later */ 14984 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14985 if (err) 14986 return err; 14987 14988 if (BPF_SRC(insn->code) == BPF_X) { 14989 struct bpf_reg_state *src_reg = regs + insn->src_reg; 14990 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 14991 14992 if (BPF_CLASS(insn->code) == BPF_ALU64) { 14993 if (insn->imm) { 14994 /* off == BPF_ADDR_SPACE_CAST */ 14995 mark_reg_unknown(env, regs, insn->dst_reg); 14996 if (insn->imm == 1) { /* cast from as(1) to as(0) */ 14997 dst_reg->type = PTR_TO_ARENA; 14998 /* PTR_TO_ARENA is 32-bit */ 14999 dst_reg->subreg_def = env->insn_idx + 1; 15000 } 15001 } else if (insn->off == 0) { 15002 /* case: R1 = R2 15003 * copy register state to dest reg 15004 */ 15005 assign_scalar_id_before_mov(env, src_reg); 15006 copy_register_state(dst_reg, src_reg); 15007 dst_reg->live |= REG_LIVE_WRITTEN; 15008 dst_reg->subreg_def = DEF_NOT_SUBREG; 15009 } else { 15010 /* case: R1 = (s8, s16 s32)R2 */ 15011 if (is_pointer_value(env, insn->src_reg)) { 15012 verbose(env, 15013 "R%d sign-extension part of pointer\n", 15014 insn->src_reg); 15015 return -EACCES; 15016 } else if (src_reg->type == SCALAR_VALUE) { 15017 bool no_sext; 15018 15019 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 15020 if (no_sext) 15021 assign_scalar_id_before_mov(env, src_reg); 15022 copy_register_state(dst_reg, src_reg); 15023 if (!no_sext) 15024 dst_reg->id = 0; 15025 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 15026 dst_reg->live |= REG_LIVE_WRITTEN; 15027 dst_reg->subreg_def = DEF_NOT_SUBREG; 15028 } else { 15029 mark_reg_unknown(env, regs, insn->dst_reg); 15030 } 15031 } 15032 } else { 15033 /* R1 = (u32) R2 */ 15034 if (is_pointer_value(env, insn->src_reg)) { 15035 verbose(env, 15036 "R%d partial copy of pointer\n", 15037 insn->src_reg); 15038 return -EACCES; 15039 } else if (src_reg->type == SCALAR_VALUE) { 15040 if (insn->off == 0) { 15041 bool is_src_reg_u32 = get_reg_width(src_reg) <= 32; 15042 15043 if (is_src_reg_u32) 15044 assign_scalar_id_before_mov(env, src_reg); 15045 copy_register_state(dst_reg, src_reg); 15046 /* Make sure ID is cleared if src_reg is not in u32 15047 * range otherwise dst_reg min/max could be incorrectly 15048 * propagated into src_reg by sync_linked_regs() 15049 */ 15050 if (!is_src_reg_u32) 15051 dst_reg->id = 0; 15052 dst_reg->live |= REG_LIVE_WRITTEN; 15053 dst_reg->subreg_def = env->insn_idx + 1; 15054 } else { 15055 /* case: W1 = (s8, s16)W2 */ 15056 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 15057 15058 if (no_sext) 15059 assign_scalar_id_before_mov(env, src_reg); 15060 copy_register_state(dst_reg, src_reg); 15061 if (!no_sext) 15062 dst_reg->id = 0; 15063 dst_reg->live |= REG_LIVE_WRITTEN; 15064 dst_reg->subreg_def = env->insn_idx + 1; 15065 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 15066 } 15067 } else { 15068 mark_reg_unknown(env, regs, 15069 insn->dst_reg); 15070 } 15071 zext_32_to_64(dst_reg); 15072 reg_bounds_sync(dst_reg); 15073 } 15074 } else { 15075 /* case: R = imm 15076 * remember the value we stored into this reg 15077 */ 15078 /* clear any state __mark_reg_known doesn't set */ 15079 mark_reg_unknown(env, regs, insn->dst_reg); 15080 regs[insn->dst_reg].type = SCALAR_VALUE; 15081 if (BPF_CLASS(insn->code) == BPF_ALU64) { 15082 __mark_reg_known(regs + insn->dst_reg, 15083 insn->imm); 15084 } else { 15085 __mark_reg_known(regs + insn->dst_reg, 15086 (u32)insn->imm); 15087 } 15088 } 15089 15090 } else if (opcode > BPF_END) { 15091 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 15092 return -EINVAL; 15093 15094 } else { /* all other ALU ops: and, sub, xor, add, ... */ 15095 15096 if (BPF_SRC(insn->code) == BPF_X) { 15097 if (insn->imm != 0 || insn->off > 1 || 15098 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 15099 verbose(env, "BPF_ALU uses reserved fields\n"); 15100 return -EINVAL; 15101 } 15102 /* check src1 operand */ 15103 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15104 if (err) 15105 return err; 15106 } else { 15107 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 15108 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 15109 verbose(env, "BPF_ALU uses reserved fields\n"); 15110 return -EINVAL; 15111 } 15112 } 15113 15114 /* check src2 operand */ 15115 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15116 if (err) 15117 return err; 15118 15119 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 15120 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 15121 verbose(env, "div by zero\n"); 15122 return -EINVAL; 15123 } 15124 15125 if ((opcode == BPF_LSH || opcode == BPF_RSH || 15126 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 15127 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 15128 15129 if (insn->imm < 0 || insn->imm >= size) { 15130 verbose(env, "invalid shift %d\n", insn->imm); 15131 return -EINVAL; 15132 } 15133 } 15134 15135 /* check dest operand */ 15136 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 15137 err = err ?: adjust_reg_min_max_vals(env, insn); 15138 if (err) 15139 return err; 15140 } 15141 15142 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); 15143 } 15144 15145 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 15146 struct bpf_reg_state *dst_reg, 15147 enum bpf_reg_type type, 15148 bool range_right_open) 15149 { 15150 struct bpf_func_state *state; 15151 struct bpf_reg_state *reg; 15152 int new_range; 15153 15154 if (dst_reg->off < 0 || 15155 (dst_reg->off == 0 && range_right_open)) 15156 /* This doesn't give us any range */ 15157 return; 15158 15159 if (dst_reg->umax_value > MAX_PACKET_OFF || 15160 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 15161 /* Risk of overflow. For instance, ptr + (1<<63) may be less 15162 * than pkt_end, but that's because it's also less than pkt. 15163 */ 15164 return; 15165 15166 new_range = dst_reg->off; 15167 if (range_right_open) 15168 new_range++; 15169 15170 /* Examples for register markings: 15171 * 15172 * pkt_data in dst register: 15173 * 15174 * r2 = r3; 15175 * r2 += 8; 15176 * if (r2 > pkt_end) goto <handle exception> 15177 * <access okay> 15178 * 15179 * r2 = r3; 15180 * r2 += 8; 15181 * if (r2 < pkt_end) goto <access okay> 15182 * <handle exception> 15183 * 15184 * Where: 15185 * r2 == dst_reg, pkt_end == src_reg 15186 * r2=pkt(id=n,off=8,r=0) 15187 * r3=pkt(id=n,off=0,r=0) 15188 * 15189 * pkt_data in src register: 15190 * 15191 * r2 = r3; 15192 * r2 += 8; 15193 * if (pkt_end >= r2) goto <access okay> 15194 * <handle exception> 15195 * 15196 * r2 = r3; 15197 * r2 += 8; 15198 * if (pkt_end <= r2) goto <handle exception> 15199 * <access okay> 15200 * 15201 * Where: 15202 * pkt_end == dst_reg, r2 == src_reg 15203 * r2=pkt(id=n,off=8,r=0) 15204 * r3=pkt(id=n,off=0,r=0) 15205 * 15206 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 15207 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 15208 * and [r3, r3 + 8-1) respectively is safe to access depending on 15209 * the check. 15210 */ 15211 15212 /* If our ids match, then we must have the same max_value. And we 15213 * don't care about the other reg's fixed offset, since if it's too big 15214 * the range won't allow anything. 15215 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 15216 */ 15217 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 15218 if (reg->type == type && reg->id == dst_reg->id) 15219 /* keep the maximum range already checked */ 15220 reg->range = max(reg->range, new_range); 15221 })); 15222 } 15223 15224 /* 15225 * <reg1> <op> <reg2>, currently assuming reg2 is a constant 15226 */ 15227 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 15228 u8 opcode, bool is_jmp32) 15229 { 15230 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; 15231 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; 15232 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; 15233 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; 15234 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; 15235 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; 15236 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; 15237 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; 15238 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; 15239 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; 15240 15241 switch (opcode) { 15242 case BPF_JEQ: 15243 /* constants, umin/umax and smin/smax checks would be 15244 * redundant in this case because they all should match 15245 */ 15246 if (tnum_is_const(t1) && tnum_is_const(t2)) 15247 return t1.value == t2.value; 15248 /* non-overlapping ranges */ 15249 if (umin1 > umax2 || umax1 < umin2) 15250 return 0; 15251 if (smin1 > smax2 || smax1 < smin2) 15252 return 0; 15253 if (!is_jmp32) { 15254 /* if 64-bit ranges are inconclusive, see if we can 15255 * utilize 32-bit subrange knowledge to eliminate 15256 * branches that can't be taken a priori 15257 */ 15258 if (reg1->u32_min_value > reg2->u32_max_value || 15259 reg1->u32_max_value < reg2->u32_min_value) 15260 return 0; 15261 if (reg1->s32_min_value > reg2->s32_max_value || 15262 reg1->s32_max_value < reg2->s32_min_value) 15263 return 0; 15264 } 15265 break; 15266 case BPF_JNE: 15267 /* constants, umin/umax and smin/smax checks would be 15268 * redundant in this case because they all should match 15269 */ 15270 if (tnum_is_const(t1) && tnum_is_const(t2)) 15271 return t1.value != t2.value; 15272 /* non-overlapping ranges */ 15273 if (umin1 > umax2 || umax1 < umin2) 15274 return 1; 15275 if (smin1 > smax2 || smax1 < smin2) 15276 return 1; 15277 if (!is_jmp32) { 15278 /* if 64-bit ranges are inconclusive, see if we can 15279 * utilize 32-bit subrange knowledge to eliminate 15280 * branches that can't be taken a priori 15281 */ 15282 if (reg1->u32_min_value > reg2->u32_max_value || 15283 reg1->u32_max_value < reg2->u32_min_value) 15284 return 1; 15285 if (reg1->s32_min_value > reg2->s32_max_value || 15286 reg1->s32_max_value < reg2->s32_min_value) 15287 return 1; 15288 } 15289 break; 15290 case BPF_JSET: 15291 if (!is_reg_const(reg2, is_jmp32)) { 15292 swap(reg1, reg2); 15293 swap(t1, t2); 15294 } 15295 if (!is_reg_const(reg2, is_jmp32)) 15296 return -1; 15297 if ((~t1.mask & t1.value) & t2.value) 15298 return 1; 15299 if (!((t1.mask | t1.value) & t2.value)) 15300 return 0; 15301 break; 15302 case BPF_JGT: 15303 if (umin1 > umax2) 15304 return 1; 15305 else if (umax1 <= umin2) 15306 return 0; 15307 break; 15308 case BPF_JSGT: 15309 if (smin1 > smax2) 15310 return 1; 15311 else if (smax1 <= smin2) 15312 return 0; 15313 break; 15314 case BPF_JLT: 15315 if (umax1 < umin2) 15316 return 1; 15317 else if (umin1 >= umax2) 15318 return 0; 15319 break; 15320 case BPF_JSLT: 15321 if (smax1 < smin2) 15322 return 1; 15323 else if (smin1 >= smax2) 15324 return 0; 15325 break; 15326 case BPF_JGE: 15327 if (umin1 >= umax2) 15328 return 1; 15329 else if (umax1 < umin2) 15330 return 0; 15331 break; 15332 case BPF_JSGE: 15333 if (smin1 >= smax2) 15334 return 1; 15335 else if (smax1 < smin2) 15336 return 0; 15337 break; 15338 case BPF_JLE: 15339 if (umax1 <= umin2) 15340 return 1; 15341 else if (umin1 > umax2) 15342 return 0; 15343 break; 15344 case BPF_JSLE: 15345 if (smax1 <= smin2) 15346 return 1; 15347 else if (smin1 > smax2) 15348 return 0; 15349 break; 15350 } 15351 15352 return -1; 15353 } 15354 15355 static int flip_opcode(u32 opcode) 15356 { 15357 /* How can we transform "a <op> b" into "b <op> a"? */ 15358 static const u8 opcode_flip[16] = { 15359 /* these stay the same */ 15360 [BPF_JEQ >> 4] = BPF_JEQ, 15361 [BPF_JNE >> 4] = BPF_JNE, 15362 [BPF_JSET >> 4] = BPF_JSET, 15363 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 15364 [BPF_JGE >> 4] = BPF_JLE, 15365 [BPF_JGT >> 4] = BPF_JLT, 15366 [BPF_JLE >> 4] = BPF_JGE, 15367 [BPF_JLT >> 4] = BPF_JGT, 15368 [BPF_JSGE >> 4] = BPF_JSLE, 15369 [BPF_JSGT >> 4] = BPF_JSLT, 15370 [BPF_JSLE >> 4] = BPF_JSGE, 15371 [BPF_JSLT >> 4] = BPF_JSGT 15372 }; 15373 return opcode_flip[opcode >> 4]; 15374 } 15375 15376 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 15377 struct bpf_reg_state *src_reg, 15378 u8 opcode) 15379 { 15380 struct bpf_reg_state *pkt; 15381 15382 if (src_reg->type == PTR_TO_PACKET_END) { 15383 pkt = dst_reg; 15384 } else if (dst_reg->type == PTR_TO_PACKET_END) { 15385 pkt = src_reg; 15386 opcode = flip_opcode(opcode); 15387 } else { 15388 return -1; 15389 } 15390 15391 if (pkt->range >= 0) 15392 return -1; 15393 15394 switch (opcode) { 15395 case BPF_JLE: 15396 /* pkt <= pkt_end */ 15397 fallthrough; 15398 case BPF_JGT: 15399 /* pkt > pkt_end */ 15400 if (pkt->range == BEYOND_PKT_END) 15401 /* pkt has at last one extra byte beyond pkt_end */ 15402 return opcode == BPF_JGT; 15403 break; 15404 case BPF_JLT: 15405 /* pkt < pkt_end */ 15406 fallthrough; 15407 case BPF_JGE: 15408 /* pkt >= pkt_end */ 15409 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 15410 return opcode == BPF_JGE; 15411 break; 15412 } 15413 return -1; 15414 } 15415 15416 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" 15417 * and return: 15418 * 1 - branch will be taken and "goto target" will be executed 15419 * 0 - branch will not be taken and fall-through to next insn 15420 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value 15421 * range [0,10] 15422 */ 15423 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 15424 u8 opcode, bool is_jmp32) 15425 { 15426 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) 15427 return is_pkt_ptr_branch_taken(reg1, reg2, opcode); 15428 15429 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { 15430 u64 val; 15431 15432 /* arrange that reg2 is a scalar, and reg1 is a pointer */ 15433 if (!is_reg_const(reg2, is_jmp32)) { 15434 opcode = flip_opcode(opcode); 15435 swap(reg1, reg2); 15436 } 15437 /* and ensure that reg2 is a constant */ 15438 if (!is_reg_const(reg2, is_jmp32)) 15439 return -1; 15440 15441 if (!reg_not_null(reg1)) 15442 return -1; 15443 15444 /* If pointer is valid tests against zero will fail so we can 15445 * use this to direct branch taken. 15446 */ 15447 val = reg_const_value(reg2, is_jmp32); 15448 if (val != 0) 15449 return -1; 15450 15451 switch (opcode) { 15452 case BPF_JEQ: 15453 return 0; 15454 case BPF_JNE: 15455 return 1; 15456 default: 15457 return -1; 15458 } 15459 } 15460 15461 /* now deal with two scalars, but not necessarily constants */ 15462 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); 15463 } 15464 15465 /* Opcode that corresponds to a *false* branch condition. 15466 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 15467 */ 15468 static u8 rev_opcode(u8 opcode) 15469 { 15470 switch (opcode) { 15471 case BPF_JEQ: return BPF_JNE; 15472 case BPF_JNE: return BPF_JEQ; 15473 /* JSET doesn't have it's reverse opcode in BPF, so add 15474 * BPF_X flag to denote the reverse of that operation 15475 */ 15476 case BPF_JSET: return BPF_JSET | BPF_X; 15477 case BPF_JSET | BPF_X: return BPF_JSET; 15478 case BPF_JGE: return BPF_JLT; 15479 case BPF_JGT: return BPF_JLE; 15480 case BPF_JLE: return BPF_JGT; 15481 case BPF_JLT: return BPF_JGE; 15482 case BPF_JSGE: return BPF_JSLT; 15483 case BPF_JSGT: return BPF_JSLE; 15484 case BPF_JSLE: return BPF_JSGT; 15485 case BPF_JSLT: return BPF_JSGE; 15486 default: return 0; 15487 } 15488 } 15489 15490 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ 15491 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 15492 u8 opcode, bool is_jmp32) 15493 { 15494 struct tnum t; 15495 u64 val; 15496 15497 /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */ 15498 switch (opcode) { 15499 case BPF_JGE: 15500 case BPF_JGT: 15501 case BPF_JSGE: 15502 case BPF_JSGT: 15503 opcode = flip_opcode(opcode); 15504 swap(reg1, reg2); 15505 break; 15506 default: 15507 break; 15508 } 15509 15510 switch (opcode) { 15511 case BPF_JEQ: 15512 if (is_jmp32) { 15513 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 15514 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 15515 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 15516 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 15517 reg2->u32_min_value = reg1->u32_min_value; 15518 reg2->u32_max_value = reg1->u32_max_value; 15519 reg2->s32_min_value = reg1->s32_min_value; 15520 reg2->s32_max_value = reg1->s32_max_value; 15521 15522 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); 15523 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 15524 reg2->var_off = tnum_with_subreg(reg2->var_off, t); 15525 } else { 15526 reg1->umin_value = max(reg1->umin_value, reg2->umin_value); 15527 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 15528 reg1->smin_value = max(reg1->smin_value, reg2->smin_value); 15529 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 15530 reg2->umin_value = reg1->umin_value; 15531 reg2->umax_value = reg1->umax_value; 15532 reg2->smin_value = reg1->smin_value; 15533 reg2->smax_value = reg1->smax_value; 15534 15535 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); 15536 reg2->var_off = reg1->var_off; 15537 } 15538 break; 15539 case BPF_JNE: 15540 if (!is_reg_const(reg2, is_jmp32)) 15541 swap(reg1, reg2); 15542 if (!is_reg_const(reg2, is_jmp32)) 15543 break; 15544 15545 /* try to recompute the bound of reg1 if reg2 is a const and 15546 * is exactly the edge of reg1. 15547 */ 15548 val = reg_const_value(reg2, is_jmp32); 15549 if (is_jmp32) { 15550 /* u32_min_value is not equal to 0xffffffff at this point, 15551 * because otherwise u32_max_value is 0xffffffff as well, 15552 * in such a case both reg1 and reg2 would be constants, 15553 * jump would be predicted and reg_set_min_max() won't 15554 * be called. 15555 * 15556 * Same reasoning works for all {u,s}{min,max}{32,64} cases 15557 * below. 15558 */ 15559 if (reg1->u32_min_value == (u32)val) 15560 reg1->u32_min_value++; 15561 if (reg1->u32_max_value == (u32)val) 15562 reg1->u32_max_value--; 15563 if (reg1->s32_min_value == (s32)val) 15564 reg1->s32_min_value++; 15565 if (reg1->s32_max_value == (s32)val) 15566 reg1->s32_max_value--; 15567 } else { 15568 if (reg1->umin_value == (u64)val) 15569 reg1->umin_value++; 15570 if (reg1->umax_value == (u64)val) 15571 reg1->umax_value--; 15572 if (reg1->smin_value == (s64)val) 15573 reg1->smin_value++; 15574 if (reg1->smax_value == (s64)val) 15575 reg1->smax_value--; 15576 } 15577 break; 15578 case BPF_JSET: 15579 if (!is_reg_const(reg2, is_jmp32)) 15580 swap(reg1, reg2); 15581 if (!is_reg_const(reg2, is_jmp32)) 15582 break; 15583 val = reg_const_value(reg2, is_jmp32); 15584 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) 15585 * requires single bit to learn something useful. E.g., if we 15586 * know that `r1 & 0x3` is true, then which bits (0, 1, or both) 15587 * are actually set? We can learn something definite only if 15588 * it's a single-bit value to begin with. 15589 * 15590 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have 15591 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor 15592 * bit 1 is set, which we can readily use in adjustments. 15593 */ 15594 if (!is_power_of_2(val)) 15595 break; 15596 if (is_jmp32) { 15597 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); 15598 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 15599 } else { 15600 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); 15601 } 15602 break; 15603 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ 15604 if (!is_reg_const(reg2, is_jmp32)) 15605 swap(reg1, reg2); 15606 if (!is_reg_const(reg2, is_jmp32)) 15607 break; 15608 val = reg_const_value(reg2, is_jmp32); 15609 if (is_jmp32) { 15610 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); 15611 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 15612 } else { 15613 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); 15614 } 15615 break; 15616 case BPF_JLE: 15617 if (is_jmp32) { 15618 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 15619 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 15620 } else { 15621 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 15622 reg2->umin_value = max(reg1->umin_value, reg2->umin_value); 15623 } 15624 break; 15625 case BPF_JLT: 15626 if (is_jmp32) { 15627 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); 15628 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); 15629 } else { 15630 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); 15631 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); 15632 } 15633 break; 15634 case BPF_JSLE: 15635 if (is_jmp32) { 15636 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 15637 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 15638 } else { 15639 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 15640 reg2->smin_value = max(reg1->smin_value, reg2->smin_value); 15641 } 15642 break; 15643 case BPF_JSLT: 15644 if (is_jmp32) { 15645 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); 15646 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); 15647 } else { 15648 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); 15649 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); 15650 } 15651 break; 15652 default: 15653 return; 15654 } 15655 } 15656 15657 /* Adjusts the register min/max values in the case that the dst_reg and 15658 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K 15659 * check, in which case we have a fake SCALAR_VALUE representing insn->imm). 15660 * Technically we can do similar adjustments for pointers to the same object, 15661 * but we don't support that right now. 15662 */ 15663 static int reg_set_min_max(struct bpf_verifier_env *env, 15664 struct bpf_reg_state *true_reg1, 15665 struct bpf_reg_state *true_reg2, 15666 struct bpf_reg_state *false_reg1, 15667 struct bpf_reg_state *false_reg2, 15668 u8 opcode, bool is_jmp32) 15669 { 15670 int err; 15671 15672 /* If either register is a pointer, we can't learn anything about its 15673 * variable offset from the compare (unless they were a pointer into 15674 * the same object, but we don't bother with that). 15675 */ 15676 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) 15677 return 0; 15678 15679 /* fallthrough (FALSE) branch */ 15680 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); 15681 reg_bounds_sync(false_reg1); 15682 reg_bounds_sync(false_reg2); 15683 15684 /* jump (TRUE) branch */ 15685 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); 15686 reg_bounds_sync(true_reg1); 15687 reg_bounds_sync(true_reg2); 15688 15689 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); 15690 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); 15691 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); 15692 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); 15693 return err; 15694 } 15695 15696 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 15697 struct bpf_reg_state *reg, u32 id, 15698 bool is_null) 15699 { 15700 if (type_may_be_null(reg->type) && reg->id == id && 15701 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 15702 /* Old offset (both fixed and variable parts) should have been 15703 * known-zero, because we don't allow pointer arithmetic on 15704 * pointers that might be NULL. If we see this happening, don't 15705 * convert the register. 15706 * 15707 * But in some cases, some helpers that return local kptrs 15708 * advance offset for the returned pointer. In those cases, it 15709 * is fine to expect to see reg->off. 15710 */ 15711 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 15712 return; 15713 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 15714 WARN_ON_ONCE(reg->off)) 15715 return; 15716 15717 if (is_null) { 15718 reg->type = SCALAR_VALUE; 15719 /* We don't need id and ref_obj_id from this point 15720 * onwards anymore, thus we should better reset it, 15721 * so that state pruning has chances to take effect. 15722 */ 15723 reg->id = 0; 15724 reg->ref_obj_id = 0; 15725 15726 return; 15727 } 15728 15729 mark_ptr_not_null_reg(reg); 15730 15731 if (!reg_may_point_to_spin_lock(reg)) { 15732 /* For not-NULL ptr, reg->ref_obj_id will be reset 15733 * in release_reference(). 15734 * 15735 * reg->id is still used by spin_lock ptr. Other 15736 * than spin_lock ptr type, reg->id can be reset. 15737 */ 15738 reg->id = 0; 15739 } 15740 } 15741 } 15742 15743 /* The logic is similar to find_good_pkt_pointers(), both could eventually 15744 * be folded together at some point. 15745 */ 15746 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 15747 bool is_null) 15748 { 15749 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 15750 struct bpf_reg_state *regs = state->regs, *reg; 15751 u32 ref_obj_id = regs[regno].ref_obj_id; 15752 u32 id = regs[regno].id; 15753 15754 if (ref_obj_id && ref_obj_id == id && is_null) 15755 /* regs[regno] is in the " == NULL" branch. 15756 * No one could have freed the reference state before 15757 * doing the NULL check. 15758 */ 15759 WARN_ON_ONCE(release_reference_nomark(vstate, id)); 15760 15761 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 15762 mark_ptr_or_null_reg(state, reg, id, is_null); 15763 })); 15764 } 15765 15766 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 15767 struct bpf_reg_state *dst_reg, 15768 struct bpf_reg_state *src_reg, 15769 struct bpf_verifier_state *this_branch, 15770 struct bpf_verifier_state *other_branch) 15771 { 15772 if (BPF_SRC(insn->code) != BPF_X) 15773 return false; 15774 15775 /* Pointers are always 64-bit. */ 15776 if (BPF_CLASS(insn->code) == BPF_JMP32) 15777 return false; 15778 15779 switch (BPF_OP(insn->code)) { 15780 case BPF_JGT: 15781 if ((dst_reg->type == PTR_TO_PACKET && 15782 src_reg->type == PTR_TO_PACKET_END) || 15783 (dst_reg->type == PTR_TO_PACKET_META && 15784 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15785 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 15786 find_good_pkt_pointers(this_branch, dst_reg, 15787 dst_reg->type, false); 15788 mark_pkt_end(other_branch, insn->dst_reg, true); 15789 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15790 src_reg->type == PTR_TO_PACKET) || 15791 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15792 src_reg->type == PTR_TO_PACKET_META)) { 15793 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 15794 find_good_pkt_pointers(other_branch, src_reg, 15795 src_reg->type, true); 15796 mark_pkt_end(this_branch, insn->src_reg, false); 15797 } else { 15798 return false; 15799 } 15800 break; 15801 case BPF_JLT: 15802 if ((dst_reg->type == PTR_TO_PACKET && 15803 src_reg->type == PTR_TO_PACKET_END) || 15804 (dst_reg->type == PTR_TO_PACKET_META && 15805 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15806 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 15807 find_good_pkt_pointers(other_branch, dst_reg, 15808 dst_reg->type, true); 15809 mark_pkt_end(this_branch, insn->dst_reg, false); 15810 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15811 src_reg->type == PTR_TO_PACKET) || 15812 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15813 src_reg->type == PTR_TO_PACKET_META)) { 15814 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 15815 find_good_pkt_pointers(this_branch, src_reg, 15816 src_reg->type, false); 15817 mark_pkt_end(other_branch, insn->src_reg, true); 15818 } else { 15819 return false; 15820 } 15821 break; 15822 case BPF_JGE: 15823 if ((dst_reg->type == PTR_TO_PACKET && 15824 src_reg->type == PTR_TO_PACKET_END) || 15825 (dst_reg->type == PTR_TO_PACKET_META && 15826 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15827 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 15828 find_good_pkt_pointers(this_branch, dst_reg, 15829 dst_reg->type, true); 15830 mark_pkt_end(other_branch, insn->dst_reg, false); 15831 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15832 src_reg->type == PTR_TO_PACKET) || 15833 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15834 src_reg->type == PTR_TO_PACKET_META)) { 15835 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 15836 find_good_pkt_pointers(other_branch, src_reg, 15837 src_reg->type, false); 15838 mark_pkt_end(this_branch, insn->src_reg, true); 15839 } else { 15840 return false; 15841 } 15842 break; 15843 case BPF_JLE: 15844 if ((dst_reg->type == PTR_TO_PACKET && 15845 src_reg->type == PTR_TO_PACKET_END) || 15846 (dst_reg->type == PTR_TO_PACKET_META && 15847 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15848 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 15849 find_good_pkt_pointers(other_branch, dst_reg, 15850 dst_reg->type, false); 15851 mark_pkt_end(this_branch, insn->dst_reg, true); 15852 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15853 src_reg->type == PTR_TO_PACKET) || 15854 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15855 src_reg->type == PTR_TO_PACKET_META)) { 15856 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 15857 find_good_pkt_pointers(this_branch, src_reg, 15858 src_reg->type, true); 15859 mark_pkt_end(other_branch, insn->src_reg, false); 15860 } else { 15861 return false; 15862 } 15863 break; 15864 default: 15865 return false; 15866 } 15867 15868 return true; 15869 } 15870 15871 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg, 15872 u32 id, u32 frameno, u32 spi_or_reg, bool is_reg) 15873 { 15874 struct linked_reg *e; 15875 15876 if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id) 15877 return; 15878 15879 e = linked_regs_push(reg_set); 15880 if (e) { 15881 e->frameno = frameno; 15882 e->is_reg = is_reg; 15883 e->regno = spi_or_reg; 15884 } else { 15885 reg->id = 0; 15886 } 15887 } 15888 15889 /* For all R being scalar registers or spilled scalar registers 15890 * in verifier state, save R in linked_regs if R->id == id. 15891 * If there are too many Rs sharing same id, reset id for leftover Rs. 15892 */ 15893 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id, 15894 struct linked_regs *linked_regs) 15895 { 15896 struct bpf_func_state *func; 15897 struct bpf_reg_state *reg; 15898 int i, j; 15899 15900 id = id & ~BPF_ADD_CONST; 15901 for (i = vstate->curframe; i >= 0; i--) { 15902 func = vstate->frame[i]; 15903 for (j = 0; j < BPF_REG_FP; j++) { 15904 reg = &func->regs[j]; 15905 __collect_linked_regs(linked_regs, reg, id, i, j, true); 15906 } 15907 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 15908 if (!is_spilled_reg(&func->stack[j])) 15909 continue; 15910 reg = &func->stack[j].spilled_ptr; 15911 __collect_linked_regs(linked_regs, reg, id, i, j, false); 15912 } 15913 } 15914 } 15915 15916 /* For all R in linked_regs, copy known_reg range into R 15917 * if R->id == known_reg->id. 15918 */ 15919 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg, 15920 struct linked_regs *linked_regs) 15921 { 15922 struct bpf_reg_state fake_reg; 15923 struct bpf_reg_state *reg; 15924 struct linked_reg *e; 15925 int i; 15926 15927 for (i = 0; i < linked_regs->cnt; ++i) { 15928 e = &linked_regs->entries[i]; 15929 reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno] 15930 : &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr; 15931 if (reg->type != SCALAR_VALUE || reg == known_reg) 15932 continue; 15933 if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST)) 15934 continue; 15935 if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) || 15936 reg->off == known_reg->off) { 15937 s32 saved_subreg_def = reg->subreg_def; 15938 15939 copy_register_state(reg, known_reg); 15940 reg->subreg_def = saved_subreg_def; 15941 } else { 15942 s32 saved_subreg_def = reg->subreg_def; 15943 s32 saved_off = reg->off; 15944 15945 fake_reg.type = SCALAR_VALUE; 15946 __mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off); 15947 15948 /* reg = known_reg; reg += delta */ 15949 copy_register_state(reg, known_reg); 15950 /* 15951 * Must preserve off, id and add_const flag, 15952 * otherwise another sync_linked_regs() will be incorrect. 15953 */ 15954 reg->off = saved_off; 15955 reg->subreg_def = saved_subreg_def; 15956 15957 scalar32_min_max_add(reg, &fake_reg); 15958 scalar_min_max_add(reg, &fake_reg); 15959 reg->var_off = tnum_add(reg->var_off, fake_reg.var_off); 15960 } 15961 } 15962 } 15963 15964 static int check_cond_jmp_op(struct bpf_verifier_env *env, 15965 struct bpf_insn *insn, int *insn_idx) 15966 { 15967 struct bpf_verifier_state *this_branch = env->cur_state; 15968 struct bpf_verifier_state *other_branch; 15969 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 15970 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 15971 struct bpf_reg_state *eq_branch_regs; 15972 struct linked_regs linked_regs = {}; 15973 u8 opcode = BPF_OP(insn->code); 15974 bool is_jmp32; 15975 int pred = -1; 15976 int err; 15977 15978 /* Only conditional jumps are expected to reach here. */ 15979 if (opcode == BPF_JA || opcode > BPF_JCOND) { 15980 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 15981 return -EINVAL; 15982 } 15983 15984 if (opcode == BPF_JCOND) { 15985 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 15986 int idx = *insn_idx; 15987 15988 if (insn->code != (BPF_JMP | BPF_JCOND) || 15989 insn->src_reg != BPF_MAY_GOTO || 15990 insn->dst_reg || insn->imm) { 15991 verbose(env, "invalid may_goto imm %d\n", insn->imm); 15992 return -EINVAL; 15993 } 15994 prev_st = find_prev_entry(env, cur_st->parent, idx); 15995 15996 /* branch out 'fallthrough' insn as a new state to explore */ 15997 queued_st = push_stack(env, idx + 1, idx, false); 15998 if (!queued_st) 15999 return -ENOMEM; 16000 16001 queued_st->may_goto_depth++; 16002 if (prev_st) 16003 widen_imprecise_scalars(env, prev_st, queued_st); 16004 *insn_idx += insn->off; 16005 return 0; 16006 } 16007 16008 /* check src2 operand */ 16009 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16010 if (err) 16011 return err; 16012 16013 dst_reg = ®s[insn->dst_reg]; 16014 if (BPF_SRC(insn->code) == BPF_X) { 16015 if (insn->imm != 0) { 16016 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 16017 return -EINVAL; 16018 } 16019 16020 /* check src1 operand */ 16021 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16022 if (err) 16023 return err; 16024 16025 src_reg = ®s[insn->src_reg]; 16026 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 16027 is_pointer_value(env, insn->src_reg)) { 16028 verbose(env, "R%d pointer comparison prohibited\n", 16029 insn->src_reg); 16030 return -EACCES; 16031 } 16032 } else { 16033 if (insn->src_reg != BPF_REG_0) { 16034 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 16035 return -EINVAL; 16036 } 16037 src_reg = &env->fake_reg[0]; 16038 memset(src_reg, 0, sizeof(*src_reg)); 16039 src_reg->type = SCALAR_VALUE; 16040 __mark_reg_known(src_reg, insn->imm); 16041 } 16042 16043 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 16044 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); 16045 if (pred >= 0) { 16046 /* If we get here with a dst_reg pointer type it is because 16047 * above is_branch_taken() special cased the 0 comparison. 16048 */ 16049 if (!__is_pointer_value(false, dst_reg)) 16050 err = mark_chain_precision(env, insn->dst_reg); 16051 if (BPF_SRC(insn->code) == BPF_X && !err && 16052 !__is_pointer_value(false, src_reg)) 16053 err = mark_chain_precision(env, insn->src_reg); 16054 if (err) 16055 return err; 16056 } 16057 16058 if (pred == 1) { 16059 /* Only follow the goto, ignore fall-through. If needed, push 16060 * the fall-through branch for simulation under speculative 16061 * execution. 16062 */ 16063 if (!env->bypass_spec_v1 && 16064 !sanitize_speculative_path(env, insn, *insn_idx + 1, 16065 *insn_idx)) 16066 return -EFAULT; 16067 if (env->log.level & BPF_LOG_LEVEL) 16068 print_insn_state(env, this_branch, this_branch->curframe); 16069 *insn_idx += insn->off; 16070 return 0; 16071 } else if (pred == 0) { 16072 /* Only follow the fall-through branch, since that's where the 16073 * program will go. If needed, push the goto branch for 16074 * simulation under speculative execution. 16075 */ 16076 if (!env->bypass_spec_v1 && 16077 !sanitize_speculative_path(env, insn, 16078 *insn_idx + insn->off + 1, 16079 *insn_idx)) 16080 return -EFAULT; 16081 if (env->log.level & BPF_LOG_LEVEL) 16082 print_insn_state(env, this_branch, this_branch->curframe); 16083 return 0; 16084 } 16085 16086 /* Push scalar registers sharing same ID to jump history, 16087 * do this before creating 'other_branch', so that both 16088 * 'this_branch' and 'other_branch' share this history 16089 * if parent state is created. 16090 */ 16091 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id) 16092 collect_linked_regs(this_branch, src_reg->id, &linked_regs); 16093 if (dst_reg->type == SCALAR_VALUE && dst_reg->id) 16094 collect_linked_regs(this_branch, dst_reg->id, &linked_regs); 16095 if (linked_regs.cnt > 1) { 16096 err = push_insn_history(env, this_branch, 0, linked_regs_pack(&linked_regs)); 16097 if (err) 16098 return err; 16099 } 16100 16101 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 16102 false); 16103 if (!other_branch) 16104 return -EFAULT; 16105 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 16106 16107 if (BPF_SRC(insn->code) == BPF_X) { 16108 err = reg_set_min_max(env, 16109 &other_branch_regs[insn->dst_reg], 16110 &other_branch_regs[insn->src_reg], 16111 dst_reg, src_reg, opcode, is_jmp32); 16112 } else /* BPF_SRC(insn->code) == BPF_K */ { 16113 /* reg_set_min_max() can mangle the fake_reg. Make a copy 16114 * so that these are two different memory locations. The 16115 * src_reg is not used beyond here in context of K. 16116 */ 16117 memcpy(&env->fake_reg[1], &env->fake_reg[0], 16118 sizeof(env->fake_reg[0])); 16119 err = reg_set_min_max(env, 16120 &other_branch_regs[insn->dst_reg], 16121 &env->fake_reg[0], 16122 dst_reg, &env->fake_reg[1], 16123 opcode, is_jmp32); 16124 } 16125 if (err) 16126 return err; 16127 16128 if (BPF_SRC(insn->code) == BPF_X && 16129 src_reg->type == SCALAR_VALUE && src_reg->id && 16130 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 16131 sync_linked_regs(this_branch, src_reg, &linked_regs); 16132 sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs); 16133 } 16134 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 16135 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 16136 sync_linked_regs(this_branch, dst_reg, &linked_regs); 16137 sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs); 16138 } 16139 16140 /* if one pointer register is compared to another pointer 16141 * register check if PTR_MAYBE_NULL could be lifted. 16142 * E.g. register A - maybe null 16143 * register B - not null 16144 * for JNE A, B, ... - A is not null in the false branch; 16145 * for JEQ A, B, ... - A is not null in the true branch. 16146 * 16147 * Since PTR_TO_BTF_ID points to a kernel struct that does 16148 * not need to be null checked by the BPF program, i.e., 16149 * could be null even without PTR_MAYBE_NULL marking, so 16150 * only propagate nullness when neither reg is that type. 16151 */ 16152 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 16153 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 16154 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 16155 base_type(src_reg->type) != PTR_TO_BTF_ID && 16156 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 16157 eq_branch_regs = NULL; 16158 switch (opcode) { 16159 case BPF_JEQ: 16160 eq_branch_regs = other_branch_regs; 16161 break; 16162 case BPF_JNE: 16163 eq_branch_regs = regs; 16164 break; 16165 default: 16166 /* do nothing */ 16167 break; 16168 } 16169 if (eq_branch_regs) { 16170 if (type_may_be_null(src_reg->type)) 16171 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 16172 else 16173 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 16174 } 16175 } 16176 16177 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 16178 * NOTE: these optimizations below are related with pointer comparison 16179 * which will never be JMP32. 16180 */ 16181 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 16182 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 16183 type_may_be_null(dst_reg->type)) { 16184 /* Mark all identical registers in each branch as either 16185 * safe or unknown depending R == 0 or R != 0 conditional. 16186 */ 16187 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 16188 opcode == BPF_JNE); 16189 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 16190 opcode == BPF_JEQ); 16191 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 16192 this_branch, other_branch) && 16193 is_pointer_value(env, insn->dst_reg)) { 16194 verbose(env, "R%d pointer comparison prohibited\n", 16195 insn->dst_reg); 16196 return -EACCES; 16197 } 16198 if (env->log.level & BPF_LOG_LEVEL) 16199 print_insn_state(env, this_branch, this_branch->curframe); 16200 return 0; 16201 } 16202 16203 /* verify BPF_LD_IMM64 instruction */ 16204 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 16205 { 16206 struct bpf_insn_aux_data *aux = cur_aux(env); 16207 struct bpf_reg_state *regs = cur_regs(env); 16208 struct bpf_reg_state *dst_reg; 16209 struct bpf_map *map; 16210 int err; 16211 16212 if (BPF_SIZE(insn->code) != BPF_DW) { 16213 verbose(env, "invalid BPF_LD_IMM insn\n"); 16214 return -EINVAL; 16215 } 16216 if (insn->off != 0) { 16217 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 16218 return -EINVAL; 16219 } 16220 16221 err = check_reg_arg(env, insn->dst_reg, DST_OP); 16222 if (err) 16223 return err; 16224 16225 dst_reg = ®s[insn->dst_reg]; 16226 if (insn->src_reg == 0) { 16227 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 16228 16229 dst_reg->type = SCALAR_VALUE; 16230 __mark_reg_known(®s[insn->dst_reg], imm); 16231 return 0; 16232 } 16233 16234 /* All special src_reg cases are listed below. From this point onwards 16235 * we either succeed and assign a corresponding dst_reg->type after 16236 * zeroing the offset, or fail and reject the program. 16237 */ 16238 mark_reg_known_zero(env, regs, insn->dst_reg); 16239 16240 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 16241 dst_reg->type = aux->btf_var.reg_type; 16242 switch (base_type(dst_reg->type)) { 16243 case PTR_TO_MEM: 16244 dst_reg->mem_size = aux->btf_var.mem_size; 16245 break; 16246 case PTR_TO_BTF_ID: 16247 dst_reg->btf = aux->btf_var.btf; 16248 dst_reg->btf_id = aux->btf_var.btf_id; 16249 break; 16250 default: 16251 verbose(env, "bpf verifier is misconfigured\n"); 16252 return -EFAULT; 16253 } 16254 return 0; 16255 } 16256 16257 if (insn->src_reg == BPF_PSEUDO_FUNC) { 16258 struct bpf_prog_aux *aux = env->prog->aux; 16259 u32 subprogno = find_subprog(env, 16260 env->insn_idx + insn->imm + 1); 16261 16262 if (!aux->func_info) { 16263 verbose(env, "missing btf func_info\n"); 16264 return -EINVAL; 16265 } 16266 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 16267 verbose(env, "callback function not static\n"); 16268 return -EINVAL; 16269 } 16270 16271 dst_reg->type = PTR_TO_FUNC; 16272 dst_reg->subprogno = subprogno; 16273 return 0; 16274 } 16275 16276 map = env->used_maps[aux->map_index]; 16277 dst_reg->map_ptr = map; 16278 16279 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 16280 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 16281 if (map->map_type == BPF_MAP_TYPE_ARENA) { 16282 __mark_reg_unknown(env, dst_reg); 16283 return 0; 16284 } 16285 dst_reg->type = PTR_TO_MAP_VALUE; 16286 dst_reg->off = aux->map_off; 16287 WARN_ON_ONCE(map->max_entries != 1); 16288 /* We want reg->id to be same (0) as map_value is not distinct */ 16289 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 16290 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 16291 dst_reg->type = CONST_PTR_TO_MAP; 16292 } else { 16293 verbose(env, "bpf verifier is misconfigured\n"); 16294 return -EINVAL; 16295 } 16296 16297 return 0; 16298 } 16299 16300 static bool may_access_skb(enum bpf_prog_type type) 16301 { 16302 switch (type) { 16303 case BPF_PROG_TYPE_SOCKET_FILTER: 16304 case BPF_PROG_TYPE_SCHED_CLS: 16305 case BPF_PROG_TYPE_SCHED_ACT: 16306 return true; 16307 default: 16308 return false; 16309 } 16310 } 16311 16312 /* verify safety of LD_ABS|LD_IND instructions: 16313 * - they can only appear in the programs where ctx == skb 16314 * - since they are wrappers of function calls, they scratch R1-R5 registers, 16315 * preserve R6-R9, and store return value into R0 16316 * 16317 * Implicit input: 16318 * ctx == skb == R6 == CTX 16319 * 16320 * Explicit input: 16321 * SRC == any register 16322 * IMM == 32-bit immediate 16323 * 16324 * Output: 16325 * R0 - 8/16/32-bit skb data converted to cpu endianness 16326 */ 16327 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 16328 { 16329 struct bpf_reg_state *regs = cur_regs(env); 16330 static const int ctx_reg = BPF_REG_6; 16331 u8 mode = BPF_MODE(insn->code); 16332 int i, err; 16333 16334 if (!may_access_skb(resolve_prog_type(env->prog))) { 16335 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 16336 return -EINVAL; 16337 } 16338 16339 if (!env->ops->gen_ld_abs) { 16340 verbose(env, "bpf verifier is misconfigured\n"); 16341 return -EINVAL; 16342 } 16343 16344 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 16345 BPF_SIZE(insn->code) == BPF_DW || 16346 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 16347 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 16348 return -EINVAL; 16349 } 16350 16351 /* check whether implicit source operand (register R6) is readable */ 16352 err = check_reg_arg(env, ctx_reg, SRC_OP); 16353 if (err) 16354 return err; 16355 16356 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 16357 * gen_ld_abs() may terminate the program at runtime, leading to 16358 * reference leak. 16359 */ 16360 err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]"); 16361 if (err) 16362 return err; 16363 16364 if (regs[ctx_reg].type != PTR_TO_CTX) { 16365 verbose(env, 16366 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 16367 return -EINVAL; 16368 } 16369 16370 if (mode == BPF_IND) { 16371 /* check explicit source operand */ 16372 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16373 if (err) 16374 return err; 16375 } 16376 16377 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 16378 if (err < 0) 16379 return err; 16380 16381 /* reset caller saved regs to unreadable */ 16382 for (i = 0; i < CALLER_SAVED_REGS; i++) { 16383 mark_reg_not_init(env, regs, caller_saved[i]); 16384 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 16385 } 16386 16387 /* mark destination R0 register as readable, since it contains 16388 * the value fetched from the packet. 16389 * Already marked as written above. 16390 */ 16391 mark_reg_unknown(env, regs, BPF_REG_0); 16392 /* ld_abs load up to 32-bit skb data. */ 16393 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 16394 return 0; 16395 } 16396 16397 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) 16398 { 16399 const char *exit_ctx = "At program exit"; 16400 struct tnum enforce_attach_type_range = tnum_unknown; 16401 const struct bpf_prog *prog = env->prog; 16402 struct bpf_reg_state *reg; 16403 struct bpf_retval_range range = retval_range(0, 1); 16404 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 16405 int err; 16406 struct bpf_func_state *frame = env->cur_state->frame[0]; 16407 const bool is_subprog = frame->subprogno; 16408 bool return_32bit = false; 16409 16410 /* LSM and struct_ops func-ptr's return type could be "void" */ 16411 if (!is_subprog || frame->in_exception_callback_fn) { 16412 switch (prog_type) { 16413 case BPF_PROG_TYPE_LSM: 16414 if (prog->expected_attach_type == BPF_LSM_CGROUP) 16415 /* See below, can be 0 or 0-1 depending on hook. */ 16416 break; 16417 fallthrough; 16418 case BPF_PROG_TYPE_STRUCT_OPS: 16419 if (!prog->aux->attach_func_proto->type) 16420 return 0; 16421 break; 16422 default: 16423 break; 16424 } 16425 } 16426 16427 /* eBPF calling convention is such that R0 is used 16428 * to return the value from eBPF program. 16429 * Make sure that it's readable at this time 16430 * of bpf_exit, which means that program wrote 16431 * something into it earlier 16432 */ 16433 err = check_reg_arg(env, regno, SRC_OP); 16434 if (err) 16435 return err; 16436 16437 if (is_pointer_value(env, regno)) { 16438 verbose(env, "R%d leaks addr as return value\n", regno); 16439 return -EACCES; 16440 } 16441 16442 reg = cur_regs(env) + regno; 16443 16444 if (frame->in_async_callback_fn) { 16445 /* enforce return zero from async callbacks like timer */ 16446 exit_ctx = "At async callback return"; 16447 range = retval_range(0, 0); 16448 goto enforce_retval; 16449 } 16450 16451 if (is_subprog && !frame->in_exception_callback_fn) { 16452 if (reg->type != SCALAR_VALUE) { 16453 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", 16454 regno, reg_type_str(env, reg->type)); 16455 return -EINVAL; 16456 } 16457 return 0; 16458 } 16459 16460 switch (prog_type) { 16461 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 16462 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 16463 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 16464 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || 16465 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 16466 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 16467 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || 16468 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 16469 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || 16470 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) 16471 range = retval_range(1, 1); 16472 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 16473 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 16474 range = retval_range(0, 3); 16475 break; 16476 case BPF_PROG_TYPE_CGROUP_SKB: 16477 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 16478 range = retval_range(0, 3); 16479 enforce_attach_type_range = tnum_range(2, 3); 16480 } 16481 break; 16482 case BPF_PROG_TYPE_CGROUP_SOCK: 16483 case BPF_PROG_TYPE_SOCK_OPS: 16484 case BPF_PROG_TYPE_CGROUP_DEVICE: 16485 case BPF_PROG_TYPE_CGROUP_SYSCTL: 16486 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 16487 break; 16488 case BPF_PROG_TYPE_RAW_TRACEPOINT: 16489 if (!env->prog->aux->attach_btf_id) 16490 return 0; 16491 range = retval_range(0, 0); 16492 break; 16493 case BPF_PROG_TYPE_TRACING: 16494 switch (env->prog->expected_attach_type) { 16495 case BPF_TRACE_FENTRY: 16496 case BPF_TRACE_FEXIT: 16497 range = retval_range(0, 0); 16498 break; 16499 case BPF_TRACE_RAW_TP: 16500 case BPF_MODIFY_RETURN: 16501 return 0; 16502 case BPF_TRACE_ITER: 16503 break; 16504 default: 16505 return -ENOTSUPP; 16506 } 16507 break; 16508 case BPF_PROG_TYPE_KPROBE: 16509 switch (env->prog->expected_attach_type) { 16510 case BPF_TRACE_KPROBE_SESSION: 16511 case BPF_TRACE_UPROBE_SESSION: 16512 range = retval_range(0, 1); 16513 break; 16514 default: 16515 return 0; 16516 } 16517 break; 16518 case BPF_PROG_TYPE_SK_LOOKUP: 16519 range = retval_range(SK_DROP, SK_PASS); 16520 break; 16521 16522 case BPF_PROG_TYPE_LSM: 16523 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 16524 /* no range found, any return value is allowed */ 16525 if (!get_func_retval_range(env->prog, &range)) 16526 return 0; 16527 /* no restricted range, any return value is allowed */ 16528 if (range.minval == S32_MIN && range.maxval == S32_MAX) 16529 return 0; 16530 return_32bit = true; 16531 } else if (!env->prog->aux->attach_func_proto->type) { 16532 /* Make sure programs that attach to void 16533 * hooks don't try to modify return value. 16534 */ 16535 range = retval_range(1, 1); 16536 } 16537 break; 16538 16539 case BPF_PROG_TYPE_NETFILTER: 16540 range = retval_range(NF_DROP, NF_ACCEPT); 16541 break; 16542 case BPF_PROG_TYPE_EXT: 16543 /* freplace program can return anything as its return value 16544 * depends on the to-be-replaced kernel func or bpf program. 16545 */ 16546 default: 16547 return 0; 16548 } 16549 16550 enforce_retval: 16551 if (reg->type != SCALAR_VALUE) { 16552 verbose(env, "%s the register R%d is not a known value (%s)\n", 16553 exit_ctx, regno, reg_type_str(env, reg->type)); 16554 return -EINVAL; 16555 } 16556 16557 err = mark_chain_precision(env, regno); 16558 if (err) 16559 return err; 16560 16561 if (!retval_range_within(range, reg, return_32bit)) { 16562 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); 16563 if (!is_subprog && 16564 prog->expected_attach_type == BPF_LSM_CGROUP && 16565 prog_type == BPF_PROG_TYPE_LSM && 16566 !prog->aux->attach_func_proto->type) 16567 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 16568 return -EINVAL; 16569 } 16570 16571 if (!tnum_is_unknown(enforce_attach_type_range) && 16572 tnum_in(enforce_attach_type_range, reg->var_off)) 16573 env->prog->enforce_expected_attach_type = 1; 16574 return 0; 16575 } 16576 16577 static void mark_subprog_changes_pkt_data(struct bpf_verifier_env *env, int off) 16578 { 16579 struct bpf_subprog_info *subprog; 16580 16581 subprog = find_containing_subprog(env, off); 16582 subprog->changes_pkt_data = true; 16583 } 16584 16585 /* 't' is an index of a call-site. 16586 * 'w' is a callee entry point. 16587 * Eventually this function would be called when env->cfg.insn_state[w] == EXPLORED. 16588 * Rely on DFS traversal order and absence of recursive calls to guarantee that 16589 * callee's change_pkt_data marks would be correct at that moment. 16590 */ 16591 static void merge_callee_effects(struct bpf_verifier_env *env, int t, int w) 16592 { 16593 struct bpf_subprog_info *caller, *callee; 16594 16595 caller = find_containing_subprog(env, t); 16596 callee = find_containing_subprog(env, w); 16597 caller->changes_pkt_data |= callee->changes_pkt_data; 16598 } 16599 16600 /* non-recursive DFS pseudo code 16601 * 1 procedure DFS-iterative(G,v): 16602 * 2 label v as discovered 16603 * 3 let S be a stack 16604 * 4 S.push(v) 16605 * 5 while S is not empty 16606 * 6 t <- S.peek() 16607 * 7 if t is what we're looking for: 16608 * 8 return t 16609 * 9 for all edges e in G.adjacentEdges(t) do 16610 * 10 if edge e is already labelled 16611 * 11 continue with the next edge 16612 * 12 w <- G.adjacentVertex(t,e) 16613 * 13 if vertex w is not discovered and not explored 16614 * 14 label e as tree-edge 16615 * 15 label w as discovered 16616 * 16 S.push(w) 16617 * 17 continue at 5 16618 * 18 else if vertex w is discovered 16619 * 19 label e as back-edge 16620 * 20 else 16621 * 21 // vertex w is explored 16622 * 22 label e as forward- or cross-edge 16623 * 23 label t as explored 16624 * 24 S.pop() 16625 * 16626 * convention: 16627 * 0x10 - discovered 16628 * 0x11 - discovered and fall-through edge labelled 16629 * 0x12 - discovered and fall-through and branch edges labelled 16630 * 0x20 - explored 16631 */ 16632 16633 enum { 16634 DISCOVERED = 0x10, 16635 EXPLORED = 0x20, 16636 FALLTHROUGH = 1, 16637 BRANCH = 2, 16638 }; 16639 16640 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 16641 { 16642 env->insn_aux_data[idx].prune_point = true; 16643 } 16644 16645 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 16646 { 16647 return env->insn_aux_data[insn_idx].prune_point; 16648 } 16649 16650 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 16651 { 16652 env->insn_aux_data[idx].force_checkpoint = true; 16653 } 16654 16655 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 16656 { 16657 return env->insn_aux_data[insn_idx].force_checkpoint; 16658 } 16659 16660 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 16661 { 16662 env->insn_aux_data[idx].calls_callback = true; 16663 } 16664 16665 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 16666 { 16667 return env->insn_aux_data[insn_idx].calls_callback; 16668 } 16669 16670 enum { 16671 DONE_EXPLORING = 0, 16672 KEEP_EXPLORING = 1, 16673 }; 16674 16675 /* t, w, e - match pseudo-code above: 16676 * t - index of current instruction 16677 * w - next instruction 16678 * e - edge 16679 */ 16680 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 16681 { 16682 int *insn_stack = env->cfg.insn_stack; 16683 int *insn_state = env->cfg.insn_state; 16684 16685 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 16686 return DONE_EXPLORING; 16687 16688 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 16689 return DONE_EXPLORING; 16690 16691 if (w < 0 || w >= env->prog->len) { 16692 verbose_linfo(env, t, "%d: ", t); 16693 verbose(env, "jump out of range from insn %d to %d\n", t, w); 16694 return -EINVAL; 16695 } 16696 16697 if (e == BRANCH) { 16698 /* mark branch target for state pruning */ 16699 mark_prune_point(env, w); 16700 mark_jmp_point(env, w); 16701 } 16702 16703 if (insn_state[w] == 0) { 16704 /* tree-edge */ 16705 insn_state[t] = DISCOVERED | e; 16706 insn_state[w] = DISCOVERED; 16707 if (env->cfg.cur_stack >= env->prog->len) 16708 return -E2BIG; 16709 insn_stack[env->cfg.cur_stack++] = w; 16710 return KEEP_EXPLORING; 16711 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 16712 if (env->bpf_capable) 16713 return DONE_EXPLORING; 16714 verbose_linfo(env, t, "%d: ", t); 16715 verbose_linfo(env, w, "%d: ", w); 16716 verbose(env, "back-edge from insn %d to %d\n", t, w); 16717 return -EINVAL; 16718 } else if (insn_state[w] == EXPLORED) { 16719 /* forward- or cross-edge */ 16720 insn_state[t] = DISCOVERED | e; 16721 } else { 16722 verbose(env, "insn state internal bug\n"); 16723 return -EFAULT; 16724 } 16725 return DONE_EXPLORING; 16726 } 16727 16728 static int visit_func_call_insn(int t, struct bpf_insn *insns, 16729 struct bpf_verifier_env *env, 16730 bool visit_callee) 16731 { 16732 int ret, insn_sz; 16733 int w; 16734 16735 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 16736 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 16737 if (ret) 16738 return ret; 16739 16740 mark_prune_point(env, t + insn_sz); 16741 /* when we exit from subprog, we need to record non-linear history */ 16742 mark_jmp_point(env, t + insn_sz); 16743 16744 if (visit_callee) { 16745 w = t + insns[t].imm + 1; 16746 mark_prune_point(env, t); 16747 merge_callee_effects(env, t, w); 16748 ret = push_insn(t, w, BRANCH, env); 16749 } 16750 return ret; 16751 } 16752 16753 /* Bitmask with 1s for all caller saved registers */ 16754 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) 16755 16756 /* Return a bitmask specifying which caller saved registers are 16757 * clobbered by a call to a helper *as if* this helper follows 16758 * bpf_fastcall contract: 16759 * - includes R0 if function is non-void; 16760 * - includes R1-R5 if corresponding parameter has is described 16761 * in the function prototype. 16762 */ 16763 static u32 helper_fastcall_clobber_mask(const struct bpf_func_proto *fn) 16764 { 16765 u32 mask; 16766 int i; 16767 16768 mask = 0; 16769 if (fn->ret_type != RET_VOID) 16770 mask |= BIT(BPF_REG_0); 16771 for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) 16772 if (fn->arg_type[i] != ARG_DONTCARE) 16773 mask |= BIT(BPF_REG_1 + i); 16774 return mask; 16775 } 16776 16777 /* True if do_misc_fixups() replaces calls to helper number 'imm', 16778 * replacement patch is presumed to follow bpf_fastcall contract 16779 * (see mark_fastcall_pattern_for_call() below). 16780 */ 16781 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm) 16782 { 16783 switch (imm) { 16784 #ifdef CONFIG_X86_64 16785 case BPF_FUNC_get_smp_processor_id: 16786 return env->prog->jit_requested && bpf_jit_supports_percpu_insn(); 16787 #endif 16788 default: 16789 return false; 16790 } 16791 } 16792 16793 /* Same as helper_fastcall_clobber_mask() but for kfuncs, see comment above */ 16794 static u32 kfunc_fastcall_clobber_mask(struct bpf_kfunc_call_arg_meta *meta) 16795 { 16796 u32 vlen, i, mask; 16797 16798 vlen = btf_type_vlen(meta->func_proto); 16799 mask = 0; 16800 if (!btf_type_is_void(btf_type_by_id(meta->btf, meta->func_proto->type))) 16801 mask |= BIT(BPF_REG_0); 16802 for (i = 0; i < vlen; ++i) 16803 mask |= BIT(BPF_REG_1 + i); 16804 return mask; 16805 } 16806 16807 /* Same as verifier_inlines_helper_call() but for kfuncs, see comment above */ 16808 static bool is_fastcall_kfunc_call(struct bpf_kfunc_call_arg_meta *meta) 16809 { 16810 return meta->kfunc_flags & KF_FASTCALL; 16811 } 16812 16813 /* LLVM define a bpf_fastcall function attribute. 16814 * This attribute means that function scratches only some of 16815 * the caller saved registers defined by ABI. 16816 * For BPF the set of such registers could be defined as follows: 16817 * - R0 is scratched only if function is non-void; 16818 * - R1-R5 are scratched only if corresponding parameter type is defined 16819 * in the function prototype. 16820 * 16821 * The contract between kernel and clang allows to simultaneously use 16822 * such functions and maintain backwards compatibility with old 16823 * kernels that don't understand bpf_fastcall calls: 16824 * 16825 * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5 16826 * registers are not scratched by the call; 16827 * 16828 * - as a post-processing step, clang visits each bpf_fastcall call and adds 16829 * spill/fill for every live r0-r5; 16830 * 16831 * - stack offsets used for the spill/fill are allocated as lowest 16832 * stack offsets in whole function and are not used for any other 16833 * purposes; 16834 * 16835 * - when kernel loads a program, it looks for such patterns 16836 * (bpf_fastcall function surrounded by spills/fills) and checks if 16837 * spill/fill stack offsets are used exclusively in fastcall patterns; 16838 * 16839 * - if so, and if verifier or current JIT inlines the call to the 16840 * bpf_fastcall function (e.g. a helper call), kernel removes unnecessary 16841 * spill/fill pairs; 16842 * 16843 * - when old kernel loads a program, presence of spill/fill pairs 16844 * keeps BPF program valid, albeit slightly less efficient. 16845 * 16846 * For example: 16847 * 16848 * r1 = 1; 16849 * r2 = 2; 16850 * *(u64 *)(r10 - 8) = r1; r1 = 1; 16851 * *(u64 *)(r10 - 16) = r2; r2 = 2; 16852 * call %[to_be_inlined] --> call %[to_be_inlined] 16853 * r2 = *(u64 *)(r10 - 16); r0 = r1; 16854 * r1 = *(u64 *)(r10 - 8); r0 += r2; 16855 * r0 = r1; exit; 16856 * r0 += r2; 16857 * exit; 16858 * 16859 * The purpose of mark_fastcall_pattern_for_call is to: 16860 * - look for such patterns; 16861 * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern; 16862 * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction; 16863 * - update env->subprog_info[*]->fastcall_stack_off to find an offset 16864 * at which bpf_fastcall spill/fill stack slots start; 16865 * - update env->subprog_info[*]->keep_fastcall_stack. 16866 * 16867 * The .fastcall_pattern and .fastcall_stack_off are used by 16868 * check_fastcall_stack_contract() to check if every stack access to 16869 * fastcall spill/fill stack slot originates from spill/fill 16870 * instructions, members of fastcall patterns. 16871 * 16872 * If such condition holds true for a subprogram, fastcall patterns could 16873 * be rewritten by remove_fastcall_spills_fills(). 16874 * Otherwise bpf_fastcall patterns are not changed in the subprogram 16875 * (code, presumably, generated by an older clang version). 16876 * 16877 * For example, it is *not* safe to remove spill/fill below: 16878 * 16879 * r1 = 1; 16880 * *(u64 *)(r10 - 8) = r1; r1 = 1; 16881 * call %[to_be_inlined] --> call %[to_be_inlined] 16882 * r1 = *(u64 *)(r10 - 8); r0 = *(u64 *)(r10 - 8); <---- wrong !!! 16883 * r0 = *(u64 *)(r10 - 8); r0 += r1; 16884 * r0 += r1; exit; 16885 * exit; 16886 */ 16887 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env, 16888 struct bpf_subprog_info *subprog, 16889 int insn_idx, s16 lowest_off) 16890 { 16891 struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx; 16892 struct bpf_insn *call = &env->prog->insnsi[insn_idx]; 16893 const struct bpf_func_proto *fn; 16894 u32 clobbered_regs_mask = ALL_CALLER_SAVED_REGS; 16895 u32 expected_regs_mask; 16896 bool can_be_inlined = false; 16897 s16 off; 16898 int i; 16899 16900 if (bpf_helper_call(call)) { 16901 if (get_helper_proto(env, call->imm, &fn) < 0) 16902 /* error would be reported later */ 16903 return; 16904 clobbered_regs_mask = helper_fastcall_clobber_mask(fn); 16905 can_be_inlined = fn->allow_fastcall && 16906 (verifier_inlines_helper_call(env, call->imm) || 16907 bpf_jit_inlines_helper_call(call->imm)); 16908 } 16909 16910 if (bpf_pseudo_kfunc_call(call)) { 16911 struct bpf_kfunc_call_arg_meta meta; 16912 int err; 16913 16914 err = fetch_kfunc_meta(env, call, &meta, NULL); 16915 if (err < 0) 16916 /* error would be reported later */ 16917 return; 16918 16919 clobbered_regs_mask = kfunc_fastcall_clobber_mask(&meta); 16920 can_be_inlined = is_fastcall_kfunc_call(&meta); 16921 } 16922 16923 if (clobbered_regs_mask == ALL_CALLER_SAVED_REGS) 16924 return; 16925 16926 /* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */ 16927 expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS; 16928 16929 /* match pairs of form: 16930 * 16931 * *(u64 *)(r10 - Y) = rX (where Y % 8 == 0) 16932 * ... 16933 * call %[to_be_inlined] 16934 * ... 16935 * rX = *(u64 *)(r10 - Y) 16936 */ 16937 for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) { 16938 if (insn_idx - i < 0 || insn_idx + i >= env->prog->len) 16939 break; 16940 stx = &insns[insn_idx - i]; 16941 ldx = &insns[insn_idx + i]; 16942 /* must be a stack spill/fill pair */ 16943 if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) || 16944 ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) || 16945 stx->dst_reg != BPF_REG_10 || 16946 ldx->src_reg != BPF_REG_10) 16947 break; 16948 /* must be a spill/fill for the same reg */ 16949 if (stx->src_reg != ldx->dst_reg) 16950 break; 16951 /* must be one of the previously unseen registers */ 16952 if ((BIT(stx->src_reg) & expected_regs_mask) == 0) 16953 break; 16954 /* must be a spill/fill for the same expected offset, 16955 * no need to check offset alignment, BPF_DW stack access 16956 * is always 8-byte aligned. 16957 */ 16958 if (stx->off != off || ldx->off != off) 16959 break; 16960 expected_regs_mask &= ~BIT(stx->src_reg); 16961 env->insn_aux_data[insn_idx - i].fastcall_pattern = 1; 16962 env->insn_aux_data[insn_idx + i].fastcall_pattern = 1; 16963 } 16964 if (i == 1) 16965 return; 16966 16967 /* Conditionally set 'fastcall_spills_num' to allow forward 16968 * compatibility when more helper functions are marked as 16969 * bpf_fastcall at compile time than current kernel supports, e.g: 16970 * 16971 * 1: *(u64 *)(r10 - 8) = r1 16972 * 2: call A ;; assume A is bpf_fastcall for current kernel 16973 * 3: r1 = *(u64 *)(r10 - 8) 16974 * 4: *(u64 *)(r10 - 8) = r1 16975 * 5: call B ;; assume B is not bpf_fastcall for current kernel 16976 * 6: r1 = *(u64 *)(r10 - 8) 16977 * 16978 * There is no need to block bpf_fastcall rewrite for such program. 16979 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy, 16980 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills() 16981 * does not remove spill/fill pair {4,6}. 16982 */ 16983 if (can_be_inlined) 16984 env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1; 16985 else 16986 subprog->keep_fastcall_stack = 1; 16987 subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off); 16988 } 16989 16990 static int mark_fastcall_patterns(struct bpf_verifier_env *env) 16991 { 16992 struct bpf_subprog_info *subprog = env->subprog_info; 16993 struct bpf_insn *insn; 16994 s16 lowest_off; 16995 int s, i; 16996 16997 for (s = 0; s < env->subprog_cnt; ++s, ++subprog) { 16998 /* find lowest stack spill offset used in this subprog */ 16999 lowest_off = 0; 17000 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 17001 insn = env->prog->insnsi + i; 17002 if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) || 17003 insn->dst_reg != BPF_REG_10) 17004 continue; 17005 lowest_off = min(lowest_off, insn->off); 17006 } 17007 /* use this offset to find fastcall patterns */ 17008 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 17009 insn = env->prog->insnsi + i; 17010 if (insn->code != (BPF_JMP | BPF_CALL)) 17011 continue; 17012 mark_fastcall_pattern_for_call(env, subprog, i, lowest_off); 17013 } 17014 } 17015 return 0; 17016 } 17017 17018 /* Visits the instruction at index t and returns one of the following: 17019 * < 0 - an error occurred 17020 * DONE_EXPLORING - the instruction was fully explored 17021 * KEEP_EXPLORING - there is still work to be done before it is fully explored 17022 */ 17023 static int visit_insn(int t, struct bpf_verifier_env *env) 17024 { 17025 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 17026 int ret, off, insn_sz; 17027 17028 if (bpf_pseudo_func(insn)) 17029 return visit_func_call_insn(t, insns, env, true); 17030 17031 /* All non-branch instructions have a single fall-through edge. */ 17032 if (BPF_CLASS(insn->code) != BPF_JMP && 17033 BPF_CLASS(insn->code) != BPF_JMP32) { 17034 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 17035 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 17036 } 17037 17038 switch (BPF_OP(insn->code)) { 17039 case BPF_EXIT: 17040 return DONE_EXPLORING; 17041 17042 case BPF_CALL: 17043 if (is_async_callback_calling_insn(insn)) 17044 /* Mark this call insn as a prune point to trigger 17045 * is_state_visited() check before call itself is 17046 * processed by __check_func_call(). Otherwise new 17047 * async state will be pushed for further exploration. 17048 */ 17049 mark_prune_point(env, t); 17050 /* For functions that invoke callbacks it is not known how many times 17051 * callback would be called. Verifier models callback calling functions 17052 * by repeatedly visiting callback bodies and returning to origin call 17053 * instruction. 17054 * In order to stop such iteration verifier needs to identify when a 17055 * state identical some state from a previous iteration is reached. 17056 * Check below forces creation of checkpoint before callback calling 17057 * instruction to allow search for such identical states. 17058 */ 17059 if (is_sync_callback_calling_insn(insn)) { 17060 mark_calls_callback(env, t); 17061 mark_force_checkpoint(env, t); 17062 mark_prune_point(env, t); 17063 mark_jmp_point(env, t); 17064 } 17065 if (bpf_helper_call(insn) && bpf_helper_changes_pkt_data(insn->imm)) 17066 mark_subprog_changes_pkt_data(env, t); 17067 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 17068 struct bpf_kfunc_call_arg_meta meta; 17069 17070 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 17071 if (ret == 0 && is_iter_next_kfunc(&meta)) { 17072 mark_prune_point(env, t); 17073 /* Checking and saving state checkpoints at iter_next() call 17074 * is crucial for fast convergence of open-coded iterator loop 17075 * logic, so we need to force it. If we don't do that, 17076 * is_state_visited() might skip saving a checkpoint, causing 17077 * unnecessarily long sequence of not checkpointed 17078 * instructions and jumps, leading to exhaustion of jump 17079 * history buffer, and potentially other undesired outcomes. 17080 * It is expected that with correct open-coded iterators 17081 * convergence will happen quickly, so we don't run a risk of 17082 * exhausting memory. 17083 */ 17084 mark_force_checkpoint(env, t); 17085 } 17086 } 17087 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 17088 17089 case BPF_JA: 17090 if (BPF_SRC(insn->code) != BPF_K) 17091 return -EINVAL; 17092 17093 if (BPF_CLASS(insn->code) == BPF_JMP) 17094 off = insn->off; 17095 else 17096 off = insn->imm; 17097 17098 /* unconditional jump with single edge */ 17099 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 17100 if (ret) 17101 return ret; 17102 17103 mark_prune_point(env, t + off + 1); 17104 mark_jmp_point(env, t + off + 1); 17105 17106 return ret; 17107 17108 default: 17109 /* conditional jump with two edges */ 17110 mark_prune_point(env, t); 17111 if (is_may_goto_insn(insn)) 17112 mark_force_checkpoint(env, t); 17113 17114 ret = push_insn(t, t + 1, FALLTHROUGH, env); 17115 if (ret) 17116 return ret; 17117 17118 return push_insn(t, t + insn->off + 1, BRANCH, env); 17119 } 17120 } 17121 17122 /* non-recursive depth-first-search to detect loops in BPF program 17123 * loop == back-edge in directed graph 17124 */ 17125 static int check_cfg(struct bpf_verifier_env *env) 17126 { 17127 int insn_cnt = env->prog->len; 17128 int *insn_stack, *insn_state; 17129 int ex_insn_beg, i, ret = 0; 17130 bool ex_done = false; 17131 17132 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 17133 if (!insn_state) 17134 return -ENOMEM; 17135 17136 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 17137 if (!insn_stack) { 17138 kvfree(insn_state); 17139 return -ENOMEM; 17140 } 17141 17142 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 17143 insn_stack[0] = 0; /* 0 is the first instruction */ 17144 env->cfg.cur_stack = 1; 17145 17146 walk_cfg: 17147 while (env->cfg.cur_stack > 0) { 17148 int t = insn_stack[env->cfg.cur_stack - 1]; 17149 17150 ret = visit_insn(t, env); 17151 switch (ret) { 17152 case DONE_EXPLORING: 17153 insn_state[t] = EXPLORED; 17154 env->cfg.cur_stack--; 17155 break; 17156 case KEEP_EXPLORING: 17157 break; 17158 default: 17159 if (ret > 0) { 17160 verbose(env, "visit_insn internal bug\n"); 17161 ret = -EFAULT; 17162 } 17163 goto err_free; 17164 } 17165 } 17166 17167 if (env->cfg.cur_stack < 0) { 17168 verbose(env, "pop stack internal bug\n"); 17169 ret = -EFAULT; 17170 goto err_free; 17171 } 17172 17173 if (env->exception_callback_subprog && !ex_done) { 17174 ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start; 17175 17176 insn_state[ex_insn_beg] = DISCOVERED; 17177 insn_stack[0] = ex_insn_beg; 17178 env->cfg.cur_stack = 1; 17179 ex_done = true; 17180 goto walk_cfg; 17181 } 17182 17183 for (i = 0; i < insn_cnt; i++) { 17184 struct bpf_insn *insn = &env->prog->insnsi[i]; 17185 17186 if (insn_state[i] != EXPLORED) { 17187 verbose(env, "unreachable insn %d\n", i); 17188 ret = -EINVAL; 17189 goto err_free; 17190 } 17191 if (bpf_is_ldimm64(insn)) { 17192 if (insn_state[i + 1] != 0) { 17193 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 17194 ret = -EINVAL; 17195 goto err_free; 17196 } 17197 i++; /* skip second half of ldimm64 */ 17198 } 17199 } 17200 ret = 0; /* cfg looks good */ 17201 env->prog->aux->changes_pkt_data = env->subprog_info[0].changes_pkt_data; 17202 17203 err_free: 17204 kvfree(insn_state); 17205 kvfree(insn_stack); 17206 env->cfg.insn_state = env->cfg.insn_stack = NULL; 17207 return ret; 17208 } 17209 17210 static int check_abnormal_return(struct bpf_verifier_env *env) 17211 { 17212 int i; 17213 17214 for (i = 1; i < env->subprog_cnt; i++) { 17215 if (env->subprog_info[i].has_ld_abs) { 17216 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 17217 return -EINVAL; 17218 } 17219 if (env->subprog_info[i].has_tail_call) { 17220 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 17221 return -EINVAL; 17222 } 17223 } 17224 return 0; 17225 } 17226 17227 /* The minimum supported BTF func info size */ 17228 #define MIN_BPF_FUNCINFO_SIZE 8 17229 #define MAX_FUNCINFO_REC_SIZE 252 17230 17231 static int check_btf_func_early(struct bpf_verifier_env *env, 17232 const union bpf_attr *attr, 17233 bpfptr_t uattr) 17234 { 17235 u32 krec_size = sizeof(struct bpf_func_info); 17236 const struct btf_type *type, *func_proto; 17237 u32 i, nfuncs, urec_size, min_size; 17238 struct bpf_func_info *krecord; 17239 struct bpf_prog *prog; 17240 const struct btf *btf; 17241 u32 prev_offset = 0; 17242 bpfptr_t urecord; 17243 int ret = -ENOMEM; 17244 17245 nfuncs = attr->func_info_cnt; 17246 if (!nfuncs) { 17247 if (check_abnormal_return(env)) 17248 return -EINVAL; 17249 return 0; 17250 } 17251 17252 urec_size = attr->func_info_rec_size; 17253 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 17254 urec_size > MAX_FUNCINFO_REC_SIZE || 17255 urec_size % sizeof(u32)) { 17256 verbose(env, "invalid func info rec size %u\n", urec_size); 17257 return -EINVAL; 17258 } 17259 17260 prog = env->prog; 17261 btf = prog->aux->btf; 17262 17263 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 17264 min_size = min_t(u32, krec_size, urec_size); 17265 17266 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 17267 if (!krecord) 17268 return -ENOMEM; 17269 17270 for (i = 0; i < nfuncs; i++) { 17271 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 17272 if (ret) { 17273 if (ret == -E2BIG) { 17274 verbose(env, "nonzero tailing record in func info"); 17275 /* set the size kernel expects so loader can zero 17276 * out the rest of the record. 17277 */ 17278 if (copy_to_bpfptr_offset(uattr, 17279 offsetof(union bpf_attr, func_info_rec_size), 17280 &min_size, sizeof(min_size))) 17281 ret = -EFAULT; 17282 } 17283 goto err_free; 17284 } 17285 17286 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 17287 ret = -EFAULT; 17288 goto err_free; 17289 } 17290 17291 /* check insn_off */ 17292 ret = -EINVAL; 17293 if (i == 0) { 17294 if (krecord[i].insn_off) { 17295 verbose(env, 17296 "nonzero insn_off %u for the first func info record", 17297 krecord[i].insn_off); 17298 goto err_free; 17299 } 17300 } else if (krecord[i].insn_off <= prev_offset) { 17301 verbose(env, 17302 "same or smaller insn offset (%u) than previous func info record (%u)", 17303 krecord[i].insn_off, prev_offset); 17304 goto err_free; 17305 } 17306 17307 /* check type_id */ 17308 type = btf_type_by_id(btf, krecord[i].type_id); 17309 if (!type || !btf_type_is_func(type)) { 17310 verbose(env, "invalid type id %d in func info", 17311 krecord[i].type_id); 17312 goto err_free; 17313 } 17314 17315 func_proto = btf_type_by_id(btf, type->type); 17316 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 17317 /* btf_func_check() already verified it during BTF load */ 17318 goto err_free; 17319 17320 prev_offset = krecord[i].insn_off; 17321 bpfptr_add(&urecord, urec_size); 17322 } 17323 17324 prog->aux->func_info = krecord; 17325 prog->aux->func_info_cnt = nfuncs; 17326 return 0; 17327 17328 err_free: 17329 kvfree(krecord); 17330 return ret; 17331 } 17332 17333 static int check_btf_func(struct bpf_verifier_env *env, 17334 const union bpf_attr *attr, 17335 bpfptr_t uattr) 17336 { 17337 const struct btf_type *type, *func_proto, *ret_type; 17338 u32 i, nfuncs, urec_size; 17339 struct bpf_func_info *krecord; 17340 struct bpf_func_info_aux *info_aux = NULL; 17341 struct bpf_prog *prog; 17342 const struct btf *btf; 17343 bpfptr_t urecord; 17344 bool scalar_return; 17345 int ret = -ENOMEM; 17346 17347 nfuncs = attr->func_info_cnt; 17348 if (!nfuncs) { 17349 if (check_abnormal_return(env)) 17350 return -EINVAL; 17351 return 0; 17352 } 17353 if (nfuncs != env->subprog_cnt) { 17354 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 17355 return -EINVAL; 17356 } 17357 17358 urec_size = attr->func_info_rec_size; 17359 17360 prog = env->prog; 17361 btf = prog->aux->btf; 17362 17363 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 17364 17365 krecord = prog->aux->func_info; 17366 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 17367 if (!info_aux) 17368 return -ENOMEM; 17369 17370 for (i = 0; i < nfuncs; i++) { 17371 /* check insn_off */ 17372 ret = -EINVAL; 17373 17374 if (env->subprog_info[i].start != krecord[i].insn_off) { 17375 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 17376 goto err_free; 17377 } 17378 17379 /* Already checked type_id */ 17380 type = btf_type_by_id(btf, krecord[i].type_id); 17381 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 17382 /* Already checked func_proto */ 17383 func_proto = btf_type_by_id(btf, type->type); 17384 17385 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 17386 scalar_return = 17387 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 17388 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 17389 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 17390 goto err_free; 17391 } 17392 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 17393 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 17394 goto err_free; 17395 } 17396 17397 bpfptr_add(&urecord, urec_size); 17398 } 17399 17400 prog->aux->func_info_aux = info_aux; 17401 return 0; 17402 17403 err_free: 17404 kfree(info_aux); 17405 return ret; 17406 } 17407 17408 static void adjust_btf_func(struct bpf_verifier_env *env) 17409 { 17410 struct bpf_prog_aux *aux = env->prog->aux; 17411 int i; 17412 17413 if (!aux->func_info) 17414 return; 17415 17416 /* func_info is not available for hidden subprogs */ 17417 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) 17418 aux->func_info[i].insn_off = env->subprog_info[i].start; 17419 } 17420 17421 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 17422 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 17423 17424 static int check_btf_line(struct bpf_verifier_env *env, 17425 const union bpf_attr *attr, 17426 bpfptr_t uattr) 17427 { 17428 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 17429 struct bpf_subprog_info *sub; 17430 struct bpf_line_info *linfo; 17431 struct bpf_prog *prog; 17432 const struct btf *btf; 17433 bpfptr_t ulinfo; 17434 int err; 17435 17436 nr_linfo = attr->line_info_cnt; 17437 if (!nr_linfo) 17438 return 0; 17439 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 17440 return -EINVAL; 17441 17442 rec_size = attr->line_info_rec_size; 17443 if (rec_size < MIN_BPF_LINEINFO_SIZE || 17444 rec_size > MAX_LINEINFO_REC_SIZE || 17445 rec_size & (sizeof(u32) - 1)) 17446 return -EINVAL; 17447 17448 /* Need to zero it in case the userspace may 17449 * pass in a smaller bpf_line_info object. 17450 */ 17451 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 17452 GFP_KERNEL | __GFP_NOWARN); 17453 if (!linfo) 17454 return -ENOMEM; 17455 17456 prog = env->prog; 17457 btf = prog->aux->btf; 17458 17459 s = 0; 17460 sub = env->subprog_info; 17461 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 17462 expected_size = sizeof(struct bpf_line_info); 17463 ncopy = min_t(u32, expected_size, rec_size); 17464 for (i = 0; i < nr_linfo; i++) { 17465 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 17466 if (err) { 17467 if (err == -E2BIG) { 17468 verbose(env, "nonzero tailing record in line_info"); 17469 if (copy_to_bpfptr_offset(uattr, 17470 offsetof(union bpf_attr, line_info_rec_size), 17471 &expected_size, sizeof(expected_size))) 17472 err = -EFAULT; 17473 } 17474 goto err_free; 17475 } 17476 17477 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 17478 err = -EFAULT; 17479 goto err_free; 17480 } 17481 17482 /* 17483 * Check insn_off to ensure 17484 * 1) strictly increasing AND 17485 * 2) bounded by prog->len 17486 * 17487 * The linfo[0].insn_off == 0 check logically falls into 17488 * the later "missing bpf_line_info for func..." case 17489 * because the first linfo[0].insn_off must be the 17490 * first sub also and the first sub must have 17491 * subprog_info[0].start == 0. 17492 */ 17493 if ((i && linfo[i].insn_off <= prev_offset) || 17494 linfo[i].insn_off >= prog->len) { 17495 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 17496 i, linfo[i].insn_off, prev_offset, 17497 prog->len); 17498 err = -EINVAL; 17499 goto err_free; 17500 } 17501 17502 if (!prog->insnsi[linfo[i].insn_off].code) { 17503 verbose(env, 17504 "Invalid insn code at line_info[%u].insn_off\n", 17505 i); 17506 err = -EINVAL; 17507 goto err_free; 17508 } 17509 17510 if (!btf_name_by_offset(btf, linfo[i].line_off) || 17511 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 17512 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 17513 err = -EINVAL; 17514 goto err_free; 17515 } 17516 17517 if (s != env->subprog_cnt) { 17518 if (linfo[i].insn_off == sub[s].start) { 17519 sub[s].linfo_idx = i; 17520 s++; 17521 } else if (sub[s].start < linfo[i].insn_off) { 17522 verbose(env, "missing bpf_line_info for func#%u\n", s); 17523 err = -EINVAL; 17524 goto err_free; 17525 } 17526 } 17527 17528 prev_offset = linfo[i].insn_off; 17529 bpfptr_add(&ulinfo, rec_size); 17530 } 17531 17532 if (s != env->subprog_cnt) { 17533 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 17534 env->subprog_cnt - s, s); 17535 err = -EINVAL; 17536 goto err_free; 17537 } 17538 17539 prog->aux->linfo = linfo; 17540 prog->aux->nr_linfo = nr_linfo; 17541 17542 return 0; 17543 17544 err_free: 17545 kvfree(linfo); 17546 return err; 17547 } 17548 17549 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 17550 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 17551 17552 static int check_core_relo(struct bpf_verifier_env *env, 17553 const union bpf_attr *attr, 17554 bpfptr_t uattr) 17555 { 17556 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 17557 struct bpf_core_relo core_relo = {}; 17558 struct bpf_prog *prog = env->prog; 17559 const struct btf *btf = prog->aux->btf; 17560 struct bpf_core_ctx ctx = { 17561 .log = &env->log, 17562 .btf = btf, 17563 }; 17564 bpfptr_t u_core_relo; 17565 int err; 17566 17567 nr_core_relo = attr->core_relo_cnt; 17568 if (!nr_core_relo) 17569 return 0; 17570 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 17571 return -EINVAL; 17572 17573 rec_size = attr->core_relo_rec_size; 17574 if (rec_size < MIN_CORE_RELO_SIZE || 17575 rec_size > MAX_CORE_RELO_SIZE || 17576 rec_size % sizeof(u32)) 17577 return -EINVAL; 17578 17579 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 17580 expected_size = sizeof(struct bpf_core_relo); 17581 ncopy = min_t(u32, expected_size, rec_size); 17582 17583 /* Unlike func_info and line_info, copy and apply each CO-RE 17584 * relocation record one at a time. 17585 */ 17586 for (i = 0; i < nr_core_relo; i++) { 17587 /* future proofing when sizeof(bpf_core_relo) changes */ 17588 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 17589 if (err) { 17590 if (err == -E2BIG) { 17591 verbose(env, "nonzero tailing record in core_relo"); 17592 if (copy_to_bpfptr_offset(uattr, 17593 offsetof(union bpf_attr, core_relo_rec_size), 17594 &expected_size, sizeof(expected_size))) 17595 err = -EFAULT; 17596 } 17597 break; 17598 } 17599 17600 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 17601 err = -EFAULT; 17602 break; 17603 } 17604 17605 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 17606 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 17607 i, core_relo.insn_off, prog->len); 17608 err = -EINVAL; 17609 break; 17610 } 17611 17612 err = bpf_core_apply(&ctx, &core_relo, i, 17613 &prog->insnsi[core_relo.insn_off / 8]); 17614 if (err) 17615 break; 17616 bpfptr_add(&u_core_relo, rec_size); 17617 } 17618 return err; 17619 } 17620 17621 static int check_btf_info_early(struct bpf_verifier_env *env, 17622 const union bpf_attr *attr, 17623 bpfptr_t uattr) 17624 { 17625 struct btf *btf; 17626 int err; 17627 17628 if (!attr->func_info_cnt && !attr->line_info_cnt) { 17629 if (check_abnormal_return(env)) 17630 return -EINVAL; 17631 return 0; 17632 } 17633 17634 btf = btf_get_by_fd(attr->prog_btf_fd); 17635 if (IS_ERR(btf)) 17636 return PTR_ERR(btf); 17637 if (btf_is_kernel(btf)) { 17638 btf_put(btf); 17639 return -EACCES; 17640 } 17641 env->prog->aux->btf = btf; 17642 17643 err = check_btf_func_early(env, attr, uattr); 17644 if (err) 17645 return err; 17646 return 0; 17647 } 17648 17649 static int check_btf_info(struct bpf_verifier_env *env, 17650 const union bpf_attr *attr, 17651 bpfptr_t uattr) 17652 { 17653 int err; 17654 17655 if (!attr->func_info_cnt && !attr->line_info_cnt) { 17656 if (check_abnormal_return(env)) 17657 return -EINVAL; 17658 return 0; 17659 } 17660 17661 err = check_btf_func(env, attr, uattr); 17662 if (err) 17663 return err; 17664 17665 err = check_btf_line(env, attr, uattr); 17666 if (err) 17667 return err; 17668 17669 err = check_core_relo(env, attr, uattr); 17670 if (err) 17671 return err; 17672 17673 return 0; 17674 } 17675 17676 /* check %cur's range satisfies %old's */ 17677 static bool range_within(const struct bpf_reg_state *old, 17678 const struct bpf_reg_state *cur) 17679 { 17680 return old->umin_value <= cur->umin_value && 17681 old->umax_value >= cur->umax_value && 17682 old->smin_value <= cur->smin_value && 17683 old->smax_value >= cur->smax_value && 17684 old->u32_min_value <= cur->u32_min_value && 17685 old->u32_max_value >= cur->u32_max_value && 17686 old->s32_min_value <= cur->s32_min_value && 17687 old->s32_max_value >= cur->s32_max_value; 17688 } 17689 17690 /* If in the old state two registers had the same id, then they need to have 17691 * the same id in the new state as well. But that id could be different from 17692 * the old state, so we need to track the mapping from old to new ids. 17693 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 17694 * regs with old id 5 must also have new id 9 for the new state to be safe. But 17695 * regs with a different old id could still have new id 9, we don't care about 17696 * that. 17697 * So we look through our idmap to see if this old id has been seen before. If 17698 * so, we require the new id to match; otherwise, we add the id pair to the map. 17699 */ 17700 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 17701 { 17702 struct bpf_id_pair *map = idmap->map; 17703 unsigned int i; 17704 17705 /* either both IDs should be set or both should be zero */ 17706 if (!!old_id != !!cur_id) 17707 return false; 17708 17709 if (old_id == 0) /* cur_id == 0 as well */ 17710 return true; 17711 17712 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 17713 if (!map[i].old) { 17714 /* Reached an empty slot; haven't seen this id before */ 17715 map[i].old = old_id; 17716 map[i].cur = cur_id; 17717 return true; 17718 } 17719 if (map[i].old == old_id) 17720 return map[i].cur == cur_id; 17721 if (map[i].cur == cur_id) 17722 return false; 17723 } 17724 /* We ran out of idmap slots, which should be impossible */ 17725 WARN_ON_ONCE(1); 17726 return false; 17727 } 17728 17729 /* Similar to check_ids(), but allocate a unique temporary ID 17730 * for 'old_id' or 'cur_id' of zero. 17731 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 17732 */ 17733 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 17734 { 17735 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 17736 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 17737 17738 return check_ids(old_id, cur_id, idmap); 17739 } 17740 17741 static void clean_func_state(struct bpf_verifier_env *env, 17742 struct bpf_func_state *st) 17743 { 17744 enum bpf_reg_liveness live; 17745 int i, j; 17746 17747 for (i = 0; i < BPF_REG_FP; i++) { 17748 live = st->regs[i].live; 17749 /* liveness must not touch this register anymore */ 17750 st->regs[i].live |= REG_LIVE_DONE; 17751 if (!(live & REG_LIVE_READ)) 17752 /* since the register is unused, clear its state 17753 * to make further comparison simpler 17754 */ 17755 __mark_reg_not_init(env, &st->regs[i]); 17756 } 17757 17758 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 17759 live = st->stack[i].spilled_ptr.live; 17760 /* liveness must not touch this stack slot anymore */ 17761 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 17762 if (!(live & REG_LIVE_READ)) { 17763 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 17764 for (j = 0; j < BPF_REG_SIZE; j++) 17765 st->stack[i].slot_type[j] = STACK_INVALID; 17766 } 17767 } 17768 } 17769 17770 static void clean_verifier_state(struct bpf_verifier_env *env, 17771 struct bpf_verifier_state *st) 17772 { 17773 int i; 17774 17775 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 17776 /* all regs in this state in all frames were already marked */ 17777 return; 17778 17779 for (i = 0; i <= st->curframe; i++) 17780 clean_func_state(env, st->frame[i]); 17781 } 17782 17783 /* the parentage chains form a tree. 17784 * the verifier states are added to state lists at given insn and 17785 * pushed into state stack for future exploration. 17786 * when the verifier reaches bpf_exit insn some of the verifer states 17787 * stored in the state lists have their final liveness state already, 17788 * but a lot of states will get revised from liveness point of view when 17789 * the verifier explores other branches. 17790 * Example: 17791 * 1: r0 = 1 17792 * 2: if r1 == 100 goto pc+1 17793 * 3: r0 = 2 17794 * 4: exit 17795 * when the verifier reaches exit insn the register r0 in the state list of 17796 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 17797 * of insn 2 and goes exploring further. At the insn 4 it will walk the 17798 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 17799 * 17800 * Since the verifier pushes the branch states as it sees them while exploring 17801 * the program the condition of walking the branch instruction for the second 17802 * time means that all states below this branch were already explored and 17803 * their final liveness marks are already propagated. 17804 * Hence when the verifier completes the search of state list in is_state_visited() 17805 * we can call this clean_live_states() function to mark all liveness states 17806 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 17807 * will not be used. 17808 * This function also clears the registers and stack for states that !READ 17809 * to simplify state merging. 17810 * 17811 * Important note here that walking the same branch instruction in the callee 17812 * doesn't meant that the states are DONE. The verifier has to compare 17813 * the callsites 17814 */ 17815 static void clean_live_states(struct bpf_verifier_env *env, int insn, 17816 struct bpf_verifier_state *cur) 17817 { 17818 struct bpf_verifier_state_list *sl; 17819 17820 sl = *explored_state(env, insn); 17821 while (sl) { 17822 if (sl->state.branches) 17823 goto next; 17824 if (sl->state.insn_idx != insn || 17825 !same_callsites(&sl->state, cur)) 17826 goto next; 17827 clean_verifier_state(env, &sl->state); 17828 next: 17829 sl = sl->next; 17830 } 17831 } 17832 17833 static bool regs_exact(const struct bpf_reg_state *rold, 17834 const struct bpf_reg_state *rcur, 17835 struct bpf_idmap *idmap) 17836 { 17837 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 17838 check_ids(rold->id, rcur->id, idmap) && 17839 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 17840 } 17841 17842 enum exact_level { 17843 NOT_EXACT, 17844 EXACT, 17845 RANGE_WITHIN 17846 }; 17847 17848 /* Returns true if (rold safe implies rcur safe) */ 17849 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 17850 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, 17851 enum exact_level exact) 17852 { 17853 if (exact == EXACT) 17854 return regs_exact(rold, rcur, idmap); 17855 17856 if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT) 17857 /* explored state didn't use this */ 17858 return true; 17859 if (rold->type == NOT_INIT) { 17860 if (exact == NOT_EXACT || rcur->type == NOT_INIT) 17861 /* explored state can't have used this */ 17862 return true; 17863 } 17864 17865 /* Enforce that register types have to match exactly, including their 17866 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 17867 * rule. 17868 * 17869 * One can make a point that using a pointer register as unbounded 17870 * SCALAR would be technically acceptable, but this could lead to 17871 * pointer leaks because scalars are allowed to leak while pointers 17872 * are not. We could make this safe in special cases if root is 17873 * calling us, but it's probably not worth the hassle. 17874 * 17875 * Also, register types that are *not* MAYBE_NULL could technically be 17876 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 17877 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 17878 * to the same map). 17879 * However, if the old MAYBE_NULL register then got NULL checked, 17880 * doing so could have affected others with the same id, and we can't 17881 * check for that because we lost the id when we converted to 17882 * a non-MAYBE_NULL variant. 17883 * So, as a general rule we don't allow mixing MAYBE_NULL and 17884 * non-MAYBE_NULL registers as well. 17885 */ 17886 if (rold->type != rcur->type) 17887 return false; 17888 17889 switch (base_type(rold->type)) { 17890 case SCALAR_VALUE: 17891 if (env->explore_alu_limits) { 17892 /* explore_alu_limits disables tnum_in() and range_within() 17893 * logic and requires everything to be strict 17894 */ 17895 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 17896 check_scalar_ids(rold->id, rcur->id, idmap); 17897 } 17898 if (!rold->precise && exact == NOT_EXACT) 17899 return true; 17900 if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST)) 17901 return false; 17902 if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off)) 17903 return false; 17904 /* Why check_ids() for scalar registers? 17905 * 17906 * Consider the following BPF code: 17907 * 1: r6 = ... unbound scalar, ID=a ... 17908 * 2: r7 = ... unbound scalar, ID=b ... 17909 * 3: if (r6 > r7) goto +1 17910 * 4: r6 = r7 17911 * 5: if (r6 > X) goto ... 17912 * 6: ... memory operation using r7 ... 17913 * 17914 * First verification path is [1-6]: 17915 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 17916 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark 17917 * r7 <= X, because r6 and r7 share same id. 17918 * Next verification path is [1-4, 6]. 17919 * 17920 * Instruction (6) would be reached in two states: 17921 * I. r6{.id=b}, r7{.id=b} via path 1-6; 17922 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 17923 * 17924 * Use check_ids() to distinguish these states. 17925 * --- 17926 * Also verify that new value satisfies old value range knowledge. 17927 */ 17928 return range_within(rold, rcur) && 17929 tnum_in(rold->var_off, rcur->var_off) && 17930 check_scalar_ids(rold->id, rcur->id, idmap); 17931 case PTR_TO_MAP_KEY: 17932 case PTR_TO_MAP_VALUE: 17933 case PTR_TO_MEM: 17934 case PTR_TO_BUF: 17935 case PTR_TO_TP_BUFFER: 17936 /* If the new min/max/var_off satisfy the old ones and 17937 * everything else matches, we are OK. 17938 */ 17939 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 17940 range_within(rold, rcur) && 17941 tnum_in(rold->var_off, rcur->var_off) && 17942 check_ids(rold->id, rcur->id, idmap) && 17943 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 17944 case PTR_TO_PACKET_META: 17945 case PTR_TO_PACKET: 17946 /* We must have at least as much range as the old ptr 17947 * did, so that any accesses which were safe before are 17948 * still safe. This is true even if old range < old off, 17949 * since someone could have accessed through (ptr - k), or 17950 * even done ptr -= k in a register, to get a safe access. 17951 */ 17952 if (rold->range > rcur->range) 17953 return false; 17954 /* If the offsets don't match, we can't trust our alignment; 17955 * nor can we be sure that we won't fall out of range. 17956 */ 17957 if (rold->off != rcur->off) 17958 return false; 17959 /* id relations must be preserved */ 17960 if (!check_ids(rold->id, rcur->id, idmap)) 17961 return false; 17962 /* new val must satisfy old val knowledge */ 17963 return range_within(rold, rcur) && 17964 tnum_in(rold->var_off, rcur->var_off); 17965 case PTR_TO_STACK: 17966 /* two stack pointers are equal only if they're pointing to 17967 * the same stack frame, since fp-8 in foo != fp-8 in bar 17968 */ 17969 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 17970 case PTR_TO_ARENA: 17971 return true; 17972 default: 17973 return regs_exact(rold, rcur, idmap); 17974 } 17975 } 17976 17977 static struct bpf_reg_state unbound_reg; 17978 17979 static __init int unbound_reg_init(void) 17980 { 17981 __mark_reg_unknown_imprecise(&unbound_reg); 17982 unbound_reg.live |= REG_LIVE_READ; 17983 return 0; 17984 } 17985 late_initcall(unbound_reg_init); 17986 17987 static bool is_stack_all_misc(struct bpf_verifier_env *env, 17988 struct bpf_stack_state *stack) 17989 { 17990 u32 i; 17991 17992 for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) { 17993 if ((stack->slot_type[i] == STACK_MISC) || 17994 (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack)) 17995 continue; 17996 return false; 17997 } 17998 17999 return true; 18000 } 18001 18002 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env, 18003 struct bpf_stack_state *stack) 18004 { 18005 if (is_spilled_scalar_reg64(stack)) 18006 return &stack->spilled_ptr; 18007 18008 if (is_stack_all_misc(env, stack)) 18009 return &unbound_reg; 18010 18011 return NULL; 18012 } 18013 18014 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 18015 struct bpf_func_state *cur, struct bpf_idmap *idmap, 18016 enum exact_level exact) 18017 { 18018 int i, spi; 18019 18020 /* walk slots of the explored stack and ignore any additional 18021 * slots in the current stack, since explored(safe) state 18022 * didn't use them 18023 */ 18024 for (i = 0; i < old->allocated_stack; i++) { 18025 struct bpf_reg_state *old_reg, *cur_reg; 18026 18027 spi = i / BPF_REG_SIZE; 18028 18029 if (exact != NOT_EXACT && 18030 (i >= cur->allocated_stack || 18031 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 18032 cur->stack[spi].slot_type[i % BPF_REG_SIZE])) 18033 return false; 18034 18035 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) 18036 && exact == NOT_EXACT) { 18037 i += BPF_REG_SIZE - 1; 18038 /* explored state didn't use this */ 18039 continue; 18040 } 18041 18042 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 18043 continue; 18044 18045 if (env->allow_uninit_stack && 18046 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 18047 continue; 18048 18049 /* explored stack has more populated slots than current stack 18050 * and these slots were used 18051 */ 18052 if (i >= cur->allocated_stack) 18053 return false; 18054 18055 /* 64-bit scalar spill vs all slots MISC and vice versa. 18056 * Load from all slots MISC produces unbound scalar. 18057 * Construct a fake register for such stack and call 18058 * regsafe() to ensure scalar ids are compared. 18059 */ 18060 old_reg = scalar_reg_for_stack(env, &old->stack[spi]); 18061 cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]); 18062 if (old_reg && cur_reg) { 18063 if (!regsafe(env, old_reg, cur_reg, idmap, exact)) 18064 return false; 18065 i += BPF_REG_SIZE - 1; 18066 continue; 18067 } 18068 18069 /* if old state was safe with misc data in the stack 18070 * it will be safe with zero-initialized stack. 18071 * The opposite is not true 18072 */ 18073 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 18074 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 18075 continue; 18076 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 18077 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 18078 /* Ex: old explored (safe) state has STACK_SPILL in 18079 * this stack slot, but current has STACK_MISC -> 18080 * this verifier states are not equivalent, 18081 * return false to continue verification of this path 18082 */ 18083 return false; 18084 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 18085 continue; 18086 /* Both old and cur are having same slot_type */ 18087 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 18088 case STACK_SPILL: 18089 /* when explored and current stack slot are both storing 18090 * spilled registers, check that stored pointers types 18091 * are the same as well. 18092 * Ex: explored safe path could have stored 18093 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 18094 * but current path has stored: 18095 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 18096 * such verifier states are not equivalent. 18097 * return false to continue verification of this path 18098 */ 18099 if (!regsafe(env, &old->stack[spi].spilled_ptr, 18100 &cur->stack[spi].spilled_ptr, idmap, exact)) 18101 return false; 18102 break; 18103 case STACK_DYNPTR: 18104 old_reg = &old->stack[spi].spilled_ptr; 18105 cur_reg = &cur->stack[spi].spilled_ptr; 18106 if (old_reg->dynptr.type != cur_reg->dynptr.type || 18107 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 18108 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 18109 return false; 18110 break; 18111 case STACK_ITER: 18112 old_reg = &old->stack[spi].spilled_ptr; 18113 cur_reg = &cur->stack[spi].spilled_ptr; 18114 /* iter.depth is not compared between states as it 18115 * doesn't matter for correctness and would otherwise 18116 * prevent convergence; we maintain it only to prevent 18117 * infinite loop check triggering, see 18118 * iter_active_depths_differ() 18119 */ 18120 if (old_reg->iter.btf != cur_reg->iter.btf || 18121 old_reg->iter.btf_id != cur_reg->iter.btf_id || 18122 old_reg->iter.state != cur_reg->iter.state || 18123 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 18124 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 18125 return false; 18126 break; 18127 case STACK_IRQ_FLAG: 18128 old_reg = &old->stack[spi].spilled_ptr; 18129 cur_reg = &cur->stack[spi].spilled_ptr; 18130 if (!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 18131 return false; 18132 break; 18133 case STACK_MISC: 18134 case STACK_ZERO: 18135 case STACK_INVALID: 18136 continue; 18137 /* Ensure that new unhandled slot types return false by default */ 18138 default: 18139 return false; 18140 } 18141 } 18142 return true; 18143 } 18144 18145 static bool refsafe(struct bpf_verifier_state *old, struct bpf_verifier_state *cur, 18146 struct bpf_idmap *idmap) 18147 { 18148 int i; 18149 18150 if (old->acquired_refs != cur->acquired_refs) 18151 return false; 18152 18153 if (old->active_locks != cur->active_locks) 18154 return false; 18155 18156 if (old->active_preempt_locks != cur->active_preempt_locks) 18157 return false; 18158 18159 if (old->active_rcu_lock != cur->active_rcu_lock) 18160 return false; 18161 18162 if (!check_ids(old->active_irq_id, cur->active_irq_id, idmap)) 18163 return false; 18164 18165 for (i = 0; i < old->acquired_refs; i++) { 18166 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) || 18167 old->refs[i].type != cur->refs[i].type) 18168 return false; 18169 switch (old->refs[i].type) { 18170 case REF_TYPE_PTR: 18171 case REF_TYPE_IRQ: 18172 break; 18173 case REF_TYPE_LOCK: 18174 if (old->refs[i].ptr != cur->refs[i].ptr) 18175 return false; 18176 break; 18177 default: 18178 WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type); 18179 return false; 18180 } 18181 } 18182 18183 return true; 18184 } 18185 18186 /* compare two verifier states 18187 * 18188 * all states stored in state_list are known to be valid, since 18189 * verifier reached 'bpf_exit' instruction through them 18190 * 18191 * this function is called when verifier exploring different branches of 18192 * execution popped from the state stack. If it sees an old state that has 18193 * more strict register state and more strict stack state then this execution 18194 * branch doesn't need to be explored further, since verifier already 18195 * concluded that more strict state leads to valid finish. 18196 * 18197 * Therefore two states are equivalent if register state is more conservative 18198 * and explored stack state is more conservative than the current one. 18199 * Example: 18200 * explored current 18201 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 18202 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 18203 * 18204 * In other words if current stack state (one being explored) has more 18205 * valid slots than old one that already passed validation, it means 18206 * the verifier can stop exploring and conclude that current state is valid too 18207 * 18208 * Similarly with registers. If explored state has register type as invalid 18209 * whereas register type in current state is meaningful, it means that 18210 * the current state will reach 'bpf_exit' instruction safely 18211 */ 18212 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 18213 struct bpf_func_state *cur, enum exact_level exact) 18214 { 18215 int i; 18216 18217 if (old->callback_depth > cur->callback_depth) 18218 return false; 18219 18220 for (i = 0; i < MAX_BPF_REG; i++) 18221 if (!regsafe(env, &old->regs[i], &cur->regs[i], 18222 &env->idmap_scratch, exact)) 18223 return false; 18224 18225 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 18226 return false; 18227 18228 return true; 18229 } 18230 18231 static void reset_idmap_scratch(struct bpf_verifier_env *env) 18232 { 18233 env->idmap_scratch.tmp_id_gen = env->id_gen; 18234 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 18235 } 18236 18237 static bool states_equal(struct bpf_verifier_env *env, 18238 struct bpf_verifier_state *old, 18239 struct bpf_verifier_state *cur, 18240 enum exact_level exact) 18241 { 18242 int i; 18243 18244 if (old->curframe != cur->curframe) 18245 return false; 18246 18247 reset_idmap_scratch(env); 18248 18249 /* Verification state from speculative execution simulation 18250 * must never prune a non-speculative execution one. 18251 */ 18252 if (old->speculative && !cur->speculative) 18253 return false; 18254 18255 if (old->in_sleepable != cur->in_sleepable) 18256 return false; 18257 18258 if (!refsafe(old, cur, &env->idmap_scratch)) 18259 return false; 18260 18261 /* for states to be equal callsites have to be the same 18262 * and all frame states need to be equivalent 18263 */ 18264 for (i = 0; i <= old->curframe; i++) { 18265 if (old->frame[i]->callsite != cur->frame[i]->callsite) 18266 return false; 18267 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) 18268 return false; 18269 } 18270 return true; 18271 } 18272 18273 /* Return 0 if no propagation happened. Return negative error code if error 18274 * happened. Otherwise, return the propagated bit. 18275 */ 18276 static int propagate_liveness_reg(struct bpf_verifier_env *env, 18277 struct bpf_reg_state *reg, 18278 struct bpf_reg_state *parent_reg) 18279 { 18280 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 18281 u8 flag = reg->live & REG_LIVE_READ; 18282 int err; 18283 18284 /* When comes here, read flags of PARENT_REG or REG could be any of 18285 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 18286 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 18287 */ 18288 if (parent_flag == REG_LIVE_READ64 || 18289 /* Or if there is no read flag from REG. */ 18290 !flag || 18291 /* Or if the read flag from REG is the same as PARENT_REG. */ 18292 parent_flag == flag) 18293 return 0; 18294 18295 err = mark_reg_read(env, reg, parent_reg, flag); 18296 if (err) 18297 return err; 18298 18299 return flag; 18300 } 18301 18302 /* A write screens off any subsequent reads; but write marks come from the 18303 * straight-line code between a state and its parent. When we arrive at an 18304 * equivalent state (jump target or such) we didn't arrive by the straight-line 18305 * code, so read marks in the state must propagate to the parent regardless 18306 * of the state's write marks. That's what 'parent == state->parent' comparison 18307 * in mark_reg_read() is for. 18308 */ 18309 static int propagate_liveness(struct bpf_verifier_env *env, 18310 const struct bpf_verifier_state *vstate, 18311 struct bpf_verifier_state *vparent) 18312 { 18313 struct bpf_reg_state *state_reg, *parent_reg; 18314 struct bpf_func_state *state, *parent; 18315 int i, frame, err = 0; 18316 18317 if (vparent->curframe != vstate->curframe) { 18318 WARN(1, "propagate_live: parent frame %d current frame %d\n", 18319 vparent->curframe, vstate->curframe); 18320 return -EFAULT; 18321 } 18322 /* Propagate read liveness of registers... */ 18323 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 18324 for (frame = 0; frame <= vstate->curframe; frame++) { 18325 parent = vparent->frame[frame]; 18326 state = vstate->frame[frame]; 18327 parent_reg = parent->regs; 18328 state_reg = state->regs; 18329 /* We don't need to worry about FP liveness, it's read-only */ 18330 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 18331 err = propagate_liveness_reg(env, &state_reg[i], 18332 &parent_reg[i]); 18333 if (err < 0) 18334 return err; 18335 if (err == REG_LIVE_READ64) 18336 mark_insn_zext(env, &parent_reg[i]); 18337 } 18338 18339 /* Propagate stack slots. */ 18340 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 18341 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 18342 parent_reg = &parent->stack[i].spilled_ptr; 18343 state_reg = &state->stack[i].spilled_ptr; 18344 err = propagate_liveness_reg(env, state_reg, 18345 parent_reg); 18346 if (err < 0) 18347 return err; 18348 } 18349 } 18350 return 0; 18351 } 18352 18353 /* find precise scalars in the previous equivalent state and 18354 * propagate them into the current state 18355 */ 18356 static int propagate_precision(struct bpf_verifier_env *env, 18357 const struct bpf_verifier_state *old) 18358 { 18359 struct bpf_reg_state *state_reg; 18360 struct bpf_func_state *state; 18361 int i, err = 0, fr; 18362 bool first; 18363 18364 for (fr = old->curframe; fr >= 0; fr--) { 18365 state = old->frame[fr]; 18366 state_reg = state->regs; 18367 first = true; 18368 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 18369 if (state_reg->type != SCALAR_VALUE || 18370 !state_reg->precise || 18371 !(state_reg->live & REG_LIVE_READ)) 18372 continue; 18373 if (env->log.level & BPF_LOG_LEVEL2) { 18374 if (first) 18375 verbose(env, "frame %d: propagating r%d", fr, i); 18376 else 18377 verbose(env, ",r%d", i); 18378 } 18379 bt_set_frame_reg(&env->bt, fr, i); 18380 first = false; 18381 } 18382 18383 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 18384 if (!is_spilled_reg(&state->stack[i])) 18385 continue; 18386 state_reg = &state->stack[i].spilled_ptr; 18387 if (state_reg->type != SCALAR_VALUE || 18388 !state_reg->precise || 18389 !(state_reg->live & REG_LIVE_READ)) 18390 continue; 18391 if (env->log.level & BPF_LOG_LEVEL2) { 18392 if (first) 18393 verbose(env, "frame %d: propagating fp%d", 18394 fr, (-i - 1) * BPF_REG_SIZE); 18395 else 18396 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 18397 } 18398 bt_set_frame_slot(&env->bt, fr, i); 18399 first = false; 18400 } 18401 if (!first) 18402 verbose(env, "\n"); 18403 } 18404 18405 err = mark_chain_precision_batch(env); 18406 if (err < 0) 18407 return err; 18408 18409 return 0; 18410 } 18411 18412 static bool states_maybe_looping(struct bpf_verifier_state *old, 18413 struct bpf_verifier_state *cur) 18414 { 18415 struct bpf_func_state *fold, *fcur; 18416 int i, fr = cur->curframe; 18417 18418 if (old->curframe != fr) 18419 return false; 18420 18421 fold = old->frame[fr]; 18422 fcur = cur->frame[fr]; 18423 for (i = 0; i < MAX_BPF_REG; i++) 18424 if (memcmp(&fold->regs[i], &fcur->regs[i], 18425 offsetof(struct bpf_reg_state, parent))) 18426 return false; 18427 return true; 18428 } 18429 18430 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 18431 { 18432 return env->insn_aux_data[insn_idx].is_iter_next; 18433 } 18434 18435 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 18436 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 18437 * states to match, which otherwise would look like an infinite loop. So while 18438 * iter_next() calls are taken care of, we still need to be careful and 18439 * prevent erroneous and too eager declaration of "ininite loop", when 18440 * iterators are involved. 18441 * 18442 * Here's a situation in pseudo-BPF assembly form: 18443 * 18444 * 0: again: ; set up iter_next() call args 18445 * 1: r1 = &it ; <CHECKPOINT HERE> 18446 * 2: call bpf_iter_num_next ; this is iter_next() call 18447 * 3: if r0 == 0 goto done 18448 * 4: ... something useful here ... 18449 * 5: goto again ; another iteration 18450 * 6: done: 18451 * 7: r1 = &it 18452 * 8: call bpf_iter_num_destroy ; clean up iter state 18453 * 9: exit 18454 * 18455 * This is a typical loop. Let's assume that we have a prune point at 1:, 18456 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 18457 * again`, assuming other heuristics don't get in a way). 18458 * 18459 * When we first time come to 1:, let's say we have some state X. We proceed 18460 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 18461 * Now we come back to validate that forked ACTIVE state. We proceed through 18462 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 18463 * are converging. But the problem is that we don't know that yet, as this 18464 * convergence has to happen at iter_next() call site only. So if nothing is 18465 * done, at 1: verifier will use bounded loop logic and declare infinite 18466 * looping (and would be *technically* correct, if not for iterator's 18467 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 18468 * don't want that. So what we do in process_iter_next_call() when we go on 18469 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 18470 * a different iteration. So when we suspect an infinite loop, we additionally 18471 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 18472 * pretend we are not looping and wait for next iter_next() call. 18473 * 18474 * This only applies to ACTIVE state. In DRAINED state we don't expect to 18475 * loop, because that would actually mean infinite loop, as DRAINED state is 18476 * "sticky", and so we'll keep returning into the same instruction with the 18477 * same state (at least in one of possible code paths). 18478 * 18479 * This approach allows to keep infinite loop heuristic even in the face of 18480 * active iterator. E.g., C snippet below is and will be detected as 18481 * inifintely looping: 18482 * 18483 * struct bpf_iter_num it; 18484 * int *p, x; 18485 * 18486 * bpf_iter_num_new(&it, 0, 10); 18487 * while ((p = bpf_iter_num_next(&t))) { 18488 * x = p; 18489 * while (x--) {} // <<-- infinite loop here 18490 * } 18491 * 18492 */ 18493 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 18494 { 18495 struct bpf_reg_state *slot, *cur_slot; 18496 struct bpf_func_state *state; 18497 int i, fr; 18498 18499 for (fr = old->curframe; fr >= 0; fr--) { 18500 state = old->frame[fr]; 18501 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 18502 if (state->stack[i].slot_type[0] != STACK_ITER) 18503 continue; 18504 18505 slot = &state->stack[i].spilled_ptr; 18506 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 18507 continue; 18508 18509 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 18510 if (cur_slot->iter.depth != slot->iter.depth) 18511 return true; 18512 } 18513 } 18514 return false; 18515 } 18516 18517 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 18518 { 18519 struct bpf_verifier_state_list *new_sl; 18520 struct bpf_verifier_state_list *sl, **pprev; 18521 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 18522 int i, j, n, err, states_cnt = 0; 18523 bool force_new_state, add_new_state, force_exact; 18524 18525 force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) || 18526 /* Avoid accumulating infinitely long jmp history */ 18527 cur->insn_hist_end - cur->insn_hist_start > 40; 18528 18529 /* bpf progs typically have pruning point every 4 instructions 18530 * http://vger.kernel.org/bpfconf2019.html#session-1 18531 * Do not add new state for future pruning if the verifier hasn't seen 18532 * at least 2 jumps and at least 8 instructions. 18533 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 18534 * In tests that amounts to up to 50% reduction into total verifier 18535 * memory consumption and 20% verifier time speedup. 18536 */ 18537 add_new_state = force_new_state; 18538 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 18539 env->insn_processed - env->prev_insn_processed >= 8) 18540 add_new_state = true; 18541 18542 pprev = explored_state(env, insn_idx); 18543 sl = *pprev; 18544 18545 clean_live_states(env, insn_idx, cur); 18546 18547 while (sl) { 18548 states_cnt++; 18549 if (sl->state.insn_idx != insn_idx) 18550 goto next; 18551 18552 if (sl->state.branches) { 18553 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 18554 18555 if (frame->in_async_callback_fn && 18556 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 18557 /* Different async_entry_cnt means that the verifier is 18558 * processing another entry into async callback. 18559 * Seeing the same state is not an indication of infinite 18560 * loop or infinite recursion. 18561 * But finding the same state doesn't mean that it's safe 18562 * to stop processing the current state. The previous state 18563 * hasn't yet reached bpf_exit, since state.branches > 0. 18564 * Checking in_async_callback_fn alone is not enough either. 18565 * Since the verifier still needs to catch infinite loops 18566 * inside async callbacks. 18567 */ 18568 goto skip_inf_loop_check; 18569 } 18570 /* BPF open-coded iterators loop detection is special. 18571 * states_maybe_looping() logic is too simplistic in detecting 18572 * states that *might* be equivalent, because it doesn't know 18573 * about ID remapping, so don't even perform it. 18574 * See process_iter_next_call() and iter_active_depths_differ() 18575 * for overview of the logic. When current and one of parent 18576 * states are detected as equivalent, it's a good thing: we prove 18577 * convergence and can stop simulating further iterations. 18578 * It's safe to assume that iterator loop will finish, taking into 18579 * account iter_next() contract of eventually returning 18580 * sticky NULL result. 18581 * 18582 * Note, that states have to be compared exactly in this case because 18583 * read and precision marks might not be finalized inside the loop. 18584 * E.g. as in the program below: 18585 * 18586 * 1. r7 = -16 18587 * 2. r6 = bpf_get_prandom_u32() 18588 * 3. while (bpf_iter_num_next(&fp[-8])) { 18589 * 4. if (r6 != 42) { 18590 * 5. r7 = -32 18591 * 6. r6 = bpf_get_prandom_u32() 18592 * 7. continue 18593 * 8. } 18594 * 9. r0 = r10 18595 * 10. r0 += r7 18596 * 11. r8 = *(u64 *)(r0 + 0) 18597 * 12. r6 = bpf_get_prandom_u32() 18598 * 13. } 18599 * 18600 * Here verifier would first visit path 1-3, create a checkpoint at 3 18601 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 18602 * not have read or precision mark for r7 yet, thus inexact states 18603 * comparison would discard current state with r7=-32 18604 * => unsafe memory access at 11 would not be caught. 18605 */ 18606 if (is_iter_next_insn(env, insn_idx)) { 18607 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 18608 struct bpf_func_state *cur_frame; 18609 struct bpf_reg_state *iter_state, *iter_reg; 18610 int spi; 18611 18612 cur_frame = cur->frame[cur->curframe]; 18613 /* btf_check_iter_kfuncs() enforces that 18614 * iter state pointer is always the first arg 18615 */ 18616 iter_reg = &cur_frame->regs[BPF_REG_1]; 18617 /* current state is valid due to states_equal(), 18618 * so we can assume valid iter and reg state, 18619 * no need for extra (re-)validations 18620 */ 18621 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 18622 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 18623 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 18624 update_loop_entry(cur, &sl->state); 18625 goto hit; 18626 } 18627 } 18628 goto skip_inf_loop_check; 18629 } 18630 if (is_may_goto_insn_at(env, insn_idx)) { 18631 if (sl->state.may_goto_depth != cur->may_goto_depth && 18632 states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 18633 update_loop_entry(cur, &sl->state); 18634 goto hit; 18635 } 18636 } 18637 if (calls_callback(env, insn_idx)) { 18638 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) 18639 goto hit; 18640 goto skip_inf_loop_check; 18641 } 18642 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 18643 if (states_maybe_looping(&sl->state, cur) && 18644 states_equal(env, &sl->state, cur, EXACT) && 18645 !iter_active_depths_differ(&sl->state, cur) && 18646 sl->state.may_goto_depth == cur->may_goto_depth && 18647 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 18648 verbose_linfo(env, insn_idx, "; "); 18649 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 18650 verbose(env, "cur state:"); 18651 print_verifier_state(env, cur, cur->curframe, true); 18652 verbose(env, "old state:"); 18653 print_verifier_state(env, &sl->state, cur->curframe, true); 18654 return -EINVAL; 18655 } 18656 /* if the verifier is processing a loop, avoid adding new state 18657 * too often, since different loop iterations have distinct 18658 * states and may not help future pruning. 18659 * This threshold shouldn't be too low to make sure that 18660 * a loop with large bound will be rejected quickly. 18661 * The most abusive loop will be: 18662 * r1 += 1 18663 * if r1 < 1000000 goto pc-2 18664 * 1M insn_procssed limit / 100 == 10k peak states. 18665 * This threshold shouldn't be too high either, since states 18666 * at the end of the loop are likely to be useful in pruning. 18667 */ 18668 skip_inf_loop_check: 18669 if (!force_new_state && 18670 env->jmps_processed - env->prev_jmps_processed < 20 && 18671 env->insn_processed - env->prev_insn_processed < 100) 18672 add_new_state = false; 18673 goto miss; 18674 } 18675 /* If sl->state is a part of a loop and this loop's entry is a part of 18676 * current verification path then states have to be compared exactly. 18677 * 'force_exact' is needed to catch the following case: 18678 * 18679 * initial Here state 'succ' was processed first, 18680 * | it was eventually tracked to produce a 18681 * V state identical to 'hdr'. 18682 * .---------> hdr All branches from 'succ' had been explored 18683 * | | and thus 'succ' has its .branches == 0. 18684 * | V 18685 * | .------... Suppose states 'cur' and 'succ' correspond 18686 * | | | to the same instruction + callsites. 18687 * | V V In such case it is necessary to check 18688 * | ... ... if 'succ' and 'cur' are states_equal(). 18689 * | | | If 'succ' and 'cur' are a part of the 18690 * | V V same loop exact flag has to be set. 18691 * | succ <- cur To check if that is the case, verify 18692 * | | if loop entry of 'succ' is in current 18693 * | V DFS path. 18694 * | ... 18695 * | | 18696 * '----' 18697 * 18698 * Additional details are in the comment before get_loop_entry(). 18699 */ 18700 loop_entry = get_loop_entry(&sl->state); 18701 force_exact = loop_entry && loop_entry->branches > 0; 18702 if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) { 18703 if (force_exact) 18704 update_loop_entry(cur, loop_entry); 18705 hit: 18706 sl->hit_cnt++; 18707 /* reached equivalent register/stack state, 18708 * prune the search. 18709 * Registers read by the continuation are read by us. 18710 * If we have any write marks in env->cur_state, they 18711 * will prevent corresponding reads in the continuation 18712 * from reaching our parent (an explored_state). Our 18713 * own state will get the read marks recorded, but 18714 * they'll be immediately forgotten as we're pruning 18715 * this state and will pop a new one. 18716 */ 18717 err = propagate_liveness(env, &sl->state, cur); 18718 18719 /* if previous state reached the exit with precision and 18720 * current state is equivalent to it (except precision marks) 18721 * the precision needs to be propagated back in 18722 * the current state. 18723 */ 18724 if (is_jmp_point(env, env->insn_idx)) 18725 err = err ? : push_insn_history(env, cur, 0, 0); 18726 err = err ? : propagate_precision(env, &sl->state); 18727 if (err) 18728 return err; 18729 return 1; 18730 } 18731 miss: 18732 /* when new state is not going to be added do not increase miss count. 18733 * Otherwise several loop iterations will remove the state 18734 * recorded earlier. The goal of these heuristics is to have 18735 * states from some iterations of the loop (some in the beginning 18736 * and some at the end) to help pruning. 18737 */ 18738 if (add_new_state) 18739 sl->miss_cnt++; 18740 /* heuristic to determine whether this state is beneficial 18741 * to keep checking from state equivalence point of view. 18742 * Higher numbers increase max_states_per_insn and verification time, 18743 * but do not meaningfully decrease insn_processed. 18744 * 'n' controls how many times state could miss before eviction. 18745 * Use bigger 'n' for checkpoints because evicting checkpoint states 18746 * too early would hinder iterator convergence. 18747 */ 18748 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 18749 if (sl->miss_cnt > sl->hit_cnt * n + n) { 18750 /* the state is unlikely to be useful. Remove it to 18751 * speed up verification 18752 */ 18753 *pprev = sl->next; 18754 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && 18755 !sl->state.used_as_loop_entry) { 18756 u32 br = sl->state.branches; 18757 18758 WARN_ONCE(br, 18759 "BUG live_done but branches_to_explore %d\n", 18760 br); 18761 free_verifier_state(&sl->state, false); 18762 kfree(sl); 18763 env->peak_states--; 18764 } else { 18765 /* cannot free this state, since parentage chain may 18766 * walk it later. Add it for free_list instead to 18767 * be freed at the end of verification 18768 */ 18769 sl->next = env->free_list; 18770 env->free_list = sl; 18771 } 18772 sl = *pprev; 18773 continue; 18774 } 18775 next: 18776 pprev = &sl->next; 18777 sl = *pprev; 18778 } 18779 18780 if (env->max_states_per_insn < states_cnt) 18781 env->max_states_per_insn = states_cnt; 18782 18783 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 18784 return 0; 18785 18786 if (!add_new_state) 18787 return 0; 18788 18789 /* There were no equivalent states, remember the current one. 18790 * Technically the current state is not proven to be safe yet, 18791 * but it will either reach outer most bpf_exit (which means it's safe) 18792 * or it will be rejected. When there are no loops the verifier won't be 18793 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 18794 * again on the way to bpf_exit. 18795 * When looping the sl->state.branches will be > 0 and this state 18796 * will not be considered for equivalence until branches == 0. 18797 */ 18798 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 18799 if (!new_sl) 18800 return -ENOMEM; 18801 env->total_states++; 18802 env->peak_states++; 18803 env->prev_jmps_processed = env->jmps_processed; 18804 env->prev_insn_processed = env->insn_processed; 18805 18806 /* forget precise markings we inherited, see __mark_chain_precision */ 18807 if (env->bpf_capable) 18808 mark_all_scalars_imprecise(env, cur); 18809 18810 /* add new state to the head of linked list */ 18811 new = &new_sl->state; 18812 err = copy_verifier_state(new, cur); 18813 if (err) { 18814 free_verifier_state(new, false); 18815 kfree(new_sl); 18816 return err; 18817 } 18818 new->insn_idx = insn_idx; 18819 WARN_ONCE(new->branches != 1, 18820 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 18821 18822 cur->parent = new; 18823 cur->first_insn_idx = insn_idx; 18824 cur->insn_hist_start = cur->insn_hist_end; 18825 cur->dfs_depth = new->dfs_depth + 1; 18826 new_sl->next = *explored_state(env, insn_idx); 18827 *explored_state(env, insn_idx) = new_sl; 18828 /* connect new state to parentage chain. Current frame needs all 18829 * registers connected. Only r6 - r9 of the callers are alive (pushed 18830 * to the stack implicitly by JITs) so in callers' frames connect just 18831 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 18832 * the state of the call instruction (with WRITTEN set), and r0 comes 18833 * from callee with its full parentage chain, anyway. 18834 */ 18835 /* clear write marks in current state: the writes we did are not writes 18836 * our child did, so they don't screen off its reads from us. 18837 * (There are no read marks in current state, because reads always mark 18838 * their parent and current state never has children yet. Only 18839 * explored_states can get read marks.) 18840 */ 18841 for (j = 0; j <= cur->curframe; j++) { 18842 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 18843 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 18844 for (i = 0; i < BPF_REG_FP; i++) 18845 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 18846 } 18847 18848 /* all stack frames are accessible from callee, clear them all */ 18849 for (j = 0; j <= cur->curframe; j++) { 18850 struct bpf_func_state *frame = cur->frame[j]; 18851 struct bpf_func_state *newframe = new->frame[j]; 18852 18853 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 18854 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 18855 frame->stack[i].spilled_ptr.parent = 18856 &newframe->stack[i].spilled_ptr; 18857 } 18858 } 18859 return 0; 18860 } 18861 18862 /* Return true if it's OK to have the same insn return a different type. */ 18863 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 18864 { 18865 switch (base_type(type)) { 18866 case PTR_TO_CTX: 18867 case PTR_TO_SOCKET: 18868 case PTR_TO_SOCK_COMMON: 18869 case PTR_TO_TCP_SOCK: 18870 case PTR_TO_XDP_SOCK: 18871 case PTR_TO_BTF_ID: 18872 case PTR_TO_ARENA: 18873 return false; 18874 default: 18875 return true; 18876 } 18877 } 18878 18879 /* If an instruction was previously used with particular pointer types, then we 18880 * need to be careful to avoid cases such as the below, where it may be ok 18881 * for one branch accessing the pointer, but not ok for the other branch: 18882 * 18883 * R1 = sock_ptr 18884 * goto X; 18885 * ... 18886 * R1 = some_other_valid_ptr; 18887 * goto X; 18888 * ... 18889 * R2 = *(u32 *)(R1 + 0); 18890 */ 18891 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 18892 { 18893 return src != prev && (!reg_type_mismatch_ok(src) || 18894 !reg_type_mismatch_ok(prev)); 18895 } 18896 18897 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 18898 bool allow_trust_mismatch) 18899 { 18900 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 18901 18902 if (*prev_type == NOT_INIT) { 18903 /* Saw a valid insn 18904 * dst_reg = *(u32 *)(src_reg + off) 18905 * save type to validate intersecting paths 18906 */ 18907 *prev_type = type; 18908 } else if (reg_type_mismatch(type, *prev_type)) { 18909 /* Abuser program is trying to use the same insn 18910 * dst_reg = *(u32*) (src_reg + off) 18911 * with different pointer types: 18912 * src_reg == ctx in one branch and 18913 * src_reg == stack|map in some other branch. 18914 * Reject it. 18915 */ 18916 if (allow_trust_mismatch && 18917 base_type(type) == PTR_TO_BTF_ID && 18918 base_type(*prev_type) == PTR_TO_BTF_ID) { 18919 /* 18920 * Have to support a use case when one path through 18921 * the program yields TRUSTED pointer while another 18922 * is UNTRUSTED. Fallback to UNTRUSTED to generate 18923 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 18924 */ 18925 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 18926 } else { 18927 verbose(env, "same insn cannot be used with different pointers\n"); 18928 return -EINVAL; 18929 } 18930 } 18931 18932 return 0; 18933 } 18934 18935 static int do_check(struct bpf_verifier_env *env) 18936 { 18937 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 18938 struct bpf_verifier_state *state = env->cur_state; 18939 struct bpf_insn *insns = env->prog->insnsi; 18940 struct bpf_reg_state *regs; 18941 int insn_cnt = env->prog->len; 18942 bool do_print_state = false; 18943 int prev_insn_idx = -1; 18944 18945 for (;;) { 18946 bool exception_exit = false; 18947 struct bpf_insn *insn; 18948 u8 class; 18949 int err; 18950 18951 /* reset current history entry on each new instruction */ 18952 env->cur_hist_ent = NULL; 18953 18954 env->prev_insn_idx = prev_insn_idx; 18955 if (env->insn_idx >= insn_cnt) { 18956 verbose(env, "invalid insn idx %d insn_cnt %d\n", 18957 env->insn_idx, insn_cnt); 18958 return -EFAULT; 18959 } 18960 18961 insn = &insns[env->insn_idx]; 18962 class = BPF_CLASS(insn->code); 18963 18964 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 18965 verbose(env, 18966 "BPF program is too large. Processed %d insn\n", 18967 env->insn_processed); 18968 return -E2BIG; 18969 } 18970 18971 state->last_insn_idx = env->prev_insn_idx; 18972 18973 if (is_prune_point(env, env->insn_idx)) { 18974 err = is_state_visited(env, env->insn_idx); 18975 if (err < 0) 18976 return err; 18977 if (err == 1) { 18978 /* found equivalent state, can prune the search */ 18979 if (env->log.level & BPF_LOG_LEVEL) { 18980 if (do_print_state) 18981 verbose(env, "\nfrom %d to %d%s: safe\n", 18982 env->prev_insn_idx, env->insn_idx, 18983 env->cur_state->speculative ? 18984 " (speculative execution)" : ""); 18985 else 18986 verbose(env, "%d: safe\n", env->insn_idx); 18987 } 18988 goto process_bpf_exit; 18989 } 18990 } 18991 18992 if (is_jmp_point(env, env->insn_idx)) { 18993 err = push_insn_history(env, state, 0, 0); 18994 if (err) 18995 return err; 18996 } 18997 18998 if (signal_pending(current)) 18999 return -EAGAIN; 19000 19001 if (need_resched()) 19002 cond_resched(); 19003 19004 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 19005 verbose(env, "\nfrom %d to %d%s:", 19006 env->prev_insn_idx, env->insn_idx, 19007 env->cur_state->speculative ? 19008 " (speculative execution)" : ""); 19009 print_verifier_state(env, state, state->curframe, true); 19010 do_print_state = false; 19011 } 19012 19013 if (env->log.level & BPF_LOG_LEVEL) { 19014 const struct bpf_insn_cbs cbs = { 19015 .cb_call = disasm_kfunc_name, 19016 .cb_print = verbose, 19017 .private_data = env, 19018 }; 19019 19020 if (verifier_state_scratched(env)) 19021 print_insn_state(env, state, state->curframe); 19022 19023 verbose_linfo(env, env->insn_idx, "; "); 19024 env->prev_log_pos = env->log.end_pos; 19025 verbose(env, "%d: ", env->insn_idx); 19026 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 19027 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 19028 env->prev_log_pos = env->log.end_pos; 19029 } 19030 19031 if (bpf_prog_is_offloaded(env->prog->aux)) { 19032 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 19033 env->prev_insn_idx); 19034 if (err) 19035 return err; 19036 } 19037 19038 regs = cur_regs(env); 19039 sanitize_mark_insn_seen(env); 19040 prev_insn_idx = env->insn_idx; 19041 19042 if (class == BPF_ALU || class == BPF_ALU64) { 19043 err = check_alu_op(env, insn); 19044 if (err) 19045 return err; 19046 19047 } else if (class == BPF_LDX) { 19048 enum bpf_reg_type src_reg_type; 19049 19050 /* check for reserved fields is already done */ 19051 19052 /* check src operand */ 19053 err = check_reg_arg(env, insn->src_reg, SRC_OP); 19054 if (err) 19055 return err; 19056 19057 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 19058 if (err) 19059 return err; 19060 19061 src_reg_type = regs[insn->src_reg].type; 19062 19063 /* check that memory (src_reg + off) is readable, 19064 * the state of dst_reg will be updated by this func 19065 */ 19066 err = check_mem_access(env, env->insn_idx, insn->src_reg, 19067 insn->off, BPF_SIZE(insn->code), 19068 BPF_READ, insn->dst_reg, false, 19069 BPF_MODE(insn->code) == BPF_MEMSX); 19070 err = err ?: save_aux_ptr_type(env, src_reg_type, true); 19071 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], "ldx"); 19072 if (err) 19073 return err; 19074 } else if (class == BPF_STX) { 19075 enum bpf_reg_type dst_reg_type; 19076 19077 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 19078 err = check_atomic(env, env->insn_idx, insn); 19079 if (err) 19080 return err; 19081 env->insn_idx++; 19082 continue; 19083 } 19084 19085 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 19086 verbose(env, "BPF_STX uses reserved fields\n"); 19087 return -EINVAL; 19088 } 19089 19090 /* check src1 operand */ 19091 err = check_reg_arg(env, insn->src_reg, SRC_OP); 19092 if (err) 19093 return err; 19094 /* check src2 operand */ 19095 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 19096 if (err) 19097 return err; 19098 19099 dst_reg_type = regs[insn->dst_reg].type; 19100 19101 /* check that memory (dst_reg + off) is writeable */ 19102 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 19103 insn->off, BPF_SIZE(insn->code), 19104 BPF_WRITE, insn->src_reg, false, false); 19105 if (err) 19106 return err; 19107 19108 err = save_aux_ptr_type(env, dst_reg_type, false); 19109 if (err) 19110 return err; 19111 } else if (class == BPF_ST) { 19112 enum bpf_reg_type dst_reg_type; 19113 19114 if (BPF_MODE(insn->code) != BPF_MEM || 19115 insn->src_reg != BPF_REG_0) { 19116 verbose(env, "BPF_ST uses reserved fields\n"); 19117 return -EINVAL; 19118 } 19119 /* check src operand */ 19120 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 19121 if (err) 19122 return err; 19123 19124 dst_reg_type = regs[insn->dst_reg].type; 19125 19126 /* check that memory (dst_reg + off) is writeable */ 19127 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 19128 insn->off, BPF_SIZE(insn->code), 19129 BPF_WRITE, -1, false, false); 19130 if (err) 19131 return err; 19132 19133 err = save_aux_ptr_type(env, dst_reg_type, false); 19134 if (err) 19135 return err; 19136 } else if (class == BPF_JMP || class == BPF_JMP32) { 19137 u8 opcode = BPF_OP(insn->code); 19138 19139 env->jmps_processed++; 19140 if (opcode == BPF_CALL) { 19141 if (BPF_SRC(insn->code) != BPF_K || 19142 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 19143 && insn->off != 0) || 19144 (insn->src_reg != BPF_REG_0 && 19145 insn->src_reg != BPF_PSEUDO_CALL && 19146 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 19147 insn->dst_reg != BPF_REG_0 || 19148 class == BPF_JMP32) { 19149 verbose(env, "BPF_CALL uses reserved fields\n"); 19150 return -EINVAL; 19151 } 19152 19153 if (env->cur_state->active_locks) { 19154 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 19155 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 19156 (insn->off != 0 || !kfunc_spin_allowed(insn->imm)))) { 19157 verbose(env, "function calls are not allowed while holding a lock\n"); 19158 return -EINVAL; 19159 } 19160 } 19161 if (insn->src_reg == BPF_PSEUDO_CALL) { 19162 err = check_func_call(env, insn, &env->insn_idx); 19163 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 19164 err = check_kfunc_call(env, insn, &env->insn_idx); 19165 if (!err && is_bpf_throw_kfunc(insn)) { 19166 exception_exit = true; 19167 goto process_bpf_exit_full; 19168 } 19169 } else { 19170 err = check_helper_call(env, insn, &env->insn_idx); 19171 } 19172 if (err) 19173 return err; 19174 19175 mark_reg_scratched(env, BPF_REG_0); 19176 } else if (opcode == BPF_JA) { 19177 if (BPF_SRC(insn->code) != BPF_K || 19178 insn->src_reg != BPF_REG_0 || 19179 insn->dst_reg != BPF_REG_0 || 19180 (class == BPF_JMP && insn->imm != 0) || 19181 (class == BPF_JMP32 && insn->off != 0)) { 19182 verbose(env, "BPF_JA uses reserved fields\n"); 19183 return -EINVAL; 19184 } 19185 19186 if (class == BPF_JMP) 19187 env->insn_idx += insn->off + 1; 19188 else 19189 env->insn_idx += insn->imm + 1; 19190 continue; 19191 19192 } else if (opcode == BPF_EXIT) { 19193 if (BPF_SRC(insn->code) != BPF_K || 19194 insn->imm != 0 || 19195 insn->src_reg != BPF_REG_0 || 19196 insn->dst_reg != BPF_REG_0 || 19197 class == BPF_JMP32) { 19198 verbose(env, "BPF_EXIT uses reserved fields\n"); 19199 return -EINVAL; 19200 } 19201 process_bpf_exit_full: 19202 /* We must do check_reference_leak here before 19203 * prepare_func_exit to handle the case when 19204 * state->curframe > 0, it may be a callback 19205 * function, for which reference_state must 19206 * match caller reference state when it exits. 19207 */ 19208 err = check_resource_leak(env, exception_exit, !env->cur_state->curframe, 19209 "BPF_EXIT instruction in main prog"); 19210 if (err) 19211 return err; 19212 19213 /* The side effect of the prepare_func_exit 19214 * which is being skipped is that it frees 19215 * bpf_func_state. Typically, process_bpf_exit 19216 * will only be hit with outermost exit. 19217 * copy_verifier_state in pop_stack will handle 19218 * freeing of any extra bpf_func_state left over 19219 * from not processing all nested function 19220 * exits. We also skip return code checks as 19221 * they are not needed for exceptional exits. 19222 */ 19223 if (exception_exit) 19224 goto process_bpf_exit; 19225 19226 if (state->curframe) { 19227 /* exit from nested function */ 19228 err = prepare_func_exit(env, &env->insn_idx); 19229 if (err) 19230 return err; 19231 do_print_state = true; 19232 continue; 19233 } 19234 19235 err = check_return_code(env, BPF_REG_0, "R0"); 19236 if (err) 19237 return err; 19238 process_bpf_exit: 19239 mark_verifier_state_scratched(env); 19240 update_branch_counts(env, env->cur_state); 19241 err = pop_stack(env, &prev_insn_idx, 19242 &env->insn_idx, pop_log); 19243 if (err < 0) { 19244 if (err != -ENOENT) 19245 return err; 19246 break; 19247 } else { 19248 do_print_state = true; 19249 continue; 19250 } 19251 } else { 19252 err = check_cond_jmp_op(env, insn, &env->insn_idx); 19253 if (err) 19254 return err; 19255 } 19256 } else if (class == BPF_LD) { 19257 u8 mode = BPF_MODE(insn->code); 19258 19259 if (mode == BPF_ABS || mode == BPF_IND) { 19260 err = check_ld_abs(env, insn); 19261 if (err) 19262 return err; 19263 19264 } else if (mode == BPF_IMM) { 19265 err = check_ld_imm(env, insn); 19266 if (err) 19267 return err; 19268 19269 env->insn_idx++; 19270 sanitize_mark_insn_seen(env); 19271 } else { 19272 verbose(env, "invalid BPF_LD mode\n"); 19273 return -EINVAL; 19274 } 19275 } else { 19276 verbose(env, "unknown insn class %d\n", class); 19277 return -EINVAL; 19278 } 19279 19280 env->insn_idx++; 19281 } 19282 19283 return 0; 19284 } 19285 19286 static int find_btf_percpu_datasec(struct btf *btf) 19287 { 19288 const struct btf_type *t; 19289 const char *tname; 19290 int i, n; 19291 19292 /* 19293 * Both vmlinux and module each have their own ".data..percpu" 19294 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 19295 * types to look at only module's own BTF types. 19296 */ 19297 n = btf_nr_types(btf); 19298 if (btf_is_module(btf)) 19299 i = btf_nr_types(btf_vmlinux); 19300 else 19301 i = 1; 19302 19303 for(; i < n; i++) { 19304 t = btf_type_by_id(btf, i); 19305 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 19306 continue; 19307 19308 tname = btf_name_by_offset(btf, t->name_off); 19309 if (!strcmp(tname, ".data..percpu")) 19310 return i; 19311 } 19312 19313 return -ENOENT; 19314 } 19315 19316 /* 19317 * Add btf to the used_btfs array and return the index. (If the btf was 19318 * already added, then just return the index.) Upon successful insertion 19319 * increase btf refcnt, and, if present, also refcount the corresponding 19320 * kernel module. 19321 */ 19322 static int __add_used_btf(struct bpf_verifier_env *env, struct btf *btf) 19323 { 19324 struct btf_mod_pair *btf_mod; 19325 int i; 19326 19327 /* check whether we recorded this BTF (and maybe module) already */ 19328 for (i = 0; i < env->used_btf_cnt; i++) 19329 if (env->used_btfs[i].btf == btf) 19330 return i; 19331 19332 if (env->used_btf_cnt >= MAX_USED_BTFS) 19333 return -E2BIG; 19334 19335 btf_get(btf); 19336 19337 btf_mod = &env->used_btfs[env->used_btf_cnt]; 19338 btf_mod->btf = btf; 19339 btf_mod->module = NULL; 19340 19341 /* if we reference variables from kernel module, bump its refcount */ 19342 if (btf_is_module(btf)) { 19343 btf_mod->module = btf_try_get_module(btf); 19344 if (!btf_mod->module) { 19345 btf_put(btf); 19346 return -ENXIO; 19347 } 19348 } 19349 19350 return env->used_btf_cnt++; 19351 } 19352 19353 /* replace pseudo btf_id with kernel symbol address */ 19354 static int __check_pseudo_btf_id(struct bpf_verifier_env *env, 19355 struct bpf_insn *insn, 19356 struct bpf_insn_aux_data *aux, 19357 struct btf *btf) 19358 { 19359 const struct btf_var_secinfo *vsi; 19360 const struct btf_type *datasec; 19361 const struct btf_type *t; 19362 const char *sym_name; 19363 bool percpu = false; 19364 u32 type, id = insn->imm; 19365 s32 datasec_id; 19366 u64 addr; 19367 int i; 19368 19369 t = btf_type_by_id(btf, id); 19370 if (!t) { 19371 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 19372 return -ENOENT; 19373 } 19374 19375 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 19376 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 19377 return -EINVAL; 19378 } 19379 19380 sym_name = btf_name_by_offset(btf, t->name_off); 19381 addr = kallsyms_lookup_name(sym_name); 19382 if (!addr) { 19383 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 19384 sym_name); 19385 return -ENOENT; 19386 } 19387 insn[0].imm = (u32)addr; 19388 insn[1].imm = addr >> 32; 19389 19390 if (btf_type_is_func(t)) { 19391 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 19392 aux->btf_var.mem_size = 0; 19393 return 0; 19394 } 19395 19396 datasec_id = find_btf_percpu_datasec(btf); 19397 if (datasec_id > 0) { 19398 datasec = btf_type_by_id(btf, datasec_id); 19399 for_each_vsi(i, datasec, vsi) { 19400 if (vsi->type == id) { 19401 percpu = true; 19402 break; 19403 } 19404 } 19405 } 19406 19407 type = t->type; 19408 t = btf_type_skip_modifiers(btf, type, NULL); 19409 if (percpu) { 19410 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 19411 aux->btf_var.btf = btf; 19412 aux->btf_var.btf_id = type; 19413 } else if (!btf_type_is_struct(t)) { 19414 const struct btf_type *ret; 19415 const char *tname; 19416 u32 tsize; 19417 19418 /* resolve the type size of ksym. */ 19419 ret = btf_resolve_size(btf, t, &tsize); 19420 if (IS_ERR(ret)) { 19421 tname = btf_name_by_offset(btf, t->name_off); 19422 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 19423 tname, PTR_ERR(ret)); 19424 return -EINVAL; 19425 } 19426 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 19427 aux->btf_var.mem_size = tsize; 19428 } else { 19429 aux->btf_var.reg_type = PTR_TO_BTF_ID; 19430 aux->btf_var.btf = btf; 19431 aux->btf_var.btf_id = type; 19432 } 19433 19434 return 0; 19435 } 19436 19437 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 19438 struct bpf_insn *insn, 19439 struct bpf_insn_aux_data *aux) 19440 { 19441 struct btf *btf; 19442 int btf_fd; 19443 int err; 19444 19445 btf_fd = insn[1].imm; 19446 if (btf_fd) { 19447 CLASS(fd, f)(btf_fd); 19448 19449 btf = __btf_get_by_fd(f); 19450 if (IS_ERR(btf)) { 19451 verbose(env, "invalid module BTF object FD specified.\n"); 19452 return -EINVAL; 19453 } 19454 } else { 19455 if (!btf_vmlinux) { 19456 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 19457 return -EINVAL; 19458 } 19459 btf = btf_vmlinux; 19460 } 19461 19462 err = __check_pseudo_btf_id(env, insn, aux, btf); 19463 if (err) 19464 return err; 19465 19466 err = __add_used_btf(env, btf); 19467 if (err < 0) 19468 return err; 19469 return 0; 19470 } 19471 19472 static bool is_tracing_prog_type(enum bpf_prog_type type) 19473 { 19474 switch (type) { 19475 case BPF_PROG_TYPE_KPROBE: 19476 case BPF_PROG_TYPE_TRACEPOINT: 19477 case BPF_PROG_TYPE_PERF_EVENT: 19478 case BPF_PROG_TYPE_RAW_TRACEPOINT: 19479 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 19480 return true; 19481 default: 19482 return false; 19483 } 19484 } 19485 19486 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 19487 { 19488 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 19489 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 19490 } 19491 19492 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 19493 struct bpf_map *map, 19494 struct bpf_prog *prog) 19495 19496 { 19497 enum bpf_prog_type prog_type = resolve_prog_type(prog); 19498 19499 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 19500 btf_record_has_field(map->record, BPF_RB_ROOT)) { 19501 if (is_tracing_prog_type(prog_type)) { 19502 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 19503 return -EINVAL; 19504 } 19505 } 19506 19507 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 19508 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 19509 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 19510 return -EINVAL; 19511 } 19512 19513 if (is_tracing_prog_type(prog_type)) { 19514 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 19515 return -EINVAL; 19516 } 19517 } 19518 19519 if (btf_record_has_field(map->record, BPF_TIMER)) { 19520 if (is_tracing_prog_type(prog_type)) { 19521 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 19522 return -EINVAL; 19523 } 19524 } 19525 19526 if (btf_record_has_field(map->record, BPF_WORKQUEUE)) { 19527 if (is_tracing_prog_type(prog_type)) { 19528 verbose(env, "tracing progs cannot use bpf_wq yet\n"); 19529 return -EINVAL; 19530 } 19531 } 19532 19533 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 19534 !bpf_offload_prog_map_match(prog, map)) { 19535 verbose(env, "offload device mismatch between prog and map\n"); 19536 return -EINVAL; 19537 } 19538 19539 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 19540 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 19541 return -EINVAL; 19542 } 19543 19544 if (prog->sleepable) 19545 switch (map->map_type) { 19546 case BPF_MAP_TYPE_HASH: 19547 case BPF_MAP_TYPE_LRU_HASH: 19548 case BPF_MAP_TYPE_ARRAY: 19549 case BPF_MAP_TYPE_PERCPU_HASH: 19550 case BPF_MAP_TYPE_PERCPU_ARRAY: 19551 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 19552 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 19553 case BPF_MAP_TYPE_HASH_OF_MAPS: 19554 case BPF_MAP_TYPE_RINGBUF: 19555 case BPF_MAP_TYPE_USER_RINGBUF: 19556 case BPF_MAP_TYPE_INODE_STORAGE: 19557 case BPF_MAP_TYPE_SK_STORAGE: 19558 case BPF_MAP_TYPE_TASK_STORAGE: 19559 case BPF_MAP_TYPE_CGRP_STORAGE: 19560 case BPF_MAP_TYPE_QUEUE: 19561 case BPF_MAP_TYPE_STACK: 19562 case BPF_MAP_TYPE_ARENA: 19563 break; 19564 default: 19565 verbose(env, 19566 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 19567 return -EINVAL; 19568 } 19569 19570 if (bpf_map_is_cgroup_storage(map) && 19571 bpf_cgroup_storage_assign(env->prog->aux, map)) { 19572 verbose(env, "only one cgroup storage of each type is allowed\n"); 19573 return -EBUSY; 19574 } 19575 19576 if (map->map_type == BPF_MAP_TYPE_ARENA) { 19577 if (env->prog->aux->arena) { 19578 verbose(env, "Only one arena per program\n"); 19579 return -EBUSY; 19580 } 19581 if (!env->allow_ptr_leaks || !env->bpf_capable) { 19582 verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n"); 19583 return -EPERM; 19584 } 19585 if (!env->prog->jit_requested) { 19586 verbose(env, "JIT is required to use arena\n"); 19587 return -EOPNOTSUPP; 19588 } 19589 if (!bpf_jit_supports_arena()) { 19590 verbose(env, "JIT doesn't support arena\n"); 19591 return -EOPNOTSUPP; 19592 } 19593 env->prog->aux->arena = (void *)map; 19594 if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) { 19595 verbose(env, "arena's user address must be set via map_extra or mmap()\n"); 19596 return -EINVAL; 19597 } 19598 } 19599 19600 return 0; 19601 } 19602 19603 static int __add_used_map(struct bpf_verifier_env *env, struct bpf_map *map) 19604 { 19605 int i, err; 19606 19607 /* check whether we recorded this map already */ 19608 for (i = 0; i < env->used_map_cnt; i++) 19609 if (env->used_maps[i] == map) 19610 return i; 19611 19612 if (env->used_map_cnt >= MAX_USED_MAPS) { 19613 verbose(env, "The total number of maps per program has reached the limit of %u\n", 19614 MAX_USED_MAPS); 19615 return -E2BIG; 19616 } 19617 19618 err = check_map_prog_compatibility(env, map, env->prog); 19619 if (err) 19620 return err; 19621 19622 if (env->prog->sleepable) 19623 atomic64_inc(&map->sleepable_refcnt); 19624 19625 /* hold the map. If the program is rejected by verifier, 19626 * the map will be released by release_maps() or it 19627 * will be used by the valid program until it's unloaded 19628 * and all maps are released in bpf_free_used_maps() 19629 */ 19630 bpf_map_inc(map); 19631 19632 env->used_maps[env->used_map_cnt++] = map; 19633 19634 return env->used_map_cnt - 1; 19635 } 19636 19637 /* Add map behind fd to used maps list, if it's not already there, and return 19638 * its index. 19639 * Returns <0 on error, or >= 0 index, on success. 19640 */ 19641 static int add_used_map(struct bpf_verifier_env *env, int fd) 19642 { 19643 struct bpf_map *map; 19644 CLASS(fd, f)(fd); 19645 19646 map = __bpf_map_get(f); 19647 if (IS_ERR(map)) { 19648 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); 19649 return PTR_ERR(map); 19650 } 19651 19652 return __add_used_map(env, map); 19653 } 19654 19655 /* find and rewrite pseudo imm in ld_imm64 instructions: 19656 * 19657 * 1. if it accesses map FD, replace it with actual map pointer. 19658 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 19659 * 19660 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 19661 */ 19662 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 19663 { 19664 struct bpf_insn *insn = env->prog->insnsi; 19665 int insn_cnt = env->prog->len; 19666 int i, err; 19667 19668 err = bpf_prog_calc_tag(env->prog); 19669 if (err) 19670 return err; 19671 19672 for (i = 0; i < insn_cnt; i++, insn++) { 19673 if (BPF_CLASS(insn->code) == BPF_LDX && 19674 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 19675 insn->imm != 0)) { 19676 verbose(env, "BPF_LDX uses reserved fields\n"); 19677 return -EINVAL; 19678 } 19679 19680 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 19681 struct bpf_insn_aux_data *aux; 19682 struct bpf_map *map; 19683 int map_idx; 19684 u64 addr; 19685 u32 fd; 19686 19687 if (i == insn_cnt - 1 || insn[1].code != 0 || 19688 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 19689 insn[1].off != 0) { 19690 verbose(env, "invalid bpf_ld_imm64 insn\n"); 19691 return -EINVAL; 19692 } 19693 19694 if (insn[0].src_reg == 0) 19695 /* valid generic load 64-bit imm */ 19696 goto next_insn; 19697 19698 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 19699 aux = &env->insn_aux_data[i]; 19700 err = check_pseudo_btf_id(env, insn, aux); 19701 if (err) 19702 return err; 19703 goto next_insn; 19704 } 19705 19706 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 19707 aux = &env->insn_aux_data[i]; 19708 aux->ptr_type = PTR_TO_FUNC; 19709 goto next_insn; 19710 } 19711 19712 /* In final convert_pseudo_ld_imm64() step, this is 19713 * converted into regular 64-bit imm load insn. 19714 */ 19715 switch (insn[0].src_reg) { 19716 case BPF_PSEUDO_MAP_VALUE: 19717 case BPF_PSEUDO_MAP_IDX_VALUE: 19718 break; 19719 case BPF_PSEUDO_MAP_FD: 19720 case BPF_PSEUDO_MAP_IDX: 19721 if (insn[1].imm == 0) 19722 break; 19723 fallthrough; 19724 default: 19725 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 19726 return -EINVAL; 19727 } 19728 19729 switch (insn[0].src_reg) { 19730 case BPF_PSEUDO_MAP_IDX_VALUE: 19731 case BPF_PSEUDO_MAP_IDX: 19732 if (bpfptr_is_null(env->fd_array)) { 19733 verbose(env, "fd_idx without fd_array is invalid\n"); 19734 return -EPROTO; 19735 } 19736 if (copy_from_bpfptr_offset(&fd, env->fd_array, 19737 insn[0].imm * sizeof(fd), 19738 sizeof(fd))) 19739 return -EFAULT; 19740 break; 19741 default: 19742 fd = insn[0].imm; 19743 break; 19744 } 19745 19746 map_idx = add_used_map(env, fd); 19747 if (map_idx < 0) 19748 return map_idx; 19749 map = env->used_maps[map_idx]; 19750 19751 aux = &env->insn_aux_data[i]; 19752 aux->map_index = map_idx; 19753 19754 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 19755 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 19756 addr = (unsigned long)map; 19757 } else { 19758 u32 off = insn[1].imm; 19759 19760 if (off >= BPF_MAX_VAR_OFF) { 19761 verbose(env, "direct value offset of %u is not allowed\n", off); 19762 return -EINVAL; 19763 } 19764 19765 if (!map->ops->map_direct_value_addr) { 19766 verbose(env, "no direct value access support for this map type\n"); 19767 return -EINVAL; 19768 } 19769 19770 err = map->ops->map_direct_value_addr(map, &addr, off); 19771 if (err) { 19772 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 19773 map->value_size, off); 19774 return err; 19775 } 19776 19777 aux->map_off = off; 19778 addr += off; 19779 } 19780 19781 insn[0].imm = (u32)addr; 19782 insn[1].imm = addr >> 32; 19783 19784 next_insn: 19785 insn++; 19786 i++; 19787 continue; 19788 } 19789 19790 /* Basic sanity check before we invest more work here. */ 19791 if (!bpf_opcode_in_insntable(insn->code)) { 19792 verbose(env, "unknown opcode %02x\n", insn->code); 19793 return -EINVAL; 19794 } 19795 } 19796 19797 /* now all pseudo BPF_LD_IMM64 instructions load valid 19798 * 'struct bpf_map *' into a register instead of user map_fd. 19799 * These pointers will be used later by verifier to validate map access. 19800 */ 19801 return 0; 19802 } 19803 19804 /* drop refcnt of maps used by the rejected program */ 19805 static void release_maps(struct bpf_verifier_env *env) 19806 { 19807 __bpf_free_used_maps(env->prog->aux, env->used_maps, 19808 env->used_map_cnt); 19809 } 19810 19811 /* drop refcnt of maps used by the rejected program */ 19812 static void release_btfs(struct bpf_verifier_env *env) 19813 { 19814 __bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt); 19815 } 19816 19817 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 19818 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 19819 { 19820 struct bpf_insn *insn = env->prog->insnsi; 19821 int insn_cnt = env->prog->len; 19822 int i; 19823 19824 for (i = 0; i < insn_cnt; i++, insn++) { 19825 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 19826 continue; 19827 if (insn->src_reg == BPF_PSEUDO_FUNC) 19828 continue; 19829 insn->src_reg = 0; 19830 } 19831 } 19832 19833 /* single env->prog->insni[off] instruction was replaced with the range 19834 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 19835 * [0, off) and [off, end) to new locations, so the patched range stays zero 19836 */ 19837 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 19838 struct bpf_insn_aux_data *new_data, 19839 struct bpf_prog *new_prog, u32 off, u32 cnt) 19840 { 19841 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 19842 struct bpf_insn *insn = new_prog->insnsi; 19843 u32 old_seen = old_data[off].seen; 19844 u32 prog_len; 19845 int i; 19846 19847 /* aux info at OFF always needs adjustment, no matter fast path 19848 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 19849 * original insn at old prog. 19850 */ 19851 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 19852 19853 if (cnt == 1) 19854 return; 19855 prog_len = new_prog->len; 19856 19857 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 19858 memcpy(new_data + off + cnt - 1, old_data + off, 19859 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 19860 for (i = off; i < off + cnt - 1; i++) { 19861 /* Expand insni[off]'s seen count to the patched range. */ 19862 new_data[i].seen = old_seen; 19863 new_data[i].zext_dst = insn_has_def32(env, insn + i); 19864 } 19865 env->insn_aux_data = new_data; 19866 vfree(old_data); 19867 } 19868 19869 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 19870 { 19871 int i; 19872 19873 if (len == 1) 19874 return; 19875 /* NOTE: fake 'exit' subprog should be updated as well. */ 19876 for (i = 0; i <= env->subprog_cnt; i++) { 19877 if (env->subprog_info[i].start <= off) 19878 continue; 19879 env->subprog_info[i].start += len - 1; 19880 } 19881 } 19882 19883 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 19884 { 19885 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 19886 int i, sz = prog->aux->size_poke_tab; 19887 struct bpf_jit_poke_descriptor *desc; 19888 19889 for (i = 0; i < sz; i++) { 19890 desc = &tab[i]; 19891 if (desc->insn_idx <= off) 19892 continue; 19893 desc->insn_idx += len - 1; 19894 } 19895 } 19896 19897 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 19898 const struct bpf_insn *patch, u32 len) 19899 { 19900 struct bpf_prog *new_prog; 19901 struct bpf_insn_aux_data *new_data = NULL; 19902 19903 if (len > 1) { 19904 new_data = vzalloc(array_size(env->prog->len + len - 1, 19905 sizeof(struct bpf_insn_aux_data))); 19906 if (!new_data) 19907 return NULL; 19908 } 19909 19910 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 19911 if (IS_ERR(new_prog)) { 19912 if (PTR_ERR(new_prog) == -ERANGE) 19913 verbose(env, 19914 "insn %d cannot be patched due to 16-bit range\n", 19915 env->insn_aux_data[off].orig_idx); 19916 vfree(new_data); 19917 return NULL; 19918 } 19919 adjust_insn_aux_data(env, new_data, new_prog, off, len); 19920 adjust_subprog_starts(env, off, len); 19921 adjust_poke_descs(new_prog, off, len); 19922 return new_prog; 19923 } 19924 19925 /* 19926 * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the 19927 * jump offset by 'delta'. 19928 */ 19929 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta) 19930 { 19931 struct bpf_insn *insn = prog->insnsi; 19932 u32 insn_cnt = prog->len, i; 19933 s32 imm; 19934 s16 off; 19935 19936 for (i = 0; i < insn_cnt; i++, insn++) { 19937 u8 code = insn->code; 19938 19939 if (tgt_idx <= i && i < tgt_idx + delta) 19940 continue; 19941 19942 if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) || 19943 BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT) 19944 continue; 19945 19946 if (insn->code == (BPF_JMP32 | BPF_JA)) { 19947 if (i + 1 + insn->imm != tgt_idx) 19948 continue; 19949 if (check_add_overflow(insn->imm, delta, &imm)) 19950 return -ERANGE; 19951 insn->imm = imm; 19952 } else { 19953 if (i + 1 + insn->off != tgt_idx) 19954 continue; 19955 if (check_add_overflow(insn->off, delta, &off)) 19956 return -ERANGE; 19957 insn->off = off; 19958 } 19959 } 19960 return 0; 19961 } 19962 19963 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 19964 u32 off, u32 cnt) 19965 { 19966 int i, j; 19967 19968 /* find first prog starting at or after off (first to remove) */ 19969 for (i = 0; i < env->subprog_cnt; i++) 19970 if (env->subprog_info[i].start >= off) 19971 break; 19972 /* find first prog starting at or after off + cnt (first to stay) */ 19973 for (j = i; j < env->subprog_cnt; j++) 19974 if (env->subprog_info[j].start >= off + cnt) 19975 break; 19976 /* if j doesn't start exactly at off + cnt, we are just removing 19977 * the front of previous prog 19978 */ 19979 if (env->subprog_info[j].start != off + cnt) 19980 j--; 19981 19982 if (j > i) { 19983 struct bpf_prog_aux *aux = env->prog->aux; 19984 int move; 19985 19986 /* move fake 'exit' subprog as well */ 19987 move = env->subprog_cnt + 1 - j; 19988 19989 memmove(env->subprog_info + i, 19990 env->subprog_info + j, 19991 sizeof(*env->subprog_info) * move); 19992 env->subprog_cnt -= j - i; 19993 19994 /* remove func_info */ 19995 if (aux->func_info) { 19996 move = aux->func_info_cnt - j; 19997 19998 memmove(aux->func_info + i, 19999 aux->func_info + j, 20000 sizeof(*aux->func_info) * move); 20001 aux->func_info_cnt -= j - i; 20002 /* func_info->insn_off is set after all code rewrites, 20003 * in adjust_btf_func() - no need to adjust 20004 */ 20005 } 20006 } else { 20007 /* convert i from "first prog to remove" to "first to adjust" */ 20008 if (env->subprog_info[i].start == off) 20009 i++; 20010 } 20011 20012 /* update fake 'exit' subprog as well */ 20013 for (; i <= env->subprog_cnt; i++) 20014 env->subprog_info[i].start -= cnt; 20015 20016 return 0; 20017 } 20018 20019 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 20020 u32 cnt) 20021 { 20022 struct bpf_prog *prog = env->prog; 20023 u32 i, l_off, l_cnt, nr_linfo; 20024 struct bpf_line_info *linfo; 20025 20026 nr_linfo = prog->aux->nr_linfo; 20027 if (!nr_linfo) 20028 return 0; 20029 20030 linfo = prog->aux->linfo; 20031 20032 /* find first line info to remove, count lines to be removed */ 20033 for (i = 0; i < nr_linfo; i++) 20034 if (linfo[i].insn_off >= off) 20035 break; 20036 20037 l_off = i; 20038 l_cnt = 0; 20039 for (; i < nr_linfo; i++) 20040 if (linfo[i].insn_off < off + cnt) 20041 l_cnt++; 20042 else 20043 break; 20044 20045 /* First live insn doesn't match first live linfo, it needs to "inherit" 20046 * last removed linfo. prog is already modified, so prog->len == off 20047 * means no live instructions after (tail of the program was removed). 20048 */ 20049 if (prog->len != off && l_cnt && 20050 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 20051 l_cnt--; 20052 linfo[--i].insn_off = off + cnt; 20053 } 20054 20055 /* remove the line info which refer to the removed instructions */ 20056 if (l_cnt) { 20057 memmove(linfo + l_off, linfo + i, 20058 sizeof(*linfo) * (nr_linfo - i)); 20059 20060 prog->aux->nr_linfo -= l_cnt; 20061 nr_linfo = prog->aux->nr_linfo; 20062 } 20063 20064 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 20065 for (i = l_off; i < nr_linfo; i++) 20066 linfo[i].insn_off -= cnt; 20067 20068 /* fix up all subprogs (incl. 'exit') which start >= off */ 20069 for (i = 0; i <= env->subprog_cnt; i++) 20070 if (env->subprog_info[i].linfo_idx > l_off) { 20071 /* program may have started in the removed region but 20072 * may not be fully removed 20073 */ 20074 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 20075 env->subprog_info[i].linfo_idx -= l_cnt; 20076 else 20077 env->subprog_info[i].linfo_idx = l_off; 20078 } 20079 20080 return 0; 20081 } 20082 20083 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 20084 { 20085 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20086 unsigned int orig_prog_len = env->prog->len; 20087 int err; 20088 20089 if (bpf_prog_is_offloaded(env->prog->aux)) 20090 bpf_prog_offload_remove_insns(env, off, cnt); 20091 20092 err = bpf_remove_insns(env->prog, off, cnt); 20093 if (err) 20094 return err; 20095 20096 err = adjust_subprog_starts_after_remove(env, off, cnt); 20097 if (err) 20098 return err; 20099 20100 err = bpf_adj_linfo_after_remove(env, off, cnt); 20101 if (err) 20102 return err; 20103 20104 memmove(aux_data + off, aux_data + off + cnt, 20105 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 20106 20107 return 0; 20108 } 20109 20110 /* The verifier does more data flow analysis than llvm and will not 20111 * explore branches that are dead at run time. Malicious programs can 20112 * have dead code too. Therefore replace all dead at-run-time code 20113 * with 'ja -1'. 20114 * 20115 * Just nops are not optimal, e.g. if they would sit at the end of the 20116 * program and through another bug we would manage to jump there, then 20117 * we'd execute beyond program memory otherwise. Returning exception 20118 * code also wouldn't work since we can have subprogs where the dead 20119 * code could be located. 20120 */ 20121 static void sanitize_dead_code(struct bpf_verifier_env *env) 20122 { 20123 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20124 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 20125 struct bpf_insn *insn = env->prog->insnsi; 20126 const int insn_cnt = env->prog->len; 20127 int i; 20128 20129 for (i = 0; i < insn_cnt; i++) { 20130 if (aux_data[i].seen) 20131 continue; 20132 memcpy(insn + i, &trap, sizeof(trap)); 20133 aux_data[i].zext_dst = false; 20134 } 20135 } 20136 20137 static bool insn_is_cond_jump(u8 code) 20138 { 20139 u8 op; 20140 20141 op = BPF_OP(code); 20142 if (BPF_CLASS(code) == BPF_JMP32) 20143 return op != BPF_JA; 20144 20145 if (BPF_CLASS(code) != BPF_JMP) 20146 return false; 20147 20148 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 20149 } 20150 20151 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 20152 { 20153 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20154 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 20155 struct bpf_insn *insn = env->prog->insnsi; 20156 const int insn_cnt = env->prog->len; 20157 int i; 20158 20159 for (i = 0; i < insn_cnt; i++, insn++) { 20160 if (!insn_is_cond_jump(insn->code)) 20161 continue; 20162 20163 if (!aux_data[i + 1].seen) 20164 ja.off = insn->off; 20165 else if (!aux_data[i + 1 + insn->off].seen) 20166 ja.off = 0; 20167 else 20168 continue; 20169 20170 if (bpf_prog_is_offloaded(env->prog->aux)) 20171 bpf_prog_offload_replace_insn(env, i, &ja); 20172 20173 memcpy(insn, &ja, sizeof(ja)); 20174 } 20175 } 20176 20177 static int opt_remove_dead_code(struct bpf_verifier_env *env) 20178 { 20179 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20180 int insn_cnt = env->prog->len; 20181 int i, err; 20182 20183 for (i = 0; i < insn_cnt; i++) { 20184 int j; 20185 20186 j = 0; 20187 while (i + j < insn_cnt && !aux_data[i + j].seen) 20188 j++; 20189 if (!j) 20190 continue; 20191 20192 err = verifier_remove_insns(env, i, j); 20193 if (err) 20194 return err; 20195 insn_cnt = env->prog->len; 20196 } 20197 20198 return 0; 20199 } 20200 20201 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 20202 static const struct bpf_insn MAY_GOTO_0 = BPF_RAW_INSN(BPF_JMP | BPF_JCOND, 0, 0, 0, 0); 20203 20204 static int opt_remove_nops(struct bpf_verifier_env *env) 20205 { 20206 struct bpf_insn *insn = env->prog->insnsi; 20207 int insn_cnt = env->prog->len; 20208 bool is_may_goto_0, is_ja; 20209 int i, err; 20210 20211 for (i = 0; i < insn_cnt; i++) { 20212 is_may_goto_0 = !memcmp(&insn[i], &MAY_GOTO_0, sizeof(MAY_GOTO_0)); 20213 is_ja = !memcmp(&insn[i], &NOP, sizeof(NOP)); 20214 20215 if (!is_may_goto_0 && !is_ja) 20216 continue; 20217 20218 err = verifier_remove_insns(env, i, 1); 20219 if (err) 20220 return err; 20221 insn_cnt--; 20222 /* Go back one insn to catch may_goto +1; may_goto +0 sequence */ 20223 i -= (is_may_goto_0 && i > 0) ? 2 : 1; 20224 } 20225 20226 return 0; 20227 } 20228 20229 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 20230 const union bpf_attr *attr) 20231 { 20232 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 20233 struct bpf_insn_aux_data *aux = env->insn_aux_data; 20234 int i, patch_len, delta = 0, len = env->prog->len; 20235 struct bpf_insn *insns = env->prog->insnsi; 20236 struct bpf_prog *new_prog; 20237 bool rnd_hi32; 20238 20239 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 20240 zext_patch[1] = BPF_ZEXT_REG(0); 20241 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 20242 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 20243 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 20244 for (i = 0; i < len; i++) { 20245 int adj_idx = i + delta; 20246 struct bpf_insn insn; 20247 int load_reg; 20248 20249 insn = insns[adj_idx]; 20250 load_reg = insn_def_regno(&insn); 20251 if (!aux[adj_idx].zext_dst) { 20252 u8 code, class; 20253 u32 imm_rnd; 20254 20255 if (!rnd_hi32) 20256 continue; 20257 20258 code = insn.code; 20259 class = BPF_CLASS(code); 20260 if (load_reg == -1) 20261 continue; 20262 20263 /* NOTE: arg "reg" (the fourth one) is only used for 20264 * BPF_STX + SRC_OP, so it is safe to pass NULL 20265 * here. 20266 */ 20267 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 20268 if (class == BPF_LD && 20269 BPF_MODE(code) == BPF_IMM) 20270 i++; 20271 continue; 20272 } 20273 20274 /* ctx load could be transformed into wider load. */ 20275 if (class == BPF_LDX && 20276 aux[adj_idx].ptr_type == PTR_TO_CTX) 20277 continue; 20278 20279 imm_rnd = get_random_u32(); 20280 rnd_hi32_patch[0] = insn; 20281 rnd_hi32_patch[1].imm = imm_rnd; 20282 rnd_hi32_patch[3].dst_reg = load_reg; 20283 patch = rnd_hi32_patch; 20284 patch_len = 4; 20285 goto apply_patch_buffer; 20286 } 20287 20288 /* Add in an zero-extend instruction if a) the JIT has requested 20289 * it or b) it's a CMPXCHG. 20290 * 20291 * The latter is because: BPF_CMPXCHG always loads a value into 20292 * R0, therefore always zero-extends. However some archs' 20293 * equivalent instruction only does this load when the 20294 * comparison is successful. This detail of CMPXCHG is 20295 * orthogonal to the general zero-extension behaviour of the 20296 * CPU, so it's treated independently of bpf_jit_needs_zext. 20297 */ 20298 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 20299 continue; 20300 20301 /* Zero-extension is done by the caller. */ 20302 if (bpf_pseudo_kfunc_call(&insn)) 20303 continue; 20304 20305 if (WARN_ON(load_reg == -1)) { 20306 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 20307 return -EFAULT; 20308 } 20309 20310 zext_patch[0] = insn; 20311 zext_patch[1].dst_reg = load_reg; 20312 zext_patch[1].src_reg = load_reg; 20313 patch = zext_patch; 20314 patch_len = 2; 20315 apply_patch_buffer: 20316 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 20317 if (!new_prog) 20318 return -ENOMEM; 20319 env->prog = new_prog; 20320 insns = new_prog->insnsi; 20321 aux = env->insn_aux_data; 20322 delta += patch_len - 1; 20323 } 20324 20325 return 0; 20326 } 20327 20328 /* convert load instructions that access fields of a context type into a 20329 * sequence of instructions that access fields of the underlying structure: 20330 * struct __sk_buff -> struct sk_buff 20331 * struct bpf_sock_ops -> struct sock 20332 */ 20333 static int convert_ctx_accesses(struct bpf_verifier_env *env) 20334 { 20335 struct bpf_subprog_info *subprogs = env->subprog_info; 20336 const struct bpf_verifier_ops *ops = env->ops; 20337 int i, cnt, size, ctx_field_size, delta = 0, epilogue_cnt = 0; 20338 const int insn_cnt = env->prog->len; 20339 struct bpf_insn *epilogue_buf = env->epilogue_buf; 20340 struct bpf_insn *insn_buf = env->insn_buf; 20341 struct bpf_insn *insn; 20342 u32 target_size, size_default, off; 20343 struct bpf_prog *new_prog; 20344 enum bpf_access_type type; 20345 bool is_narrower_load; 20346 int epilogue_idx = 0; 20347 20348 if (ops->gen_epilogue) { 20349 epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog, 20350 -(subprogs[0].stack_depth + 8)); 20351 if (epilogue_cnt >= INSN_BUF_SIZE) { 20352 verbose(env, "bpf verifier is misconfigured\n"); 20353 return -EINVAL; 20354 } else if (epilogue_cnt) { 20355 /* Save the ARG_PTR_TO_CTX for the epilogue to use */ 20356 cnt = 0; 20357 subprogs[0].stack_depth += 8; 20358 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1, 20359 -subprogs[0].stack_depth); 20360 insn_buf[cnt++] = env->prog->insnsi[0]; 20361 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 20362 if (!new_prog) 20363 return -ENOMEM; 20364 env->prog = new_prog; 20365 delta += cnt - 1; 20366 } 20367 } 20368 20369 if (ops->gen_prologue || env->seen_direct_write) { 20370 if (!ops->gen_prologue) { 20371 verbose(env, "bpf verifier is misconfigured\n"); 20372 return -EINVAL; 20373 } 20374 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 20375 env->prog); 20376 if (cnt >= INSN_BUF_SIZE) { 20377 verbose(env, "bpf verifier is misconfigured\n"); 20378 return -EINVAL; 20379 } else if (cnt) { 20380 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 20381 if (!new_prog) 20382 return -ENOMEM; 20383 20384 env->prog = new_prog; 20385 delta += cnt - 1; 20386 } 20387 } 20388 20389 if (delta) 20390 WARN_ON(adjust_jmp_off(env->prog, 0, delta)); 20391 20392 if (bpf_prog_is_offloaded(env->prog->aux)) 20393 return 0; 20394 20395 insn = env->prog->insnsi + delta; 20396 20397 for (i = 0; i < insn_cnt; i++, insn++) { 20398 bpf_convert_ctx_access_t convert_ctx_access; 20399 u8 mode; 20400 20401 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 20402 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 20403 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 20404 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 20405 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 20406 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 20407 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 20408 type = BPF_READ; 20409 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 20410 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 20411 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 20412 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 20413 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 20414 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 20415 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 20416 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 20417 type = BPF_WRITE; 20418 } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) || 20419 insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) && 20420 env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) { 20421 insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code); 20422 env->prog->aux->num_exentries++; 20423 continue; 20424 } else if (insn->code == (BPF_JMP | BPF_EXIT) && 20425 epilogue_cnt && 20426 i + delta < subprogs[1].start) { 20427 /* Generate epilogue for the main prog */ 20428 if (epilogue_idx) { 20429 /* jump back to the earlier generated epilogue */ 20430 insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1); 20431 cnt = 1; 20432 } else { 20433 memcpy(insn_buf, epilogue_buf, 20434 epilogue_cnt * sizeof(*epilogue_buf)); 20435 cnt = epilogue_cnt; 20436 /* epilogue_idx cannot be 0. It must have at 20437 * least one ctx ptr saving insn before the 20438 * epilogue. 20439 */ 20440 epilogue_idx = i + delta; 20441 } 20442 goto patch_insn_buf; 20443 } else { 20444 continue; 20445 } 20446 20447 if (type == BPF_WRITE && 20448 env->insn_aux_data[i + delta].sanitize_stack_spill) { 20449 struct bpf_insn patch[] = { 20450 *insn, 20451 BPF_ST_NOSPEC(), 20452 }; 20453 20454 cnt = ARRAY_SIZE(patch); 20455 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 20456 if (!new_prog) 20457 return -ENOMEM; 20458 20459 delta += cnt - 1; 20460 env->prog = new_prog; 20461 insn = new_prog->insnsi + i + delta; 20462 continue; 20463 } 20464 20465 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 20466 case PTR_TO_CTX: 20467 if (!ops->convert_ctx_access) 20468 continue; 20469 convert_ctx_access = ops->convert_ctx_access; 20470 break; 20471 case PTR_TO_SOCKET: 20472 case PTR_TO_SOCK_COMMON: 20473 convert_ctx_access = bpf_sock_convert_ctx_access; 20474 break; 20475 case PTR_TO_TCP_SOCK: 20476 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 20477 break; 20478 case PTR_TO_XDP_SOCK: 20479 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 20480 break; 20481 case PTR_TO_BTF_ID: 20482 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 20483 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 20484 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 20485 * be said once it is marked PTR_UNTRUSTED, hence we must handle 20486 * any faults for loads into such types. BPF_WRITE is disallowed 20487 * for this case. 20488 */ 20489 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 20490 if (type == BPF_READ) { 20491 if (BPF_MODE(insn->code) == BPF_MEM) 20492 insn->code = BPF_LDX | BPF_PROBE_MEM | 20493 BPF_SIZE((insn)->code); 20494 else 20495 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 20496 BPF_SIZE((insn)->code); 20497 env->prog->aux->num_exentries++; 20498 } 20499 continue; 20500 case PTR_TO_ARENA: 20501 if (BPF_MODE(insn->code) == BPF_MEMSX) { 20502 verbose(env, "sign extending loads from arena are not supported yet\n"); 20503 return -EOPNOTSUPP; 20504 } 20505 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code); 20506 env->prog->aux->num_exentries++; 20507 continue; 20508 default: 20509 continue; 20510 } 20511 20512 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 20513 size = BPF_LDST_BYTES(insn); 20514 mode = BPF_MODE(insn->code); 20515 20516 /* If the read access is a narrower load of the field, 20517 * convert to a 4/8-byte load, to minimum program type specific 20518 * convert_ctx_access changes. If conversion is successful, 20519 * we will apply proper mask to the result. 20520 */ 20521 is_narrower_load = size < ctx_field_size; 20522 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 20523 off = insn->off; 20524 if (is_narrower_load) { 20525 u8 size_code; 20526 20527 if (type == BPF_WRITE) { 20528 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 20529 return -EINVAL; 20530 } 20531 20532 size_code = BPF_H; 20533 if (ctx_field_size == 4) 20534 size_code = BPF_W; 20535 else if (ctx_field_size == 8) 20536 size_code = BPF_DW; 20537 20538 insn->off = off & ~(size_default - 1); 20539 insn->code = BPF_LDX | BPF_MEM | size_code; 20540 } 20541 20542 target_size = 0; 20543 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 20544 &target_size); 20545 if (cnt == 0 || cnt >= INSN_BUF_SIZE || 20546 (ctx_field_size && !target_size)) { 20547 verbose(env, "bpf verifier is misconfigured\n"); 20548 return -EINVAL; 20549 } 20550 20551 if (is_narrower_load && size < target_size) { 20552 u8 shift = bpf_ctx_narrow_access_offset( 20553 off, size, size_default) * 8; 20554 if (shift && cnt + 1 >= INSN_BUF_SIZE) { 20555 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 20556 return -EINVAL; 20557 } 20558 if (ctx_field_size <= 4) { 20559 if (shift) 20560 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 20561 insn->dst_reg, 20562 shift); 20563 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 20564 (1 << size * 8) - 1); 20565 } else { 20566 if (shift) 20567 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 20568 insn->dst_reg, 20569 shift); 20570 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 20571 (1ULL << size * 8) - 1); 20572 } 20573 } 20574 if (mode == BPF_MEMSX) 20575 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 20576 insn->dst_reg, insn->dst_reg, 20577 size * 8, 0); 20578 20579 patch_insn_buf: 20580 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20581 if (!new_prog) 20582 return -ENOMEM; 20583 20584 delta += cnt - 1; 20585 20586 /* keep walking new program and skip insns we just inserted */ 20587 env->prog = new_prog; 20588 insn = new_prog->insnsi + i + delta; 20589 } 20590 20591 return 0; 20592 } 20593 20594 static int jit_subprogs(struct bpf_verifier_env *env) 20595 { 20596 struct bpf_prog *prog = env->prog, **func, *tmp; 20597 int i, j, subprog_start, subprog_end = 0, len, subprog; 20598 struct bpf_map *map_ptr; 20599 struct bpf_insn *insn; 20600 void *old_bpf_func; 20601 int err, num_exentries; 20602 20603 if (env->subprog_cnt <= 1) 20604 return 0; 20605 20606 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 20607 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 20608 continue; 20609 20610 /* Upon error here we cannot fall back to interpreter but 20611 * need a hard reject of the program. Thus -EFAULT is 20612 * propagated in any case. 20613 */ 20614 subprog = find_subprog(env, i + insn->imm + 1); 20615 if (subprog < 0) { 20616 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 20617 i + insn->imm + 1); 20618 return -EFAULT; 20619 } 20620 /* temporarily remember subprog id inside insn instead of 20621 * aux_data, since next loop will split up all insns into funcs 20622 */ 20623 insn->off = subprog; 20624 /* remember original imm in case JIT fails and fallback 20625 * to interpreter will be needed 20626 */ 20627 env->insn_aux_data[i].call_imm = insn->imm; 20628 /* point imm to __bpf_call_base+1 from JITs point of view */ 20629 insn->imm = 1; 20630 if (bpf_pseudo_func(insn)) { 20631 #if defined(MODULES_VADDR) 20632 u64 addr = MODULES_VADDR; 20633 #else 20634 u64 addr = VMALLOC_START; 20635 #endif 20636 /* jit (e.g. x86_64) may emit fewer instructions 20637 * if it learns a u32 imm is the same as a u64 imm. 20638 * Set close enough to possible prog address. 20639 */ 20640 insn[0].imm = (u32)addr; 20641 insn[1].imm = addr >> 32; 20642 } 20643 } 20644 20645 err = bpf_prog_alloc_jited_linfo(prog); 20646 if (err) 20647 goto out_undo_insn; 20648 20649 err = -ENOMEM; 20650 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 20651 if (!func) 20652 goto out_undo_insn; 20653 20654 for (i = 0; i < env->subprog_cnt; i++) { 20655 subprog_start = subprog_end; 20656 subprog_end = env->subprog_info[i + 1].start; 20657 20658 len = subprog_end - subprog_start; 20659 /* bpf_prog_run() doesn't call subprogs directly, 20660 * hence main prog stats include the runtime of subprogs. 20661 * subprogs don't have IDs and not reachable via prog_get_next_id 20662 * func[i]->stats will never be accessed and stays NULL 20663 */ 20664 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 20665 if (!func[i]) 20666 goto out_free; 20667 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 20668 len * sizeof(struct bpf_insn)); 20669 func[i]->type = prog->type; 20670 func[i]->len = len; 20671 if (bpf_prog_calc_tag(func[i])) 20672 goto out_free; 20673 func[i]->is_func = 1; 20674 func[i]->sleepable = prog->sleepable; 20675 func[i]->aux->func_idx = i; 20676 /* Below members will be freed only at prog->aux */ 20677 func[i]->aux->btf = prog->aux->btf; 20678 func[i]->aux->func_info = prog->aux->func_info; 20679 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 20680 func[i]->aux->poke_tab = prog->aux->poke_tab; 20681 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 20682 20683 for (j = 0; j < prog->aux->size_poke_tab; j++) { 20684 struct bpf_jit_poke_descriptor *poke; 20685 20686 poke = &prog->aux->poke_tab[j]; 20687 if (poke->insn_idx < subprog_end && 20688 poke->insn_idx >= subprog_start) 20689 poke->aux = func[i]->aux; 20690 } 20691 20692 func[i]->aux->name[0] = 'F'; 20693 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 20694 if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) 20695 func[i]->aux->jits_use_priv_stack = true; 20696 20697 func[i]->jit_requested = 1; 20698 func[i]->blinding_requested = prog->blinding_requested; 20699 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 20700 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 20701 func[i]->aux->linfo = prog->aux->linfo; 20702 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 20703 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 20704 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 20705 func[i]->aux->arena = prog->aux->arena; 20706 num_exentries = 0; 20707 insn = func[i]->insnsi; 20708 for (j = 0; j < func[i]->len; j++, insn++) { 20709 if (BPF_CLASS(insn->code) == BPF_LDX && 20710 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 20711 BPF_MODE(insn->code) == BPF_PROBE_MEM32 || 20712 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 20713 num_exentries++; 20714 if ((BPF_CLASS(insn->code) == BPF_STX || 20715 BPF_CLASS(insn->code) == BPF_ST) && 20716 BPF_MODE(insn->code) == BPF_PROBE_MEM32) 20717 num_exentries++; 20718 if (BPF_CLASS(insn->code) == BPF_STX && 20719 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) 20720 num_exentries++; 20721 } 20722 func[i]->aux->num_exentries = num_exentries; 20723 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 20724 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; 20725 func[i]->aux->changes_pkt_data = env->subprog_info[i].changes_pkt_data; 20726 if (!i) 20727 func[i]->aux->exception_boundary = env->seen_exception; 20728 func[i] = bpf_int_jit_compile(func[i]); 20729 if (!func[i]->jited) { 20730 err = -ENOTSUPP; 20731 goto out_free; 20732 } 20733 cond_resched(); 20734 } 20735 20736 /* at this point all bpf functions were successfully JITed 20737 * now populate all bpf_calls with correct addresses and 20738 * run last pass of JIT 20739 */ 20740 for (i = 0; i < env->subprog_cnt; i++) { 20741 insn = func[i]->insnsi; 20742 for (j = 0; j < func[i]->len; j++, insn++) { 20743 if (bpf_pseudo_func(insn)) { 20744 subprog = insn->off; 20745 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 20746 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 20747 continue; 20748 } 20749 if (!bpf_pseudo_call(insn)) 20750 continue; 20751 subprog = insn->off; 20752 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 20753 } 20754 20755 /* we use the aux data to keep a list of the start addresses 20756 * of the JITed images for each function in the program 20757 * 20758 * for some architectures, such as powerpc64, the imm field 20759 * might not be large enough to hold the offset of the start 20760 * address of the callee's JITed image from __bpf_call_base 20761 * 20762 * in such cases, we can lookup the start address of a callee 20763 * by using its subprog id, available from the off field of 20764 * the call instruction, as an index for this list 20765 */ 20766 func[i]->aux->func = func; 20767 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 20768 func[i]->aux->real_func_cnt = env->subprog_cnt; 20769 } 20770 for (i = 0; i < env->subprog_cnt; i++) { 20771 old_bpf_func = func[i]->bpf_func; 20772 tmp = bpf_int_jit_compile(func[i]); 20773 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 20774 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 20775 err = -ENOTSUPP; 20776 goto out_free; 20777 } 20778 cond_resched(); 20779 } 20780 20781 /* finally lock prog and jit images for all functions and 20782 * populate kallsysm. Begin at the first subprogram, since 20783 * bpf_prog_load will add the kallsyms for the main program. 20784 */ 20785 for (i = 1; i < env->subprog_cnt; i++) { 20786 err = bpf_prog_lock_ro(func[i]); 20787 if (err) 20788 goto out_free; 20789 } 20790 20791 for (i = 1; i < env->subprog_cnt; i++) 20792 bpf_prog_kallsyms_add(func[i]); 20793 20794 /* Last step: make now unused interpreter insns from main 20795 * prog consistent for later dump requests, so they can 20796 * later look the same as if they were interpreted only. 20797 */ 20798 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 20799 if (bpf_pseudo_func(insn)) { 20800 insn[0].imm = env->insn_aux_data[i].call_imm; 20801 insn[1].imm = insn->off; 20802 insn->off = 0; 20803 continue; 20804 } 20805 if (!bpf_pseudo_call(insn)) 20806 continue; 20807 insn->off = env->insn_aux_data[i].call_imm; 20808 subprog = find_subprog(env, i + insn->off + 1); 20809 insn->imm = subprog; 20810 } 20811 20812 prog->jited = 1; 20813 prog->bpf_func = func[0]->bpf_func; 20814 prog->jited_len = func[0]->jited_len; 20815 prog->aux->extable = func[0]->aux->extable; 20816 prog->aux->num_exentries = func[0]->aux->num_exentries; 20817 prog->aux->func = func; 20818 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 20819 prog->aux->real_func_cnt = env->subprog_cnt; 20820 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; 20821 prog->aux->exception_boundary = func[0]->aux->exception_boundary; 20822 bpf_prog_jit_attempt_done(prog); 20823 return 0; 20824 out_free: 20825 /* We failed JIT'ing, so at this point we need to unregister poke 20826 * descriptors from subprogs, so that kernel is not attempting to 20827 * patch it anymore as we're freeing the subprog JIT memory. 20828 */ 20829 for (i = 0; i < prog->aux->size_poke_tab; i++) { 20830 map_ptr = prog->aux->poke_tab[i].tail_call.map; 20831 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 20832 } 20833 /* At this point we're guaranteed that poke descriptors are not 20834 * live anymore. We can just unlink its descriptor table as it's 20835 * released with the main prog. 20836 */ 20837 for (i = 0; i < env->subprog_cnt; i++) { 20838 if (!func[i]) 20839 continue; 20840 func[i]->aux->poke_tab = NULL; 20841 bpf_jit_free(func[i]); 20842 } 20843 kfree(func); 20844 out_undo_insn: 20845 /* cleanup main prog to be interpreted */ 20846 prog->jit_requested = 0; 20847 prog->blinding_requested = 0; 20848 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 20849 if (!bpf_pseudo_call(insn)) 20850 continue; 20851 insn->off = 0; 20852 insn->imm = env->insn_aux_data[i].call_imm; 20853 } 20854 bpf_prog_jit_attempt_done(prog); 20855 return err; 20856 } 20857 20858 static int fixup_call_args(struct bpf_verifier_env *env) 20859 { 20860 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 20861 struct bpf_prog *prog = env->prog; 20862 struct bpf_insn *insn = prog->insnsi; 20863 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 20864 int i, depth; 20865 #endif 20866 int err = 0; 20867 20868 if (env->prog->jit_requested && 20869 !bpf_prog_is_offloaded(env->prog->aux)) { 20870 err = jit_subprogs(env); 20871 if (err == 0) 20872 return 0; 20873 if (err == -EFAULT) 20874 return err; 20875 } 20876 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 20877 if (has_kfunc_call) { 20878 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 20879 return -EINVAL; 20880 } 20881 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 20882 /* When JIT fails the progs with bpf2bpf calls and tail_calls 20883 * have to be rejected, since interpreter doesn't support them yet. 20884 */ 20885 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 20886 return -EINVAL; 20887 } 20888 for (i = 0; i < prog->len; i++, insn++) { 20889 if (bpf_pseudo_func(insn)) { 20890 /* When JIT fails the progs with callback calls 20891 * have to be rejected, since interpreter doesn't support them yet. 20892 */ 20893 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 20894 return -EINVAL; 20895 } 20896 20897 if (!bpf_pseudo_call(insn)) 20898 continue; 20899 depth = get_callee_stack_depth(env, insn, i); 20900 if (depth < 0) 20901 return depth; 20902 bpf_patch_call_args(insn, depth); 20903 } 20904 err = 0; 20905 #endif 20906 return err; 20907 } 20908 20909 /* replace a generic kfunc with a specialized version if necessary */ 20910 static void specialize_kfunc(struct bpf_verifier_env *env, 20911 u32 func_id, u16 offset, unsigned long *addr) 20912 { 20913 struct bpf_prog *prog = env->prog; 20914 bool seen_direct_write; 20915 void *xdp_kfunc; 20916 bool is_rdonly; 20917 20918 if (bpf_dev_bound_kfunc_id(func_id)) { 20919 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 20920 if (xdp_kfunc) { 20921 *addr = (unsigned long)xdp_kfunc; 20922 return; 20923 } 20924 /* fallback to default kfunc when not supported by netdev */ 20925 } 20926 20927 if (offset) 20928 return; 20929 20930 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 20931 seen_direct_write = env->seen_direct_write; 20932 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 20933 20934 if (is_rdonly) 20935 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 20936 20937 /* restore env->seen_direct_write to its original value, since 20938 * may_access_direct_pkt_data mutates it 20939 */ 20940 env->seen_direct_write = seen_direct_write; 20941 } 20942 } 20943 20944 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 20945 u16 struct_meta_reg, 20946 u16 node_offset_reg, 20947 struct bpf_insn *insn, 20948 struct bpf_insn *insn_buf, 20949 int *cnt) 20950 { 20951 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 20952 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 20953 20954 insn_buf[0] = addr[0]; 20955 insn_buf[1] = addr[1]; 20956 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 20957 insn_buf[3] = *insn; 20958 *cnt = 4; 20959 } 20960 20961 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 20962 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 20963 { 20964 const struct bpf_kfunc_desc *desc; 20965 20966 if (!insn->imm) { 20967 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 20968 return -EINVAL; 20969 } 20970 20971 *cnt = 0; 20972 20973 /* insn->imm has the btf func_id. Replace it with an offset relative to 20974 * __bpf_call_base, unless the JIT needs to call functions that are 20975 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 20976 */ 20977 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 20978 if (!desc) { 20979 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 20980 insn->imm); 20981 return -EFAULT; 20982 } 20983 20984 if (!bpf_jit_supports_far_kfunc_call()) 20985 insn->imm = BPF_CALL_IMM(desc->addr); 20986 if (insn->off) 20987 return 0; 20988 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 20989 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 20990 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 20991 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 20992 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 20993 20994 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { 20995 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 20996 insn_idx); 20997 return -EFAULT; 20998 } 20999 21000 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 21001 insn_buf[1] = addr[0]; 21002 insn_buf[2] = addr[1]; 21003 insn_buf[3] = *insn; 21004 *cnt = 4; 21005 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 21006 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || 21007 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 21008 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 21009 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 21010 21011 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { 21012 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 21013 insn_idx); 21014 return -EFAULT; 21015 } 21016 21017 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 21018 !kptr_struct_meta) { 21019 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 21020 insn_idx); 21021 return -EFAULT; 21022 } 21023 21024 insn_buf[0] = addr[0]; 21025 insn_buf[1] = addr[1]; 21026 insn_buf[2] = *insn; 21027 *cnt = 3; 21028 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 21029 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 21030 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 21031 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 21032 int struct_meta_reg = BPF_REG_3; 21033 int node_offset_reg = BPF_REG_4; 21034 21035 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 21036 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 21037 struct_meta_reg = BPF_REG_4; 21038 node_offset_reg = BPF_REG_5; 21039 } 21040 21041 if (!kptr_struct_meta) { 21042 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 21043 insn_idx); 21044 return -EFAULT; 21045 } 21046 21047 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 21048 node_offset_reg, insn, insn_buf, cnt); 21049 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 21050 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 21051 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 21052 *cnt = 1; 21053 } else if (is_bpf_wq_set_callback_impl_kfunc(desc->func_id)) { 21054 struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(BPF_REG_4, (long)env->prog->aux) }; 21055 21056 insn_buf[0] = ld_addrs[0]; 21057 insn_buf[1] = ld_addrs[1]; 21058 insn_buf[2] = *insn; 21059 *cnt = 3; 21060 } 21061 return 0; 21062 } 21063 21064 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ 21065 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) 21066 { 21067 struct bpf_subprog_info *info = env->subprog_info; 21068 int cnt = env->subprog_cnt; 21069 struct bpf_prog *prog; 21070 21071 /* We only reserve one slot for hidden subprogs in subprog_info. */ 21072 if (env->hidden_subprog_cnt) { 21073 verbose(env, "verifier internal error: only one hidden subprog supported\n"); 21074 return -EFAULT; 21075 } 21076 /* We're not patching any existing instruction, just appending the new 21077 * ones for the hidden subprog. Hence all of the adjustment operations 21078 * in bpf_patch_insn_data are no-ops. 21079 */ 21080 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); 21081 if (!prog) 21082 return -ENOMEM; 21083 env->prog = prog; 21084 info[cnt + 1].start = info[cnt].start; 21085 info[cnt].start = prog->len - len + 1; 21086 env->subprog_cnt++; 21087 env->hidden_subprog_cnt++; 21088 return 0; 21089 } 21090 21091 /* Do various post-verification rewrites in a single program pass. 21092 * These rewrites simplify JIT and interpreter implementations. 21093 */ 21094 static int do_misc_fixups(struct bpf_verifier_env *env) 21095 { 21096 struct bpf_prog *prog = env->prog; 21097 enum bpf_attach_type eatype = prog->expected_attach_type; 21098 enum bpf_prog_type prog_type = resolve_prog_type(prog); 21099 struct bpf_insn *insn = prog->insnsi; 21100 const struct bpf_func_proto *fn; 21101 const int insn_cnt = prog->len; 21102 const struct bpf_map_ops *ops; 21103 struct bpf_insn_aux_data *aux; 21104 struct bpf_insn *insn_buf = env->insn_buf; 21105 struct bpf_prog *new_prog; 21106 struct bpf_map *map_ptr; 21107 int i, ret, cnt, delta = 0, cur_subprog = 0; 21108 struct bpf_subprog_info *subprogs = env->subprog_info; 21109 u16 stack_depth = subprogs[cur_subprog].stack_depth; 21110 u16 stack_depth_extra = 0; 21111 21112 if (env->seen_exception && !env->exception_callback_subprog) { 21113 struct bpf_insn patch[] = { 21114 env->prog->insnsi[insn_cnt - 1], 21115 BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), 21116 BPF_EXIT_INSN(), 21117 }; 21118 21119 ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch)); 21120 if (ret < 0) 21121 return ret; 21122 prog = env->prog; 21123 insn = prog->insnsi; 21124 21125 env->exception_callback_subprog = env->subprog_cnt - 1; 21126 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ 21127 mark_subprog_exc_cb(env, env->exception_callback_subprog); 21128 } 21129 21130 for (i = 0; i < insn_cnt;) { 21131 if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) { 21132 if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) || 21133 (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) { 21134 /* convert to 32-bit mov that clears upper 32-bit */ 21135 insn->code = BPF_ALU | BPF_MOV | BPF_X; 21136 /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */ 21137 insn->off = 0; 21138 insn->imm = 0; 21139 } /* cast from as(0) to as(1) should be handled by JIT */ 21140 goto next_insn; 21141 } 21142 21143 if (env->insn_aux_data[i + delta].needs_zext) 21144 /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */ 21145 insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code); 21146 21147 /* Make sdiv/smod divide-by-minus-one exceptions impossible. */ 21148 if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) || 21149 insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) || 21150 insn->code == (BPF_ALU | BPF_MOD | BPF_K) || 21151 insn->code == (BPF_ALU | BPF_DIV | BPF_K)) && 21152 insn->off == 1 && insn->imm == -1) { 21153 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 21154 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 21155 struct bpf_insn *patchlet; 21156 struct bpf_insn chk_and_sdiv[] = { 21157 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 21158 BPF_NEG | BPF_K, insn->dst_reg, 21159 0, 0, 0), 21160 }; 21161 struct bpf_insn chk_and_smod[] = { 21162 BPF_MOV32_IMM(insn->dst_reg, 0), 21163 }; 21164 21165 patchlet = isdiv ? chk_and_sdiv : chk_and_smod; 21166 cnt = isdiv ? ARRAY_SIZE(chk_and_sdiv) : ARRAY_SIZE(chk_and_smod); 21167 21168 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 21169 if (!new_prog) 21170 return -ENOMEM; 21171 21172 delta += cnt - 1; 21173 env->prog = prog = new_prog; 21174 insn = new_prog->insnsi + i + delta; 21175 goto next_insn; 21176 } 21177 21178 /* Make divide-by-zero and divide-by-minus-one exceptions impossible. */ 21179 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 21180 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 21181 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 21182 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 21183 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 21184 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 21185 bool is_sdiv = isdiv && insn->off == 1; 21186 bool is_smod = !isdiv && insn->off == 1; 21187 struct bpf_insn *patchlet; 21188 struct bpf_insn chk_and_div[] = { 21189 /* [R,W]x div 0 -> 0 */ 21190 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21191 BPF_JNE | BPF_K, insn->src_reg, 21192 0, 2, 0), 21193 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 21194 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 21195 *insn, 21196 }; 21197 struct bpf_insn chk_and_mod[] = { 21198 /* [R,W]x mod 0 -> [R,W]x */ 21199 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21200 BPF_JEQ | BPF_K, insn->src_reg, 21201 0, 1 + (is64 ? 0 : 1), 0), 21202 *insn, 21203 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 21204 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 21205 }; 21206 struct bpf_insn chk_and_sdiv[] = { 21207 /* [R,W]x sdiv 0 -> 0 21208 * LLONG_MIN sdiv -1 -> LLONG_MIN 21209 * INT_MIN sdiv -1 -> INT_MIN 21210 */ 21211 BPF_MOV64_REG(BPF_REG_AX, insn->src_reg), 21212 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 21213 BPF_ADD | BPF_K, BPF_REG_AX, 21214 0, 0, 1), 21215 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21216 BPF_JGT | BPF_K, BPF_REG_AX, 21217 0, 4, 1), 21218 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21219 BPF_JEQ | BPF_K, BPF_REG_AX, 21220 0, 1, 0), 21221 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 21222 BPF_MOV | BPF_K, insn->dst_reg, 21223 0, 0, 0), 21224 /* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */ 21225 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 21226 BPF_NEG | BPF_K, insn->dst_reg, 21227 0, 0, 0), 21228 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 21229 *insn, 21230 }; 21231 struct bpf_insn chk_and_smod[] = { 21232 /* [R,W]x mod 0 -> [R,W]x */ 21233 /* [R,W]x mod -1 -> 0 */ 21234 BPF_MOV64_REG(BPF_REG_AX, insn->src_reg), 21235 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 21236 BPF_ADD | BPF_K, BPF_REG_AX, 21237 0, 0, 1), 21238 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21239 BPF_JGT | BPF_K, BPF_REG_AX, 21240 0, 3, 1), 21241 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21242 BPF_JEQ | BPF_K, BPF_REG_AX, 21243 0, 3 + (is64 ? 0 : 1), 1), 21244 BPF_MOV32_IMM(insn->dst_reg, 0), 21245 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 21246 *insn, 21247 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 21248 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 21249 }; 21250 21251 if (is_sdiv) { 21252 patchlet = chk_and_sdiv; 21253 cnt = ARRAY_SIZE(chk_and_sdiv); 21254 } else if (is_smod) { 21255 patchlet = chk_and_smod; 21256 cnt = ARRAY_SIZE(chk_and_smod) - (is64 ? 2 : 0); 21257 } else { 21258 patchlet = isdiv ? chk_and_div : chk_and_mod; 21259 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 21260 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 21261 } 21262 21263 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 21264 if (!new_prog) 21265 return -ENOMEM; 21266 21267 delta += cnt - 1; 21268 env->prog = prog = new_prog; 21269 insn = new_prog->insnsi + i + delta; 21270 goto next_insn; 21271 } 21272 21273 /* Make it impossible to de-reference a userspace address */ 21274 if (BPF_CLASS(insn->code) == BPF_LDX && 21275 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 21276 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { 21277 struct bpf_insn *patch = &insn_buf[0]; 21278 u64 uaddress_limit = bpf_arch_uaddress_limit(); 21279 21280 if (!uaddress_limit) 21281 goto next_insn; 21282 21283 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 21284 if (insn->off) 21285 *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); 21286 *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); 21287 *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); 21288 *patch++ = *insn; 21289 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 21290 *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); 21291 21292 cnt = patch - insn_buf; 21293 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21294 if (!new_prog) 21295 return -ENOMEM; 21296 21297 delta += cnt - 1; 21298 env->prog = prog = new_prog; 21299 insn = new_prog->insnsi + i + delta; 21300 goto next_insn; 21301 } 21302 21303 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 21304 if (BPF_CLASS(insn->code) == BPF_LD && 21305 (BPF_MODE(insn->code) == BPF_ABS || 21306 BPF_MODE(insn->code) == BPF_IND)) { 21307 cnt = env->ops->gen_ld_abs(insn, insn_buf); 21308 if (cnt == 0 || cnt >= INSN_BUF_SIZE) { 21309 verbose(env, "bpf verifier is misconfigured\n"); 21310 return -EINVAL; 21311 } 21312 21313 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21314 if (!new_prog) 21315 return -ENOMEM; 21316 21317 delta += cnt - 1; 21318 env->prog = prog = new_prog; 21319 insn = new_prog->insnsi + i + delta; 21320 goto next_insn; 21321 } 21322 21323 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 21324 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 21325 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 21326 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 21327 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 21328 struct bpf_insn *patch = &insn_buf[0]; 21329 bool issrc, isneg, isimm; 21330 u32 off_reg; 21331 21332 aux = &env->insn_aux_data[i + delta]; 21333 if (!aux->alu_state || 21334 aux->alu_state == BPF_ALU_NON_POINTER) 21335 goto next_insn; 21336 21337 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 21338 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 21339 BPF_ALU_SANITIZE_SRC; 21340 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 21341 21342 off_reg = issrc ? insn->src_reg : insn->dst_reg; 21343 if (isimm) { 21344 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 21345 } else { 21346 if (isneg) 21347 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 21348 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 21349 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 21350 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 21351 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 21352 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 21353 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 21354 } 21355 if (!issrc) 21356 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 21357 insn->src_reg = BPF_REG_AX; 21358 if (isneg) 21359 insn->code = insn->code == code_add ? 21360 code_sub : code_add; 21361 *patch++ = *insn; 21362 if (issrc && isneg && !isimm) 21363 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 21364 cnt = patch - insn_buf; 21365 21366 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21367 if (!new_prog) 21368 return -ENOMEM; 21369 21370 delta += cnt - 1; 21371 env->prog = prog = new_prog; 21372 insn = new_prog->insnsi + i + delta; 21373 goto next_insn; 21374 } 21375 21376 if (is_may_goto_insn(insn)) { 21377 int stack_off = -stack_depth - 8; 21378 21379 stack_depth_extra = 8; 21380 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off); 21381 if (insn->off >= 0) 21382 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2); 21383 else 21384 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); 21385 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 21386 insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off); 21387 cnt = 4; 21388 21389 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21390 if (!new_prog) 21391 return -ENOMEM; 21392 21393 delta += cnt - 1; 21394 env->prog = prog = new_prog; 21395 insn = new_prog->insnsi + i + delta; 21396 goto next_insn; 21397 } 21398 21399 if (insn->code != (BPF_JMP | BPF_CALL)) 21400 goto next_insn; 21401 if (insn->src_reg == BPF_PSEUDO_CALL) 21402 goto next_insn; 21403 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 21404 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 21405 if (ret) 21406 return ret; 21407 if (cnt == 0) 21408 goto next_insn; 21409 21410 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21411 if (!new_prog) 21412 return -ENOMEM; 21413 21414 delta += cnt - 1; 21415 env->prog = prog = new_prog; 21416 insn = new_prog->insnsi + i + delta; 21417 goto next_insn; 21418 } 21419 21420 /* Skip inlining the helper call if the JIT does it. */ 21421 if (bpf_jit_inlines_helper_call(insn->imm)) 21422 goto next_insn; 21423 21424 if (insn->imm == BPF_FUNC_get_route_realm) 21425 prog->dst_needed = 1; 21426 if (insn->imm == BPF_FUNC_get_prandom_u32) 21427 bpf_user_rnd_init_once(); 21428 if (insn->imm == BPF_FUNC_override_return) 21429 prog->kprobe_override = 1; 21430 if (insn->imm == BPF_FUNC_tail_call) { 21431 /* If we tail call into other programs, we 21432 * cannot make any assumptions since they can 21433 * be replaced dynamically during runtime in 21434 * the program array. 21435 */ 21436 prog->cb_access = 1; 21437 if (!allow_tail_call_in_subprogs(env)) 21438 prog->aux->stack_depth = MAX_BPF_STACK; 21439 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 21440 21441 /* mark bpf_tail_call as different opcode to avoid 21442 * conditional branch in the interpreter for every normal 21443 * call and to prevent accidental JITing by JIT compiler 21444 * that doesn't support bpf_tail_call yet 21445 */ 21446 insn->imm = 0; 21447 insn->code = BPF_JMP | BPF_TAIL_CALL; 21448 21449 aux = &env->insn_aux_data[i + delta]; 21450 if (env->bpf_capable && !prog->blinding_requested && 21451 prog->jit_requested && 21452 !bpf_map_key_poisoned(aux) && 21453 !bpf_map_ptr_poisoned(aux) && 21454 !bpf_map_ptr_unpriv(aux)) { 21455 struct bpf_jit_poke_descriptor desc = { 21456 .reason = BPF_POKE_REASON_TAIL_CALL, 21457 .tail_call.map = aux->map_ptr_state.map_ptr, 21458 .tail_call.key = bpf_map_key_immediate(aux), 21459 .insn_idx = i + delta, 21460 }; 21461 21462 ret = bpf_jit_add_poke_descriptor(prog, &desc); 21463 if (ret < 0) { 21464 verbose(env, "adding tail call poke descriptor failed\n"); 21465 return ret; 21466 } 21467 21468 insn->imm = ret + 1; 21469 goto next_insn; 21470 } 21471 21472 if (!bpf_map_ptr_unpriv(aux)) 21473 goto next_insn; 21474 21475 /* instead of changing every JIT dealing with tail_call 21476 * emit two extra insns: 21477 * if (index >= max_entries) goto out; 21478 * index &= array->index_mask; 21479 * to avoid out-of-bounds cpu speculation 21480 */ 21481 if (bpf_map_ptr_poisoned(aux)) { 21482 verbose(env, "tail_call abusing map_ptr\n"); 21483 return -EINVAL; 21484 } 21485 21486 map_ptr = aux->map_ptr_state.map_ptr; 21487 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 21488 map_ptr->max_entries, 2); 21489 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 21490 container_of(map_ptr, 21491 struct bpf_array, 21492 map)->index_mask); 21493 insn_buf[2] = *insn; 21494 cnt = 3; 21495 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21496 if (!new_prog) 21497 return -ENOMEM; 21498 21499 delta += cnt - 1; 21500 env->prog = prog = new_prog; 21501 insn = new_prog->insnsi + i + delta; 21502 goto next_insn; 21503 } 21504 21505 if (insn->imm == BPF_FUNC_timer_set_callback) { 21506 /* The verifier will process callback_fn as many times as necessary 21507 * with different maps and the register states prepared by 21508 * set_timer_callback_state will be accurate. 21509 * 21510 * The following use case is valid: 21511 * map1 is shared by prog1, prog2, prog3. 21512 * prog1 calls bpf_timer_init for some map1 elements 21513 * prog2 calls bpf_timer_set_callback for some map1 elements. 21514 * Those that were not bpf_timer_init-ed will return -EINVAL. 21515 * prog3 calls bpf_timer_start for some map1 elements. 21516 * Those that were not both bpf_timer_init-ed and 21517 * bpf_timer_set_callback-ed will return -EINVAL. 21518 */ 21519 struct bpf_insn ld_addrs[2] = { 21520 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 21521 }; 21522 21523 insn_buf[0] = ld_addrs[0]; 21524 insn_buf[1] = ld_addrs[1]; 21525 insn_buf[2] = *insn; 21526 cnt = 3; 21527 21528 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21529 if (!new_prog) 21530 return -ENOMEM; 21531 21532 delta += cnt - 1; 21533 env->prog = prog = new_prog; 21534 insn = new_prog->insnsi + i + delta; 21535 goto patch_call_imm; 21536 } 21537 21538 if (is_storage_get_function(insn->imm)) { 21539 if (!in_sleepable(env) || 21540 env->insn_aux_data[i + delta].storage_get_func_atomic) 21541 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 21542 else 21543 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 21544 insn_buf[1] = *insn; 21545 cnt = 2; 21546 21547 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21548 if (!new_prog) 21549 return -ENOMEM; 21550 21551 delta += cnt - 1; 21552 env->prog = prog = new_prog; 21553 insn = new_prog->insnsi + i + delta; 21554 goto patch_call_imm; 21555 } 21556 21557 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ 21558 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { 21559 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, 21560 * bpf_mem_alloc() returns a ptr to the percpu data ptr. 21561 */ 21562 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); 21563 insn_buf[1] = *insn; 21564 cnt = 2; 21565 21566 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21567 if (!new_prog) 21568 return -ENOMEM; 21569 21570 delta += cnt - 1; 21571 env->prog = prog = new_prog; 21572 insn = new_prog->insnsi + i + delta; 21573 goto patch_call_imm; 21574 } 21575 21576 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 21577 * and other inlining handlers are currently limited to 64 bit 21578 * only. 21579 */ 21580 if (prog->jit_requested && BITS_PER_LONG == 64 && 21581 (insn->imm == BPF_FUNC_map_lookup_elem || 21582 insn->imm == BPF_FUNC_map_update_elem || 21583 insn->imm == BPF_FUNC_map_delete_elem || 21584 insn->imm == BPF_FUNC_map_push_elem || 21585 insn->imm == BPF_FUNC_map_pop_elem || 21586 insn->imm == BPF_FUNC_map_peek_elem || 21587 insn->imm == BPF_FUNC_redirect_map || 21588 insn->imm == BPF_FUNC_for_each_map_elem || 21589 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 21590 aux = &env->insn_aux_data[i + delta]; 21591 if (bpf_map_ptr_poisoned(aux)) 21592 goto patch_call_imm; 21593 21594 map_ptr = aux->map_ptr_state.map_ptr; 21595 ops = map_ptr->ops; 21596 if (insn->imm == BPF_FUNC_map_lookup_elem && 21597 ops->map_gen_lookup) { 21598 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 21599 if (cnt == -EOPNOTSUPP) 21600 goto patch_map_ops_generic; 21601 if (cnt <= 0 || cnt >= INSN_BUF_SIZE) { 21602 verbose(env, "bpf verifier is misconfigured\n"); 21603 return -EINVAL; 21604 } 21605 21606 new_prog = bpf_patch_insn_data(env, i + delta, 21607 insn_buf, cnt); 21608 if (!new_prog) 21609 return -ENOMEM; 21610 21611 delta += cnt - 1; 21612 env->prog = prog = new_prog; 21613 insn = new_prog->insnsi + i + delta; 21614 goto next_insn; 21615 } 21616 21617 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 21618 (void *(*)(struct bpf_map *map, void *key))NULL)); 21619 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 21620 (long (*)(struct bpf_map *map, void *key))NULL)); 21621 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 21622 (long (*)(struct bpf_map *map, void *key, void *value, 21623 u64 flags))NULL)); 21624 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 21625 (long (*)(struct bpf_map *map, void *value, 21626 u64 flags))NULL)); 21627 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 21628 (long (*)(struct bpf_map *map, void *value))NULL)); 21629 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 21630 (long (*)(struct bpf_map *map, void *value))NULL)); 21631 BUILD_BUG_ON(!__same_type(ops->map_redirect, 21632 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 21633 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 21634 (long (*)(struct bpf_map *map, 21635 bpf_callback_t callback_fn, 21636 void *callback_ctx, 21637 u64 flags))NULL)); 21638 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 21639 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 21640 21641 patch_map_ops_generic: 21642 switch (insn->imm) { 21643 case BPF_FUNC_map_lookup_elem: 21644 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 21645 goto next_insn; 21646 case BPF_FUNC_map_update_elem: 21647 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 21648 goto next_insn; 21649 case BPF_FUNC_map_delete_elem: 21650 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 21651 goto next_insn; 21652 case BPF_FUNC_map_push_elem: 21653 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 21654 goto next_insn; 21655 case BPF_FUNC_map_pop_elem: 21656 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 21657 goto next_insn; 21658 case BPF_FUNC_map_peek_elem: 21659 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 21660 goto next_insn; 21661 case BPF_FUNC_redirect_map: 21662 insn->imm = BPF_CALL_IMM(ops->map_redirect); 21663 goto next_insn; 21664 case BPF_FUNC_for_each_map_elem: 21665 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 21666 goto next_insn; 21667 case BPF_FUNC_map_lookup_percpu_elem: 21668 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 21669 goto next_insn; 21670 } 21671 21672 goto patch_call_imm; 21673 } 21674 21675 /* Implement bpf_jiffies64 inline. */ 21676 if (prog->jit_requested && BITS_PER_LONG == 64 && 21677 insn->imm == BPF_FUNC_jiffies64) { 21678 struct bpf_insn ld_jiffies_addr[2] = { 21679 BPF_LD_IMM64(BPF_REG_0, 21680 (unsigned long)&jiffies), 21681 }; 21682 21683 insn_buf[0] = ld_jiffies_addr[0]; 21684 insn_buf[1] = ld_jiffies_addr[1]; 21685 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 21686 BPF_REG_0, 0); 21687 cnt = 3; 21688 21689 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 21690 cnt); 21691 if (!new_prog) 21692 return -ENOMEM; 21693 21694 delta += cnt - 1; 21695 env->prog = prog = new_prog; 21696 insn = new_prog->insnsi + i + delta; 21697 goto next_insn; 21698 } 21699 21700 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML) 21701 /* Implement bpf_get_smp_processor_id() inline. */ 21702 if (insn->imm == BPF_FUNC_get_smp_processor_id && 21703 verifier_inlines_helper_call(env, insn->imm)) { 21704 /* BPF_FUNC_get_smp_processor_id inlining is an 21705 * optimization, so if pcpu_hot.cpu_number is ever 21706 * changed in some incompatible and hard to support 21707 * way, it's fine to back out this inlining logic 21708 */ 21709 #ifdef CONFIG_SMP 21710 insn_buf[0] = BPF_MOV32_IMM(BPF_REG_0, (u32)(unsigned long)&pcpu_hot.cpu_number); 21711 insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); 21712 insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0); 21713 cnt = 3; 21714 #else 21715 insn_buf[0] = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0); 21716 cnt = 1; 21717 #endif 21718 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21719 if (!new_prog) 21720 return -ENOMEM; 21721 21722 delta += cnt - 1; 21723 env->prog = prog = new_prog; 21724 insn = new_prog->insnsi + i + delta; 21725 goto next_insn; 21726 } 21727 #endif 21728 /* Implement bpf_get_func_arg inline. */ 21729 if (prog_type == BPF_PROG_TYPE_TRACING && 21730 insn->imm == BPF_FUNC_get_func_arg) { 21731 /* Load nr_args from ctx - 8 */ 21732 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 21733 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 21734 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 21735 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 21736 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 21737 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 21738 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 21739 insn_buf[7] = BPF_JMP_A(1); 21740 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 21741 cnt = 9; 21742 21743 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21744 if (!new_prog) 21745 return -ENOMEM; 21746 21747 delta += cnt - 1; 21748 env->prog = prog = new_prog; 21749 insn = new_prog->insnsi + i + delta; 21750 goto next_insn; 21751 } 21752 21753 /* Implement bpf_get_func_ret inline. */ 21754 if (prog_type == BPF_PROG_TYPE_TRACING && 21755 insn->imm == BPF_FUNC_get_func_ret) { 21756 if (eatype == BPF_TRACE_FEXIT || 21757 eatype == BPF_MODIFY_RETURN) { 21758 /* Load nr_args from ctx - 8 */ 21759 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 21760 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 21761 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 21762 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 21763 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 21764 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 21765 cnt = 6; 21766 } else { 21767 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 21768 cnt = 1; 21769 } 21770 21771 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21772 if (!new_prog) 21773 return -ENOMEM; 21774 21775 delta += cnt - 1; 21776 env->prog = prog = new_prog; 21777 insn = new_prog->insnsi + i + delta; 21778 goto next_insn; 21779 } 21780 21781 /* Implement get_func_arg_cnt inline. */ 21782 if (prog_type == BPF_PROG_TYPE_TRACING && 21783 insn->imm == BPF_FUNC_get_func_arg_cnt) { 21784 /* Load nr_args from ctx - 8 */ 21785 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 21786 21787 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 21788 if (!new_prog) 21789 return -ENOMEM; 21790 21791 env->prog = prog = new_prog; 21792 insn = new_prog->insnsi + i + delta; 21793 goto next_insn; 21794 } 21795 21796 /* Implement bpf_get_func_ip inline. */ 21797 if (prog_type == BPF_PROG_TYPE_TRACING && 21798 insn->imm == BPF_FUNC_get_func_ip) { 21799 /* Load IP address from ctx - 16 */ 21800 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 21801 21802 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 21803 if (!new_prog) 21804 return -ENOMEM; 21805 21806 env->prog = prog = new_prog; 21807 insn = new_prog->insnsi + i + delta; 21808 goto next_insn; 21809 } 21810 21811 /* Implement bpf_get_branch_snapshot inline. */ 21812 if (IS_ENABLED(CONFIG_PERF_EVENTS) && 21813 prog->jit_requested && BITS_PER_LONG == 64 && 21814 insn->imm == BPF_FUNC_get_branch_snapshot) { 21815 /* We are dealing with the following func protos: 21816 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags); 21817 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt); 21818 */ 21819 const u32 br_entry_size = sizeof(struct perf_branch_entry); 21820 21821 /* struct perf_branch_entry is part of UAPI and is 21822 * used as an array element, so extremely unlikely to 21823 * ever grow or shrink 21824 */ 21825 BUILD_BUG_ON(br_entry_size != 24); 21826 21827 /* if (unlikely(flags)) return -EINVAL */ 21828 insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7); 21829 21830 /* Transform size (bytes) into number of entries (cnt = size / 24). 21831 * But to avoid expensive division instruction, we implement 21832 * divide-by-3 through multiplication, followed by further 21833 * division by 8 through 3-bit right shift. 21834 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr., 21835 * p. 227, chapter "Unsigned Division by 3" for details and proofs. 21836 * 21837 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab. 21838 */ 21839 insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab); 21840 insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0); 21841 insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36); 21842 21843 /* call perf_snapshot_branch_stack implementation */ 21844 insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack)); 21845 /* if (entry_cnt == 0) return -ENOENT */ 21846 insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4); 21847 /* return entry_cnt * sizeof(struct perf_branch_entry) */ 21848 insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size); 21849 insn_buf[7] = BPF_JMP_A(3); 21850 /* return -EINVAL; */ 21851 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 21852 insn_buf[9] = BPF_JMP_A(1); 21853 /* return -ENOENT; */ 21854 insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT); 21855 cnt = 11; 21856 21857 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21858 if (!new_prog) 21859 return -ENOMEM; 21860 21861 delta += cnt - 1; 21862 env->prog = prog = new_prog; 21863 insn = new_prog->insnsi + i + delta; 21864 goto next_insn; 21865 } 21866 21867 /* Implement bpf_kptr_xchg inline */ 21868 if (prog->jit_requested && BITS_PER_LONG == 64 && 21869 insn->imm == BPF_FUNC_kptr_xchg && 21870 bpf_jit_supports_ptr_xchg()) { 21871 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2); 21872 insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0); 21873 cnt = 2; 21874 21875 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21876 if (!new_prog) 21877 return -ENOMEM; 21878 21879 delta += cnt - 1; 21880 env->prog = prog = new_prog; 21881 insn = new_prog->insnsi + i + delta; 21882 goto next_insn; 21883 } 21884 patch_call_imm: 21885 fn = env->ops->get_func_proto(insn->imm, env->prog); 21886 /* all functions that have prototype and verifier allowed 21887 * programs to call them, must be real in-kernel functions 21888 */ 21889 if (!fn->func) { 21890 verbose(env, 21891 "kernel subsystem misconfigured func %s#%d\n", 21892 func_id_name(insn->imm), insn->imm); 21893 return -EFAULT; 21894 } 21895 insn->imm = fn->func - __bpf_call_base; 21896 next_insn: 21897 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 21898 subprogs[cur_subprog].stack_depth += stack_depth_extra; 21899 subprogs[cur_subprog].stack_extra = stack_depth_extra; 21900 cur_subprog++; 21901 stack_depth = subprogs[cur_subprog].stack_depth; 21902 stack_depth_extra = 0; 21903 } 21904 i++; 21905 insn++; 21906 } 21907 21908 env->prog->aux->stack_depth = subprogs[0].stack_depth; 21909 for (i = 0; i < env->subprog_cnt; i++) { 21910 int subprog_start = subprogs[i].start; 21911 int stack_slots = subprogs[i].stack_extra / 8; 21912 21913 if (!stack_slots) 21914 continue; 21915 if (stack_slots > 1) { 21916 verbose(env, "verifier bug: stack_slots supports may_goto only\n"); 21917 return -EFAULT; 21918 } 21919 21920 /* Add ST insn to subprog prologue to init extra stack */ 21921 insn_buf[0] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, 21922 -subprogs[i].stack_depth, BPF_MAX_LOOPS); 21923 /* Copy first actual insn to preserve it */ 21924 insn_buf[1] = env->prog->insnsi[subprog_start]; 21925 21926 new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, 2); 21927 if (!new_prog) 21928 return -ENOMEM; 21929 env->prog = prog = new_prog; 21930 /* 21931 * If may_goto is a first insn of a prog there could be a jmp 21932 * insn that points to it, hence adjust all such jmps to point 21933 * to insn after BPF_ST that inits may_goto count. 21934 * Adjustment will succeed because bpf_patch_insn_data() didn't fail. 21935 */ 21936 WARN_ON(adjust_jmp_off(env->prog, subprog_start, 1)); 21937 } 21938 21939 /* Since poke tab is now finalized, publish aux to tracker. */ 21940 for (i = 0; i < prog->aux->size_poke_tab; i++) { 21941 map_ptr = prog->aux->poke_tab[i].tail_call.map; 21942 if (!map_ptr->ops->map_poke_track || 21943 !map_ptr->ops->map_poke_untrack || 21944 !map_ptr->ops->map_poke_run) { 21945 verbose(env, "bpf verifier is misconfigured\n"); 21946 return -EINVAL; 21947 } 21948 21949 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 21950 if (ret < 0) { 21951 verbose(env, "tracking tail call prog failed\n"); 21952 return ret; 21953 } 21954 } 21955 21956 sort_kfunc_descs_by_imm_off(env->prog); 21957 21958 return 0; 21959 } 21960 21961 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 21962 int position, 21963 s32 stack_base, 21964 u32 callback_subprogno, 21965 u32 *total_cnt) 21966 { 21967 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 21968 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 21969 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 21970 int reg_loop_max = BPF_REG_6; 21971 int reg_loop_cnt = BPF_REG_7; 21972 int reg_loop_ctx = BPF_REG_8; 21973 21974 struct bpf_insn *insn_buf = env->insn_buf; 21975 struct bpf_prog *new_prog; 21976 u32 callback_start; 21977 u32 call_insn_offset; 21978 s32 callback_offset; 21979 u32 cnt = 0; 21980 21981 /* This represents an inlined version of bpf_iter.c:bpf_loop, 21982 * be careful to modify this code in sync. 21983 */ 21984 21985 /* Return error and jump to the end of the patch if 21986 * expected number of iterations is too big. 21987 */ 21988 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2); 21989 insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG); 21990 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16); 21991 /* spill R6, R7, R8 to use these as loop vars */ 21992 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset); 21993 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset); 21994 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset); 21995 /* initialize loop vars */ 21996 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1); 21997 insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0); 21998 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3); 21999 /* loop header, 22000 * if reg_loop_cnt >= reg_loop_max skip the loop body 22001 */ 22002 insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5); 22003 /* callback call, 22004 * correct callback offset would be set after patching 22005 */ 22006 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt); 22007 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx); 22008 insn_buf[cnt++] = BPF_CALL_REL(0); 22009 /* increment loop counter */ 22010 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1); 22011 /* jump to loop header if callback returned 0 */ 22012 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6); 22013 /* return value of bpf_loop, 22014 * set R0 to the number of iterations 22015 */ 22016 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt); 22017 /* restore original values of R6, R7, R8 */ 22018 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset); 22019 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset); 22020 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset); 22021 22022 *total_cnt = cnt; 22023 new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt); 22024 if (!new_prog) 22025 return new_prog; 22026 22027 /* callback start is known only after patching */ 22028 callback_start = env->subprog_info[callback_subprogno].start; 22029 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 22030 call_insn_offset = position + 12; 22031 callback_offset = callback_start - call_insn_offset - 1; 22032 new_prog->insnsi[call_insn_offset].imm = callback_offset; 22033 22034 return new_prog; 22035 } 22036 22037 static bool is_bpf_loop_call(struct bpf_insn *insn) 22038 { 22039 return insn->code == (BPF_JMP | BPF_CALL) && 22040 insn->src_reg == 0 && 22041 insn->imm == BPF_FUNC_loop; 22042 } 22043 22044 /* For all sub-programs in the program (including main) check 22045 * insn_aux_data to see if there are bpf_loop calls that require 22046 * inlining. If such calls are found the calls are replaced with a 22047 * sequence of instructions produced by `inline_bpf_loop` function and 22048 * subprog stack_depth is increased by the size of 3 registers. 22049 * This stack space is used to spill values of the R6, R7, R8. These 22050 * registers are used to store the loop bound, counter and context 22051 * variables. 22052 */ 22053 static int optimize_bpf_loop(struct bpf_verifier_env *env) 22054 { 22055 struct bpf_subprog_info *subprogs = env->subprog_info; 22056 int i, cur_subprog = 0, cnt, delta = 0; 22057 struct bpf_insn *insn = env->prog->insnsi; 22058 int insn_cnt = env->prog->len; 22059 u16 stack_depth = subprogs[cur_subprog].stack_depth; 22060 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 22061 u16 stack_depth_extra = 0; 22062 22063 for (i = 0; i < insn_cnt; i++, insn++) { 22064 struct bpf_loop_inline_state *inline_state = 22065 &env->insn_aux_data[i + delta].loop_inline_state; 22066 22067 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 22068 struct bpf_prog *new_prog; 22069 22070 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 22071 new_prog = inline_bpf_loop(env, 22072 i + delta, 22073 -(stack_depth + stack_depth_extra), 22074 inline_state->callback_subprogno, 22075 &cnt); 22076 if (!new_prog) 22077 return -ENOMEM; 22078 22079 delta += cnt - 1; 22080 env->prog = new_prog; 22081 insn = new_prog->insnsi + i + delta; 22082 } 22083 22084 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 22085 subprogs[cur_subprog].stack_depth += stack_depth_extra; 22086 cur_subprog++; 22087 stack_depth = subprogs[cur_subprog].stack_depth; 22088 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 22089 stack_depth_extra = 0; 22090 } 22091 } 22092 22093 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 22094 22095 return 0; 22096 } 22097 22098 /* Remove unnecessary spill/fill pairs, members of fastcall pattern, 22099 * adjust subprograms stack depth when possible. 22100 */ 22101 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env) 22102 { 22103 struct bpf_subprog_info *subprog = env->subprog_info; 22104 struct bpf_insn_aux_data *aux = env->insn_aux_data; 22105 struct bpf_insn *insn = env->prog->insnsi; 22106 int insn_cnt = env->prog->len; 22107 u32 spills_num; 22108 bool modified = false; 22109 int i, j; 22110 22111 for (i = 0; i < insn_cnt; i++, insn++) { 22112 if (aux[i].fastcall_spills_num > 0) { 22113 spills_num = aux[i].fastcall_spills_num; 22114 /* NOPs would be removed by opt_remove_nops() */ 22115 for (j = 1; j <= spills_num; ++j) { 22116 *(insn - j) = NOP; 22117 *(insn + j) = NOP; 22118 } 22119 modified = true; 22120 } 22121 if ((subprog + 1)->start == i + 1) { 22122 if (modified && !subprog->keep_fastcall_stack) 22123 subprog->stack_depth = -subprog->fastcall_stack_off; 22124 subprog++; 22125 modified = false; 22126 } 22127 } 22128 22129 return 0; 22130 } 22131 22132 static void free_states(struct bpf_verifier_env *env) 22133 { 22134 struct bpf_verifier_state_list *sl, *sln; 22135 int i; 22136 22137 sl = env->free_list; 22138 while (sl) { 22139 sln = sl->next; 22140 free_verifier_state(&sl->state, false); 22141 kfree(sl); 22142 sl = sln; 22143 } 22144 env->free_list = NULL; 22145 22146 if (!env->explored_states) 22147 return; 22148 22149 for (i = 0; i < state_htab_size(env); i++) { 22150 sl = env->explored_states[i]; 22151 22152 while (sl) { 22153 sln = sl->next; 22154 free_verifier_state(&sl->state, false); 22155 kfree(sl); 22156 sl = sln; 22157 } 22158 env->explored_states[i] = NULL; 22159 } 22160 } 22161 22162 static int do_check_common(struct bpf_verifier_env *env, int subprog) 22163 { 22164 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 22165 struct bpf_subprog_info *sub = subprog_info(env, subprog); 22166 struct bpf_verifier_state *state; 22167 struct bpf_reg_state *regs; 22168 int ret, i; 22169 22170 env->prev_linfo = NULL; 22171 env->pass_cnt++; 22172 22173 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 22174 if (!state) 22175 return -ENOMEM; 22176 state->curframe = 0; 22177 state->speculative = false; 22178 state->branches = 1; 22179 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 22180 if (!state->frame[0]) { 22181 kfree(state); 22182 return -ENOMEM; 22183 } 22184 env->cur_state = state; 22185 init_func_state(env, state->frame[0], 22186 BPF_MAIN_FUNC /* callsite */, 22187 0 /* frameno */, 22188 subprog); 22189 state->first_insn_idx = env->subprog_info[subprog].start; 22190 state->last_insn_idx = -1; 22191 22192 regs = state->frame[state->curframe]->regs; 22193 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 22194 const char *sub_name = subprog_name(env, subprog); 22195 struct bpf_subprog_arg_info *arg; 22196 struct bpf_reg_state *reg; 22197 22198 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); 22199 ret = btf_prepare_func_args(env, subprog); 22200 if (ret) 22201 goto out; 22202 22203 if (subprog_is_exc_cb(env, subprog)) { 22204 state->frame[0]->in_exception_callback_fn = true; 22205 /* We have already ensured that the callback returns an integer, just 22206 * like all global subprogs. We need to determine it only has a single 22207 * scalar argument. 22208 */ 22209 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { 22210 verbose(env, "exception cb only supports single integer argument\n"); 22211 ret = -EINVAL; 22212 goto out; 22213 } 22214 } 22215 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { 22216 arg = &sub->args[i - BPF_REG_1]; 22217 reg = ®s[i]; 22218 22219 if (arg->arg_type == ARG_PTR_TO_CTX) { 22220 reg->type = PTR_TO_CTX; 22221 mark_reg_known_zero(env, regs, i); 22222 } else if (arg->arg_type == ARG_ANYTHING) { 22223 reg->type = SCALAR_VALUE; 22224 mark_reg_unknown(env, regs, i); 22225 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 22226 /* assume unspecial LOCAL dynptr type */ 22227 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); 22228 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 22229 reg->type = PTR_TO_MEM; 22230 if (arg->arg_type & PTR_MAYBE_NULL) 22231 reg->type |= PTR_MAYBE_NULL; 22232 mark_reg_known_zero(env, regs, i); 22233 reg->mem_size = arg->mem_size; 22234 reg->id = ++env->id_gen; 22235 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 22236 reg->type = PTR_TO_BTF_ID; 22237 if (arg->arg_type & PTR_MAYBE_NULL) 22238 reg->type |= PTR_MAYBE_NULL; 22239 if (arg->arg_type & PTR_UNTRUSTED) 22240 reg->type |= PTR_UNTRUSTED; 22241 if (arg->arg_type & PTR_TRUSTED) 22242 reg->type |= PTR_TRUSTED; 22243 mark_reg_known_zero(env, regs, i); 22244 reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */ 22245 reg->btf_id = arg->btf_id; 22246 reg->id = ++env->id_gen; 22247 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 22248 /* caller can pass either PTR_TO_ARENA or SCALAR */ 22249 mark_reg_unknown(env, regs, i); 22250 } else { 22251 WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n", 22252 i - BPF_REG_1, arg->arg_type); 22253 ret = -EFAULT; 22254 goto out; 22255 } 22256 } 22257 } else { 22258 /* if main BPF program has associated BTF info, validate that 22259 * it's matching expected signature, and otherwise mark BTF 22260 * info for main program as unreliable 22261 */ 22262 if (env->prog->aux->func_info_aux) { 22263 ret = btf_prepare_func_args(env, 0); 22264 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) 22265 env->prog->aux->func_info_aux[0].unreliable = true; 22266 } 22267 22268 /* 1st arg to a function */ 22269 regs[BPF_REG_1].type = PTR_TO_CTX; 22270 mark_reg_known_zero(env, regs, BPF_REG_1); 22271 } 22272 22273 ret = do_check(env); 22274 out: 22275 /* check for NULL is necessary, since cur_state can be freed inside 22276 * do_check() under memory pressure. 22277 */ 22278 if (env->cur_state) { 22279 free_verifier_state(env->cur_state, true); 22280 env->cur_state = NULL; 22281 } 22282 while (!pop_stack(env, NULL, NULL, false)); 22283 if (!ret && pop_log) 22284 bpf_vlog_reset(&env->log, 0); 22285 free_states(env); 22286 return ret; 22287 } 22288 22289 /* Lazily verify all global functions based on their BTF, if they are called 22290 * from main BPF program or any of subprograms transitively. 22291 * BPF global subprogs called from dead code are not validated. 22292 * All callable global functions must pass verification. 22293 * Otherwise the whole program is rejected. 22294 * Consider: 22295 * int bar(int); 22296 * int foo(int f) 22297 * { 22298 * return bar(f); 22299 * } 22300 * int bar(int b) 22301 * { 22302 * ... 22303 * } 22304 * foo() will be verified first for R1=any_scalar_value. During verification it 22305 * will be assumed that bar() already verified successfully and call to bar() 22306 * from foo() will be checked for type match only. Later bar() will be verified 22307 * independently to check that it's safe for R1=any_scalar_value. 22308 */ 22309 static int do_check_subprogs(struct bpf_verifier_env *env) 22310 { 22311 struct bpf_prog_aux *aux = env->prog->aux; 22312 struct bpf_func_info_aux *sub_aux; 22313 int i, ret, new_cnt; 22314 22315 if (!aux->func_info) 22316 return 0; 22317 22318 /* exception callback is presumed to be always called */ 22319 if (env->exception_callback_subprog) 22320 subprog_aux(env, env->exception_callback_subprog)->called = true; 22321 22322 again: 22323 new_cnt = 0; 22324 for (i = 1; i < env->subprog_cnt; i++) { 22325 if (!subprog_is_global(env, i)) 22326 continue; 22327 22328 sub_aux = subprog_aux(env, i); 22329 if (!sub_aux->called || sub_aux->verified) 22330 continue; 22331 22332 env->insn_idx = env->subprog_info[i].start; 22333 WARN_ON_ONCE(env->insn_idx == 0); 22334 ret = do_check_common(env, i); 22335 if (ret) { 22336 return ret; 22337 } else if (env->log.level & BPF_LOG_LEVEL) { 22338 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", 22339 i, subprog_name(env, i)); 22340 } 22341 22342 /* We verified new global subprog, it might have called some 22343 * more global subprogs that we haven't verified yet, so we 22344 * need to do another pass over subprogs to verify those. 22345 */ 22346 sub_aux->verified = true; 22347 new_cnt++; 22348 } 22349 22350 /* We can't loop forever as we verify at least one global subprog on 22351 * each pass. 22352 */ 22353 if (new_cnt) 22354 goto again; 22355 22356 return 0; 22357 } 22358 22359 static int do_check_main(struct bpf_verifier_env *env) 22360 { 22361 int ret; 22362 22363 env->insn_idx = 0; 22364 ret = do_check_common(env, 0); 22365 if (!ret) 22366 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 22367 return ret; 22368 } 22369 22370 22371 static void print_verification_stats(struct bpf_verifier_env *env) 22372 { 22373 int i; 22374 22375 if (env->log.level & BPF_LOG_STATS) { 22376 verbose(env, "verification time %lld usec\n", 22377 div_u64(env->verification_time, 1000)); 22378 verbose(env, "stack depth "); 22379 for (i = 0; i < env->subprog_cnt; i++) { 22380 u32 depth = env->subprog_info[i].stack_depth; 22381 22382 verbose(env, "%d", depth); 22383 if (i + 1 < env->subprog_cnt) 22384 verbose(env, "+"); 22385 } 22386 verbose(env, "\n"); 22387 } 22388 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 22389 "total_states %d peak_states %d mark_read %d\n", 22390 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 22391 env->max_states_per_insn, env->total_states, 22392 env->peak_states, env->longest_mark_read_walk); 22393 } 22394 22395 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 22396 { 22397 const struct btf_type *t, *func_proto; 22398 const struct bpf_struct_ops_desc *st_ops_desc; 22399 const struct bpf_struct_ops *st_ops; 22400 const struct btf_member *member; 22401 struct bpf_prog *prog = env->prog; 22402 u32 btf_id, member_idx; 22403 struct btf *btf; 22404 const char *mname; 22405 int err; 22406 22407 if (!prog->gpl_compatible) { 22408 verbose(env, "struct ops programs must have a GPL compatible license\n"); 22409 return -EINVAL; 22410 } 22411 22412 if (!prog->aux->attach_btf_id) 22413 return -ENOTSUPP; 22414 22415 btf = prog->aux->attach_btf; 22416 if (btf_is_module(btf)) { 22417 /* Make sure st_ops is valid through the lifetime of env */ 22418 env->attach_btf_mod = btf_try_get_module(btf); 22419 if (!env->attach_btf_mod) { 22420 verbose(env, "struct_ops module %s is not found\n", 22421 btf_get_name(btf)); 22422 return -ENOTSUPP; 22423 } 22424 } 22425 22426 btf_id = prog->aux->attach_btf_id; 22427 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 22428 if (!st_ops_desc) { 22429 verbose(env, "attach_btf_id %u is not a supported struct\n", 22430 btf_id); 22431 return -ENOTSUPP; 22432 } 22433 st_ops = st_ops_desc->st_ops; 22434 22435 t = st_ops_desc->type; 22436 member_idx = prog->expected_attach_type; 22437 if (member_idx >= btf_type_vlen(t)) { 22438 verbose(env, "attach to invalid member idx %u of struct %s\n", 22439 member_idx, st_ops->name); 22440 return -EINVAL; 22441 } 22442 22443 member = &btf_type_member(t)[member_idx]; 22444 mname = btf_name_by_offset(btf, member->name_off); 22445 func_proto = btf_type_resolve_func_ptr(btf, member->type, 22446 NULL); 22447 if (!func_proto) { 22448 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 22449 mname, member_idx, st_ops->name); 22450 return -EINVAL; 22451 } 22452 22453 err = bpf_struct_ops_supported(st_ops, __btf_member_bit_offset(t, member) / 8); 22454 if (err) { 22455 verbose(env, "attach to unsupported member %s of struct %s\n", 22456 mname, st_ops->name); 22457 return err; 22458 } 22459 22460 if (st_ops->check_member) { 22461 err = st_ops->check_member(t, member, prog); 22462 22463 if (err) { 22464 verbose(env, "attach to unsupported member %s of struct %s\n", 22465 mname, st_ops->name); 22466 return err; 22467 } 22468 } 22469 22470 if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) { 22471 verbose(env, "Private stack not supported by jit\n"); 22472 return -EACCES; 22473 } 22474 22475 /* btf_ctx_access() used this to provide argument type info */ 22476 prog->aux->ctx_arg_info = 22477 st_ops_desc->arg_info[member_idx].info; 22478 prog->aux->ctx_arg_info_size = 22479 st_ops_desc->arg_info[member_idx].cnt; 22480 22481 prog->aux->attach_func_proto = func_proto; 22482 prog->aux->attach_func_name = mname; 22483 env->ops = st_ops->verifier_ops; 22484 22485 return 0; 22486 } 22487 #define SECURITY_PREFIX "security_" 22488 22489 static int check_attach_modify_return(unsigned long addr, const char *func_name) 22490 { 22491 if (within_error_injection_list(addr) || 22492 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 22493 return 0; 22494 22495 return -EINVAL; 22496 } 22497 22498 /* list of non-sleepable functions that are otherwise on 22499 * ALLOW_ERROR_INJECTION list 22500 */ 22501 BTF_SET_START(btf_non_sleepable_error_inject) 22502 /* Three functions below can be called from sleepable and non-sleepable context. 22503 * Assume non-sleepable from bpf safety point of view. 22504 */ 22505 BTF_ID(func, __filemap_add_folio) 22506 #ifdef CONFIG_FAIL_PAGE_ALLOC 22507 BTF_ID(func, should_fail_alloc_page) 22508 #endif 22509 #ifdef CONFIG_FAILSLAB 22510 BTF_ID(func, should_failslab) 22511 #endif 22512 BTF_SET_END(btf_non_sleepable_error_inject) 22513 22514 static int check_non_sleepable_error_inject(u32 btf_id) 22515 { 22516 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 22517 } 22518 22519 int bpf_check_attach_target(struct bpf_verifier_log *log, 22520 const struct bpf_prog *prog, 22521 const struct bpf_prog *tgt_prog, 22522 u32 btf_id, 22523 struct bpf_attach_target_info *tgt_info) 22524 { 22525 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 22526 bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING; 22527 char trace_symbol[KSYM_SYMBOL_LEN]; 22528 const char prefix[] = "btf_trace_"; 22529 struct bpf_raw_event_map *btp; 22530 int ret = 0, subprog = -1, i; 22531 const struct btf_type *t; 22532 bool conservative = true; 22533 const char *tname, *fname; 22534 struct btf *btf; 22535 long addr = 0; 22536 struct module *mod = NULL; 22537 22538 if (!btf_id) { 22539 bpf_log(log, "Tracing programs must provide btf_id\n"); 22540 return -EINVAL; 22541 } 22542 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 22543 if (!btf) { 22544 bpf_log(log, 22545 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 22546 return -EINVAL; 22547 } 22548 t = btf_type_by_id(btf, btf_id); 22549 if (!t) { 22550 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 22551 return -EINVAL; 22552 } 22553 tname = btf_name_by_offset(btf, t->name_off); 22554 if (!tname) { 22555 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 22556 return -EINVAL; 22557 } 22558 if (tgt_prog) { 22559 struct bpf_prog_aux *aux = tgt_prog->aux; 22560 bool tgt_changes_pkt_data; 22561 22562 if (bpf_prog_is_dev_bound(prog->aux) && 22563 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 22564 bpf_log(log, "Target program bound device mismatch"); 22565 return -EINVAL; 22566 } 22567 22568 for (i = 0; i < aux->func_info_cnt; i++) 22569 if (aux->func_info[i].type_id == btf_id) { 22570 subprog = i; 22571 break; 22572 } 22573 if (subprog == -1) { 22574 bpf_log(log, "Subprog %s doesn't exist\n", tname); 22575 return -EINVAL; 22576 } 22577 if (aux->func && aux->func[subprog]->aux->exception_cb) { 22578 bpf_log(log, 22579 "%s programs cannot attach to exception callback\n", 22580 prog_extension ? "Extension" : "FENTRY/FEXIT"); 22581 return -EINVAL; 22582 } 22583 conservative = aux->func_info_aux[subprog].unreliable; 22584 if (prog_extension) { 22585 if (conservative) { 22586 bpf_log(log, 22587 "Cannot replace static functions\n"); 22588 return -EINVAL; 22589 } 22590 if (!prog->jit_requested) { 22591 bpf_log(log, 22592 "Extension programs should be JITed\n"); 22593 return -EINVAL; 22594 } 22595 tgt_changes_pkt_data = aux->func 22596 ? aux->func[subprog]->aux->changes_pkt_data 22597 : aux->changes_pkt_data; 22598 if (prog->aux->changes_pkt_data && !tgt_changes_pkt_data) { 22599 bpf_log(log, 22600 "Extension program changes packet data, while original does not\n"); 22601 return -EINVAL; 22602 } 22603 } 22604 if (!tgt_prog->jited) { 22605 bpf_log(log, "Can attach to only JITed progs\n"); 22606 return -EINVAL; 22607 } 22608 if (prog_tracing) { 22609 if (aux->attach_tracing_prog) { 22610 /* 22611 * Target program is an fentry/fexit which is already attached 22612 * to another tracing program. More levels of nesting 22613 * attachment are not allowed. 22614 */ 22615 bpf_log(log, "Cannot nest tracing program attach more than once\n"); 22616 return -EINVAL; 22617 } 22618 } else if (tgt_prog->type == prog->type) { 22619 /* 22620 * To avoid potential call chain cycles, prevent attaching of a 22621 * program extension to another extension. It's ok to attach 22622 * fentry/fexit to extension program. 22623 */ 22624 bpf_log(log, "Cannot recursively attach\n"); 22625 return -EINVAL; 22626 } 22627 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 22628 prog_extension && 22629 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 22630 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 22631 /* Program extensions can extend all program types 22632 * except fentry/fexit. The reason is the following. 22633 * The fentry/fexit programs are used for performance 22634 * analysis, stats and can be attached to any program 22635 * type. When extension program is replacing XDP function 22636 * it is necessary to allow performance analysis of all 22637 * functions. Both original XDP program and its program 22638 * extension. Hence attaching fentry/fexit to 22639 * BPF_PROG_TYPE_EXT is allowed. If extending of 22640 * fentry/fexit was allowed it would be possible to create 22641 * long call chain fentry->extension->fentry->extension 22642 * beyond reasonable stack size. Hence extending fentry 22643 * is not allowed. 22644 */ 22645 bpf_log(log, "Cannot extend fentry/fexit\n"); 22646 return -EINVAL; 22647 } 22648 } else { 22649 if (prog_extension) { 22650 bpf_log(log, "Cannot replace kernel functions\n"); 22651 return -EINVAL; 22652 } 22653 } 22654 22655 switch (prog->expected_attach_type) { 22656 case BPF_TRACE_RAW_TP: 22657 if (tgt_prog) { 22658 bpf_log(log, 22659 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 22660 return -EINVAL; 22661 } 22662 if (!btf_type_is_typedef(t)) { 22663 bpf_log(log, "attach_btf_id %u is not a typedef\n", 22664 btf_id); 22665 return -EINVAL; 22666 } 22667 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 22668 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 22669 btf_id, tname); 22670 return -EINVAL; 22671 } 22672 tname += sizeof(prefix) - 1; 22673 22674 /* The func_proto of "btf_trace_##tname" is generated from typedef without argument 22675 * names. Thus using bpf_raw_event_map to get argument names. 22676 */ 22677 btp = bpf_get_raw_tracepoint(tname); 22678 if (!btp) 22679 return -EINVAL; 22680 fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL, 22681 trace_symbol); 22682 bpf_put_raw_tracepoint(btp); 22683 22684 if (fname) 22685 ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC); 22686 22687 if (!fname || ret < 0) { 22688 bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n", 22689 prefix, tname); 22690 t = btf_type_by_id(btf, t->type); 22691 if (!btf_type_is_ptr(t)) 22692 /* should never happen in valid vmlinux build */ 22693 return -EINVAL; 22694 } else { 22695 t = btf_type_by_id(btf, ret); 22696 if (!btf_type_is_func(t)) 22697 /* should never happen in valid vmlinux build */ 22698 return -EINVAL; 22699 } 22700 22701 t = btf_type_by_id(btf, t->type); 22702 if (!btf_type_is_func_proto(t)) 22703 /* should never happen in valid vmlinux build */ 22704 return -EINVAL; 22705 22706 break; 22707 case BPF_TRACE_ITER: 22708 if (!btf_type_is_func(t)) { 22709 bpf_log(log, "attach_btf_id %u is not a function\n", 22710 btf_id); 22711 return -EINVAL; 22712 } 22713 t = btf_type_by_id(btf, t->type); 22714 if (!btf_type_is_func_proto(t)) 22715 return -EINVAL; 22716 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 22717 if (ret) 22718 return ret; 22719 break; 22720 default: 22721 if (!prog_extension) 22722 return -EINVAL; 22723 fallthrough; 22724 case BPF_MODIFY_RETURN: 22725 case BPF_LSM_MAC: 22726 case BPF_LSM_CGROUP: 22727 case BPF_TRACE_FENTRY: 22728 case BPF_TRACE_FEXIT: 22729 if (!btf_type_is_func(t)) { 22730 bpf_log(log, "attach_btf_id %u is not a function\n", 22731 btf_id); 22732 return -EINVAL; 22733 } 22734 if (prog_extension && 22735 btf_check_type_match(log, prog, btf, t)) 22736 return -EINVAL; 22737 t = btf_type_by_id(btf, t->type); 22738 if (!btf_type_is_func_proto(t)) 22739 return -EINVAL; 22740 22741 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 22742 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 22743 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 22744 return -EINVAL; 22745 22746 if (tgt_prog && conservative) 22747 t = NULL; 22748 22749 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 22750 if (ret < 0) 22751 return ret; 22752 22753 if (tgt_prog) { 22754 if (subprog == 0) 22755 addr = (long) tgt_prog->bpf_func; 22756 else 22757 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 22758 } else { 22759 if (btf_is_module(btf)) { 22760 mod = btf_try_get_module(btf); 22761 if (mod) 22762 addr = find_kallsyms_symbol_value(mod, tname); 22763 else 22764 addr = 0; 22765 } else { 22766 addr = kallsyms_lookup_name(tname); 22767 } 22768 if (!addr) { 22769 module_put(mod); 22770 bpf_log(log, 22771 "The address of function %s cannot be found\n", 22772 tname); 22773 return -ENOENT; 22774 } 22775 } 22776 22777 if (prog->sleepable) { 22778 ret = -EINVAL; 22779 switch (prog->type) { 22780 case BPF_PROG_TYPE_TRACING: 22781 22782 /* fentry/fexit/fmod_ret progs can be sleepable if they are 22783 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 22784 */ 22785 if (!check_non_sleepable_error_inject(btf_id) && 22786 within_error_injection_list(addr)) 22787 ret = 0; 22788 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 22789 * in the fmodret id set with the KF_SLEEPABLE flag. 22790 */ 22791 else { 22792 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 22793 prog); 22794 22795 if (flags && (*flags & KF_SLEEPABLE)) 22796 ret = 0; 22797 } 22798 break; 22799 case BPF_PROG_TYPE_LSM: 22800 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 22801 * Only some of them are sleepable. 22802 */ 22803 if (bpf_lsm_is_sleepable_hook(btf_id)) 22804 ret = 0; 22805 break; 22806 default: 22807 break; 22808 } 22809 if (ret) { 22810 module_put(mod); 22811 bpf_log(log, "%s is not sleepable\n", tname); 22812 return ret; 22813 } 22814 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 22815 if (tgt_prog) { 22816 module_put(mod); 22817 bpf_log(log, "can't modify return codes of BPF programs\n"); 22818 return -EINVAL; 22819 } 22820 ret = -EINVAL; 22821 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 22822 !check_attach_modify_return(addr, tname)) 22823 ret = 0; 22824 if (ret) { 22825 module_put(mod); 22826 bpf_log(log, "%s() is not modifiable\n", tname); 22827 return ret; 22828 } 22829 } 22830 22831 break; 22832 } 22833 tgt_info->tgt_addr = addr; 22834 tgt_info->tgt_name = tname; 22835 tgt_info->tgt_type = t; 22836 tgt_info->tgt_mod = mod; 22837 return 0; 22838 } 22839 22840 BTF_SET_START(btf_id_deny) 22841 BTF_ID_UNUSED 22842 #ifdef CONFIG_SMP 22843 BTF_ID(func, migrate_disable) 22844 BTF_ID(func, migrate_enable) 22845 #endif 22846 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 22847 BTF_ID(func, rcu_read_unlock_strict) 22848 #endif 22849 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 22850 BTF_ID(func, preempt_count_add) 22851 BTF_ID(func, preempt_count_sub) 22852 #endif 22853 #ifdef CONFIG_PREEMPT_RCU 22854 BTF_ID(func, __rcu_read_lock) 22855 BTF_ID(func, __rcu_read_unlock) 22856 #endif 22857 BTF_SET_END(btf_id_deny) 22858 22859 static bool can_be_sleepable(struct bpf_prog *prog) 22860 { 22861 if (prog->type == BPF_PROG_TYPE_TRACING) { 22862 switch (prog->expected_attach_type) { 22863 case BPF_TRACE_FENTRY: 22864 case BPF_TRACE_FEXIT: 22865 case BPF_MODIFY_RETURN: 22866 case BPF_TRACE_ITER: 22867 return true; 22868 default: 22869 return false; 22870 } 22871 } 22872 return prog->type == BPF_PROG_TYPE_LSM || 22873 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 22874 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 22875 } 22876 22877 static int check_attach_btf_id(struct bpf_verifier_env *env) 22878 { 22879 struct bpf_prog *prog = env->prog; 22880 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 22881 struct bpf_attach_target_info tgt_info = {}; 22882 u32 btf_id = prog->aux->attach_btf_id; 22883 struct bpf_trampoline *tr; 22884 int ret; 22885 u64 key; 22886 22887 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 22888 if (prog->sleepable) 22889 /* attach_btf_id checked to be zero already */ 22890 return 0; 22891 verbose(env, "Syscall programs can only be sleepable\n"); 22892 return -EINVAL; 22893 } 22894 22895 if (prog->sleepable && !can_be_sleepable(prog)) { 22896 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 22897 return -EINVAL; 22898 } 22899 22900 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 22901 return check_struct_ops_btf_id(env); 22902 22903 if (prog->type != BPF_PROG_TYPE_TRACING && 22904 prog->type != BPF_PROG_TYPE_LSM && 22905 prog->type != BPF_PROG_TYPE_EXT) 22906 return 0; 22907 22908 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 22909 if (ret) 22910 return ret; 22911 22912 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 22913 /* to make freplace equivalent to their targets, they need to 22914 * inherit env->ops and expected_attach_type for the rest of the 22915 * verification 22916 */ 22917 env->ops = bpf_verifier_ops[tgt_prog->type]; 22918 prog->expected_attach_type = tgt_prog->expected_attach_type; 22919 } 22920 22921 /* store info about the attachment target that will be used later */ 22922 prog->aux->attach_func_proto = tgt_info.tgt_type; 22923 prog->aux->attach_func_name = tgt_info.tgt_name; 22924 prog->aux->mod = tgt_info.tgt_mod; 22925 22926 if (tgt_prog) { 22927 prog->aux->saved_dst_prog_type = tgt_prog->type; 22928 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 22929 } 22930 22931 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 22932 prog->aux->attach_btf_trace = true; 22933 return 0; 22934 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 22935 if (!bpf_iter_prog_supported(prog)) 22936 return -EINVAL; 22937 return 0; 22938 } 22939 22940 if (prog->type == BPF_PROG_TYPE_LSM) { 22941 ret = bpf_lsm_verify_prog(&env->log, prog); 22942 if (ret < 0) 22943 return ret; 22944 } else if (prog->type == BPF_PROG_TYPE_TRACING && 22945 btf_id_set_contains(&btf_id_deny, btf_id)) { 22946 return -EINVAL; 22947 } 22948 22949 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 22950 tr = bpf_trampoline_get(key, &tgt_info); 22951 if (!tr) 22952 return -ENOMEM; 22953 22954 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 22955 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 22956 22957 prog->aux->dst_trampoline = tr; 22958 return 0; 22959 } 22960 22961 struct btf *bpf_get_btf_vmlinux(void) 22962 { 22963 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 22964 mutex_lock(&bpf_verifier_lock); 22965 if (!btf_vmlinux) 22966 btf_vmlinux = btf_parse_vmlinux(); 22967 mutex_unlock(&bpf_verifier_lock); 22968 } 22969 return btf_vmlinux; 22970 } 22971 22972 /* 22973 * The add_fd_from_fd_array() is executed only if fd_array_cnt is non-zero. In 22974 * this case expect that every file descriptor in the array is either a map or 22975 * a BTF. Everything else is considered to be trash. 22976 */ 22977 static int add_fd_from_fd_array(struct bpf_verifier_env *env, int fd) 22978 { 22979 struct bpf_map *map; 22980 struct btf *btf; 22981 CLASS(fd, f)(fd); 22982 int err; 22983 22984 map = __bpf_map_get(f); 22985 if (!IS_ERR(map)) { 22986 err = __add_used_map(env, map); 22987 if (err < 0) 22988 return err; 22989 return 0; 22990 } 22991 22992 btf = __btf_get_by_fd(f); 22993 if (!IS_ERR(btf)) { 22994 err = __add_used_btf(env, btf); 22995 if (err < 0) 22996 return err; 22997 return 0; 22998 } 22999 23000 verbose(env, "fd %d is not pointing to valid bpf_map or btf\n", fd); 23001 return PTR_ERR(map); 23002 } 23003 23004 static int process_fd_array(struct bpf_verifier_env *env, union bpf_attr *attr, bpfptr_t uattr) 23005 { 23006 size_t size = sizeof(int); 23007 int ret; 23008 int fd; 23009 u32 i; 23010 23011 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 23012 23013 /* 23014 * The only difference between old (no fd_array_cnt is given) and new 23015 * APIs is that in the latter case the fd_array is expected to be 23016 * continuous and is scanned for map fds right away 23017 */ 23018 if (!attr->fd_array_cnt) 23019 return 0; 23020 23021 /* Check for integer overflow */ 23022 if (attr->fd_array_cnt >= (U32_MAX / size)) { 23023 verbose(env, "fd_array_cnt is too big (%u)\n", attr->fd_array_cnt); 23024 return -EINVAL; 23025 } 23026 23027 for (i = 0; i < attr->fd_array_cnt; i++) { 23028 if (copy_from_bpfptr_offset(&fd, env->fd_array, i * size, size)) 23029 return -EFAULT; 23030 23031 ret = add_fd_from_fd_array(env, fd); 23032 if (ret) 23033 return ret; 23034 } 23035 23036 return 0; 23037 } 23038 23039 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 23040 { 23041 u64 start_time = ktime_get_ns(); 23042 struct bpf_verifier_env *env; 23043 int i, len, ret = -EINVAL, err; 23044 u32 log_true_size; 23045 bool is_priv; 23046 23047 /* no program is valid */ 23048 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 23049 return -EINVAL; 23050 23051 /* 'struct bpf_verifier_env' can be global, but since it's not small, 23052 * allocate/free it every time bpf_check() is called 23053 */ 23054 env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 23055 if (!env) 23056 return -ENOMEM; 23057 23058 env->bt.env = env; 23059 23060 len = (*prog)->len; 23061 env->insn_aux_data = 23062 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 23063 ret = -ENOMEM; 23064 if (!env->insn_aux_data) 23065 goto err_free_env; 23066 for (i = 0; i < len; i++) 23067 env->insn_aux_data[i].orig_idx = i; 23068 env->prog = *prog; 23069 env->ops = bpf_verifier_ops[env->prog->type]; 23070 23071 env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token); 23072 env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token); 23073 env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token); 23074 env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token); 23075 env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF); 23076 23077 bpf_get_btf_vmlinux(); 23078 23079 /* grab the mutex to protect few globals used by verifier */ 23080 if (!is_priv) 23081 mutex_lock(&bpf_verifier_lock); 23082 23083 /* user could have requested verbose verifier output 23084 * and supplied buffer to store the verification trace 23085 */ 23086 ret = bpf_vlog_init(&env->log, attr->log_level, 23087 (char __user *) (unsigned long) attr->log_buf, 23088 attr->log_size); 23089 if (ret) 23090 goto err_unlock; 23091 23092 ret = process_fd_array(env, attr, uattr); 23093 if (ret) 23094 goto skip_full_check; 23095 23096 mark_verifier_state_clean(env); 23097 23098 if (IS_ERR(btf_vmlinux)) { 23099 /* Either gcc or pahole or kernel are broken. */ 23100 verbose(env, "in-kernel BTF is malformed\n"); 23101 ret = PTR_ERR(btf_vmlinux); 23102 goto skip_full_check; 23103 } 23104 23105 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 23106 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 23107 env->strict_alignment = true; 23108 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 23109 env->strict_alignment = false; 23110 23111 if (is_priv) 23112 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 23113 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; 23114 23115 env->explored_states = kvcalloc(state_htab_size(env), 23116 sizeof(struct bpf_verifier_state_list *), 23117 GFP_USER); 23118 ret = -ENOMEM; 23119 if (!env->explored_states) 23120 goto skip_full_check; 23121 23122 ret = check_btf_info_early(env, attr, uattr); 23123 if (ret < 0) 23124 goto skip_full_check; 23125 23126 ret = add_subprog_and_kfunc(env); 23127 if (ret < 0) 23128 goto skip_full_check; 23129 23130 ret = check_subprogs(env); 23131 if (ret < 0) 23132 goto skip_full_check; 23133 23134 ret = check_btf_info(env, attr, uattr); 23135 if (ret < 0) 23136 goto skip_full_check; 23137 23138 ret = resolve_pseudo_ldimm64(env); 23139 if (ret < 0) 23140 goto skip_full_check; 23141 23142 if (bpf_prog_is_offloaded(env->prog->aux)) { 23143 ret = bpf_prog_offload_verifier_prep(env->prog); 23144 if (ret) 23145 goto skip_full_check; 23146 } 23147 23148 ret = check_cfg(env); 23149 if (ret < 0) 23150 goto skip_full_check; 23151 23152 ret = check_attach_btf_id(env); 23153 if (ret) 23154 goto skip_full_check; 23155 23156 ret = mark_fastcall_patterns(env); 23157 if (ret < 0) 23158 goto skip_full_check; 23159 23160 ret = do_check_main(env); 23161 ret = ret ?: do_check_subprogs(env); 23162 23163 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 23164 ret = bpf_prog_offload_finalize(env); 23165 23166 skip_full_check: 23167 kvfree(env->explored_states); 23168 23169 /* might decrease stack depth, keep it before passes that 23170 * allocate additional slots. 23171 */ 23172 if (ret == 0) 23173 ret = remove_fastcall_spills_fills(env); 23174 23175 if (ret == 0) 23176 ret = check_max_stack_depth(env); 23177 23178 /* instruction rewrites happen after this point */ 23179 if (ret == 0) 23180 ret = optimize_bpf_loop(env); 23181 23182 if (is_priv) { 23183 if (ret == 0) 23184 opt_hard_wire_dead_code_branches(env); 23185 if (ret == 0) 23186 ret = opt_remove_dead_code(env); 23187 if (ret == 0) 23188 ret = opt_remove_nops(env); 23189 } else { 23190 if (ret == 0) 23191 sanitize_dead_code(env); 23192 } 23193 23194 if (ret == 0) 23195 /* program is valid, convert *(u32*)(ctx + off) accesses */ 23196 ret = convert_ctx_accesses(env); 23197 23198 if (ret == 0) 23199 ret = do_misc_fixups(env); 23200 23201 /* do 32-bit optimization after insn patching has done so those patched 23202 * insns could be handled correctly. 23203 */ 23204 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 23205 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 23206 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 23207 : false; 23208 } 23209 23210 if (ret == 0) 23211 ret = fixup_call_args(env); 23212 23213 env->verification_time = ktime_get_ns() - start_time; 23214 print_verification_stats(env); 23215 env->prog->aux->verified_insns = env->insn_processed; 23216 23217 /* preserve original error even if log finalization is successful */ 23218 err = bpf_vlog_finalize(&env->log, &log_true_size); 23219 if (err) 23220 ret = err; 23221 23222 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 23223 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 23224 &log_true_size, sizeof(log_true_size))) { 23225 ret = -EFAULT; 23226 goto err_release_maps; 23227 } 23228 23229 if (ret) 23230 goto err_release_maps; 23231 23232 if (env->used_map_cnt) { 23233 /* if program passed verifier, update used_maps in bpf_prog_info */ 23234 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 23235 sizeof(env->used_maps[0]), 23236 GFP_KERNEL); 23237 23238 if (!env->prog->aux->used_maps) { 23239 ret = -ENOMEM; 23240 goto err_release_maps; 23241 } 23242 23243 memcpy(env->prog->aux->used_maps, env->used_maps, 23244 sizeof(env->used_maps[0]) * env->used_map_cnt); 23245 env->prog->aux->used_map_cnt = env->used_map_cnt; 23246 } 23247 if (env->used_btf_cnt) { 23248 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 23249 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 23250 sizeof(env->used_btfs[0]), 23251 GFP_KERNEL); 23252 if (!env->prog->aux->used_btfs) { 23253 ret = -ENOMEM; 23254 goto err_release_maps; 23255 } 23256 23257 memcpy(env->prog->aux->used_btfs, env->used_btfs, 23258 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 23259 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 23260 } 23261 if (env->used_map_cnt || env->used_btf_cnt) { 23262 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 23263 * bpf_ld_imm64 instructions 23264 */ 23265 convert_pseudo_ld_imm64(env); 23266 } 23267 23268 adjust_btf_func(env); 23269 23270 err_release_maps: 23271 if (!env->prog->aux->used_maps) 23272 /* if we didn't copy map pointers into bpf_prog_info, release 23273 * them now. Otherwise free_used_maps() will release them. 23274 */ 23275 release_maps(env); 23276 if (!env->prog->aux->used_btfs) 23277 release_btfs(env); 23278 23279 /* extension progs temporarily inherit the attach_type of their targets 23280 for verification purposes, so set it back to zero before returning 23281 */ 23282 if (env->prog->type == BPF_PROG_TYPE_EXT) 23283 env->prog->expected_attach_type = 0; 23284 23285 *prog = env->prog; 23286 23287 module_put(env->attach_btf_mod); 23288 err_unlock: 23289 if (!is_priv) 23290 mutex_unlock(&bpf_verifier_lock); 23291 vfree(env->insn_aux_data); 23292 kvfree(env->insn_hist); 23293 err_free_env: 23294 kvfree(env); 23295 return ret; 23296 } 23297