1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <linux/bpf_mem_alloc.h>
30 #include <net/xdp.h>
31 #include <linux/trace_events.h>
32 #include <linux/kallsyms.h>
33
34 #include "disasm.h"
35
36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
38 [_id] = & _name ## _verifier_ops,
39 #define BPF_MAP_TYPE(_id, _ops)
40 #define BPF_LINK_TYPE(_id, _name)
41 #include <linux/bpf_types.h>
42 #undef BPF_PROG_TYPE
43 #undef BPF_MAP_TYPE
44 #undef BPF_LINK_TYPE
45 };
46
47 struct bpf_mem_alloc bpf_global_percpu_ma;
48 static bool bpf_global_percpu_ma_set;
49
50 /* bpf_check() is a static code analyzer that walks eBPF program
51 * instruction by instruction and updates register/stack state.
52 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
53 *
54 * The first pass is depth-first-search to check that the program is a DAG.
55 * It rejects the following programs:
56 * - larger than BPF_MAXINSNS insns
57 * - if loop is present (detected via back-edge)
58 * - unreachable insns exist (shouldn't be a forest. program = one function)
59 * - out of bounds or malformed jumps
60 * The second pass is all possible path descent from the 1st insn.
61 * Since it's analyzing all paths through the program, the length of the
62 * analysis is limited to 64k insn, which may be hit even if total number of
63 * insn is less then 4K, but there are too many branches that change stack/regs.
64 * Number of 'branches to be analyzed' is limited to 1k
65 *
66 * On entry to each instruction, each register has a type, and the instruction
67 * changes the types of the registers depending on instruction semantics.
68 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
69 * copied to R1.
70 *
71 * All registers are 64-bit.
72 * R0 - return register
73 * R1-R5 argument passing registers
74 * R6-R9 callee saved registers
75 * R10 - frame pointer read-only
76 *
77 * At the start of BPF program the register R1 contains a pointer to bpf_context
78 * and has type PTR_TO_CTX.
79 *
80 * Verifier tracks arithmetic operations on pointers in case:
81 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
82 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
83 * 1st insn copies R10 (which has FRAME_PTR) type into R1
84 * and 2nd arithmetic instruction is pattern matched to recognize
85 * that it wants to construct a pointer to some element within stack.
86 * So after 2nd insn, the register R1 has type PTR_TO_STACK
87 * (and -20 constant is saved for further stack bounds checking).
88 * Meaning that this reg is a pointer to stack plus known immediate constant.
89 *
90 * Most of the time the registers have SCALAR_VALUE type, which
91 * means the register has some value, but it's not a valid pointer.
92 * (like pointer plus pointer becomes SCALAR_VALUE type)
93 *
94 * When verifier sees load or store instructions the type of base register
95 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
96 * four pointer types recognized by check_mem_access() function.
97 *
98 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
99 * and the range of [ptr, ptr + map's value_size) is accessible.
100 *
101 * registers used to pass values to function calls are checked against
102 * function argument constraints.
103 *
104 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
105 * It means that the register type passed to this function must be
106 * PTR_TO_STACK and it will be used inside the function as
107 * 'pointer to map element key'
108 *
109 * For example the argument constraints for bpf_map_lookup_elem():
110 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
111 * .arg1_type = ARG_CONST_MAP_PTR,
112 * .arg2_type = ARG_PTR_TO_MAP_KEY,
113 *
114 * ret_type says that this function returns 'pointer to map elem value or null'
115 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
116 * 2nd argument should be a pointer to stack, which will be used inside
117 * the helper function as a pointer to map element key.
118 *
119 * On the kernel side the helper function looks like:
120 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
121 * {
122 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
123 * void *key = (void *) (unsigned long) r2;
124 * void *value;
125 *
126 * here kernel can access 'key' and 'map' pointers safely, knowing that
127 * [key, key + map->key_size) bytes are valid and were initialized on
128 * the stack of eBPF program.
129 * }
130 *
131 * Corresponding eBPF program may look like:
132 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
133 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
134 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
135 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
136 * here verifier looks at prototype of map_lookup_elem() and sees:
137 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
138 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
139 *
140 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
141 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
142 * and were initialized prior to this call.
143 * If it's ok, then verifier allows this BPF_CALL insn and looks at
144 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
145 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
146 * returns either pointer to map value or NULL.
147 *
148 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
149 * insn, the register holding that pointer in the true branch changes state to
150 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
151 * branch. See check_cond_jmp_op().
152 *
153 * After the call R0 is set to return type of the function and registers R1-R5
154 * are set to NOT_INIT to indicate that they are no longer readable.
155 *
156 * The following reference types represent a potential reference to a kernel
157 * resource which, after first being allocated, must be checked and freed by
158 * the BPF program:
159 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
160 *
161 * When the verifier sees a helper call return a reference type, it allocates a
162 * pointer id for the reference and stores it in the current function state.
163 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
164 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
165 * passes through a NULL-check conditional. For the branch wherein the state is
166 * changed to CONST_IMM, the verifier releases the reference.
167 *
168 * For each helper function that allocates a reference, such as
169 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
170 * bpf_sk_release(). When a reference type passes into the release function,
171 * the verifier also releases the reference. If any unchecked or unreleased
172 * reference remains at the end of the program, the verifier rejects it.
173 */
174
175 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
176 struct bpf_verifier_stack_elem {
177 /* verifier state is 'st'
178 * before processing instruction 'insn_idx'
179 * and after processing instruction 'prev_insn_idx'
180 */
181 struct bpf_verifier_state st;
182 int insn_idx;
183 int prev_insn_idx;
184 struct bpf_verifier_stack_elem *next;
185 /* length of verifier log at the time this state was pushed on stack */
186 u32 log_pos;
187 };
188
189 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
190 #define BPF_COMPLEXITY_LIMIT_STATES 64
191
192 #define BPF_MAP_KEY_POISON (1ULL << 63)
193 #define BPF_MAP_KEY_SEEN (1ULL << 62)
194
195 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512
196
197 #define BPF_PRIV_STACK_MIN_SIZE 64
198
199 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
200 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
201 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
202 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
203 static int ref_set_non_owning(struct bpf_verifier_env *env,
204 struct bpf_reg_state *reg);
205 static void specialize_kfunc(struct bpf_verifier_env *env,
206 u32 func_id, u16 offset, unsigned long *addr);
207 static bool is_trusted_reg(const struct bpf_reg_state *reg);
208
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)209 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
210 {
211 return aux->map_ptr_state.poison;
212 }
213
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)214 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
215 {
216 return aux->map_ptr_state.unpriv;
217 }
218
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,struct bpf_map * map,bool unpriv,bool poison)219 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
220 struct bpf_map *map,
221 bool unpriv, bool poison)
222 {
223 unpriv |= bpf_map_ptr_unpriv(aux);
224 aux->map_ptr_state.unpriv = unpriv;
225 aux->map_ptr_state.poison = poison;
226 aux->map_ptr_state.map_ptr = map;
227 }
228
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)229 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
230 {
231 return aux->map_key_state & BPF_MAP_KEY_POISON;
232 }
233
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)234 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
235 {
236 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
237 }
238
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)239 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
240 {
241 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
242 }
243
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)244 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
245 {
246 bool poisoned = bpf_map_key_poisoned(aux);
247
248 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
249 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
250 }
251
bpf_helper_call(const struct bpf_insn * insn)252 static bool bpf_helper_call(const struct bpf_insn *insn)
253 {
254 return insn->code == (BPF_JMP | BPF_CALL) &&
255 insn->src_reg == 0;
256 }
257
bpf_pseudo_call(const struct bpf_insn * insn)258 static bool bpf_pseudo_call(const struct bpf_insn *insn)
259 {
260 return insn->code == (BPF_JMP | BPF_CALL) &&
261 insn->src_reg == BPF_PSEUDO_CALL;
262 }
263
bpf_pseudo_kfunc_call(const struct bpf_insn * insn)264 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
265 {
266 return insn->code == (BPF_JMP | BPF_CALL) &&
267 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
268 }
269
270 struct bpf_call_arg_meta {
271 struct bpf_map *map_ptr;
272 bool raw_mode;
273 bool pkt_access;
274 u8 release_regno;
275 int regno;
276 int access_size;
277 int mem_size;
278 u64 msize_max_value;
279 int ref_obj_id;
280 int dynptr_id;
281 int map_uid;
282 int func_id;
283 struct btf *btf;
284 u32 btf_id;
285 struct btf *ret_btf;
286 u32 ret_btf_id;
287 u32 subprogno;
288 struct btf_field *kptr_field;
289 };
290
291 struct bpf_kfunc_call_arg_meta {
292 /* In parameters */
293 struct btf *btf;
294 u32 func_id;
295 u32 kfunc_flags;
296 const struct btf_type *func_proto;
297 const char *func_name;
298 /* Out parameters */
299 u32 ref_obj_id;
300 u8 release_regno;
301 bool r0_rdonly;
302 u32 ret_btf_id;
303 u64 r0_size;
304 u32 subprogno;
305 struct {
306 u64 value;
307 bool found;
308 } arg_constant;
309
310 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
311 * generally to pass info about user-defined local kptr types to later
312 * verification logic
313 * bpf_obj_drop/bpf_percpu_obj_drop
314 * Record the local kptr type to be drop'd
315 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
316 * Record the local kptr type to be refcount_incr'd and use
317 * arg_owning_ref to determine whether refcount_acquire should be
318 * fallible
319 */
320 struct btf *arg_btf;
321 u32 arg_btf_id;
322 bool arg_owning_ref;
323
324 struct {
325 struct btf_field *field;
326 } arg_list_head;
327 struct {
328 struct btf_field *field;
329 } arg_rbtree_root;
330 struct {
331 enum bpf_dynptr_type type;
332 u32 id;
333 u32 ref_obj_id;
334 } initialized_dynptr;
335 struct {
336 u8 spi;
337 u8 frameno;
338 } iter;
339 struct {
340 struct bpf_map *ptr;
341 int uid;
342 } map;
343 u64 mem_size;
344 };
345
346 struct btf *btf_vmlinux;
347
btf_type_name(const struct btf * btf,u32 id)348 static const char *btf_type_name(const struct btf *btf, u32 id)
349 {
350 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
351 }
352
353 static DEFINE_MUTEX(bpf_verifier_lock);
354 static DEFINE_MUTEX(bpf_percpu_ma_lock);
355
verbose(void * private_data,const char * fmt,...)356 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
357 {
358 struct bpf_verifier_env *env = private_data;
359 va_list args;
360
361 if (!bpf_verifier_log_needed(&env->log))
362 return;
363
364 va_start(args, fmt);
365 bpf_verifier_vlog(&env->log, fmt, args);
366 va_end(args);
367 }
368
verbose_invalid_scalar(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_retval_range range,const char * ctx,const char * reg_name)369 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
370 struct bpf_reg_state *reg,
371 struct bpf_retval_range range, const char *ctx,
372 const char *reg_name)
373 {
374 bool unknown = true;
375
376 verbose(env, "%s the register %s has", ctx, reg_name);
377 if (reg->smin_value > S64_MIN) {
378 verbose(env, " smin=%lld", reg->smin_value);
379 unknown = false;
380 }
381 if (reg->smax_value < S64_MAX) {
382 verbose(env, " smax=%lld", reg->smax_value);
383 unknown = false;
384 }
385 if (unknown)
386 verbose(env, " unknown scalar value");
387 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval);
388 }
389
reg_not_null(const struct bpf_reg_state * reg)390 static bool reg_not_null(const struct bpf_reg_state *reg)
391 {
392 enum bpf_reg_type type;
393
394 type = reg->type;
395 if (type_may_be_null(type))
396 return false;
397
398 type = base_type(type);
399 return type == PTR_TO_SOCKET ||
400 type == PTR_TO_TCP_SOCK ||
401 type == PTR_TO_MAP_VALUE ||
402 type == PTR_TO_MAP_KEY ||
403 type == PTR_TO_SOCK_COMMON ||
404 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
405 type == PTR_TO_MEM;
406 }
407
reg_btf_record(const struct bpf_reg_state * reg)408 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
409 {
410 struct btf_record *rec = NULL;
411 struct btf_struct_meta *meta;
412
413 if (reg->type == PTR_TO_MAP_VALUE) {
414 rec = reg->map_ptr->record;
415 } else if (type_is_ptr_alloc_obj(reg->type)) {
416 meta = btf_find_struct_meta(reg->btf, reg->btf_id);
417 if (meta)
418 rec = meta->record;
419 }
420 return rec;
421 }
422
subprog_is_global(const struct bpf_verifier_env * env,int subprog)423 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
424 {
425 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
426
427 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
428 }
429
subprog_name(const struct bpf_verifier_env * env,int subprog)430 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog)
431 {
432 struct bpf_func_info *info;
433
434 if (!env->prog->aux->func_info)
435 return "";
436
437 info = &env->prog->aux->func_info[subprog];
438 return btf_type_name(env->prog->aux->btf, info->type_id);
439 }
440
mark_subprog_exc_cb(struct bpf_verifier_env * env,int subprog)441 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog)
442 {
443 struct bpf_subprog_info *info = subprog_info(env, subprog);
444
445 info->is_cb = true;
446 info->is_async_cb = true;
447 info->is_exception_cb = true;
448 }
449
subprog_is_exc_cb(struct bpf_verifier_env * env,int subprog)450 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog)
451 {
452 return subprog_info(env, subprog)->is_exception_cb;
453 }
454
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)455 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
456 {
457 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
458 }
459
type_is_rdonly_mem(u32 type)460 static bool type_is_rdonly_mem(u32 type)
461 {
462 return type & MEM_RDONLY;
463 }
464
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)465 static bool is_acquire_function(enum bpf_func_id func_id,
466 const struct bpf_map *map)
467 {
468 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
469
470 if (func_id == BPF_FUNC_sk_lookup_tcp ||
471 func_id == BPF_FUNC_sk_lookup_udp ||
472 func_id == BPF_FUNC_skc_lookup_tcp ||
473 func_id == BPF_FUNC_ringbuf_reserve ||
474 func_id == BPF_FUNC_kptr_xchg)
475 return true;
476
477 if (func_id == BPF_FUNC_map_lookup_elem &&
478 (map_type == BPF_MAP_TYPE_SOCKMAP ||
479 map_type == BPF_MAP_TYPE_SOCKHASH))
480 return true;
481
482 return false;
483 }
484
is_ptr_cast_function(enum bpf_func_id func_id)485 static bool is_ptr_cast_function(enum bpf_func_id func_id)
486 {
487 return func_id == BPF_FUNC_tcp_sock ||
488 func_id == BPF_FUNC_sk_fullsock ||
489 func_id == BPF_FUNC_skc_to_tcp_sock ||
490 func_id == BPF_FUNC_skc_to_tcp6_sock ||
491 func_id == BPF_FUNC_skc_to_udp6_sock ||
492 func_id == BPF_FUNC_skc_to_mptcp_sock ||
493 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
494 func_id == BPF_FUNC_skc_to_tcp_request_sock;
495 }
496
is_dynptr_ref_function(enum bpf_func_id func_id)497 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
498 {
499 return func_id == BPF_FUNC_dynptr_data;
500 }
501
502 static bool is_sync_callback_calling_kfunc(u32 btf_id);
503 static bool is_async_callback_calling_kfunc(u32 btf_id);
504 static bool is_callback_calling_kfunc(u32 btf_id);
505 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
506
507 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id);
508
is_sync_callback_calling_function(enum bpf_func_id func_id)509 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
510 {
511 return func_id == BPF_FUNC_for_each_map_elem ||
512 func_id == BPF_FUNC_find_vma ||
513 func_id == BPF_FUNC_loop ||
514 func_id == BPF_FUNC_user_ringbuf_drain;
515 }
516
is_async_callback_calling_function(enum bpf_func_id func_id)517 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
518 {
519 return func_id == BPF_FUNC_timer_set_callback;
520 }
521
is_callback_calling_function(enum bpf_func_id func_id)522 static bool is_callback_calling_function(enum bpf_func_id func_id)
523 {
524 return is_sync_callback_calling_function(func_id) ||
525 is_async_callback_calling_function(func_id);
526 }
527
is_sync_callback_calling_insn(struct bpf_insn * insn)528 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
529 {
530 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
531 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
532 }
533
is_async_callback_calling_insn(struct bpf_insn * insn)534 static bool is_async_callback_calling_insn(struct bpf_insn *insn)
535 {
536 return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) ||
537 (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm));
538 }
539
is_may_goto_insn(struct bpf_insn * insn)540 static bool is_may_goto_insn(struct bpf_insn *insn)
541 {
542 return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO;
543 }
544
is_may_goto_insn_at(struct bpf_verifier_env * env,int insn_idx)545 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx)
546 {
547 return is_may_goto_insn(&env->prog->insnsi[insn_idx]);
548 }
549
is_storage_get_function(enum bpf_func_id func_id)550 static bool is_storage_get_function(enum bpf_func_id func_id)
551 {
552 return func_id == BPF_FUNC_sk_storage_get ||
553 func_id == BPF_FUNC_inode_storage_get ||
554 func_id == BPF_FUNC_task_storage_get ||
555 func_id == BPF_FUNC_cgrp_storage_get;
556 }
557
helper_multiple_ref_obj_use(enum bpf_func_id func_id,const struct bpf_map * map)558 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
559 const struct bpf_map *map)
560 {
561 int ref_obj_uses = 0;
562
563 if (is_ptr_cast_function(func_id))
564 ref_obj_uses++;
565 if (is_acquire_function(func_id, map))
566 ref_obj_uses++;
567 if (is_dynptr_ref_function(func_id))
568 ref_obj_uses++;
569
570 return ref_obj_uses > 1;
571 }
572
is_cmpxchg_insn(const struct bpf_insn * insn)573 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
574 {
575 return BPF_CLASS(insn->code) == BPF_STX &&
576 BPF_MODE(insn->code) == BPF_ATOMIC &&
577 insn->imm == BPF_CMPXCHG;
578 }
579
__get_spi(s32 off)580 static int __get_spi(s32 off)
581 {
582 return (-off - 1) / BPF_REG_SIZE;
583 }
584
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)585 static struct bpf_func_state *func(struct bpf_verifier_env *env,
586 const struct bpf_reg_state *reg)
587 {
588 struct bpf_verifier_state *cur = env->cur_state;
589
590 return cur->frame[reg->frameno];
591 }
592
is_spi_bounds_valid(struct bpf_func_state * state,int spi,int nr_slots)593 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
594 {
595 int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
596
597 /* We need to check that slots between [spi - nr_slots + 1, spi] are
598 * within [0, allocated_stack).
599 *
600 * Please note that the spi grows downwards. For example, a dynptr
601 * takes the size of two stack slots; the first slot will be at
602 * spi and the second slot will be at spi - 1.
603 */
604 return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
605 }
606
stack_slot_obj_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * obj_kind,int nr_slots)607 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
608 const char *obj_kind, int nr_slots)
609 {
610 int off, spi;
611
612 if (!tnum_is_const(reg->var_off)) {
613 verbose(env, "%s has to be at a constant offset\n", obj_kind);
614 return -EINVAL;
615 }
616
617 off = reg->off + reg->var_off.value;
618 if (off % BPF_REG_SIZE) {
619 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
620 return -EINVAL;
621 }
622
623 spi = __get_spi(off);
624 if (spi + 1 < nr_slots) {
625 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
626 return -EINVAL;
627 }
628
629 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
630 return -ERANGE;
631 return spi;
632 }
633
dynptr_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg)634 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
635 {
636 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
637 }
638
iter_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)639 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
640 {
641 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
642 }
643
arg_to_dynptr_type(enum bpf_arg_type arg_type)644 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
645 {
646 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
647 case DYNPTR_TYPE_LOCAL:
648 return BPF_DYNPTR_TYPE_LOCAL;
649 case DYNPTR_TYPE_RINGBUF:
650 return BPF_DYNPTR_TYPE_RINGBUF;
651 case DYNPTR_TYPE_SKB:
652 return BPF_DYNPTR_TYPE_SKB;
653 case DYNPTR_TYPE_XDP:
654 return BPF_DYNPTR_TYPE_XDP;
655 default:
656 return BPF_DYNPTR_TYPE_INVALID;
657 }
658 }
659
get_dynptr_type_flag(enum bpf_dynptr_type type)660 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
661 {
662 switch (type) {
663 case BPF_DYNPTR_TYPE_LOCAL:
664 return DYNPTR_TYPE_LOCAL;
665 case BPF_DYNPTR_TYPE_RINGBUF:
666 return DYNPTR_TYPE_RINGBUF;
667 case BPF_DYNPTR_TYPE_SKB:
668 return DYNPTR_TYPE_SKB;
669 case BPF_DYNPTR_TYPE_XDP:
670 return DYNPTR_TYPE_XDP;
671 default:
672 return 0;
673 }
674 }
675
dynptr_type_refcounted(enum bpf_dynptr_type type)676 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
677 {
678 return type == BPF_DYNPTR_TYPE_RINGBUF;
679 }
680
681 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
682 enum bpf_dynptr_type type,
683 bool first_slot, int dynptr_id);
684
685 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
686 struct bpf_reg_state *reg);
687
mark_dynptr_stack_regs(struct bpf_verifier_env * env,struct bpf_reg_state * sreg1,struct bpf_reg_state * sreg2,enum bpf_dynptr_type type)688 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
689 struct bpf_reg_state *sreg1,
690 struct bpf_reg_state *sreg2,
691 enum bpf_dynptr_type type)
692 {
693 int id = ++env->id_gen;
694
695 __mark_dynptr_reg(sreg1, type, true, id);
696 __mark_dynptr_reg(sreg2, type, false, id);
697 }
698
mark_dynptr_cb_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_dynptr_type type)699 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
700 struct bpf_reg_state *reg,
701 enum bpf_dynptr_type type)
702 {
703 __mark_dynptr_reg(reg, type, true, ++env->id_gen);
704 }
705
706 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
707 struct bpf_func_state *state, int spi);
708
mark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type,int insn_idx,int clone_ref_obj_id)709 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
710 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
711 {
712 struct bpf_func_state *state = func(env, reg);
713 enum bpf_dynptr_type type;
714 int spi, i, err;
715
716 spi = dynptr_get_spi(env, reg);
717 if (spi < 0)
718 return spi;
719
720 /* We cannot assume both spi and spi - 1 belong to the same dynptr,
721 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
722 * to ensure that for the following example:
723 * [d1][d1][d2][d2]
724 * spi 3 2 1 0
725 * So marking spi = 2 should lead to destruction of both d1 and d2. In
726 * case they do belong to same dynptr, second call won't see slot_type
727 * as STACK_DYNPTR and will simply skip destruction.
728 */
729 err = destroy_if_dynptr_stack_slot(env, state, spi);
730 if (err)
731 return err;
732 err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
733 if (err)
734 return err;
735
736 for (i = 0; i < BPF_REG_SIZE; i++) {
737 state->stack[spi].slot_type[i] = STACK_DYNPTR;
738 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
739 }
740
741 type = arg_to_dynptr_type(arg_type);
742 if (type == BPF_DYNPTR_TYPE_INVALID)
743 return -EINVAL;
744
745 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
746 &state->stack[spi - 1].spilled_ptr, type);
747
748 if (dynptr_type_refcounted(type)) {
749 /* The id is used to track proper releasing */
750 int id;
751
752 if (clone_ref_obj_id)
753 id = clone_ref_obj_id;
754 else
755 id = acquire_reference_state(env, insn_idx);
756
757 if (id < 0)
758 return id;
759
760 state->stack[spi].spilled_ptr.ref_obj_id = id;
761 state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
762 }
763
764 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
765 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
766
767 return 0;
768 }
769
invalidate_dynptr(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)770 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
771 {
772 int i;
773
774 for (i = 0; i < BPF_REG_SIZE; i++) {
775 state->stack[spi].slot_type[i] = STACK_INVALID;
776 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
777 }
778
779 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
780 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
781
782 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
783 *
784 * While we don't allow reading STACK_INVALID, it is still possible to
785 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
786 * helpers or insns can do partial read of that part without failing,
787 * but check_stack_range_initialized, check_stack_read_var_off, and
788 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
789 * the slot conservatively. Hence we need to prevent those liveness
790 * marking walks.
791 *
792 * This was not a problem before because STACK_INVALID is only set by
793 * default (where the default reg state has its reg->parent as NULL), or
794 * in clean_live_states after REG_LIVE_DONE (at which point
795 * mark_reg_read won't walk reg->parent chain), but not randomly during
796 * verifier state exploration (like we did above). Hence, for our case
797 * parentage chain will still be live (i.e. reg->parent may be
798 * non-NULL), while earlier reg->parent was NULL, so we need
799 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
800 * done later on reads or by mark_dynptr_read as well to unnecessary
801 * mark registers in verifier state.
802 */
803 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
804 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
805 }
806
unmark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg)807 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
808 {
809 struct bpf_func_state *state = func(env, reg);
810 int spi, ref_obj_id, i;
811
812 spi = dynptr_get_spi(env, reg);
813 if (spi < 0)
814 return spi;
815
816 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
817 invalidate_dynptr(env, state, spi);
818 return 0;
819 }
820
821 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
822
823 /* If the dynptr has a ref_obj_id, then we need to invalidate
824 * two things:
825 *
826 * 1) Any dynptrs with a matching ref_obj_id (clones)
827 * 2) Any slices derived from this dynptr.
828 */
829
830 /* Invalidate any slices associated with this dynptr */
831 WARN_ON_ONCE(release_reference(env, ref_obj_id));
832
833 /* Invalidate any dynptr clones */
834 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
835 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
836 continue;
837
838 /* it should always be the case that if the ref obj id
839 * matches then the stack slot also belongs to a
840 * dynptr
841 */
842 if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
843 verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
844 return -EFAULT;
845 }
846 if (state->stack[i].spilled_ptr.dynptr.first_slot)
847 invalidate_dynptr(env, state, i);
848 }
849
850 return 0;
851 }
852
853 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
854 struct bpf_reg_state *reg);
855
mark_reg_invalid(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)856 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
857 {
858 if (!env->allow_ptr_leaks)
859 __mark_reg_not_init(env, reg);
860 else
861 __mark_reg_unknown(env, reg);
862 }
863
destroy_if_dynptr_stack_slot(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)864 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
865 struct bpf_func_state *state, int spi)
866 {
867 struct bpf_func_state *fstate;
868 struct bpf_reg_state *dreg;
869 int i, dynptr_id;
870
871 /* We always ensure that STACK_DYNPTR is never set partially,
872 * hence just checking for slot_type[0] is enough. This is
873 * different for STACK_SPILL, where it may be only set for
874 * 1 byte, so code has to use is_spilled_reg.
875 */
876 if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
877 return 0;
878
879 /* Reposition spi to first slot */
880 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
881 spi = spi + 1;
882
883 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
884 verbose(env, "cannot overwrite referenced dynptr\n");
885 return -EINVAL;
886 }
887
888 mark_stack_slot_scratched(env, spi);
889 mark_stack_slot_scratched(env, spi - 1);
890
891 /* Writing partially to one dynptr stack slot destroys both. */
892 for (i = 0; i < BPF_REG_SIZE; i++) {
893 state->stack[spi].slot_type[i] = STACK_INVALID;
894 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
895 }
896
897 dynptr_id = state->stack[spi].spilled_ptr.id;
898 /* Invalidate any slices associated with this dynptr */
899 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
900 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
901 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
902 continue;
903 if (dreg->dynptr_id == dynptr_id)
904 mark_reg_invalid(env, dreg);
905 }));
906
907 /* Do not release reference state, we are destroying dynptr on stack,
908 * not using some helper to release it. Just reset register.
909 */
910 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
911 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
912
913 /* Same reason as unmark_stack_slots_dynptr above */
914 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
915 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
916
917 return 0;
918 }
919
is_dynptr_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg)920 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
921 {
922 int spi;
923
924 if (reg->type == CONST_PTR_TO_DYNPTR)
925 return false;
926
927 spi = dynptr_get_spi(env, reg);
928
929 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
930 * error because this just means the stack state hasn't been updated yet.
931 * We will do check_mem_access to check and update stack bounds later.
932 */
933 if (spi < 0 && spi != -ERANGE)
934 return false;
935
936 /* We don't need to check if the stack slots are marked by previous
937 * dynptr initializations because we allow overwriting existing unreferenced
938 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
939 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
940 * touching are completely destructed before we reinitialize them for a new
941 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
942 * instead of delaying it until the end where the user will get "Unreleased
943 * reference" error.
944 */
945 return true;
946 }
947
is_dynptr_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg)948 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
949 {
950 struct bpf_func_state *state = func(env, reg);
951 int i, spi;
952
953 /* This already represents first slot of initialized bpf_dynptr.
954 *
955 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
956 * check_func_arg_reg_off's logic, so we don't need to check its
957 * offset and alignment.
958 */
959 if (reg->type == CONST_PTR_TO_DYNPTR)
960 return true;
961
962 spi = dynptr_get_spi(env, reg);
963 if (spi < 0)
964 return false;
965 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
966 return false;
967
968 for (i = 0; i < BPF_REG_SIZE; i++) {
969 if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
970 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
971 return false;
972 }
973
974 return true;
975 }
976
is_dynptr_type_expected(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type)977 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
978 enum bpf_arg_type arg_type)
979 {
980 struct bpf_func_state *state = func(env, reg);
981 enum bpf_dynptr_type dynptr_type;
982 int spi;
983
984 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
985 if (arg_type == ARG_PTR_TO_DYNPTR)
986 return true;
987
988 dynptr_type = arg_to_dynptr_type(arg_type);
989 if (reg->type == CONST_PTR_TO_DYNPTR) {
990 return reg->dynptr.type == dynptr_type;
991 } else {
992 spi = dynptr_get_spi(env, reg);
993 if (spi < 0)
994 return false;
995 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
996 }
997 }
998
999 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1000
1001 static bool in_rcu_cs(struct bpf_verifier_env *env);
1002
1003 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
1004
mark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,struct bpf_reg_state * reg,int insn_idx,struct btf * btf,u32 btf_id,int nr_slots)1005 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1006 struct bpf_kfunc_call_arg_meta *meta,
1007 struct bpf_reg_state *reg, int insn_idx,
1008 struct btf *btf, u32 btf_id, int nr_slots)
1009 {
1010 struct bpf_func_state *state = func(env, reg);
1011 int spi, i, j, id;
1012
1013 spi = iter_get_spi(env, reg, nr_slots);
1014 if (spi < 0)
1015 return spi;
1016
1017 id = acquire_reference_state(env, insn_idx);
1018 if (id < 0)
1019 return id;
1020
1021 for (i = 0; i < nr_slots; i++) {
1022 struct bpf_stack_state *slot = &state->stack[spi - i];
1023 struct bpf_reg_state *st = &slot->spilled_ptr;
1024
1025 __mark_reg_known_zero(st);
1026 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1027 if (is_kfunc_rcu_protected(meta)) {
1028 if (in_rcu_cs(env))
1029 st->type |= MEM_RCU;
1030 else
1031 st->type |= PTR_UNTRUSTED;
1032 }
1033 st->live |= REG_LIVE_WRITTEN;
1034 st->ref_obj_id = i == 0 ? id : 0;
1035 st->iter.btf = btf;
1036 st->iter.btf_id = btf_id;
1037 st->iter.state = BPF_ITER_STATE_ACTIVE;
1038 st->iter.depth = 0;
1039
1040 for (j = 0; j < BPF_REG_SIZE; j++)
1041 slot->slot_type[j] = STACK_ITER;
1042
1043 mark_stack_slot_scratched(env, spi - i);
1044 }
1045
1046 return 0;
1047 }
1048
unmark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1049 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1050 struct bpf_reg_state *reg, int nr_slots)
1051 {
1052 struct bpf_func_state *state = func(env, reg);
1053 int spi, i, j;
1054
1055 spi = iter_get_spi(env, reg, nr_slots);
1056 if (spi < 0)
1057 return spi;
1058
1059 for (i = 0; i < nr_slots; i++) {
1060 struct bpf_stack_state *slot = &state->stack[spi - i];
1061 struct bpf_reg_state *st = &slot->spilled_ptr;
1062
1063 if (i == 0)
1064 WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1065
1066 __mark_reg_not_init(env, st);
1067
1068 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1069 st->live |= REG_LIVE_WRITTEN;
1070
1071 for (j = 0; j < BPF_REG_SIZE; j++)
1072 slot->slot_type[j] = STACK_INVALID;
1073
1074 mark_stack_slot_scratched(env, spi - i);
1075 }
1076
1077 return 0;
1078 }
1079
is_iter_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1080 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1081 struct bpf_reg_state *reg, int nr_slots)
1082 {
1083 struct bpf_func_state *state = func(env, reg);
1084 int spi, i, j;
1085
1086 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1087 * will do check_mem_access to check and update stack bounds later, so
1088 * return true for that case.
1089 */
1090 spi = iter_get_spi(env, reg, nr_slots);
1091 if (spi == -ERANGE)
1092 return true;
1093 if (spi < 0)
1094 return false;
1095
1096 for (i = 0; i < nr_slots; i++) {
1097 struct bpf_stack_state *slot = &state->stack[spi - i];
1098
1099 for (j = 0; j < BPF_REG_SIZE; j++)
1100 if (slot->slot_type[j] == STACK_ITER)
1101 return false;
1102 }
1103
1104 return true;
1105 }
1106
is_iter_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct btf * btf,u32 btf_id,int nr_slots)1107 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1108 struct btf *btf, u32 btf_id, int nr_slots)
1109 {
1110 struct bpf_func_state *state = func(env, reg);
1111 int spi, i, j;
1112
1113 spi = iter_get_spi(env, reg, nr_slots);
1114 if (spi < 0)
1115 return -EINVAL;
1116
1117 for (i = 0; i < nr_slots; i++) {
1118 struct bpf_stack_state *slot = &state->stack[spi - i];
1119 struct bpf_reg_state *st = &slot->spilled_ptr;
1120
1121 if (st->type & PTR_UNTRUSTED)
1122 return -EPROTO;
1123 /* only main (first) slot has ref_obj_id set */
1124 if (i == 0 && !st->ref_obj_id)
1125 return -EINVAL;
1126 if (i != 0 && st->ref_obj_id)
1127 return -EINVAL;
1128 if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1129 return -EINVAL;
1130
1131 for (j = 0; j < BPF_REG_SIZE; j++)
1132 if (slot->slot_type[j] != STACK_ITER)
1133 return -EINVAL;
1134 }
1135
1136 return 0;
1137 }
1138
1139 /* Check if given stack slot is "special":
1140 * - spilled register state (STACK_SPILL);
1141 * - dynptr state (STACK_DYNPTR);
1142 * - iter state (STACK_ITER).
1143 */
is_stack_slot_special(const struct bpf_stack_state * stack)1144 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1145 {
1146 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1147
1148 switch (type) {
1149 case STACK_SPILL:
1150 case STACK_DYNPTR:
1151 case STACK_ITER:
1152 return true;
1153 case STACK_INVALID:
1154 case STACK_MISC:
1155 case STACK_ZERO:
1156 return false;
1157 default:
1158 WARN_ONCE(1, "unknown stack slot type %d\n", type);
1159 return true;
1160 }
1161 }
1162
1163 /* The reg state of a pointer or a bounded scalar was saved when
1164 * it was spilled to the stack.
1165 */
is_spilled_reg(const struct bpf_stack_state * stack)1166 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1167 {
1168 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1169 }
1170
is_spilled_scalar_reg(const struct bpf_stack_state * stack)1171 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1172 {
1173 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1174 stack->spilled_ptr.type == SCALAR_VALUE;
1175 }
1176
is_spilled_scalar_reg64(const struct bpf_stack_state * stack)1177 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack)
1178 {
1179 return stack->slot_type[0] == STACK_SPILL &&
1180 stack->spilled_ptr.type == SCALAR_VALUE;
1181 }
1182
1183 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which
1184 * case they are equivalent, or it's STACK_ZERO, in which case we preserve
1185 * more precise STACK_ZERO.
1186 * Regardless of allow_ptr_leaks setting (i.e., privileged or unprivileged
1187 * mode), we won't promote STACK_INVALID to STACK_MISC. In privileged case it is
1188 * unnecessary as both are considered equivalent when loading data and pruning,
1189 * in case of unprivileged mode it will be incorrect to allow reads of invalid
1190 * slots.
1191 */
mark_stack_slot_misc(struct bpf_verifier_env * env,u8 * stype)1192 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype)
1193 {
1194 if (*stype == STACK_ZERO)
1195 return;
1196 if (*stype == STACK_INVALID)
1197 return;
1198 *stype = STACK_MISC;
1199 }
1200
scrub_spilled_slot(u8 * stype)1201 static void scrub_spilled_slot(u8 *stype)
1202 {
1203 if (*stype != STACK_INVALID)
1204 *stype = STACK_MISC;
1205 }
1206
1207 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1208 * small to hold src. This is different from krealloc since we don't want to preserve
1209 * the contents of dst.
1210 *
1211 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1212 * not be allocated.
1213 */
copy_array(void * dst,const void * src,size_t n,size_t size,gfp_t flags)1214 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1215 {
1216 size_t alloc_bytes;
1217 void *orig = dst;
1218 size_t bytes;
1219
1220 if (ZERO_OR_NULL_PTR(src))
1221 goto out;
1222
1223 if (unlikely(check_mul_overflow(n, size, &bytes)))
1224 return NULL;
1225
1226 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1227 dst = krealloc(orig, alloc_bytes, flags);
1228 if (!dst) {
1229 kfree(orig);
1230 return NULL;
1231 }
1232
1233 memcpy(dst, src, bytes);
1234 out:
1235 return dst ? dst : ZERO_SIZE_PTR;
1236 }
1237
1238 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1239 * small to hold new_n items. new items are zeroed out if the array grows.
1240 *
1241 * Contrary to krealloc_array, does not free arr if new_n is zero.
1242 */
realloc_array(void * arr,size_t old_n,size_t new_n,size_t size)1243 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1244 {
1245 size_t alloc_size;
1246 void *new_arr;
1247
1248 if (!new_n || old_n == new_n)
1249 goto out;
1250
1251 alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1252 new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1253 if (!new_arr) {
1254 kfree(arr);
1255 return NULL;
1256 }
1257 arr = new_arr;
1258
1259 if (new_n > old_n)
1260 memset(arr + old_n * size, 0, (new_n - old_n) * size);
1261
1262 out:
1263 return arr ? arr : ZERO_SIZE_PTR;
1264 }
1265
copy_reference_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1266 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1267 {
1268 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1269 sizeof(struct bpf_reference_state), GFP_KERNEL);
1270 if (!dst->refs)
1271 return -ENOMEM;
1272
1273 dst->active_locks = src->active_locks;
1274 dst->acquired_refs = src->acquired_refs;
1275 return 0;
1276 }
1277
copy_stack_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1278 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1279 {
1280 size_t n = src->allocated_stack / BPF_REG_SIZE;
1281
1282 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1283 GFP_KERNEL);
1284 if (!dst->stack)
1285 return -ENOMEM;
1286
1287 dst->allocated_stack = src->allocated_stack;
1288 return 0;
1289 }
1290
resize_reference_state(struct bpf_func_state * state,size_t n)1291 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1292 {
1293 state->refs = realloc_array(state->refs, state->acquired_refs, n,
1294 sizeof(struct bpf_reference_state));
1295 if (!state->refs)
1296 return -ENOMEM;
1297
1298 state->acquired_refs = n;
1299 return 0;
1300 }
1301
1302 /* Possibly update state->allocated_stack to be at least size bytes. Also
1303 * possibly update the function's high-water mark in its bpf_subprog_info.
1304 */
grow_stack_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int size)1305 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1306 {
1307 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n;
1308
1309 /* The stack size is always a multiple of BPF_REG_SIZE. */
1310 size = round_up(size, BPF_REG_SIZE);
1311 n = size / BPF_REG_SIZE;
1312
1313 if (old_n >= n)
1314 return 0;
1315
1316 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1317 if (!state->stack)
1318 return -ENOMEM;
1319
1320 state->allocated_stack = size;
1321
1322 /* update known max for given subprogram */
1323 if (env->subprog_info[state->subprogno].stack_depth < size)
1324 env->subprog_info[state->subprogno].stack_depth = size;
1325
1326 return 0;
1327 }
1328
1329 /* Acquire a pointer id from the env and update the state->refs to include
1330 * this new pointer reference.
1331 * On success, returns a valid pointer id to associate with the register
1332 * On failure, returns a negative errno.
1333 */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)1334 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1335 {
1336 struct bpf_func_state *state = cur_func(env);
1337 int new_ofs = state->acquired_refs;
1338 int id, err;
1339
1340 err = resize_reference_state(state, state->acquired_refs + 1);
1341 if (err)
1342 return err;
1343 id = ++env->id_gen;
1344 state->refs[new_ofs].type = REF_TYPE_PTR;
1345 state->refs[new_ofs].id = id;
1346 state->refs[new_ofs].insn_idx = insn_idx;
1347
1348 return id;
1349 }
1350
acquire_lock_state(struct bpf_verifier_env * env,int insn_idx,enum ref_state_type type,int id,void * ptr)1351 static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type,
1352 int id, void *ptr)
1353 {
1354 struct bpf_func_state *state = cur_func(env);
1355 int new_ofs = state->acquired_refs;
1356 int err;
1357
1358 err = resize_reference_state(state, state->acquired_refs + 1);
1359 if (err)
1360 return err;
1361 state->refs[new_ofs].type = type;
1362 state->refs[new_ofs].id = id;
1363 state->refs[new_ofs].insn_idx = insn_idx;
1364 state->refs[new_ofs].ptr = ptr;
1365
1366 state->active_locks++;
1367 return 0;
1368 }
1369
1370 /* release function corresponding to acquire_reference_state(). Idempotent. */
release_reference_state(struct bpf_func_state * state,int ptr_id)1371 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1372 {
1373 int i, last_idx;
1374
1375 last_idx = state->acquired_refs - 1;
1376 for (i = 0; i < state->acquired_refs; i++) {
1377 if (state->refs[i].type != REF_TYPE_PTR)
1378 continue;
1379 if (state->refs[i].id == ptr_id) {
1380 if (last_idx && i != last_idx)
1381 memcpy(&state->refs[i], &state->refs[last_idx],
1382 sizeof(*state->refs));
1383 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1384 state->acquired_refs--;
1385 return 0;
1386 }
1387 }
1388 return -EINVAL;
1389 }
1390
release_lock_state(struct bpf_func_state * state,int type,int id,void * ptr)1391 static int release_lock_state(struct bpf_func_state *state, int type, int id, void *ptr)
1392 {
1393 int i, last_idx;
1394
1395 last_idx = state->acquired_refs - 1;
1396 for (i = 0; i < state->acquired_refs; i++) {
1397 if (state->refs[i].type != type)
1398 continue;
1399 if (state->refs[i].id == id && state->refs[i].ptr == ptr) {
1400 if (last_idx && i != last_idx)
1401 memcpy(&state->refs[i], &state->refs[last_idx],
1402 sizeof(*state->refs));
1403 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1404 state->acquired_refs--;
1405 state->active_locks--;
1406 return 0;
1407 }
1408 }
1409 return -EINVAL;
1410 }
1411
find_lock_state(struct bpf_verifier_env * env,enum ref_state_type type,int id,void * ptr)1412 static struct bpf_reference_state *find_lock_state(struct bpf_verifier_env *env, enum ref_state_type type,
1413 int id, void *ptr)
1414 {
1415 struct bpf_func_state *state = cur_func(env);
1416 int i;
1417
1418 for (i = 0; i < state->acquired_refs; i++) {
1419 struct bpf_reference_state *s = &state->refs[i];
1420
1421 if (s->type == REF_TYPE_PTR || s->type != type)
1422 continue;
1423
1424 if (s->id == id && s->ptr == ptr)
1425 return s;
1426 }
1427 return NULL;
1428 }
1429
free_func_state(struct bpf_func_state * state)1430 static void free_func_state(struct bpf_func_state *state)
1431 {
1432 if (!state)
1433 return;
1434 kfree(state->refs);
1435 kfree(state->stack);
1436 kfree(state);
1437 }
1438
free_verifier_state(struct bpf_verifier_state * state,bool free_self)1439 static void free_verifier_state(struct bpf_verifier_state *state,
1440 bool free_self)
1441 {
1442 int i;
1443
1444 for (i = 0; i <= state->curframe; i++) {
1445 free_func_state(state->frame[i]);
1446 state->frame[i] = NULL;
1447 }
1448 if (free_self)
1449 kfree(state);
1450 }
1451
1452 /* copy verifier state from src to dst growing dst stack space
1453 * when necessary to accommodate larger src stack
1454 */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1455 static int copy_func_state(struct bpf_func_state *dst,
1456 const struct bpf_func_state *src)
1457 {
1458 int err;
1459
1460 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1461 err = copy_reference_state(dst, src);
1462 if (err)
1463 return err;
1464 return copy_stack_state(dst, src);
1465 }
1466
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)1467 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1468 const struct bpf_verifier_state *src)
1469 {
1470 struct bpf_func_state *dst;
1471 int i, err;
1472
1473 /* if dst has more stack frames then src frame, free them, this is also
1474 * necessary in case of exceptional exits using bpf_throw.
1475 */
1476 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1477 free_func_state(dst_state->frame[i]);
1478 dst_state->frame[i] = NULL;
1479 }
1480 dst_state->speculative = src->speculative;
1481 dst_state->active_rcu_lock = src->active_rcu_lock;
1482 dst_state->active_preempt_lock = src->active_preempt_lock;
1483 dst_state->in_sleepable = src->in_sleepable;
1484 dst_state->curframe = src->curframe;
1485 dst_state->branches = src->branches;
1486 dst_state->parent = src->parent;
1487 dst_state->first_insn_idx = src->first_insn_idx;
1488 dst_state->last_insn_idx = src->last_insn_idx;
1489 dst_state->insn_hist_start = src->insn_hist_start;
1490 dst_state->insn_hist_end = src->insn_hist_end;
1491 dst_state->dfs_depth = src->dfs_depth;
1492 dst_state->callback_unroll_depth = src->callback_unroll_depth;
1493 dst_state->used_as_loop_entry = src->used_as_loop_entry;
1494 dst_state->may_goto_depth = src->may_goto_depth;
1495 for (i = 0; i <= src->curframe; i++) {
1496 dst = dst_state->frame[i];
1497 if (!dst) {
1498 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1499 if (!dst)
1500 return -ENOMEM;
1501 dst_state->frame[i] = dst;
1502 }
1503 err = copy_func_state(dst, src->frame[i]);
1504 if (err)
1505 return err;
1506 }
1507 return 0;
1508 }
1509
state_htab_size(struct bpf_verifier_env * env)1510 static u32 state_htab_size(struct bpf_verifier_env *env)
1511 {
1512 return env->prog->len;
1513 }
1514
explored_state(struct bpf_verifier_env * env,int idx)1515 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1516 {
1517 struct bpf_verifier_state *cur = env->cur_state;
1518 struct bpf_func_state *state = cur->frame[cur->curframe];
1519
1520 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1521 }
1522
same_callsites(struct bpf_verifier_state * a,struct bpf_verifier_state * b)1523 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1524 {
1525 int fr;
1526
1527 if (a->curframe != b->curframe)
1528 return false;
1529
1530 for (fr = a->curframe; fr >= 0; fr--)
1531 if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1532 return false;
1533
1534 return true;
1535 }
1536
1537 /* Open coded iterators allow back-edges in the state graph in order to
1538 * check unbounded loops that iterators.
1539 *
1540 * In is_state_visited() it is necessary to know if explored states are
1541 * part of some loops in order to decide whether non-exact states
1542 * comparison could be used:
1543 * - non-exact states comparison establishes sub-state relation and uses
1544 * read and precision marks to do so, these marks are propagated from
1545 * children states and thus are not guaranteed to be final in a loop;
1546 * - exact states comparison just checks if current and explored states
1547 * are identical (and thus form a back-edge).
1548 *
1549 * Paper "A New Algorithm for Identifying Loops in Decompilation"
1550 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1551 * algorithm for loop structure detection and gives an overview of
1552 * relevant terminology. It also has helpful illustrations.
1553 *
1554 * [1] https://api.semanticscholar.org/CorpusID:15784067
1555 *
1556 * We use a similar algorithm but because loop nested structure is
1557 * irrelevant for verifier ours is significantly simpler and resembles
1558 * strongly connected components algorithm from Sedgewick's textbook.
1559 *
1560 * Define topmost loop entry as a first node of the loop traversed in a
1561 * depth first search starting from initial state. The goal of the loop
1562 * tracking algorithm is to associate topmost loop entries with states
1563 * derived from these entries.
1564 *
1565 * For each step in the DFS states traversal algorithm needs to identify
1566 * the following situations:
1567 *
1568 * initial initial initial
1569 * | | |
1570 * V V V
1571 * ... ... .---------> hdr
1572 * | | | |
1573 * V V | V
1574 * cur .-> succ | .------...
1575 * | | | | | |
1576 * V | V | V V
1577 * succ '-- cur | ... ...
1578 * | | |
1579 * | V V
1580 * | succ <- cur
1581 * | |
1582 * | V
1583 * | ...
1584 * | |
1585 * '----'
1586 *
1587 * (A) successor state of cur (B) successor state of cur or it's entry
1588 * not yet traversed are in current DFS path, thus cur and succ
1589 * are members of the same outermost loop
1590 *
1591 * initial initial
1592 * | |
1593 * V V
1594 * ... ...
1595 * | |
1596 * V V
1597 * .------... .------...
1598 * | | | |
1599 * V V V V
1600 * .-> hdr ... ... ...
1601 * | | | | |
1602 * | V V V V
1603 * | succ <- cur succ <- cur
1604 * | | |
1605 * | V V
1606 * | ... ...
1607 * | | |
1608 * '----' exit
1609 *
1610 * (C) successor state of cur is a part of some loop but this loop
1611 * does not include cur or successor state is not in a loop at all.
1612 *
1613 * Algorithm could be described as the following python code:
1614 *
1615 * traversed = set() # Set of traversed nodes
1616 * entries = {} # Mapping from node to loop entry
1617 * depths = {} # Depth level assigned to graph node
1618 * path = set() # Current DFS path
1619 *
1620 * # Find outermost loop entry known for n
1621 * def get_loop_entry(n):
1622 * h = entries.get(n, None)
1623 * while h in entries and entries[h] != h:
1624 * h = entries[h]
1625 * return h
1626 *
1627 * # Update n's loop entry if h's outermost entry comes
1628 * # before n's outermost entry in current DFS path.
1629 * def update_loop_entry(n, h):
1630 * n1 = get_loop_entry(n) or n
1631 * h1 = get_loop_entry(h) or h
1632 * if h1 in path and depths[h1] <= depths[n1]:
1633 * entries[n] = h1
1634 *
1635 * def dfs(n, depth):
1636 * traversed.add(n)
1637 * path.add(n)
1638 * depths[n] = depth
1639 * for succ in G.successors(n):
1640 * if succ not in traversed:
1641 * # Case A: explore succ and update cur's loop entry
1642 * # only if succ's entry is in current DFS path.
1643 * dfs(succ, depth + 1)
1644 * h = get_loop_entry(succ)
1645 * update_loop_entry(n, h)
1646 * else:
1647 * # Case B or C depending on `h1 in path` check in update_loop_entry().
1648 * update_loop_entry(n, succ)
1649 * path.remove(n)
1650 *
1651 * To adapt this algorithm for use with verifier:
1652 * - use st->branch == 0 as a signal that DFS of succ had been finished
1653 * and cur's loop entry has to be updated (case A), handle this in
1654 * update_branch_counts();
1655 * - use st->branch > 0 as a signal that st is in the current DFS path;
1656 * - handle cases B and C in is_state_visited();
1657 * - update topmost loop entry for intermediate states in get_loop_entry().
1658 */
get_loop_entry(struct bpf_verifier_state * st)1659 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1660 {
1661 struct bpf_verifier_state *topmost = st->loop_entry, *old;
1662
1663 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1664 topmost = topmost->loop_entry;
1665 /* Update loop entries for intermediate states to avoid this
1666 * traversal in future get_loop_entry() calls.
1667 */
1668 while (st && st->loop_entry != topmost) {
1669 old = st->loop_entry;
1670 st->loop_entry = topmost;
1671 st = old;
1672 }
1673 return topmost;
1674 }
1675
update_loop_entry(struct bpf_verifier_state * cur,struct bpf_verifier_state * hdr)1676 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1677 {
1678 struct bpf_verifier_state *cur1, *hdr1;
1679
1680 cur1 = get_loop_entry(cur) ?: cur;
1681 hdr1 = get_loop_entry(hdr) ?: hdr;
1682 /* The head1->branches check decides between cases B and C in
1683 * comment for get_loop_entry(). If hdr1->branches == 0 then
1684 * head's topmost loop entry is not in current DFS path,
1685 * hence 'cur' and 'hdr' are not in the same loop and there is
1686 * no need to update cur->loop_entry.
1687 */
1688 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
1689 cur->loop_entry = hdr;
1690 hdr->used_as_loop_entry = true;
1691 }
1692 }
1693
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)1694 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1695 {
1696 while (st) {
1697 u32 br = --st->branches;
1698
1699 /* br == 0 signals that DFS exploration for 'st' is finished,
1700 * thus it is necessary to update parent's loop entry if it
1701 * turned out that st is a part of some loop.
1702 * This is a part of 'case A' in get_loop_entry() comment.
1703 */
1704 if (br == 0 && st->parent && st->loop_entry)
1705 update_loop_entry(st->parent, st->loop_entry);
1706
1707 /* WARN_ON(br > 1) technically makes sense here,
1708 * but see comment in push_stack(), hence:
1709 */
1710 WARN_ONCE((int)br < 0,
1711 "BUG update_branch_counts:branches_to_explore=%d\n",
1712 br);
1713 if (br)
1714 break;
1715 st = st->parent;
1716 }
1717 }
1718
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)1719 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1720 int *insn_idx, bool pop_log)
1721 {
1722 struct bpf_verifier_state *cur = env->cur_state;
1723 struct bpf_verifier_stack_elem *elem, *head = env->head;
1724 int err;
1725
1726 if (env->head == NULL)
1727 return -ENOENT;
1728
1729 if (cur) {
1730 err = copy_verifier_state(cur, &head->st);
1731 if (err)
1732 return err;
1733 }
1734 if (pop_log)
1735 bpf_vlog_reset(&env->log, head->log_pos);
1736 if (insn_idx)
1737 *insn_idx = head->insn_idx;
1738 if (prev_insn_idx)
1739 *prev_insn_idx = head->prev_insn_idx;
1740 elem = head->next;
1741 free_verifier_state(&head->st, false);
1742 kfree(head);
1743 env->head = elem;
1744 env->stack_size--;
1745 return 0;
1746 }
1747
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)1748 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1749 int insn_idx, int prev_insn_idx,
1750 bool speculative)
1751 {
1752 struct bpf_verifier_state *cur = env->cur_state;
1753 struct bpf_verifier_stack_elem *elem;
1754 int err;
1755
1756 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1757 if (!elem)
1758 goto err;
1759
1760 elem->insn_idx = insn_idx;
1761 elem->prev_insn_idx = prev_insn_idx;
1762 elem->next = env->head;
1763 elem->log_pos = env->log.end_pos;
1764 env->head = elem;
1765 env->stack_size++;
1766 err = copy_verifier_state(&elem->st, cur);
1767 if (err)
1768 goto err;
1769 elem->st.speculative |= speculative;
1770 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1771 verbose(env, "The sequence of %d jumps is too complex.\n",
1772 env->stack_size);
1773 goto err;
1774 }
1775 if (elem->st.parent) {
1776 ++elem->st.parent->branches;
1777 /* WARN_ON(branches > 2) technically makes sense here,
1778 * but
1779 * 1. speculative states will bump 'branches' for non-branch
1780 * instructions
1781 * 2. is_state_visited() heuristics may decide not to create
1782 * a new state for a sequence of branches and all such current
1783 * and cloned states will be pointing to a single parent state
1784 * which might have large 'branches' count.
1785 */
1786 }
1787 return &elem->st;
1788 err:
1789 free_verifier_state(env->cur_state, true);
1790 env->cur_state = NULL;
1791 /* pop all elements and return */
1792 while (!pop_stack(env, NULL, NULL, false));
1793 return NULL;
1794 }
1795
1796 #define CALLER_SAVED_REGS 6
1797 static const int caller_saved[CALLER_SAVED_REGS] = {
1798 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1799 };
1800
1801 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)1802 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1803 {
1804 reg->var_off = tnum_const(imm);
1805 reg->smin_value = (s64)imm;
1806 reg->smax_value = (s64)imm;
1807 reg->umin_value = imm;
1808 reg->umax_value = imm;
1809
1810 reg->s32_min_value = (s32)imm;
1811 reg->s32_max_value = (s32)imm;
1812 reg->u32_min_value = (u32)imm;
1813 reg->u32_max_value = (u32)imm;
1814 }
1815
1816 /* Mark the unknown part of a register (variable offset or scalar value) as
1817 * known to have the value @imm.
1818 */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)1819 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1820 {
1821 /* Clear off and union(map_ptr, range) */
1822 memset(((u8 *)reg) + sizeof(reg->type), 0,
1823 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1824 reg->id = 0;
1825 reg->ref_obj_id = 0;
1826 ___mark_reg_known(reg, imm);
1827 }
1828
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)1829 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1830 {
1831 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1832 reg->s32_min_value = (s32)imm;
1833 reg->s32_max_value = (s32)imm;
1834 reg->u32_min_value = (u32)imm;
1835 reg->u32_max_value = (u32)imm;
1836 }
1837
1838 /* Mark the 'variable offset' part of a register as zero. This should be
1839 * used only on registers holding a pointer type.
1840 */
__mark_reg_known_zero(struct bpf_reg_state * reg)1841 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1842 {
1843 __mark_reg_known(reg, 0);
1844 }
1845
__mark_reg_const_zero(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1846 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1847 {
1848 __mark_reg_known(reg, 0);
1849 reg->type = SCALAR_VALUE;
1850 /* all scalars are assumed imprecise initially (unless unprivileged,
1851 * in which case everything is forced to be precise)
1852 */
1853 reg->precise = !env->bpf_capable;
1854 }
1855
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1856 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1857 struct bpf_reg_state *regs, u32 regno)
1858 {
1859 if (WARN_ON(regno >= MAX_BPF_REG)) {
1860 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1861 /* Something bad happened, let's kill all regs */
1862 for (regno = 0; regno < MAX_BPF_REG; regno++)
1863 __mark_reg_not_init(env, regs + regno);
1864 return;
1865 }
1866 __mark_reg_known_zero(regs + regno);
1867 }
1868
__mark_dynptr_reg(struct bpf_reg_state * reg,enum bpf_dynptr_type type,bool first_slot,int dynptr_id)1869 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1870 bool first_slot, int dynptr_id)
1871 {
1872 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1873 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1874 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1875 */
1876 __mark_reg_known_zero(reg);
1877 reg->type = CONST_PTR_TO_DYNPTR;
1878 /* Give each dynptr a unique id to uniquely associate slices to it. */
1879 reg->id = dynptr_id;
1880 reg->dynptr.type = type;
1881 reg->dynptr.first_slot = first_slot;
1882 }
1883
mark_ptr_not_null_reg(struct bpf_reg_state * reg)1884 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1885 {
1886 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1887 const struct bpf_map *map = reg->map_ptr;
1888
1889 if (map->inner_map_meta) {
1890 reg->type = CONST_PTR_TO_MAP;
1891 reg->map_ptr = map->inner_map_meta;
1892 /* transfer reg's id which is unique for every map_lookup_elem
1893 * as UID of the inner map.
1894 */
1895 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1896 reg->map_uid = reg->id;
1897 if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE))
1898 reg->map_uid = reg->id;
1899 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1900 reg->type = PTR_TO_XDP_SOCK;
1901 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1902 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1903 reg->type = PTR_TO_SOCKET;
1904 } else {
1905 reg->type = PTR_TO_MAP_VALUE;
1906 }
1907 return;
1908 }
1909
1910 reg->type &= ~PTR_MAYBE_NULL;
1911 }
1912
mark_reg_graph_node(struct bpf_reg_state * regs,u32 regno,struct btf_field_graph_root * ds_head)1913 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1914 struct btf_field_graph_root *ds_head)
1915 {
1916 __mark_reg_known_zero(®s[regno]);
1917 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1918 regs[regno].btf = ds_head->btf;
1919 regs[regno].btf_id = ds_head->value_btf_id;
1920 regs[regno].off = ds_head->node_offset;
1921 }
1922
reg_is_pkt_pointer(const struct bpf_reg_state * reg)1923 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1924 {
1925 return type_is_pkt_pointer(reg->type);
1926 }
1927
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)1928 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1929 {
1930 return reg_is_pkt_pointer(reg) ||
1931 reg->type == PTR_TO_PACKET_END;
1932 }
1933
reg_is_dynptr_slice_pkt(const struct bpf_reg_state * reg)1934 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
1935 {
1936 return base_type(reg->type) == PTR_TO_MEM &&
1937 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
1938 }
1939
1940 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)1941 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1942 enum bpf_reg_type which)
1943 {
1944 /* The register can already have a range from prior markings.
1945 * This is fine as long as it hasn't been advanced from its
1946 * origin.
1947 */
1948 return reg->type == which &&
1949 reg->id == 0 &&
1950 reg->off == 0 &&
1951 tnum_equals_const(reg->var_off, 0);
1952 }
1953
1954 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)1955 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1956 {
1957 reg->smin_value = S64_MIN;
1958 reg->smax_value = S64_MAX;
1959 reg->umin_value = 0;
1960 reg->umax_value = U64_MAX;
1961
1962 reg->s32_min_value = S32_MIN;
1963 reg->s32_max_value = S32_MAX;
1964 reg->u32_min_value = 0;
1965 reg->u32_max_value = U32_MAX;
1966 }
1967
__mark_reg64_unbounded(struct bpf_reg_state * reg)1968 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1969 {
1970 reg->smin_value = S64_MIN;
1971 reg->smax_value = S64_MAX;
1972 reg->umin_value = 0;
1973 reg->umax_value = U64_MAX;
1974 }
1975
__mark_reg32_unbounded(struct bpf_reg_state * reg)1976 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1977 {
1978 reg->s32_min_value = S32_MIN;
1979 reg->s32_max_value = S32_MAX;
1980 reg->u32_min_value = 0;
1981 reg->u32_max_value = U32_MAX;
1982 }
1983
__update_reg32_bounds(struct bpf_reg_state * reg)1984 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1985 {
1986 struct tnum var32_off = tnum_subreg(reg->var_off);
1987
1988 /* min signed is max(sign bit) | min(other bits) */
1989 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1990 var32_off.value | (var32_off.mask & S32_MIN));
1991 /* max signed is min(sign bit) | max(other bits) */
1992 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1993 var32_off.value | (var32_off.mask & S32_MAX));
1994 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1995 reg->u32_max_value = min(reg->u32_max_value,
1996 (u32)(var32_off.value | var32_off.mask));
1997 }
1998
__update_reg64_bounds(struct bpf_reg_state * reg)1999 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2000 {
2001 /* min signed is max(sign bit) | min(other bits) */
2002 reg->smin_value = max_t(s64, reg->smin_value,
2003 reg->var_off.value | (reg->var_off.mask & S64_MIN));
2004 /* max signed is min(sign bit) | max(other bits) */
2005 reg->smax_value = min_t(s64, reg->smax_value,
2006 reg->var_off.value | (reg->var_off.mask & S64_MAX));
2007 reg->umin_value = max(reg->umin_value, reg->var_off.value);
2008 reg->umax_value = min(reg->umax_value,
2009 reg->var_off.value | reg->var_off.mask);
2010 }
2011
__update_reg_bounds(struct bpf_reg_state * reg)2012 static void __update_reg_bounds(struct bpf_reg_state *reg)
2013 {
2014 __update_reg32_bounds(reg);
2015 __update_reg64_bounds(reg);
2016 }
2017
2018 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)2019 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2020 {
2021 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32
2022 * bits to improve our u32/s32 boundaries.
2023 *
2024 * E.g., the case where we have upper 32 bits as zero ([10, 20] in
2025 * u64) is pretty trivial, it's obvious that in u32 we'll also have
2026 * [10, 20] range. But this property holds for any 64-bit range as
2027 * long as upper 32 bits in that entire range of values stay the same.
2028 *
2029 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311]
2030 * in decimal) has the same upper 32 bits throughout all the values in
2031 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15])
2032 * range.
2033 *
2034 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32,
2035 * following the rules outlined below about u64/s64 correspondence
2036 * (which equally applies to u32 vs s32 correspondence). In general it
2037 * depends on actual hexadecimal values of 32-bit range. They can form
2038 * only valid u32, or only valid s32 ranges in some cases.
2039 *
2040 * So we use all these insights to derive bounds for subregisters here.
2041 */
2042 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) {
2043 /* u64 to u32 casting preserves validity of low 32 bits as
2044 * a range, if upper 32 bits are the same
2045 */
2046 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value);
2047 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value);
2048
2049 if ((s32)reg->umin_value <= (s32)reg->umax_value) {
2050 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2051 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2052 }
2053 }
2054 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) {
2055 /* low 32 bits should form a proper u32 range */
2056 if ((u32)reg->smin_value <= (u32)reg->smax_value) {
2057 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value);
2058 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value);
2059 }
2060 /* low 32 bits should form a proper s32 range */
2061 if ((s32)reg->smin_value <= (s32)reg->smax_value) {
2062 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2063 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2064 }
2065 }
2066 /* Special case where upper bits form a small sequence of two
2067 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
2068 * 0x00000000 is also valid), while lower bits form a proper s32 range
2069 * going from negative numbers to positive numbers. E.g., let's say we
2070 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
2071 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
2072 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
2073 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
2074 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in
2075 * upper 32 bits. As a random example, s64 range
2076 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
2077 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
2078 */
2079 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
2080 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
2081 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2082 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2083 }
2084 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
2085 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
2086 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2087 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2088 }
2089 /* if u32 range forms a valid s32 range (due to matching sign bit),
2090 * try to learn from that
2091 */
2092 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) {
2093 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value);
2094 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value);
2095 }
2096 /* If we cannot cross the sign boundary, then signed and unsigned bounds
2097 * are the same, so combine. This works even in the negative case, e.g.
2098 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2099 */
2100 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2101 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value);
2102 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value);
2103 }
2104 }
2105
__reg64_deduce_bounds(struct bpf_reg_state * reg)2106 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2107 {
2108 /* If u64 range forms a valid s64 range (due to matching sign bit),
2109 * try to learn from that. Let's do a bit of ASCII art to see when
2110 * this is happening. Let's take u64 range first:
2111 *
2112 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX
2113 * |-------------------------------|--------------------------------|
2114 *
2115 * Valid u64 range is formed when umin and umax are anywhere in the
2116 * range [0, U64_MAX], and umin <= umax. u64 case is simple and
2117 * straightforward. Let's see how s64 range maps onto the same range
2118 * of values, annotated below the line for comparison:
2119 *
2120 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX
2121 * |-------------------------------|--------------------------------|
2122 * 0 S64_MAX S64_MIN -1
2123 *
2124 * So s64 values basically start in the middle and they are logically
2125 * contiguous to the right of it, wrapping around from -1 to 0, and
2126 * then finishing as S64_MAX (0x7fffffffffffffff) right before
2127 * S64_MIN. We can try drawing the continuity of u64 vs s64 values
2128 * more visually as mapped to sign-agnostic range of hex values.
2129 *
2130 * u64 start u64 end
2131 * _______________________________________________________________
2132 * / \
2133 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX
2134 * |-------------------------------|--------------------------------|
2135 * 0 S64_MAX S64_MIN -1
2136 * / \
2137 * >------------------------------ ------------------------------->
2138 * s64 continues... s64 end s64 start s64 "midpoint"
2139 *
2140 * What this means is that, in general, we can't always derive
2141 * something new about u64 from any random s64 range, and vice versa.
2142 *
2143 * But we can do that in two particular cases. One is when entire
2144 * u64/s64 range is *entirely* contained within left half of the above
2145 * diagram or when it is *entirely* contained in the right half. I.e.:
2146 *
2147 * |-------------------------------|--------------------------------|
2148 * ^ ^ ^ ^
2149 * A B C D
2150 *
2151 * [A, B] and [C, D] are contained entirely in their respective halves
2152 * and form valid contiguous ranges as both u64 and s64 values. [A, B]
2153 * will be non-negative both as u64 and s64 (and in fact it will be
2154 * identical ranges no matter the signedness). [C, D] treated as s64
2155 * will be a range of negative values, while in u64 it will be
2156 * non-negative range of values larger than 0x8000000000000000.
2157 *
2158 * Now, any other range here can't be represented in both u64 and s64
2159 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid
2160 * contiguous u64 ranges, but they are discontinuous in s64. [B, C]
2161 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX],
2162 * for example. Similarly, valid s64 range [D, A] (going from negative
2163 * to positive values), would be two separate [D, U64_MAX] and [0, A]
2164 * ranges as u64. Currently reg_state can't represent two segments per
2165 * numeric domain, so in such situations we can only derive maximal
2166 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64).
2167 *
2168 * So we use these facts to derive umin/umax from smin/smax and vice
2169 * versa only if they stay within the same "half". This is equivalent
2170 * to checking sign bit: lower half will have sign bit as zero, upper
2171 * half have sign bit 1. Below in code we simplify this by just
2172 * casting umin/umax as smin/smax and checking if they form valid
2173 * range, and vice versa. Those are equivalent checks.
2174 */
2175 if ((s64)reg->umin_value <= (s64)reg->umax_value) {
2176 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value);
2177 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value);
2178 }
2179 /* If we cannot cross the sign boundary, then signed and unsigned bounds
2180 * are the same, so combine. This works even in the negative case, e.g.
2181 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2182 */
2183 if ((u64)reg->smin_value <= (u64)reg->smax_value) {
2184 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value);
2185 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value);
2186 }
2187 }
2188
__reg_deduce_mixed_bounds(struct bpf_reg_state * reg)2189 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
2190 {
2191 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
2192 * values on both sides of 64-bit range in hope to have tighter range.
2193 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
2194 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
2195 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
2196 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
2197 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
2198 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
2199 * We just need to make sure that derived bounds we are intersecting
2200 * with are well-formed ranges in respective s64 or u64 domain, just
2201 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
2202 */
2203 __u64 new_umin, new_umax;
2204 __s64 new_smin, new_smax;
2205
2206 /* u32 -> u64 tightening, it's always well-formed */
2207 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
2208 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
2209 reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2210 reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2211 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
2212 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
2213 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
2214 reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2215 reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2216
2217 /* if s32 can be treated as valid u32 range, we can use it as well */
2218 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2219 /* s32 -> u64 tightening */
2220 new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2221 new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2222 reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2223 reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2224 /* s32 -> s64 tightening */
2225 new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2226 new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2227 reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2228 reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2229 }
2230
2231 /* Here we would like to handle a special case after sign extending load,
2232 * when upper bits for a 64-bit range are all 1s or all 0s.
2233 *
2234 * Upper bits are all 1s when register is in a range:
2235 * [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff]
2236 * Upper bits are all 0s when register is in a range:
2237 * [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff]
2238 * Together this forms are continuous range:
2239 * [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff]
2240 *
2241 * Now, suppose that register range is in fact tighter:
2242 * [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R)
2243 * Also suppose that it's 32-bit range is positive,
2244 * meaning that lower 32-bits of the full 64-bit register
2245 * are in the range:
2246 * [0x0000_0000, 0x7fff_ffff] (W)
2247 *
2248 * If this happens, then any value in a range:
2249 * [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff]
2250 * is smaller than a lowest bound of the range (R):
2251 * 0xffff_ffff_8000_0000
2252 * which means that upper bits of the full 64-bit register
2253 * can't be all 1s, when lower bits are in range (W).
2254 *
2255 * Note that:
2256 * - 0xffff_ffff_8000_0000 == (s64)S32_MIN
2257 * - 0x0000_0000_7fff_ffff == (s64)S32_MAX
2258 * These relations are used in the conditions below.
2259 */
2260 if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) {
2261 reg->smin_value = reg->s32_min_value;
2262 reg->smax_value = reg->s32_max_value;
2263 reg->umin_value = reg->s32_min_value;
2264 reg->umax_value = reg->s32_max_value;
2265 reg->var_off = tnum_intersect(reg->var_off,
2266 tnum_range(reg->smin_value, reg->smax_value));
2267 }
2268 }
2269
__reg_deduce_bounds(struct bpf_reg_state * reg)2270 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2271 {
2272 __reg32_deduce_bounds(reg);
2273 __reg64_deduce_bounds(reg);
2274 __reg_deduce_mixed_bounds(reg);
2275 }
2276
2277 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)2278 static void __reg_bound_offset(struct bpf_reg_state *reg)
2279 {
2280 struct tnum var64_off = tnum_intersect(reg->var_off,
2281 tnum_range(reg->umin_value,
2282 reg->umax_value));
2283 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2284 tnum_range(reg->u32_min_value,
2285 reg->u32_max_value));
2286
2287 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2288 }
2289
reg_bounds_sync(struct bpf_reg_state * reg)2290 static void reg_bounds_sync(struct bpf_reg_state *reg)
2291 {
2292 /* We might have learned new bounds from the var_off. */
2293 __update_reg_bounds(reg);
2294 /* We might have learned something about the sign bit. */
2295 __reg_deduce_bounds(reg);
2296 __reg_deduce_bounds(reg);
2297 /* We might have learned some bits from the bounds. */
2298 __reg_bound_offset(reg);
2299 /* Intersecting with the old var_off might have improved our bounds
2300 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2301 * then new var_off is (0; 0x7f...fc) which improves our umax.
2302 */
2303 __update_reg_bounds(reg);
2304 }
2305
reg_bounds_sanity_check(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * ctx)2306 static int reg_bounds_sanity_check(struct bpf_verifier_env *env,
2307 struct bpf_reg_state *reg, const char *ctx)
2308 {
2309 const char *msg;
2310
2311 if (reg->umin_value > reg->umax_value ||
2312 reg->smin_value > reg->smax_value ||
2313 reg->u32_min_value > reg->u32_max_value ||
2314 reg->s32_min_value > reg->s32_max_value) {
2315 msg = "range bounds violation";
2316 goto out;
2317 }
2318
2319 if (tnum_is_const(reg->var_off)) {
2320 u64 uval = reg->var_off.value;
2321 s64 sval = (s64)uval;
2322
2323 if (reg->umin_value != uval || reg->umax_value != uval ||
2324 reg->smin_value != sval || reg->smax_value != sval) {
2325 msg = "const tnum out of sync with range bounds";
2326 goto out;
2327 }
2328 }
2329
2330 if (tnum_subreg_is_const(reg->var_off)) {
2331 u32 uval32 = tnum_subreg(reg->var_off).value;
2332 s32 sval32 = (s32)uval32;
2333
2334 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 ||
2335 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) {
2336 msg = "const subreg tnum out of sync with range bounds";
2337 goto out;
2338 }
2339 }
2340
2341 return 0;
2342 out:
2343 verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
2344 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n",
2345 ctx, msg, reg->umin_value, reg->umax_value,
2346 reg->smin_value, reg->smax_value,
2347 reg->u32_min_value, reg->u32_max_value,
2348 reg->s32_min_value, reg->s32_max_value,
2349 reg->var_off.value, reg->var_off.mask);
2350 if (env->test_reg_invariants)
2351 return -EFAULT;
2352 __mark_reg_unbounded(reg);
2353 return 0;
2354 }
2355
__reg32_bound_s64(s32 a)2356 static bool __reg32_bound_s64(s32 a)
2357 {
2358 return a >= 0 && a <= S32_MAX;
2359 }
2360
__reg_assign_32_into_64(struct bpf_reg_state * reg)2361 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2362 {
2363 reg->umin_value = reg->u32_min_value;
2364 reg->umax_value = reg->u32_max_value;
2365
2366 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2367 * be positive otherwise set to worse case bounds and refine later
2368 * from tnum.
2369 */
2370 if (__reg32_bound_s64(reg->s32_min_value) &&
2371 __reg32_bound_s64(reg->s32_max_value)) {
2372 reg->smin_value = reg->s32_min_value;
2373 reg->smax_value = reg->s32_max_value;
2374 } else {
2375 reg->smin_value = 0;
2376 reg->smax_value = U32_MAX;
2377 }
2378 }
2379
2380 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown_imprecise(struct bpf_reg_state * reg)2381 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg)
2382 {
2383 /*
2384 * Clear type, off, and union(map_ptr, range) and
2385 * padding between 'type' and union
2386 */
2387 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2388 reg->type = SCALAR_VALUE;
2389 reg->id = 0;
2390 reg->ref_obj_id = 0;
2391 reg->var_off = tnum_unknown;
2392 reg->frameno = 0;
2393 reg->precise = false;
2394 __mark_reg_unbounded(reg);
2395 }
2396
2397 /* Mark a register as having a completely unknown (scalar) value,
2398 * initialize .precise as true when not bpf capable.
2399 */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2400 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2401 struct bpf_reg_state *reg)
2402 {
2403 __mark_reg_unknown_imprecise(reg);
2404 reg->precise = !env->bpf_capable;
2405 }
2406
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2407 static void mark_reg_unknown(struct bpf_verifier_env *env,
2408 struct bpf_reg_state *regs, u32 regno)
2409 {
2410 if (WARN_ON(regno >= MAX_BPF_REG)) {
2411 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2412 /* Something bad happened, let's kill all regs except FP */
2413 for (regno = 0; regno < BPF_REG_FP; regno++)
2414 __mark_reg_not_init(env, regs + regno);
2415 return;
2416 }
2417 __mark_reg_unknown(env, regs + regno);
2418 }
2419
__mark_reg_s32_range(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,s32 s32_min,s32 s32_max)2420 static int __mark_reg_s32_range(struct bpf_verifier_env *env,
2421 struct bpf_reg_state *regs,
2422 u32 regno,
2423 s32 s32_min,
2424 s32 s32_max)
2425 {
2426 struct bpf_reg_state *reg = regs + regno;
2427
2428 reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min);
2429 reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max);
2430
2431 reg->smin_value = max_t(s64, reg->smin_value, s32_min);
2432 reg->smax_value = min_t(s64, reg->smax_value, s32_max);
2433
2434 reg_bounds_sync(reg);
2435
2436 return reg_bounds_sanity_check(env, reg, "s32_range");
2437 }
2438
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2439 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2440 struct bpf_reg_state *reg)
2441 {
2442 __mark_reg_unknown(env, reg);
2443 reg->type = NOT_INIT;
2444 }
2445
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2446 static void mark_reg_not_init(struct bpf_verifier_env *env,
2447 struct bpf_reg_state *regs, u32 regno)
2448 {
2449 if (WARN_ON(regno >= MAX_BPF_REG)) {
2450 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2451 /* Something bad happened, let's kill all regs except FP */
2452 for (regno = 0; regno < BPF_REG_FP; regno++)
2453 __mark_reg_not_init(env, regs + regno);
2454 return;
2455 }
2456 __mark_reg_not_init(env, regs + regno);
2457 }
2458
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,struct btf * btf,u32 btf_id,enum bpf_type_flag flag)2459 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2460 struct bpf_reg_state *regs, u32 regno,
2461 enum bpf_reg_type reg_type,
2462 struct btf *btf, u32 btf_id,
2463 enum bpf_type_flag flag)
2464 {
2465 if (reg_type == SCALAR_VALUE) {
2466 mark_reg_unknown(env, regs, regno);
2467 return;
2468 }
2469 mark_reg_known_zero(env, regs, regno);
2470 regs[regno].type = PTR_TO_BTF_ID | flag;
2471 regs[regno].btf = btf;
2472 regs[regno].btf_id = btf_id;
2473 if (type_may_be_null(flag))
2474 regs[regno].id = ++env->id_gen;
2475 }
2476
2477 #define DEF_NOT_SUBREG (0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)2478 static void init_reg_state(struct bpf_verifier_env *env,
2479 struct bpf_func_state *state)
2480 {
2481 struct bpf_reg_state *regs = state->regs;
2482 int i;
2483
2484 for (i = 0; i < MAX_BPF_REG; i++) {
2485 mark_reg_not_init(env, regs, i);
2486 regs[i].live = REG_LIVE_NONE;
2487 regs[i].parent = NULL;
2488 regs[i].subreg_def = DEF_NOT_SUBREG;
2489 }
2490
2491 /* frame pointer */
2492 regs[BPF_REG_FP].type = PTR_TO_STACK;
2493 mark_reg_known_zero(env, regs, BPF_REG_FP);
2494 regs[BPF_REG_FP].frameno = state->frameno;
2495 }
2496
retval_range(s32 minval,s32 maxval)2497 static struct bpf_retval_range retval_range(s32 minval, s32 maxval)
2498 {
2499 return (struct bpf_retval_range){ minval, maxval };
2500 }
2501
2502 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)2503 static void init_func_state(struct bpf_verifier_env *env,
2504 struct bpf_func_state *state,
2505 int callsite, int frameno, int subprogno)
2506 {
2507 state->callsite = callsite;
2508 state->frameno = frameno;
2509 state->subprogno = subprogno;
2510 state->callback_ret_range = retval_range(0, 0);
2511 init_reg_state(env, state);
2512 mark_verifier_state_scratched(env);
2513 }
2514
2515 /* Similar to push_stack(), but for async callbacks */
push_async_cb(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,int subprog,bool is_sleepable)2516 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2517 int insn_idx, int prev_insn_idx,
2518 int subprog, bool is_sleepable)
2519 {
2520 struct bpf_verifier_stack_elem *elem;
2521 struct bpf_func_state *frame;
2522
2523 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2524 if (!elem)
2525 goto err;
2526
2527 elem->insn_idx = insn_idx;
2528 elem->prev_insn_idx = prev_insn_idx;
2529 elem->next = env->head;
2530 elem->log_pos = env->log.end_pos;
2531 env->head = elem;
2532 env->stack_size++;
2533 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2534 verbose(env,
2535 "The sequence of %d jumps is too complex for async cb.\n",
2536 env->stack_size);
2537 goto err;
2538 }
2539 /* Unlike push_stack() do not copy_verifier_state().
2540 * The caller state doesn't matter.
2541 * This is async callback. It starts in a fresh stack.
2542 * Initialize it similar to do_check_common().
2543 * But we do need to make sure to not clobber insn_hist, so we keep
2544 * chaining insn_hist_start/insn_hist_end indices as for a normal
2545 * child state.
2546 */
2547 elem->st.branches = 1;
2548 elem->st.in_sleepable = is_sleepable;
2549 elem->st.insn_hist_start = env->cur_state->insn_hist_end;
2550 elem->st.insn_hist_end = elem->st.insn_hist_start;
2551 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2552 if (!frame)
2553 goto err;
2554 init_func_state(env, frame,
2555 BPF_MAIN_FUNC /* callsite */,
2556 0 /* frameno within this callchain */,
2557 subprog /* subprog number within this prog */);
2558 elem->st.frame[0] = frame;
2559 return &elem->st;
2560 err:
2561 free_verifier_state(env->cur_state, true);
2562 env->cur_state = NULL;
2563 /* pop all elements and return */
2564 while (!pop_stack(env, NULL, NULL, false));
2565 return NULL;
2566 }
2567
2568
2569 enum reg_arg_type {
2570 SRC_OP, /* register is used as source operand */
2571 DST_OP, /* register is used as destination operand */
2572 DST_OP_NO_MARK /* same as above, check only, don't mark */
2573 };
2574
cmp_subprogs(const void * a,const void * b)2575 static int cmp_subprogs(const void *a, const void *b)
2576 {
2577 return ((struct bpf_subprog_info *)a)->start -
2578 ((struct bpf_subprog_info *)b)->start;
2579 }
2580
2581 /* Find subprogram that contains instruction at 'off' */
find_containing_subprog(struct bpf_verifier_env * env,int off)2582 static struct bpf_subprog_info *find_containing_subprog(struct bpf_verifier_env *env, int off)
2583 {
2584 struct bpf_subprog_info *vals = env->subprog_info;
2585 int l, r, m;
2586
2587 if (off >= env->prog->len || off < 0 || env->subprog_cnt == 0)
2588 return NULL;
2589
2590 l = 0;
2591 r = env->subprog_cnt - 1;
2592 while (l < r) {
2593 m = l + (r - l + 1) / 2;
2594 if (vals[m].start <= off)
2595 l = m;
2596 else
2597 r = m - 1;
2598 }
2599 return &vals[l];
2600 }
2601
2602 /* Find subprogram that starts exactly at 'off' */
find_subprog(struct bpf_verifier_env * env,int off)2603 static int find_subprog(struct bpf_verifier_env *env, int off)
2604 {
2605 struct bpf_subprog_info *p;
2606
2607 p = find_containing_subprog(env, off);
2608 if (!p || p->start != off)
2609 return -ENOENT;
2610 return p - env->subprog_info;
2611 }
2612
add_subprog(struct bpf_verifier_env * env,int off)2613 static int add_subprog(struct bpf_verifier_env *env, int off)
2614 {
2615 int insn_cnt = env->prog->len;
2616 int ret;
2617
2618 if (off >= insn_cnt || off < 0) {
2619 verbose(env, "call to invalid destination\n");
2620 return -EINVAL;
2621 }
2622 ret = find_subprog(env, off);
2623 if (ret >= 0)
2624 return ret;
2625 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2626 verbose(env, "too many subprograms\n");
2627 return -E2BIG;
2628 }
2629 /* determine subprog starts. The end is one before the next starts */
2630 env->subprog_info[env->subprog_cnt++].start = off;
2631 sort(env->subprog_info, env->subprog_cnt,
2632 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2633 return env->subprog_cnt - 1;
2634 }
2635
bpf_find_exception_callback_insn_off(struct bpf_verifier_env * env)2636 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
2637 {
2638 struct bpf_prog_aux *aux = env->prog->aux;
2639 struct btf *btf = aux->btf;
2640 const struct btf_type *t;
2641 u32 main_btf_id, id;
2642 const char *name;
2643 int ret, i;
2644
2645 /* Non-zero func_info_cnt implies valid btf */
2646 if (!aux->func_info_cnt)
2647 return 0;
2648 main_btf_id = aux->func_info[0].type_id;
2649
2650 t = btf_type_by_id(btf, main_btf_id);
2651 if (!t) {
2652 verbose(env, "invalid btf id for main subprog in func_info\n");
2653 return -EINVAL;
2654 }
2655
2656 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
2657 if (IS_ERR(name)) {
2658 ret = PTR_ERR(name);
2659 /* If there is no tag present, there is no exception callback */
2660 if (ret == -ENOENT)
2661 ret = 0;
2662 else if (ret == -EEXIST)
2663 verbose(env, "multiple exception callback tags for main subprog\n");
2664 return ret;
2665 }
2666
2667 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
2668 if (ret < 0) {
2669 verbose(env, "exception callback '%s' could not be found in BTF\n", name);
2670 return ret;
2671 }
2672 id = ret;
2673 t = btf_type_by_id(btf, id);
2674 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
2675 verbose(env, "exception callback '%s' must have global linkage\n", name);
2676 return -EINVAL;
2677 }
2678 ret = 0;
2679 for (i = 0; i < aux->func_info_cnt; i++) {
2680 if (aux->func_info[i].type_id != id)
2681 continue;
2682 ret = aux->func_info[i].insn_off;
2683 /* Further func_info and subprog checks will also happen
2684 * later, so assume this is the right insn_off for now.
2685 */
2686 if (!ret) {
2687 verbose(env, "invalid exception callback insn_off in func_info: 0\n");
2688 ret = -EINVAL;
2689 }
2690 }
2691 if (!ret) {
2692 verbose(env, "exception callback type id not found in func_info\n");
2693 ret = -EINVAL;
2694 }
2695 return ret;
2696 }
2697
2698 #define MAX_KFUNC_DESCS 256
2699 #define MAX_KFUNC_BTFS 256
2700
2701 struct bpf_kfunc_desc {
2702 struct btf_func_model func_model;
2703 u32 func_id;
2704 s32 imm;
2705 u16 offset;
2706 unsigned long addr;
2707 };
2708
2709 struct bpf_kfunc_btf {
2710 struct btf *btf;
2711 struct module *module;
2712 u16 offset;
2713 };
2714
2715 struct bpf_kfunc_desc_tab {
2716 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2717 * verification. JITs do lookups by bpf_insn, where func_id may not be
2718 * available, therefore at the end of verification do_misc_fixups()
2719 * sorts this by imm and offset.
2720 */
2721 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2722 u32 nr_descs;
2723 };
2724
2725 struct bpf_kfunc_btf_tab {
2726 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2727 u32 nr_descs;
2728 };
2729
kfunc_desc_cmp_by_id_off(const void * a,const void * b)2730 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2731 {
2732 const struct bpf_kfunc_desc *d0 = a;
2733 const struct bpf_kfunc_desc *d1 = b;
2734
2735 /* func_id is not greater than BTF_MAX_TYPE */
2736 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2737 }
2738
kfunc_btf_cmp_by_off(const void * a,const void * b)2739 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2740 {
2741 const struct bpf_kfunc_btf *d0 = a;
2742 const struct bpf_kfunc_btf *d1 = b;
2743
2744 return d0->offset - d1->offset;
2745 }
2746
2747 static const struct bpf_kfunc_desc *
find_kfunc_desc(const struct bpf_prog * prog,u32 func_id,u16 offset)2748 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2749 {
2750 struct bpf_kfunc_desc desc = {
2751 .func_id = func_id,
2752 .offset = offset,
2753 };
2754 struct bpf_kfunc_desc_tab *tab;
2755
2756 tab = prog->aux->kfunc_tab;
2757 return bsearch(&desc, tab->descs, tab->nr_descs,
2758 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2759 }
2760
bpf_get_kfunc_addr(const struct bpf_prog * prog,u32 func_id,u16 btf_fd_idx,u8 ** func_addr)2761 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2762 u16 btf_fd_idx, u8 **func_addr)
2763 {
2764 const struct bpf_kfunc_desc *desc;
2765
2766 desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2767 if (!desc)
2768 return -EFAULT;
2769
2770 *func_addr = (u8 *)desc->addr;
2771 return 0;
2772 }
2773
__find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)2774 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2775 s16 offset)
2776 {
2777 struct bpf_kfunc_btf kf_btf = { .offset = offset };
2778 struct bpf_kfunc_btf_tab *tab;
2779 struct bpf_kfunc_btf *b;
2780 struct module *mod;
2781 struct btf *btf;
2782 int btf_fd;
2783
2784 tab = env->prog->aux->kfunc_btf_tab;
2785 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2786 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2787 if (!b) {
2788 if (tab->nr_descs == MAX_KFUNC_BTFS) {
2789 verbose(env, "too many different module BTFs\n");
2790 return ERR_PTR(-E2BIG);
2791 }
2792
2793 if (bpfptr_is_null(env->fd_array)) {
2794 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2795 return ERR_PTR(-EPROTO);
2796 }
2797
2798 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2799 offset * sizeof(btf_fd),
2800 sizeof(btf_fd)))
2801 return ERR_PTR(-EFAULT);
2802
2803 btf = btf_get_by_fd(btf_fd);
2804 if (IS_ERR(btf)) {
2805 verbose(env, "invalid module BTF fd specified\n");
2806 return btf;
2807 }
2808
2809 if (!btf_is_module(btf)) {
2810 verbose(env, "BTF fd for kfunc is not a module BTF\n");
2811 btf_put(btf);
2812 return ERR_PTR(-EINVAL);
2813 }
2814
2815 mod = btf_try_get_module(btf);
2816 if (!mod) {
2817 btf_put(btf);
2818 return ERR_PTR(-ENXIO);
2819 }
2820
2821 b = &tab->descs[tab->nr_descs++];
2822 b->btf = btf;
2823 b->module = mod;
2824 b->offset = offset;
2825
2826 /* sort() reorders entries by value, so b may no longer point
2827 * to the right entry after this
2828 */
2829 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2830 kfunc_btf_cmp_by_off, NULL);
2831 } else {
2832 btf = b->btf;
2833 }
2834
2835 return btf;
2836 }
2837
bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab * tab)2838 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2839 {
2840 if (!tab)
2841 return;
2842
2843 while (tab->nr_descs--) {
2844 module_put(tab->descs[tab->nr_descs].module);
2845 btf_put(tab->descs[tab->nr_descs].btf);
2846 }
2847 kfree(tab);
2848 }
2849
find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)2850 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2851 {
2852 if (offset) {
2853 if (offset < 0) {
2854 /* In the future, this can be allowed to increase limit
2855 * of fd index into fd_array, interpreted as u16.
2856 */
2857 verbose(env, "negative offset disallowed for kernel module function call\n");
2858 return ERR_PTR(-EINVAL);
2859 }
2860
2861 return __find_kfunc_desc_btf(env, offset);
2862 }
2863 return btf_vmlinux ?: ERR_PTR(-ENOENT);
2864 }
2865
add_kfunc_call(struct bpf_verifier_env * env,u32 func_id,s16 offset)2866 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2867 {
2868 const struct btf_type *func, *func_proto;
2869 struct bpf_kfunc_btf_tab *btf_tab;
2870 struct bpf_kfunc_desc_tab *tab;
2871 struct bpf_prog_aux *prog_aux;
2872 struct bpf_kfunc_desc *desc;
2873 const char *func_name;
2874 struct btf *desc_btf;
2875 unsigned long call_imm;
2876 unsigned long addr;
2877 int err;
2878
2879 prog_aux = env->prog->aux;
2880 tab = prog_aux->kfunc_tab;
2881 btf_tab = prog_aux->kfunc_btf_tab;
2882 if (!tab) {
2883 if (!btf_vmlinux) {
2884 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2885 return -ENOTSUPP;
2886 }
2887
2888 if (!env->prog->jit_requested) {
2889 verbose(env, "JIT is required for calling kernel function\n");
2890 return -ENOTSUPP;
2891 }
2892
2893 if (!bpf_jit_supports_kfunc_call()) {
2894 verbose(env, "JIT does not support calling kernel function\n");
2895 return -ENOTSUPP;
2896 }
2897
2898 if (!env->prog->gpl_compatible) {
2899 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2900 return -EINVAL;
2901 }
2902
2903 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2904 if (!tab)
2905 return -ENOMEM;
2906 prog_aux->kfunc_tab = tab;
2907 }
2908
2909 /* func_id == 0 is always invalid, but instead of returning an error, be
2910 * conservative and wait until the code elimination pass before returning
2911 * error, so that invalid calls that get pruned out can be in BPF programs
2912 * loaded from userspace. It is also required that offset be untouched
2913 * for such calls.
2914 */
2915 if (!func_id && !offset)
2916 return 0;
2917
2918 if (!btf_tab && offset) {
2919 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2920 if (!btf_tab)
2921 return -ENOMEM;
2922 prog_aux->kfunc_btf_tab = btf_tab;
2923 }
2924
2925 desc_btf = find_kfunc_desc_btf(env, offset);
2926 if (IS_ERR(desc_btf)) {
2927 verbose(env, "failed to find BTF for kernel function\n");
2928 return PTR_ERR(desc_btf);
2929 }
2930
2931 if (find_kfunc_desc(env->prog, func_id, offset))
2932 return 0;
2933
2934 if (tab->nr_descs == MAX_KFUNC_DESCS) {
2935 verbose(env, "too many different kernel function calls\n");
2936 return -E2BIG;
2937 }
2938
2939 func = btf_type_by_id(desc_btf, func_id);
2940 if (!func || !btf_type_is_func(func)) {
2941 verbose(env, "kernel btf_id %u is not a function\n",
2942 func_id);
2943 return -EINVAL;
2944 }
2945 func_proto = btf_type_by_id(desc_btf, func->type);
2946 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2947 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2948 func_id);
2949 return -EINVAL;
2950 }
2951
2952 func_name = btf_name_by_offset(desc_btf, func->name_off);
2953 addr = kallsyms_lookup_name(func_name);
2954 if (!addr) {
2955 verbose(env, "cannot find address for kernel function %s\n",
2956 func_name);
2957 return -EINVAL;
2958 }
2959 specialize_kfunc(env, func_id, offset, &addr);
2960
2961 if (bpf_jit_supports_far_kfunc_call()) {
2962 call_imm = func_id;
2963 } else {
2964 call_imm = BPF_CALL_IMM(addr);
2965 /* Check whether the relative offset overflows desc->imm */
2966 if ((unsigned long)(s32)call_imm != call_imm) {
2967 verbose(env, "address of kernel function %s is out of range\n",
2968 func_name);
2969 return -EINVAL;
2970 }
2971 }
2972
2973 if (bpf_dev_bound_kfunc_id(func_id)) {
2974 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2975 if (err)
2976 return err;
2977 }
2978
2979 desc = &tab->descs[tab->nr_descs++];
2980 desc->func_id = func_id;
2981 desc->imm = call_imm;
2982 desc->offset = offset;
2983 desc->addr = addr;
2984 err = btf_distill_func_proto(&env->log, desc_btf,
2985 func_proto, func_name,
2986 &desc->func_model);
2987 if (!err)
2988 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2989 kfunc_desc_cmp_by_id_off, NULL);
2990 return err;
2991 }
2992
kfunc_desc_cmp_by_imm_off(const void * a,const void * b)2993 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2994 {
2995 const struct bpf_kfunc_desc *d0 = a;
2996 const struct bpf_kfunc_desc *d1 = b;
2997
2998 if (d0->imm != d1->imm)
2999 return d0->imm < d1->imm ? -1 : 1;
3000 if (d0->offset != d1->offset)
3001 return d0->offset < d1->offset ? -1 : 1;
3002 return 0;
3003 }
3004
sort_kfunc_descs_by_imm_off(struct bpf_prog * prog)3005 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
3006 {
3007 struct bpf_kfunc_desc_tab *tab;
3008
3009 tab = prog->aux->kfunc_tab;
3010 if (!tab)
3011 return;
3012
3013 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3014 kfunc_desc_cmp_by_imm_off, NULL);
3015 }
3016
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)3017 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3018 {
3019 return !!prog->aux->kfunc_tab;
3020 }
3021
3022 const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)3023 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3024 const struct bpf_insn *insn)
3025 {
3026 const struct bpf_kfunc_desc desc = {
3027 .imm = insn->imm,
3028 .offset = insn->off,
3029 };
3030 const struct bpf_kfunc_desc *res;
3031 struct bpf_kfunc_desc_tab *tab;
3032
3033 tab = prog->aux->kfunc_tab;
3034 res = bsearch(&desc, tab->descs, tab->nr_descs,
3035 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
3036
3037 return res ? &res->func_model : NULL;
3038 }
3039
add_subprog_and_kfunc(struct bpf_verifier_env * env)3040 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
3041 {
3042 struct bpf_subprog_info *subprog = env->subprog_info;
3043 int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
3044 struct bpf_insn *insn = env->prog->insnsi;
3045
3046 /* Add entry function. */
3047 ret = add_subprog(env, 0);
3048 if (ret)
3049 return ret;
3050
3051 for (i = 0; i < insn_cnt; i++, insn++) {
3052 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
3053 !bpf_pseudo_kfunc_call(insn))
3054 continue;
3055
3056 if (!env->bpf_capable) {
3057 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
3058 return -EPERM;
3059 }
3060
3061 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
3062 ret = add_subprog(env, i + insn->imm + 1);
3063 else
3064 ret = add_kfunc_call(env, insn->imm, insn->off);
3065
3066 if (ret < 0)
3067 return ret;
3068 }
3069
3070 ret = bpf_find_exception_callback_insn_off(env);
3071 if (ret < 0)
3072 return ret;
3073 ex_cb_insn = ret;
3074
3075 /* If ex_cb_insn > 0, this means that the main program has a subprog
3076 * marked using BTF decl tag to serve as the exception callback.
3077 */
3078 if (ex_cb_insn) {
3079 ret = add_subprog(env, ex_cb_insn);
3080 if (ret < 0)
3081 return ret;
3082 for (i = 1; i < env->subprog_cnt; i++) {
3083 if (env->subprog_info[i].start != ex_cb_insn)
3084 continue;
3085 env->exception_callback_subprog = i;
3086 mark_subprog_exc_cb(env, i);
3087 break;
3088 }
3089 }
3090
3091 /* Add a fake 'exit' subprog which could simplify subprog iteration
3092 * logic. 'subprog_cnt' should not be increased.
3093 */
3094 subprog[env->subprog_cnt].start = insn_cnt;
3095
3096 if (env->log.level & BPF_LOG_LEVEL2)
3097 for (i = 0; i < env->subprog_cnt; i++)
3098 verbose(env, "func#%d @%d\n", i, subprog[i].start);
3099
3100 return 0;
3101 }
3102
check_subprogs(struct bpf_verifier_env * env)3103 static int check_subprogs(struct bpf_verifier_env *env)
3104 {
3105 int i, subprog_start, subprog_end, off, cur_subprog = 0;
3106 struct bpf_subprog_info *subprog = env->subprog_info;
3107 struct bpf_insn *insn = env->prog->insnsi;
3108 int insn_cnt = env->prog->len;
3109
3110 /* now check that all jumps are within the same subprog */
3111 subprog_start = subprog[cur_subprog].start;
3112 subprog_end = subprog[cur_subprog + 1].start;
3113 for (i = 0; i < insn_cnt; i++) {
3114 u8 code = insn[i].code;
3115
3116 if (code == (BPF_JMP | BPF_CALL) &&
3117 insn[i].src_reg == 0 &&
3118 insn[i].imm == BPF_FUNC_tail_call) {
3119 subprog[cur_subprog].has_tail_call = true;
3120 subprog[cur_subprog].tail_call_reachable = true;
3121 }
3122 if (BPF_CLASS(code) == BPF_LD &&
3123 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3124 subprog[cur_subprog].has_ld_abs = true;
3125 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3126 goto next;
3127 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3128 goto next;
3129 if (code == (BPF_JMP32 | BPF_JA))
3130 off = i + insn[i].imm + 1;
3131 else
3132 off = i + insn[i].off + 1;
3133 if (off < subprog_start || off >= subprog_end) {
3134 verbose(env, "jump out of range from insn %d to %d\n", i, off);
3135 return -EINVAL;
3136 }
3137 next:
3138 if (i == subprog_end - 1) {
3139 /* to avoid fall-through from one subprog into another
3140 * the last insn of the subprog should be either exit
3141 * or unconditional jump back or bpf_throw call
3142 */
3143 if (code != (BPF_JMP | BPF_EXIT) &&
3144 code != (BPF_JMP32 | BPF_JA) &&
3145 code != (BPF_JMP | BPF_JA)) {
3146 verbose(env, "last insn is not an exit or jmp\n");
3147 return -EINVAL;
3148 }
3149 subprog_start = subprog_end;
3150 cur_subprog++;
3151 if (cur_subprog < env->subprog_cnt)
3152 subprog_end = subprog[cur_subprog + 1].start;
3153 }
3154 }
3155 return 0;
3156 }
3157
3158 /* Parentage chain of this register (or stack slot) should take care of all
3159 * issues like callee-saved registers, stack slot allocation time, etc.
3160 */
mark_reg_read(struct bpf_verifier_env * env,const struct bpf_reg_state * state,struct bpf_reg_state * parent,u8 flag)3161 static int mark_reg_read(struct bpf_verifier_env *env,
3162 const struct bpf_reg_state *state,
3163 struct bpf_reg_state *parent, u8 flag)
3164 {
3165 bool writes = parent == state->parent; /* Observe write marks */
3166 int cnt = 0;
3167
3168 while (parent) {
3169 /* if read wasn't screened by an earlier write ... */
3170 if (writes && state->live & REG_LIVE_WRITTEN)
3171 break;
3172 if (parent->live & REG_LIVE_DONE) {
3173 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3174 reg_type_str(env, parent->type),
3175 parent->var_off.value, parent->off);
3176 return -EFAULT;
3177 }
3178 /* The first condition is more likely to be true than the
3179 * second, checked it first.
3180 */
3181 if ((parent->live & REG_LIVE_READ) == flag ||
3182 parent->live & REG_LIVE_READ64)
3183 /* The parentage chain never changes and
3184 * this parent was already marked as LIVE_READ.
3185 * There is no need to keep walking the chain again and
3186 * keep re-marking all parents as LIVE_READ.
3187 * This case happens when the same register is read
3188 * multiple times without writes into it in-between.
3189 * Also, if parent has the stronger REG_LIVE_READ64 set,
3190 * then no need to set the weak REG_LIVE_READ32.
3191 */
3192 break;
3193 /* ... then we depend on parent's value */
3194 parent->live |= flag;
3195 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3196 if (flag == REG_LIVE_READ64)
3197 parent->live &= ~REG_LIVE_READ32;
3198 state = parent;
3199 parent = state->parent;
3200 writes = true;
3201 cnt++;
3202 }
3203
3204 if (env->longest_mark_read_walk < cnt)
3205 env->longest_mark_read_walk = cnt;
3206 return 0;
3207 }
3208
mark_dynptr_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3209 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3210 {
3211 struct bpf_func_state *state = func(env, reg);
3212 int spi, ret;
3213
3214 /* For CONST_PTR_TO_DYNPTR, it must have already been done by
3215 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3216 * check_kfunc_call.
3217 */
3218 if (reg->type == CONST_PTR_TO_DYNPTR)
3219 return 0;
3220 spi = dynptr_get_spi(env, reg);
3221 if (spi < 0)
3222 return spi;
3223 /* Caller ensures dynptr is valid and initialized, which means spi is in
3224 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3225 * read.
3226 */
3227 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3228 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3229 if (ret)
3230 return ret;
3231 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3232 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3233 }
3234
mark_iter_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi,int nr_slots)3235 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3236 int spi, int nr_slots)
3237 {
3238 struct bpf_func_state *state = func(env, reg);
3239 int err, i;
3240
3241 for (i = 0; i < nr_slots; i++) {
3242 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3243
3244 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3245 if (err)
3246 return err;
3247
3248 mark_stack_slot_scratched(env, spi - i);
3249 }
3250
3251 return 0;
3252 }
3253
3254 /* This function is supposed to be used by the following 32-bit optimization
3255 * code only. It returns TRUE if the source or destination register operates
3256 * on 64-bit, otherwise return FALSE.
3257 */
is_reg64(struct bpf_verifier_env * env,struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)3258 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3259 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3260 {
3261 u8 code, class, op;
3262
3263 code = insn->code;
3264 class = BPF_CLASS(code);
3265 op = BPF_OP(code);
3266 if (class == BPF_JMP) {
3267 /* BPF_EXIT for "main" will reach here. Return TRUE
3268 * conservatively.
3269 */
3270 if (op == BPF_EXIT)
3271 return true;
3272 if (op == BPF_CALL) {
3273 /* BPF to BPF call will reach here because of marking
3274 * caller saved clobber with DST_OP_NO_MARK for which we
3275 * don't care the register def because they are anyway
3276 * marked as NOT_INIT already.
3277 */
3278 if (insn->src_reg == BPF_PSEUDO_CALL)
3279 return false;
3280 /* Helper call will reach here because of arg type
3281 * check, conservatively return TRUE.
3282 */
3283 if (t == SRC_OP)
3284 return true;
3285
3286 return false;
3287 }
3288 }
3289
3290 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3291 return false;
3292
3293 if (class == BPF_ALU64 || class == BPF_JMP ||
3294 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3295 return true;
3296
3297 if (class == BPF_ALU || class == BPF_JMP32)
3298 return false;
3299
3300 if (class == BPF_LDX) {
3301 if (t != SRC_OP)
3302 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3303 /* LDX source must be ptr. */
3304 return true;
3305 }
3306
3307 if (class == BPF_STX) {
3308 /* BPF_STX (including atomic variants) has multiple source
3309 * operands, one of which is a ptr. Check whether the caller is
3310 * asking about it.
3311 */
3312 if (t == SRC_OP && reg->type != SCALAR_VALUE)
3313 return true;
3314 return BPF_SIZE(code) == BPF_DW;
3315 }
3316
3317 if (class == BPF_LD) {
3318 u8 mode = BPF_MODE(code);
3319
3320 /* LD_IMM64 */
3321 if (mode == BPF_IMM)
3322 return true;
3323
3324 /* Both LD_IND and LD_ABS return 32-bit data. */
3325 if (t != SRC_OP)
3326 return false;
3327
3328 /* Implicit ctx ptr. */
3329 if (regno == BPF_REG_6)
3330 return true;
3331
3332 /* Explicit source could be any width. */
3333 return true;
3334 }
3335
3336 if (class == BPF_ST)
3337 /* The only source register for BPF_ST is a ptr. */
3338 return true;
3339
3340 /* Conservatively return true at default. */
3341 return true;
3342 }
3343
3344 /* Return the regno defined by the insn, or -1. */
insn_def_regno(const struct bpf_insn * insn)3345 static int insn_def_regno(const struct bpf_insn *insn)
3346 {
3347 switch (BPF_CLASS(insn->code)) {
3348 case BPF_JMP:
3349 case BPF_JMP32:
3350 case BPF_ST:
3351 return -1;
3352 case BPF_STX:
3353 if ((BPF_MODE(insn->code) == BPF_ATOMIC ||
3354 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) &&
3355 (insn->imm & BPF_FETCH)) {
3356 if (insn->imm == BPF_CMPXCHG)
3357 return BPF_REG_0;
3358 else
3359 return insn->src_reg;
3360 } else {
3361 return -1;
3362 }
3363 default:
3364 return insn->dst_reg;
3365 }
3366 }
3367
3368 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_verifier_env * env,struct bpf_insn * insn)3369 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3370 {
3371 int dst_reg = insn_def_regno(insn);
3372
3373 if (dst_reg == -1)
3374 return false;
3375
3376 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3377 }
3378
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3379 static void mark_insn_zext(struct bpf_verifier_env *env,
3380 struct bpf_reg_state *reg)
3381 {
3382 s32 def_idx = reg->subreg_def;
3383
3384 if (def_idx == DEF_NOT_SUBREG)
3385 return;
3386
3387 env->insn_aux_data[def_idx - 1].zext_dst = true;
3388 /* The dst will be zero extended, so won't be sub-register anymore. */
3389 reg->subreg_def = DEF_NOT_SUBREG;
3390 }
3391
__check_reg_arg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum reg_arg_type t)3392 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3393 enum reg_arg_type t)
3394 {
3395 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3396 struct bpf_reg_state *reg;
3397 bool rw64;
3398
3399 if (regno >= MAX_BPF_REG) {
3400 verbose(env, "R%d is invalid\n", regno);
3401 return -EINVAL;
3402 }
3403
3404 mark_reg_scratched(env, regno);
3405
3406 reg = ®s[regno];
3407 rw64 = is_reg64(env, insn, regno, reg, t);
3408 if (t == SRC_OP) {
3409 /* check whether register used as source operand can be read */
3410 if (reg->type == NOT_INIT) {
3411 verbose(env, "R%d !read_ok\n", regno);
3412 return -EACCES;
3413 }
3414 /* We don't need to worry about FP liveness because it's read-only */
3415 if (regno == BPF_REG_FP)
3416 return 0;
3417
3418 if (rw64)
3419 mark_insn_zext(env, reg);
3420
3421 return mark_reg_read(env, reg, reg->parent,
3422 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3423 } else {
3424 /* check whether register used as dest operand can be written to */
3425 if (regno == BPF_REG_FP) {
3426 verbose(env, "frame pointer is read only\n");
3427 return -EACCES;
3428 }
3429 reg->live |= REG_LIVE_WRITTEN;
3430 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3431 if (t == DST_OP)
3432 mark_reg_unknown(env, regs, regno);
3433 }
3434 return 0;
3435 }
3436
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)3437 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3438 enum reg_arg_type t)
3439 {
3440 struct bpf_verifier_state *vstate = env->cur_state;
3441 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3442
3443 return __check_reg_arg(env, state->regs, regno, t);
3444 }
3445
insn_stack_access_flags(int frameno,int spi)3446 static int insn_stack_access_flags(int frameno, int spi)
3447 {
3448 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
3449 }
3450
insn_stack_access_spi(int insn_flags)3451 static int insn_stack_access_spi(int insn_flags)
3452 {
3453 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
3454 }
3455
insn_stack_access_frameno(int insn_flags)3456 static int insn_stack_access_frameno(int insn_flags)
3457 {
3458 return insn_flags & INSN_F_FRAMENO_MASK;
3459 }
3460
mark_jmp_point(struct bpf_verifier_env * env,int idx)3461 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3462 {
3463 env->insn_aux_data[idx].jmp_point = true;
3464 }
3465
is_jmp_point(struct bpf_verifier_env * env,int insn_idx)3466 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3467 {
3468 return env->insn_aux_data[insn_idx].jmp_point;
3469 }
3470
3471 #define LR_FRAMENO_BITS 3
3472 #define LR_SPI_BITS 6
3473 #define LR_ENTRY_BITS (LR_SPI_BITS + LR_FRAMENO_BITS + 1)
3474 #define LR_SIZE_BITS 4
3475 #define LR_FRAMENO_MASK ((1ull << LR_FRAMENO_BITS) - 1)
3476 #define LR_SPI_MASK ((1ull << LR_SPI_BITS) - 1)
3477 #define LR_SIZE_MASK ((1ull << LR_SIZE_BITS) - 1)
3478 #define LR_SPI_OFF LR_FRAMENO_BITS
3479 #define LR_IS_REG_OFF (LR_SPI_BITS + LR_FRAMENO_BITS)
3480 #define LINKED_REGS_MAX 6
3481
3482 struct linked_reg {
3483 u8 frameno;
3484 union {
3485 u8 spi;
3486 u8 regno;
3487 };
3488 bool is_reg;
3489 };
3490
3491 struct linked_regs {
3492 int cnt;
3493 struct linked_reg entries[LINKED_REGS_MAX];
3494 };
3495
linked_regs_push(struct linked_regs * s)3496 static struct linked_reg *linked_regs_push(struct linked_regs *s)
3497 {
3498 if (s->cnt < LINKED_REGS_MAX)
3499 return &s->entries[s->cnt++];
3500
3501 return NULL;
3502 }
3503
3504 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track
3505 * number of elements currently in stack.
3506 * Pack one history entry for linked registers as 10 bits in the following format:
3507 * - 3-bits frameno
3508 * - 6-bits spi_or_reg
3509 * - 1-bit is_reg
3510 */
linked_regs_pack(struct linked_regs * s)3511 static u64 linked_regs_pack(struct linked_regs *s)
3512 {
3513 u64 val = 0;
3514 int i;
3515
3516 for (i = 0; i < s->cnt; ++i) {
3517 struct linked_reg *e = &s->entries[i];
3518 u64 tmp = 0;
3519
3520 tmp |= e->frameno;
3521 tmp |= e->spi << LR_SPI_OFF;
3522 tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF;
3523
3524 val <<= LR_ENTRY_BITS;
3525 val |= tmp;
3526 }
3527 val <<= LR_SIZE_BITS;
3528 val |= s->cnt;
3529 return val;
3530 }
3531
linked_regs_unpack(u64 val,struct linked_regs * s)3532 static void linked_regs_unpack(u64 val, struct linked_regs *s)
3533 {
3534 int i;
3535
3536 s->cnt = val & LR_SIZE_MASK;
3537 val >>= LR_SIZE_BITS;
3538
3539 for (i = 0; i < s->cnt; ++i) {
3540 struct linked_reg *e = &s->entries[i];
3541
3542 e->frameno = val & LR_FRAMENO_MASK;
3543 e->spi = (val >> LR_SPI_OFF) & LR_SPI_MASK;
3544 e->is_reg = (val >> LR_IS_REG_OFF) & 0x1;
3545 val >>= LR_ENTRY_BITS;
3546 }
3547 }
3548
3549 /* for any branch, call, exit record the history of jmps in the given state */
push_insn_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur,int insn_flags,u64 linked_regs)3550 static int push_insn_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
3551 int insn_flags, u64 linked_regs)
3552 {
3553 struct bpf_insn_hist_entry *p;
3554 size_t alloc_size;
3555
3556 /* combine instruction flags if we already recorded this instruction */
3557 if (env->cur_hist_ent) {
3558 /* atomic instructions push insn_flags twice, for READ and
3559 * WRITE sides, but they should agree on stack slot
3560 */
3561 WARN_ONCE((env->cur_hist_ent->flags & insn_flags) &&
3562 (env->cur_hist_ent->flags & insn_flags) != insn_flags,
3563 "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n",
3564 env->insn_idx, env->cur_hist_ent->flags, insn_flags);
3565 env->cur_hist_ent->flags |= insn_flags;
3566 WARN_ONCE(env->cur_hist_ent->linked_regs != 0,
3567 "verifier insn history bug: insn_idx %d linked_regs != 0: %#llx\n",
3568 env->insn_idx, env->cur_hist_ent->linked_regs);
3569 env->cur_hist_ent->linked_regs = linked_regs;
3570 return 0;
3571 }
3572
3573 if (cur->insn_hist_end + 1 > env->insn_hist_cap) {
3574 alloc_size = size_mul(cur->insn_hist_end + 1, sizeof(*p));
3575 p = kvrealloc(env->insn_hist, alloc_size, GFP_USER);
3576 if (!p)
3577 return -ENOMEM;
3578 env->insn_hist = p;
3579 env->insn_hist_cap = alloc_size / sizeof(*p);
3580 }
3581
3582 p = &env->insn_hist[cur->insn_hist_end];
3583 p->idx = env->insn_idx;
3584 p->prev_idx = env->prev_insn_idx;
3585 p->flags = insn_flags;
3586 p->linked_regs = linked_regs;
3587
3588 cur->insn_hist_end++;
3589 env->cur_hist_ent = p;
3590
3591 return 0;
3592 }
3593
get_insn_hist_entry(struct bpf_verifier_env * env,u32 hist_start,u32 hist_end,int insn_idx)3594 static struct bpf_insn_hist_entry *get_insn_hist_entry(struct bpf_verifier_env *env,
3595 u32 hist_start, u32 hist_end, int insn_idx)
3596 {
3597 if (hist_end > hist_start && env->insn_hist[hist_end - 1].idx == insn_idx)
3598 return &env->insn_hist[hist_end - 1];
3599 return NULL;
3600 }
3601
3602 /* Backtrack one insn at a time. If idx is not at the top of recorded
3603 * history then previous instruction came from straight line execution.
3604 * Return -ENOENT if we exhausted all instructions within given state.
3605 *
3606 * It's legal to have a bit of a looping with the same starting and ending
3607 * insn index within the same state, e.g.: 3->4->5->3, so just because current
3608 * instruction index is the same as state's first_idx doesn't mean we are
3609 * done. If there is still some jump history left, we should keep going. We
3610 * need to take into account that we might have a jump history between given
3611 * state's parent and itself, due to checkpointing. In this case, we'll have
3612 * history entry recording a jump from last instruction of parent state and
3613 * first instruction of given state.
3614 */
get_prev_insn_idx(const struct bpf_verifier_env * env,struct bpf_verifier_state * st,int insn_idx,u32 hist_start,u32 * hist_endp)3615 static int get_prev_insn_idx(const struct bpf_verifier_env *env,
3616 struct bpf_verifier_state *st,
3617 int insn_idx, u32 hist_start, u32 *hist_endp)
3618 {
3619 u32 hist_end = *hist_endp;
3620 u32 cnt = hist_end - hist_start;
3621
3622 if (insn_idx == st->first_insn_idx) {
3623 if (cnt == 0)
3624 return -ENOENT;
3625 if (cnt == 1 && env->insn_hist[hist_start].idx == insn_idx)
3626 return -ENOENT;
3627 }
3628
3629 if (cnt && env->insn_hist[hist_end - 1].idx == insn_idx) {
3630 (*hist_endp)--;
3631 return env->insn_hist[hist_end - 1].prev_idx;
3632 } else {
3633 return insn_idx - 1;
3634 }
3635 }
3636
disasm_kfunc_name(void * data,const struct bpf_insn * insn)3637 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3638 {
3639 const struct btf_type *func;
3640 struct btf *desc_btf;
3641
3642 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3643 return NULL;
3644
3645 desc_btf = find_kfunc_desc_btf(data, insn->off);
3646 if (IS_ERR(desc_btf))
3647 return "<error>";
3648
3649 func = btf_type_by_id(desc_btf, insn->imm);
3650 return btf_name_by_offset(desc_btf, func->name_off);
3651 }
3652
bt_init(struct backtrack_state * bt,u32 frame)3653 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3654 {
3655 bt->frame = frame;
3656 }
3657
bt_reset(struct backtrack_state * bt)3658 static inline void bt_reset(struct backtrack_state *bt)
3659 {
3660 struct bpf_verifier_env *env = bt->env;
3661
3662 memset(bt, 0, sizeof(*bt));
3663 bt->env = env;
3664 }
3665
bt_empty(struct backtrack_state * bt)3666 static inline u32 bt_empty(struct backtrack_state *bt)
3667 {
3668 u64 mask = 0;
3669 int i;
3670
3671 for (i = 0; i <= bt->frame; i++)
3672 mask |= bt->reg_masks[i] | bt->stack_masks[i];
3673
3674 return mask == 0;
3675 }
3676
bt_subprog_enter(struct backtrack_state * bt)3677 static inline int bt_subprog_enter(struct backtrack_state *bt)
3678 {
3679 if (bt->frame == MAX_CALL_FRAMES - 1) {
3680 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3681 WARN_ONCE(1, "verifier backtracking bug");
3682 return -EFAULT;
3683 }
3684 bt->frame++;
3685 return 0;
3686 }
3687
bt_subprog_exit(struct backtrack_state * bt)3688 static inline int bt_subprog_exit(struct backtrack_state *bt)
3689 {
3690 if (bt->frame == 0) {
3691 verbose(bt->env, "BUG subprog exit from frame 0\n");
3692 WARN_ONCE(1, "verifier backtracking bug");
3693 return -EFAULT;
3694 }
3695 bt->frame--;
3696 return 0;
3697 }
3698
bt_set_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)3699 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3700 {
3701 bt->reg_masks[frame] |= 1 << reg;
3702 }
3703
bt_clear_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)3704 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3705 {
3706 bt->reg_masks[frame] &= ~(1 << reg);
3707 }
3708
bt_set_reg(struct backtrack_state * bt,u32 reg)3709 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3710 {
3711 bt_set_frame_reg(bt, bt->frame, reg);
3712 }
3713
bt_clear_reg(struct backtrack_state * bt,u32 reg)3714 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3715 {
3716 bt_clear_frame_reg(bt, bt->frame, reg);
3717 }
3718
bt_set_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)3719 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3720 {
3721 bt->stack_masks[frame] |= 1ull << slot;
3722 }
3723
bt_clear_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)3724 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3725 {
3726 bt->stack_masks[frame] &= ~(1ull << slot);
3727 }
3728
bt_frame_reg_mask(struct backtrack_state * bt,u32 frame)3729 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3730 {
3731 return bt->reg_masks[frame];
3732 }
3733
bt_reg_mask(struct backtrack_state * bt)3734 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3735 {
3736 return bt->reg_masks[bt->frame];
3737 }
3738
bt_frame_stack_mask(struct backtrack_state * bt,u32 frame)3739 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3740 {
3741 return bt->stack_masks[frame];
3742 }
3743
bt_stack_mask(struct backtrack_state * bt)3744 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3745 {
3746 return bt->stack_masks[bt->frame];
3747 }
3748
bt_is_reg_set(struct backtrack_state * bt,u32 reg)3749 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3750 {
3751 return bt->reg_masks[bt->frame] & (1 << reg);
3752 }
3753
bt_is_frame_reg_set(struct backtrack_state * bt,u32 frame,u32 reg)3754 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg)
3755 {
3756 return bt->reg_masks[frame] & (1 << reg);
3757 }
3758
bt_is_frame_slot_set(struct backtrack_state * bt,u32 frame,u32 slot)3759 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
3760 {
3761 return bt->stack_masks[frame] & (1ull << slot);
3762 }
3763
3764 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
fmt_reg_mask(char * buf,ssize_t buf_sz,u32 reg_mask)3765 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3766 {
3767 DECLARE_BITMAP(mask, 64);
3768 bool first = true;
3769 int i, n;
3770
3771 buf[0] = '\0';
3772
3773 bitmap_from_u64(mask, reg_mask);
3774 for_each_set_bit(i, mask, 32) {
3775 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3776 first = false;
3777 buf += n;
3778 buf_sz -= n;
3779 if (buf_sz < 0)
3780 break;
3781 }
3782 }
3783 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
fmt_stack_mask(char * buf,ssize_t buf_sz,u64 stack_mask)3784 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3785 {
3786 DECLARE_BITMAP(mask, 64);
3787 bool first = true;
3788 int i, n;
3789
3790 buf[0] = '\0';
3791
3792 bitmap_from_u64(mask, stack_mask);
3793 for_each_set_bit(i, mask, 64) {
3794 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3795 first = false;
3796 buf += n;
3797 buf_sz -= n;
3798 if (buf_sz < 0)
3799 break;
3800 }
3801 }
3802
3803 /* If any register R in hist->linked_regs is marked as precise in bt,
3804 * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs.
3805 */
bt_sync_linked_regs(struct backtrack_state * bt,struct bpf_insn_hist_entry * hist)3806 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_insn_hist_entry *hist)
3807 {
3808 struct linked_regs linked_regs;
3809 bool some_precise = false;
3810 int i;
3811
3812 if (!hist || hist->linked_regs == 0)
3813 return;
3814
3815 linked_regs_unpack(hist->linked_regs, &linked_regs);
3816 for (i = 0; i < linked_regs.cnt; ++i) {
3817 struct linked_reg *e = &linked_regs.entries[i];
3818
3819 if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) ||
3820 (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) {
3821 some_precise = true;
3822 break;
3823 }
3824 }
3825
3826 if (!some_precise)
3827 return;
3828
3829 for (i = 0; i < linked_regs.cnt; ++i) {
3830 struct linked_reg *e = &linked_regs.entries[i];
3831
3832 if (e->is_reg)
3833 bt_set_frame_reg(bt, e->frameno, e->regno);
3834 else
3835 bt_set_frame_slot(bt, e->frameno, e->spi);
3836 }
3837 }
3838
3839 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
3840
3841 /* For given verifier state backtrack_insn() is called from the last insn to
3842 * the first insn. Its purpose is to compute a bitmask of registers and
3843 * stack slots that needs precision in the parent verifier state.
3844 *
3845 * @idx is an index of the instruction we are currently processing;
3846 * @subseq_idx is an index of the subsequent instruction that:
3847 * - *would be* executed next, if jump history is viewed in forward order;
3848 * - *was* processed previously during backtracking.
3849 */
backtrack_insn(struct bpf_verifier_env * env,int idx,int subseq_idx,struct bpf_insn_hist_entry * hist,struct backtrack_state * bt)3850 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3851 struct bpf_insn_hist_entry *hist, struct backtrack_state *bt)
3852 {
3853 const struct bpf_insn_cbs cbs = {
3854 .cb_call = disasm_kfunc_name,
3855 .cb_print = verbose,
3856 .private_data = env,
3857 };
3858 struct bpf_insn *insn = env->prog->insnsi + idx;
3859 u8 class = BPF_CLASS(insn->code);
3860 u8 opcode = BPF_OP(insn->code);
3861 u8 mode = BPF_MODE(insn->code);
3862 u32 dreg = insn->dst_reg;
3863 u32 sreg = insn->src_reg;
3864 u32 spi, i, fr;
3865
3866 if (insn->code == 0)
3867 return 0;
3868 if (env->log.level & BPF_LOG_LEVEL2) {
3869 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3870 verbose(env, "mark_precise: frame%d: regs=%s ",
3871 bt->frame, env->tmp_str_buf);
3872 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3873 verbose(env, "stack=%s before ", env->tmp_str_buf);
3874 verbose(env, "%d: ", idx);
3875 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3876 }
3877
3878 /* If there is a history record that some registers gained range at this insn,
3879 * propagate precision marks to those registers, so that bt_is_reg_set()
3880 * accounts for these registers.
3881 */
3882 bt_sync_linked_regs(bt, hist);
3883
3884 if (class == BPF_ALU || class == BPF_ALU64) {
3885 if (!bt_is_reg_set(bt, dreg))
3886 return 0;
3887 if (opcode == BPF_END || opcode == BPF_NEG) {
3888 /* sreg is reserved and unused
3889 * dreg still need precision before this insn
3890 */
3891 return 0;
3892 } else if (opcode == BPF_MOV) {
3893 if (BPF_SRC(insn->code) == BPF_X) {
3894 /* dreg = sreg or dreg = (s8, s16, s32)sreg
3895 * dreg needs precision after this insn
3896 * sreg needs precision before this insn
3897 */
3898 bt_clear_reg(bt, dreg);
3899 if (sreg != BPF_REG_FP)
3900 bt_set_reg(bt, sreg);
3901 } else {
3902 /* dreg = K
3903 * dreg needs precision after this insn.
3904 * Corresponding register is already marked
3905 * as precise=true in this verifier state.
3906 * No further markings in parent are necessary
3907 */
3908 bt_clear_reg(bt, dreg);
3909 }
3910 } else {
3911 if (BPF_SRC(insn->code) == BPF_X) {
3912 /* dreg += sreg
3913 * both dreg and sreg need precision
3914 * before this insn
3915 */
3916 if (sreg != BPF_REG_FP)
3917 bt_set_reg(bt, sreg);
3918 } /* else dreg += K
3919 * dreg still needs precision before this insn
3920 */
3921 }
3922 } else if (class == BPF_LDX) {
3923 if (!bt_is_reg_set(bt, dreg))
3924 return 0;
3925 bt_clear_reg(bt, dreg);
3926
3927 /* scalars can only be spilled into stack w/o losing precision.
3928 * Load from any other memory can be zero extended.
3929 * The desire to keep that precision is already indicated
3930 * by 'precise' mark in corresponding register of this state.
3931 * No further tracking necessary.
3932 */
3933 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3934 return 0;
3935 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
3936 * that [fp - off] slot contains scalar that needs to be
3937 * tracked with precision
3938 */
3939 spi = insn_stack_access_spi(hist->flags);
3940 fr = insn_stack_access_frameno(hist->flags);
3941 bt_set_frame_slot(bt, fr, spi);
3942 } else if (class == BPF_STX || class == BPF_ST) {
3943 if (bt_is_reg_set(bt, dreg))
3944 /* stx & st shouldn't be using _scalar_ dst_reg
3945 * to access memory. It means backtracking
3946 * encountered a case of pointer subtraction.
3947 */
3948 return -ENOTSUPP;
3949 /* scalars can only be spilled into stack */
3950 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3951 return 0;
3952 spi = insn_stack_access_spi(hist->flags);
3953 fr = insn_stack_access_frameno(hist->flags);
3954 if (!bt_is_frame_slot_set(bt, fr, spi))
3955 return 0;
3956 bt_clear_frame_slot(bt, fr, spi);
3957 if (class == BPF_STX)
3958 bt_set_reg(bt, sreg);
3959 } else if (class == BPF_JMP || class == BPF_JMP32) {
3960 if (bpf_pseudo_call(insn)) {
3961 int subprog_insn_idx, subprog;
3962
3963 subprog_insn_idx = idx + insn->imm + 1;
3964 subprog = find_subprog(env, subprog_insn_idx);
3965 if (subprog < 0)
3966 return -EFAULT;
3967
3968 if (subprog_is_global(env, subprog)) {
3969 /* check that jump history doesn't have any
3970 * extra instructions from subprog; the next
3971 * instruction after call to global subprog
3972 * should be literally next instruction in
3973 * caller program
3974 */
3975 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3976 /* r1-r5 are invalidated after subprog call,
3977 * so for global func call it shouldn't be set
3978 * anymore
3979 */
3980 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3981 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3982 WARN_ONCE(1, "verifier backtracking bug");
3983 return -EFAULT;
3984 }
3985 /* global subprog always sets R0 */
3986 bt_clear_reg(bt, BPF_REG_0);
3987 return 0;
3988 } else {
3989 /* static subprog call instruction, which
3990 * means that we are exiting current subprog,
3991 * so only r1-r5 could be still requested as
3992 * precise, r0 and r6-r10 or any stack slot in
3993 * the current frame should be zero by now
3994 */
3995 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3996 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3997 WARN_ONCE(1, "verifier backtracking bug");
3998 return -EFAULT;
3999 }
4000 /* we are now tracking register spills correctly,
4001 * so any instance of leftover slots is a bug
4002 */
4003 if (bt_stack_mask(bt) != 0) {
4004 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
4005 WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)");
4006 return -EFAULT;
4007 }
4008 /* propagate r1-r5 to the caller */
4009 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
4010 if (bt_is_reg_set(bt, i)) {
4011 bt_clear_reg(bt, i);
4012 bt_set_frame_reg(bt, bt->frame - 1, i);
4013 }
4014 }
4015 if (bt_subprog_exit(bt))
4016 return -EFAULT;
4017 return 0;
4018 }
4019 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
4020 /* exit from callback subprog to callback-calling helper or
4021 * kfunc call. Use idx/subseq_idx check to discern it from
4022 * straight line code backtracking.
4023 * Unlike the subprog call handling above, we shouldn't
4024 * propagate precision of r1-r5 (if any requested), as they are
4025 * not actually arguments passed directly to callback subprogs
4026 */
4027 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
4028 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
4029 WARN_ONCE(1, "verifier backtracking bug");
4030 return -EFAULT;
4031 }
4032 if (bt_stack_mask(bt) != 0) {
4033 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
4034 WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)");
4035 return -EFAULT;
4036 }
4037 /* clear r1-r5 in callback subprog's mask */
4038 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4039 bt_clear_reg(bt, i);
4040 if (bt_subprog_exit(bt))
4041 return -EFAULT;
4042 return 0;
4043 } else if (opcode == BPF_CALL) {
4044 /* kfunc with imm==0 is invalid and fixup_kfunc_call will
4045 * catch this error later. Make backtracking conservative
4046 * with ENOTSUPP.
4047 */
4048 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
4049 return -ENOTSUPP;
4050 /* regular helper call sets R0 */
4051 bt_clear_reg(bt, BPF_REG_0);
4052 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4053 /* if backtracing was looking for registers R1-R5
4054 * they should have been found already.
4055 */
4056 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
4057 WARN_ONCE(1, "verifier backtracking bug");
4058 return -EFAULT;
4059 }
4060 } else if (opcode == BPF_EXIT) {
4061 bool r0_precise;
4062
4063 /* Backtracking to a nested function call, 'idx' is a part of
4064 * the inner frame 'subseq_idx' is a part of the outer frame.
4065 * In case of a regular function call, instructions giving
4066 * precision to registers R1-R5 should have been found already.
4067 * In case of a callback, it is ok to have R1-R5 marked for
4068 * backtracking, as these registers are set by the function
4069 * invoking callback.
4070 */
4071 if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
4072 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4073 bt_clear_reg(bt, i);
4074 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4075 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
4076 WARN_ONCE(1, "verifier backtracking bug");
4077 return -EFAULT;
4078 }
4079
4080 /* BPF_EXIT in subprog or callback always returns
4081 * right after the call instruction, so by checking
4082 * whether the instruction at subseq_idx-1 is subprog
4083 * call or not we can distinguish actual exit from
4084 * *subprog* from exit from *callback*. In the former
4085 * case, we need to propagate r0 precision, if
4086 * necessary. In the former we never do that.
4087 */
4088 r0_precise = subseq_idx - 1 >= 0 &&
4089 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
4090 bt_is_reg_set(bt, BPF_REG_0);
4091
4092 bt_clear_reg(bt, BPF_REG_0);
4093 if (bt_subprog_enter(bt))
4094 return -EFAULT;
4095
4096 if (r0_precise)
4097 bt_set_reg(bt, BPF_REG_0);
4098 /* r6-r9 and stack slots will stay set in caller frame
4099 * bitmasks until we return back from callee(s)
4100 */
4101 return 0;
4102 } else if (BPF_SRC(insn->code) == BPF_X) {
4103 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
4104 return 0;
4105 /* dreg <cond> sreg
4106 * Both dreg and sreg need precision before
4107 * this insn. If only sreg was marked precise
4108 * before it would be equally necessary to
4109 * propagate it to dreg.
4110 */
4111 bt_set_reg(bt, dreg);
4112 bt_set_reg(bt, sreg);
4113 } else if (BPF_SRC(insn->code) == BPF_K) {
4114 /* dreg <cond> K
4115 * Only dreg still needs precision before
4116 * this insn, so for the K-based conditional
4117 * there is nothing new to be marked.
4118 */
4119 }
4120 } else if (class == BPF_LD) {
4121 if (!bt_is_reg_set(bt, dreg))
4122 return 0;
4123 bt_clear_reg(bt, dreg);
4124 /* It's ld_imm64 or ld_abs or ld_ind.
4125 * For ld_imm64 no further tracking of precision
4126 * into parent is necessary
4127 */
4128 if (mode == BPF_IND || mode == BPF_ABS)
4129 /* to be analyzed */
4130 return -ENOTSUPP;
4131 }
4132 /* Propagate precision marks to linked registers, to account for
4133 * registers marked as precise in this function.
4134 */
4135 bt_sync_linked_regs(bt, hist);
4136 return 0;
4137 }
4138
4139 /* the scalar precision tracking algorithm:
4140 * . at the start all registers have precise=false.
4141 * . scalar ranges are tracked as normal through alu and jmp insns.
4142 * . once precise value of the scalar register is used in:
4143 * . ptr + scalar alu
4144 * . if (scalar cond K|scalar)
4145 * . helper_call(.., scalar, ...) where ARG_CONST is expected
4146 * backtrack through the verifier states and mark all registers and
4147 * stack slots with spilled constants that these scalar regisers
4148 * should be precise.
4149 * . during state pruning two registers (or spilled stack slots)
4150 * are equivalent if both are not precise.
4151 *
4152 * Note the verifier cannot simply walk register parentage chain,
4153 * since many different registers and stack slots could have been
4154 * used to compute single precise scalar.
4155 *
4156 * The approach of starting with precise=true for all registers and then
4157 * backtrack to mark a register as not precise when the verifier detects
4158 * that program doesn't care about specific value (e.g., when helper
4159 * takes register as ARG_ANYTHING parameter) is not safe.
4160 *
4161 * It's ok to walk single parentage chain of the verifier states.
4162 * It's possible that this backtracking will go all the way till 1st insn.
4163 * All other branches will be explored for needing precision later.
4164 *
4165 * The backtracking needs to deal with cases like:
4166 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
4167 * r9 -= r8
4168 * r5 = r9
4169 * if r5 > 0x79f goto pc+7
4170 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
4171 * r5 += 1
4172 * ...
4173 * call bpf_perf_event_output#25
4174 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
4175 *
4176 * and this case:
4177 * r6 = 1
4178 * call foo // uses callee's r6 inside to compute r0
4179 * r0 += r6
4180 * if r0 == 0 goto
4181 *
4182 * to track above reg_mask/stack_mask needs to be independent for each frame.
4183 *
4184 * Also if parent's curframe > frame where backtracking started,
4185 * the verifier need to mark registers in both frames, otherwise callees
4186 * may incorrectly prune callers. This is similar to
4187 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
4188 *
4189 * For now backtracking falls back into conservative marking.
4190 */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4191 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
4192 struct bpf_verifier_state *st)
4193 {
4194 struct bpf_func_state *func;
4195 struct bpf_reg_state *reg;
4196 int i, j;
4197
4198 if (env->log.level & BPF_LOG_LEVEL2) {
4199 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
4200 st->curframe);
4201 }
4202
4203 /* big hammer: mark all scalars precise in this path.
4204 * pop_stack may still get !precise scalars.
4205 * We also skip current state and go straight to first parent state,
4206 * because precision markings in current non-checkpointed state are
4207 * not needed. See why in the comment in __mark_chain_precision below.
4208 */
4209 for (st = st->parent; st; st = st->parent) {
4210 for (i = 0; i <= st->curframe; i++) {
4211 func = st->frame[i];
4212 for (j = 0; j < BPF_REG_FP; j++) {
4213 reg = &func->regs[j];
4214 if (reg->type != SCALAR_VALUE || reg->precise)
4215 continue;
4216 reg->precise = true;
4217 if (env->log.level & BPF_LOG_LEVEL2) {
4218 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4219 i, j);
4220 }
4221 }
4222 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4223 if (!is_spilled_reg(&func->stack[j]))
4224 continue;
4225 reg = &func->stack[j].spilled_ptr;
4226 if (reg->type != SCALAR_VALUE || reg->precise)
4227 continue;
4228 reg->precise = true;
4229 if (env->log.level & BPF_LOG_LEVEL2) {
4230 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4231 i, -(j + 1) * 8);
4232 }
4233 }
4234 }
4235 }
4236 }
4237
mark_all_scalars_imprecise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4238 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4239 {
4240 struct bpf_func_state *func;
4241 struct bpf_reg_state *reg;
4242 int i, j;
4243
4244 for (i = 0; i <= st->curframe; i++) {
4245 func = st->frame[i];
4246 for (j = 0; j < BPF_REG_FP; j++) {
4247 reg = &func->regs[j];
4248 if (reg->type != SCALAR_VALUE)
4249 continue;
4250 reg->precise = false;
4251 }
4252 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4253 if (!is_spilled_reg(&func->stack[j]))
4254 continue;
4255 reg = &func->stack[j].spilled_ptr;
4256 if (reg->type != SCALAR_VALUE)
4257 continue;
4258 reg->precise = false;
4259 }
4260 }
4261 }
4262
4263 /*
4264 * __mark_chain_precision() backtracks BPF program instruction sequence and
4265 * chain of verifier states making sure that register *regno* (if regno >= 0)
4266 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4267 * SCALARS, as well as any other registers and slots that contribute to
4268 * a tracked state of given registers/stack slots, depending on specific BPF
4269 * assembly instructions (see backtrack_insns() for exact instruction handling
4270 * logic). This backtracking relies on recorded insn_hist and is able to
4271 * traverse entire chain of parent states. This process ends only when all the
4272 * necessary registers/slots and their transitive dependencies are marked as
4273 * precise.
4274 *
4275 * One important and subtle aspect is that precise marks *do not matter* in
4276 * the currently verified state (current state). It is important to understand
4277 * why this is the case.
4278 *
4279 * First, note that current state is the state that is not yet "checkpointed",
4280 * i.e., it is not yet put into env->explored_states, and it has no children
4281 * states as well. It's ephemeral, and can end up either a) being discarded if
4282 * compatible explored state is found at some point or BPF_EXIT instruction is
4283 * reached or b) checkpointed and put into env->explored_states, branching out
4284 * into one or more children states.
4285 *
4286 * In the former case, precise markings in current state are completely
4287 * ignored by state comparison code (see regsafe() for details). Only
4288 * checkpointed ("old") state precise markings are important, and if old
4289 * state's register/slot is precise, regsafe() assumes current state's
4290 * register/slot as precise and checks value ranges exactly and precisely. If
4291 * states turn out to be compatible, current state's necessary precise
4292 * markings and any required parent states' precise markings are enforced
4293 * after the fact with propagate_precision() logic, after the fact. But it's
4294 * important to realize that in this case, even after marking current state
4295 * registers/slots as precise, we immediately discard current state. So what
4296 * actually matters is any of the precise markings propagated into current
4297 * state's parent states, which are always checkpointed (due to b) case above).
4298 * As such, for scenario a) it doesn't matter if current state has precise
4299 * markings set or not.
4300 *
4301 * Now, for the scenario b), checkpointing and forking into child(ren)
4302 * state(s). Note that before current state gets to checkpointing step, any
4303 * processed instruction always assumes precise SCALAR register/slot
4304 * knowledge: if precise value or range is useful to prune jump branch, BPF
4305 * verifier takes this opportunity enthusiastically. Similarly, when
4306 * register's value is used to calculate offset or memory address, exact
4307 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4308 * what we mentioned above about state comparison ignoring precise markings
4309 * during state comparison, BPF verifier ignores and also assumes precise
4310 * markings *at will* during instruction verification process. But as verifier
4311 * assumes precision, it also propagates any precision dependencies across
4312 * parent states, which are not yet finalized, so can be further restricted
4313 * based on new knowledge gained from restrictions enforced by their children
4314 * states. This is so that once those parent states are finalized, i.e., when
4315 * they have no more active children state, state comparison logic in
4316 * is_state_visited() would enforce strict and precise SCALAR ranges, if
4317 * required for correctness.
4318 *
4319 * To build a bit more intuition, note also that once a state is checkpointed,
4320 * the path we took to get to that state is not important. This is crucial
4321 * property for state pruning. When state is checkpointed and finalized at
4322 * some instruction index, it can be correctly and safely used to "short
4323 * circuit" any *compatible* state that reaches exactly the same instruction
4324 * index. I.e., if we jumped to that instruction from a completely different
4325 * code path than original finalized state was derived from, it doesn't
4326 * matter, current state can be discarded because from that instruction
4327 * forward having a compatible state will ensure we will safely reach the
4328 * exit. States describe preconditions for further exploration, but completely
4329 * forget the history of how we got here.
4330 *
4331 * This also means that even if we needed precise SCALAR range to get to
4332 * finalized state, but from that point forward *that same* SCALAR register is
4333 * never used in a precise context (i.e., it's precise value is not needed for
4334 * correctness), it's correct and safe to mark such register as "imprecise"
4335 * (i.e., precise marking set to false). This is what we rely on when we do
4336 * not set precise marking in current state. If no child state requires
4337 * precision for any given SCALAR register, it's safe to dictate that it can
4338 * be imprecise. If any child state does require this register to be precise,
4339 * we'll mark it precise later retroactively during precise markings
4340 * propagation from child state to parent states.
4341 *
4342 * Skipping precise marking setting in current state is a mild version of
4343 * relying on the above observation. But we can utilize this property even
4344 * more aggressively by proactively forgetting any precise marking in the
4345 * current state (which we inherited from the parent state), right before we
4346 * checkpoint it and branch off into new child state. This is done by
4347 * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4348 * finalized states which help in short circuiting more future states.
4349 */
__mark_chain_precision(struct bpf_verifier_env * env,int regno)4350 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4351 {
4352 struct backtrack_state *bt = &env->bt;
4353 struct bpf_verifier_state *st = env->cur_state;
4354 int first_idx = st->first_insn_idx;
4355 int last_idx = env->insn_idx;
4356 int subseq_idx = -1;
4357 struct bpf_func_state *func;
4358 struct bpf_reg_state *reg;
4359 bool skip_first = true;
4360 int i, fr, err;
4361
4362 if (!env->bpf_capable)
4363 return 0;
4364
4365 /* set frame number from which we are starting to backtrack */
4366 bt_init(bt, env->cur_state->curframe);
4367
4368 /* Do sanity checks against current state of register and/or stack
4369 * slot, but don't set precise flag in current state, as precision
4370 * tracking in the current state is unnecessary.
4371 */
4372 func = st->frame[bt->frame];
4373 if (regno >= 0) {
4374 reg = &func->regs[regno];
4375 if (reg->type != SCALAR_VALUE) {
4376 WARN_ONCE(1, "backtracing misuse");
4377 return -EFAULT;
4378 }
4379 bt_set_reg(bt, regno);
4380 }
4381
4382 if (bt_empty(bt))
4383 return 0;
4384
4385 for (;;) {
4386 DECLARE_BITMAP(mask, 64);
4387 u32 hist_start = st->insn_hist_start;
4388 u32 hist_end = st->insn_hist_end;
4389 struct bpf_insn_hist_entry *hist;
4390
4391 if (env->log.level & BPF_LOG_LEVEL2) {
4392 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4393 bt->frame, last_idx, first_idx, subseq_idx);
4394 }
4395
4396 if (last_idx < 0) {
4397 /* we are at the entry into subprog, which
4398 * is expected for global funcs, but only if
4399 * requested precise registers are R1-R5
4400 * (which are global func's input arguments)
4401 */
4402 if (st->curframe == 0 &&
4403 st->frame[0]->subprogno > 0 &&
4404 st->frame[0]->callsite == BPF_MAIN_FUNC &&
4405 bt_stack_mask(bt) == 0 &&
4406 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4407 bitmap_from_u64(mask, bt_reg_mask(bt));
4408 for_each_set_bit(i, mask, 32) {
4409 reg = &st->frame[0]->regs[i];
4410 bt_clear_reg(bt, i);
4411 if (reg->type == SCALAR_VALUE)
4412 reg->precise = true;
4413 }
4414 return 0;
4415 }
4416
4417 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4418 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4419 WARN_ONCE(1, "verifier backtracking bug");
4420 return -EFAULT;
4421 }
4422
4423 for (i = last_idx;;) {
4424 if (skip_first) {
4425 err = 0;
4426 skip_first = false;
4427 } else {
4428 hist = get_insn_hist_entry(env, hist_start, hist_end, i);
4429 err = backtrack_insn(env, i, subseq_idx, hist, bt);
4430 }
4431 if (err == -ENOTSUPP) {
4432 mark_all_scalars_precise(env, env->cur_state);
4433 bt_reset(bt);
4434 return 0;
4435 } else if (err) {
4436 return err;
4437 }
4438 if (bt_empty(bt))
4439 /* Found assignment(s) into tracked register in this state.
4440 * Since this state is already marked, just return.
4441 * Nothing to be tracked further in the parent state.
4442 */
4443 return 0;
4444 subseq_idx = i;
4445 i = get_prev_insn_idx(env, st, i, hist_start, &hist_end);
4446 if (i == -ENOENT)
4447 break;
4448 if (i >= env->prog->len) {
4449 /* This can happen if backtracking reached insn 0
4450 * and there are still reg_mask or stack_mask
4451 * to backtrack.
4452 * It means the backtracking missed the spot where
4453 * particular register was initialized with a constant.
4454 */
4455 verbose(env, "BUG backtracking idx %d\n", i);
4456 WARN_ONCE(1, "verifier backtracking bug");
4457 return -EFAULT;
4458 }
4459 }
4460 st = st->parent;
4461 if (!st)
4462 break;
4463
4464 for (fr = bt->frame; fr >= 0; fr--) {
4465 func = st->frame[fr];
4466 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4467 for_each_set_bit(i, mask, 32) {
4468 reg = &func->regs[i];
4469 if (reg->type != SCALAR_VALUE) {
4470 bt_clear_frame_reg(bt, fr, i);
4471 continue;
4472 }
4473 if (reg->precise)
4474 bt_clear_frame_reg(bt, fr, i);
4475 else
4476 reg->precise = true;
4477 }
4478
4479 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4480 for_each_set_bit(i, mask, 64) {
4481 if (i >= func->allocated_stack / BPF_REG_SIZE) {
4482 verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n",
4483 i, func->allocated_stack / BPF_REG_SIZE);
4484 WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)");
4485 return -EFAULT;
4486 }
4487
4488 if (!is_spilled_scalar_reg(&func->stack[i])) {
4489 bt_clear_frame_slot(bt, fr, i);
4490 continue;
4491 }
4492 reg = &func->stack[i].spilled_ptr;
4493 if (reg->precise)
4494 bt_clear_frame_slot(bt, fr, i);
4495 else
4496 reg->precise = true;
4497 }
4498 if (env->log.level & BPF_LOG_LEVEL2) {
4499 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4500 bt_frame_reg_mask(bt, fr));
4501 verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4502 fr, env->tmp_str_buf);
4503 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4504 bt_frame_stack_mask(bt, fr));
4505 verbose(env, "stack=%s: ", env->tmp_str_buf);
4506 print_verifier_state(env, func, true);
4507 }
4508 }
4509
4510 if (bt_empty(bt))
4511 return 0;
4512
4513 subseq_idx = first_idx;
4514 last_idx = st->last_insn_idx;
4515 first_idx = st->first_insn_idx;
4516 }
4517
4518 /* if we still have requested precise regs or slots, we missed
4519 * something (e.g., stack access through non-r10 register), so
4520 * fallback to marking all precise
4521 */
4522 if (!bt_empty(bt)) {
4523 mark_all_scalars_precise(env, env->cur_state);
4524 bt_reset(bt);
4525 }
4526
4527 return 0;
4528 }
4529
mark_chain_precision(struct bpf_verifier_env * env,int regno)4530 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4531 {
4532 return __mark_chain_precision(env, regno);
4533 }
4534
4535 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4536 * desired reg and stack masks across all relevant frames
4537 */
mark_chain_precision_batch(struct bpf_verifier_env * env)4538 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4539 {
4540 return __mark_chain_precision(env, -1);
4541 }
4542
is_spillable_regtype(enum bpf_reg_type type)4543 static bool is_spillable_regtype(enum bpf_reg_type type)
4544 {
4545 switch (base_type(type)) {
4546 case PTR_TO_MAP_VALUE:
4547 case PTR_TO_STACK:
4548 case PTR_TO_CTX:
4549 case PTR_TO_PACKET:
4550 case PTR_TO_PACKET_META:
4551 case PTR_TO_PACKET_END:
4552 case PTR_TO_FLOW_KEYS:
4553 case CONST_PTR_TO_MAP:
4554 case PTR_TO_SOCKET:
4555 case PTR_TO_SOCK_COMMON:
4556 case PTR_TO_TCP_SOCK:
4557 case PTR_TO_XDP_SOCK:
4558 case PTR_TO_BTF_ID:
4559 case PTR_TO_BUF:
4560 case PTR_TO_MEM:
4561 case PTR_TO_FUNC:
4562 case PTR_TO_MAP_KEY:
4563 case PTR_TO_ARENA:
4564 return true;
4565 default:
4566 return false;
4567 }
4568 }
4569
4570 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)4571 static bool register_is_null(struct bpf_reg_state *reg)
4572 {
4573 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4574 }
4575
4576 /* check if register is a constant scalar value */
is_reg_const(struct bpf_reg_state * reg,bool subreg32)4577 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32)
4578 {
4579 return reg->type == SCALAR_VALUE &&
4580 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off);
4581 }
4582
4583 /* assuming is_reg_const() is true, return constant value of a register */
reg_const_value(struct bpf_reg_state * reg,bool subreg32)4584 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32)
4585 {
4586 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value;
4587 }
4588
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)4589 static bool __is_pointer_value(bool allow_ptr_leaks,
4590 const struct bpf_reg_state *reg)
4591 {
4592 if (allow_ptr_leaks)
4593 return false;
4594
4595 return reg->type != SCALAR_VALUE;
4596 }
4597
assign_scalar_id_before_mov(struct bpf_verifier_env * env,struct bpf_reg_state * src_reg)4598 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env,
4599 struct bpf_reg_state *src_reg)
4600 {
4601 if (src_reg->type != SCALAR_VALUE)
4602 return;
4603
4604 if (src_reg->id & BPF_ADD_CONST) {
4605 /*
4606 * The verifier is processing rX = rY insn and
4607 * rY->id has special linked register already.
4608 * Cleared it, since multiple rX += const are not supported.
4609 */
4610 src_reg->id = 0;
4611 src_reg->off = 0;
4612 }
4613
4614 if (!src_reg->id && !tnum_is_const(src_reg->var_off))
4615 /* Ensure that src_reg has a valid ID that will be copied to
4616 * dst_reg and then will be used by sync_linked_regs() to
4617 * propagate min/max range.
4618 */
4619 src_reg->id = ++env->id_gen;
4620 }
4621
4622 /* Copy src state preserving dst->parent and dst->live fields */
copy_register_state(struct bpf_reg_state * dst,const struct bpf_reg_state * src)4623 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4624 {
4625 struct bpf_reg_state *parent = dst->parent;
4626 enum bpf_reg_liveness live = dst->live;
4627
4628 *dst = *src;
4629 dst->parent = parent;
4630 dst->live = live;
4631 }
4632
save_register_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi,struct bpf_reg_state * reg,int size)4633 static void save_register_state(struct bpf_verifier_env *env,
4634 struct bpf_func_state *state,
4635 int spi, struct bpf_reg_state *reg,
4636 int size)
4637 {
4638 int i;
4639
4640 copy_register_state(&state->stack[spi].spilled_ptr, reg);
4641 if (size == BPF_REG_SIZE)
4642 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4643
4644 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4645 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4646
4647 /* size < 8 bytes spill */
4648 for (; i; i--)
4649 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]);
4650 }
4651
is_bpf_st_mem(struct bpf_insn * insn)4652 static bool is_bpf_st_mem(struct bpf_insn *insn)
4653 {
4654 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4655 }
4656
get_reg_width(struct bpf_reg_state * reg)4657 static int get_reg_width(struct bpf_reg_state *reg)
4658 {
4659 return fls64(reg->umax_value);
4660 }
4661
4662 /* See comment for mark_fastcall_pattern_for_call() */
check_fastcall_stack_contract(struct bpf_verifier_env * env,struct bpf_func_state * state,int insn_idx,int off)4663 static void check_fastcall_stack_contract(struct bpf_verifier_env *env,
4664 struct bpf_func_state *state, int insn_idx, int off)
4665 {
4666 struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno];
4667 struct bpf_insn_aux_data *aux = env->insn_aux_data;
4668 int i;
4669
4670 if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern)
4671 return;
4672 /* access to the region [max_stack_depth .. fastcall_stack_off)
4673 * from something that is not a part of the fastcall pattern,
4674 * disable fastcall rewrites for current subprogram by setting
4675 * fastcall_stack_off to a value smaller than any possible offset.
4676 */
4677 subprog->fastcall_stack_off = S16_MIN;
4678 /* reset fastcall aux flags within subprogram,
4679 * happens at most once per subprogram
4680 */
4681 for (i = subprog->start; i < (subprog + 1)->start; ++i) {
4682 aux[i].fastcall_spills_num = 0;
4683 aux[i].fastcall_pattern = 0;
4684 }
4685 }
4686
4687 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4688 * stack boundary and alignment are checked in check_mem_access()
4689 */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)4690 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4691 /* stack frame we're writing to */
4692 struct bpf_func_state *state,
4693 int off, int size, int value_regno,
4694 int insn_idx)
4695 {
4696 struct bpf_func_state *cur; /* state of the current function */
4697 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4698 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4699 struct bpf_reg_state *reg = NULL;
4700 int insn_flags = insn_stack_access_flags(state->frameno, spi);
4701
4702 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4703 * so it's aligned access and [off, off + size) are within stack limits
4704 */
4705 if (!env->allow_ptr_leaks &&
4706 is_spilled_reg(&state->stack[spi]) &&
4707 !is_spilled_scalar_reg(&state->stack[spi]) &&
4708 size != BPF_REG_SIZE) {
4709 verbose(env, "attempt to corrupt spilled pointer on stack\n");
4710 return -EACCES;
4711 }
4712
4713 cur = env->cur_state->frame[env->cur_state->curframe];
4714 if (value_regno >= 0)
4715 reg = &cur->regs[value_regno];
4716 if (!env->bypass_spec_v4) {
4717 bool sanitize = reg && is_spillable_regtype(reg->type);
4718
4719 for (i = 0; i < size; i++) {
4720 u8 type = state->stack[spi].slot_type[i];
4721
4722 if (type != STACK_MISC && type != STACK_ZERO) {
4723 sanitize = true;
4724 break;
4725 }
4726 }
4727
4728 if (sanitize)
4729 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4730 }
4731
4732 err = destroy_if_dynptr_stack_slot(env, state, spi);
4733 if (err)
4734 return err;
4735
4736 check_fastcall_stack_contract(env, state, insn_idx, off);
4737 mark_stack_slot_scratched(env, spi);
4738 if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) {
4739 bool reg_value_fits;
4740
4741 reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size;
4742 /* Make sure that reg had an ID to build a relation on spill. */
4743 if (reg_value_fits)
4744 assign_scalar_id_before_mov(env, reg);
4745 save_register_state(env, state, spi, reg, size);
4746 /* Break the relation on a narrowing spill. */
4747 if (!reg_value_fits)
4748 state->stack[spi].spilled_ptr.id = 0;
4749 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4750 env->bpf_capable) {
4751 struct bpf_reg_state *tmp_reg = &env->fake_reg[0];
4752
4753 memset(tmp_reg, 0, sizeof(*tmp_reg));
4754 __mark_reg_known(tmp_reg, insn->imm);
4755 tmp_reg->type = SCALAR_VALUE;
4756 save_register_state(env, state, spi, tmp_reg, size);
4757 } else if (reg && is_spillable_regtype(reg->type)) {
4758 /* register containing pointer is being spilled into stack */
4759 if (size != BPF_REG_SIZE) {
4760 verbose_linfo(env, insn_idx, "; ");
4761 verbose(env, "invalid size of register spill\n");
4762 return -EACCES;
4763 }
4764 if (state != cur && reg->type == PTR_TO_STACK) {
4765 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4766 return -EINVAL;
4767 }
4768 save_register_state(env, state, spi, reg, size);
4769 } else {
4770 u8 type = STACK_MISC;
4771
4772 /* regular write of data into stack destroys any spilled ptr */
4773 state->stack[spi].spilled_ptr.type = NOT_INIT;
4774 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4775 if (is_stack_slot_special(&state->stack[spi]))
4776 for (i = 0; i < BPF_REG_SIZE; i++)
4777 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4778
4779 /* only mark the slot as written if all 8 bytes were written
4780 * otherwise read propagation may incorrectly stop too soon
4781 * when stack slots are partially written.
4782 * This heuristic means that read propagation will be
4783 * conservative, since it will add reg_live_read marks
4784 * to stack slots all the way to first state when programs
4785 * writes+reads less than 8 bytes
4786 */
4787 if (size == BPF_REG_SIZE)
4788 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4789
4790 /* when we zero initialize stack slots mark them as such */
4791 if ((reg && register_is_null(reg)) ||
4792 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4793 /* STACK_ZERO case happened because register spill
4794 * wasn't properly aligned at the stack slot boundary,
4795 * so it's not a register spill anymore; force
4796 * originating register to be precise to make
4797 * STACK_ZERO correct for subsequent states
4798 */
4799 err = mark_chain_precision(env, value_regno);
4800 if (err)
4801 return err;
4802 type = STACK_ZERO;
4803 }
4804
4805 /* Mark slots affected by this stack write. */
4806 for (i = 0; i < size; i++)
4807 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
4808 insn_flags = 0; /* not a register spill */
4809 }
4810
4811 if (insn_flags)
4812 return push_insn_history(env, env->cur_state, insn_flags, 0);
4813 return 0;
4814 }
4815
4816 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4817 * known to contain a variable offset.
4818 * This function checks whether the write is permitted and conservatively
4819 * tracks the effects of the write, considering that each stack slot in the
4820 * dynamic range is potentially written to.
4821 *
4822 * 'off' includes 'regno->off'.
4823 * 'value_regno' can be -1, meaning that an unknown value is being written to
4824 * the stack.
4825 *
4826 * Spilled pointers in range are not marked as written because we don't know
4827 * what's going to be actually written. This means that read propagation for
4828 * future reads cannot be terminated by this write.
4829 *
4830 * For privileged programs, uninitialized stack slots are considered
4831 * initialized by this write (even though we don't know exactly what offsets
4832 * are going to be written to). The idea is that we don't want the verifier to
4833 * reject future reads that access slots written to through variable offsets.
4834 */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)4835 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4836 /* func where register points to */
4837 struct bpf_func_state *state,
4838 int ptr_regno, int off, int size,
4839 int value_regno, int insn_idx)
4840 {
4841 struct bpf_func_state *cur; /* state of the current function */
4842 int min_off, max_off;
4843 int i, err;
4844 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4845 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4846 bool writing_zero = false;
4847 /* set if the fact that we're writing a zero is used to let any
4848 * stack slots remain STACK_ZERO
4849 */
4850 bool zero_used = false;
4851
4852 cur = env->cur_state->frame[env->cur_state->curframe];
4853 ptr_reg = &cur->regs[ptr_regno];
4854 min_off = ptr_reg->smin_value + off;
4855 max_off = ptr_reg->smax_value + off + size;
4856 if (value_regno >= 0)
4857 value_reg = &cur->regs[value_regno];
4858 if ((value_reg && register_is_null(value_reg)) ||
4859 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4860 writing_zero = true;
4861
4862 for (i = min_off; i < max_off; i++) {
4863 int spi;
4864
4865 spi = __get_spi(i);
4866 err = destroy_if_dynptr_stack_slot(env, state, spi);
4867 if (err)
4868 return err;
4869 }
4870
4871 check_fastcall_stack_contract(env, state, insn_idx, min_off);
4872 /* Variable offset writes destroy any spilled pointers in range. */
4873 for (i = min_off; i < max_off; i++) {
4874 u8 new_type, *stype;
4875 int slot, spi;
4876
4877 slot = -i - 1;
4878 spi = slot / BPF_REG_SIZE;
4879 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4880 mark_stack_slot_scratched(env, spi);
4881
4882 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4883 /* Reject the write if range we may write to has not
4884 * been initialized beforehand. If we didn't reject
4885 * here, the ptr status would be erased below (even
4886 * though not all slots are actually overwritten),
4887 * possibly opening the door to leaks.
4888 *
4889 * We do however catch STACK_INVALID case below, and
4890 * only allow reading possibly uninitialized memory
4891 * later for CAP_PERFMON, as the write may not happen to
4892 * that slot.
4893 */
4894 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4895 insn_idx, i);
4896 return -EINVAL;
4897 }
4898
4899 /* If writing_zero and the spi slot contains a spill of value 0,
4900 * maintain the spill type.
4901 */
4902 if (writing_zero && *stype == STACK_SPILL &&
4903 is_spilled_scalar_reg(&state->stack[spi])) {
4904 struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr;
4905
4906 if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) {
4907 zero_used = true;
4908 continue;
4909 }
4910 }
4911
4912 /* Erase all other spilled pointers. */
4913 state->stack[spi].spilled_ptr.type = NOT_INIT;
4914
4915 /* Update the slot type. */
4916 new_type = STACK_MISC;
4917 if (writing_zero && *stype == STACK_ZERO) {
4918 new_type = STACK_ZERO;
4919 zero_used = true;
4920 }
4921 /* If the slot is STACK_INVALID, we check whether it's OK to
4922 * pretend that it will be initialized by this write. The slot
4923 * might not actually be written to, and so if we mark it as
4924 * initialized future reads might leak uninitialized memory.
4925 * For privileged programs, we will accept such reads to slots
4926 * that may or may not be written because, if we're reject
4927 * them, the error would be too confusing.
4928 */
4929 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4930 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4931 insn_idx, i);
4932 return -EINVAL;
4933 }
4934 *stype = new_type;
4935 }
4936 if (zero_used) {
4937 /* backtracking doesn't work for STACK_ZERO yet. */
4938 err = mark_chain_precision(env, value_regno);
4939 if (err)
4940 return err;
4941 }
4942 return 0;
4943 }
4944
4945 /* When register 'dst_regno' is assigned some values from stack[min_off,
4946 * max_off), we set the register's type according to the types of the
4947 * respective stack slots. If all the stack values are known to be zeros, then
4948 * so is the destination reg. Otherwise, the register is considered to be
4949 * SCALAR. This function does not deal with register filling; the caller must
4950 * ensure that all spilled registers in the stack range have been marked as
4951 * read.
4952 */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)4953 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4954 /* func where src register points to */
4955 struct bpf_func_state *ptr_state,
4956 int min_off, int max_off, int dst_regno)
4957 {
4958 struct bpf_verifier_state *vstate = env->cur_state;
4959 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4960 int i, slot, spi;
4961 u8 *stype;
4962 int zeros = 0;
4963
4964 for (i = min_off; i < max_off; i++) {
4965 slot = -i - 1;
4966 spi = slot / BPF_REG_SIZE;
4967 mark_stack_slot_scratched(env, spi);
4968 stype = ptr_state->stack[spi].slot_type;
4969 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4970 break;
4971 zeros++;
4972 }
4973 if (zeros == max_off - min_off) {
4974 /* Any access_size read into register is zero extended,
4975 * so the whole register == const_zero.
4976 */
4977 __mark_reg_const_zero(env, &state->regs[dst_regno]);
4978 } else {
4979 /* have read misc data from the stack */
4980 mark_reg_unknown(env, state->regs, dst_regno);
4981 }
4982 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4983 }
4984
4985 /* Read the stack at 'off' and put the results into the register indicated by
4986 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4987 * spilled reg.
4988 *
4989 * 'dst_regno' can be -1, meaning that the read value is not going to a
4990 * register.
4991 *
4992 * The access is assumed to be within the current stack bounds.
4993 */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)4994 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4995 /* func where src register points to */
4996 struct bpf_func_state *reg_state,
4997 int off, int size, int dst_regno)
4998 {
4999 struct bpf_verifier_state *vstate = env->cur_state;
5000 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5001 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
5002 struct bpf_reg_state *reg;
5003 u8 *stype, type;
5004 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
5005
5006 stype = reg_state->stack[spi].slot_type;
5007 reg = ®_state->stack[spi].spilled_ptr;
5008
5009 mark_stack_slot_scratched(env, spi);
5010 check_fastcall_stack_contract(env, state, env->insn_idx, off);
5011
5012 if (is_spilled_reg(®_state->stack[spi])) {
5013 u8 spill_size = 1;
5014
5015 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
5016 spill_size++;
5017
5018 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
5019 if (reg->type != SCALAR_VALUE) {
5020 verbose_linfo(env, env->insn_idx, "; ");
5021 verbose(env, "invalid size of register fill\n");
5022 return -EACCES;
5023 }
5024
5025 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5026 if (dst_regno < 0)
5027 return 0;
5028
5029 if (size <= spill_size &&
5030 bpf_stack_narrow_access_ok(off, size, spill_size)) {
5031 /* The earlier check_reg_arg() has decided the
5032 * subreg_def for this insn. Save it first.
5033 */
5034 s32 subreg_def = state->regs[dst_regno].subreg_def;
5035
5036 copy_register_state(&state->regs[dst_regno], reg);
5037 state->regs[dst_regno].subreg_def = subreg_def;
5038
5039 /* Break the relation on a narrowing fill.
5040 * coerce_reg_to_size will adjust the boundaries.
5041 */
5042 if (get_reg_width(reg) > size * BITS_PER_BYTE)
5043 state->regs[dst_regno].id = 0;
5044 } else {
5045 int spill_cnt = 0, zero_cnt = 0;
5046
5047 for (i = 0; i < size; i++) {
5048 type = stype[(slot - i) % BPF_REG_SIZE];
5049 if (type == STACK_SPILL) {
5050 spill_cnt++;
5051 continue;
5052 }
5053 if (type == STACK_MISC)
5054 continue;
5055 if (type == STACK_ZERO) {
5056 zero_cnt++;
5057 continue;
5058 }
5059 if (type == STACK_INVALID && env->allow_uninit_stack)
5060 continue;
5061 verbose(env, "invalid read from stack off %d+%d size %d\n",
5062 off, i, size);
5063 return -EACCES;
5064 }
5065
5066 if (spill_cnt == size &&
5067 tnum_is_const(reg->var_off) && reg->var_off.value == 0) {
5068 __mark_reg_const_zero(env, &state->regs[dst_regno]);
5069 /* this IS register fill, so keep insn_flags */
5070 } else if (zero_cnt == size) {
5071 /* similarly to mark_reg_stack_read(), preserve zeroes */
5072 __mark_reg_const_zero(env, &state->regs[dst_regno]);
5073 insn_flags = 0; /* not restoring original register state */
5074 } else {
5075 mark_reg_unknown(env, state->regs, dst_regno);
5076 insn_flags = 0; /* not restoring original register state */
5077 }
5078 }
5079 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5080 } else if (dst_regno >= 0) {
5081 /* restore register state from stack */
5082 copy_register_state(&state->regs[dst_regno], reg);
5083 /* mark reg as written since spilled pointer state likely
5084 * has its liveness marks cleared by is_state_visited()
5085 * which resets stack/reg liveness for state transitions
5086 */
5087 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5088 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
5089 /* If dst_regno==-1, the caller is asking us whether
5090 * it is acceptable to use this value as a SCALAR_VALUE
5091 * (e.g. for XADD).
5092 * We must not allow unprivileged callers to do that
5093 * with spilled pointers.
5094 */
5095 verbose(env, "leaking pointer from stack off %d\n",
5096 off);
5097 return -EACCES;
5098 }
5099 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5100 } else {
5101 for (i = 0; i < size; i++) {
5102 type = stype[(slot - i) % BPF_REG_SIZE];
5103 if (type == STACK_MISC)
5104 continue;
5105 if (type == STACK_ZERO)
5106 continue;
5107 if (type == STACK_INVALID && env->allow_uninit_stack)
5108 continue;
5109 verbose(env, "invalid read from stack off %d+%d size %d\n",
5110 off, i, size);
5111 return -EACCES;
5112 }
5113 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5114 if (dst_regno >= 0)
5115 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
5116 insn_flags = 0; /* we are not restoring spilled register */
5117 }
5118 if (insn_flags)
5119 return push_insn_history(env, env->cur_state, insn_flags, 0);
5120 return 0;
5121 }
5122
5123 enum bpf_access_src {
5124 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
5125 ACCESS_HELPER = 2, /* the access is performed by a helper */
5126 };
5127
5128 static int check_stack_range_initialized(struct bpf_verifier_env *env,
5129 int regno, int off, int access_size,
5130 bool zero_size_allowed,
5131 enum bpf_access_src type,
5132 struct bpf_call_arg_meta *meta);
5133
reg_state(struct bpf_verifier_env * env,int regno)5134 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
5135 {
5136 return cur_regs(env) + regno;
5137 }
5138
5139 /* Read the stack at 'ptr_regno + off' and put the result into the register
5140 * 'dst_regno'.
5141 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
5142 * but not its variable offset.
5143 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
5144 *
5145 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
5146 * filling registers (i.e. reads of spilled register cannot be detected when
5147 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
5148 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
5149 * offset; for a fixed offset check_stack_read_fixed_off should be used
5150 * instead.
5151 */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)5152 static int check_stack_read_var_off(struct bpf_verifier_env *env,
5153 int ptr_regno, int off, int size, int dst_regno)
5154 {
5155 /* The state of the source register. */
5156 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5157 struct bpf_func_state *ptr_state = func(env, reg);
5158 int err;
5159 int min_off, max_off;
5160
5161 /* Note that we pass a NULL meta, so raw access will not be permitted.
5162 */
5163 err = check_stack_range_initialized(env, ptr_regno, off, size,
5164 false, ACCESS_DIRECT, NULL);
5165 if (err)
5166 return err;
5167
5168 min_off = reg->smin_value + off;
5169 max_off = reg->smax_value + off;
5170 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
5171 check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off);
5172 return 0;
5173 }
5174
5175 /* check_stack_read dispatches to check_stack_read_fixed_off or
5176 * check_stack_read_var_off.
5177 *
5178 * The caller must ensure that the offset falls within the allocated stack
5179 * bounds.
5180 *
5181 * 'dst_regno' is a register which will receive the value from the stack. It
5182 * can be -1, meaning that the read value is not going to a register.
5183 */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)5184 static int check_stack_read(struct bpf_verifier_env *env,
5185 int ptr_regno, int off, int size,
5186 int dst_regno)
5187 {
5188 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5189 struct bpf_func_state *state = func(env, reg);
5190 int err;
5191 /* Some accesses are only permitted with a static offset. */
5192 bool var_off = !tnum_is_const(reg->var_off);
5193
5194 /* The offset is required to be static when reads don't go to a
5195 * register, in order to not leak pointers (see
5196 * check_stack_read_fixed_off).
5197 */
5198 if (dst_regno < 0 && var_off) {
5199 char tn_buf[48];
5200
5201 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5202 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5203 tn_buf, off, size);
5204 return -EACCES;
5205 }
5206 /* Variable offset is prohibited for unprivileged mode for simplicity
5207 * since it requires corresponding support in Spectre masking for stack
5208 * ALU. See also retrieve_ptr_limit(). The check in
5209 * check_stack_access_for_ptr_arithmetic() called by
5210 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5211 * with variable offsets, therefore no check is required here. Further,
5212 * just checking it here would be insufficient as speculative stack
5213 * writes could still lead to unsafe speculative behaviour.
5214 */
5215 if (!var_off) {
5216 off += reg->var_off.value;
5217 err = check_stack_read_fixed_off(env, state, off, size,
5218 dst_regno);
5219 } else {
5220 /* Variable offset stack reads need more conservative handling
5221 * than fixed offset ones. Note that dst_regno >= 0 on this
5222 * branch.
5223 */
5224 err = check_stack_read_var_off(env, ptr_regno, off, size,
5225 dst_regno);
5226 }
5227 return err;
5228 }
5229
5230
5231 /* check_stack_write dispatches to check_stack_write_fixed_off or
5232 * check_stack_write_var_off.
5233 *
5234 * 'ptr_regno' is the register used as a pointer into the stack.
5235 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5236 * 'value_regno' is the register whose value we're writing to the stack. It can
5237 * be -1, meaning that we're not writing from a register.
5238 *
5239 * The caller must ensure that the offset falls within the maximum stack size.
5240 */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)5241 static int check_stack_write(struct bpf_verifier_env *env,
5242 int ptr_regno, int off, int size,
5243 int value_regno, int insn_idx)
5244 {
5245 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5246 struct bpf_func_state *state = func(env, reg);
5247 int err;
5248
5249 if (tnum_is_const(reg->var_off)) {
5250 off += reg->var_off.value;
5251 err = check_stack_write_fixed_off(env, state, off, size,
5252 value_regno, insn_idx);
5253 } else {
5254 /* Variable offset stack reads need more conservative handling
5255 * than fixed offset ones.
5256 */
5257 err = check_stack_write_var_off(env, state,
5258 ptr_regno, off, size,
5259 value_regno, insn_idx);
5260 }
5261 return err;
5262 }
5263
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)5264 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5265 int off, int size, enum bpf_access_type type)
5266 {
5267 struct bpf_reg_state *regs = cur_regs(env);
5268 struct bpf_map *map = regs[regno].map_ptr;
5269 u32 cap = bpf_map_flags_to_cap(map);
5270
5271 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5272 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5273 map->value_size, off, size);
5274 return -EACCES;
5275 }
5276
5277 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5278 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5279 map->value_size, off, size);
5280 return -EACCES;
5281 }
5282
5283 return 0;
5284 }
5285
5286 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)5287 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5288 int off, int size, u32 mem_size,
5289 bool zero_size_allowed)
5290 {
5291 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5292 struct bpf_reg_state *reg;
5293
5294 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5295 return 0;
5296
5297 reg = &cur_regs(env)[regno];
5298 switch (reg->type) {
5299 case PTR_TO_MAP_KEY:
5300 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5301 mem_size, off, size);
5302 break;
5303 case PTR_TO_MAP_VALUE:
5304 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5305 mem_size, off, size);
5306 break;
5307 case PTR_TO_PACKET:
5308 case PTR_TO_PACKET_META:
5309 case PTR_TO_PACKET_END:
5310 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5311 off, size, regno, reg->id, off, mem_size);
5312 break;
5313 case PTR_TO_MEM:
5314 default:
5315 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5316 mem_size, off, size);
5317 }
5318
5319 return -EACCES;
5320 }
5321
5322 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)5323 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5324 int off, int size, u32 mem_size,
5325 bool zero_size_allowed)
5326 {
5327 struct bpf_verifier_state *vstate = env->cur_state;
5328 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5329 struct bpf_reg_state *reg = &state->regs[regno];
5330 int err;
5331
5332 /* We may have adjusted the register pointing to memory region, so we
5333 * need to try adding each of min_value and max_value to off
5334 * to make sure our theoretical access will be safe.
5335 *
5336 * The minimum value is only important with signed
5337 * comparisons where we can't assume the floor of a
5338 * value is 0. If we are using signed variables for our
5339 * index'es we need to make sure that whatever we use
5340 * will have a set floor within our range.
5341 */
5342 if (reg->smin_value < 0 &&
5343 (reg->smin_value == S64_MIN ||
5344 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5345 reg->smin_value + off < 0)) {
5346 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5347 regno);
5348 return -EACCES;
5349 }
5350 err = __check_mem_access(env, regno, reg->smin_value + off, size,
5351 mem_size, zero_size_allowed);
5352 if (err) {
5353 verbose(env, "R%d min value is outside of the allowed memory range\n",
5354 regno);
5355 return err;
5356 }
5357
5358 /* If we haven't set a max value then we need to bail since we can't be
5359 * sure we won't do bad things.
5360 * If reg->umax_value + off could overflow, treat that as unbounded too.
5361 */
5362 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5363 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5364 regno);
5365 return -EACCES;
5366 }
5367 err = __check_mem_access(env, regno, reg->umax_value + off, size,
5368 mem_size, zero_size_allowed);
5369 if (err) {
5370 verbose(env, "R%d max value is outside of the allowed memory range\n",
5371 regno);
5372 return err;
5373 }
5374
5375 return 0;
5376 }
5377
__check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,bool fixed_off_ok)5378 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5379 const struct bpf_reg_state *reg, int regno,
5380 bool fixed_off_ok)
5381 {
5382 /* Access to this pointer-typed register or passing it to a helper
5383 * is only allowed in its original, unmodified form.
5384 */
5385
5386 if (reg->off < 0) {
5387 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5388 reg_type_str(env, reg->type), regno, reg->off);
5389 return -EACCES;
5390 }
5391
5392 if (!fixed_off_ok && reg->off) {
5393 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5394 reg_type_str(env, reg->type), regno, reg->off);
5395 return -EACCES;
5396 }
5397
5398 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5399 char tn_buf[48];
5400
5401 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5402 verbose(env, "variable %s access var_off=%s disallowed\n",
5403 reg_type_str(env, reg->type), tn_buf);
5404 return -EACCES;
5405 }
5406
5407 return 0;
5408 }
5409
check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)5410 static int check_ptr_off_reg(struct bpf_verifier_env *env,
5411 const struct bpf_reg_state *reg, int regno)
5412 {
5413 return __check_ptr_off_reg(env, reg, regno, false);
5414 }
5415
map_kptr_match_type(struct bpf_verifier_env * env,struct btf_field * kptr_field,struct bpf_reg_state * reg,u32 regno)5416 static int map_kptr_match_type(struct bpf_verifier_env *env,
5417 struct btf_field *kptr_field,
5418 struct bpf_reg_state *reg, u32 regno)
5419 {
5420 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5421 int perm_flags;
5422 const char *reg_name = "";
5423
5424 if (btf_is_kernel(reg->btf)) {
5425 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5426
5427 /* Only unreferenced case accepts untrusted pointers */
5428 if (kptr_field->type == BPF_KPTR_UNREF)
5429 perm_flags |= PTR_UNTRUSTED;
5430 } else {
5431 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5432 if (kptr_field->type == BPF_KPTR_PERCPU)
5433 perm_flags |= MEM_PERCPU;
5434 }
5435
5436 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5437 goto bad_type;
5438
5439 /* We need to verify reg->type and reg->btf, before accessing reg->btf */
5440 reg_name = btf_type_name(reg->btf, reg->btf_id);
5441
5442 /* For ref_ptr case, release function check should ensure we get one
5443 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5444 * normal store of unreferenced kptr, we must ensure var_off is zero.
5445 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5446 * reg->off and reg->ref_obj_id are not needed here.
5447 */
5448 if (__check_ptr_off_reg(env, reg, regno, true))
5449 return -EACCES;
5450
5451 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5452 * we also need to take into account the reg->off.
5453 *
5454 * We want to support cases like:
5455 *
5456 * struct foo {
5457 * struct bar br;
5458 * struct baz bz;
5459 * };
5460 *
5461 * struct foo *v;
5462 * v = func(); // PTR_TO_BTF_ID
5463 * val->foo = v; // reg->off is zero, btf and btf_id match type
5464 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5465 * // first member type of struct after comparison fails
5466 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5467 * // to match type
5468 *
5469 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5470 * is zero. We must also ensure that btf_struct_ids_match does not walk
5471 * the struct to match type against first member of struct, i.e. reject
5472 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5473 * strict mode to true for type match.
5474 */
5475 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5476 kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5477 kptr_field->type != BPF_KPTR_UNREF))
5478 goto bad_type;
5479 return 0;
5480 bad_type:
5481 verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5482 reg_type_str(env, reg->type), reg_name);
5483 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5484 if (kptr_field->type == BPF_KPTR_UNREF)
5485 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5486 targ_name);
5487 else
5488 verbose(env, "\n");
5489 return -EINVAL;
5490 }
5491
in_sleepable(struct bpf_verifier_env * env)5492 static bool in_sleepable(struct bpf_verifier_env *env)
5493 {
5494 return env->prog->sleepable ||
5495 (env->cur_state && env->cur_state->in_sleepable);
5496 }
5497
5498 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5499 * can dereference RCU protected pointers and result is PTR_TRUSTED.
5500 */
in_rcu_cs(struct bpf_verifier_env * env)5501 static bool in_rcu_cs(struct bpf_verifier_env *env)
5502 {
5503 return env->cur_state->active_rcu_lock ||
5504 cur_func(env)->active_locks ||
5505 !in_sleepable(env);
5506 }
5507
5508 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5509 BTF_SET_START(rcu_protected_types)
BTF_ID(struct,prog_test_ref_kfunc)5510 BTF_ID(struct, prog_test_ref_kfunc)
5511 #ifdef CONFIG_CGROUPS
5512 BTF_ID(struct, cgroup)
5513 #endif
5514 #ifdef CONFIG_BPF_JIT
5515 BTF_ID(struct, bpf_cpumask)
5516 #endif
5517 BTF_ID(struct, task_struct)
5518 BTF_ID(struct, bpf_crypto_ctx)
5519 BTF_SET_END(rcu_protected_types)
5520
5521 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5522 {
5523 if (!btf_is_kernel(btf))
5524 return true;
5525 return btf_id_set_contains(&rcu_protected_types, btf_id);
5526 }
5527
kptr_pointee_btf_record(struct btf_field * kptr_field)5528 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field)
5529 {
5530 struct btf_struct_meta *meta;
5531
5532 if (btf_is_kernel(kptr_field->kptr.btf))
5533 return NULL;
5534
5535 meta = btf_find_struct_meta(kptr_field->kptr.btf,
5536 kptr_field->kptr.btf_id);
5537
5538 return meta ? meta->record : NULL;
5539 }
5540
rcu_safe_kptr(const struct btf_field * field)5541 static bool rcu_safe_kptr(const struct btf_field *field)
5542 {
5543 const struct btf_field_kptr *kptr = &field->kptr;
5544
5545 return field->type == BPF_KPTR_PERCPU ||
5546 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5547 }
5548
btf_ld_kptr_type(struct bpf_verifier_env * env,struct btf_field * kptr_field)5549 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5550 {
5551 struct btf_record *rec;
5552 u32 ret;
5553
5554 ret = PTR_MAYBE_NULL;
5555 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5556 ret |= MEM_RCU;
5557 if (kptr_field->type == BPF_KPTR_PERCPU)
5558 ret |= MEM_PERCPU;
5559 else if (!btf_is_kernel(kptr_field->kptr.btf))
5560 ret |= MEM_ALLOC;
5561
5562 rec = kptr_pointee_btf_record(kptr_field);
5563 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE))
5564 ret |= NON_OWN_REF;
5565 } else {
5566 ret |= PTR_UNTRUSTED;
5567 }
5568
5569 return ret;
5570 }
5571
mark_uptr_ld_reg(struct bpf_verifier_env * env,u32 regno,struct btf_field * field)5572 static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno,
5573 struct btf_field *field)
5574 {
5575 struct bpf_reg_state *reg;
5576 const struct btf_type *t;
5577
5578 t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id);
5579 mark_reg_known_zero(env, cur_regs(env), regno);
5580 reg = reg_state(env, regno);
5581 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
5582 reg->mem_size = t->size;
5583 reg->id = ++env->id_gen;
5584
5585 return 0;
5586 }
5587
check_map_kptr_access(struct bpf_verifier_env * env,u32 regno,int value_regno,int insn_idx,struct btf_field * kptr_field)5588 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5589 int value_regno, int insn_idx,
5590 struct btf_field *kptr_field)
5591 {
5592 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5593 int class = BPF_CLASS(insn->code);
5594 struct bpf_reg_state *val_reg;
5595
5596 /* Things we already checked for in check_map_access and caller:
5597 * - Reject cases where variable offset may touch kptr
5598 * - size of access (must be BPF_DW)
5599 * - tnum_is_const(reg->var_off)
5600 * - kptr_field->offset == off + reg->var_off.value
5601 */
5602 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5603 if (BPF_MODE(insn->code) != BPF_MEM) {
5604 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5605 return -EACCES;
5606 }
5607
5608 /* We only allow loading referenced kptr, since it will be marked as
5609 * untrusted, similar to unreferenced kptr.
5610 */
5611 if (class != BPF_LDX &&
5612 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5613 verbose(env, "store to referenced kptr disallowed\n");
5614 return -EACCES;
5615 }
5616 if (class != BPF_LDX && kptr_field->type == BPF_UPTR) {
5617 verbose(env, "store to uptr disallowed\n");
5618 return -EACCES;
5619 }
5620
5621 if (class == BPF_LDX) {
5622 if (kptr_field->type == BPF_UPTR)
5623 return mark_uptr_ld_reg(env, value_regno, kptr_field);
5624
5625 /* We can simply mark the value_regno receiving the pointer
5626 * value from map as PTR_TO_BTF_ID, with the correct type.
5627 */
5628 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5629 kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
5630 } else if (class == BPF_STX) {
5631 val_reg = reg_state(env, value_regno);
5632 if (!register_is_null(val_reg) &&
5633 map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5634 return -EACCES;
5635 } else if (class == BPF_ST) {
5636 if (insn->imm) {
5637 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5638 kptr_field->offset);
5639 return -EACCES;
5640 }
5641 } else {
5642 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5643 return -EACCES;
5644 }
5645 return 0;
5646 }
5647
5648 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed,enum bpf_access_src src)5649 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5650 int off, int size, bool zero_size_allowed,
5651 enum bpf_access_src src)
5652 {
5653 struct bpf_verifier_state *vstate = env->cur_state;
5654 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5655 struct bpf_reg_state *reg = &state->regs[regno];
5656 struct bpf_map *map = reg->map_ptr;
5657 struct btf_record *rec;
5658 int err, i;
5659
5660 err = check_mem_region_access(env, regno, off, size, map->value_size,
5661 zero_size_allowed);
5662 if (err)
5663 return err;
5664
5665 if (IS_ERR_OR_NULL(map->record))
5666 return 0;
5667 rec = map->record;
5668 for (i = 0; i < rec->cnt; i++) {
5669 struct btf_field *field = &rec->fields[i];
5670 u32 p = field->offset;
5671
5672 /* If any part of a field can be touched by load/store, reject
5673 * this program. To check that [x1, x2) overlaps with [y1, y2),
5674 * it is sufficient to check x1 < y2 && y1 < x2.
5675 */
5676 if (reg->smin_value + off < p + field->size &&
5677 p < reg->umax_value + off + size) {
5678 switch (field->type) {
5679 case BPF_KPTR_UNREF:
5680 case BPF_KPTR_REF:
5681 case BPF_KPTR_PERCPU:
5682 case BPF_UPTR:
5683 if (src != ACCESS_DIRECT) {
5684 verbose(env, "%s cannot be accessed indirectly by helper\n",
5685 btf_field_type_name(field->type));
5686 return -EACCES;
5687 }
5688 if (!tnum_is_const(reg->var_off)) {
5689 verbose(env, "%s access cannot have variable offset\n",
5690 btf_field_type_name(field->type));
5691 return -EACCES;
5692 }
5693 if (p != off + reg->var_off.value) {
5694 verbose(env, "%s access misaligned expected=%u off=%llu\n",
5695 btf_field_type_name(field->type),
5696 p, off + reg->var_off.value);
5697 return -EACCES;
5698 }
5699 if (size != bpf_size_to_bytes(BPF_DW)) {
5700 verbose(env, "%s access size must be BPF_DW\n",
5701 btf_field_type_name(field->type));
5702 return -EACCES;
5703 }
5704 break;
5705 default:
5706 verbose(env, "%s cannot be accessed directly by load/store\n",
5707 btf_field_type_name(field->type));
5708 return -EACCES;
5709 }
5710 }
5711 }
5712 return 0;
5713 }
5714
5715 #define MAX_PACKET_OFF 0xffff
5716
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)5717 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5718 const struct bpf_call_arg_meta *meta,
5719 enum bpf_access_type t)
5720 {
5721 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5722
5723 switch (prog_type) {
5724 /* Program types only with direct read access go here! */
5725 case BPF_PROG_TYPE_LWT_IN:
5726 case BPF_PROG_TYPE_LWT_OUT:
5727 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5728 case BPF_PROG_TYPE_SK_REUSEPORT:
5729 case BPF_PROG_TYPE_FLOW_DISSECTOR:
5730 case BPF_PROG_TYPE_CGROUP_SKB:
5731 if (t == BPF_WRITE)
5732 return false;
5733 fallthrough;
5734
5735 /* Program types with direct read + write access go here! */
5736 case BPF_PROG_TYPE_SCHED_CLS:
5737 case BPF_PROG_TYPE_SCHED_ACT:
5738 case BPF_PROG_TYPE_XDP:
5739 case BPF_PROG_TYPE_LWT_XMIT:
5740 case BPF_PROG_TYPE_SK_SKB:
5741 case BPF_PROG_TYPE_SK_MSG:
5742 if (meta)
5743 return meta->pkt_access;
5744
5745 env->seen_direct_write = true;
5746 return true;
5747
5748 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5749 if (t == BPF_WRITE)
5750 env->seen_direct_write = true;
5751
5752 return true;
5753
5754 default:
5755 return false;
5756 }
5757 }
5758
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)5759 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5760 int size, bool zero_size_allowed)
5761 {
5762 struct bpf_reg_state *regs = cur_regs(env);
5763 struct bpf_reg_state *reg = ®s[regno];
5764 int err;
5765
5766 /* We may have added a variable offset to the packet pointer; but any
5767 * reg->range we have comes after that. We are only checking the fixed
5768 * offset.
5769 */
5770
5771 /* We don't allow negative numbers, because we aren't tracking enough
5772 * detail to prove they're safe.
5773 */
5774 if (reg->smin_value < 0) {
5775 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5776 regno);
5777 return -EACCES;
5778 }
5779
5780 err = reg->range < 0 ? -EINVAL :
5781 __check_mem_access(env, regno, off, size, reg->range,
5782 zero_size_allowed);
5783 if (err) {
5784 verbose(env, "R%d offset is outside of the packet\n", regno);
5785 return err;
5786 }
5787
5788 /* __check_mem_access has made sure "off + size - 1" is within u16.
5789 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5790 * otherwise find_good_pkt_pointers would have refused to set range info
5791 * that __check_mem_access would have rejected this pkt access.
5792 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5793 */
5794 env->prog->aux->max_pkt_offset =
5795 max_t(u32, env->prog->aux->max_pkt_offset,
5796 off + reg->umax_value + size - 1);
5797
5798 return err;
5799 }
5800
5801 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type,struct btf ** btf,u32 * btf_id,bool * is_retval,bool is_ldsx)5802 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5803 enum bpf_access_type t, enum bpf_reg_type *reg_type,
5804 struct btf **btf, u32 *btf_id, bool *is_retval, bool is_ldsx)
5805 {
5806 struct bpf_insn_access_aux info = {
5807 .reg_type = *reg_type,
5808 .log = &env->log,
5809 .is_retval = false,
5810 .is_ldsx = is_ldsx,
5811 };
5812
5813 if (env->ops->is_valid_access &&
5814 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5815 /* A non zero info.ctx_field_size indicates that this field is a
5816 * candidate for later verifier transformation to load the whole
5817 * field and then apply a mask when accessed with a narrower
5818 * access than actual ctx access size. A zero info.ctx_field_size
5819 * will only allow for whole field access and rejects any other
5820 * type of narrower access.
5821 */
5822 *reg_type = info.reg_type;
5823 *is_retval = info.is_retval;
5824
5825 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5826 *btf = info.btf;
5827 *btf_id = info.btf_id;
5828 } else {
5829 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5830 }
5831 /* remember the offset of last byte accessed in ctx */
5832 if (env->prog->aux->max_ctx_offset < off + size)
5833 env->prog->aux->max_ctx_offset = off + size;
5834 return 0;
5835 }
5836
5837 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5838 return -EACCES;
5839 }
5840
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)5841 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5842 int size)
5843 {
5844 if (size < 0 || off < 0 ||
5845 (u64)off + size > sizeof(struct bpf_flow_keys)) {
5846 verbose(env, "invalid access to flow keys off=%d size=%d\n",
5847 off, size);
5848 return -EACCES;
5849 }
5850 return 0;
5851 }
5852
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)5853 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5854 u32 regno, int off, int size,
5855 enum bpf_access_type t)
5856 {
5857 struct bpf_reg_state *regs = cur_regs(env);
5858 struct bpf_reg_state *reg = ®s[regno];
5859 struct bpf_insn_access_aux info = {};
5860 bool valid;
5861
5862 if (reg->smin_value < 0) {
5863 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5864 regno);
5865 return -EACCES;
5866 }
5867
5868 switch (reg->type) {
5869 case PTR_TO_SOCK_COMMON:
5870 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5871 break;
5872 case PTR_TO_SOCKET:
5873 valid = bpf_sock_is_valid_access(off, size, t, &info);
5874 break;
5875 case PTR_TO_TCP_SOCK:
5876 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5877 break;
5878 case PTR_TO_XDP_SOCK:
5879 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5880 break;
5881 default:
5882 valid = false;
5883 }
5884
5885
5886 if (valid) {
5887 env->insn_aux_data[insn_idx].ctx_field_size =
5888 info.ctx_field_size;
5889 return 0;
5890 }
5891
5892 verbose(env, "R%d invalid %s access off=%d size=%d\n",
5893 regno, reg_type_str(env, reg->type), off, size);
5894
5895 return -EACCES;
5896 }
5897
is_pointer_value(struct bpf_verifier_env * env,int regno)5898 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5899 {
5900 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5901 }
5902
is_ctx_reg(struct bpf_verifier_env * env,int regno)5903 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5904 {
5905 const struct bpf_reg_state *reg = reg_state(env, regno);
5906
5907 return reg->type == PTR_TO_CTX;
5908 }
5909
is_sk_reg(struct bpf_verifier_env * env,int regno)5910 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5911 {
5912 const struct bpf_reg_state *reg = reg_state(env, regno);
5913
5914 return type_is_sk_pointer(reg->type);
5915 }
5916
is_pkt_reg(struct bpf_verifier_env * env,int regno)5917 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5918 {
5919 const struct bpf_reg_state *reg = reg_state(env, regno);
5920
5921 return type_is_pkt_pointer(reg->type);
5922 }
5923
is_flow_key_reg(struct bpf_verifier_env * env,int regno)5924 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5925 {
5926 const struct bpf_reg_state *reg = reg_state(env, regno);
5927
5928 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5929 return reg->type == PTR_TO_FLOW_KEYS;
5930 }
5931
is_arena_reg(struct bpf_verifier_env * env,int regno)5932 static bool is_arena_reg(struct bpf_verifier_env *env, int regno)
5933 {
5934 const struct bpf_reg_state *reg = reg_state(env, regno);
5935
5936 return reg->type == PTR_TO_ARENA;
5937 }
5938
5939 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5940 #ifdef CONFIG_NET
5941 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5942 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5943 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5944 #endif
5945 [CONST_PTR_TO_MAP] = btf_bpf_map_id,
5946 };
5947
is_trusted_reg(const struct bpf_reg_state * reg)5948 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5949 {
5950 /* A referenced register is always trusted. */
5951 if (reg->ref_obj_id)
5952 return true;
5953
5954 /* Types listed in the reg2btf_ids are always trusted */
5955 if (reg2btf_ids[base_type(reg->type)] &&
5956 !bpf_type_has_unsafe_modifiers(reg->type))
5957 return true;
5958
5959 /* If a register is not referenced, it is trusted if it has the
5960 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5961 * other type modifiers may be safe, but we elect to take an opt-in
5962 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5963 * not.
5964 *
5965 * Eventually, we should make PTR_TRUSTED the single source of truth
5966 * for whether a register is trusted.
5967 */
5968 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5969 !bpf_type_has_unsafe_modifiers(reg->type);
5970 }
5971
is_rcu_reg(const struct bpf_reg_state * reg)5972 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5973 {
5974 return reg->type & MEM_RCU;
5975 }
5976
clear_trusted_flags(enum bpf_type_flag * flag)5977 static void clear_trusted_flags(enum bpf_type_flag *flag)
5978 {
5979 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5980 }
5981
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)5982 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5983 const struct bpf_reg_state *reg,
5984 int off, int size, bool strict)
5985 {
5986 struct tnum reg_off;
5987 int ip_align;
5988
5989 /* Byte size accesses are always allowed. */
5990 if (!strict || size == 1)
5991 return 0;
5992
5993 /* For platforms that do not have a Kconfig enabling
5994 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5995 * NET_IP_ALIGN is universally set to '2'. And on platforms
5996 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5997 * to this code only in strict mode where we want to emulate
5998 * the NET_IP_ALIGN==2 checking. Therefore use an
5999 * unconditional IP align value of '2'.
6000 */
6001 ip_align = 2;
6002
6003 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
6004 if (!tnum_is_aligned(reg_off, size)) {
6005 char tn_buf[48];
6006
6007 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6008 verbose(env,
6009 "misaligned packet access off %d+%s+%d+%d size %d\n",
6010 ip_align, tn_buf, reg->off, off, size);
6011 return -EACCES;
6012 }
6013
6014 return 0;
6015 }
6016
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)6017 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
6018 const struct bpf_reg_state *reg,
6019 const char *pointer_desc,
6020 int off, int size, bool strict)
6021 {
6022 struct tnum reg_off;
6023
6024 /* Byte size accesses are always allowed. */
6025 if (!strict || size == 1)
6026 return 0;
6027
6028 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
6029 if (!tnum_is_aligned(reg_off, size)) {
6030 char tn_buf[48];
6031
6032 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6033 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
6034 pointer_desc, tn_buf, reg->off, off, size);
6035 return -EACCES;
6036 }
6037
6038 return 0;
6039 }
6040
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)6041 static int check_ptr_alignment(struct bpf_verifier_env *env,
6042 const struct bpf_reg_state *reg, int off,
6043 int size, bool strict_alignment_once)
6044 {
6045 bool strict = env->strict_alignment || strict_alignment_once;
6046 const char *pointer_desc = "";
6047
6048 switch (reg->type) {
6049 case PTR_TO_PACKET:
6050 case PTR_TO_PACKET_META:
6051 /* Special case, because of NET_IP_ALIGN. Given metadata sits
6052 * right in front, treat it the very same way.
6053 */
6054 return check_pkt_ptr_alignment(env, reg, off, size, strict);
6055 case PTR_TO_FLOW_KEYS:
6056 pointer_desc = "flow keys ";
6057 break;
6058 case PTR_TO_MAP_KEY:
6059 pointer_desc = "key ";
6060 break;
6061 case PTR_TO_MAP_VALUE:
6062 pointer_desc = "value ";
6063 break;
6064 case PTR_TO_CTX:
6065 pointer_desc = "context ";
6066 break;
6067 case PTR_TO_STACK:
6068 pointer_desc = "stack ";
6069 /* The stack spill tracking logic in check_stack_write_fixed_off()
6070 * and check_stack_read_fixed_off() relies on stack accesses being
6071 * aligned.
6072 */
6073 strict = true;
6074 break;
6075 case PTR_TO_SOCKET:
6076 pointer_desc = "sock ";
6077 break;
6078 case PTR_TO_SOCK_COMMON:
6079 pointer_desc = "sock_common ";
6080 break;
6081 case PTR_TO_TCP_SOCK:
6082 pointer_desc = "tcp_sock ";
6083 break;
6084 case PTR_TO_XDP_SOCK:
6085 pointer_desc = "xdp_sock ";
6086 break;
6087 case PTR_TO_ARENA:
6088 return 0;
6089 default:
6090 break;
6091 }
6092 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
6093 strict);
6094 }
6095
bpf_enable_priv_stack(struct bpf_prog * prog)6096 static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog)
6097 {
6098 if (!bpf_jit_supports_private_stack())
6099 return NO_PRIV_STACK;
6100
6101 /* bpf_prog_check_recur() checks all prog types that use bpf trampoline
6102 * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked
6103 * explicitly.
6104 */
6105 switch (prog->type) {
6106 case BPF_PROG_TYPE_KPROBE:
6107 case BPF_PROG_TYPE_TRACEPOINT:
6108 case BPF_PROG_TYPE_PERF_EVENT:
6109 case BPF_PROG_TYPE_RAW_TRACEPOINT:
6110 return PRIV_STACK_ADAPTIVE;
6111 case BPF_PROG_TYPE_TRACING:
6112 case BPF_PROG_TYPE_LSM:
6113 case BPF_PROG_TYPE_STRUCT_OPS:
6114 if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog))
6115 return PRIV_STACK_ADAPTIVE;
6116 fallthrough;
6117 default:
6118 break;
6119 }
6120
6121 return NO_PRIV_STACK;
6122 }
6123
round_up_stack_depth(struct bpf_verifier_env * env,int stack_depth)6124 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth)
6125 {
6126 if (env->prog->jit_requested)
6127 return round_up(stack_depth, 16);
6128
6129 /* round up to 32-bytes, since this is granularity
6130 * of interpreter stack size
6131 */
6132 return round_up(max_t(u32, stack_depth, 1), 32);
6133 }
6134
6135 /* starting from main bpf function walk all instructions of the function
6136 * and recursively walk all callees that given function can call.
6137 * Ignore jump and exit insns.
6138 * Since recursion is prevented by check_cfg() this algorithm
6139 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
6140 */
check_max_stack_depth_subprog(struct bpf_verifier_env * env,int idx,bool priv_stack_supported)6141 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx,
6142 bool priv_stack_supported)
6143 {
6144 struct bpf_subprog_info *subprog = env->subprog_info;
6145 struct bpf_insn *insn = env->prog->insnsi;
6146 int depth = 0, frame = 0, i, subprog_end, subprog_depth;
6147 bool tail_call_reachable = false;
6148 int ret_insn[MAX_CALL_FRAMES];
6149 int ret_prog[MAX_CALL_FRAMES];
6150 int j;
6151
6152 i = subprog[idx].start;
6153 if (!priv_stack_supported)
6154 subprog[idx].priv_stack_mode = NO_PRIV_STACK;
6155 process_func:
6156 /* protect against potential stack overflow that might happen when
6157 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
6158 * depth for such case down to 256 so that the worst case scenario
6159 * would result in 8k stack size (32 which is tailcall limit * 256 =
6160 * 8k).
6161 *
6162 * To get the idea what might happen, see an example:
6163 * func1 -> sub rsp, 128
6164 * subfunc1 -> sub rsp, 256
6165 * tailcall1 -> add rsp, 256
6166 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
6167 * subfunc2 -> sub rsp, 64
6168 * subfunc22 -> sub rsp, 128
6169 * tailcall2 -> add rsp, 128
6170 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
6171 *
6172 * tailcall will unwind the current stack frame but it will not get rid
6173 * of caller's stack as shown on the example above.
6174 */
6175 if (idx && subprog[idx].has_tail_call && depth >= 256) {
6176 verbose(env,
6177 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
6178 depth);
6179 return -EACCES;
6180 }
6181
6182 subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth);
6183 if (priv_stack_supported) {
6184 /* Request private stack support only if the subprog stack
6185 * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to
6186 * avoid jit penalty if the stack usage is small.
6187 */
6188 if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN &&
6189 subprog_depth >= BPF_PRIV_STACK_MIN_SIZE)
6190 subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE;
6191 }
6192
6193 if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) {
6194 if (subprog_depth > MAX_BPF_STACK) {
6195 verbose(env, "stack size of subprog %d is %d. Too large\n",
6196 idx, subprog_depth);
6197 return -EACCES;
6198 }
6199 } else {
6200 depth += subprog_depth;
6201 if (depth > MAX_BPF_STACK) {
6202 verbose(env, "combined stack size of %d calls is %d. Too large\n",
6203 frame + 1, depth);
6204 return -EACCES;
6205 }
6206 }
6207 continue_func:
6208 subprog_end = subprog[idx + 1].start;
6209 for (; i < subprog_end; i++) {
6210 int next_insn, sidx;
6211
6212 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
6213 bool err = false;
6214
6215 if (!is_bpf_throw_kfunc(insn + i))
6216 continue;
6217 if (subprog[idx].is_cb)
6218 err = true;
6219 for (int c = 0; c < frame && !err; c++) {
6220 if (subprog[ret_prog[c]].is_cb) {
6221 err = true;
6222 break;
6223 }
6224 }
6225 if (!err)
6226 continue;
6227 verbose(env,
6228 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
6229 i, idx);
6230 return -EINVAL;
6231 }
6232
6233 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
6234 continue;
6235 /* remember insn and function to return to */
6236 ret_insn[frame] = i + 1;
6237 ret_prog[frame] = idx;
6238
6239 /* find the callee */
6240 next_insn = i + insn[i].imm + 1;
6241 sidx = find_subprog(env, next_insn);
6242 if (sidx < 0) {
6243 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6244 next_insn);
6245 return -EFAULT;
6246 }
6247 if (subprog[sidx].is_async_cb) {
6248 if (subprog[sidx].has_tail_call) {
6249 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
6250 return -EFAULT;
6251 }
6252 /* async callbacks don't increase bpf prog stack size unless called directly */
6253 if (!bpf_pseudo_call(insn + i))
6254 continue;
6255 if (subprog[sidx].is_exception_cb) {
6256 verbose(env, "insn %d cannot call exception cb directly\n", i);
6257 return -EINVAL;
6258 }
6259 }
6260 i = next_insn;
6261 idx = sidx;
6262 if (!priv_stack_supported)
6263 subprog[idx].priv_stack_mode = NO_PRIV_STACK;
6264
6265 if (subprog[idx].has_tail_call)
6266 tail_call_reachable = true;
6267
6268 frame++;
6269 if (frame >= MAX_CALL_FRAMES) {
6270 verbose(env, "the call stack of %d frames is too deep !\n",
6271 frame);
6272 return -E2BIG;
6273 }
6274 goto process_func;
6275 }
6276 /* if tail call got detected across bpf2bpf calls then mark each of the
6277 * currently present subprog frames as tail call reachable subprogs;
6278 * this info will be utilized by JIT so that we will be preserving the
6279 * tail call counter throughout bpf2bpf calls combined with tailcalls
6280 */
6281 if (tail_call_reachable)
6282 for (j = 0; j < frame; j++) {
6283 if (subprog[ret_prog[j]].is_exception_cb) {
6284 verbose(env, "cannot tail call within exception cb\n");
6285 return -EINVAL;
6286 }
6287 subprog[ret_prog[j]].tail_call_reachable = true;
6288 }
6289 if (subprog[0].tail_call_reachable)
6290 env->prog->aux->tail_call_reachable = true;
6291
6292 /* end of for() loop means the last insn of the 'subprog'
6293 * was reached. Doesn't matter whether it was JA or EXIT
6294 */
6295 if (frame == 0)
6296 return 0;
6297 if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE)
6298 depth -= round_up_stack_depth(env, subprog[idx].stack_depth);
6299 frame--;
6300 i = ret_insn[frame];
6301 idx = ret_prog[frame];
6302 goto continue_func;
6303 }
6304
check_max_stack_depth(struct bpf_verifier_env * env)6305 static int check_max_stack_depth(struct bpf_verifier_env *env)
6306 {
6307 enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN;
6308 struct bpf_subprog_info *si = env->subprog_info;
6309 bool priv_stack_supported;
6310 int ret;
6311
6312 for (int i = 0; i < env->subprog_cnt; i++) {
6313 if (si[i].has_tail_call) {
6314 priv_stack_mode = NO_PRIV_STACK;
6315 break;
6316 }
6317 }
6318
6319 if (priv_stack_mode == PRIV_STACK_UNKNOWN)
6320 priv_stack_mode = bpf_enable_priv_stack(env->prog);
6321
6322 /* All async_cb subprogs use normal kernel stack. If a particular
6323 * subprog appears in both main prog and async_cb subtree, that
6324 * subprog will use normal kernel stack to avoid potential nesting.
6325 * The reverse subprog traversal ensures when main prog subtree is
6326 * checked, the subprogs appearing in async_cb subtrees are already
6327 * marked as using normal kernel stack, so stack size checking can
6328 * be done properly.
6329 */
6330 for (int i = env->subprog_cnt - 1; i >= 0; i--) {
6331 if (!i || si[i].is_async_cb) {
6332 priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE;
6333 ret = check_max_stack_depth_subprog(env, i, priv_stack_supported);
6334 if (ret < 0)
6335 return ret;
6336 }
6337 }
6338
6339 for (int i = 0; i < env->subprog_cnt; i++) {
6340 if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) {
6341 env->prog->aux->jits_use_priv_stack = true;
6342 break;
6343 }
6344 }
6345
6346 return 0;
6347 }
6348
6349 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)6350 static int get_callee_stack_depth(struct bpf_verifier_env *env,
6351 const struct bpf_insn *insn, int idx)
6352 {
6353 int start = idx + insn->imm + 1, subprog;
6354
6355 subprog = find_subprog(env, start);
6356 if (subprog < 0) {
6357 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6358 start);
6359 return -EFAULT;
6360 }
6361 return env->subprog_info[subprog].stack_depth;
6362 }
6363 #endif
6364
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)6365 static int __check_buffer_access(struct bpf_verifier_env *env,
6366 const char *buf_info,
6367 const struct bpf_reg_state *reg,
6368 int regno, int off, int size)
6369 {
6370 if (off < 0) {
6371 verbose(env,
6372 "R%d invalid %s buffer access: off=%d, size=%d\n",
6373 regno, buf_info, off, size);
6374 return -EACCES;
6375 }
6376 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6377 char tn_buf[48];
6378
6379 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6380 verbose(env,
6381 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6382 regno, off, tn_buf);
6383 return -EACCES;
6384 }
6385
6386 return 0;
6387 }
6388
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)6389 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6390 const struct bpf_reg_state *reg,
6391 int regno, int off, int size)
6392 {
6393 int err;
6394
6395 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6396 if (err)
6397 return err;
6398
6399 if (off + size > env->prog->aux->max_tp_access)
6400 env->prog->aux->max_tp_access = off + size;
6401
6402 return 0;
6403 }
6404
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,u32 * max_access)6405 static int check_buffer_access(struct bpf_verifier_env *env,
6406 const struct bpf_reg_state *reg,
6407 int regno, int off, int size,
6408 bool zero_size_allowed,
6409 u32 *max_access)
6410 {
6411 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6412 int err;
6413
6414 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6415 if (err)
6416 return err;
6417
6418 if (off + size > *max_access)
6419 *max_access = off + size;
6420
6421 return 0;
6422 }
6423
6424 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)6425 static void zext_32_to_64(struct bpf_reg_state *reg)
6426 {
6427 reg->var_off = tnum_subreg(reg->var_off);
6428 __reg_assign_32_into_64(reg);
6429 }
6430
6431 /* truncate register to smaller size (in bytes)
6432 * must be called with size < BPF_REG_SIZE
6433 */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)6434 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6435 {
6436 u64 mask;
6437
6438 /* clear high bits in bit representation */
6439 reg->var_off = tnum_cast(reg->var_off, size);
6440
6441 /* fix arithmetic bounds */
6442 mask = ((u64)1 << (size * 8)) - 1;
6443 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6444 reg->umin_value &= mask;
6445 reg->umax_value &= mask;
6446 } else {
6447 reg->umin_value = 0;
6448 reg->umax_value = mask;
6449 }
6450 reg->smin_value = reg->umin_value;
6451 reg->smax_value = reg->umax_value;
6452
6453 /* If size is smaller than 32bit register the 32bit register
6454 * values are also truncated so we push 64-bit bounds into
6455 * 32-bit bounds. Above were truncated < 32-bits already.
6456 */
6457 if (size < 4)
6458 __mark_reg32_unbounded(reg);
6459
6460 reg_bounds_sync(reg);
6461 }
6462
set_sext64_default_val(struct bpf_reg_state * reg,int size)6463 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6464 {
6465 if (size == 1) {
6466 reg->smin_value = reg->s32_min_value = S8_MIN;
6467 reg->smax_value = reg->s32_max_value = S8_MAX;
6468 } else if (size == 2) {
6469 reg->smin_value = reg->s32_min_value = S16_MIN;
6470 reg->smax_value = reg->s32_max_value = S16_MAX;
6471 } else {
6472 /* size == 4 */
6473 reg->smin_value = reg->s32_min_value = S32_MIN;
6474 reg->smax_value = reg->s32_max_value = S32_MAX;
6475 }
6476 reg->umin_value = reg->u32_min_value = 0;
6477 reg->umax_value = U64_MAX;
6478 reg->u32_max_value = U32_MAX;
6479 reg->var_off = tnum_unknown;
6480 }
6481
coerce_reg_to_size_sx(struct bpf_reg_state * reg,int size)6482 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6483 {
6484 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6485 u64 top_smax_value, top_smin_value;
6486 u64 num_bits = size * 8;
6487
6488 if (tnum_is_const(reg->var_off)) {
6489 u64_cval = reg->var_off.value;
6490 if (size == 1)
6491 reg->var_off = tnum_const((s8)u64_cval);
6492 else if (size == 2)
6493 reg->var_off = tnum_const((s16)u64_cval);
6494 else
6495 /* size == 4 */
6496 reg->var_off = tnum_const((s32)u64_cval);
6497
6498 u64_cval = reg->var_off.value;
6499 reg->smax_value = reg->smin_value = u64_cval;
6500 reg->umax_value = reg->umin_value = u64_cval;
6501 reg->s32_max_value = reg->s32_min_value = u64_cval;
6502 reg->u32_max_value = reg->u32_min_value = u64_cval;
6503 return;
6504 }
6505
6506 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6507 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6508
6509 if (top_smax_value != top_smin_value)
6510 goto out;
6511
6512 /* find the s64_min and s64_min after sign extension */
6513 if (size == 1) {
6514 init_s64_max = (s8)reg->smax_value;
6515 init_s64_min = (s8)reg->smin_value;
6516 } else if (size == 2) {
6517 init_s64_max = (s16)reg->smax_value;
6518 init_s64_min = (s16)reg->smin_value;
6519 } else {
6520 init_s64_max = (s32)reg->smax_value;
6521 init_s64_min = (s32)reg->smin_value;
6522 }
6523
6524 s64_max = max(init_s64_max, init_s64_min);
6525 s64_min = min(init_s64_max, init_s64_min);
6526
6527 /* both of s64_max/s64_min positive or negative */
6528 if ((s64_max >= 0) == (s64_min >= 0)) {
6529 reg->s32_min_value = reg->smin_value = s64_min;
6530 reg->s32_max_value = reg->smax_value = s64_max;
6531 reg->u32_min_value = reg->umin_value = s64_min;
6532 reg->u32_max_value = reg->umax_value = s64_max;
6533 reg->var_off = tnum_range(s64_min, s64_max);
6534 return;
6535 }
6536
6537 out:
6538 set_sext64_default_val(reg, size);
6539 }
6540
set_sext32_default_val(struct bpf_reg_state * reg,int size)6541 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6542 {
6543 if (size == 1) {
6544 reg->s32_min_value = S8_MIN;
6545 reg->s32_max_value = S8_MAX;
6546 } else {
6547 /* size == 2 */
6548 reg->s32_min_value = S16_MIN;
6549 reg->s32_max_value = S16_MAX;
6550 }
6551 reg->u32_min_value = 0;
6552 reg->u32_max_value = U32_MAX;
6553 reg->var_off = tnum_subreg(tnum_unknown);
6554 }
6555
coerce_subreg_to_size_sx(struct bpf_reg_state * reg,int size)6556 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6557 {
6558 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6559 u32 top_smax_value, top_smin_value;
6560 u32 num_bits = size * 8;
6561
6562 if (tnum_is_const(reg->var_off)) {
6563 u32_val = reg->var_off.value;
6564 if (size == 1)
6565 reg->var_off = tnum_const((s8)u32_val);
6566 else
6567 reg->var_off = tnum_const((s16)u32_val);
6568
6569 u32_val = reg->var_off.value;
6570 reg->s32_min_value = reg->s32_max_value = u32_val;
6571 reg->u32_min_value = reg->u32_max_value = u32_val;
6572 return;
6573 }
6574
6575 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6576 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6577
6578 if (top_smax_value != top_smin_value)
6579 goto out;
6580
6581 /* find the s32_min and s32_min after sign extension */
6582 if (size == 1) {
6583 init_s32_max = (s8)reg->s32_max_value;
6584 init_s32_min = (s8)reg->s32_min_value;
6585 } else {
6586 /* size == 2 */
6587 init_s32_max = (s16)reg->s32_max_value;
6588 init_s32_min = (s16)reg->s32_min_value;
6589 }
6590 s32_max = max(init_s32_max, init_s32_min);
6591 s32_min = min(init_s32_max, init_s32_min);
6592
6593 if ((s32_min >= 0) == (s32_max >= 0)) {
6594 reg->s32_min_value = s32_min;
6595 reg->s32_max_value = s32_max;
6596 reg->u32_min_value = (u32)s32_min;
6597 reg->u32_max_value = (u32)s32_max;
6598 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max));
6599 return;
6600 }
6601
6602 out:
6603 set_sext32_default_val(reg, size);
6604 }
6605
bpf_map_is_rdonly(const struct bpf_map * map)6606 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6607 {
6608 /* A map is considered read-only if the following condition are true:
6609 *
6610 * 1) BPF program side cannot change any of the map content. The
6611 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6612 * and was set at map creation time.
6613 * 2) The map value(s) have been initialized from user space by a
6614 * loader and then "frozen", such that no new map update/delete
6615 * operations from syscall side are possible for the rest of
6616 * the map's lifetime from that point onwards.
6617 * 3) Any parallel/pending map update/delete operations from syscall
6618 * side have been completed. Only after that point, it's safe to
6619 * assume that map value(s) are immutable.
6620 */
6621 return (map->map_flags & BPF_F_RDONLY_PROG) &&
6622 READ_ONCE(map->frozen) &&
6623 !bpf_map_write_active(map);
6624 }
6625
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val,bool is_ldsx)6626 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6627 bool is_ldsx)
6628 {
6629 void *ptr;
6630 u64 addr;
6631 int err;
6632
6633 err = map->ops->map_direct_value_addr(map, &addr, off);
6634 if (err)
6635 return err;
6636 ptr = (void *)(long)addr + off;
6637
6638 switch (size) {
6639 case sizeof(u8):
6640 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6641 break;
6642 case sizeof(u16):
6643 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6644 break;
6645 case sizeof(u32):
6646 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6647 break;
6648 case sizeof(u64):
6649 *val = *(u64 *)ptr;
6650 break;
6651 default:
6652 return -EINVAL;
6653 }
6654 return 0;
6655 }
6656
6657 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu)
6658 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null)
6659 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted)
6660 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null)
6661
6662 /*
6663 * Allow list few fields as RCU trusted or full trusted.
6664 * This logic doesn't allow mix tagging and will be removed once GCC supports
6665 * btf_type_tag.
6666 */
6667
6668 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
BTF_TYPE_SAFE_RCU(struct task_struct)6669 BTF_TYPE_SAFE_RCU(struct task_struct) {
6670 const cpumask_t *cpus_ptr;
6671 struct css_set __rcu *cgroups;
6672 struct task_struct __rcu *real_parent;
6673 struct task_struct *group_leader;
6674 };
6675
BTF_TYPE_SAFE_RCU(struct cgroup)6676 BTF_TYPE_SAFE_RCU(struct cgroup) {
6677 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6678 struct kernfs_node *kn;
6679 };
6680
BTF_TYPE_SAFE_RCU(struct css_set)6681 BTF_TYPE_SAFE_RCU(struct css_set) {
6682 struct cgroup *dfl_cgrp;
6683 };
6684
6685 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)6686 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6687 struct file __rcu *exe_file;
6688 };
6689
6690 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6691 * because bpf prog accessible sockets are SOCK_RCU_FREE.
6692 */
BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)6693 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6694 struct sock *sk;
6695 };
6696
BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)6697 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6698 struct sock *sk;
6699 };
6700
6701 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)6702 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6703 struct seq_file *seq;
6704 };
6705
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)6706 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6707 struct bpf_iter_meta *meta;
6708 struct task_struct *task;
6709 };
6710
BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)6711 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6712 struct file *file;
6713 };
6714
BTF_TYPE_SAFE_TRUSTED(struct file)6715 BTF_TYPE_SAFE_TRUSTED(struct file) {
6716 struct inode *f_inode;
6717 };
6718
BTF_TYPE_SAFE_TRUSTED(struct dentry)6719 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6720 /* no negative dentry-s in places where bpf can see it */
6721 struct inode *d_inode;
6722 };
6723
BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)6724 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
6725 struct sock *sk;
6726 };
6727
type_is_rcu(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6728 static bool type_is_rcu(struct bpf_verifier_env *env,
6729 struct bpf_reg_state *reg,
6730 const char *field_name, u32 btf_id)
6731 {
6732 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6733 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6734 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6735
6736 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6737 }
6738
type_is_rcu_or_null(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6739 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6740 struct bpf_reg_state *reg,
6741 const char *field_name, u32 btf_id)
6742 {
6743 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6744 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6745 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6746
6747 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6748 }
6749
type_is_trusted(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6750 static bool type_is_trusted(struct bpf_verifier_env *env,
6751 struct bpf_reg_state *reg,
6752 const char *field_name, u32 btf_id)
6753 {
6754 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6755 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6756 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6757 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6758 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6759
6760 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6761 }
6762
type_is_trusted_or_null(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6763 static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
6764 struct bpf_reg_state *reg,
6765 const char *field_name, u32 btf_id)
6766 {
6767 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
6768
6769 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
6770 "__safe_trusted_or_null");
6771 }
6772
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)6773 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6774 struct bpf_reg_state *regs,
6775 int regno, int off, int size,
6776 enum bpf_access_type atype,
6777 int value_regno)
6778 {
6779 struct bpf_reg_state *reg = regs + regno;
6780 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6781 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6782 const char *field_name = NULL;
6783 enum bpf_type_flag flag = 0;
6784 u32 btf_id = 0;
6785 int ret;
6786
6787 if (!env->allow_ptr_leaks) {
6788 verbose(env,
6789 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6790 tname);
6791 return -EPERM;
6792 }
6793 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6794 verbose(env,
6795 "Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6796 tname);
6797 return -EINVAL;
6798 }
6799 if (off < 0) {
6800 verbose(env,
6801 "R%d is ptr_%s invalid negative access: off=%d\n",
6802 regno, tname, off);
6803 return -EACCES;
6804 }
6805 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6806 char tn_buf[48];
6807
6808 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6809 verbose(env,
6810 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6811 regno, tname, off, tn_buf);
6812 return -EACCES;
6813 }
6814
6815 if (reg->type & MEM_USER) {
6816 verbose(env,
6817 "R%d is ptr_%s access user memory: off=%d\n",
6818 regno, tname, off);
6819 return -EACCES;
6820 }
6821
6822 if (reg->type & MEM_PERCPU) {
6823 verbose(env,
6824 "R%d is ptr_%s access percpu memory: off=%d\n",
6825 regno, tname, off);
6826 return -EACCES;
6827 }
6828
6829 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6830 if (!btf_is_kernel(reg->btf)) {
6831 verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6832 return -EFAULT;
6833 }
6834 ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6835 } else {
6836 /* Writes are permitted with default btf_struct_access for
6837 * program allocated objects (which always have ref_obj_id > 0),
6838 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6839 */
6840 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6841 verbose(env, "only read is supported\n");
6842 return -EACCES;
6843 }
6844
6845 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6846 !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
6847 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6848 return -EFAULT;
6849 }
6850
6851 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6852 }
6853
6854 if (ret < 0)
6855 return ret;
6856
6857 if (ret != PTR_TO_BTF_ID) {
6858 /* just mark; */
6859
6860 } else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6861 /* If this is an untrusted pointer, all pointers formed by walking it
6862 * also inherit the untrusted flag.
6863 */
6864 flag = PTR_UNTRUSTED;
6865
6866 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6867 /* By default any pointer obtained from walking a trusted pointer is no
6868 * longer trusted, unless the field being accessed has explicitly been
6869 * marked as inheriting its parent's state of trust (either full or RCU).
6870 * For example:
6871 * 'cgroups' pointer is untrusted if task->cgroups dereference
6872 * happened in a sleepable program outside of bpf_rcu_read_lock()
6873 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6874 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6875 *
6876 * A regular RCU-protected pointer with __rcu tag can also be deemed
6877 * trusted if we are in an RCU CS. Such pointer can be NULL.
6878 */
6879 if (type_is_trusted(env, reg, field_name, btf_id)) {
6880 flag |= PTR_TRUSTED;
6881 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) {
6882 flag |= PTR_TRUSTED | PTR_MAYBE_NULL;
6883 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6884 if (type_is_rcu(env, reg, field_name, btf_id)) {
6885 /* ignore __rcu tag and mark it MEM_RCU */
6886 flag |= MEM_RCU;
6887 } else if (flag & MEM_RCU ||
6888 type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6889 /* __rcu tagged pointers can be NULL */
6890 flag |= MEM_RCU | PTR_MAYBE_NULL;
6891
6892 /* We always trust them */
6893 if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6894 flag & PTR_UNTRUSTED)
6895 flag &= ~PTR_UNTRUSTED;
6896 } else if (flag & (MEM_PERCPU | MEM_USER)) {
6897 /* keep as-is */
6898 } else {
6899 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6900 clear_trusted_flags(&flag);
6901 }
6902 } else {
6903 /*
6904 * If not in RCU CS or MEM_RCU pointer can be NULL then
6905 * aggressively mark as untrusted otherwise such
6906 * pointers will be plain PTR_TO_BTF_ID without flags
6907 * and will be allowed to be passed into helpers for
6908 * compat reasons.
6909 */
6910 flag = PTR_UNTRUSTED;
6911 }
6912 } else {
6913 /* Old compat. Deprecated */
6914 clear_trusted_flags(&flag);
6915 }
6916
6917 if (atype == BPF_READ && value_regno >= 0)
6918 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6919
6920 return 0;
6921 }
6922
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)6923 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6924 struct bpf_reg_state *regs,
6925 int regno, int off, int size,
6926 enum bpf_access_type atype,
6927 int value_regno)
6928 {
6929 struct bpf_reg_state *reg = regs + regno;
6930 struct bpf_map *map = reg->map_ptr;
6931 struct bpf_reg_state map_reg;
6932 enum bpf_type_flag flag = 0;
6933 const struct btf_type *t;
6934 const char *tname;
6935 u32 btf_id;
6936 int ret;
6937
6938 if (!btf_vmlinux) {
6939 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6940 return -ENOTSUPP;
6941 }
6942
6943 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6944 verbose(env, "map_ptr access not supported for map type %d\n",
6945 map->map_type);
6946 return -ENOTSUPP;
6947 }
6948
6949 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6950 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6951
6952 if (!env->allow_ptr_leaks) {
6953 verbose(env,
6954 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6955 tname);
6956 return -EPERM;
6957 }
6958
6959 if (off < 0) {
6960 verbose(env, "R%d is %s invalid negative access: off=%d\n",
6961 regno, tname, off);
6962 return -EACCES;
6963 }
6964
6965 if (atype != BPF_READ) {
6966 verbose(env, "only read from %s is supported\n", tname);
6967 return -EACCES;
6968 }
6969
6970 /* Simulate access to a PTR_TO_BTF_ID */
6971 memset(&map_reg, 0, sizeof(map_reg));
6972 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6973 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6974 if (ret < 0)
6975 return ret;
6976
6977 if (value_regno >= 0)
6978 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6979
6980 return 0;
6981 }
6982
6983 /* Check that the stack access at the given offset is within bounds. The
6984 * maximum valid offset is -1.
6985 *
6986 * The minimum valid offset is -MAX_BPF_STACK for writes, and
6987 * -state->allocated_stack for reads.
6988 */
check_stack_slot_within_bounds(struct bpf_verifier_env * env,s64 off,struct bpf_func_state * state,enum bpf_access_type t)6989 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
6990 s64 off,
6991 struct bpf_func_state *state,
6992 enum bpf_access_type t)
6993 {
6994 int min_valid_off;
6995
6996 if (t == BPF_WRITE || env->allow_uninit_stack)
6997 min_valid_off = -MAX_BPF_STACK;
6998 else
6999 min_valid_off = -state->allocated_stack;
7000
7001 if (off < min_valid_off || off > -1)
7002 return -EACCES;
7003 return 0;
7004 }
7005
7006 /* Check that the stack access at 'regno + off' falls within the maximum stack
7007 * bounds.
7008 *
7009 * 'off' includes `regno->offset`, but not its dynamic part (if any).
7010 */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum bpf_access_src src,enum bpf_access_type type)7011 static int check_stack_access_within_bounds(
7012 struct bpf_verifier_env *env,
7013 int regno, int off, int access_size,
7014 enum bpf_access_src src, enum bpf_access_type type)
7015 {
7016 struct bpf_reg_state *regs = cur_regs(env);
7017 struct bpf_reg_state *reg = regs + regno;
7018 struct bpf_func_state *state = func(env, reg);
7019 s64 min_off, max_off;
7020 int err;
7021 char *err_extra;
7022
7023 if (src == ACCESS_HELPER)
7024 /* We don't know if helpers are reading or writing (or both). */
7025 err_extra = " indirect access to";
7026 else if (type == BPF_READ)
7027 err_extra = " read from";
7028 else
7029 err_extra = " write to";
7030
7031 if (tnum_is_const(reg->var_off)) {
7032 min_off = (s64)reg->var_off.value + off;
7033 max_off = min_off + access_size;
7034 } else {
7035 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
7036 reg->smin_value <= -BPF_MAX_VAR_OFF) {
7037 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
7038 err_extra, regno);
7039 return -EACCES;
7040 }
7041 min_off = reg->smin_value + off;
7042 max_off = reg->smax_value + off + access_size;
7043 }
7044
7045 err = check_stack_slot_within_bounds(env, min_off, state, type);
7046 if (!err && max_off > 0)
7047 err = -EINVAL; /* out of stack access into non-negative offsets */
7048 if (!err && access_size < 0)
7049 /* access_size should not be negative (or overflow an int); others checks
7050 * along the way should have prevented such an access.
7051 */
7052 err = -EFAULT; /* invalid negative access size; integer overflow? */
7053
7054 if (err) {
7055 if (tnum_is_const(reg->var_off)) {
7056 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
7057 err_extra, regno, off, access_size);
7058 } else {
7059 char tn_buf[48];
7060
7061 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7062 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n",
7063 err_extra, regno, tn_buf, off, access_size);
7064 }
7065 return err;
7066 }
7067
7068 /* Note that there is no stack access with offset zero, so the needed stack
7069 * size is -min_off, not -min_off+1.
7070 */
7071 return grow_stack_state(env, state, -min_off /* size */);
7072 }
7073
get_func_retval_range(struct bpf_prog * prog,struct bpf_retval_range * range)7074 static bool get_func_retval_range(struct bpf_prog *prog,
7075 struct bpf_retval_range *range)
7076 {
7077 if (prog->type == BPF_PROG_TYPE_LSM &&
7078 prog->expected_attach_type == BPF_LSM_MAC &&
7079 !bpf_lsm_get_retval_range(prog, range)) {
7080 return true;
7081 }
7082 return false;
7083 }
7084
7085 /* check whether memory at (regno + off) is accessible for t = (read | write)
7086 * if t==write, value_regno is a register which value is stored into memory
7087 * if t==read, value_regno is a register which will receive the value from memory
7088 * if t==write && value_regno==-1, some unknown value is stored into memory
7089 * if t==read && value_regno==-1, don't care what we read from memory
7090 */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once,bool is_ldsx)7091 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
7092 int off, int bpf_size, enum bpf_access_type t,
7093 int value_regno, bool strict_alignment_once, bool is_ldsx)
7094 {
7095 struct bpf_reg_state *regs = cur_regs(env);
7096 struct bpf_reg_state *reg = regs + regno;
7097 int size, err = 0;
7098
7099 size = bpf_size_to_bytes(bpf_size);
7100 if (size < 0)
7101 return size;
7102
7103 /* alignment checks will add in reg->off themselves */
7104 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
7105 if (err)
7106 return err;
7107
7108 /* for access checks, reg->off is just part of off */
7109 off += reg->off;
7110
7111 if (reg->type == PTR_TO_MAP_KEY) {
7112 if (t == BPF_WRITE) {
7113 verbose(env, "write to change key R%d not allowed\n", regno);
7114 return -EACCES;
7115 }
7116
7117 err = check_mem_region_access(env, regno, off, size,
7118 reg->map_ptr->key_size, false);
7119 if (err)
7120 return err;
7121 if (value_regno >= 0)
7122 mark_reg_unknown(env, regs, value_regno);
7123 } else if (reg->type == PTR_TO_MAP_VALUE) {
7124 struct btf_field *kptr_field = NULL;
7125
7126 if (t == BPF_WRITE && value_regno >= 0 &&
7127 is_pointer_value(env, value_regno)) {
7128 verbose(env, "R%d leaks addr into map\n", value_regno);
7129 return -EACCES;
7130 }
7131 err = check_map_access_type(env, regno, off, size, t);
7132 if (err)
7133 return err;
7134 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
7135 if (err)
7136 return err;
7137 if (tnum_is_const(reg->var_off))
7138 kptr_field = btf_record_find(reg->map_ptr->record,
7139 off + reg->var_off.value, BPF_KPTR | BPF_UPTR);
7140 if (kptr_field) {
7141 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
7142 } else if (t == BPF_READ && value_regno >= 0) {
7143 struct bpf_map *map = reg->map_ptr;
7144
7145 /* if map is read-only, track its contents as scalars */
7146 if (tnum_is_const(reg->var_off) &&
7147 bpf_map_is_rdonly(map) &&
7148 map->ops->map_direct_value_addr) {
7149 int map_off = off + reg->var_off.value;
7150 u64 val = 0;
7151
7152 err = bpf_map_direct_read(map, map_off, size,
7153 &val, is_ldsx);
7154 if (err)
7155 return err;
7156
7157 regs[value_regno].type = SCALAR_VALUE;
7158 __mark_reg_known(®s[value_regno], val);
7159 } else {
7160 mark_reg_unknown(env, regs, value_regno);
7161 }
7162 }
7163 } else if (base_type(reg->type) == PTR_TO_MEM) {
7164 bool rdonly_mem = type_is_rdonly_mem(reg->type);
7165
7166 if (type_may_be_null(reg->type)) {
7167 verbose(env, "R%d invalid mem access '%s'\n", regno,
7168 reg_type_str(env, reg->type));
7169 return -EACCES;
7170 }
7171
7172 if (t == BPF_WRITE && rdonly_mem) {
7173 verbose(env, "R%d cannot write into %s\n",
7174 regno, reg_type_str(env, reg->type));
7175 return -EACCES;
7176 }
7177
7178 if (t == BPF_WRITE && value_regno >= 0 &&
7179 is_pointer_value(env, value_regno)) {
7180 verbose(env, "R%d leaks addr into mem\n", value_regno);
7181 return -EACCES;
7182 }
7183
7184 err = check_mem_region_access(env, regno, off, size,
7185 reg->mem_size, false);
7186 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
7187 mark_reg_unknown(env, regs, value_regno);
7188 } else if (reg->type == PTR_TO_CTX) {
7189 bool is_retval = false;
7190 struct bpf_retval_range range;
7191 enum bpf_reg_type reg_type = SCALAR_VALUE;
7192 struct btf *btf = NULL;
7193 u32 btf_id = 0;
7194
7195 if (t == BPF_WRITE && value_regno >= 0 &&
7196 is_pointer_value(env, value_regno)) {
7197 verbose(env, "R%d leaks addr into ctx\n", value_regno);
7198 return -EACCES;
7199 }
7200
7201 err = check_ptr_off_reg(env, reg, regno);
7202 if (err < 0)
7203 return err;
7204
7205 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf,
7206 &btf_id, &is_retval, is_ldsx);
7207 if (err)
7208 verbose_linfo(env, insn_idx, "; ");
7209 if (!err && t == BPF_READ && value_regno >= 0) {
7210 /* ctx access returns either a scalar, or a
7211 * PTR_TO_PACKET[_META,_END]. In the latter
7212 * case, we know the offset is zero.
7213 */
7214 if (reg_type == SCALAR_VALUE) {
7215 if (is_retval && get_func_retval_range(env->prog, &range)) {
7216 err = __mark_reg_s32_range(env, regs, value_regno,
7217 range.minval, range.maxval);
7218 if (err)
7219 return err;
7220 } else {
7221 mark_reg_unknown(env, regs, value_regno);
7222 }
7223 } else {
7224 mark_reg_known_zero(env, regs,
7225 value_regno);
7226 if (type_may_be_null(reg_type))
7227 regs[value_regno].id = ++env->id_gen;
7228 /* A load of ctx field could have different
7229 * actual load size with the one encoded in the
7230 * insn. When the dst is PTR, it is for sure not
7231 * a sub-register.
7232 */
7233 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
7234 if (base_type(reg_type) == PTR_TO_BTF_ID) {
7235 regs[value_regno].btf = btf;
7236 regs[value_regno].btf_id = btf_id;
7237 }
7238 }
7239 regs[value_regno].type = reg_type;
7240 }
7241
7242 } else if (reg->type == PTR_TO_STACK) {
7243 /* Basic bounds checks. */
7244 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
7245 if (err)
7246 return err;
7247
7248 if (t == BPF_READ)
7249 err = check_stack_read(env, regno, off, size,
7250 value_regno);
7251 else
7252 err = check_stack_write(env, regno, off, size,
7253 value_regno, insn_idx);
7254 } else if (reg_is_pkt_pointer(reg)) {
7255 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
7256 verbose(env, "cannot write into packet\n");
7257 return -EACCES;
7258 }
7259 if (t == BPF_WRITE && value_regno >= 0 &&
7260 is_pointer_value(env, value_regno)) {
7261 verbose(env, "R%d leaks addr into packet\n",
7262 value_regno);
7263 return -EACCES;
7264 }
7265 err = check_packet_access(env, regno, off, size, false);
7266 if (!err && t == BPF_READ && value_regno >= 0)
7267 mark_reg_unknown(env, regs, value_regno);
7268 } else if (reg->type == PTR_TO_FLOW_KEYS) {
7269 if (t == BPF_WRITE && value_regno >= 0 &&
7270 is_pointer_value(env, value_regno)) {
7271 verbose(env, "R%d leaks addr into flow keys\n",
7272 value_regno);
7273 return -EACCES;
7274 }
7275
7276 err = check_flow_keys_access(env, off, size);
7277 if (!err && t == BPF_READ && value_regno >= 0)
7278 mark_reg_unknown(env, regs, value_regno);
7279 } else if (type_is_sk_pointer(reg->type)) {
7280 if (t == BPF_WRITE) {
7281 verbose(env, "R%d cannot write into %s\n",
7282 regno, reg_type_str(env, reg->type));
7283 return -EACCES;
7284 }
7285 err = check_sock_access(env, insn_idx, regno, off, size, t);
7286 if (!err && value_regno >= 0)
7287 mark_reg_unknown(env, regs, value_regno);
7288 } else if (reg->type == PTR_TO_TP_BUFFER) {
7289 err = check_tp_buffer_access(env, reg, regno, off, size);
7290 if (!err && t == BPF_READ && value_regno >= 0)
7291 mark_reg_unknown(env, regs, value_regno);
7292 } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
7293 !type_may_be_null(reg->type)) {
7294 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
7295 value_regno);
7296 } else if (reg->type == CONST_PTR_TO_MAP) {
7297 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
7298 value_regno);
7299 } else if (base_type(reg->type) == PTR_TO_BUF) {
7300 bool rdonly_mem = type_is_rdonly_mem(reg->type);
7301 u32 *max_access;
7302
7303 if (rdonly_mem) {
7304 if (t == BPF_WRITE) {
7305 verbose(env, "R%d cannot write into %s\n",
7306 regno, reg_type_str(env, reg->type));
7307 return -EACCES;
7308 }
7309 max_access = &env->prog->aux->max_rdonly_access;
7310 } else {
7311 max_access = &env->prog->aux->max_rdwr_access;
7312 }
7313
7314 err = check_buffer_access(env, reg, regno, off, size, false,
7315 max_access);
7316
7317 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
7318 mark_reg_unknown(env, regs, value_regno);
7319 } else if (reg->type == PTR_TO_ARENA) {
7320 if (t == BPF_READ && value_regno >= 0)
7321 mark_reg_unknown(env, regs, value_regno);
7322 } else {
7323 verbose(env, "R%d invalid mem access '%s'\n", regno,
7324 reg_type_str(env, reg->type));
7325 return -EACCES;
7326 }
7327
7328 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
7329 regs[value_regno].type == SCALAR_VALUE) {
7330 if (!is_ldsx)
7331 /* b/h/w load zero-extends, mark upper bits as known 0 */
7332 coerce_reg_to_size(®s[value_regno], size);
7333 else
7334 coerce_reg_to_size_sx(®s[value_regno], size);
7335 }
7336 return err;
7337 }
7338
7339 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
7340 bool allow_trust_mismatch);
7341
check_atomic(struct bpf_verifier_env * env,int insn_idx,struct bpf_insn * insn)7342 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
7343 {
7344 int load_reg;
7345 int err;
7346
7347 switch (insn->imm) {
7348 case BPF_ADD:
7349 case BPF_ADD | BPF_FETCH:
7350 case BPF_AND:
7351 case BPF_AND | BPF_FETCH:
7352 case BPF_OR:
7353 case BPF_OR | BPF_FETCH:
7354 case BPF_XOR:
7355 case BPF_XOR | BPF_FETCH:
7356 case BPF_XCHG:
7357 case BPF_CMPXCHG:
7358 break;
7359 default:
7360 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
7361 return -EINVAL;
7362 }
7363
7364 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
7365 verbose(env, "invalid atomic operand size\n");
7366 return -EINVAL;
7367 }
7368
7369 /* check src1 operand */
7370 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7371 if (err)
7372 return err;
7373
7374 /* check src2 operand */
7375 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7376 if (err)
7377 return err;
7378
7379 if (insn->imm == BPF_CMPXCHG) {
7380 /* Check comparison of R0 with memory location */
7381 const u32 aux_reg = BPF_REG_0;
7382
7383 err = check_reg_arg(env, aux_reg, SRC_OP);
7384 if (err)
7385 return err;
7386
7387 if (is_pointer_value(env, aux_reg)) {
7388 verbose(env, "R%d leaks addr into mem\n", aux_reg);
7389 return -EACCES;
7390 }
7391 }
7392
7393 if (is_pointer_value(env, insn->src_reg)) {
7394 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7395 return -EACCES;
7396 }
7397
7398 if (is_ctx_reg(env, insn->dst_reg) ||
7399 is_pkt_reg(env, insn->dst_reg) ||
7400 is_flow_key_reg(env, insn->dst_reg) ||
7401 is_sk_reg(env, insn->dst_reg) ||
7402 (is_arena_reg(env, insn->dst_reg) && !bpf_jit_supports_insn(insn, true))) {
7403 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7404 insn->dst_reg,
7405 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7406 return -EACCES;
7407 }
7408
7409 if (insn->imm & BPF_FETCH) {
7410 if (insn->imm == BPF_CMPXCHG)
7411 load_reg = BPF_REG_0;
7412 else
7413 load_reg = insn->src_reg;
7414
7415 /* check and record load of old value */
7416 err = check_reg_arg(env, load_reg, DST_OP);
7417 if (err)
7418 return err;
7419 } else {
7420 /* This instruction accesses a memory location but doesn't
7421 * actually load it into a register.
7422 */
7423 load_reg = -1;
7424 }
7425
7426 /* Check whether we can read the memory, with second call for fetch
7427 * case to simulate the register fill.
7428 */
7429 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7430 BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7431 if (!err && load_reg >= 0)
7432 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7433 BPF_SIZE(insn->code), BPF_READ, load_reg,
7434 true, false);
7435 if (err)
7436 return err;
7437
7438 if (is_arena_reg(env, insn->dst_reg)) {
7439 err = save_aux_ptr_type(env, PTR_TO_ARENA, false);
7440 if (err)
7441 return err;
7442 }
7443 /* Check whether we can write into the same memory. */
7444 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7445 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7446 if (err)
7447 return err;
7448 return 0;
7449 }
7450
7451 /* When register 'regno' is used to read the stack (either directly or through
7452 * a helper function) make sure that it's within stack boundary and, depending
7453 * on the access type and privileges, that all elements of the stack are
7454 * initialized.
7455 *
7456 * 'off' includes 'regno->off', but not its dynamic part (if any).
7457 *
7458 * All registers that have been spilled on the stack in the slots within the
7459 * read offsets are marked as read.
7460 */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum bpf_access_src type,struct bpf_call_arg_meta * meta)7461 static int check_stack_range_initialized(
7462 struct bpf_verifier_env *env, int regno, int off,
7463 int access_size, bool zero_size_allowed,
7464 enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7465 {
7466 struct bpf_reg_state *reg = reg_state(env, regno);
7467 struct bpf_func_state *state = func(env, reg);
7468 int err, min_off, max_off, i, j, slot, spi;
7469 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7470 enum bpf_access_type bounds_check_type;
7471 /* Some accesses can write anything into the stack, others are
7472 * read-only.
7473 */
7474 bool clobber = false;
7475
7476 if (access_size == 0 && !zero_size_allowed) {
7477 verbose(env, "invalid zero-sized read\n");
7478 return -EACCES;
7479 }
7480
7481 if (type == ACCESS_HELPER) {
7482 /* The bounds checks for writes are more permissive than for
7483 * reads. However, if raw_mode is not set, we'll do extra
7484 * checks below.
7485 */
7486 bounds_check_type = BPF_WRITE;
7487 clobber = true;
7488 } else {
7489 bounds_check_type = BPF_READ;
7490 }
7491 err = check_stack_access_within_bounds(env, regno, off, access_size,
7492 type, bounds_check_type);
7493 if (err)
7494 return err;
7495
7496
7497 if (tnum_is_const(reg->var_off)) {
7498 min_off = max_off = reg->var_off.value + off;
7499 } else {
7500 /* Variable offset is prohibited for unprivileged mode for
7501 * simplicity since it requires corresponding support in
7502 * Spectre masking for stack ALU.
7503 * See also retrieve_ptr_limit().
7504 */
7505 if (!env->bypass_spec_v1) {
7506 char tn_buf[48];
7507
7508 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7509 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7510 regno, err_extra, tn_buf);
7511 return -EACCES;
7512 }
7513 /* Only initialized buffer on stack is allowed to be accessed
7514 * with variable offset. With uninitialized buffer it's hard to
7515 * guarantee that whole memory is marked as initialized on
7516 * helper return since specific bounds are unknown what may
7517 * cause uninitialized stack leaking.
7518 */
7519 if (meta && meta->raw_mode)
7520 meta = NULL;
7521
7522 min_off = reg->smin_value + off;
7523 max_off = reg->smax_value + off;
7524 }
7525
7526 if (meta && meta->raw_mode) {
7527 /* Ensure we won't be overwriting dynptrs when simulating byte
7528 * by byte access in check_helper_call using meta.access_size.
7529 * This would be a problem if we have a helper in the future
7530 * which takes:
7531 *
7532 * helper(uninit_mem, len, dynptr)
7533 *
7534 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7535 * may end up writing to dynptr itself when touching memory from
7536 * arg 1. This can be relaxed on a case by case basis for known
7537 * safe cases, but reject due to the possibilitiy of aliasing by
7538 * default.
7539 */
7540 for (i = min_off; i < max_off + access_size; i++) {
7541 int stack_off = -i - 1;
7542
7543 spi = __get_spi(i);
7544 /* raw_mode may write past allocated_stack */
7545 if (state->allocated_stack <= stack_off)
7546 continue;
7547 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7548 verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7549 return -EACCES;
7550 }
7551 }
7552 meta->access_size = access_size;
7553 meta->regno = regno;
7554 return 0;
7555 }
7556
7557 for (i = min_off; i < max_off + access_size; i++) {
7558 u8 *stype;
7559
7560 slot = -i - 1;
7561 spi = slot / BPF_REG_SIZE;
7562 if (state->allocated_stack <= slot) {
7563 verbose(env, "verifier bug: allocated_stack too small");
7564 return -EFAULT;
7565 }
7566
7567 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7568 if (*stype == STACK_MISC)
7569 goto mark;
7570 if ((*stype == STACK_ZERO) ||
7571 (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7572 if (clobber) {
7573 /* helper can write anything into the stack */
7574 *stype = STACK_MISC;
7575 }
7576 goto mark;
7577 }
7578
7579 if (is_spilled_reg(&state->stack[spi]) &&
7580 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7581 env->allow_ptr_leaks)) {
7582 if (clobber) {
7583 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7584 for (j = 0; j < BPF_REG_SIZE; j++)
7585 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7586 }
7587 goto mark;
7588 }
7589
7590 if (tnum_is_const(reg->var_off)) {
7591 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7592 err_extra, regno, min_off, i - min_off, access_size);
7593 } else {
7594 char tn_buf[48];
7595
7596 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7597 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7598 err_extra, regno, tn_buf, i - min_off, access_size);
7599 }
7600 return -EACCES;
7601 mark:
7602 /* reading any byte out of 8-byte 'spill_slot' will cause
7603 * the whole slot to be marked as 'read'
7604 */
7605 mark_reg_read(env, &state->stack[spi].spilled_ptr,
7606 state->stack[spi].spilled_ptr.parent,
7607 REG_LIVE_READ64);
7608 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7609 * be sure that whether stack slot is written to or not. Hence,
7610 * we must still conservatively propagate reads upwards even if
7611 * helper may write to the entire memory range.
7612 */
7613 }
7614 return 0;
7615 }
7616
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,enum bpf_access_type access_type,bool zero_size_allowed,struct bpf_call_arg_meta * meta)7617 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7618 int access_size, enum bpf_access_type access_type,
7619 bool zero_size_allowed,
7620 struct bpf_call_arg_meta *meta)
7621 {
7622 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7623 u32 *max_access;
7624
7625 switch (base_type(reg->type)) {
7626 case PTR_TO_PACKET:
7627 case PTR_TO_PACKET_META:
7628 return check_packet_access(env, regno, reg->off, access_size,
7629 zero_size_allowed);
7630 case PTR_TO_MAP_KEY:
7631 if (access_type == BPF_WRITE) {
7632 verbose(env, "R%d cannot write into %s\n", regno,
7633 reg_type_str(env, reg->type));
7634 return -EACCES;
7635 }
7636 return check_mem_region_access(env, regno, reg->off, access_size,
7637 reg->map_ptr->key_size, false);
7638 case PTR_TO_MAP_VALUE:
7639 if (check_map_access_type(env, regno, reg->off, access_size, access_type))
7640 return -EACCES;
7641 return check_map_access(env, regno, reg->off, access_size,
7642 zero_size_allowed, ACCESS_HELPER);
7643 case PTR_TO_MEM:
7644 if (type_is_rdonly_mem(reg->type)) {
7645 if (access_type == BPF_WRITE) {
7646 verbose(env, "R%d cannot write into %s\n", regno,
7647 reg_type_str(env, reg->type));
7648 return -EACCES;
7649 }
7650 }
7651 return check_mem_region_access(env, regno, reg->off,
7652 access_size, reg->mem_size,
7653 zero_size_allowed);
7654 case PTR_TO_BUF:
7655 if (type_is_rdonly_mem(reg->type)) {
7656 if (access_type == BPF_WRITE) {
7657 verbose(env, "R%d cannot write into %s\n", regno,
7658 reg_type_str(env, reg->type));
7659 return -EACCES;
7660 }
7661
7662 max_access = &env->prog->aux->max_rdonly_access;
7663 } else {
7664 max_access = &env->prog->aux->max_rdwr_access;
7665 }
7666 return check_buffer_access(env, reg, regno, reg->off,
7667 access_size, zero_size_allowed,
7668 max_access);
7669 case PTR_TO_STACK:
7670 return check_stack_range_initialized(
7671 env,
7672 regno, reg->off, access_size,
7673 zero_size_allowed, ACCESS_HELPER, meta);
7674 case PTR_TO_BTF_ID:
7675 return check_ptr_to_btf_access(env, regs, regno, reg->off,
7676 access_size, BPF_READ, -1);
7677 case PTR_TO_CTX:
7678 /* in case the function doesn't know how to access the context,
7679 * (because we are in a program of type SYSCALL for example), we
7680 * can not statically check its size.
7681 * Dynamically check it now.
7682 */
7683 if (!env->ops->convert_ctx_access) {
7684 int offset = access_size - 1;
7685
7686 /* Allow zero-byte read from PTR_TO_CTX */
7687 if (access_size == 0)
7688 return zero_size_allowed ? 0 : -EACCES;
7689
7690 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7691 access_type, -1, false, false);
7692 }
7693
7694 fallthrough;
7695 default: /* scalar_value or invalid ptr */
7696 /* Allow zero-byte read from NULL, regardless of pointer type */
7697 if (zero_size_allowed && access_size == 0 &&
7698 register_is_null(reg))
7699 return 0;
7700
7701 verbose(env, "R%d type=%s ", regno,
7702 reg_type_str(env, reg->type));
7703 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7704 return -EACCES;
7705 }
7706 }
7707
7708 /* verify arguments to helpers or kfuncs consisting of a pointer and an access
7709 * size.
7710 *
7711 * @regno is the register containing the access size. regno-1 is the register
7712 * containing the pointer.
7713 */
check_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,enum bpf_access_type access_type,bool zero_size_allowed,struct bpf_call_arg_meta * meta)7714 static int check_mem_size_reg(struct bpf_verifier_env *env,
7715 struct bpf_reg_state *reg, u32 regno,
7716 enum bpf_access_type access_type,
7717 bool zero_size_allowed,
7718 struct bpf_call_arg_meta *meta)
7719 {
7720 int err;
7721
7722 /* This is used to refine r0 return value bounds for helpers
7723 * that enforce this value as an upper bound on return values.
7724 * See do_refine_retval_range() for helpers that can refine
7725 * the return value. C type of helper is u32 so we pull register
7726 * bound from umax_value however, if negative verifier errors
7727 * out. Only upper bounds can be learned because retval is an
7728 * int type and negative retvals are allowed.
7729 */
7730 meta->msize_max_value = reg->umax_value;
7731
7732 /* The register is SCALAR_VALUE; the access check happens using
7733 * its boundaries. For unprivileged variable accesses, disable
7734 * raw mode so that the program is required to initialize all
7735 * the memory that the helper could just partially fill up.
7736 */
7737 if (!tnum_is_const(reg->var_off))
7738 meta = NULL;
7739
7740 if (reg->smin_value < 0) {
7741 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7742 regno);
7743 return -EACCES;
7744 }
7745
7746 if (reg->umin_value == 0 && !zero_size_allowed) {
7747 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
7748 regno, reg->umin_value, reg->umax_value);
7749 return -EACCES;
7750 }
7751
7752 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7753 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7754 regno);
7755 return -EACCES;
7756 }
7757 err = check_helper_mem_access(env, regno - 1, reg->umax_value,
7758 access_type, zero_size_allowed, meta);
7759 if (!err)
7760 err = mark_chain_precision(env, regno);
7761 return err;
7762 }
7763
check_mem_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,u32 mem_size)7764 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7765 u32 regno, u32 mem_size)
7766 {
7767 bool may_be_null = type_may_be_null(reg->type);
7768 struct bpf_reg_state saved_reg;
7769 int err;
7770
7771 if (register_is_null(reg))
7772 return 0;
7773
7774 /* Assuming that the register contains a value check if the memory
7775 * access is safe. Temporarily save and restore the register's state as
7776 * the conversion shouldn't be visible to a caller.
7777 */
7778 if (may_be_null) {
7779 saved_reg = *reg;
7780 mark_ptr_not_null_reg(reg);
7781 }
7782
7783 err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL);
7784 err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL);
7785
7786 if (may_be_null)
7787 *reg = saved_reg;
7788
7789 return err;
7790 }
7791
check_kfunc_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno)7792 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7793 u32 regno)
7794 {
7795 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7796 bool may_be_null = type_may_be_null(mem_reg->type);
7797 struct bpf_reg_state saved_reg;
7798 struct bpf_call_arg_meta meta;
7799 int err;
7800
7801 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7802
7803 memset(&meta, 0, sizeof(meta));
7804
7805 if (may_be_null) {
7806 saved_reg = *mem_reg;
7807 mark_ptr_not_null_reg(mem_reg);
7808 }
7809
7810 err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta);
7811 err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta);
7812
7813 if (may_be_null)
7814 *mem_reg = saved_reg;
7815
7816 return err;
7817 }
7818
7819 /* Implementation details:
7820 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7821 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7822 * Two bpf_map_lookups (even with the same key) will have different reg->id.
7823 * Two separate bpf_obj_new will also have different reg->id.
7824 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7825 * clears reg->id after value_or_null->value transition, since the verifier only
7826 * cares about the range of access to valid map value pointer and doesn't care
7827 * about actual address of the map element.
7828 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7829 * reg->id > 0 after value_or_null->value transition. By doing so
7830 * two bpf_map_lookups will be considered two different pointers that
7831 * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7832 * returned from bpf_obj_new.
7833 * The verifier allows taking only one bpf_spin_lock at a time to avoid
7834 * dead-locks.
7835 * Since only one bpf_spin_lock is allowed the checks are simpler than
7836 * reg_is_refcounted() logic. The verifier needs to remember only
7837 * one spin_lock instead of array of acquired_refs.
7838 * cur_func(env)->active_locks remembers which map value element or allocated
7839 * object got locked and clears it after bpf_spin_unlock.
7840 */
process_spin_lock(struct bpf_verifier_env * env,int regno,bool is_lock)7841 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7842 bool is_lock)
7843 {
7844 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7845 bool is_const = tnum_is_const(reg->var_off);
7846 struct bpf_func_state *cur = cur_func(env);
7847 u64 val = reg->var_off.value;
7848 struct bpf_map *map = NULL;
7849 struct btf *btf = NULL;
7850 struct btf_record *rec;
7851 int err;
7852
7853 if (!is_const) {
7854 verbose(env,
7855 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7856 regno);
7857 return -EINVAL;
7858 }
7859 if (reg->type == PTR_TO_MAP_VALUE) {
7860 map = reg->map_ptr;
7861 if (!map->btf) {
7862 verbose(env,
7863 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
7864 map->name);
7865 return -EINVAL;
7866 }
7867 } else {
7868 btf = reg->btf;
7869 }
7870
7871 rec = reg_btf_record(reg);
7872 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7873 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7874 map ? map->name : "kptr");
7875 return -EINVAL;
7876 }
7877 if (rec->spin_lock_off != val + reg->off) {
7878 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7879 val + reg->off, rec->spin_lock_off);
7880 return -EINVAL;
7881 }
7882 if (is_lock) {
7883 void *ptr;
7884
7885 if (map)
7886 ptr = map;
7887 else
7888 ptr = btf;
7889
7890 if (cur->active_locks) {
7891 verbose(env,
7892 "Locking two bpf_spin_locks are not allowed\n");
7893 return -EINVAL;
7894 }
7895 err = acquire_lock_state(env, env->insn_idx, REF_TYPE_LOCK, reg->id, ptr);
7896 if (err < 0) {
7897 verbose(env, "Failed to acquire lock state\n");
7898 return err;
7899 }
7900 } else {
7901 void *ptr;
7902
7903 if (map)
7904 ptr = map;
7905 else
7906 ptr = btf;
7907
7908 if (!cur->active_locks) {
7909 verbose(env, "bpf_spin_unlock without taking a lock\n");
7910 return -EINVAL;
7911 }
7912
7913 if (release_lock_state(cur_func(env), REF_TYPE_LOCK, reg->id, ptr)) {
7914 verbose(env, "bpf_spin_unlock of different lock\n");
7915 return -EINVAL;
7916 }
7917
7918 invalidate_non_owning_refs(env);
7919 }
7920 return 0;
7921 }
7922
process_timer_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)7923 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7924 struct bpf_call_arg_meta *meta)
7925 {
7926 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7927 bool is_const = tnum_is_const(reg->var_off);
7928 struct bpf_map *map = reg->map_ptr;
7929 u64 val = reg->var_off.value;
7930
7931 if (!is_const) {
7932 verbose(env,
7933 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7934 regno);
7935 return -EINVAL;
7936 }
7937 if (!map->btf) {
7938 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7939 map->name);
7940 return -EINVAL;
7941 }
7942 if (!btf_record_has_field(map->record, BPF_TIMER)) {
7943 verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7944 return -EINVAL;
7945 }
7946 if (map->record->timer_off != val + reg->off) {
7947 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7948 val + reg->off, map->record->timer_off);
7949 return -EINVAL;
7950 }
7951 if (meta->map_ptr) {
7952 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7953 return -EFAULT;
7954 }
7955 meta->map_uid = reg->map_uid;
7956 meta->map_ptr = map;
7957 return 0;
7958 }
7959
process_wq_func(struct bpf_verifier_env * env,int regno,struct bpf_kfunc_call_arg_meta * meta)7960 static int process_wq_func(struct bpf_verifier_env *env, int regno,
7961 struct bpf_kfunc_call_arg_meta *meta)
7962 {
7963 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7964 struct bpf_map *map = reg->map_ptr;
7965 u64 val = reg->var_off.value;
7966
7967 if (map->record->wq_off != val + reg->off) {
7968 verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n",
7969 val + reg->off, map->record->wq_off);
7970 return -EINVAL;
7971 }
7972 meta->map.uid = reg->map_uid;
7973 meta->map.ptr = map;
7974 return 0;
7975 }
7976
process_kptr_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)7977 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7978 struct bpf_call_arg_meta *meta)
7979 {
7980 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7981 struct btf_field *kptr_field;
7982 struct bpf_map *map_ptr;
7983 struct btf_record *rec;
7984 u32 kptr_off;
7985
7986 if (type_is_ptr_alloc_obj(reg->type)) {
7987 rec = reg_btf_record(reg);
7988 } else { /* PTR_TO_MAP_VALUE */
7989 map_ptr = reg->map_ptr;
7990 if (!map_ptr->btf) {
7991 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7992 map_ptr->name);
7993 return -EINVAL;
7994 }
7995 rec = map_ptr->record;
7996 meta->map_ptr = map_ptr;
7997 }
7998
7999 if (!tnum_is_const(reg->var_off)) {
8000 verbose(env,
8001 "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
8002 regno);
8003 return -EINVAL;
8004 }
8005
8006 if (!btf_record_has_field(rec, BPF_KPTR)) {
8007 verbose(env, "R%d has no valid kptr\n", regno);
8008 return -EINVAL;
8009 }
8010
8011 kptr_off = reg->off + reg->var_off.value;
8012 kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR);
8013 if (!kptr_field) {
8014 verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
8015 return -EACCES;
8016 }
8017 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
8018 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
8019 return -EACCES;
8020 }
8021 meta->kptr_field = kptr_field;
8022 return 0;
8023 }
8024
8025 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
8026 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
8027 *
8028 * In both cases we deal with the first 8 bytes, but need to mark the next 8
8029 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
8030 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
8031 *
8032 * Mutability of bpf_dynptr is at two levels, one is at the level of struct
8033 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
8034 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
8035 * mutate the view of the dynptr and also possibly destroy it. In the latter
8036 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
8037 * memory that dynptr points to.
8038 *
8039 * The verifier will keep track both levels of mutation (bpf_dynptr's in
8040 * reg->type and the memory's in reg->dynptr.type), but there is no support for
8041 * readonly dynptr view yet, hence only the first case is tracked and checked.
8042 *
8043 * This is consistent with how C applies the const modifier to a struct object,
8044 * where the pointer itself inside bpf_dynptr becomes const but not what it
8045 * points to.
8046 *
8047 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
8048 * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
8049 */
process_dynptr_func(struct bpf_verifier_env * env,int regno,int insn_idx,enum bpf_arg_type arg_type,int clone_ref_obj_id)8050 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
8051 enum bpf_arg_type arg_type, int clone_ref_obj_id)
8052 {
8053 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8054 int err;
8055
8056 if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) {
8057 verbose(env,
8058 "arg#%d expected pointer to stack or const struct bpf_dynptr\n",
8059 regno - 1);
8060 return -EINVAL;
8061 }
8062
8063 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
8064 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
8065 */
8066 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
8067 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
8068 return -EFAULT;
8069 }
8070
8071 /* MEM_UNINIT - Points to memory that is an appropriate candidate for
8072 * constructing a mutable bpf_dynptr object.
8073 *
8074 * Currently, this is only possible with PTR_TO_STACK
8075 * pointing to a region of at least 16 bytes which doesn't
8076 * contain an existing bpf_dynptr.
8077 *
8078 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
8079 * mutated or destroyed. However, the memory it points to
8080 * may be mutated.
8081 *
8082 * None - Points to a initialized dynptr that can be mutated and
8083 * destroyed, including mutation of the memory it points
8084 * to.
8085 */
8086 if (arg_type & MEM_UNINIT) {
8087 int i;
8088
8089 if (!is_dynptr_reg_valid_uninit(env, reg)) {
8090 verbose(env, "Dynptr has to be an uninitialized dynptr\n");
8091 return -EINVAL;
8092 }
8093
8094 /* we write BPF_DW bits (8 bytes) at a time */
8095 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
8096 err = check_mem_access(env, insn_idx, regno,
8097 i, BPF_DW, BPF_WRITE, -1, false, false);
8098 if (err)
8099 return err;
8100 }
8101
8102 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
8103 } else /* MEM_RDONLY and None case from above */ {
8104 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
8105 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
8106 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
8107 return -EINVAL;
8108 }
8109
8110 if (!is_dynptr_reg_valid_init(env, reg)) {
8111 verbose(env,
8112 "Expected an initialized dynptr as arg #%d\n",
8113 regno - 1);
8114 return -EINVAL;
8115 }
8116
8117 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
8118 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
8119 verbose(env,
8120 "Expected a dynptr of type %s as arg #%d\n",
8121 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno - 1);
8122 return -EINVAL;
8123 }
8124
8125 err = mark_dynptr_read(env, reg);
8126 }
8127 return err;
8128 }
8129
iter_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi)8130 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
8131 {
8132 struct bpf_func_state *state = func(env, reg);
8133
8134 return state->stack[spi].spilled_ptr.ref_obj_id;
8135 }
8136
is_iter_kfunc(struct bpf_kfunc_call_arg_meta * meta)8137 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8138 {
8139 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
8140 }
8141
is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta * meta)8142 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8143 {
8144 return meta->kfunc_flags & KF_ITER_NEW;
8145 }
8146
is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta * meta)8147 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8148 {
8149 return meta->kfunc_flags & KF_ITER_NEXT;
8150 }
8151
is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta * meta)8152 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8153 {
8154 return meta->kfunc_flags & KF_ITER_DESTROY;
8155 }
8156
is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta * meta,int arg_idx,const struct btf_param * arg)8157 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx,
8158 const struct btf_param *arg)
8159 {
8160 /* btf_check_iter_kfuncs() guarantees that first argument of any iter
8161 * kfunc is iter state pointer
8162 */
8163 if (is_iter_kfunc(meta))
8164 return arg_idx == 0;
8165
8166 /* iter passed as an argument to a generic kfunc */
8167 return btf_param_match_suffix(meta->btf, arg, "__iter");
8168 }
8169
process_iter_arg(struct bpf_verifier_env * env,int regno,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)8170 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
8171 struct bpf_kfunc_call_arg_meta *meta)
8172 {
8173 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8174 const struct btf_type *t;
8175 int spi, err, i, nr_slots, btf_id;
8176
8177 if (reg->type != PTR_TO_STACK) {
8178 verbose(env, "arg#%d expected pointer to an iterator on stack\n", regno - 1);
8179 return -EINVAL;
8180 }
8181
8182 /* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs()
8183 * ensures struct convention, so we wouldn't need to do any BTF
8184 * validation here. But given iter state can be passed as a parameter
8185 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more
8186 * conservative here.
8187 */
8188 btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1);
8189 if (btf_id < 0) {
8190 verbose(env, "expected valid iter pointer as arg #%d\n", regno - 1);
8191 return -EINVAL;
8192 }
8193 t = btf_type_by_id(meta->btf, btf_id);
8194 nr_slots = t->size / BPF_REG_SIZE;
8195
8196 if (is_iter_new_kfunc(meta)) {
8197 /* bpf_iter_<type>_new() expects pointer to uninit iter state */
8198 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
8199 verbose(env, "expected uninitialized iter_%s as arg #%d\n",
8200 iter_type_str(meta->btf, btf_id), regno - 1);
8201 return -EINVAL;
8202 }
8203
8204 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
8205 err = check_mem_access(env, insn_idx, regno,
8206 i, BPF_DW, BPF_WRITE, -1, false, false);
8207 if (err)
8208 return err;
8209 }
8210
8211 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
8212 if (err)
8213 return err;
8214 } else {
8215 /* iter_next() or iter_destroy(), as well as any kfunc
8216 * accepting iter argument, expect initialized iter state
8217 */
8218 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
8219 switch (err) {
8220 case 0:
8221 break;
8222 case -EINVAL:
8223 verbose(env, "expected an initialized iter_%s as arg #%d\n",
8224 iter_type_str(meta->btf, btf_id), regno - 1);
8225 return err;
8226 case -EPROTO:
8227 verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
8228 return err;
8229 default:
8230 return err;
8231 }
8232
8233 spi = iter_get_spi(env, reg, nr_slots);
8234 if (spi < 0)
8235 return spi;
8236
8237 err = mark_iter_read(env, reg, spi, nr_slots);
8238 if (err)
8239 return err;
8240
8241 /* remember meta->iter info for process_iter_next_call() */
8242 meta->iter.spi = spi;
8243 meta->iter.frameno = reg->frameno;
8244 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
8245
8246 if (is_iter_destroy_kfunc(meta)) {
8247 err = unmark_stack_slots_iter(env, reg, nr_slots);
8248 if (err)
8249 return err;
8250 }
8251 }
8252
8253 return 0;
8254 }
8255
8256 /* Look for a previous loop entry at insn_idx: nearest parent state
8257 * stopped at insn_idx with callsites matching those in cur->frame.
8258 */
find_prev_entry(struct bpf_verifier_env * env,struct bpf_verifier_state * cur,int insn_idx)8259 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
8260 struct bpf_verifier_state *cur,
8261 int insn_idx)
8262 {
8263 struct bpf_verifier_state_list *sl;
8264 struct bpf_verifier_state *st;
8265
8266 /* Explored states are pushed in stack order, most recent states come first */
8267 sl = *explored_state(env, insn_idx);
8268 for (; sl; sl = sl->next) {
8269 /* If st->branches != 0 state is a part of current DFS verification path,
8270 * hence cur & st for a loop.
8271 */
8272 st = &sl->state;
8273 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
8274 st->dfs_depth < cur->dfs_depth)
8275 return st;
8276 }
8277
8278 return NULL;
8279 }
8280
8281 static void reset_idmap_scratch(struct bpf_verifier_env *env);
8282 static bool regs_exact(const struct bpf_reg_state *rold,
8283 const struct bpf_reg_state *rcur,
8284 struct bpf_idmap *idmap);
8285
maybe_widen_reg(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_idmap * idmap)8286 static void maybe_widen_reg(struct bpf_verifier_env *env,
8287 struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8288 struct bpf_idmap *idmap)
8289 {
8290 if (rold->type != SCALAR_VALUE)
8291 return;
8292 if (rold->type != rcur->type)
8293 return;
8294 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
8295 return;
8296 __mark_reg_unknown(env, rcur);
8297 }
8298
widen_imprecise_scalars(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)8299 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
8300 struct bpf_verifier_state *old,
8301 struct bpf_verifier_state *cur)
8302 {
8303 struct bpf_func_state *fold, *fcur;
8304 int i, fr;
8305
8306 reset_idmap_scratch(env);
8307 for (fr = old->curframe; fr >= 0; fr--) {
8308 fold = old->frame[fr];
8309 fcur = cur->frame[fr];
8310
8311 for (i = 0; i < MAX_BPF_REG; i++)
8312 maybe_widen_reg(env,
8313 &fold->regs[i],
8314 &fcur->regs[i],
8315 &env->idmap_scratch);
8316
8317 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
8318 if (!is_spilled_reg(&fold->stack[i]) ||
8319 !is_spilled_reg(&fcur->stack[i]))
8320 continue;
8321
8322 maybe_widen_reg(env,
8323 &fold->stack[i].spilled_ptr,
8324 &fcur->stack[i].spilled_ptr,
8325 &env->idmap_scratch);
8326 }
8327 }
8328 return 0;
8329 }
8330
get_iter_from_state(struct bpf_verifier_state * cur_st,struct bpf_kfunc_call_arg_meta * meta)8331 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st,
8332 struct bpf_kfunc_call_arg_meta *meta)
8333 {
8334 int iter_frameno = meta->iter.frameno;
8335 int iter_spi = meta->iter.spi;
8336
8337 return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8338 }
8339
8340 /* process_iter_next_call() is called when verifier gets to iterator's next
8341 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
8342 * to it as just "iter_next()" in comments below.
8343 *
8344 * BPF verifier relies on a crucial contract for any iter_next()
8345 * implementation: it should *eventually* return NULL, and once that happens
8346 * it should keep returning NULL. That is, once iterator exhausts elements to
8347 * iterate, it should never reset or spuriously return new elements.
8348 *
8349 * With the assumption of such contract, process_iter_next_call() simulates
8350 * a fork in the verifier state to validate loop logic correctness and safety
8351 * without having to simulate infinite amount of iterations.
8352 *
8353 * In current state, we first assume that iter_next() returned NULL and
8354 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
8355 * conditions we should not form an infinite loop and should eventually reach
8356 * exit.
8357 *
8358 * Besides that, we also fork current state and enqueue it for later
8359 * verification. In a forked state we keep iterator state as ACTIVE
8360 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
8361 * also bump iteration depth to prevent erroneous infinite loop detection
8362 * later on (see iter_active_depths_differ() comment for details). In this
8363 * state we assume that we'll eventually loop back to another iter_next()
8364 * calls (it could be in exactly same location or in some other instruction,
8365 * it doesn't matter, we don't make any unnecessary assumptions about this,
8366 * everything revolves around iterator state in a stack slot, not which
8367 * instruction is calling iter_next()). When that happens, we either will come
8368 * to iter_next() with equivalent state and can conclude that next iteration
8369 * will proceed in exactly the same way as we just verified, so it's safe to
8370 * assume that loop converges. If not, we'll go on another iteration
8371 * simulation with a different input state, until all possible starting states
8372 * are validated or we reach maximum number of instructions limit.
8373 *
8374 * This way, we will either exhaustively discover all possible input states
8375 * that iterator loop can start with and eventually will converge, or we'll
8376 * effectively regress into bounded loop simulation logic and either reach
8377 * maximum number of instructions if loop is not provably convergent, or there
8378 * is some statically known limit on number of iterations (e.g., if there is
8379 * an explicit `if n > 100 then break;` statement somewhere in the loop).
8380 *
8381 * Iteration convergence logic in is_state_visited() relies on exact
8382 * states comparison, which ignores read and precision marks.
8383 * This is necessary because read and precision marks are not finalized
8384 * while in the loop. Exact comparison might preclude convergence for
8385 * simple programs like below:
8386 *
8387 * i = 0;
8388 * while(iter_next(&it))
8389 * i++;
8390 *
8391 * At each iteration step i++ would produce a new distinct state and
8392 * eventually instruction processing limit would be reached.
8393 *
8394 * To avoid such behavior speculatively forget (widen) range for
8395 * imprecise scalar registers, if those registers were not precise at the
8396 * end of the previous iteration and do not match exactly.
8397 *
8398 * This is a conservative heuristic that allows to verify wide range of programs,
8399 * however it precludes verification of programs that conjure an
8400 * imprecise value on the first loop iteration and use it as precise on a second.
8401 * For example, the following safe program would fail to verify:
8402 *
8403 * struct bpf_num_iter it;
8404 * int arr[10];
8405 * int i = 0, a = 0;
8406 * bpf_iter_num_new(&it, 0, 10);
8407 * while (bpf_iter_num_next(&it)) {
8408 * if (a == 0) {
8409 * a = 1;
8410 * i = 7; // Because i changed verifier would forget
8411 * // it's range on second loop entry.
8412 * } else {
8413 * arr[i] = 42; // This would fail to verify.
8414 * }
8415 * }
8416 * bpf_iter_num_destroy(&it);
8417 */
process_iter_next_call(struct bpf_verifier_env * env,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)8418 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
8419 struct bpf_kfunc_call_arg_meta *meta)
8420 {
8421 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
8422 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
8423 struct bpf_reg_state *cur_iter, *queued_iter;
8424
8425 BTF_TYPE_EMIT(struct bpf_iter);
8426
8427 cur_iter = get_iter_from_state(cur_st, meta);
8428
8429 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
8430 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
8431 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
8432 cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
8433 return -EFAULT;
8434 }
8435
8436 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
8437 /* Because iter_next() call is a checkpoint is_state_visitied()
8438 * should guarantee parent state with same call sites and insn_idx.
8439 */
8440 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
8441 !same_callsites(cur_st->parent, cur_st)) {
8442 verbose(env, "bug: bad parent state for iter next call");
8443 return -EFAULT;
8444 }
8445 /* Note cur_st->parent in the call below, it is necessary to skip
8446 * checkpoint created for cur_st by is_state_visited()
8447 * right at this instruction.
8448 */
8449 prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
8450 /* branch out active iter state */
8451 queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
8452 if (!queued_st)
8453 return -ENOMEM;
8454
8455 queued_iter = get_iter_from_state(queued_st, meta);
8456 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
8457 queued_iter->iter.depth++;
8458 if (prev_st)
8459 widen_imprecise_scalars(env, prev_st, queued_st);
8460
8461 queued_fr = queued_st->frame[queued_st->curframe];
8462 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
8463 }
8464
8465 /* switch to DRAINED state, but keep the depth unchanged */
8466 /* mark current iter state as drained and assume returned NULL */
8467 cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
8468 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]);
8469
8470 return 0;
8471 }
8472
arg_type_is_mem_size(enum bpf_arg_type type)8473 static bool arg_type_is_mem_size(enum bpf_arg_type type)
8474 {
8475 return type == ARG_CONST_SIZE ||
8476 type == ARG_CONST_SIZE_OR_ZERO;
8477 }
8478
arg_type_is_raw_mem(enum bpf_arg_type type)8479 static bool arg_type_is_raw_mem(enum bpf_arg_type type)
8480 {
8481 return base_type(type) == ARG_PTR_TO_MEM &&
8482 type & MEM_UNINIT;
8483 }
8484
arg_type_is_release(enum bpf_arg_type type)8485 static bool arg_type_is_release(enum bpf_arg_type type)
8486 {
8487 return type & OBJ_RELEASE;
8488 }
8489
arg_type_is_dynptr(enum bpf_arg_type type)8490 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8491 {
8492 return base_type(type) == ARG_PTR_TO_DYNPTR;
8493 }
8494
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)8495 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8496 const struct bpf_call_arg_meta *meta,
8497 enum bpf_arg_type *arg_type)
8498 {
8499 if (!meta->map_ptr) {
8500 /* kernel subsystem misconfigured verifier */
8501 verbose(env, "invalid map_ptr to access map->type\n");
8502 return -EACCES;
8503 }
8504
8505 switch (meta->map_ptr->map_type) {
8506 case BPF_MAP_TYPE_SOCKMAP:
8507 case BPF_MAP_TYPE_SOCKHASH:
8508 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8509 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8510 } else {
8511 verbose(env, "invalid arg_type for sockmap/sockhash\n");
8512 return -EINVAL;
8513 }
8514 break;
8515 case BPF_MAP_TYPE_BLOOM_FILTER:
8516 if (meta->func_id == BPF_FUNC_map_peek_elem)
8517 *arg_type = ARG_PTR_TO_MAP_VALUE;
8518 break;
8519 default:
8520 break;
8521 }
8522 return 0;
8523 }
8524
8525 struct bpf_reg_types {
8526 const enum bpf_reg_type types[10];
8527 u32 *btf_id;
8528 };
8529
8530 static const struct bpf_reg_types sock_types = {
8531 .types = {
8532 PTR_TO_SOCK_COMMON,
8533 PTR_TO_SOCKET,
8534 PTR_TO_TCP_SOCK,
8535 PTR_TO_XDP_SOCK,
8536 },
8537 };
8538
8539 #ifdef CONFIG_NET
8540 static const struct bpf_reg_types btf_id_sock_common_types = {
8541 .types = {
8542 PTR_TO_SOCK_COMMON,
8543 PTR_TO_SOCKET,
8544 PTR_TO_TCP_SOCK,
8545 PTR_TO_XDP_SOCK,
8546 PTR_TO_BTF_ID,
8547 PTR_TO_BTF_ID | PTR_TRUSTED,
8548 },
8549 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8550 };
8551 #endif
8552
8553 static const struct bpf_reg_types mem_types = {
8554 .types = {
8555 PTR_TO_STACK,
8556 PTR_TO_PACKET,
8557 PTR_TO_PACKET_META,
8558 PTR_TO_MAP_KEY,
8559 PTR_TO_MAP_VALUE,
8560 PTR_TO_MEM,
8561 PTR_TO_MEM | MEM_RINGBUF,
8562 PTR_TO_BUF,
8563 PTR_TO_BTF_ID | PTR_TRUSTED,
8564 },
8565 };
8566
8567 static const struct bpf_reg_types spin_lock_types = {
8568 .types = {
8569 PTR_TO_MAP_VALUE,
8570 PTR_TO_BTF_ID | MEM_ALLOC,
8571 }
8572 };
8573
8574 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8575 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8576 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8577 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8578 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8579 static const struct bpf_reg_types btf_ptr_types = {
8580 .types = {
8581 PTR_TO_BTF_ID,
8582 PTR_TO_BTF_ID | PTR_TRUSTED,
8583 PTR_TO_BTF_ID | MEM_RCU,
8584 },
8585 };
8586 static const struct bpf_reg_types percpu_btf_ptr_types = {
8587 .types = {
8588 PTR_TO_BTF_ID | MEM_PERCPU,
8589 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
8590 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8591 }
8592 };
8593 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8594 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8595 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8596 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8597 static const struct bpf_reg_types kptr_xchg_dest_types = {
8598 .types = {
8599 PTR_TO_MAP_VALUE,
8600 PTR_TO_BTF_ID | MEM_ALLOC
8601 }
8602 };
8603 static const struct bpf_reg_types dynptr_types = {
8604 .types = {
8605 PTR_TO_STACK,
8606 CONST_PTR_TO_DYNPTR,
8607 }
8608 };
8609
8610 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8611 [ARG_PTR_TO_MAP_KEY] = &mem_types,
8612 [ARG_PTR_TO_MAP_VALUE] = &mem_types,
8613 [ARG_CONST_SIZE] = &scalar_types,
8614 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
8615 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
8616 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
8617 [ARG_PTR_TO_CTX] = &context_types,
8618 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
8619 #ifdef CONFIG_NET
8620 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
8621 #endif
8622 [ARG_PTR_TO_SOCKET] = &fullsock_types,
8623 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
8624 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
8625 [ARG_PTR_TO_MEM] = &mem_types,
8626 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types,
8627 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
8628 [ARG_PTR_TO_FUNC] = &func_ptr_types,
8629 [ARG_PTR_TO_STACK] = &stack_ptr_types,
8630 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
8631 [ARG_PTR_TO_TIMER] = &timer_types,
8632 [ARG_KPTR_XCHG_DEST] = &kptr_xchg_dest_types,
8633 [ARG_PTR_TO_DYNPTR] = &dynptr_types,
8634 };
8635
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id,struct bpf_call_arg_meta * meta)8636 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8637 enum bpf_arg_type arg_type,
8638 const u32 *arg_btf_id,
8639 struct bpf_call_arg_meta *meta)
8640 {
8641 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8642 enum bpf_reg_type expected, type = reg->type;
8643 const struct bpf_reg_types *compatible;
8644 int i, j;
8645
8646 compatible = compatible_reg_types[base_type(arg_type)];
8647 if (!compatible) {
8648 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8649 return -EFAULT;
8650 }
8651
8652 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8653 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8654 *
8655 * Same for MAYBE_NULL:
8656 *
8657 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8658 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8659 *
8660 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8661 *
8662 * Therefore we fold these flags depending on the arg_type before comparison.
8663 */
8664 if (arg_type & MEM_RDONLY)
8665 type &= ~MEM_RDONLY;
8666 if (arg_type & PTR_MAYBE_NULL)
8667 type &= ~PTR_MAYBE_NULL;
8668 if (base_type(arg_type) == ARG_PTR_TO_MEM)
8669 type &= ~DYNPTR_TYPE_FLAG_MASK;
8670
8671 /* Local kptr types are allowed as the source argument of bpf_kptr_xchg */
8672 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) {
8673 type &= ~MEM_ALLOC;
8674 type &= ~MEM_PERCPU;
8675 }
8676
8677 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8678 expected = compatible->types[i];
8679 if (expected == NOT_INIT)
8680 break;
8681
8682 if (type == expected)
8683 goto found;
8684 }
8685
8686 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8687 for (j = 0; j + 1 < i; j++)
8688 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8689 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8690 return -EACCES;
8691
8692 found:
8693 if (base_type(reg->type) != PTR_TO_BTF_ID)
8694 return 0;
8695
8696 if (compatible == &mem_types) {
8697 if (!(arg_type & MEM_RDONLY)) {
8698 verbose(env,
8699 "%s() may write into memory pointed by R%d type=%s\n",
8700 func_id_name(meta->func_id),
8701 regno, reg_type_str(env, reg->type));
8702 return -EACCES;
8703 }
8704 return 0;
8705 }
8706
8707 switch ((int)reg->type) {
8708 case PTR_TO_BTF_ID:
8709 case PTR_TO_BTF_ID | PTR_TRUSTED:
8710 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL:
8711 case PTR_TO_BTF_ID | MEM_RCU:
8712 case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8713 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8714 {
8715 /* For bpf_sk_release, it needs to match against first member
8716 * 'struct sock_common', hence make an exception for it. This
8717 * allows bpf_sk_release to work for multiple socket types.
8718 */
8719 bool strict_type_match = arg_type_is_release(arg_type) &&
8720 meta->func_id != BPF_FUNC_sk_release;
8721
8722 if (type_may_be_null(reg->type) &&
8723 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8724 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8725 return -EACCES;
8726 }
8727
8728 if (!arg_btf_id) {
8729 if (!compatible->btf_id) {
8730 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8731 return -EFAULT;
8732 }
8733 arg_btf_id = compatible->btf_id;
8734 }
8735
8736 if (meta->func_id == BPF_FUNC_kptr_xchg) {
8737 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8738 return -EACCES;
8739 } else {
8740 if (arg_btf_id == BPF_PTR_POISON) {
8741 verbose(env, "verifier internal error:");
8742 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8743 regno);
8744 return -EACCES;
8745 }
8746
8747 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8748 btf_vmlinux, *arg_btf_id,
8749 strict_type_match)) {
8750 verbose(env, "R%d is of type %s but %s is expected\n",
8751 regno, btf_type_name(reg->btf, reg->btf_id),
8752 btf_type_name(btf_vmlinux, *arg_btf_id));
8753 return -EACCES;
8754 }
8755 }
8756 break;
8757 }
8758 case PTR_TO_BTF_ID | MEM_ALLOC:
8759 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
8760 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8761 meta->func_id != BPF_FUNC_kptr_xchg) {
8762 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8763 return -EFAULT;
8764 }
8765 /* Check if local kptr in src arg matches kptr in dst arg */
8766 if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) {
8767 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8768 return -EACCES;
8769 }
8770 break;
8771 case PTR_TO_BTF_ID | MEM_PERCPU:
8772 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
8773 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8774 /* Handled by helper specific checks */
8775 break;
8776 default:
8777 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8778 return -EFAULT;
8779 }
8780 return 0;
8781 }
8782
8783 static struct btf_field *
reg_find_field_offset(const struct bpf_reg_state * reg,s32 off,u32 fields)8784 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8785 {
8786 struct btf_field *field;
8787 struct btf_record *rec;
8788
8789 rec = reg_btf_record(reg);
8790 if (!rec)
8791 return NULL;
8792
8793 field = btf_record_find(rec, off, fields);
8794 if (!field)
8795 return NULL;
8796
8797 return field;
8798 }
8799
check_func_arg_reg_off(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,enum bpf_arg_type arg_type)8800 static int check_func_arg_reg_off(struct bpf_verifier_env *env,
8801 const struct bpf_reg_state *reg, int regno,
8802 enum bpf_arg_type arg_type)
8803 {
8804 u32 type = reg->type;
8805
8806 /* When referenced register is passed to release function, its fixed
8807 * offset must be 0.
8808 *
8809 * We will check arg_type_is_release reg has ref_obj_id when storing
8810 * meta->release_regno.
8811 */
8812 if (arg_type_is_release(arg_type)) {
8813 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8814 * may not directly point to the object being released, but to
8815 * dynptr pointing to such object, which might be at some offset
8816 * on the stack. In that case, we simply to fallback to the
8817 * default handling.
8818 */
8819 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8820 return 0;
8821
8822 /* Doing check_ptr_off_reg check for the offset will catch this
8823 * because fixed_off_ok is false, but checking here allows us
8824 * to give the user a better error message.
8825 */
8826 if (reg->off) {
8827 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8828 regno);
8829 return -EINVAL;
8830 }
8831 return __check_ptr_off_reg(env, reg, regno, false);
8832 }
8833
8834 switch (type) {
8835 /* Pointer types where both fixed and variable offset is explicitly allowed: */
8836 case PTR_TO_STACK:
8837 case PTR_TO_PACKET:
8838 case PTR_TO_PACKET_META:
8839 case PTR_TO_MAP_KEY:
8840 case PTR_TO_MAP_VALUE:
8841 case PTR_TO_MEM:
8842 case PTR_TO_MEM | MEM_RDONLY:
8843 case PTR_TO_MEM | MEM_RINGBUF:
8844 case PTR_TO_BUF:
8845 case PTR_TO_BUF | MEM_RDONLY:
8846 case PTR_TO_ARENA:
8847 case SCALAR_VALUE:
8848 return 0;
8849 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8850 * fixed offset.
8851 */
8852 case PTR_TO_BTF_ID:
8853 case PTR_TO_BTF_ID | MEM_ALLOC:
8854 case PTR_TO_BTF_ID | PTR_TRUSTED:
8855 case PTR_TO_BTF_ID | MEM_RCU:
8856 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8857 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8858 /* When referenced PTR_TO_BTF_ID is passed to release function,
8859 * its fixed offset must be 0. In the other cases, fixed offset
8860 * can be non-zero. This was already checked above. So pass
8861 * fixed_off_ok as true to allow fixed offset for all other
8862 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8863 * still need to do checks instead of returning.
8864 */
8865 return __check_ptr_off_reg(env, reg, regno, true);
8866 default:
8867 return __check_ptr_off_reg(env, reg, regno, false);
8868 }
8869 }
8870
get_dynptr_arg_reg(struct bpf_verifier_env * env,const struct bpf_func_proto * fn,struct bpf_reg_state * regs)8871 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8872 const struct bpf_func_proto *fn,
8873 struct bpf_reg_state *regs)
8874 {
8875 struct bpf_reg_state *state = NULL;
8876 int i;
8877
8878 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8879 if (arg_type_is_dynptr(fn->arg_type[i])) {
8880 if (state) {
8881 verbose(env, "verifier internal error: multiple dynptr args\n");
8882 return NULL;
8883 }
8884 state = ®s[BPF_REG_1 + i];
8885 }
8886
8887 if (!state)
8888 verbose(env, "verifier internal error: no dynptr arg found\n");
8889
8890 return state;
8891 }
8892
dynptr_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)8893 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8894 {
8895 struct bpf_func_state *state = func(env, reg);
8896 int spi;
8897
8898 if (reg->type == CONST_PTR_TO_DYNPTR)
8899 return reg->id;
8900 spi = dynptr_get_spi(env, reg);
8901 if (spi < 0)
8902 return spi;
8903 return state->stack[spi].spilled_ptr.id;
8904 }
8905
dynptr_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)8906 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8907 {
8908 struct bpf_func_state *state = func(env, reg);
8909 int spi;
8910
8911 if (reg->type == CONST_PTR_TO_DYNPTR)
8912 return reg->ref_obj_id;
8913 spi = dynptr_get_spi(env, reg);
8914 if (spi < 0)
8915 return spi;
8916 return state->stack[spi].spilled_ptr.ref_obj_id;
8917 }
8918
dynptr_get_type(struct bpf_verifier_env * env,struct bpf_reg_state * reg)8919 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8920 struct bpf_reg_state *reg)
8921 {
8922 struct bpf_func_state *state = func(env, reg);
8923 int spi;
8924
8925 if (reg->type == CONST_PTR_TO_DYNPTR)
8926 return reg->dynptr.type;
8927
8928 spi = __get_spi(reg->off);
8929 if (spi < 0) {
8930 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8931 return BPF_DYNPTR_TYPE_INVALID;
8932 }
8933
8934 return state->stack[spi].spilled_ptr.dynptr.type;
8935 }
8936
check_reg_const_str(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno)8937 static int check_reg_const_str(struct bpf_verifier_env *env,
8938 struct bpf_reg_state *reg, u32 regno)
8939 {
8940 struct bpf_map *map = reg->map_ptr;
8941 int err;
8942 int map_off;
8943 u64 map_addr;
8944 char *str_ptr;
8945
8946 if (reg->type != PTR_TO_MAP_VALUE)
8947 return -EINVAL;
8948
8949 if (!bpf_map_is_rdonly(map)) {
8950 verbose(env, "R%d does not point to a readonly map'\n", regno);
8951 return -EACCES;
8952 }
8953
8954 if (!tnum_is_const(reg->var_off)) {
8955 verbose(env, "R%d is not a constant address'\n", regno);
8956 return -EACCES;
8957 }
8958
8959 if (!map->ops->map_direct_value_addr) {
8960 verbose(env, "no direct value access support for this map type\n");
8961 return -EACCES;
8962 }
8963
8964 err = check_map_access(env, regno, reg->off,
8965 map->value_size - reg->off, false,
8966 ACCESS_HELPER);
8967 if (err)
8968 return err;
8969
8970 map_off = reg->off + reg->var_off.value;
8971 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8972 if (err) {
8973 verbose(env, "direct value access on string failed\n");
8974 return err;
8975 }
8976
8977 str_ptr = (char *)(long)(map_addr);
8978 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8979 verbose(env, "string is not zero-terminated\n");
8980 return -EINVAL;
8981 }
8982 return 0;
8983 }
8984
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn,int insn_idx)8985 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8986 struct bpf_call_arg_meta *meta,
8987 const struct bpf_func_proto *fn,
8988 int insn_idx)
8989 {
8990 u32 regno = BPF_REG_1 + arg;
8991 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8992 enum bpf_arg_type arg_type = fn->arg_type[arg];
8993 enum bpf_reg_type type = reg->type;
8994 u32 *arg_btf_id = NULL;
8995 int err = 0;
8996
8997 if (arg_type == ARG_DONTCARE)
8998 return 0;
8999
9000 err = check_reg_arg(env, regno, SRC_OP);
9001 if (err)
9002 return err;
9003
9004 if (arg_type == ARG_ANYTHING) {
9005 if (is_pointer_value(env, regno)) {
9006 verbose(env, "R%d leaks addr into helper function\n",
9007 regno);
9008 return -EACCES;
9009 }
9010 return 0;
9011 }
9012
9013 if (type_is_pkt_pointer(type) &&
9014 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
9015 verbose(env, "helper access to the packet is not allowed\n");
9016 return -EACCES;
9017 }
9018
9019 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
9020 err = resolve_map_arg_type(env, meta, &arg_type);
9021 if (err)
9022 return err;
9023 }
9024
9025 if (register_is_null(reg) && type_may_be_null(arg_type))
9026 /* A NULL register has a SCALAR_VALUE type, so skip
9027 * type checking.
9028 */
9029 goto skip_type_check;
9030
9031 /* arg_btf_id and arg_size are in a union. */
9032 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
9033 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
9034 arg_btf_id = fn->arg_btf_id[arg];
9035
9036 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
9037 if (err)
9038 return err;
9039
9040 err = check_func_arg_reg_off(env, reg, regno, arg_type);
9041 if (err)
9042 return err;
9043
9044 skip_type_check:
9045 if (arg_type_is_release(arg_type)) {
9046 if (arg_type_is_dynptr(arg_type)) {
9047 struct bpf_func_state *state = func(env, reg);
9048 int spi;
9049
9050 /* Only dynptr created on stack can be released, thus
9051 * the get_spi and stack state checks for spilled_ptr
9052 * should only be done before process_dynptr_func for
9053 * PTR_TO_STACK.
9054 */
9055 if (reg->type == PTR_TO_STACK) {
9056 spi = dynptr_get_spi(env, reg);
9057 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
9058 verbose(env, "arg %d is an unacquired reference\n", regno);
9059 return -EINVAL;
9060 }
9061 } else {
9062 verbose(env, "cannot release unowned const bpf_dynptr\n");
9063 return -EINVAL;
9064 }
9065 } else if (!reg->ref_obj_id && !register_is_null(reg)) {
9066 verbose(env, "R%d must be referenced when passed to release function\n",
9067 regno);
9068 return -EINVAL;
9069 }
9070 if (meta->release_regno) {
9071 verbose(env, "verifier internal error: more than one release argument\n");
9072 return -EFAULT;
9073 }
9074 meta->release_regno = regno;
9075 }
9076
9077 if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) {
9078 if (meta->ref_obj_id) {
9079 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
9080 regno, reg->ref_obj_id,
9081 meta->ref_obj_id);
9082 return -EFAULT;
9083 }
9084 meta->ref_obj_id = reg->ref_obj_id;
9085 }
9086
9087 switch (base_type(arg_type)) {
9088 case ARG_CONST_MAP_PTR:
9089 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
9090 if (meta->map_ptr) {
9091 /* Use map_uid (which is unique id of inner map) to reject:
9092 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
9093 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
9094 * if (inner_map1 && inner_map2) {
9095 * timer = bpf_map_lookup_elem(inner_map1);
9096 * if (timer)
9097 * // mismatch would have been allowed
9098 * bpf_timer_init(timer, inner_map2);
9099 * }
9100 *
9101 * Comparing map_ptr is enough to distinguish normal and outer maps.
9102 */
9103 if (meta->map_ptr != reg->map_ptr ||
9104 meta->map_uid != reg->map_uid) {
9105 verbose(env,
9106 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
9107 meta->map_uid, reg->map_uid);
9108 return -EINVAL;
9109 }
9110 }
9111 meta->map_ptr = reg->map_ptr;
9112 meta->map_uid = reg->map_uid;
9113 break;
9114 case ARG_PTR_TO_MAP_KEY:
9115 /* bpf_map_xxx(..., map_ptr, ..., key) call:
9116 * check that [key, key + map->key_size) are within
9117 * stack limits and initialized
9118 */
9119 if (!meta->map_ptr) {
9120 /* in function declaration map_ptr must come before
9121 * map_key, so that it's verified and known before
9122 * we have to check map_key here. Otherwise it means
9123 * that kernel subsystem misconfigured verifier
9124 */
9125 verbose(env, "invalid map_ptr to access map->key\n");
9126 return -EACCES;
9127 }
9128 err = check_helper_mem_access(env, regno, meta->map_ptr->key_size,
9129 BPF_READ, false, NULL);
9130 break;
9131 case ARG_PTR_TO_MAP_VALUE:
9132 if (type_may_be_null(arg_type) && register_is_null(reg))
9133 return 0;
9134
9135 /* bpf_map_xxx(..., map_ptr, ..., value) call:
9136 * check [value, value + map->value_size) validity
9137 */
9138 if (!meta->map_ptr) {
9139 /* kernel subsystem misconfigured verifier */
9140 verbose(env, "invalid map_ptr to access map->value\n");
9141 return -EACCES;
9142 }
9143 meta->raw_mode = arg_type & MEM_UNINIT;
9144 err = check_helper_mem_access(env, regno, meta->map_ptr->value_size,
9145 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
9146 false, meta);
9147 break;
9148 case ARG_PTR_TO_PERCPU_BTF_ID:
9149 if (!reg->btf_id) {
9150 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
9151 return -EACCES;
9152 }
9153 meta->ret_btf = reg->btf;
9154 meta->ret_btf_id = reg->btf_id;
9155 break;
9156 case ARG_PTR_TO_SPIN_LOCK:
9157 if (in_rbtree_lock_required_cb(env)) {
9158 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
9159 return -EACCES;
9160 }
9161 if (meta->func_id == BPF_FUNC_spin_lock) {
9162 err = process_spin_lock(env, regno, true);
9163 if (err)
9164 return err;
9165 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
9166 err = process_spin_lock(env, regno, false);
9167 if (err)
9168 return err;
9169 } else {
9170 verbose(env, "verifier internal error\n");
9171 return -EFAULT;
9172 }
9173 break;
9174 case ARG_PTR_TO_TIMER:
9175 err = process_timer_func(env, regno, meta);
9176 if (err)
9177 return err;
9178 break;
9179 case ARG_PTR_TO_FUNC:
9180 meta->subprogno = reg->subprogno;
9181 break;
9182 case ARG_PTR_TO_MEM:
9183 /* The access to this pointer is only checked when we hit the
9184 * next is_mem_size argument below.
9185 */
9186 meta->raw_mode = arg_type & MEM_UNINIT;
9187 if (arg_type & MEM_FIXED_SIZE) {
9188 err = check_helper_mem_access(env, regno, fn->arg_size[arg],
9189 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
9190 false, meta);
9191 if (err)
9192 return err;
9193 if (arg_type & MEM_ALIGNED)
9194 err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true);
9195 }
9196 break;
9197 case ARG_CONST_SIZE:
9198 err = check_mem_size_reg(env, reg, regno,
9199 fn->arg_type[arg - 1] & MEM_WRITE ?
9200 BPF_WRITE : BPF_READ,
9201 false, meta);
9202 break;
9203 case ARG_CONST_SIZE_OR_ZERO:
9204 err = check_mem_size_reg(env, reg, regno,
9205 fn->arg_type[arg - 1] & MEM_WRITE ?
9206 BPF_WRITE : BPF_READ,
9207 true, meta);
9208 break;
9209 case ARG_PTR_TO_DYNPTR:
9210 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
9211 if (err)
9212 return err;
9213 break;
9214 case ARG_CONST_ALLOC_SIZE_OR_ZERO:
9215 if (!tnum_is_const(reg->var_off)) {
9216 verbose(env, "R%d is not a known constant'\n",
9217 regno);
9218 return -EACCES;
9219 }
9220 meta->mem_size = reg->var_off.value;
9221 err = mark_chain_precision(env, regno);
9222 if (err)
9223 return err;
9224 break;
9225 case ARG_PTR_TO_CONST_STR:
9226 {
9227 err = check_reg_const_str(env, reg, regno);
9228 if (err)
9229 return err;
9230 break;
9231 }
9232 case ARG_KPTR_XCHG_DEST:
9233 err = process_kptr_func(env, regno, meta);
9234 if (err)
9235 return err;
9236 break;
9237 }
9238
9239 return err;
9240 }
9241
may_update_sockmap(struct bpf_verifier_env * env,int func_id)9242 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
9243 {
9244 enum bpf_attach_type eatype = env->prog->expected_attach_type;
9245 enum bpf_prog_type type = resolve_prog_type(env->prog);
9246
9247 if (func_id != BPF_FUNC_map_update_elem &&
9248 func_id != BPF_FUNC_map_delete_elem)
9249 return false;
9250
9251 /* It's not possible to get access to a locked struct sock in these
9252 * contexts, so updating is safe.
9253 */
9254 switch (type) {
9255 case BPF_PROG_TYPE_TRACING:
9256 if (eatype == BPF_TRACE_ITER)
9257 return true;
9258 break;
9259 case BPF_PROG_TYPE_SOCK_OPS:
9260 /* map_update allowed only via dedicated helpers with event type checks */
9261 if (func_id == BPF_FUNC_map_delete_elem)
9262 return true;
9263 break;
9264 case BPF_PROG_TYPE_SOCKET_FILTER:
9265 case BPF_PROG_TYPE_SCHED_CLS:
9266 case BPF_PROG_TYPE_SCHED_ACT:
9267 case BPF_PROG_TYPE_XDP:
9268 case BPF_PROG_TYPE_SK_REUSEPORT:
9269 case BPF_PROG_TYPE_FLOW_DISSECTOR:
9270 case BPF_PROG_TYPE_SK_LOOKUP:
9271 return true;
9272 default:
9273 break;
9274 }
9275
9276 verbose(env, "cannot update sockmap in this context\n");
9277 return false;
9278 }
9279
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)9280 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
9281 {
9282 return env->prog->jit_requested &&
9283 bpf_jit_supports_subprog_tailcalls();
9284 }
9285
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)9286 static int check_map_func_compatibility(struct bpf_verifier_env *env,
9287 struct bpf_map *map, int func_id)
9288 {
9289 if (!map)
9290 return 0;
9291
9292 /* We need a two way check, first is from map perspective ... */
9293 switch (map->map_type) {
9294 case BPF_MAP_TYPE_PROG_ARRAY:
9295 if (func_id != BPF_FUNC_tail_call)
9296 goto error;
9297 break;
9298 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
9299 if (func_id != BPF_FUNC_perf_event_read &&
9300 func_id != BPF_FUNC_perf_event_output &&
9301 func_id != BPF_FUNC_skb_output &&
9302 func_id != BPF_FUNC_perf_event_read_value &&
9303 func_id != BPF_FUNC_xdp_output)
9304 goto error;
9305 break;
9306 case BPF_MAP_TYPE_RINGBUF:
9307 if (func_id != BPF_FUNC_ringbuf_output &&
9308 func_id != BPF_FUNC_ringbuf_reserve &&
9309 func_id != BPF_FUNC_ringbuf_query &&
9310 func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
9311 func_id != BPF_FUNC_ringbuf_submit_dynptr &&
9312 func_id != BPF_FUNC_ringbuf_discard_dynptr)
9313 goto error;
9314 break;
9315 case BPF_MAP_TYPE_USER_RINGBUF:
9316 if (func_id != BPF_FUNC_user_ringbuf_drain)
9317 goto error;
9318 break;
9319 case BPF_MAP_TYPE_STACK_TRACE:
9320 if (func_id != BPF_FUNC_get_stackid)
9321 goto error;
9322 break;
9323 case BPF_MAP_TYPE_CGROUP_ARRAY:
9324 if (func_id != BPF_FUNC_skb_under_cgroup &&
9325 func_id != BPF_FUNC_current_task_under_cgroup)
9326 goto error;
9327 break;
9328 case BPF_MAP_TYPE_CGROUP_STORAGE:
9329 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
9330 if (func_id != BPF_FUNC_get_local_storage)
9331 goto error;
9332 break;
9333 case BPF_MAP_TYPE_DEVMAP:
9334 case BPF_MAP_TYPE_DEVMAP_HASH:
9335 if (func_id != BPF_FUNC_redirect_map &&
9336 func_id != BPF_FUNC_map_lookup_elem)
9337 goto error;
9338 break;
9339 /* Restrict bpf side of cpumap and xskmap, open when use-cases
9340 * appear.
9341 */
9342 case BPF_MAP_TYPE_CPUMAP:
9343 if (func_id != BPF_FUNC_redirect_map)
9344 goto error;
9345 break;
9346 case BPF_MAP_TYPE_XSKMAP:
9347 if (func_id != BPF_FUNC_redirect_map &&
9348 func_id != BPF_FUNC_map_lookup_elem)
9349 goto error;
9350 break;
9351 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
9352 case BPF_MAP_TYPE_HASH_OF_MAPS:
9353 if (func_id != BPF_FUNC_map_lookup_elem)
9354 goto error;
9355 break;
9356 case BPF_MAP_TYPE_SOCKMAP:
9357 if (func_id != BPF_FUNC_sk_redirect_map &&
9358 func_id != BPF_FUNC_sock_map_update &&
9359 func_id != BPF_FUNC_msg_redirect_map &&
9360 func_id != BPF_FUNC_sk_select_reuseport &&
9361 func_id != BPF_FUNC_map_lookup_elem &&
9362 !may_update_sockmap(env, func_id))
9363 goto error;
9364 break;
9365 case BPF_MAP_TYPE_SOCKHASH:
9366 if (func_id != BPF_FUNC_sk_redirect_hash &&
9367 func_id != BPF_FUNC_sock_hash_update &&
9368 func_id != BPF_FUNC_msg_redirect_hash &&
9369 func_id != BPF_FUNC_sk_select_reuseport &&
9370 func_id != BPF_FUNC_map_lookup_elem &&
9371 !may_update_sockmap(env, func_id))
9372 goto error;
9373 break;
9374 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
9375 if (func_id != BPF_FUNC_sk_select_reuseport)
9376 goto error;
9377 break;
9378 case BPF_MAP_TYPE_QUEUE:
9379 case BPF_MAP_TYPE_STACK:
9380 if (func_id != BPF_FUNC_map_peek_elem &&
9381 func_id != BPF_FUNC_map_pop_elem &&
9382 func_id != BPF_FUNC_map_push_elem)
9383 goto error;
9384 break;
9385 case BPF_MAP_TYPE_SK_STORAGE:
9386 if (func_id != BPF_FUNC_sk_storage_get &&
9387 func_id != BPF_FUNC_sk_storage_delete &&
9388 func_id != BPF_FUNC_kptr_xchg)
9389 goto error;
9390 break;
9391 case BPF_MAP_TYPE_INODE_STORAGE:
9392 if (func_id != BPF_FUNC_inode_storage_get &&
9393 func_id != BPF_FUNC_inode_storage_delete &&
9394 func_id != BPF_FUNC_kptr_xchg)
9395 goto error;
9396 break;
9397 case BPF_MAP_TYPE_TASK_STORAGE:
9398 if (func_id != BPF_FUNC_task_storage_get &&
9399 func_id != BPF_FUNC_task_storage_delete &&
9400 func_id != BPF_FUNC_kptr_xchg)
9401 goto error;
9402 break;
9403 case BPF_MAP_TYPE_CGRP_STORAGE:
9404 if (func_id != BPF_FUNC_cgrp_storage_get &&
9405 func_id != BPF_FUNC_cgrp_storage_delete &&
9406 func_id != BPF_FUNC_kptr_xchg)
9407 goto error;
9408 break;
9409 case BPF_MAP_TYPE_BLOOM_FILTER:
9410 if (func_id != BPF_FUNC_map_peek_elem &&
9411 func_id != BPF_FUNC_map_push_elem)
9412 goto error;
9413 break;
9414 default:
9415 break;
9416 }
9417
9418 /* ... and second from the function itself. */
9419 switch (func_id) {
9420 case BPF_FUNC_tail_call:
9421 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
9422 goto error;
9423 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
9424 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
9425 return -EINVAL;
9426 }
9427 break;
9428 case BPF_FUNC_perf_event_read:
9429 case BPF_FUNC_perf_event_output:
9430 case BPF_FUNC_perf_event_read_value:
9431 case BPF_FUNC_skb_output:
9432 case BPF_FUNC_xdp_output:
9433 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
9434 goto error;
9435 break;
9436 case BPF_FUNC_ringbuf_output:
9437 case BPF_FUNC_ringbuf_reserve:
9438 case BPF_FUNC_ringbuf_query:
9439 case BPF_FUNC_ringbuf_reserve_dynptr:
9440 case BPF_FUNC_ringbuf_submit_dynptr:
9441 case BPF_FUNC_ringbuf_discard_dynptr:
9442 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
9443 goto error;
9444 break;
9445 case BPF_FUNC_user_ringbuf_drain:
9446 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
9447 goto error;
9448 break;
9449 case BPF_FUNC_get_stackid:
9450 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
9451 goto error;
9452 break;
9453 case BPF_FUNC_current_task_under_cgroup:
9454 case BPF_FUNC_skb_under_cgroup:
9455 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
9456 goto error;
9457 break;
9458 case BPF_FUNC_redirect_map:
9459 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
9460 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
9461 map->map_type != BPF_MAP_TYPE_CPUMAP &&
9462 map->map_type != BPF_MAP_TYPE_XSKMAP)
9463 goto error;
9464 break;
9465 case BPF_FUNC_sk_redirect_map:
9466 case BPF_FUNC_msg_redirect_map:
9467 case BPF_FUNC_sock_map_update:
9468 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
9469 goto error;
9470 break;
9471 case BPF_FUNC_sk_redirect_hash:
9472 case BPF_FUNC_msg_redirect_hash:
9473 case BPF_FUNC_sock_hash_update:
9474 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
9475 goto error;
9476 break;
9477 case BPF_FUNC_get_local_storage:
9478 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
9479 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
9480 goto error;
9481 break;
9482 case BPF_FUNC_sk_select_reuseport:
9483 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
9484 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
9485 map->map_type != BPF_MAP_TYPE_SOCKHASH)
9486 goto error;
9487 break;
9488 case BPF_FUNC_map_pop_elem:
9489 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9490 map->map_type != BPF_MAP_TYPE_STACK)
9491 goto error;
9492 break;
9493 case BPF_FUNC_map_peek_elem:
9494 case BPF_FUNC_map_push_elem:
9495 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9496 map->map_type != BPF_MAP_TYPE_STACK &&
9497 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
9498 goto error;
9499 break;
9500 case BPF_FUNC_map_lookup_percpu_elem:
9501 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
9502 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9503 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
9504 goto error;
9505 break;
9506 case BPF_FUNC_sk_storage_get:
9507 case BPF_FUNC_sk_storage_delete:
9508 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
9509 goto error;
9510 break;
9511 case BPF_FUNC_inode_storage_get:
9512 case BPF_FUNC_inode_storage_delete:
9513 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9514 goto error;
9515 break;
9516 case BPF_FUNC_task_storage_get:
9517 case BPF_FUNC_task_storage_delete:
9518 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9519 goto error;
9520 break;
9521 case BPF_FUNC_cgrp_storage_get:
9522 case BPF_FUNC_cgrp_storage_delete:
9523 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9524 goto error;
9525 break;
9526 default:
9527 break;
9528 }
9529
9530 return 0;
9531 error:
9532 verbose(env, "cannot pass map_type %d into func %s#%d\n",
9533 map->map_type, func_id_name(func_id), func_id);
9534 return -EINVAL;
9535 }
9536
check_raw_mode_ok(const struct bpf_func_proto * fn)9537 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9538 {
9539 int count = 0;
9540
9541 if (arg_type_is_raw_mem(fn->arg1_type))
9542 count++;
9543 if (arg_type_is_raw_mem(fn->arg2_type))
9544 count++;
9545 if (arg_type_is_raw_mem(fn->arg3_type))
9546 count++;
9547 if (arg_type_is_raw_mem(fn->arg4_type))
9548 count++;
9549 if (arg_type_is_raw_mem(fn->arg5_type))
9550 count++;
9551
9552 /* We only support one arg being in raw mode at the moment,
9553 * which is sufficient for the helper functions we have
9554 * right now.
9555 */
9556 return count <= 1;
9557 }
9558
check_args_pair_invalid(const struct bpf_func_proto * fn,int arg)9559 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9560 {
9561 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9562 bool has_size = fn->arg_size[arg] != 0;
9563 bool is_next_size = false;
9564
9565 if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9566 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9567
9568 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9569 return is_next_size;
9570
9571 return has_size == is_next_size || is_next_size == is_fixed;
9572 }
9573
check_arg_pair_ok(const struct bpf_func_proto * fn)9574 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9575 {
9576 /* bpf_xxx(..., buf, len) call will access 'len'
9577 * bytes from memory 'buf'. Both arg types need
9578 * to be paired, so make sure there's no buggy
9579 * helper function specification.
9580 */
9581 if (arg_type_is_mem_size(fn->arg1_type) ||
9582 check_args_pair_invalid(fn, 0) ||
9583 check_args_pair_invalid(fn, 1) ||
9584 check_args_pair_invalid(fn, 2) ||
9585 check_args_pair_invalid(fn, 3) ||
9586 check_args_pair_invalid(fn, 4))
9587 return false;
9588
9589 return true;
9590 }
9591
check_btf_id_ok(const struct bpf_func_proto * fn)9592 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9593 {
9594 int i;
9595
9596 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9597 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9598 return !!fn->arg_btf_id[i];
9599 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9600 return fn->arg_btf_id[i] == BPF_PTR_POISON;
9601 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9602 /* arg_btf_id and arg_size are in a union. */
9603 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9604 !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9605 return false;
9606 }
9607
9608 return true;
9609 }
9610
check_func_proto(const struct bpf_func_proto * fn,int func_id)9611 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9612 {
9613 return check_raw_mode_ok(fn) &&
9614 check_arg_pair_ok(fn) &&
9615 check_btf_id_ok(fn) ? 0 : -EINVAL;
9616 }
9617
9618 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9619 * are now invalid, so turn them into unknown SCALAR_VALUE.
9620 *
9621 * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9622 * since these slices point to packet data.
9623 */
clear_all_pkt_pointers(struct bpf_verifier_env * env)9624 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9625 {
9626 struct bpf_func_state *state;
9627 struct bpf_reg_state *reg;
9628
9629 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9630 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9631 mark_reg_invalid(env, reg);
9632 }));
9633 }
9634
9635 enum {
9636 AT_PKT_END = -1,
9637 BEYOND_PKT_END = -2,
9638 };
9639
mark_pkt_end(struct bpf_verifier_state * vstate,int regn,bool range_open)9640 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9641 {
9642 struct bpf_func_state *state = vstate->frame[vstate->curframe];
9643 struct bpf_reg_state *reg = &state->regs[regn];
9644
9645 if (reg->type != PTR_TO_PACKET)
9646 /* PTR_TO_PACKET_META is not supported yet */
9647 return;
9648
9649 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9650 * How far beyond pkt_end it goes is unknown.
9651 * if (!range_open) it's the case of pkt >= pkt_end
9652 * if (range_open) it's the case of pkt > pkt_end
9653 * hence this pointer is at least 1 byte bigger than pkt_end
9654 */
9655 if (range_open)
9656 reg->range = BEYOND_PKT_END;
9657 else
9658 reg->range = AT_PKT_END;
9659 }
9660
9661 /* The pointer with the specified id has released its reference to kernel
9662 * resources. Identify all copies of the same pointer and clear the reference.
9663 */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)9664 static int release_reference(struct bpf_verifier_env *env,
9665 int ref_obj_id)
9666 {
9667 struct bpf_func_state *state;
9668 struct bpf_reg_state *reg;
9669 int err;
9670
9671 err = release_reference_state(cur_func(env), ref_obj_id);
9672 if (err)
9673 return err;
9674
9675 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9676 if (reg->ref_obj_id == ref_obj_id)
9677 mark_reg_invalid(env, reg);
9678 }));
9679
9680 return 0;
9681 }
9682
invalidate_non_owning_refs(struct bpf_verifier_env * env)9683 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9684 {
9685 struct bpf_func_state *unused;
9686 struct bpf_reg_state *reg;
9687
9688 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9689 if (type_is_non_owning_ref(reg->type))
9690 mark_reg_invalid(env, reg);
9691 }));
9692 }
9693
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)9694 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9695 struct bpf_reg_state *regs)
9696 {
9697 int i;
9698
9699 /* after the call registers r0 - r5 were scratched */
9700 for (i = 0; i < CALLER_SAVED_REGS; i++) {
9701 mark_reg_not_init(env, regs, caller_saved[i]);
9702 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
9703 }
9704 }
9705
9706 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9707 struct bpf_func_state *caller,
9708 struct bpf_func_state *callee,
9709 int insn_idx);
9710
9711 static int set_callee_state(struct bpf_verifier_env *env,
9712 struct bpf_func_state *caller,
9713 struct bpf_func_state *callee, int insn_idx);
9714
setup_func_entry(struct bpf_verifier_env * env,int subprog,int callsite,set_callee_state_fn set_callee_state_cb,struct bpf_verifier_state * state)9715 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
9716 set_callee_state_fn set_callee_state_cb,
9717 struct bpf_verifier_state *state)
9718 {
9719 struct bpf_func_state *caller, *callee;
9720 int err;
9721
9722 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9723 verbose(env, "the call stack of %d frames is too deep\n",
9724 state->curframe + 2);
9725 return -E2BIG;
9726 }
9727
9728 if (state->frame[state->curframe + 1]) {
9729 verbose(env, "verifier bug. Frame %d already allocated\n",
9730 state->curframe + 1);
9731 return -EFAULT;
9732 }
9733
9734 caller = state->frame[state->curframe];
9735 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9736 if (!callee)
9737 return -ENOMEM;
9738 state->frame[state->curframe + 1] = callee;
9739
9740 /* callee cannot access r0, r6 - r9 for reading and has to write
9741 * into its own stack before reading from it.
9742 * callee can read/write into caller's stack
9743 */
9744 init_func_state(env, callee,
9745 /* remember the callsite, it will be used by bpf_exit */
9746 callsite,
9747 state->curframe + 1 /* frameno within this callchain */,
9748 subprog /* subprog number within this prog */);
9749 /* Transfer references to the callee */
9750 err = copy_reference_state(callee, caller);
9751 err = err ?: set_callee_state_cb(env, caller, callee, callsite);
9752 if (err)
9753 goto err_out;
9754
9755 /* only increment it after check_reg_arg() finished */
9756 state->curframe++;
9757
9758 return 0;
9759
9760 err_out:
9761 free_func_state(callee);
9762 state->frame[state->curframe + 1] = NULL;
9763 return err;
9764 }
9765
btf_check_func_arg_match(struct bpf_verifier_env * env,int subprog,const struct btf * btf,struct bpf_reg_state * regs)9766 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
9767 const struct btf *btf,
9768 struct bpf_reg_state *regs)
9769 {
9770 struct bpf_subprog_info *sub = subprog_info(env, subprog);
9771 struct bpf_verifier_log *log = &env->log;
9772 u32 i;
9773 int ret;
9774
9775 ret = btf_prepare_func_args(env, subprog);
9776 if (ret)
9777 return ret;
9778
9779 /* check that BTF function arguments match actual types that the
9780 * verifier sees.
9781 */
9782 for (i = 0; i < sub->arg_cnt; i++) {
9783 u32 regno = i + 1;
9784 struct bpf_reg_state *reg = ®s[regno];
9785 struct bpf_subprog_arg_info *arg = &sub->args[i];
9786
9787 if (arg->arg_type == ARG_ANYTHING) {
9788 if (reg->type != SCALAR_VALUE) {
9789 bpf_log(log, "R%d is not a scalar\n", regno);
9790 return -EINVAL;
9791 }
9792 } else if (arg->arg_type == ARG_PTR_TO_CTX) {
9793 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9794 if (ret < 0)
9795 return ret;
9796 /* If function expects ctx type in BTF check that caller
9797 * is passing PTR_TO_CTX.
9798 */
9799 if (reg->type != PTR_TO_CTX) {
9800 bpf_log(log, "arg#%d expects pointer to ctx\n", i);
9801 return -EINVAL;
9802 }
9803 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
9804 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9805 if (ret < 0)
9806 return ret;
9807 if (check_mem_reg(env, reg, regno, arg->mem_size))
9808 return -EINVAL;
9809 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) {
9810 bpf_log(log, "arg#%d is expected to be non-NULL\n", i);
9811 return -EINVAL;
9812 }
9813 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
9814 /*
9815 * Can pass any value and the kernel won't crash, but
9816 * only PTR_TO_ARENA or SCALAR make sense. Everything
9817 * else is a bug in the bpf program. Point it out to
9818 * the user at the verification time instead of
9819 * run-time debug nightmare.
9820 */
9821 if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) {
9822 bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno);
9823 return -EINVAL;
9824 }
9825 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
9826 ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR);
9827 if (ret)
9828 return ret;
9829
9830 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0);
9831 if (ret)
9832 return ret;
9833 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
9834 struct bpf_call_arg_meta meta;
9835 int err;
9836
9837 if (register_is_null(reg) && type_may_be_null(arg->arg_type))
9838 continue;
9839
9840 memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */
9841 err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta);
9842 err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type);
9843 if (err)
9844 return err;
9845 } else {
9846 bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n",
9847 i, arg->arg_type);
9848 return -EFAULT;
9849 }
9850 }
9851
9852 return 0;
9853 }
9854
9855 /* Compare BTF of a function call with given bpf_reg_state.
9856 * Returns:
9857 * EFAULT - there is a verifier bug. Abort verification.
9858 * EINVAL - there is a type mismatch or BTF is not available.
9859 * 0 - BTF matches with what bpf_reg_state expects.
9860 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
9861 */
btf_check_subprog_call(struct bpf_verifier_env * env,int subprog,struct bpf_reg_state * regs)9862 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
9863 struct bpf_reg_state *regs)
9864 {
9865 struct bpf_prog *prog = env->prog;
9866 struct btf *btf = prog->aux->btf;
9867 u32 btf_id;
9868 int err;
9869
9870 if (!prog->aux->func_info)
9871 return -EINVAL;
9872
9873 btf_id = prog->aux->func_info[subprog].type_id;
9874 if (!btf_id)
9875 return -EFAULT;
9876
9877 if (prog->aux->func_info_aux[subprog].unreliable)
9878 return -EINVAL;
9879
9880 err = btf_check_func_arg_match(env, subprog, btf, regs);
9881 /* Compiler optimizations can remove arguments from static functions
9882 * or mismatched type can be passed into a global function.
9883 * In such cases mark the function as unreliable from BTF point of view.
9884 */
9885 if (err)
9886 prog->aux->func_info_aux[subprog].unreliable = true;
9887 return err;
9888 }
9889
push_callback_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int insn_idx,int subprog,set_callee_state_fn set_callee_state_cb)9890 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9891 int insn_idx, int subprog,
9892 set_callee_state_fn set_callee_state_cb)
9893 {
9894 struct bpf_verifier_state *state = env->cur_state, *callback_state;
9895 struct bpf_func_state *caller, *callee;
9896 int err;
9897
9898 caller = state->frame[state->curframe];
9899 err = btf_check_subprog_call(env, subprog, caller->regs);
9900 if (err == -EFAULT)
9901 return err;
9902
9903 /* set_callee_state is used for direct subprog calls, but we are
9904 * interested in validating only BPF helpers that can call subprogs as
9905 * callbacks
9906 */
9907 env->subprog_info[subprog].is_cb = true;
9908 if (bpf_pseudo_kfunc_call(insn) &&
9909 !is_callback_calling_kfunc(insn->imm)) {
9910 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9911 func_id_name(insn->imm), insn->imm);
9912 return -EFAULT;
9913 } else if (!bpf_pseudo_kfunc_call(insn) &&
9914 !is_callback_calling_function(insn->imm)) { /* helper */
9915 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9916 func_id_name(insn->imm), insn->imm);
9917 return -EFAULT;
9918 }
9919
9920 if (is_async_callback_calling_insn(insn)) {
9921 struct bpf_verifier_state *async_cb;
9922
9923 /* there is no real recursion here. timer and workqueue callbacks are async */
9924 env->subprog_info[subprog].is_async_cb = true;
9925 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9926 insn_idx, subprog,
9927 is_bpf_wq_set_callback_impl_kfunc(insn->imm));
9928 if (!async_cb)
9929 return -EFAULT;
9930 callee = async_cb->frame[0];
9931 callee->async_entry_cnt = caller->async_entry_cnt + 1;
9932
9933 /* Convert bpf_timer_set_callback() args into timer callback args */
9934 err = set_callee_state_cb(env, caller, callee, insn_idx);
9935 if (err)
9936 return err;
9937
9938 return 0;
9939 }
9940
9941 /* for callback functions enqueue entry to callback and
9942 * proceed with next instruction within current frame.
9943 */
9944 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
9945 if (!callback_state)
9946 return -ENOMEM;
9947
9948 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
9949 callback_state);
9950 if (err)
9951 return err;
9952
9953 callback_state->callback_unroll_depth++;
9954 callback_state->frame[callback_state->curframe - 1]->callback_depth++;
9955 caller->callback_depth = 0;
9956 return 0;
9957 }
9958
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)9959 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9960 int *insn_idx)
9961 {
9962 struct bpf_verifier_state *state = env->cur_state;
9963 struct bpf_func_state *caller;
9964 int err, subprog, target_insn;
9965
9966 target_insn = *insn_idx + insn->imm + 1;
9967 subprog = find_subprog(env, target_insn);
9968 if (subprog < 0) {
9969 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
9970 return -EFAULT;
9971 }
9972
9973 caller = state->frame[state->curframe];
9974 err = btf_check_subprog_call(env, subprog, caller->regs);
9975 if (err == -EFAULT)
9976 return err;
9977 if (subprog_is_global(env, subprog)) {
9978 const char *sub_name = subprog_name(env, subprog);
9979
9980 /* Only global subprogs cannot be called with a lock held. */
9981 if (cur_func(env)->active_locks) {
9982 verbose(env, "global function calls are not allowed while holding a lock,\n"
9983 "use static function instead\n");
9984 return -EINVAL;
9985 }
9986
9987 /* Only global subprogs cannot be called with preemption disabled. */
9988 if (env->cur_state->active_preempt_lock) {
9989 verbose(env, "global function calls are not allowed with preemption disabled,\n"
9990 "use static function instead\n");
9991 return -EINVAL;
9992 }
9993
9994 if (err) {
9995 verbose(env, "Caller passes invalid args into func#%d ('%s')\n",
9996 subprog, sub_name);
9997 return err;
9998 }
9999
10000 verbose(env, "Func#%d ('%s') is global and assumed valid.\n",
10001 subprog, sub_name);
10002 if (env->subprog_info[subprog].changes_pkt_data)
10003 clear_all_pkt_pointers(env);
10004 /* mark global subprog for verifying after main prog */
10005 subprog_aux(env, subprog)->called = true;
10006 clear_caller_saved_regs(env, caller->regs);
10007
10008 /* All global functions return a 64-bit SCALAR_VALUE */
10009 mark_reg_unknown(env, caller->regs, BPF_REG_0);
10010 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10011
10012 /* continue with next insn after call */
10013 return 0;
10014 }
10015
10016 /* for regular function entry setup new frame and continue
10017 * from that frame.
10018 */
10019 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
10020 if (err)
10021 return err;
10022
10023 clear_caller_saved_regs(env, caller->regs);
10024
10025 /* and go analyze first insn of the callee */
10026 *insn_idx = env->subprog_info[subprog].start - 1;
10027
10028 if (env->log.level & BPF_LOG_LEVEL) {
10029 verbose(env, "caller:\n");
10030 print_verifier_state(env, caller, true);
10031 verbose(env, "callee:\n");
10032 print_verifier_state(env, state->frame[state->curframe], true);
10033 }
10034
10035 return 0;
10036 }
10037
map_set_for_each_callback_args(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee)10038 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
10039 struct bpf_func_state *caller,
10040 struct bpf_func_state *callee)
10041 {
10042 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
10043 * void *callback_ctx, u64 flags);
10044 * callback_fn(struct bpf_map *map, void *key, void *value,
10045 * void *callback_ctx);
10046 */
10047 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
10048
10049 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
10050 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10051 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
10052
10053 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
10054 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
10055 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
10056
10057 /* pointer to stack or null */
10058 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
10059
10060 /* unused */
10061 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10062 return 0;
10063 }
10064
set_callee_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10065 static int set_callee_state(struct bpf_verifier_env *env,
10066 struct bpf_func_state *caller,
10067 struct bpf_func_state *callee, int insn_idx)
10068 {
10069 int i;
10070
10071 /* copy r1 - r5 args that callee can access. The copy includes parent
10072 * pointers, which connects us up to the liveness chain
10073 */
10074 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
10075 callee->regs[i] = caller->regs[i];
10076 return 0;
10077 }
10078
set_map_elem_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10079 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
10080 struct bpf_func_state *caller,
10081 struct bpf_func_state *callee,
10082 int insn_idx)
10083 {
10084 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
10085 struct bpf_map *map;
10086 int err;
10087
10088 /* valid map_ptr and poison value does not matter */
10089 map = insn_aux->map_ptr_state.map_ptr;
10090 if (!map->ops->map_set_for_each_callback_args ||
10091 !map->ops->map_for_each_callback) {
10092 verbose(env, "callback function not allowed for map\n");
10093 return -ENOTSUPP;
10094 }
10095
10096 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
10097 if (err)
10098 return err;
10099
10100 callee->in_callback_fn = true;
10101 callee->callback_ret_range = retval_range(0, 1);
10102 return 0;
10103 }
10104
set_loop_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10105 static int set_loop_callback_state(struct bpf_verifier_env *env,
10106 struct bpf_func_state *caller,
10107 struct bpf_func_state *callee,
10108 int insn_idx)
10109 {
10110 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
10111 * u64 flags);
10112 * callback_fn(u64 index, void *callback_ctx);
10113 */
10114 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
10115 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
10116
10117 /* unused */
10118 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10119 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10120 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10121
10122 callee->in_callback_fn = true;
10123 callee->callback_ret_range = retval_range(0, 1);
10124 return 0;
10125 }
10126
set_timer_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10127 static int set_timer_callback_state(struct bpf_verifier_env *env,
10128 struct bpf_func_state *caller,
10129 struct bpf_func_state *callee,
10130 int insn_idx)
10131 {
10132 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
10133
10134 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
10135 * callback_fn(struct bpf_map *map, void *key, void *value);
10136 */
10137 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
10138 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
10139 callee->regs[BPF_REG_1].map_ptr = map_ptr;
10140
10141 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
10142 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10143 callee->regs[BPF_REG_2].map_ptr = map_ptr;
10144
10145 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
10146 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
10147 callee->regs[BPF_REG_3].map_ptr = map_ptr;
10148
10149 /* unused */
10150 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10151 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10152 callee->in_async_callback_fn = true;
10153 callee->callback_ret_range = retval_range(0, 1);
10154 return 0;
10155 }
10156
set_find_vma_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10157 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
10158 struct bpf_func_state *caller,
10159 struct bpf_func_state *callee,
10160 int insn_idx)
10161 {
10162 /* bpf_find_vma(struct task_struct *task, u64 addr,
10163 * void *callback_fn, void *callback_ctx, u64 flags)
10164 * (callback_fn)(struct task_struct *task,
10165 * struct vm_area_struct *vma, void *callback_ctx);
10166 */
10167 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
10168
10169 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
10170 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10171 callee->regs[BPF_REG_2].btf = btf_vmlinux;
10172 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA];
10173
10174 /* pointer to stack or null */
10175 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
10176
10177 /* unused */
10178 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10179 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10180 callee->in_callback_fn = true;
10181 callee->callback_ret_range = retval_range(0, 1);
10182 return 0;
10183 }
10184
set_user_ringbuf_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10185 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
10186 struct bpf_func_state *caller,
10187 struct bpf_func_state *callee,
10188 int insn_idx)
10189 {
10190 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
10191 * callback_ctx, u64 flags);
10192 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
10193 */
10194 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
10195 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
10196 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
10197
10198 /* unused */
10199 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10200 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10201 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10202
10203 callee->in_callback_fn = true;
10204 callee->callback_ret_range = retval_range(0, 1);
10205 return 0;
10206 }
10207
set_rbtree_add_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10208 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
10209 struct bpf_func_state *caller,
10210 struct bpf_func_state *callee,
10211 int insn_idx)
10212 {
10213 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
10214 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
10215 *
10216 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
10217 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
10218 * by this point, so look at 'root'
10219 */
10220 struct btf_field *field;
10221
10222 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
10223 BPF_RB_ROOT);
10224 if (!field || !field->graph_root.value_btf_id)
10225 return -EFAULT;
10226
10227 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
10228 ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
10229 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
10230 ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
10231
10232 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10233 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10234 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10235 callee->in_callback_fn = true;
10236 callee->callback_ret_range = retval_range(0, 1);
10237 return 0;
10238 }
10239
10240 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
10241
10242 /* Are we currently verifying the callback for a rbtree helper that must
10243 * be called with lock held? If so, no need to complain about unreleased
10244 * lock
10245 */
in_rbtree_lock_required_cb(struct bpf_verifier_env * env)10246 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
10247 {
10248 struct bpf_verifier_state *state = env->cur_state;
10249 struct bpf_insn *insn = env->prog->insnsi;
10250 struct bpf_func_state *callee;
10251 int kfunc_btf_id;
10252
10253 if (!state->curframe)
10254 return false;
10255
10256 callee = state->frame[state->curframe];
10257
10258 if (!callee->in_callback_fn)
10259 return false;
10260
10261 kfunc_btf_id = insn[callee->callsite].imm;
10262 return is_rbtree_lock_required_kfunc(kfunc_btf_id);
10263 }
10264
retval_range_within(struct bpf_retval_range range,const struct bpf_reg_state * reg,bool return_32bit)10265 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg,
10266 bool return_32bit)
10267 {
10268 if (return_32bit)
10269 return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval;
10270 else
10271 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval;
10272 }
10273
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)10274 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
10275 {
10276 struct bpf_verifier_state *state = env->cur_state, *prev_st;
10277 struct bpf_func_state *caller, *callee;
10278 struct bpf_reg_state *r0;
10279 bool in_callback_fn;
10280 int err;
10281
10282 callee = state->frame[state->curframe];
10283 r0 = &callee->regs[BPF_REG_0];
10284 if (r0->type == PTR_TO_STACK) {
10285 /* technically it's ok to return caller's stack pointer
10286 * (or caller's caller's pointer) back to the caller,
10287 * since these pointers are valid. Only current stack
10288 * pointer will be invalid as soon as function exits,
10289 * but let's be conservative
10290 */
10291 verbose(env, "cannot return stack pointer to the caller\n");
10292 return -EINVAL;
10293 }
10294
10295 caller = state->frame[state->curframe - 1];
10296 if (callee->in_callback_fn) {
10297 if (r0->type != SCALAR_VALUE) {
10298 verbose(env, "R0 not a scalar value\n");
10299 return -EACCES;
10300 }
10301
10302 /* we are going to rely on register's precise value */
10303 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
10304 err = err ?: mark_chain_precision(env, BPF_REG_0);
10305 if (err)
10306 return err;
10307
10308 /* enforce R0 return value range, and bpf_callback_t returns 64bit */
10309 if (!retval_range_within(callee->callback_ret_range, r0, false)) {
10310 verbose_invalid_scalar(env, r0, callee->callback_ret_range,
10311 "At callback return", "R0");
10312 return -EINVAL;
10313 }
10314 if (!calls_callback(env, callee->callsite)) {
10315 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
10316 *insn_idx, callee->callsite);
10317 return -EFAULT;
10318 }
10319 } else {
10320 /* return to the caller whatever r0 had in the callee */
10321 caller->regs[BPF_REG_0] = *r0;
10322 }
10323
10324 /* Transfer references to the caller */
10325 err = copy_reference_state(caller, callee);
10326 if (err)
10327 return err;
10328
10329 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
10330 * there function call logic would reschedule callback visit. If iteration
10331 * converges is_state_visited() would prune that visit eventually.
10332 */
10333 in_callback_fn = callee->in_callback_fn;
10334 if (in_callback_fn)
10335 *insn_idx = callee->callsite;
10336 else
10337 *insn_idx = callee->callsite + 1;
10338
10339 if (env->log.level & BPF_LOG_LEVEL) {
10340 verbose(env, "returning from callee:\n");
10341 print_verifier_state(env, callee, true);
10342 verbose(env, "to caller at %d:\n", *insn_idx);
10343 print_verifier_state(env, caller, true);
10344 }
10345 /* clear everything in the callee. In case of exceptional exits using
10346 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
10347 free_func_state(callee);
10348 state->frame[state->curframe--] = NULL;
10349
10350 /* for callbacks widen imprecise scalars to make programs like below verify:
10351 *
10352 * struct ctx { int i; }
10353 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
10354 * ...
10355 * struct ctx = { .i = 0; }
10356 * bpf_loop(100, cb, &ctx, 0);
10357 *
10358 * This is similar to what is done in process_iter_next_call() for open
10359 * coded iterators.
10360 */
10361 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
10362 if (prev_st) {
10363 err = widen_imprecise_scalars(env, prev_st, state);
10364 if (err)
10365 return err;
10366 }
10367 return 0;
10368 }
10369
do_refine_retval_range(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)10370 static int do_refine_retval_range(struct bpf_verifier_env *env,
10371 struct bpf_reg_state *regs, int ret_type,
10372 int func_id,
10373 struct bpf_call_arg_meta *meta)
10374 {
10375 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
10376
10377 if (ret_type != RET_INTEGER)
10378 return 0;
10379
10380 switch (func_id) {
10381 case BPF_FUNC_get_stack:
10382 case BPF_FUNC_get_task_stack:
10383 case BPF_FUNC_probe_read_str:
10384 case BPF_FUNC_probe_read_kernel_str:
10385 case BPF_FUNC_probe_read_user_str:
10386 ret_reg->smax_value = meta->msize_max_value;
10387 ret_reg->s32_max_value = meta->msize_max_value;
10388 ret_reg->smin_value = -MAX_ERRNO;
10389 ret_reg->s32_min_value = -MAX_ERRNO;
10390 reg_bounds_sync(ret_reg);
10391 break;
10392 case BPF_FUNC_get_smp_processor_id:
10393 ret_reg->umax_value = nr_cpu_ids - 1;
10394 ret_reg->u32_max_value = nr_cpu_ids - 1;
10395 ret_reg->smax_value = nr_cpu_ids - 1;
10396 ret_reg->s32_max_value = nr_cpu_ids - 1;
10397 ret_reg->umin_value = 0;
10398 ret_reg->u32_min_value = 0;
10399 ret_reg->smin_value = 0;
10400 ret_reg->s32_min_value = 0;
10401 reg_bounds_sync(ret_reg);
10402 break;
10403 }
10404
10405 return reg_bounds_sanity_check(env, ret_reg, "retval");
10406 }
10407
10408 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)10409 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
10410 int func_id, int insn_idx)
10411 {
10412 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
10413 struct bpf_map *map = meta->map_ptr;
10414
10415 if (func_id != BPF_FUNC_tail_call &&
10416 func_id != BPF_FUNC_map_lookup_elem &&
10417 func_id != BPF_FUNC_map_update_elem &&
10418 func_id != BPF_FUNC_map_delete_elem &&
10419 func_id != BPF_FUNC_map_push_elem &&
10420 func_id != BPF_FUNC_map_pop_elem &&
10421 func_id != BPF_FUNC_map_peek_elem &&
10422 func_id != BPF_FUNC_for_each_map_elem &&
10423 func_id != BPF_FUNC_redirect_map &&
10424 func_id != BPF_FUNC_map_lookup_percpu_elem)
10425 return 0;
10426
10427 if (map == NULL) {
10428 verbose(env, "kernel subsystem misconfigured verifier\n");
10429 return -EINVAL;
10430 }
10431
10432 /* In case of read-only, some additional restrictions
10433 * need to be applied in order to prevent altering the
10434 * state of the map from program side.
10435 */
10436 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
10437 (func_id == BPF_FUNC_map_delete_elem ||
10438 func_id == BPF_FUNC_map_update_elem ||
10439 func_id == BPF_FUNC_map_push_elem ||
10440 func_id == BPF_FUNC_map_pop_elem)) {
10441 verbose(env, "write into map forbidden\n");
10442 return -EACCES;
10443 }
10444
10445 if (!aux->map_ptr_state.map_ptr)
10446 bpf_map_ptr_store(aux, meta->map_ptr,
10447 !meta->map_ptr->bypass_spec_v1, false);
10448 else if (aux->map_ptr_state.map_ptr != meta->map_ptr)
10449 bpf_map_ptr_store(aux, meta->map_ptr,
10450 !meta->map_ptr->bypass_spec_v1, true);
10451 return 0;
10452 }
10453
10454 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)10455 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
10456 int func_id, int insn_idx)
10457 {
10458 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
10459 struct bpf_reg_state *regs = cur_regs(env), *reg;
10460 struct bpf_map *map = meta->map_ptr;
10461 u64 val, max;
10462 int err;
10463
10464 if (func_id != BPF_FUNC_tail_call)
10465 return 0;
10466 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
10467 verbose(env, "kernel subsystem misconfigured verifier\n");
10468 return -EINVAL;
10469 }
10470
10471 reg = ®s[BPF_REG_3];
10472 val = reg->var_off.value;
10473 max = map->max_entries;
10474
10475 if (!(is_reg_const(reg, false) && val < max)) {
10476 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
10477 return 0;
10478 }
10479
10480 err = mark_chain_precision(env, BPF_REG_3);
10481 if (err)
10482 return err;
10483 if (bpf_map_key_unseen(aux))
10484 bpf_map_key_store(aux, val);
10485 else if (!bpf_map_key_poisoned(aux) &&
10486 bpf_map_key_immediate(aux) != val)
10487 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
10488 return 0;
10489 }
10490
check_reference_leak(struct bpf_verifier_env * env,bool exception_exit)10491 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
10492 {
10493 struct bpf_func_state *state = cur_func(env);
10494 bool refs_lingering = false;
10495 int i;
10496
10497 if (!exception_exit && state->frameno)
10498 return 0;
10499
10500 for (i = 0; i < state->acquired_refs; i++) {
10501 if (state->refs[i].type != REF_TYPE_PTR)
10502 continue;
10503 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
10504 state->refs[i].id, state->refs[i].insn_idx);
10505 refs_lingering = true;
10506 }
10507 return refs_lingering ? -EINVAL : 0;
10508 }
10509
check_resource_leak(struct bpf_verifier_env * env,bool exception_exit,bool check_lock,const char * prefix)10510 static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix)
10511 {
10512 int err;
10513
10514 if (check_lock && cur_func(env)->active_locks) {
10515 verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix);
10516 return -EINVAL;
10517 }
10518
10519 err = check_reference_leak(env, exception_exit);
10520 if (err) {
10521 verbose(env, "%s would lead to reference leak\n", prefix);
10522 return err;
10523 }
10524
10525 if (check_lock && env->cur_state->active_rcu_lock) {
10526 verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix);
10527 return -EINVAL;
10528 }
10529
10530 if (check_lock && env->cur_state->active_preempt_lock) {
10531 verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix);
10532 return -EINVAL;
10533 }
10534
10535 return 0;
10536 }
10537
check_bpf_snprintf_call(struct bpf_verifier_env * env,struct bpf_reg_state * regs)10538 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
10539 struct bpf_reg_state *regs)
10540 {
10541 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3];
10542 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5];
10543 struct bpf_map *fmt_map = fmt_reg->map_ptr;
10544 struct bpf_bprintf_data data = {};
10545 int err, fmt_map_off, num_args;
10546 u64 fmt_addr;
10547 char *fmt;
10548
10549 /* data must be an array of u64 */
10550 if (data_len_reg->var_off.value % 8)
10551 return -EINVAL;
10552 num_args = data_len_reg->var_off.value / 8;
10553
10554 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
10555 * and map_direct_value_addr is set.
10556 */
10557 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
10558 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
10559 fmt_map_off);
10560 if (err) {
10561 verbose(env, "verifier bug\n");
10562 return -EFAULT;
10563 }
10564 fmt = (char *)(long)fmt_addr + fmt_map_off;
10565
10566 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
10567 * can focus on validating the format specifiers.
10568 */
10569 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
10570 if (err < 0)
10571 verbose(env, "Invalid format string\n");
10572
10573 return err;
10574 }
10575
check_get_func_ip(struct bpf_verifier_env * env)10576 static int check_get_func_ip(struct bpf_verifier_env *env)
10577 {
10578 enum bpf_prog_type type = resolve_prog_type(env->prog);
10579 int func_id = BPF_FUNC_get_func_ip;
10580
10581 if (type == BPF_PROG_TYPE_TRACING) {
10582 if (!bpf_prog_has_trampoline(env->prog)) {
10583 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
10584 func_id_name(func_id), func_id);
10585 return -ENOTSUPP;
10586 }
10587 return 0;
10588 } else if (type == BPF_PROG_TYPE_KPROBE) {
10589 return 0;
10590 }
10591
10592 verbose(env, "func %s#%d not supported for program type %d\n",
10593 func_id_name(func_id), func_id, type);
10594 return -ENOTSUPP;
10595 }
10596
cur_aux(struct bpf_verifier_env * env)10597 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
10598 {
10599 return &env->insn_aux_data[env->insn_idx];
10600 }
10601
loop_flag_is_zero(struct bpf_verifier_env * env)10602 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
10603 {
10604 struct bpf_reg_state *regs = cur_regs(env);
10605 struct bpf_reg_state *reg = ®s[BPF_REG_4];
10606 bool reg_is_null = register_is_null(reg);
10607
10608 if (reg_is_null)
10609 mark_chain_precision(env, BPF_REG_4);
10610
10611 return reg_is_null;
10612 }
10613
update_loop_inline_state(struct bpf_verifier_env * env,u32 subprogno)10614 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
10615 {
10616 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
10617
10618 if (!state->initialized) {
10619 state->initialized = 1;
10620 state->fit_for_inline = loop_flag_is_zero(env);
10621 state->callback_subprogno = subprogno;
10622 return;
10623 }
10624
10625 if (!state->fit_for_inline)
10626 return;
10627
10628 state->fit_for_inline = (loop_flag_is_zero(env) &&
10629 state->callback_subprogno == subprogno);
10630 }
10631
get_helper_proto(struct bpf_verifier_env * env,int func_id,const struct bpf_func_proto ** ptr)10632 static int get_helper_proto(struct bpf_verifier_env *env, int func_id,
10633 const struct bpf_func_proto **ptr)
10634 {
10635 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID)
10636 return -ERANGE;
10637
10638 if (!env->ops->get_func_proto)
10639 return -EINVAL;
10640
10641 *ptr = env->ops->get_func_proto(func_id, env->prog);
10642 return *ptr ? 0 : -EINVAL;
10643 }
10644
check_helper_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)10645 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10646 int *insn_idx_p)
10647 {
10648 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10649 bool returns_cpu_specific_alloc_ptr = false;
10650 const struct bpf_func_proto *fn = NULL;
10651 enum bpf_return_type ret_type;
10652 enum bpf_type_flag ret_flag;
10653 struct bpf_reg_state *regs;
10654 struct bpf_call_arg_meta meta;
10655 int insn_idx = *insn_idx_p;
10656 bool changes_data;
10657 int i, err, func_id;
10658
10659 /* find function prototype */
10660 func_id = insn->imm;
10661 err = get_helper_proto(env, insn->imm, &fn);
10662 if (err == -ERANGE) {
10663 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id);
10664 return -EINVAL;
10665 }
10666
10667 if (err) {
10668 verbose(env, "program of this type cannot use helper %s#%d\n",
10669 func_id_name(func_id), func_id);
10670 return err;
10671 }
10672
10673 /* eBPF programs must be GPL compatible to use GPL-ed functions */
10674 if (!env->prog->gpl_compatible && fn->gpl_only) {
10675 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
10676 return -EINVAL;
10677 }
10678
10679 if (fn->allowed && !fn->allowed(env->prog)) {
10680 verbose(env, "helper call is not allowed in probe\n");
10681 return -EINVAL;
10682 }
10683
10684 if (!in_sleepable(env) && fn->might_sleep) {
10685 verbose(env, "helper call might sleep in a non-sleepable prog\n");
10686 return -EINVAL;
10687 }
10688
10689 /* With LD_ABS/IND some JITs save/restore skb from r1. */
10690 changes_data = bpf_helper_changes_pkt_data(func_id);
10691 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
10692 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
10693 func_id_name(func_id), func_id);
10694 return -EINVAL;
10695 }
10696
10697 memset(&meta, 0, sizeof(meta));
10698 meta.pkt_access = fn->pkt_access;
10699
10700 err = check_func_proto(fn, func_id);
10701 if (err) {
10702 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10703 func_id_name(func_id), func_id);
10704 return err;
10705 }
10706
10707 if (env->cur_state->active_rcu_lock) {
10708 if (fn->might_sleep) {
10709 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10710 func_id_name(func_id), func_id);
10711 return -EINVAL;
10712 }
10713
10714 if (in_sleepable(env) && is_storage_get_function(func_id))
10715 env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10716 }
10717
10718 if (env->cur_state->active_preempt_lock) {
10719 if (fn->might_sleep) {
10720 verbose(env, "sleepable helper %s#%d in non-preemptible region\n",
10721 func_id_name(func_id), func_id);
10722 return -EINVAL;
10723 }
10724
10725 if (in_sleepable(env) && is_storage_get_function(func_id))
10726 env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10727 }
10728
10729 meta.func_id = func_id;
10730 /* check args */
10731 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10732 err = check_func_arg(env, i, &meta, fn, insn_idx);
10733 if (err)
10734 return err;
10735 }
10736
10737 err = record_func_map(env, &meta, func_id, insn_idx);
10738 if (err)
10739 return err;
10740
10741 err = record_func_key(env, &meta, func_id, insn_idx);
10742 if (err)
10743 return err;
10744
10745 /* Mark slots with STACK_MISC in case of raw mode, stack offset
10746 * is inferred from register state.
10747 */
10748 for (i = 0; i < meta.access_size; i++) {
10749 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10750 BPF_WRITE, -1, false, false);
10751 if (err)
10752 return err;
10753 }
10754
10755 regs = cur_regs(env);
10756
10757 if (meta.release_regno) {
10758 err = -EINVAL;
10759 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10760 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10761 * is safe to do directly.
10762 */
10763 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10764 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10765 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10766 return -EFAULT;
10767 }
10768 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]);
10769 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
10770 u32 ref_obj_id = meta.ref_obj_id;
10771 bool in_rcu = in_rcu_cs(env);
10772 struct bpf_func_state *state;
10773 struct bpf_reg_state *reg;
10774
10775 err = release_reference_state(cur_func(env), ref_obj_id);
10776 if (!err) {
10777 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10778 if (reg->ref_obj_id == ref_obj_id) {
10779 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
10780 reg->ref_obj_id = 0;
10781 reg->type &= ~MEM_ALLOC;
10782 reg->type |= MEM_RCU;
10783 } else {
10784 mark_reg_invalid(env, reg);
10785 }
10786 }
10787 }));
10788 }
10789 } else if (meta.ref_obj_id) {
10790 err = release_reference(env, meta.ref_obj_id);
10791 } else if (register_is_null(®s[meta.release_regno])) {
10792 /* meta.ref_obj_id can only be 0 if register that is meant to be
10793 * released is NULL, which must be > R0.
10794 */
10795 err = 0;
10796 }
10797 if (err) {
10798 verbose(env, "func %s#%d reference has not been acquired before\n",
10799 func_id_name(func_id), func_id);
10800 return err;
10801 }
10802 }
10803
10804 switch (func_id) {
10805 case BPF_FUNC_tail_call:
10806 err = check_resource_leak(env, false, true, "tail_call");
10807 if (err)
10808 return err;
10809 break;
10810 case BPF_FUNC_get_local_storage:
10811 /* check that flags argument in get_local_storage(map, flags) is 0,
10812 * this is required because get_local_storage() can't return an error.
10813 */
10814 if (!register_is_null(®s[BPF_REG_2])) {
10815 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10816 return -EINVAL;
10817 }
10818 break;
10819 case BPF_FUNC_for_each_map_elem:
10820 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10821 set_map_elem_callback_state);
10822 break;
10823 case BPF_FUNC_timer_set_callback:
10824 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10825 set_timer_callback_state);
10826 break;
10827 case BPF_FUNC_find_vma:
10828 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10829 set_find_vma_callback_state);
10830 break;
10831 case BPF_FUNC_snprintf:
10832 err = check_bpf_snprintf_call(env, regs);
10833 break;
10834 case BPF_FUNC_loop:
10835 update_loop_inline_state(env, meta.subprogno);
10836 /* Verifier relies on R1 value to determine if bpf_loop() iteration
10837 * is finished, thus mark it precise.
10838 */
10839 err = mark_chain_precision(env, BPF_REG_1);
10840 if (err)
10841 return err;
10842 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
10843 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10844 set_loop_callback_state);
10845 } else {
10846 cur_func(env)->callback_depth = 0;
10847 if (env->log.level & BPF_LOG_LEVEL2)
10848 verbose(env, "frame%d bpf_loop iteration limit reached\n",
10849 env->cur_state->curframe);
10850 }
10851 break;
10852 case BPF_FUNC_dynptr_from_mem:
10853 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10854 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10855 reg_type_str(env, regs[BPF_REG_1].type));
10856 return -EACCES;
10857 }
10858 break;
10859 case BPF_FUNC_set_retval:
10860 if (prog_type == BPF_PROG_TYPE_LSM &&
10861 env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10862 if (!env->prog->aux->attach_func_proto->type) {
10863 /* Make sure programs that attach to void
10864 * hooks don't try to modify return value.
10865 */
10866 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10867 return -EINVAL;
10868 }
10869 }
10870 break;
10871 case BPF_FUNC_dynptr_data:
10872 {
10873 struct bpf_reg_state *reg;
10874 int id, ref_obj_id;
10875
10876 reg = get_dynptr_arg_reg(env, fn, regs);
10877 if (!reg)
10878 return -EFAULT;
10879
10880
10881 if (meta.dynptr_id) {
10882 verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10883 return -EFAULT;
10884 }
10885 if (meta.ref_obj_id) {
10886 verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10887 return -EFAULT;
10888 }
10889
10890 id = dynptr_id(env, reg);
10891 if (id < 0) {
10892 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10893 return id;
10894 }
10895
10896 ref_obj_id = dynptr_ref_obj_id(env, reg);
10897 if (ref_obj_id < 0) {
10898 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10899 return ref_obj_id;
10900 }
10901
10902 meta.dynptr_id = id;
10903 meta.ref_obj_id = ref_obj_id;
10904
10905 break;
10906 }
10907 case BPF_FUNC_dynptr_write:
10908 {
10909 enum bpf_dynptr_type dynptr_type;
10910 struct bpf_reg_state *reg;
10911
10912 reg = get_dynptr_arg_reg(env, fn, regs);
10913 if (!reg)
10914 return -EFAULT;
10915
10916 dynptr_type = dynptr_get_type(env, reg);
10917 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10918 return -EFAULT;
10919
10920 if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10921 /* this will trigger clear_all_pkt_pointers(), which will
10922 * invalidate all dynptr slices associated with the skb
10923 */
10924 changes_data = true;
10925
10926 break;
10927 }
10928 case BPF_FUNC_per_cpu_ptr:
10929 case BPF_FUNC_this_cpu_ptr:
10930 {
10931 struct bpf_reg_state *reg = ®s[BPF_REG_1];
10932 const struct btf_type *type;
10933
10934 if (reg->type & MEM_RCU) {
10935 type = btf_type_by_id(reg->btf, reg->btf_id);
10936 if (!type || !btf_type_is_struct(type)) {
10937 verbose(env, "Helper has invalid btf/btf_id in R1\n");
10938 return -EFAULT;
10939 }
10940 returns_cpu_specific_alloc_ptr = true;
10941 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
10942 }
10943 break;
10944 }
10945 case BPF_FUNC_user_ringbuf_drain:
10946 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10947 set_user_ringbuf_callback_state);
10948 break;
10949 }
10950
10951 if (err)
10952 return err;
10953
10954 /* reset caller saved regs */
10955 for (i = 0; i < CALLER_SAVED_REGS; i++) {
10956 mark_reg_not_init(env, regs, caller_saved[i]);
10957 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10958 }
10959
10960 /* helper call returns 64-bit value. */
10961 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10962
10963 /* update return register (already marked as written above) */
10964 ret_type = fn->ret_type;
10965 ret_flag = type_flag(ret_type);
10966
10967 switch (base_type(ret_type)) {
10968 case RET_INTEGER:
10969 /* sets type to SCALAR_VALUE */
10970 mark_reg_unknown(env, regs, BPF_REG_0);
10971 break;
10972 case RET_VOID:
10973 regs[BPF_REG_0].type = NOT_INIT;
10974 break;
10975 case RET_PTR_TO_MAP_VALUE:
10976 /* There is no offset yet applied, variable or fixed */
10977 mark_reg_known_zero(env, regs, BPF_REG_0);
10978 /* remember map_ptr, so that check_map_access()
10979 * can check 'value_size' boundary of memory access
10980 * to map element returned from bpf_map_lookup_elem()
10981 */
10982 if (meta.map_ptr == NULL) {
10983 verbose(env,
10984 "kernel subsystem misconfigured verifier\n");
10985 return -EINVAL;
10986 }
10987 regs[BPF_REG_0].map_ptr = meta.map_ptr;
10988 regs[BPF_REG_0].map_uid = meta.map_uid;
10989 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10990 if (!type_may_be_null(ret_type) &&
10991 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10992 regs[BPF_REG_0].id = ++env->id_gen;
10993 }
10994 break;
10995 case RET_PTR_TO_SOCKET:
10996 mark_reg_known_zero(env, regs, BPF_REG_0);
10997 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10998 break;
10999 case RET_PTR_TO_SOCK_COMMON:
11000 mark_reg_known_zero(env, regs, BPF_REG_0);
11001 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
11002 break;
11003 case RET_PTR_TO_TCP_SOCK:
11004 mark_reg_known_zero(env, regs, BPF_REG_0);
11005 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
11006 break;
11007 case RET_PTR_TO_MEM:
11008 mark_reg_known_zero(env, regs, BPF_REG_0);
11009 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
11010 regs[BPF_REG_0].mem_size = meta.mem_size;
11011 break;
11012 case RET_PTR_TO_MEM_OR_BTF_ID:
11013 {
11014 const struct btf_type *t;
11015
11016 mark_reg_known_zero(env, regs, BPF_REG_0);
11017 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
11018 if (!btf_type_is_struct(t)) {
11019 u32 tsize;
11020 const struct btf_type *ret;
11021 const char *tname;
11022
11023 /* resolve the type size of ksym. */
11024 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
11025 if (IS_ERR(ret)) {
11026 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
11027 verbose(env, "unable to resolve the size of type '%s': %ld\n",
11028 tname, PTR_ERR(ret));
11029 return -EINVAL;
11030 }
11031 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
11032 regs[BPF_REG_0].mem_size = tsize;
11033 } else {
11034 if (returns_cpu_specific_alloc_ptr) {
11035 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
11036 } else {
11037 /* MEM_RDONLY may be carried from ret_flag, but it
11038 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
11039 * it will confuse the check of PTR_TO_BTF_ID in
11040 * check_mem_access().
11041 */
11042 ret_flag &= ~MEM_RDONLY;
11043 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
11044 }
11045
11046 regs[BPF_REG_0].btf = meta.ret_btf;
11047 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11048 }
11049 break;
11050 }
11051 case RET_PTR_TO_BTF_ID:
11052 {
11053 struct btf *ret_btf;
11054 int ret_btf_id;
11055
11056 mark_reg_known_zero(env, regs, BPF_REG_0);
11057 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
11058 if (func_id == BPF_FUNC_kptr_xchg) {
11059 ret_btf = meta.kptr_field->kptr.btf;
11060 ret_btf_id = meta.kptr_field->kptr.btf_id;
11061 if (!btf_is_kernel(ret_btf)) {
11062 regs[BPF_REG_0].type |= MEM_ALLOC;
11063 if (meta.kptr_field->type == BPF_KPTR_PERCPU)
11064 regs[BPF_REG_0].type |= MEM_PERCPU;
11065 }
11066 } else {
11067 if (fn->ret_btf_id == BPF_PTR_POISON) {
11068 verbose(env, "verifier internal error:");
11069 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
11070 func_id_name(func_id));
11071 return -EINVAL;
11072 }
11073 ret_btf = btf_vmlinux;
11074 ret_btf_id = *fn->ret_btf_id;
11075 }
11076 if (ret_btf_id == 0) {
11077 verbose(env, "invalid return type %u of func %s#%d\n",
11078 base_type(ret_type), func_id_name(func_id),
11079 func_id);
11080 return -EINVAL;
11081 }
11082 regs[BPF_REG_0].btf = ret_btf;
11083 regs[BPF_REG_0].btf_id = ret_btf_id;
11084 break;
11085 }
11086 default:
11087 verbose(env, "unknown return type %u of func %s#%d\n",
11088 base_type(ret_type), func_id_name(func_id), func_id);
11089 return -EINVAL;
11090 }
11091
11092 if (type_may_be_null(regs[BPF_REG_0].type))
11093 regs[BPF_REG_0].id = ++env->id_gen;
11094
11095 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
11096 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
11097 func_id_name(func_id), func_id);
11098 return -EFAULT;
11099 }
11100
11101 if (is_dynptr_ref_function(func_id))
11102 regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
11103
11104 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
11105 /* For release_reference() */
11106 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
11107 } else if (is_acquire_function(func_id, meta.map_ptr)) {
11108 int id = acquire_reference_state(env, insn_idx);
11109
11110 if (id < 0)
11111 return id;
11112 /* For mark_ptr_or_null_reg() */
11113 regs[BPF_REG_0].id = id;
11114 /* For release_reference() */
11115 regs[BPF_REG_0].ref_obj_id = id;
11116 }
11117
11118 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
11119 if (err)
11120 return err;
11121
11122 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
11123 if (err)
11124 return err;
11125
11126 if ((func_id == BPF_FUNC_get_stack ||
11127 func_id == BPF_FUNC_get_task_stack) &&
11128 !env->prog->has_callchain_buf) {
11129 const char *err_str;
11130
11131 #ifdef CONFIG_PERF_EVENTS
11132 err = get_callchain_buffers(sysctl_perf_event_max_stack);
11133 err_str = "cannot get callchain buffer for func %s#%d\n";
11134 #else
11135 err = -ENOTSUPP;
11136 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
11137 #endif
11138 if (err) {
11139 verbose(env, err_str, func_id_name(func_id), func_id);
11140 return err;
11141 }
11142
11143 env->prog->has_callchain_buf = true;
11144 }
11145
11146 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
11147 env->prog->call_get_stack = true;
11148
11149 if (func_id == BPF_FUNC_get_func_ip) {
11150 if (check_get_func_ip(env))
11151 return -ENOTSUPP;
11152 env->prog->call_get_func_ip = true;
11153 }
11154
11155 if (changes_data)
11156 clear_all_pkt_pointers(env);
11157 return 0;
11158 }
11159
11160 /* mark_btf_func_reg_size() is used when the reg size is determined by
11161 * the BTF func_proto's return value size and argument.
11162 */
mark_btf_func_reg_size(struct bpf_verifier_env * env,u32 regno,size_t reg_size)11163 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
11164 size_t reg_size)
11165 {
11166 struct bpf_reg_state *reg = &cur_regs(env)[regno];
11167
11168 if (regno == BPF_REG_0) {
11169 /* Function return value */
11170 reg->live |= REG_LIVE_WRITTEN;
11171 reg->subreg_def = reg_size == sizeof(u64) ?
11172 DEF_NOT_SUBREG : env->insn_idx + 1;
11173 } else {
11174 /* Function argument */
11175 if (reg_size == sizeof(u64)) {
11176 mark_insn_zext(env, reg);
11177 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
11178 } else {
11179 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
11180 }
11181 }
11182 }
11183
is_kfunc_acquire(struct bpf_kfunc_call_arg_meta * meta)11184 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
11185 {
11186 return meta->kfunc_flags & KF_ACQUIRE;
11187 }
11188
is_kfunc_release(struct bpf_kfunc_call_arg_meta * meta)11189 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
11190 {
11191 return meta->kfunc_flags & KF_RELEASE;
11192 }
11193
is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta * meta)11194 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
11195 {
11196 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
11197 }
11198
is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta * meta)11199 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
11200 {
11201 return meta->kfunc_flags & KF_SLEEPABLE;
11202 }
11203
is_kfunc_destructive(struct bpf_kfunc_call_arg_meta * meta)11204 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
11205 {
11206 return meta->kfunc_flags & KF_DESTRUCTIVE;
11207 }
11208
is_kfunc_rcu(struct bpf_kfunc_call_arg_meta * meta)11209 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
11210 {
11211 return meta->kfunc_flags & KF_RCU;
11212 }
11213
is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta * meta)11214 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
11215 {
11216 return meta->kfunc_flags & KF_RCU_PROTECTED;
11217 }
11218
is_kfunc_arg_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)11219 static bool is_kfunc_arg_mem_size(const struct btf *btf,
11220 const struct btf_param *arg,
11221 const struct bpf_reg_state *reg)
11222 {
11223 const struct btf_type *t;
11224
11225 t = btf_type_skip_modifiers(btf, arg->type, NULL);
11226 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
11227 return false;
11228
11229 return btf_param_match_suffix(btf, arg, "__sz");
11230 }
11231
is_kfunc_arg_const_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)11232 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
11233 const struct btf_param *arg,
11234 const struct bpf_reg_state *reg)
11235 {
11236 const struct btf_type *t;
11237
11238 t = btf_type_skip_modifiers(btf, arg->type, NULL);
11239 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
11240 return false;
11241
11242 return btf_param_match_suffix(btf, arg, "__szk");
11243 }
11244
is_kfunc_arg_optional(const struct btf * btf,const struct btf_param * arg)11245 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
11246 {
11247 return btf_param_match_suffix(btf, arg, "__opt");
11248 }
11249
is_kfunc_arg_constant(const struct btf * btf,const struct btf_param * arg)11250 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
11251 {
11252 return btf_param_match_suffix(btf, arg, "__k");
11253 }
11254
is_kfunc_arg_ignore(const struct btf * btf,const struct btf_param * arg)11255 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
11256 {
11257 return btf_param_match_suffix(btf, arg, "__ign");
11258 }
11259
is_kfunc_arg_map(const struct btf * btf,const struct btf_param * arg)11260 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg)
11261 {
11262 return btf_param_match_suffix(btf, arg, "__map");
11263 }
11264
is_kfunc_arg_alloc_obj(const struct btf * btf,const struct btf_param * arg)11265 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
11266 {
11267 return btf_param_match_suffix(btf, arg, "__alloc");
11268 }
11269
is_kfunc_arg_uninit(const struct btf * btf,const struct btf_param * arg)11270 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
11271 {
11272 return btf_param_match_suffix(btf, arg, "__uninit");
11273 }
11274
is_kfunc_arg_refcounted_kptr(const struct btf * btf,const struct btf_param * arg)11275 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
11276 {
11277 return btf_param_match_suffix(btf, arg, "__refcounted_kptr");
11278 }
11279
is_kfunc_arg_nullable(const struct btf * btf,const struct btf_param * arg)11280 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
11281 {
11282 return btf_param_match_suffix(btf, arg, "__nullable");
11283 }
11284
is_kfunc_arg_const_str(const struct btf * btf,const struct btf_param * arg)11285 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg)
11286 {
11287 return btf_param_match_suffix(btf, arg, "__str");
11288 }
11289
is_kfunc_arg_scalar_with_name(const struct btf * btf,const struct btf_param * arg,const char * name)11290 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
11291 const struct btf_param *arg,
11292 const char *name)
11293 {
11294 int len, target_len = strlen(name);
11295 const char *param_name;
11296
11297 param_name = btf_name_by_offset(btf, arg->name_off);
11298 if (str_is_empty(param_name))
11299 return false;
11300 len = strlen(param_name);
11301 if (len != target_len)
11302 return false;
11303 if (strcmp(param_name, name))
11304 return false;
11305
11306 return true;
11307 }
11308
11309 enum {
11310 KF_ARG_DYNPTR_ID,
11311 KF_ARG_LIST_HEAD_ID,
11312 KF_ARG_LIST_NODE_ID,
11313 KF_ARG_RB_ROOT_ID,
11314 KF_ARG_RB_NODE_ID,
11315 KF_ARG_WORKQUEUE_ID,
11316 };
11317
11318 BTF_ID_LIST(kf_arg_btf_ids)
BTF_ID(struct,bpf_dynptr)11319 BTF_ID(struct, bpf_dynptr)
11320 BTF_ID(struct, bpf_list_head)
11321 BTF_ID(struct, bpf_list_node)
11322 BTF_ID(struct, bpf_rb_root)
11323 BTF_ID(struct, bpf_rb_node)
11324 BTF_ID(struct, bpf_wq)
11325
11326 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
11327 const struct btf_param *arg, int type)
11328 {
11329 const struct btf_type *t;
11330 u32 res_id;
11331
11332 t = btf_type_skip_modifiers(btf, arg->type, NULL);
11333 if (!t)
11334 return false;
11335 if (!btf_type_is_ptr(t))
11336 return false;
11337 t = btf_type_skip_modifiers(btf, t->type, &res_id);
11338 if (!t)
11339 return false;
11340 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
11341 }
11342
is_kfunc_arg_dynptr(const struct btf * btf,const struct btf_param * arg)11343 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
11344 {
11345 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
11346 }
11347
is_kfunc_arg_list_head(const struct btf * btf,const struct btf_param * arg)11348 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
11349 {
11350 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
11351 }
11352
is_kfunc_arg_list_node(const struct btf * btf,const struct btf_param * arg)11353 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
11354 {
11355 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
11356 }
11357
is_kfunc_arg_rbtree_root(const struct btf * btf,const struct btf_param * arg)11358 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
11359 {
11360 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
11361 }
11362
is_kfunc_arg_rbtree_node(const struct btf * btf,const struct btf_param * arg)11363 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
11364 {
11365 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
11366 }
11367
is_kfunc_arg_wq(const struct btf * btf,const struct btf_param * arg)11368 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg)
11369 {
11370 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID);
11371 }
11372
is_kfunc_arg_callback(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_param * arg)11373 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
11374 const struct btf_param *arg)
11375 {
11376 const struct btf_type *t;
11377
11378 t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
11379 if (!t)
11380 return false;
11381
11382 return true;
11383 }
11384
11385 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
__btf_type_is_scalar_struct(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_type * t,int rec)11386 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
11387 const struct btf *btf,
11388 const struct btf_type *t, int rec)
11389 {
11390 const struct btf_type *member_type;
11391 const struct btf_member *member;
11392 u32 i;
11393
11394 if (!btf_type_is_struct(t))
11395 return false;
11396
11397 for_each_member(i, t, member) {
11398 const struct btf_array *array;
11399
11400 member_type = btf_type_skip_modifiers(btf, member->type, NULL);
11401 if (btf_type_is_struct(member_type)) {
11402 if (rec >= 3) {
11403 verbose(env, "max struct nesting depth exceeded\n");
11404 return false;
11405 }
11406 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
11407 return false;
11408 continue;
11409 }
11410 if (btf_type_is_array(member_type)) {
11411 array = btf_array(member_type);
11412 if (!array->nelems)
11413 return false;
11414 member_type = btf_type_skip_modifiers(btf, array->type, NULL);
11415 if (!btf_type_is_scalar(member_type))
11416 return false;
11417 continue;
11418 }
11419 if (!btf_type_is_scalar(member_type))
11420 return false;
11421 }
11422 return true;
11423 }
11424
11425 enum kfunc_ptr_arg_type {
11426 KF_ARG_PTR_TO_CTX,
11427 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */
11428 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
11429 KF_ARG_PTR_TO_DYNPTR,
11430 KF_ARG_PTR_TO_ITER,
11431 KF_ARG_PTR_TO_LIST_HEAD,
11432 KF_ARG_PTR_TO_LIST_NODE,
11433 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */
11434 KF_ARG_PTR_TO_MEM,
11435 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */
11436 KF_ARG_PTR_TO_CALLBACK,
11437 KF_ARG_PTR_TO_RB_ROOT,
11438 KF_ARG_PTR_TO_RB_NODE,
11439 KF_ARG_PTR_TO_NULL,
11440 KF_ARG_PTR_TO_CONST_STR,
11441 KF_ARG_PTR_TO_MAP,
11442 KF_ARG_PTR_TO_WORKQUEUE,
11443 };
11444
11445 enum special_kfunc_type {
11446 KF_bpf_obj_new_impl,
11447 KF_bpf_obj_drop_impl,
11448 KF_bpf_refcount_acquire_impl,
11449 KF_bpf_list_push_front_impl,
11450 KF_bpf_list_push_back_impl,
11451 KF_bpf_list_pop_front,
11452 KF_bpf_list_pop_back,
11453 KF_bpf_cast_to_kern_ctx,
11454 KF_bpf_rdonly_cast,
11455 KF_bpf_rcu_read_lock,
11456 KF_bpf_rcu_read_unlock,
11457 KF_bpf_rbtree_remove,
11458 KF_bpf_rbtree_add_impl,
11459 KF_bpf_rbtree_first,
11460 KF_bpf_dynptr_from_skb,
11461 KF_bpf_dynptr_from_xdp,
11462 KF_bpf_dynptr_slice,
11463 KF_bpf_dynptr_slice_rdwr,
11464 KF_bpf_dynptr_clone,
11465 KF_bpf_percpu_obj_new_impl,
11466 KF_bpf_percpu_obj_drop_impl,
11467 KF_bpf_throw,
11468 KF_bpf_wq_set_callback_impl,
11469 KF_bpf_preempt_disable,
11470 KF_bpf_preempt_enable,
11471 KF_bpf_iter_css_task_new,
11472 KF_bpf_session_cookie,
11473 KF_bpf_get_kmem_cache,
11474 };
11475
11476 BTF_SET_START(special_kfunc_set)
BTF_ID(func,bpf_obj_new_impl)11477 BTF_ID(func, bpf_obj_new_impl)
11478 BTF_ID(func, bpf_obj_drop_impl)
11479 BTF_ID(func, bpf_refcount_acquire_impl)
11480 BTF_ID(func, bpf_list_push_front_impl)
11481 BTF_ID(func, bpf_list_push_back_impl)
11482 BTF_ID(func, bpf_list_pop_front)
11483 BTF_ID(func, bpf_list_pop_back)
11484 BTF_ID(func, bpf_cast_to_kern_ctx)
11485 BTF_ID(func, bpf_rdonly_cast)
11486 BTF_ID(func, bpf_rbtree_remove)
11487 BTF_ID(func, bpf_rbtree_add_impl)
11488 BTF_ID(func, bpf_rbtree_first)
11489 BTF_ID(func, bpf_dynptr_from_skb)
11490 BTF_ID(func, bpf_dynptr_from_xdp)
11491 BTF_ID(func, bpf_dynptr_slice)
11492 BTF_ID(func, bpf_dynptr_slice_rdwr)
11493 BTF_ID(func, bpf_dynptr_clone)
11494 BTF_ID(func, bpf_percpu_obj_new_impl)
11495 BTF_ID(func, bpf_percpu_obj_drop_impl)
11496 BTF_ID(func, bpf_throw)
11497 BTF_ID(func, bpf_wq_set_callback_impl)
11498 #ifdef CONFIG_CGROUPS
11499 BTF_ID(func, bpf_iter_css_task_new)
11500 #endif
11501 BTF_SET_END(special_kfunc_set)
11502
11503 BTF_ID_LIST(special_kfunc_list)
11504 BTF_ID(func, bpf_obj_new_impl)
11505 BTF_ID(func, bpf_obj_drop_impl)
11506 BTF_ID(func, bpf_refcount_acquire_impl)
11507 BTF_ID(func, bpf_list_push_front_impl)
11508 BTF_ID(func, bpf_list_push_back_impl)
11509 BTF_ID(func, bpf_list_pop_front)
11510 BTF_ID(func, bpf_list_pop_back)
11511 BTF_ID(func, bpf_cast_to_kern_ctx)
11512 BTF_ID(func, bpf_rdonly_cast)
11513 BTF_ID(func, bpf_rcu_read_lock)
11514 BTF_ID(func, bpf_rcu_read_unlock)
11515 BTF_ID(func, bpf_rbtree_remove)
11516 BTF_ID(func, bpf_rbtree_add_impl)
11517 BTF_ID(func, bpf_rbtree_first)
11518 BTF_ID(func, bpf_dynptr_from_skb)
11519 BTF_ID(func, bpf_dynptr_from_xdp)
11520 BTF_ID(func, bpf_dynptr_slice)
11521 BTF_ID(func, bpf_dynptr_slice_rdwr)
11522 BTF_ID(func, bpf_dynptr_clone)
11523 BTF_ID(func, bpf_percpu_obj_new_impl)
11524 BTF_ID(func, bpf_percpu_obj_drop_impl)
11525 BTF_ID(func, bpf_throw)
11526 BTF_ID(func, bpf_wq_set_callback_impl)
11527 BTF_ID(func, bpf_preempt_disable)
11528 BTF_ID(func, bpf_preempt_enable)
11529 #ifdef CONFIG_CGROUPS
11530 BTF_ID(func, bpf_iter_css_task_new)
11531 #else
11532 BTF_ID_UNUSED
11533 #endif
11534 #ifdef CONFIG_BPF_EVENTS
11535 BTF_ID(func, bpf_session_cookie)
11536 #else
11537 BTF_ID_UNUSED
11538 #endif
11539 BTF_ID(func, bpf_get_kmem_cache)
11540
11541 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
11542 {
11543 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
11544 meta->arg_owning_ref) {
11545 return false;
11546 }
11547
11548 return meta->kfunc_flags & KF_RET_NULL;
11549 }
11550
is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta * meta)11551 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
11552 {
11553 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
11554 }
11555
is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta * meta)11556 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
11557 {
11558 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
11559 }
11560
is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta * meta)11561 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta)
11562 {
11563 return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable];
11564 }
11565
is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta * meta)11566 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta)
11567 {
11568 return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable];
11569 }
11570
11571 static enum kfunc_ptr_arg_type
get_kfunc_ptr_arg_type(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,const struct btf_type * t,const struct btf_type * ref_t,const char * ref_tname,const struct btf_param * args,int argno,int nargs)11572 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
11573 struct bpf_kfunc_call_arg_meta *meta,
11574 const struct btf_type *t, const struct btf_type *ref_t,
11575 const char *ref_tname, const struct btf_param *args,
11576 int argno, int nargs)
11577 {
11578 u32 regno = argno + 1;
11579 struct bpf_reg_state *regs = cur_regs(env);
11580 struct bpf_reg_state *reg = ®s[regno];
11581 bool arg_mem_size = false;
11582
11583 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
11584 return KF_ARG_PTR_TO_CTX;
11585
11586 /* In this function, we verify the kfunc's BTF as per the argument type,
11587 * leaving the rest of the verification with respect to the register
11588 * type to our caller. When a set of conditions hold in the BTF type of
11589 * arguments, we resolve it to a known kfunc_ptr_arg_type.
11590 */
11591 if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
11592 return KF_ARG_PTR_TO_CTX;
11593
11594 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
11595 return KF_ARG_PTR_TO_NULL;
11596
11597 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
11598 return KF_ARG_PTR_TO_ALLOC_BTF_ID;
11599
11600 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
11601 return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
11602
11603 if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
11604 return KF_ARG_PTR_TO_DYNPTR;
11605
11606 if (is_kfunc_arg_iter(meta, argno, &args[argno]))
11607 return KF_ARG_PTR_TO_ITER;
11608
11609 if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
11610 return KF_ARG_PTR_TO_LIST_HEAD;
11611
11612 if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
11613 return KF_ARG_PTR_TO_LIST_NODE;
11614
11615 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
11616 return KF_ARG_PTR_TO_RB_ROOT;
11617
11618 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
11619 return KF_ARG_PTR_TO_RB_NODE;
11620
11621 if (is_kfunc_arg_const_str(meta->btf, &args[argno]))
11622 return KF_ARG_PTR_TO_CONST_STR;
11623
11624 if (is_kfunc_arg_map(meta->btf, &args[argno]))
11625 return KF_ARG_PTR_TO_MAP;
11626
11627 if (is_kfunc_arg_wq(meta->btf, &args[argno]))
11628 return KF_ARG_PTR_TO_WORKQUEUE;
11629
11630 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
11631 if (!btf_type_is_struct(ref_t)) {
11632 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
11633 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
11634 return -EINVAL;
11635 }
11636 return KF_ARG_PTR_TO_BTF_ID;
11637 }
11638
11639 if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
11640 return KF_ARG_PTR_TO_CALLBACK;
11641
11642 if (argno + 1 < nargs &&
11643 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) ||
11644 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1])))
11645 arg_mem_size = true;
11646
11647 /* This is the catch all argument type of register types supported by
11648 * check_helper_mem_access. However, we only allow when argument type is
11649 * pointer to scalar, or struct composed (recursively) of scalars. When
11650 * arg_mem_size is true, the pointer can be void *.
11651 */
11652 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
11653 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
11654 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
11655 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
11656 return -EINVAL;
11657 }
11658 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
11659 }
11660
process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const struct btf_type * ref_t,const char * ref_tname,u32 ref_id,struct bpf_kfunc_call_arg_meta * meta,int argno)11661 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
11662 struct bpf_reg_state *reg,
11663 const struct btf_type *ref_t,
11664 const char *ref_tname, u32 ref_id,
11665 struct bpf_kfunc_call_arg_meta *meta,
11666 int argno)
11667 {
11668 const struct btf_type *reg_ref_t;
11669 bool strict_type_match = false;
11670 const struct btf *reg_btf;
11671 const char *reg_ref_tname;
11672 bool taking_projection;
11673 bool struct_same;
11674 u32 reg_ref_id;
11675
11676 if (base_type(reg->type) == PTR_TO_BTF_ID) {
11677 reg_btf = reg->btf;
11678 reg_ref_id = reg->btf_id;
11679 } else {
11680 reg_btf = btf_vmlinux;
11681 reg_ref_id = *reg2btf_ids[base_type(reg->type)];
11682 }
11683
11684 /* Enforce strict type matching for calls to kfuncs that are acquiring
11685 * or releasing a reference, or are no-cast aliases. We do _not_
11686 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
11687 * as we want to enable BPF programs to pass types that are bitwise
11688 * equivalent without forcing them to explicitly cast with something
11689 * like bpf_cast_to_kern_ctx().
11690 *
11691 * For example, say we had a type like the following:
11692 *
11693 * struct bpf_cpumask {
11694 * cpumask_t cpumask;
11695 * refcount_t usage;
11696 * };
11697 *
11698 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
11699 * to a struct cpumask, so it would be safe to pass a struct
11700 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
11701 *
11702 * The philosophy here is similar to how we allow scalars of different
11703 * types to be passed to kfuncs as long as the size is the same. The
11704 * only difference here is that we're simply allowing
11705 * btf_struct_ids_match() to walk the struct at the 0th offset, and
11706 * resolve types.
11707 */
11708 if ((is_kfunc_release(meta) && reg->ref_obj_id) ||
11709 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
11710 strict_type_match = true;
11711
11712 WARN_ON_ONCE(is_kfunc_release(meta) &&
11713 (reg->off || !tnum_is_const(reg->var_off) ||
11714 reg->var_off.value));
11715
11716 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id);
11717 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
11718 struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match);
11719 /* If kfunc is accepting a projection type (ie. __sk_buff), it cannot
11720 * actually use it -- it must cast to the underlying type. So we allow
11721 * caller to pass in the underlying type.
11722 */
11723 taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname);
11724 if (!taking_projection && !struct_same) {
11725 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
11726 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
11727 btf_type_str(reg_ref_t), reg_ref_tname);
11728 return -EINVAL;
11729 }
11730 return 0;
11731 }
11732
ref_set_non_owning(struct bpf_verifier_env * env,struct bpf_reg_state * reg)11733 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11734 {
11735 struct btf_record *rec = reg_btf_record(reg);
11736
11737 if (!cur_func(env)->active_locks) {
11738 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
11739 return -EFAULT;
11740 }
11741
11742 if (type_flag(reg->type) & NON_OWN_REF) {
11743 verbose(env, "verifier internal error: NON_OWN_REF already set\n");
11744 return -EFAULT;
11745 }
11746
11747 reg->type |= NON_OWN_REF;
11748 if (rec->refcount_off >= 0)
11749 reg->type |= MEM_RCU;
11750
11751 return 0;
11752 }
11753
ref_convert_owning_non_owning(struct bpf_verifier_env * env,u32 ref_obj_id)11754 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
11755 {
11756 struct bpf_func_state *state, *unused;
11757 struct bpf_reg_state *reg;
11758 int i;
11759
11760 state = cur_func(env);
11761
11762 if (!ref_obj_id) {
11763 verbose(env, "verifier internal error: ref_obj_id is zero for "
11764 "owning -> non-owning conversion\n");
11765 return -EFAULT;
11766 }
11767
11768 for (i = 0; i < state->acquired_refs; i++) {
11769 if (state->refs[i].id != ref_obj_id)
11770 continue;
11771
11772 /* Clear ref_obj_id here so release_reference doesn't clobber
11773 * the whole reg
11774 */
11775 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
11776 if (reg->ref_obj_id == ref_obj_id) {
11777 reg->ref_obj_id = 0;
11778 ref_set_non_owning(env, reg);
11779 }
11780 }));
11781 return 0;
11782 }
11783
11784 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
11785 return -EFAULT;
11786 }
11787
11788 /* Implementation details:
11789 *
11790 * Each register points to some region of memory, which we define as an
11791 * allocation. Each allocation may embed a bpf_spin_lock which protects any
11792 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
11793 * allocation. The lock and the data it protects are colocated in the same
11794 * memory region.
11795 *
11796 * Hence, everytime a register holds a pointer value pointing to such
11797 * allocation, the verifier preserves a unique reg->id for it.
11798 *
11799 * The verifier remembers the lock 'ptr' and the lock 'id' whenever
11800 * bpf_spin_lock is called.
11801 *
11802 * To enable this, lock state in the verifier captures two values:
11803 * active_lock.ptr = Register's type specific pointer
11804 * active_lock.id = A unique ID for each register pointer value
11805 *
11806 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
11807 * supported register types.
11808 *
11809 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
11810 * allocated objects is the reg->btf pointer.
11811 *
11812 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
11813 * can establish the provenance of the map value statically for each distinct
11814 * lookup into such maps. They always contain a single map value hence unique
11815 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11816 *
11817 * So, in case of global variables, they use array maps with max_entries = 1,
11818 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11819 * into the same map value as max_entries is 1, as described above).
11820 *
11821 * In case of inner map lookups, the inner map pointer has same map_ptr as the
11822 * outer map pointer (in verifier context), but each lookup into an inner map
11823 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11824 * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11825 * will get different reg->id assigned to each lookup, hence different
11826 * active_lock.id.
11827 *
11828 * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11829 * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11830 * returned from bpf_obj_new. Each allocation receives a new reg->id.
11831 */
check_reg_allocation_locked(struct bpf_verifier_env * env,struct bpf_reg_state * reg)11832 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11833 {
11834 struct bpf_reference_state *s;
11835 void *ptr;
11836 u32 id;
11837
11838 switch ((int)reg->type) {
11839 case PTR_TO_MAP_VALUE:
11840 ptr = reg->map_ptr;
11841 break;
11842 case PTR_TO_BTF_ID | MEM_ALLOC:
11843 ptr = reg->btf;
11844 break;
11845 default:
11846 verbose(env, "verifier internal error: unknown reg type for lock check\n");
11847 return -EFAULT;
11848 }
11849 id = reg->id;
11850
11851 if (!cur_func(env)->active_locks)
11852 return -EINVAL;
11853 s = find_lock_state(env, REF_TYPE_LOCK, id, ptr);
11854 if (!s) {
11855 verbose(env, "held lock and object are not in the same allocation\n");
11856 return -EINVAL;
11857 }
11858 return 0;
11859 }
11860
is_bpf_list_api_kfunc(u32 btf_id)11861 static bool is_bpf_list_api_kfunc(u32 btf_id)
11862 {
11863 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11864 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11865 btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11866 btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11867 }
11868
is_bpf_rbtree_api_kfunc(u32 btf_id)11869 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11870 {
11871 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11872 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11873 btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11874 }
11875
is_bpf_graph_api_kfunc(u32 btf_id)11876 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11877 {
11878 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11879 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11880 }
11881
is_sync_callback_calling_kfunc(u32 btf_id)11882 static bool is_sync_callback_calling_kfunc(u32 btf_id)
11883 {
11884 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11885 }
11886
is_async_callback_calling_kfunc(u32 btf_id)11887 static bool is_async_callback_calling_kfunc(u32 btf_id)
11888 {
11889 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
11890 }
11891
is_bpf_throw_kfunc(struct bpf_insn * insn)11892 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
11893 {
11894 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
11895 insn->imm == special_kfunc_list[KF_bpf_throw];
11896 }
11897
is_bpf_wq_set_callback_impl_kfunc(u32 btf_id)11898 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id)
11899 {
11900 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
11901 }
11902
is_callback_calling_kfunc(u32 btf_id)11903 static bool is_callback_calling_kfunc(u32 btf_id)
11904 {
11905 return is_sync_callback_calling_kfunc(btf_id) ||
11906 is_async_callback_calling_kfunc(btf_id);
11907 }
11908
is_rbtree_lock_required_kfunc(u32 btf_id)11909 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11910 {
11911 return is_bpf_rbtree_api_kfunc(btf_id);
11912 }
11913
check_kfunc_is_graph_root_api(struct bpf_verifier_env * env,enum btf_field_type head_field_type,u32 kfunc_btf_id)11914 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11915 enum btf_field_type head_field_type,
11916 u32 kfunc_btf_id)
11917 {
11918 bool ret;
11919
11920 switch (head_field_type) {
11921 case BPF_LIST_HEAD:
11922 ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11923 break;
11924 case BPF_RB_ROOT:
11925 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11926 break;
11927 default:
11928 verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11929 btf_field_type_name(head_field_type));
11930 return false;
11931 }
11932
11933 if (!ret)
11934 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11935 btf_field_type_name(head_field_type));
11936 return ret;
11937 }
11938
check_kfunc_is_graph_node_api(struct bpf_verifier_env * env,enum btf_field_type node_field_type,u32 kfunc_btf_id)11939 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11940 enum btf_field_type node_field_type,
11941 u32 kfunc_btf_id)
11942 {
11943 bool ret;
11944
11945 switch (node_field_type) {
11946 case BPF_LIST_NODE:
11947 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11948 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11949 break;
11950 case BPF_RB_NODE:
11951 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11952 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11953 break;
11954 default:
11955 verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11956 btf_field_type_name(node_field_type));
11957 return false;
11958 }
11959
11960 if (!ret)
11961 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11962 btf_field_type_name(node_field_type));
11963 return ret;
11964 }
11965
11966 static int
__process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,struct btf_field ** head_field)11967 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11968 struct bpf_reg_state *reg, u32 regno,
11969 struct bpf_kfunc_call_arg_meta *meta,
11970 enum btf_field_type head_field_type,
11971 struct btf_field **head_field)
11972 {
11973 const char *head_type_name;
11974 struct btf_field *field;
11975 struct btf_record *rec;
11976 u32 head_off;
11977
11978 if (meta->btf != btf_vmlinux) {
11979 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11980 return -EFAULT;
11981 }
11982
11983 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11984 return -EFAULT;
11985
11986 head_type_name = btf_field_type_name(head_field_type);
11987 if (!tnum_is_const(reg->var_off)) {
11988 verbose(env,
11989 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
11990 regno, head_type_name);
11991 return -EINVAL;
11992 }
11993
11994 rec = reg_btf_record(reg);
11995 head_off = reg->off + reg->var_off.value;
11996 field = btf_record_find(rec, head_off, head_field_type);
11997 if (!field) {
11998 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11999 return -EINVAL;
12000 }
12001
12002 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */
12003 if (check_reg_allocation_locked(env, reg)) {
12004 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
12005 rec->spin_lock_off, head_type_name);
12006 return -EINVAL;
12007 }
12008
12009 if (*head_field) {
12010 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
12011 return -EFAULT;
12012 }
12013 *head_field = field;
12014 return 0;
12015 }
12016
process_kf_arg_ptr_to_list_head(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)12017 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
12018 struct bpf_reg_state *reg, u32 regno,
12019 struct bpf_kfunc_call_arg_meta *meta)
12020 {
12021 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
12022 &meta->arg_list_head.field);
12023 }
12024
process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)12025 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
12026 struct bpf_reg_state *reg, u32 regno,
12027 struct bpf_kfunc_call_arg_meta *meta)
12028 {
12029 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
12030 &meta->arg_rbtree_root.field);
12031 }
12032
12033 static int
__process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,enum btf_field_type node_field_type,struct btf_field ** node_field)12034 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
12035 struct bpf_reg_state *reg, u32 regno,
12036 struct bpf_kfunc_call_arg_meta *meta,
12037 enum btf_field_type head_field_type,
12038 enum btf_field_type node_field_type,
12039 struct btf_field **node_field)
12040 {
12041 const char *node_type_name;
12042 const struct btf_type *et, *t;
12043 struct btf_field *field;
12044 u32 node_off;
12045
12046 if (meta->btf != btf_vmlinux) {
12047 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
12048 return -EFAULT;
12049 }
12050
12051 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
12052 return -EFAULT;
12053
12054 node_type_name = btf_field_type_name(node_field_type);
12055 if (!tnum_is_const(reg->var_off)) {
12056 verbose(env,
12057 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
12058 regno, node_type_name);
12059 return -EINVAL;
12060 }
12061
12062 node_off = reg->off + reg->var_off.value;
12063 field = reg_find_field_offset(reg, node_off, node_field_type);
12064 if (!field) {
12065 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
12066 return -EINVAL;
12067 }
12068
12069 field = *node_field;
12070
12071 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
12072 t = btf_type_by_id(reg->btf, reg->btf_id);
12073 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
12074 field->graph_root.value_btf_id, true)) {
12075 verbose(env, "operation on %s expects arg#1 %s at offset=%d "
12076 "in struct %s, but arg is at offset=%d in struct %s\n",
12077 btf_field_type_name(head_field_type),
12078 btf_field_type_name(node_field_type),
12079 field->graph_root.node_offset,
12080 btf_name_by_offset(field->graph_root.btf, et->name_off),
12081 node_off, btf_name_by_offset(reg->btf, t->name_off));
12082 return -EINVAL;
12083 }
12084 meta->arg_btf = reg->btf;
12085 meta->arg_btf_id = reg->btf_id;
12086
12087 if (node_off != field->graph_root.node_offset) {
12088 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
12089 node_off, btf_field_type_name(node_field_type),
12090 field->graph_root.node_offset,
12091 btf_name_by_offset(field->graph_root.btf, et->name_off));
12092 return -EINVAL;
12093 }
12094
12095 return 0;
12096 }
12097
process_kf_arg_ptr_to_list_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)12098 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
12099 struct bpf_reg_state *reg, u32 regno,
12100 struct bpf_kfunc_call_arg_meta *meta)
12101 {
12102 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
12103 BPF_LIST_HEAD, BPF_LIST_NODE,
12104 &meta->arg_list_head.field);
12105 }
12106
process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)12107 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
12108 struct bpf_reg_state *reg, u32 regno,
12109 struct bpf_kfunc_call_arg_meta *meta)
12110 {
12111 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
12112 BPF_RB_ROOT, BPF_RB_NODE,
12113 &meta->arg_rbtree_root.field);
12114 }
12115
12116 /*
12117 * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
12118 * LSM hooks and iters (both sleepable and non-sleepable) are safe.
12119 * Any sleepable progs are also safe since bpf_check_attach_target() enforce
12120 * them can only be attached to some specific hook points.
12121 */
check_css_task_iter_allowlist(struct bpf_verifier_env * env)12122 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
12123 {
12124 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
12125
12126 switch (prog_type) {
12127 case BPF_PROG_TYPE_LSM:
12128 return true;
12129 case BPF_PROG_TYPE_TRACING:
12130 if (env->prog->expected_attach_type == BPF_TRACE_ITER)
12131 return true;
12132 fallthrough;
12133 default:
12134 return in_sleepable(env);
12135 }
12136 }
12137
check_kfunc_args(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,int insn_idx)12138 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
12139 int insn_idx)
12140 {
12141 const char *func_name = meta->func_name, *ref_tname;
12142 const struct btf *btf = meta->btf;
12143 const struct btf_param *args;
12144 struct btf_record *rec;
12145 u32 i, nargs;
12146 int ret;
12147
12148 args = (const struct btf_param *)(meta->func_proto + 1);
12149 nargs = btf_type_vlen(meta->func_proto);
12150 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
12151 verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
12152 MAX_BPF_FUNC_REG_ARGS);
12153 return -EINVAL;
12154 }
12155
12156 /* Check that BTF function arguments match actual types that the
12157 * verifier sees.
12158 */
12159 for (i = 0; i < nargs; i++) {
12160 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1];
12161 const struct btf_type *t, *ref_t, *resolve_ret;
12162 enum bpf_arg_type arg_type = ARG_DONTCARE;
12163 u32 regno = i + 1, ref_id, type_size;
12164 bool is_ret_buf_sz = false;
12165 int kf_arg_type;
12166
12167 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
12168
12169 if (is_kfunc_arg_ignore(btf, &args[i]))
12170 continue;
12171
12172 if (btf_type_is_scalar(t)) {
12173 if (reg->type != SCALAR_VALUE) {
12174 verbose(env, "R%d is not a scalar\n", regno);
12175 return -EINVAL;
12176 }
12177
12178 if (is_kfunc_arg_constant(meta->btf, &args[i])) {
12179 if (meta->arg_constant.found) {
12180 verbose(env, "verifier internal error: only one constant argument permitted\n");
12181 return -EFAULT;
12182 }
12183 if (!tnum_is_const(reg->var_off)) {
12184 verbose(env, "R%d must be a known constant\n", regno);
12185 return -EINVAL;
12186 }
12187 ret = mark_chain_precision(env, regno);
12188 if (ret < 0)
12189 return ret;
12190 meta->arg_constant.found = true;
12191 meta->arg_constant.value = reg->var_off.value;
12192 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
12193 meta->r0_rdonly = true;
12194 is_ret_buf_sz = true;
12195 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
12196 is_ret_buf_sz = true;
12197 }
12198
12199 if (is_ret_buf_sz) {
12200 if (meta->r0_size) {
12201 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
12202 return -EINVAL;
12203 }
12204
12205 if (!tnum_is_const(reg->var_off)) {
12206 verbose(env, "R%d is not a const\n", regno);
12207 return -EINVAL;
12208 }
12209
12210 meta->r0_size = reg->var_off.value;
12211 ret = mark_chain_precision(env, regno);
12212 if (ret)
12213 return ret;
12214 }
12215 continue;
12216 }
12217
12218 if (!btf_type_is_ptr(t)) {
12219 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
12220 return -EINVAL;
12221 }
12222
12223 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
12224 (register_is_null(reg) || type_may_be_null(reg->type)) &&
12225 !is_kfunc_arg_nullable(meta->btf, &args[i])) {
12226 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
12227 return -EACCES;
12228 }
12229
12230 if (reg->ref_obj_id) {
12231 if (is_kfunc_release(meta) && meta->ref_obj_id) {
12232 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
12233 regno, reg->ref_obj_id,
12234 meta->ref_obj_id);
12235 return -EFAULT;
12236 }
12237 meta->ref_obj_id = reg->ref_obj_id;
12238 if (is_kfunc_release(meta))
12239 meta->release_regno = regno;
12240 }
12241
12242 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
12243 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
12244
12245 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
12246 if (kf_arg_type < 0)
12247 return kf_arg_type;
12248
12249 switch (kf_arg_type) {
12250 case KF_ARG_PTR_TO_NULL:
12251 continue;
12252 case KF_ARG_PTR_TO_MAP:
12253 if (!reg->map_ptr) {
12254 verbose(env, "pointer in R%d isn't map pointer\n", regno);
12255 return -EINVAL;
12256 }
12257 if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) {
12258 /* Use map_uid (which is unique id of inner map) to reject:
12259 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
12260 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
12261 * if (inner_map1 && inner_map2) {
12262 * wq = bpf_map_lookup_elem(inner_map1);
12263 * if (wq)
12264 * // mismatch would have been allowed
12265 * bpf_wq_init(wq, inner_map2);
12266 * }
12267 *
12268 * Comparing map_ptr is enough to distinguish normal and outer maps.
12269 */
12270 if (meta->map.ptr != reg->map_ptr ||
12271 meta->map.uid != reg->map_uid) {
12272 verbose(env,
12273 "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
12274 meta->map.uid, reg->map_uid);
12275 return -EINVAL;
12276 }
12277 }
12278 meta->map.ptr = reg->map_ptr;
12279 meta->map.uid = reg->map_uid;
12280 fallthrough;
12281 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
12282 case KF_ARG_PTR_TO_BTF_ID:
12283 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
12284 break;
12285
12286 if (!is_trusted_reg(reg)) {
12287 if (!is_kfunc_rcu(meta)) {
12288 verbose(env, "R%d must be referenced or trusted\n", regno);
12289 return -EINVAL;
12290 }
12291 if (!is_rcu_reg(reg)) {
12292 verbose(env, "R%d must be a rcu pointer\n", regno);
12293 return -EINVAL;
12294 }
12295 }
12296 fallthrough;
12297 case KF_ARG_PTR_TO_CTX:
12298 case KF_ARG_PTR_TO_DYNPTR:
12299 case KF_ARG_PTR_TO_ITER:
12300 case KF_ARG_PTR_TO_LIST_HEAD:
12301 case KF_ARG_PTR_TO_LIST_NODE:
12302 case KF_ARG_PTR_TO_RB_ROOT:
12303 case KF_ARG_PTR_TO_RB_NODE:
12304 case KF_ARG_PTR_TO_MEM:
12305 case KF_ARG_PTR_TO_MEM_SIZE:
12306 case KF_ARG_PTR_TO_CALLBACK:
12307 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
12308 case KF_ARG_PTR_TO_CONST_STR:
12309 case KF_ARG_PTR_TO_WORKQUEUE:
12310 break;
12311 default:
12312 WARN_ON_ONCE(1);
12313 return -EFAULT;
12314 }
12315
12316 if (is_kfunc_release(meta) && reg->ref_obj_id)
12317 arg_type |= OBJ_RELEASE;
12318 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
12319 if (ret < 0)
12320 return ret;
12321
12322 switch (kf_arg_type) {
12323 case KF_ARG_PTR_TO_CTX:
12324 if (reg->type != PTR_TO_CTX) {
12325 verbose(env, "arg#%d expected pointer to ctx, but got %s\n",
12326 i, reg_type_str(env, reg->type));
12327 return -EINVAL;
12328 }
12329
12330 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12331 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
12332 if (ret < 0)
12333 return -EINVAL;
12334 meta->ret_btf_id = ret;
12335 }
12336 break;
12337 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
12338 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
12339 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
12340 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
12341 return -EINVAL;
12342 }
12343 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
12344 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
12345 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
12346 return -EINVAL;
12347 }
12348 } else {
12349 verbose(env, "arg#%d expected pointer to allocated object\n", i);
12350 return -EINVAL;
12351 }
12352 if (!reg->ref_obj_id) {
12353 verbose(env, "allocated object must be referenced\n");
12354 return -EINVAL;
12355 }
12356 if (meta->btf == btf_vmlinux) {
12357 meta->arg_btf = reg->btf;
12358 meta->arg_btf_id = reg->btf_id;
12359 }
12360 break;
12361 case KF_ARG_PTR_TO_DYNPTR:
12362 {
12363 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
12364 int clone_ref_obj_id = 0;
12365
12366 if (reg->type == CONST_PTR_TO_DYNPTR)
12367 dynptr_arg_type |= MEM_RDONLY;
12368
12369 if (is_kfunc_arg_uninit(btf, &args[i]))
12370 dynptr_arg_type |= MEM_UNINIT;
12371
12372 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
12373 dynptr_arg_type |= DYNPTR_TYPE_SKB;
12374 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
12375 dynptr_arg_type |= DYNPTR_TYPE_XDP;
12376 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
12377 (dynptr_arg_type & MEM_UNINIT)) {
12378 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
12379
12380 if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
12381 verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
12382 return -EFAULT;
12383 }
12384
12385 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
12386 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
12387 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
12388 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
12389 return -EFAULT;
12390 }
12391 }
12392
12393 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
12394 if (ret < 0)
12395 return ret;
12396
12397 if (!(dynptr_arg_type & MEM_UNINIT)) {
12398 int id = dynptr_id(env, reg);
12399
12400 if (id < 0) {
12401 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
12402 return id;
12403 }
12404 meta->initialized_dynptr.id = id;
12405 meta->initialized_dynptr.type = dynptr_get_type(env, reg);
12406 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
12407 }
12408
12409 break;
12410 }
12411 case KF_ARG_PTR_TO_ITER:
12412 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
12413 if (!check_css_task_iter_allowlist(env)) {
12414 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
12415 return -EINVAL;
12416 }
12417 }
12418 ret = process_iter_arg(env, regno, insn_idx, meta);
12419 if (ret < 0)
12420 return ret;
12421 break;
12422 case KF_ARG_PTR_TO_LIST_HEAD:
12423 if (reg->type != PTR_TO_MAP_VALUE &&
12424 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12425 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
12426 return -EINVAL;
12427 }
12428 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
12429 verbose(env, "allocated object must be referenced\n");
12430 return -EINVAL;
12431 }
12432 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
12433 if (ret < 0)
12434 return ret;
12435 break;
12436 case KF_ARG_PTR_TO_RB_ROOT:
12437 if (reg->type != PTR_TO_MAP_VALUE &&
12438 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12439 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
12440 return -EINVAL;
12441 }
12442 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
12443 verbose(env, "allocated object must be referenced\n");
12444 return -EINVAL;
12445 }
12446 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
12447 if (ret < 0)
12448 return ret;
12449 break;
12450 case KF_ARG_PTR_TO_LIST_NODE:
12451 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12452 verbose(env, "arg#%d expected pointer to allocated object\n", i);
12453 return -EINVAL;
12454 }
12455 if (!reg->ref_obj_id) {
12456 verbose(env, "allocated object must be referenced\n");
12457 return -EINVAL;
12458 }
12459 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
12460 if (ret < 0)
12461 return ret;
12462 break;
12463 case KF_ARG_PTR_TO_RB_NODE:
12464 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
12465 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
12466 verbose(env, "rbtree_remove node input must be non-owning ref\n");
12467 return -EINVAL;
12468 }
12469 if (in_rbtree_lock_required_cb(env)) {
12470 verbose(env, "rbtree_remove not allowed in rbtree cb\n");
12471 return -EINVAL;
12472 }
12473 } else {
12474 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12475 verbose(env, "arg#%d expected pointer to allocated object\n", i);
12476 return -EINVAL;
12477 }
12478 if (!reg->ref_obj_id) {
12479 verbose(env, "allocated object must be referenced\n");
12480 return -EINVAL;
12481 }
12482 }
12483
12484 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
12485 if (ret < 0)
12486 return ret;
12487 break;
12488 case KF_ARG_PTR_TO_MAP:
12489 /* If argument has '__map' suffix expect 'struct bpf_map *' */
12490 ref_id = *reg2btf_ids[CONST_PTR_TO_MAP];
12491 ref_t = btf_type_by_id(btf_vmlinux, ref_id);
12492 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
12493 fallthrough;
12494 case KF_ARG_PTR_TO_BTF_ID:
12495 /* Only base_type is checked, further checks are done here */
12496 if ((base_type(reg->type) != PTR_TO_BTF_ID ||
12497 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
12498 !reg2btf_ids[base_type(reg->type)]) {
12499 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
12500 verbose(env, "expected %s or socket\n",
12501 reg_type_str(env, base_type(reg->type) |
12502 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
12503 return -EINVAL;
12504 }
12505 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
12506 if (ret < 0)
12507 return ret;
12508 break;
12509 case KF_ARG_PTR_TO_MEM:
12510 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
12511 if (IS_ERR(resolve_ret)) {
12512 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
12513 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
12514 return -EINVAL;
12515 }
12516 ret = check_mem_reg(env, reg, regno, type_size);
12517 if (ret < 0)
12518 return ret;
12519 break;
12520 case KF_ARG_PTR_TO_MEM_SIZE:
12521 {
12522 struct bpf_reg_state *buff_reg = ®s[regno];
12523 const struct btf_param *buff_arg = &args[i];
12524 struct bpf_reg_state *size_reg = ®s[regno + 1];
12525 const struct btf_param *size_arg = &args[i + 1];
12526
12527 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
12528 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
12529 if (ret < 0) {
12530 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
12531 return ret;
12532 }
12533 }
12534
12535 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
12536 if (meta->arg_constant.found) {
12537 verbose(env, "verifier internal error: only one constant argument permitted\n");
12538 return -EFAULT;
12539 }
12540 if (!tnum_is_const(size_reg->var_off)) {
12541 verbose(env, "R%d must be a known constant\n", regno + 1);
12542 return -EINVAL;
12543 }
12544 meta->arg_constant.found = true;
12545 meta->arg_constant.value = size_reg->var_off.value;
12546 }
12547
12548 /* Skip next '__sz' or '__szk' argument */
12549 i++;
12550 break;
12551 }
12552 case KF_ARG_PTR_TO_CALLBACK:
12553 if (reg->type != PTR_TO_FUNC) {
12554 verbose(env, "arg%d expected pointer to func\n", i);
12555 return -EINVAL;
12556 }
12557 meta->subprogno = reg->subprogno;
12558 break;
12559 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
12560 if (!type_is_ptr_alloc_obj(reg->type)) {
12561 verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
12562 return -EINVAL;
12563 }
12564 if (!type_is_non_owning_ref(reg->type))
12565 meta->arg_owning_ref = true;
12566
12567 rec = reg_btf_record(reg);
12568 if (!rec) {
12569 verbose(env, "verifier internal error: Couldn't find btf_record\n");
12570 return -EFAULT;
12571 }
12572
12573 if (rec->refcount_off < 0) {
12574 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
12575 return -EINVAL;
12576 }
12577
12578 meta->arg_btf = reg->btf;
12579 meta->arg_btf_id = reg->btf_id;
12580 break;
12581 case KF_ARG_PTR_TO_CONST_STR:
12582 if (reg->type != PTR_TO_MAP_VALUE) {
12583 verbose(env, "arg#%d doesn't point to a const string\n", i);
12584 return -EINVAL;
12585 }
12586 ret = check_reg_const_str(env, reg, regno);
12587 if (ret)
12588 return ret;
12589 break;
12590 case KF_ARG_PTR_TO_WORKQUEUE:
12591 if (reg->type != PTR_TO_MAP_VALUE) {
12592 verbose(env, "arg#%d doesn't point to a map value\n", i);
12593 return -EINVAL;
12594 }
12595 ret = process_wq_func(env, regno, meta);
12596 if (ret < 0)
12597 return ret;
12598 break;
12599 }
12600 }
12601
12602 if (is_kfunc_release(meta) && !meta->release_regno) {
12603 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
12604 func_name);
12605 return -EINVAL;
12606 }
12607
12608 return 0;
12609 }
12610
fetch_kfunc_meta(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_kfunc_call_arg_meta * meta,const char ** kfunc_name)12611 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
12612 struct bpf_insn *insn,
12613 struct bpf_kfunc_call_arg_meta *meta,
12614 const char **kfunc_name)
12615 {
12616 const struct btf_type *func, *func_proto;
12617 u32 func_id, *kfunc_flags;
12618 const char *func_name;
12619 struct btf *desc_btf;
12620
12621 if (kfunc_name)
12622 *kfunc_name = NULL;
12623
12624 if (!insn->imm)
12625 return -EINVAL;
12626
12627 desc_btf = find_kfunc_desc_btf(env, insn->off);
12628 if (IS_ERR(desc_btf))
12629 return PTR_ERR(desc_btf);
12630
12631 func_id = insn->imm;
12632 func = btf_type_by_id(desc_btf, func_id);
12633 func_name = btf_name_by_offset(desc_btf, func->name_off);
12634 if (kfunc_name)
12635 *kfunc_name = func_name;
12636 func_proto = btf_type_by_id(desc_btf, func->type);
12637
12638 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
12639 if (!kfunc_flags) {
12640 return -EACCES;
12641 }
12642
12643 memset(meta, 0, sizeof(*meta));
12644 meta->btf = desc_btf;
12645 meta->func_id = func_id;
12646 meta->kfunc_flags = *kfunc_flags;
12647 meta->func_proto = func_proto;
12648 meta->func_name = func_name;
12649
12650 return 0;
12651 }
12652
12653 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name);
12654
check_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)12655 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
12656 int *insn_idx_p)
12657 {
12658 bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable;
12659 u32 i, nargs, ptr_type_id, release_ref_obj_id;
12660 struct bpf_reg_state *regs = cur_regs(env);
12661 const char *func_name, *ptr_type_name;
12662 const struct btf_type *t, *ptr_type;
12663 struct bpf_kfunc_call_arg_meta meta;
12664 struct bpf_insn_aux_data *insn_aux;
12665 int err, insn_idx = *insn_idx_p;
12666 const struct btf_param *args;
12667 const struct btf_type *ret_t;
12668 struct btf *desc_btf;
12669
12670 /* skip for now, but return error when we find this in fixup_kfunc_call */
12671 if (!insn->imm)
12672 return 0;
12673
12674 err = fetch_kfunc_meta(env, insn, &meta, &func_name);
12675 if (err == -EACCES && func_name)
12676 verbose(env, "calling kernel function %s is not allowed\n", func_name);
12677 if (err)
12678 return err;
12679 desc_btf = meta.btf;
12680 insn_aux = &env->insn_aux_data[insn_idx];
12681
12682 insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
12683
12684 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
12685 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
12686 return -EACCES;
12687 }
12688
12689 sleepable = is_kfunc_sleepable(&meta);
12690 if (sleepable && !in_sleepable(env)) {
12691 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
12692 return -EACCES;
12693 }
12694
12695 /* Check the arguments */
12696 err = check_kfunc_args(env, &meta, insn_idx);
12697 if (err < 0)
12698 return err;
12699
12700 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12701 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
12702 set_rbtree_add_callback_state);
12703 if (err) {
12704 verbose(env, "kfunc %s#%d failed callback verification\n",
12705 func_name, meta.func_id);
12706 return err;
12707 }
12708 }
12709
12710 if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) {
12711 meta.r0_size = sizeof(u64);
12712 meta.r0_rdonly = false;
12713 }
12714
12715 if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) {
12716 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
12717 set_timer_callback_state);
12718 if (err) {
12719 verbose(env, "kfunc %s#%d failed callback verification\n",
12720 func_name, meta.func_id);
12721 return err;
12722 }
12723 }
12724
12725 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
12726 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
12727
12728 preempt_disable = is_kfunc_bpf_preempt_disable(&meta);
12729 preempt_enable = is_kfunc_bpf_preempt_enable(&meta);
12730
12731 if (env->cur_state->active_rcu_lock) {
12732 struct bpf_func_state *state;
12733 struct bpf_reg_state *reg;
12734 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
12735
12736 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
12737 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
12738 return -EACCES;
12739 }
12740
12741 if (rcu_lock) {
12742 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
12743 return -EINVAL;
12744 } else if (rcu_unlock) {
12745 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
12746 if (reg->type & MEM_RCU) {
12747 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
12748 reg->type |= PTR_UNTRUSTED;
12749 }
12750 }));
12751 env->cur_state->active_rcu_lock = false;
12752 } else if (sleepable) {
12753 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
12754 return -EACCES;
12755 }
12756 } else if (rcu_lock) {
12757 env->cur_state->active_rcu_lock = true;
12758 } else if (rcu_unlock) {
12759 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
12760 return -EINVAL;
12761 }
12762
12763 if (env->cur_state->active_preempt_lock) {
12764 if (preempt_disable) {
12765 env->cur_state->active_preempt_lock++;
12766 } else if (preempt_enable) {
12767 env->cur_state->active_preempt_lock--;
12768 } else if (sleepable) {
12769 verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name);
12770 return -EACCES;
12771 }
12772 } else if (preempt_disable) {
12773 env->cur_state->active_preempt_lock++;
12774 } else if (preempt_enable) {
12775 verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name);
12776 return -EINVAL;
12777 }
12778
12779 /* In case of release function, we get register number of refcounted
12780 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
12781 */
12782 if (meta.release_regno) {
12783 err = release_reference(env, regs[meta.release_regno].ref_obj_id);
12784 if (err) {
12785 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12786 func_name, meta.func_id);
12787 return err;
12788 }
12789 }
12790
12791 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12792 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
12793 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12794 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
12795 insn_aux->insert_off = regs[BPF_REG_2].off;
12796 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
12797 err = ref_convert_owning_non_owning(env, release_ref_obj_id);
12798 if (err) {
12799 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
12800 func_name, meta.func_id);
12801 return err;
12802 }
12803
12804 err = release_reference(env, release_ref_obj_id);
12805 if (err) {
12806 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12807 func_name, meta.func_id);
12808 return err;
12809 }
12810 }
12811
12812 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
12813 if (!bpf_jit_supports_exceptions()) {
12814 verbose(env, "JIT does not support calling kfunc %s#%d\n",
12815 func_name, meta.func_id);
12816 return -ENOTSUPP;
12817 }
12818 env->seen_exception = true;
12819
12820 /* In the case of the default callback, the cookie value passed
12821 * to bpf_throw becomes the return value of the program.
12822 */
12823 if (!env->exception_callback_subprog) {
12824 err = check_return_code(env, BPF_REG_1, "R1");
12825 if (err < 0)
12826 return err;
12827 }
12828 }
12829
12830 for (i = 0; i < CALLER_SAVED_REGS; i++)
12831 mark_reg_not_init(env, regs, caller_saved[i]);
12832
12833 /* Check return type */
12834 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
12835
12836 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
12837 /* Only exception is bpf_obj_new_impl */
12838 if (meta.btf != btf_vmlinux ||
12839 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
12840 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
12841 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
12842 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
12843 return -EINVAL;
12844 }
12845 }
12846
12847 if (btf_type_is_scalar(t)) {
12848 mark_reg_unknown(env, regs, BPF_REG_0);
12849 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
12850 } else if (btf_type_is_ptr(t)) {
12851 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
12852
12853 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12854 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
12855 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12856 struct btf_struct_meta *struct_meta;
12857 struct btf *ret_btf;
12858 u32 ret_btf_id;
12859
12860 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
12861 return -ENOMEM;
12862
12863 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
12864 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
12865 return -EINVAL;
12866 }
12867
12868 ret_btf = env->prog->aux->btf;
12869 ret_btf_id = meta.arg_constant.value;
12870
12871 /* This may be NULL due to user not supplying a BTF */
12872 if (!ret_btf) {
12873 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
12874 return -EINVAL;
12875 }
12876
12877 ret_t = btf_type_by_id(ret_btf, ret_btf_id);
12878 if (!ret_t || !__btf_type_is_struct(ret_t)) {
12879 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
12880 return -EINVAL;
12881 }
12882
12883 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12884 if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) {
12885 verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n",
12886 ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE);
12887 return -EINVAL;
12888 }
12889
12890 if (!bpf_global_percpu_ma_set) {
12891 mutex_lock(&bpf_percpu_ma_lock);
12892 if (!bpf_global_percpu_ma_set) {
12893 /* Charge memory allocated with bpf_global_percpu_ma to
12894 * root memcg. The obj_cgroup for root memcg is NULL.
12895 */
12896 err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL);
12897 if (!err)
12898 bpf_global_percpu_ma_set = true;
12899 }
12900 mutex_unlock(&bpf_percpu_ma_lock);
12901 if (err)
12902 return err;
12903 }
12904
12905 mutex_lock(&bpf_percpu_ma_lock);
12906 err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size);
12907 mutex_unlock(&bpf_percpu_ma_lock);
12908 if (err)
12909 return err;
12910 }
12911
12912 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
12913 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12914 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
12915 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
12916 return -EINVAL;
12917 }
12918
12919 if (struct_meta) {
12920 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
12921 return -EINVAL;
12922 }
12923 }
12924
12925 mark_reg_known_zero(env, regs, BPF_REG_0);
12926 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12927 regs[BPF_REG_0].btf = ret_btf;
12928 regs[BPF_REG_0].btf_id = ret_btf_id;
12929 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
12930 regs[BPF_REG_0].type |= MEM_PERCPU;
12931
12932 insn_aux->obj_new_size = ret_t->size;
12933 insn_aux->kptr_struct_meta = struct_meta;
12934 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
12935 mark_reg_known_zero(env, regs, BPF_REG_0);
12936 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12937 regs[BPF_REG_0].btf = meta.arg_btf;
12938 regs[BPF_REG_0].btf_id = meta.arg_btf_id;
12939
12940 insn_aux->kptr_struct_meta =
12941 btf_find_struct_meta(meta.arg_btf,
12942 meta.arg_btf_id);
12943 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12944 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
12945 struct btf_field *field = meta.arg_list_head.field;
12946
12947 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12948 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12949 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12950 struct btf_field *field = meta.arg_rbtree_root.field;
12951
12952 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12953 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12954 mark_reg_known_zero(env, regs, BPF_REG_0);
12955 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
12956 regs[BPF_REG_0].btf = desc_btf;
12957 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
12958 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
12959 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
12960 if (!ret_t || !btf_type_is_struct(ret_t)) {
12961 verbose(env,
12962 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
12963 return -EINVAL;
12964 }
12965
12966 mark_reg_known_zero(env, regs, BPF_REG_0);
12967 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
12968 regs[BPF_REG_0].btf = desc_btf;
12969 regs[BPF_REG_0].btf_id = meta.arg_constant.value;
12970 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
12971 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
12972 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
12973
12974 mark_reg_known_zero(env, regs, BPF_REG_0);
12975
12976 if (!meta.arg_constant.found) {
12977 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
12978 return -EFAULT;
12979 }
12980
12981 regs[BPF_REG_0].mem_size = meta.arg_constant.value;
12982
12983 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
12984 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
12985
12986 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
12987 regs[BPF_REG_0].type |= MEM_RDONLY;
12988 } else {
12989 /* this will set env->seen_direct_write to true */
12990 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
12991 verbose(env, "the prog does not allow writes to packet data\n");
12992 return -EINVAL;
12993 }
12994 }
12995
12996 if (!meta.initialized_dynptr.id) {
12997 verbose(env, "verifier internal error: no dynptr id\n");
12998 return -EFAULT;
12999 }
13000 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
13001
13002 /* we don't need to set BPF_REG_0's ref obj id
13003 * because packet slices are not refcounted (see
13004 * dynptr_type_refcounted)
13005 */
13006 } else {
13007 verbose(env, "kernel function %s unhandled dynamic return type\n",
13008 meta.func_name);
13009 return -EFAULT;
13010 }
13011 } else if (btf_type_is_void(ptr_type)) {
13012 /* kfunc returning 'void *' is equivalent to returning scalar */
13013 mark_reg_unknown(env, regs, BPF_REG_0);
13014 } else if (!__btf_type_is_struct(ptr_type)) {
13015 if (!meta.r0_size) {
13016 __u32 sz;
13017
13018 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
13019 meta.r0_size = sz;
13020 meta.r0_rdonly = true;
13021 }
13022 }
13023 if (!meta.r0_size) {
13024 ptr_type_name = btf_name_by_offset(desc_btf,
13025 ptr_type->name_off);
13026 verbose(env,
13027 "kernel function %s returns pointer type %s %s is not supported\n",
13028 func_name,
13029 btf_type_str(ptr_type),
13030 ptr_type_name);
13031 return -EINVAL;
13032 }
13033
13034 mark_reg_known_zero(env, regs, BPF_REG_0);
13035 regs[BPF_REG_0].type = PTR_TO_MEM;
13036 regs[BPF_REG_0].mem_size = meta.r0_size;
13037
13038 if (meta.r0_rdonly)
13039 regs[BPF_REG_0].type |= MEM_RDONLY;
13040
13041 /* Ensures we don't access the memory after a release_reference() */
13042 if (meta.ref_obj_id)
13043 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
13044 } else {
13045 mark_reg_known_zero(env, regs, BPF_REG_0);
13046 regs[BPF_REG_0].btf = desc_btf;
13047 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
13048 regs[BPF_REG_0].btf_id = ptr_type_id;
13049
13050 if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache])
13051 regs[BPF_REG_0].type |= PTR_UNTRUSTED;
13052
13053 if (is_iter_next_kfunc(&meta)) {
13054 struct bpf_reg_state *cur_iter;
13055
13056 cur_iter = get_iter_from_state(env->cur_state, &meta);
13057
13058 if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */
13059 regs[BPF_REG_0].type |= MEM_RCU;
13060 else
13061 regs[BPF_REG_0].type |= PTR_TRUSTED;
13062 }
13063 }
13064
13065 if (is_kfunc_ret_null(&meta)) {
13066 regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
13067 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
13068 regs[BPF_REG_0].id = ++env->id_gen;
13069 }
13070 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
13071 if (is_kfunc_acquire(&meta)) {
13072 int id = acquire_reference_state(env, insn_idx);
13073
13074 if (id < 0)
13075 return id;
13076 if (is_kfunc_ret_null(&meta))
13077 regs[BPF_REG_0].id = id;
13078 regs[BPF_REG_0].ref_obj_id = id;
13079 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
13080 ref_set_non_owning(env, ®s[BPF_REG_0]);
13081 }
13082
13083 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id)
13084 regs[BPF_REG_0].id = ++env->id_gen;
13085 } else if (btf_type_is_void(t)) {
13086 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
13087 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
13088 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
13089 insn_aux->kptr_struct_meta =
13090 btf_find_struct_meta(meta.arg_btf,
13091 meta.arg_btf_id);
13092 }
13093 }
13094 }
13095
13096 nargs = btf_type_vlen(meta.func_proto);
13097 args = (const struct btf_param *)(meta.func_proto + 1);
13098 for (i = 0; i < nargs; i++) {
13099 u32 regno = i + 1;
13100
13101 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
13102 if (btf_type_is_ptr(t))
13103 mark_btf_func_reg_size(env, regno, sizeof(void *));
13104 else
13105 /* scalar. ensured by btf_check_kfunc_arg_match() */
13106 mark_btf_func_reg_size(env, regno, t->size);
13107 }
13108
13109 if (is_iter_next_kfunc(&meta)) {
13110 err = process_iter_next_call(env, insn_idx, &meta);
13111 if (err)
13112 return err;
13113 }
13114
13115 return 0;
13116 }
13117
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)13118 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
13119 const struct bpf_reg_state *reg,
13120 enum bpf_reg_type type)
13121 {
13122 bool known = tnum_is_const(reg->var_off);
13123 s64 val = reg->var_off.value;
13124 s64 smin = reg->smin_value;
13125
13126 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
13127 verbose(env, "math between %s pointer and %lld is not allowed\n",
13128 reg_type_str(env, type), val);
13129 return false;
13130 }
13131
13132 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
13133 verbose(env, "%s pointer offset %d is not allowed\n",
13134 reg_type_str(env, type), reg->off);
13135 return false;
13136 }
13137
13138 if (smin == S64_MIN) {
13139 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
13140 reg_type_str(env, type));
13141 return false;
13142 }
13143
13144 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
13145 verbose(env, "value %lld makes %s pointer be out of bounds\n",
13146 smin, reg_type_str(env, type));
13147 return false;
13148 }
13149
13150 return true;
13151 }
13152
13153 enum {
13154 REASON_BOUNDS = -1,
13155 REASON_TYPE = -2,
13156 REASON_PATHS = -3,
13157 REASON_LIMIT = -4,
13158 REASON_STACK = -5,
13159 };
13160
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)13161 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
13162 u32 *alu_limit, bool mask_to_left)
13163 {
13164 u32 max = 0, ptr_limit = 0;
13165
13166 switch (ptr_reg->type) {
13167 case PTR_TO_STACK:
13168 /* Offset 0 is out-of-bounds, but acceptable start for the
13169 * left direction, see BPF_REG_FP. Also, unknown scalar
13170 * offset where we would need to deal with min/max bounds is
13171 * currently prohibited for unprivileged.
13172 */
13173 max = MAX_BPF_STACK + mask_to_left;
13174 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
13175 break;
13176 case PTR_TO_MAP_VALUE:
13177 max = ptr_reg->map_ptr->value_size;
13178 ptr_limit = (mask_to_left ?
13179 ptr_reg->smin_value :
13180 ptr_reg->umax_value) + ptr_reg->off;
13181 break;
13182 default:
13183 return REASON_TYPE;
13184 }
13185
13186 if (ptr_limit >= max)
13187 return REASON_LIMIT;
13188 *alu_limit = ptr_limit;
13189 return 0;
13190 }
13191
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)13192 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
13193 const struct bpf_insn *insn)
13194 {
13195 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
13196 }
13197
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)13198 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
13199 u32 alu_state, u32 alu_limit)
13200 {
13201 /* If we arrived here from different branches with different
13202 * state or limits to sanitize, then this won't work.
13203 */
13204 if (aux->alu_state &&
13205 (aux->alu_state != alu_state ||
13206 aux->alu_limit != alu_limit))
13207 return REASON_PATHS;
13208
13209 /* Corresponding fixup done in do_misc_fixups(). */
13210 aux->alu_state = alu_state;
13211 aux->alu_limit = alu_limit;
13212 return 0;
13213 }
13214
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)13215 static int sanitize_val_alu(struct bpf_verifier_env *env,
13216 struct bpf_insn *insn)
13217 {
13218 struct bpf_insn_aux_data *aux = cur_aux(env);
13219
13220 if (can_skip_alu_sanitation(env, insn))
13221 return 0;
13222
13223 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
13224 }
13225
sanitize_needed(u8 opcode)13226 static bool sanitize_needed(u8 opcode)
13227 {
13228 return opcode == BPF_ADD || opcode == BPF_SUB;
13229 }
13230
13231 struct bpf_sanitize_info {
13232 struct bpf_insn_aux_data aux;
13233 bool mask_to_left;
13234 };
13235
13236 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)13237 sanitize_speculative_path(struct bpf_verifier_env *env,
13238 const struct bpf_insn *insn,
13239 u32 next_idx, u32 curr_idx)
13240 {
13241 struct bpf_verifier_state *branch;
13242 struct bpf_reg_state *regs;
13243
13244 branch = push_stack(env, next_idx, curr_idx, true);
13245 if (branch && insn) {
13246 regs = branch->frame[branch->curframe]->regs;
13247 if (BPF_SRC(insn->code) == BPF_K) {
13248 mark_reg_unknown(env, regs, insn->dst_reg);
13249 } else if (BPF_SRC(insn->code) == BPF_X) {
13250 mark_reg_unknown(env, regs, insn->dst_reg);
13251 mark_reg_unknown(env, regs, insn->src_reg);
13252 }
13253 }
13254 return branch;
13255 }
13256
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)13257 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
13258 struct bpf_insn *insn,
13259 const struct bpf_reg_state *ptr_reg,
13260 const struct bpf_reg_state *off_reg,
13261 struct bpf_reg_state *dst_reg,
13262 struct bpf_sanitize_info *info,
13263 const bool commit_window)
13264 {
13265 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
13266 struct bpf_verifier_state *vstate = env->cur_state;
13267 bool off_is_imm = tnum_is_const(off_reg->var_off);
13268 bool off_is_neg = off_reg->smin_value < 0;
13269 bool ptr_is_dst_reg = ptr_reg == dst_reg;
13270 u8 opcode = BPF_OP(insn->code);
13271 u32 alu_state, alu_limit;
13272 struct bpf_reg_state tmp;
13273 bool ret;
13274 int err;
13275
13276 if (can_skip_alu_sanitation(env, insn))
13277 return 0;
13278
13279 /* We already marked aux for masking from non-speculative
13280 * paths, thus we got here in the first place. We only care
13281 * to explore bad access from here.
13282 */
13283 if (vstate->speculative)
13284 goto do_sim;
13285
13286 if (!commit_window) {
13287 if (!tnum_is_const(off_reg->var_off) &&
13288 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
13289 return REASON_BOUNDS;
13290
13291 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
13292 (opcode == BPF_SUB && !off_is_neg);
13293 }
13294
13295 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
13296 if (err < 0)
13297 return err;
13298
13299 if (commit_window) {
13300 /* In commit phase we narrow the masking window based on
13301 * the observed pointer move after the simulated operation.
13302 */
13303 alu_state = info->aux.alu_state;
13304 alu_limit = abs(info->aux.alu_limit - alu_limit);
13305 } else {
13306 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
13307 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
13308 alu_state |= ptr_is_dst_reg ?
13309 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
13310
13311 /* Limit pruning on unknown scalars to enable deep search for
13312 * potential masking differences from other program paths.
13313 */
13314 if (!off_is_imm)
13315 env->explore_alu_limits = true;
13316 }
13317
13318 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
13319 if (err < 0)
13320 return err;
13321 do_sim:
13322 /* If we're in commit phase, we're done here given we already
13323 * pushed the truncated dst_reg into the speculative verification
13324 * stack.
13325 *
13326 * Also, when register is a known constant, we rewrite register-based
13327 * operation to immediate-based, and thus do not need masking (and as
13328 * a consequence, do not need to simulate the zero-truncation either).
13329 */
13330 if (commit_window || off_is_imm)
13331 return 0;
13332
13333 /* Simulate and find potential out-of-bounds access under
13334 * speculative execution from truncation as a result of
13335 * masking when off was not within expected range. If off
13336 * sits in dst, then we temporarily need to move ptr there
13337 * to simulate dst (== 0) +/-= ptr. Needed, for example,
13338 * for cases where we use K-based arithmetic in one direction
13339 * and truncated reg-based in the other in order to explore
13340 * bad access.
13341 */
13342 if (!ptr_is_dst_reg) {
13343 tmp = *dst_reg;
13344 copy_register_state(dst_reg, ptr_reg);
13345 }
13346 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
13347 env->insn_idx);
13348 if (!ptr_is_dst_reg && ret)
13349 *dst_reg = tmp;
13350 return !ret ? REASON_STACK : 0;
13351 }
13352
sanitize_mark_insn_seen(struct bpf_verifier_env * env)13353 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
13354 {
13355 struct bpf_verifier_state *vstate = env->cur_state;
13356
13357 /* If we simulate paths under speculation, we don't update the
13358 * insn as 'seen' such that when we verify unreachable paths in
13359 * the non-speculative domain, sanitize_dead_code() can still
13360 * rewrite/sanitize them.
13361 */
13362 if (!vstate->speculative)
13363 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
13364 }
13365
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)13366 static int sanitize_err(struct bpf_verifier_env *env,
13367 const struct bpf_insn *insn, int reason,
13368 const struct bpf_reg_state *off_reg,
13369 const struct bpf_reg_state *dst_reg)
13370 {
13371 static const char *err = "pointer arithmetic with it prohibited for !root";
13372 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
13373 u32 dst = insn->dst_reg, src = insn->src_reg;
13374
13375 switch (reason) {
13376 case REASON_BOUNDS:
13377 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
13378 off_reg == dst_reg ? dst : src, err);
13379 break;
13380 case REASON_TYPE:
13381 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
13382 off_reg == dst_reg ? src : dst, err);
13383 break;
13384 case REASON_PATHS:
13385 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
13386 dst, op, err);
13387 break;
13388 case REASON_LIMIT:
13389 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
13390 dst, op, err);
13391 break;
13392 case REASON_STACK:
13393 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
13394 dst, err);
13395 break;
13396 default:
13397 verbose(env, "verifier internal error: unknown reason (%d)\n",
13398 reason);
13399 break;
13400 }
13401
13402 return -EACCES;
13403 }
13404
13405 /* check that stack access falls within stack limits and that 'reg' doesn't
13406 * have a variable offset.
13407 *
13408 * Variable offset is prohibited for unprivileged mode for simplicity since it
13409 * requires corresponding support in Spectre masking for stack ALU. See also
13410 * retrieve_ptr_limit().
13411 *
13412 *
13413 * 'off' includes 'reg->off'.
13414 */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)13415 static int check_stack_access_for_ptr_arithmetic(
13416 struct bpf_verifier_env *env,
13417 int regno,
13418 const struct bpf_reg_state *reg,
13419 int off)
13420 {
13421 if (!tnum_is_const(reg->var_off)) {
13422 char tn_buf[48];
13423
13424 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
13425 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
13426 regno, tn_buf, off);
13427 return -EACCES;
13428 }
13429
13430 if (off >= 0 || off < -MAX_BPF_STACK) {
13431 verbose(env, "R%d stack pointer arithmetic goes out of range, "
13432 "prohibited for !root; off=%d\n", regno, off);
13433 return -EACCES;
13434 }
13435
13436 return 0;
13437 }
13438
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)13439 static int sanitize_check_bounds(struct bpf_verifier_env *env,
13440 const struct bpf_insn *insn,
13441 const struct bpf_reg_state *dst_reg)
13442 {
13443 u32 dst = insn->dst_reg;
13444
13445 /* For unprivileged we require that resulting offset must be in bounds
13446 * in order to be able to sanitize access later on.
13447 */
13448 if (env->bypass_spec_v1)
13449 return 0;
13450
13451 switch (dst_reg->type) {
13452 case PTR_TO_STACK:
13453 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
13454 dst_reg->off + dst_reg->var_off.value))
13455 return -EACCES;
13456 break;
13457 case PTR_TO_MAP_VALUE:
13458 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
13459 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
13460 "prohibited for !root\n", dst);
13461 return -EACCES;
13462 }
13463 break;
13464 default:
13465 break;
13466 }
13467
13468 return 0;
13469 }
13470
13471 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
13472 * Caller should also handle BPF_MOV case separately.
13473 * If we return -EACCES, caller may want to try again treating pointer as a
13474 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
13475 */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)13476 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
13477 struct bpf_insn *insn,
13478 const struct bpf_reg_state *ptr_reg,
13479 const struct bpf_reg_state *off_reg)
13480 {
13481 struct bpf_verifier_state *vstate = env->cur_state;
13482 struct bpf_func_state *state = vstate->frame[vstate->curframe];
13483 struct bpf_reg_state *regs = state->regs, *dst_reg;
13484 bool known = tnum_is_const(off_reg->var_off);
13485 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
13486 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
13487 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
13488 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
13489 struct bpf_sanitize_info info = {};
13490 u8 opcode = BPF_OP(insn->code);
13491 u32 dst = insn->dst_reg;
13492 int ret;
13493
13494 dst_reg = ®s[dst];
13495
13496 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
13497 smin_val > smax_val || umin_val > umax_val) {
13498 /* Taint dst register if offset had invalid bounds derived from
13499 * e.g. dead branches.
13500 */
13501 __mark_reg_unknown(env, dst_reg);
13502 return 0;
13503 }
13504
13505 if (BPF_CLASS(insn->code) != BPF_ALU64) {
13506 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
13507 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13508 __mark_reg_unknown(env, dst_reg);
13509 return 0;
13510 }
13511
13512 verbose(env,
13513 "R%d 32-bit pointer arithmetic prohibited\n",
13514 dst);
13515 return -EACCES;
13516 }
13517
13518 if (ptr_reg->type & PTR_MAYBE_NULL) {
13519 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
13520 dst, reg_type_str(env, ptr_reg->type));
13521 return -EACCES;
13522 }
13523
13524 switch (base_type(ptr_reg->type)) {
13525 case PTR_TO_CTX:
13526 case PTR_TO_MAP_VALUE:
13527 case PTR_TO_MAP_KEY:
13528 case PTR_TO_STACK:
13529 case PTR_TO_PACKET_META:
13530 case PTR_TO_PACKET:
13531 case PTR_TO_TP_BUFFER:
13532 case PTR_TO_BTF_ID:
13533 case PTR_TO_MEM:
13534 case PTR_TO_BUF:
13535 case PTR_TO_FUNC:
13536 case CONST_PTR_TO_DYNPTR:
13537 break;
13538 case PTR_TO_FLOW_KEYS:
13539 if (known)
13540 break;
13541 fallthrough;
13542 case CONST_PTR_TO_MAP:
13543 /* smin_val represents the known value */
13544 if (known && smin_val == 0 && opcode == BPF_ADD)
13545 break;
13546 fallthrough;
13547 default:
13548 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
13549 dst, reg_type_str(env, ptr_reg->type));
13550 return -EACCES;
13551 }
13552
13553 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
13554 * The id may be overwritten later if we create a new variable offset.
13555 */
13556 dst_reg->type = ptr_reg->type;
13557 dst_reg->id = ptr_reg->id;
13558
13559 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
13560 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
13561 return -EINVAL;
13562
13563 /* pointer types do not carry 32-bit bounds at the moment. */
13564 __mark_reg32_unbounded(dst_reg);
13565
13566 if (sanitize_needed(opcode)) {
13567 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
13568 &info, false);
13569 if (ret < 0)
13570 return sanitize_err(env, insn, ret, off_reg, dst_reg);
13571 }
13572
13573 switch (opcode) {
13574 case BPF_ADD:
13575 /* We can take a fixed offset as long as it doesn't overflow
13576 * the s32 'off' field
13577 */
13578 if (known && (ptr_reg->off + smin_val ==
13579 (s64)(s32)(ptr_reg->off + smin_val))) {
13580 /* pointer += K. Accumulate it into fixed offset */
13581 dst_reg->smin_value = smin_ptr;
13582 dst_reg->smax_value = smax_ptr;
13583 dst_reg->umin_value = umin_ptr;
13584 dst_reg->umax_value = umax_ptr;
13585 dst_reg->var_off = ptr_reg->var_off;
13586 dst_reg->off = ptr_reg->off + smin_val;
13587 dst_reg->raw = ptr_reg->raw;
13588 break;
13589 }
13590 /* A new variable offset is created. Note that off_reg->off
13591 * == 0, since it's a scalar.
13592 * dst_reg gets the pointer type and since some positive
13593 * integer value was added to the pointer, give it a new 'id'
13594 * if it's a PTR_TO_PACKET.
13595 * this creates a new 'base' pointer, off_reg (variable) gets
13596 * added into the variable offset, and we copy the fixed offset
13597 * from ptr_reg.
13598 */
13599 if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) ||
13600 check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) {
13601 dst_reg->smin_value = S64_MIN;
13602 dst_reg->smax_value = S64_MAX;
13603 }
13604 if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) ||
13605 check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) {
13606 dst_reg->umin_value = 0;
13607 dst_reg->umax_value = U64_MAX;
13608 }
13609 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
13610 dst_reg->off = ptr_reg->off;
13611 dst_reg->raw = ptr_reg->raw;
13612 if (reg_is_pkt_pointer(ptr_reg)) {
13613 dst_reg->id = ++env->id_gen;
13614 /* something was added to pkt_ptr, set range to zero */
13615 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
13616 }
13617 break;
13618 case BPF_SUB:
13619 if (dst_reg == off_reg) {
13620 /* scalar -= pointer. Creates an unknown scalar */
13621 verbose(env, "R%d tried to subtract pointer from scalar\n",
13622 dst);
13623 return -EACCES;
13624 }
13625 /* We don't allow subtraction from FP, because (according to
13626 * test_verifier.c test "invalid fp arithmetic", JITs might not
13627 * be able to deal with it.
13628 */
13629 if (ptr_reg->type == PTR_TO_STACK) {
13630 verbose(env, "R%d subtraction from stack pointer prohibited\n",
13631 dst);
13632 return -EACCES;
13633 }
13634 if (known && (ptr_reg->off - smin_val ==
13635 (s64)(s32)(ptr_reg->off - smin_val))) {
13636 /* pointer -= K. Subtract it from fixed offset */
13637 dst_reg->smin_value = smin_ptr;
13638 dst_reg->smax_value = smax_ptr;
13639 dst_reg->umin_value = umin_ptr;
13640 dst_reg->umax_value = umax_ptr;
13641 dst_reg->var_off = ptr_reg->var_off;
13642 dst_reg->id = ptr_reg->id;
13643 dst_reg->off = ptr_reg->off - smin_val;
13644 dst_reg->raw = ptr_reg->raw;
13645 break;
13646 }
13647 /* A new variable offset is created. If the subtrahend is known
13648 * nonnegative, then any reg->range we had before is still good.
13649 */
13650 if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) ||
13651 check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) {
13652 /* Overflow possible, we know nothing */
13653 dst_reg->smin_value = S64_MIN;
13654 dst_reg->smax_value = S64_MAX;
13655 }
13656 if (umin_ptr < umax_val) {
13657 /* Overflow possible, we know nothing */
13658 dst_reg->umin_value = 0;
13659 dst_reg->umax_value = U64_MAX;
13660 } else {
13661 /* Cannot overflow (as long as bounds are consistent) */
13662 dst_reg->umin_value = umin_ptr - umax_val;
13663 dst_reg->umax_value = umax_ptr - umin_val;
13664 }
13665 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
13666 dst_reg->off = ptr_reg->off;
13667 dst_reg->raw = ptr_reg->raw;
13668 if (reg_is_pkt_pointer(ptr_reg)) {
13669 dst_reg->id = ++env->id_gen;
13670 /* something was added to pkt_ptr, set range to zero */
13671 if (smin_val < 0)
13672 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
13673 }
13674 break;
13675 case BPF_AND:
13676 case BPF_OR:
13677 case BPF_XOR:
13678 /* bitwise ops on pointers are troublesome, prohibit. */
13679 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
13680 dst, bpf_alu_string[opcode >> 4]);
13681 return -EACCES;
13682 default:
13683 /* other operators (e.g. MUL,LSH) produce non-pointer results */
13684 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
13685 dst, bpf_alu_string[opcode >> 4]);
13686 return -EACCES;
13687 }
13688
13689 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
13690 return -EINVAL;
13691 reg_bounds_sync(dst_reg);
13692 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
13693 return -EACCES;
13694 if (sanitize_needed(opcode)) {
13695 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
13696 &info, true);
13697 if (ret < 0)
13698 return sanitize_err(env, insn, ret, off_reg, dst_reg);
13699 }
13700
13701 return 0;
13702 }
13703
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13704 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
13705 struct bpf_reg_state *src_reg)
13706 {
13707 s32 *dst_smin = &dst_reg->s32_min_value;
13708 s32 *dst_smax = &dst_reg->s32_max_value;
13709 u32 *dst_umin = &dst_reg->u32_min_value;
13710 u32 *dst_umax = &dst_reg->u32_max_value;
13711
13712 if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) ||
13713 check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) {
13714 *dst_smin = S32_MIN;
13715 *dst_smax = S32_MAX;
13716 }
13717 if (check_add_overflow(*dst_umin, src_reg->u32_min_value, dst_umin) ||
13718 check_add_overflow(*dst_umax, src_reg->u32_max_value, dst_umax)) {
13719 *dst_umin = 0;
13720 *dst_umax = U32_MAX;
13721 }
13722 }
13723
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13724 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
13725 struct bpf_reg_state *src_reg)
13726 {
13727 s64 *dst_smin = &dst_reg->smin_value;
13728 s64 *dst_smax = &dst_reg->smax_value;
13729 u64 *dst_umin = &dst_reg->umin_value;
13730 u64 *dst_umax = &dst_reg->umax_value;
13731
13732 if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) ||
13733 check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) {
13734 *dst_smin = S64_MIN;
13735 *dst_smax = S64_MAX;
13736 }
13737 if (check_add_overflow(*dst_umin, src_reg->umin_value, dst_umin) ||
13738 check_add_overflow(*dst_umax, src_reg->umax_value, dst_umax)) {
13739 *dst_umin = 0;
13740 *dst_umax = U64_MAX;
13741 }
13742 }
13743
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13744 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
13745 struct bpf_reg_state *src_reg)
13746 {
13747 s32 *dst_smin = &dst_reg->s32_min_value;
13748 s32 *dst_smax = &dst_reg->s32_max_value;
13749 u32 umin_val = src_reg->u32_min_value;
13750 u32 umax_val = src_reg->u32_max_value;
13751
13752 if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) ||
13753 check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) {
13754 /* Overflow possible, we know nothing */
13755 *dst_smin = S32_MIN;
13756 *dst_smax = S32_MAX;
13757 }
13758 if (dst_reg->u32_min_value < umax_val) {
13759 /* Overflow possible, we know nothing */
13760 dst_reg->u32_min_value = 0;
13761 dst_reg->u32_max_value = U32_MAX;
13762 } else {
13763 /* Cannot overflow (as long as bounds are consistent) */
13764 dst_reg->u32_min_value -= umax_val;
13765 dst_reg->u32_max_value -= umin_val;
13766 }
13767 }
13768
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13769 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
13770 struct bpf_reg_state *src_reg)
13771 {
13772 s64 *dst_smin = &dst_reg->smin_value;
13773 s64 *dst_smax = &dst_reg->smax_value;
13774 u64 umin_val = src_reg->umin_value;
13775 u64 umax_val = src_reg->umax_value;
13776
13777 if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) ||
13778 check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) {
13779 /* Overflow possible, we know nothing */
13780 *dst_smin = S64_MIN;
13781 *dst_smax = S64_MAX;
13782 }
13783 if (dst_reg->umin_value < umax_val) {
13784 /* Overflow possible, we know nothing */
13785 dst_reg->umin_value = 0;
13786 dst_reg->umax_value = U64_MAX;
13787 } else {
13788 /* Cannot overflow (as long as bounds are consistent) */
13789 dst_reg->umin_value -= umax_val;
13790 dst_reg->umax_value -= umin_val;
13791 }
13792 }
13793
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13794 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
13795 struct bpf_reg_state *src_reg)
13796 {
13797 s32 smin_val = src_reg->s32_min_value;
13798 u32 umin_val = src_reg->u32_min_value;
13799 u32 umax_val = src_reg->u32_max_value;
13800
13801 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
13802 /* Ain't nobody got time to multiply that sign */
13803 __mark_reg32_unbounded(dst_reg);
13804 return;
13805 }
13806 /* Both values are positive, so we can work with unsigned and
13807 * copy the result to signed (unless it exceeds S32_MAX).
13808 */
13809 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
13810 /* Potential overflow, we know nothing */
13811 __mark_reg32_unbounded(dst_reg);
13812 return;
13813 }
13814 dst_reg->u32_min_value *= umin_val;
13815 dst_reg->u32_max_value *= umax_val;
13816 if (dst_reg->u32_max_value > S32_MAX) {
13817 /* Overflow possible, we know nothing */
13818 dst_reg->s32_min_value = S32_MIN;
13819 dst_reg->s32_max_value = S32_MAX;
13820 } else {
13821 dst_reg->s32_min_value = dst_reg->u32_min_value;
13822 dst_reg->s32_max_value = dst_reg->u32_max_value;
13823 }
13824 }
13825
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13826 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
13827 struct bpf_reg_state *src_reg)
13828 {
13829 s64 smin_val = src_reg->smin_value;
13830 u64 umin_val = src_reg->umin_value;
13831 u64 umax_val = src_reg->umax_value;
13832
13833 if (smin_val < 0 || dst_reg->smin_value < 0) {
13834 /* Ain't nobody got time to multiply that sign */
13835 __mark_reg64_unbounded(dst_reg);
13836 return;
13837 }
13838 /* Both values are positive, so we can work with unsigned and
13839 * copy the result to signed (unless it exceeds S64_MAX).
13840 */
13841 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
13842 /* Potential overflow, we know nothing */
13843 __mark_reg64_unbounded(dst_reg);
13844 return;
13845 }
13846 dst_reg->umin_value *= umin_val;
13847 dst_reg->umax_value *= umax_val;
13848 if (dst_reg->umax_value > S64_MAX) {
13849 /* Overflow possible, we know nothing */
13850 dst_reg->smin_value = S64_MIN;
13851 dst_reg->smax_value = S64_MAX;
13852 } else {
13853 dst_reg->smin_value = dst_reg->umin_value;
13854 dst_reg->smax_value = dst_reg->umax_value;
13855 }
13856 }
13857
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13858 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
13859 struct bpf_reg_state *src_reg)
13860 {
13861 bool src_known = tnum_subreg_is_const(src_reg->var_off);
13862 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13863 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13864 u32 umax_val = src_reg->u32_max_value;
13865
13866 if (src_known && dst_known) {
13867 __mark_reg32_known(dst_reg, var32_off.value);
13868 return;
13869 }
13870
13871 /* We get our minimum from the var_off, since that's inherently
13872 * bitwise. Our maximum is the minimum of the operands' maxima.
13873 */
13874 dst_reg->u32_min_value = var32_off.value;
13875 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
13876
13877 /* Safe to set s32 bounds by casting u32 result into s32 when u32
13878 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
13879 */
13880 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
13881 dst_reg->s32_min_value = dst_reg->u32_min_value;
13882 dst_reg->s32_max_value = dst_reg->u32_max_value;
13883 } else {
13884 dst_reg->s32_min_value = S32_MIN;
13885 dst_reg->s32_max_value = S32_MAX;
13886 }
13887 }
13888
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13889 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
13890 struct bpf_reg_state *src_reg)
13891 {
13892 bool src_known = tnum_is_const(src_reg->var_off);
13893 bool dst_known = tnum_is_const(dst_reg->var_off);
13894 u64 umax_val = src_reg->umax_value;
13895
13896 if (src_known && dst_known) {
13897 __mark_reg_known(dst_reg, dst_reg->var_off.value);
13898 return;
13899 }
13900
13901 /* We get our minimum from the var_off, since that's inherently
13902 * bitwise. Our maximum is the minimum of the operands' maxima.
13903 */
13904 dst_reg->umin_value = dst_reg->var_off.value;
13905 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
13906
13907 /* Safe to set s64 bounds by casting u64 result into s64 when u64
13908 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
13909 */
13910 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
13911 dst_reg->smin_value = dst_reg->umin_value;
13912 dst_reg->smax_value = dst_reg->umax_value;
13913 } else {
13914 dst_reg->smin_value = S64_MIN;
13915 dst_reg->smax_value = S64_MAX;
13916 }
13917 /* We may learn something more from the var_off */
13918 __update_reg_bounds(dst_reg);
13919 }
13920
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13921 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
13922 struct bpf_reg_state *src_reg)
13923 {
13924 bool src_known = tnum_subreg_is_const(src_reg->var_off);
13925 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13926 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13927 u32 umin_val = src_reg->u32_min_value;
13928
13929 if (src_known && dst_known) {
13930 __mark_reg32_known(dst_reg, var32_off.value);
13931 return;
13932 }
13933
13934 /* We get our maximum from the var_off, and our minimum is the
13935 * maximum of the operands' minima
13936 */
13937 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
13938 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13939
13940 /* Safe to set s32 bounds by casting u32 result into s32 when u32
13941 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
13942 */
13943 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
13944 dst_reg->s32_min_value = dst_reg->u32_min_value;
13945 dst_reg->s32_max_value = dst_reg->u32_max_value;
13946 } else {
13947 dst_reg->s32_min_value = S32_MIN;
13948 dst_reg->s32_max_value = S32_MAX;
13949 }
13950 }
13951
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13952 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
13953 struct bpf_reg_state *src_reg)
13954 {
13955 bool src_known = tnum_is_const(src_reg->var_off);
13956 bool dst_known = tnum_is_const(dst_reg->var_off);
13957 u64 umin_val = src_reg->umin_value;
13958
13959 if (src_known && dst_known) {
13960 __mark_reg_known(dst_reg, dst_reg->var_off.value);
13961 return;
13962 }
13963
13964 /* We get our maximum from the var_off, and our minimum is the
13965 * maximum of the operands' minima
13966 */
13967 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
13968 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13969
13970 /* Safe to set s64 bounds by casting u64 result into s64 when u64
13971 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
13972 */
13973 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
13974 dst_reg->smin_value = dst_reg->umin_value;
13975 dst_reg->smax_value = dst_reg->umax_value;
13976 } else {
13977 dst_reg->smin_value = S64_MIN;
13978 dst_reg->smax_value = S64_MAX;
13979 }
13980 /* We may learn something more from the var_off */
13981 __update_reg_bounds(dst_reg);
13982 }
13983
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13984 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13985 struct bpf_reg_state *src_reg)
13986 {
13987 bool src_known = tnum_subreg_is_const(src_reg->var_off);
13988 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13989 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13990
13991 if (src_known && dst_known) {
13992 __mark_reg32_known(dst_reg, var32_off.value);
13993 return;
13994 }
13995
13996 /* We get both minimum and maximum from the var32_off. */
13997 dst_reg->u32_min_value = var32_off.value;
13998 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13999
14000 /* Safe to set s32 bounds by casting u32 result into s32 when u32
14001 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
14002 */
14003 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
14004 dst_reg->s32_min_value = dst_reg->u32_min_value;
14005 dst_reg->s32_max_value = dst_reg->u32_max_value;
14006 } else {
14007 dst_reg->s32_min_value = S32_MIN;
14008 dst_reg->s32_max_value = S32_MAX;
14009 }
14010 }
14011
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14012 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
14013 struct bpf_reg_state *src_reg)
14014 {
14015 bool src_known = tnum_is_const(src_reg->var_off);
14016 bool dst_known = tnum_is_const(dst_reg->var_off);
14017
14018 if (src_known && dst_known) {
14019 /* dst_reg->var_off.value has been updated earlier */
14020 __mark_reg_known(dst_reg, dst_reg->var_off.value);
14021 return;
14022 }
14023
14024 /* We get both minimum and maximum from the var_off. */
14025 dst_reg->umin_value = dst_reg->var_off.value;
14026 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
14027
14028 /* Safe to set s64 bounds by casting u64 result into s64 when u64
14029 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
14030 */
14031 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
14032 dst_reg->smin_value = dst_reg->umin_value;
14033 dst_reg->smax_value = dst_reg->umax_value;
14034 } else {
14035 dst_reg->smin_value = S64_MIN;
14036 dst_reg->smax_value = S64_MAX;
14037 }
14038
14039 __update_reg_bounds(dst_reg);
14040 }
14041
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)14042 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
14043 u64 umin_val, u64 umax_val)
14044 {
14045 /* We lose all sign bit information (except what we can pick
14046 * up from var_off)
14047 */
14048 dst_reg->s32_min_value = S32_MIN;
14049 dst_reg->s32_max_value = S32_MAX;
14050 /* If we might shift our top bit out, then we know nothing */
14051 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
14052 dst_reg->u32_min_value = 0;
14053 dst_reg->u32_max_value = U32_MAX;
14054 } else {
14055 dst_reg->u32_min_value <<= umin_val;
14056 dst_reg->u32_max_value <<= umax_val;
14057 }
14058 }
14059
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14060 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
14061 struct bpf_reg_state *src_reg)
14062 {
14063 u32 umax_val = src_reg->u32_max_value;
14064 u32 umin_val = src_reg->u32_min_value;
14065 /* u32 alu operation will zext upper bits */
14066 struct tnum subreg = tnum_subreg(dst_reg->var_off);
14067
14068 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
14069 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
14070 /* Not required but being careful mark reg64 bounds as unknown so
14071 * that we are forced to pick them up from tnum and zext later and
14072 * if some path skips this step we are still safe.
14073 */
14074 __mark_reg64_unbounded(dst_reg);
14075 __update_reg32_bounds(dst_reg);
14076 }
14077
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)14078 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
14079 u64 umin_val, u64 umax_val)
14080 {
14081 /* Special case <<32 because it is a common compiler pattern to sign
14082 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
14083 * positive we know this shift will also be positive so we can track
14084 * bounds correctly. Otherwise we lose all sign bit information except
14085 * what we can pick up from var_off. Perhaps we can generalize this
14086 * later to shifts of any length.
14087 */
14088 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
14089 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
14090 else
14091 dst_reg->smax_value = S64_MAX;
14092
14093 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
14094 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
14095 else
14096 dst_reg->smin_value = S64_MIN;
14097
14098 /* If we might shift our top bit out, then we know nothing */
14099 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
14100 dst_reg->umin_value = 0;
14101 dst_reg->umax_value = U64_MAX;
14102 } else {
14103 dst_reg->umin_value <<= umin_val;
14104 dst_reg->umax_value <<= umax_val;
14105 }
14106 }
14107
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14108 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
14109 struct bpf_reg_state *src_reg)
14110 {
14111 u64 umax_val = src_reg->umax_value;
14112 u64 umin_val = src_reg->umin_value;
14113
14114 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
14115 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
14116 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
14117
14118 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
14119 /* We may learn something more from the var_off */
14120 __update_reg_bounds(dst_reg);
14121 }
14122
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14123 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
14124 struct bpf_reg_state *src_reg)
14125 {
14126 struct tnum subreg = tnum_subreg(dst_reg->var_off);
14127 u32 umax_val = src_reg->u32_max_value;
14128 u32 umin_val = src_reg->u32_min_value;
14129
14130 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
14131 * be negative, then either:
14132 * 1) src_reg might be zero, so the sign bit of the result is
14133 * unknown, so we lose our signed bounds
14134 * 2) it's known negative, thus the unsigned bounds capture the
14135 * signed bounds
14136 * 3) the signed bounds cross zero, so they tell us nothing
14137 * about the result
14138 * If the value in dst_reg is known nonnegative, then again the
14139 * unsigned bounds capture the signed bounds.
14140 * Thus, in all cases it suffices to blow away our signed bounds
14141 * and rely on inferring new ones from the unsigned bounds and
14142 * var_off of the result.
14143 */
14144 dst_reg->s32_min_value = S32_MIN;
14145 dst_reg->s32_max_value = S32_MAX;
14146
14147 dst_reg->var_off = tnum_rshift(subreg, umin_val);
14148 dst_reg->u32_min_value >>= umax_val;
14149 dst_reg->u32_max_value >>= umin_val;
14150
14151 __mark_reg64_unbounded(dst_reg);
14152 __update_reg32_bounds(dst_reg);
14153 }
14154
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14155 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
14156 struct bpf_reg_state *src_reg)
14157 {
14158 u64 umax_val = src_reg->umax_value;
14159 u64 umin_val = src_reg->umin_value;
14160
14161 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
14162 * be negative, then either:
14163 * 1) src_reg might be zero, so the sign bit of the result is
14164 * unknown, so we lose our signed bounds
14165 * 2) it's known negative, thus the unsigned bounds capture the
14166 * signed bounds
14167 * 3) the signed bounds cross zero, so they tell us nothing
14168 * about the result
14169 * If the value in dst_reg is known nonnegative, then again the
14170 * unsigned bounds capture the signed bounds.
14171 * Thus, in all cases it suffices to blow away our signed bounds
14172 * and rely on inferring new ones from the unsigned bounds and
14173 * var_off of the result.
14174 */
14175 dst_reg->smin_value = S64_MIN;
14176 dst_reg->smax_value = S64_MAX;
14177 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
14178 dst_reg->umin_value >>= umax_val;
14179 dst_reg->umax_value >>= umin_val;
14180
14181 /* Its not easy to operate on alu32 bounds here because it depends
14182 * on bits being shifted in. Take easy way out and mark unbounded
14183 * so we can recalculate later from tnum.
14184 */
14185 __mark_reg32_unbounded(dst_reg);
14186 __update_reg_bounds(dst_reg);
14187 }
14188
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14189 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
14190 struct bpf_reg_state *src_reg)
14191 {
14192 u64 umin_val = src_reg->u32_min_value;
14193
14194 /* Upon reaching here, src_known is true and
14195 * umax_val is equal to umin_val.
14196 */
14197 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
14198 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
14199
14200 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
14201
14202 /* blow away the dst_reg umin_value/umax_value and rely on
14203 * dst_reg var_off to refine the result.
14204 */
14205 dst_reg->u32_min_value = 0;
14206 dst_reg->u32_max_value = U32_MAX;
14207
14208 __mark_reg64_unbounded(dst_reg);
14209 __update_reg32_bounds(dst_reg);
14210 }
14211
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14212 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
14213 struct bpf_reg_state *src_reg)
14214 {
14215 u64 umin_val = src_reg->umin_value;
14216
14217 /* Upon reaching here, src_known is true and umax_val is equal
14218 * to umin_val.
14219 */
14220 dst_reg->smin_value >>= umin_val;
14221 dst_reg->smax_value >>= umin_val;
14222
14223 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
14224
14225 /* blow away the dst_reg umin_value/umax_value and rely on
14226 * dst_reg var_off to refine the result.
14227 */
14228 dst_reg->umin_value = 0;
14229 dst_reg->umax_value = U64_MAX;
14230
14231 /* Its not easy to operate on alu32 bounds here because it depends
14232 * on bits being shifted in from upper 32-bits. Take easy way out
14233 * and mark unbounded so we can recalculate later from tnum.
14234 */
14235 __mark_reg32_unbounded(dst_reg);
14236 __update_reg_bounds(dst_reg);
14237 }
14238
is_safe_to_compute_dst_reg_range(struct bpf_insn * insn,const struct bpf_reg_state * src_reg)14239 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn,
14240 const struct bpf_reg_state *src_reg)
14241 {
14242 bool src_is_const = false;
14243 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
14244
14245 if (insn_bitness == 32) {
14246 if (tnum_subreg_is_const(src_reg->var_off)
14247 && src_reg->s32_min_value == src_reg->s32_max_value
14248 && src_reg->u32_min_value == src_reg->u32_max_value)
14249 src_is_const = true;
14250 } else {
14251 if (tnum_is_const(src_reg->var_off)
14252 && src_reg->smin_value == src_reg->smax_value
14253 && src_reg->umin_value == src_reg->umax_value)
14254 src_is_const = true;
14255 }
14256
14257 switch (BPF_OP(insn->code)) {
14258 case BPF_ADD:
14259 case BPF_SUB:
14260 case BPF_AND:
14261 case BPF_XOR:
14262 case BPF_OR:
14263 case BPF_MUL:
14264 return true;
14265
14266 /* Shift operators range is only computable if shift dimension operand
14267 * is a constant. Shifts greater than 31 or 63 are undefined. This
14268 * includes shifts by a negative number.
14269 */
14270 case BPF_LSH:
14271 case BPF_RSH:
14272 case BPF_ARSH:
14273 return (src_is_const && src_reg->umax_value < insn_bitness);
14274 default:
14275 return false;
14276 }
14277 }
14278
14279 /* WARNING: This function does calculations on 64-bit values, but the actual
14280 * execution may occur on 32-bit values. Therefore, things like bitshifts
14281 * need extra checks in the 32-bit case.
14282 */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)14283 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
14284 struct bpf_insn *insn,
14285 struct bpf_reg_state *dst_reg,
14286 struct bpf_reg_state src_reg)
14287 {
14288 u8 opcode = BPF_OP(insn->code);
14289 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
14290 int ret;
14291
14292 if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) {
14293 __mark_reg_unknown(env, dst_reg);
14294 return 0;
14295 }
14296
14297 if (sanitize_needed(opcode)) {
14298 ret = sanitize_val_alu(env, insn);
14299 if (ret < 0)
14300 return sanitize_err(env, insn, ret, NULL, NULL);
14301 }
14302
14303 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
14304 * There are two classes of instructions: The first class we track both
14305 * alu32 and alu64 sign/unsigned bounds independently this provides the
14306 * greatest amount of precision when alu operations are mixed with jmp32
14307 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
14308 * and BPF_OR. This is possible because these ops have fairly easy to
14309 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
14310 * See alu32 verifier tests for examples. The second class of
14311 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
14312 * with regards to tracking sign/unsigned bounds because the bits may
14313 * cross subreg boundaries in the alu64 case. When this happens we mark
14314 * the reg unbounded in the subreg bound space and use the resulting
14315 * tnum to calculate an approximation of the sign/unsigned bounds.
14316 */
14317 switch (opcode) {
14318 case BPF_ADD:
14319 scalar32_min_max_add(dst_reg, &src_reg);
14320 scalar_min_max_add(dst_reg, &src_reg);
14321 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
14322 break;
14323 case BPF_SUB:
14324 scalar32_min_max_sub(dst_reg, &src_reg);
14325 scalar_min_max_sub(dst_reg, &src_reg);
14326 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
14327 break;
14328 case BPF_MUL:
14329 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
14330 scalar32_min_max_mul(dst_reg, &src_reg);
14331 scalar_min_max_mul(dst_reg, &src_reg);
14332 break;
14333 case BPF_AND:
14334 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
14335 scalar32_min_max_and(dst_reg, &src_reg);
14336 scalar_min_max_and(dst_reg, &src_reg);
14337 break;
14338 case BPF_OR:
14339 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
14340 scalar32_min_max_or(dst_reg, &src_reg);
14341 scalar_min_max_or(dst_reg, &src_reg);
14342 break;
14343 case BPF_XOR:
14344 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
14345 scalar32_min_max_xor(dst_reg, &src_reg);
14346 scalar_min_max_xor(dst_reg, &src_reg);
14347 break;
14348 case BPF_LSH:
14349 if (alu32)
14350 scalar32_min_max_lsh(dst_reg, &src_reg);
14351 else
14352 scalar_min_max_lsh(dst_reg, &src_reg);
14353 break;
14354 case BPF_RSH:
14355 if (alu32)
14356 scalar32_min_max_rsh(dst_reg, &src_reg);
14357 else
14358 scalar_min_max_rsh(dst_reg, &src_reg);
14359 break;
14360 case BPF_ARSH:
14361 if (alu32)
14362 scalar32_min_max_arsh(dst_reg, &src_reg);
14363 else
14364 scalar_min_max_arsh(dst_reg, &src_reg);
14365 break;
14366 default:
14367 break;
14368 }
14369
14370 /* ALU32 ops are zero extended into 64bit register */
14371 if (alu32)
14372 zext_32_to_64(dst_reg);
14373 reg_bounds_sync(dst_reg);
14374 return 0;
14375 }
14376
14377 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
14378 * and var_off.
14379 */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)14380 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
14381 struct bpf_insn *insn)
14382 {
14383 struct bpf_verifier_state *vstate = env->cur_state;
14384 struct bpf_func_state *state = vstate->frame[vstate->curframe];
14385 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
14386 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
14387 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
14388 u8 opcode = BPF_OP(insn->code);
14389 int err;
14390
14391 dst_reg = ®s[insn->dst_reg];
14392 src_reg = NULL;
14393
14394 if (dst_reg->type == PTR_TO_ARENA) {
14395 struct bpf_insn_aux_data *aux = cur_aux(env);
14396
14397 if (BPF_CLASS(insn->code) == BPF_ALU64)
14398 /*
14399 * 32-bit operations zero upper bits automatically.
14400 * 64-bit operations need to be converted to 32.
14401 */
14402 aux->needs_zext = true;
14403
14404 /* Any arithmetic operations are allowed on arena pointers */
14405 return 0;
14406 }
14407
14408 if (dst_reg->type != SCALAR_VALUE)
14409 ptr_reg = dst_reg;
14410
14411 if (BPF_SRC(insn->code) == BPF_X) {
14412 src_reg = ®s[insn->src_reg];
14413 if (src_reg->type != SCALAR_VALUE) {
14414 if (dst_reg->type != SCALAR_VALUE) {
14415 /* Combining two pointers by any ALU op yields
14416 * an arbitrary scalar. Disallow all math except
14417 * pointer subtraction
14418 */
14419 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
14420 mark_reg_unknown(env, regs, insn->dst_reg);
14421 return 0;
14422 }
14423 verbose(env, "R%d pointer %s pointer prohibited\n",
14424 insn->dst_reg,
14425 bpf_alu_string[opcode >> 4]);
14426 return -EACCES;
14427 } else {
14428 /* scalar += pointer
14429 * This is legal, but we have to reverse our
14430 * src/dest handling in computing the range
14431 */
14432 err = mark_chain_precision(env, insn->dst_reg);
14433 if (err)
14434 return err;
14435 return adjust_ptr_min_max_vals(env, insn,
14436 src_reg, dst_reg);
14437 }
14438 } else if (ptr_reg) {
14439 /* pointer += scalar */
14440 err = mark_chain_precision(env, insn->src_reg);
14441 if (err)
14442 return err;
14443 return adjust_ptr_min_max_vals(env, insn,
14444 dst_reg, src_reg);
14445 } else if (dst_reg->precise) {
14446 /* if dst_reg is precise, src_reg should be precise as well */
14447 err = mark_chain_precision(env, insn->src_reg);
14448 if (err)
14449 return err;
14450 }
14451 } else {
14452 /* Pretend the src is a reg with a known value, since we only
14453 * need to be able to read from this state.
14454 */
14455 off_reg.type = SCALAR_VALUE;
14456 __mark_reg_known(&off_reg, insn->imm);
14457 src_reg = &off_reg;
14458 if (ptr_reg) /* pointer += K */
14459 return adjust_ptr_min_max_vals(env, insn,
14460 ptr_reg, src_reg);
14461 }
14462
14463 /* Got here implies adding two SCALAR_VALUEs */
14464 if (WARN_ON_ONCE(ptr_reg)) {
14465 print_verifier_state(env, state, true);
14466 verbose(env, "verifier internal error: unexpected ptr_reg\n");
14467 return -EINVAL;
14468 }
14469 if (WARN_ON(!src_reg)) {
14470 print_verifier_state(env, state, true);
14471 verbose(env, "verifier internal error: no src_reg\n");
14472 return -EINVAL;
14473 }
14474 err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
14475 if (err)
14476 return err;
14477 /*
14478 * Compilers can generate the code
14479 * r1 = r2
14480 * r1 += 0x1
14481 * if r2 < 1000 goto ...
14482 * use r1 in memory access
14483 * So for 64-bit alu remember constant delta between r2 and r1 and
14484 * update r1 after 'if' condition.
14485 */
14486 if (env->bpf_capable &&
14487 BPF_OP(insn->code) == BPF_ADD && !alu32 &&
14488 dst_reg->id && is_reg_const(src_reg, false)) {
14489 u64 val = reg_const_value(src_reg, false);
14490
14491 if ((dst_reg->id & BPF_ADD_CONST) ||
14492 /* prevent overflow in sync_linked_regs() later */
14493 val > (u32)S32_MAX) {
14494 /*
14495 * If the register already went through rX += val
14496 * we cannot accumulate another val into rx->off.
14497 */
14498 dst_reg->off = 0;
14499 dst_reg->id = 0;
14500 } else {
14501 dst_reg->id |= BPF_ADD_CONST;
14502 dst_reg->off = val;
14503 }
14504 } else {
14505 /*
14506 * Make sure ID is cleared otherwise dst_reg min/max could be
14507 * incorrectly propagated into other registers by sync_linked_regs()
14508 */
14509 dst_reg->id = 0;
14510 }
14511 return 0;
14512 }
14513
14514 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)14515 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
14516 {
14517 struct bpf_reg_state *regs = cur_regs(env);
14518 u8 opcode = BPF_OP(insn->code);
14519 int err;
14520
14521 if (opcode == BPF_END || opcode == BPF_NEG) {
14522 if (opcode == BPF_NEG) {
14523 if (BPF_SRC(insn->code) != BPF_K ||
14524 insn->src_reg != BPF_REG_0 ||
14525 insn->off != 0 || insn->imm != 0) {
14526 verbose(env, "BPF_NEG uses reserved fields\n");
14527 return -EINVAL;
14528 }
14529 } else {
14530 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
14531 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
14532 (BPF_CLASS(insn->code) == BPF_ALU64 &&
14533 BPF_SRC(insn->code) != BPF_TO_LE)) {
14534 verbose(env, "BPF_END uses reserved fields\n");
14535 return -EINVAL;
14536 }
14537 }
14538
14539 /* check src operand */
14540 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14541 if (err)
14542 return err;
14543
14544 if (is_pointer_value(env, insn->dst_reg)) {
14545 verbose(env, "R%d pointer arithmetic prohibited\n",
14546 insn->dst_reg);
14547 return -EACCES;
14548 }
14549
14550 /* check dest operand */
14551 err = check_reg_arg(env, insn->dst_reg, DST_OP);
14552 if (err)
14553 return err;
14554
14555 } else if (opcode == BPF_MOV) {
14556
14557 if (BPF_SRC(insn->code) == BPF_X) {
14558 if (BPF_CLASS(insn->code) == BPF_ALU) {
14559 if ((insn->off != 0 && insn->off != 8 && insn->off != 16) ||
14560 insn->imm) {
14561 verbose(env, "BPF_MOV uses reserved fields\n");
14562 return -EINVAL;
14563 }
14564 } else if (insn->off == BPF_ADDR_SPACE_CAST) {
14565 if (insn->imm != 1 && insn->imm != 1u << 16) {
14566 verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n");
14567 return -EINVAL;
14568 }
14569 if (!env->prog->aux->arena) {
14570 verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n");
14571 return -EINVAL;
14572 }
14573 } else {
14574 if ((insn->off != 0 && insn->off != 8 && insn->off != 16 &&
14575 insn->off != 32) || insn->imm) {
14576 verbose(env, "BPF_MOV uses reserved fields\n");
14577 return -EINVAL;
14578 }
14579 }
14580
14581 /* check src operand */
14582 err = check_reg_arg(env, insn->src_reg, SRC_OP);
14583 if (err)
14584 return err;
14585 } else {
14586 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
14587 verbose(env, "BPF_MOV uses reserved fields\n");
14588 return -EINVAL;
14589 }
14590 }
14591
14592 /* check dest operand, mark as required later */
14593 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14594 if (err)
14595 return err;
14596
14597 if (BPF_SRC(insn->code) == BPF_X) {
14598 struct bpf_reg_state *src_reg = regs + insn->src_reg;
14599 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
14600
14601 if (BPF_CLASS(insn->code) == BPF_ALU64) {
14602 if (insn->imm) {
14603 /* off == BPF_ADDR_SPACE_CAST */
14604 mark_reg_unknown(env, regs, insn->dst_reg);
14605 if (insn->imm == 1) { /* cast from as(1) to as(0) */
14606 dst_reg->type = PTR_TO_ARENA;
14607 /* PTR_TO_ARENA is 32-bit */
14608 dst_reg->subreg_def = env->insn_idx + 1;
14609 }
14610 } else if (insn->off == 0) {
14611 /* case: R1 = R2
14612 * copy register state to dest reg
14613 */
14614 assign_scalar_id_before_mov(env, src_reg);
14615 copy_register_state(dst_reg, src_reg);
14616 dst_reg->live |= REG_LIVE_WRITTEN;
14617 dst_reg->subreg_def = DEF_NOT_SUBREG;
14618 } else {
14619 /* case: R1 = (s8, s16 s32)R2 */
14620 if (is_pointer_value(env, insn->src_reg)) {
14621 verbose(env,
14622 "R%d sign-extension part of pointer\n",
14623 insn->src_reg);
14624 return -EACCES;
14625 } else if (src_reg->type == SCALAR_VALUE) {
14626 bool no_sext;
14627
14628 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
14629 if (no_sext)
14630 assign_scalar_id_before_mov(env, src_reg);
14631 copy_register_state(dst_reg, src_reg);
14632 if (!no_sext)
14633 dst_reg->id = 0;
14634 coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
14635 dst_reg->live |= REG_LIVE_WRITTEN;
14636 dst_reg->subreg_def = DEF_NOT_SUBREG;
14637 } else {
14638 mark_reg_unknown(env, regs, insn->dst_reg);
14639 }
14640 }
14641 } else {
14642 /* R1 = (u32) R2 */
14643 if (is_pointer_value(env, insn->src_reg)) {
14644 verbose(env,
14645 "R%d partial copy of pointer\n",
14646 insn->src_reg);
14647 return -EACCES;
14648 } else if (src_reg->type == SCALAR_VALUE) {
14649 if (insn->off == 0) {
14650 bool is_src_reg_u32 = get_reg_width(src_reg) <= 32;
14651
14652 if (is_src_reg_u32)
14653 assign_scalar_id_before_mov(env, src_reg);
14654 copy_register_state(dst_reg, src_reg);
14655 /* Make sure ID is cleared if src_reg is not in u32
14656 * range otherwise dst_reg min/max could be incorrectly
14657 * propagated into src_reg by sync_linked_regs()
14658 */
14659 if (!is_src_reg_u32)
14660 dst_reg->id = 0;
14661 dst_reg->live |= REG_LIVE_WRITTEN;
14662 dst_reg->subreg_def = env->insn_idx + 1;
14663 } else {
14664 /* case: W1 = (s8, s16)W2 */
14665 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
14666
14667 if (no_sext)
14668 assign_scalar_id_before_mov(env, src_reg);
14669 copy_register_state(dst_reg, src_reg);
14670 if (!no_sext)
14671 dst_reg->id = 0;
14672 dst_reg->live |= REG_LIVE_WRITTEN;
14673 dst_reg->subreg_def = env->insn_idx + 1;
14674 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
14675 }
14676 } else {
14677 mark_reg_unknown(env, regs,
14678 insn->dst_reg);
14679 }
14680 zext_32_to_64(dst_reg);
14681 reg_bounds_sync(dst_reg);
14682 }
14683 } else {
14684 /* case: R = imm
14685 * remember the value we stored into this reg
14686 */
14687 /* clear any state __mark_reg_known doesn't set */
14688 mark_reg_unknown(env, regs, insn->dst_reg);
14689 regs[insn->dst_reg].type = SCALAR_VALUE;
14690 if (BPF_CLASS(insn->code) == BPF_ALU64) {
14691 __mark_reg_known(regs + insn->dst_reg,
14692 insn->imm);
14693 } else {
14694 __mark_reg_known(regs + insn->dst_reg,
14695 (u32)insn->imm);
14696 }
14697 }
14698
14699 } else if (opcode > BPF_END) {
14700 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
14701 return -EINVAL;
14702
14703 } else { /* all other ALU ops: and, sub, xor, add, ... */
14704
14705 if (BPF_SRC(insn->code) == BPF_X) {
14706 if (insn->imm != 0 || insn->off > 1 ||
14707 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14708 verbose(env, "BPF_ALU uses reserved fields\n");
14709 return -EINVAL;
14710 }
14711 /* check src1 operand */
14712 err = check_reg_arg(env, insn->src_reg, SRC_OP);
14713 if (err)
14714 return err;
14715 } else {
14716 if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
14717 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14718 verbose(env, "BPF_ALU uses reserved fields\n");
14719 return -EINVAL;
14720 }
14721 }
14722
14723 /* check src2 operand */
14724 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14725 if (err)
14726 return err;
14727
14728 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
14729 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
14730 verbose(env, "div by zero\n");
14731 return -EINVAL;
14732 }
14733
14734 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
14735 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
14736 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
14737
14738 if (insn->imm < 0 || insn->imm >= size) {
14739 verbose(env, "invalid shift %d\n", insn->imm);
14740 return -EINVAL;
14741 }
14742 }
14743
14744 /* check dest operand */
14745 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14746 err = err ?: adjust_reg_min_max_vals(env, insn);
14747 if (err)
14748 return err;
14749 }
14750
14751 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu");
14752 }
14753
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)14754 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
14755 struct bpf_reg_state *dst_reg,
14756 enum bpf_reg_type type,
14757 bool range_right_open)
14758 {
14759 struct bpf_func_state *state;
14760 struct bpf_reg_state *reg;
14761 int new_range;
14762
14763 if (dst_reg->off < 0 ||
14764 (dst_reg->off == 0 && range_right_open))
14765 /* This doesn't give us any range */
14766 return;
14767
14768 if (dst_reg->umax_value > MAX_PACKET_OFF ||
14769 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
14770 /* Risk of overflow. For instance, ptr + (1<<63) may be less
14771 * than pkt_end, but that's because it's also less than pkt.
14772 */
14773 return;
14774
14775 new_range = dst_reg->off;
14776 if (range_right_open)
14777 new_range++;
14778
14779 /* Examples for register markings:
14780 *
14781 * pkt_data in dst register:
14782 *
14783 * r2 = r3;
14784 * r2 += 8;
14785 * if (r2 > pkt_end) goto <handle exception>
14786 * <access okay>
14787 *
14788 * r2 = r3;
14789 * r2 += 8;
14790 * if (r2 < pkt_end) goto <access okay>
14791 * <handle exception>
14792 *
14793 * Where:
14794 * r2 == dst_reg, pkt_end == src_reg
14795 * r2=pkt(id=n,off=8,r=0)
14796 * r3=pkt(id=n,off=0,r=0)
14797 *
14798 * pkt_data in src register:
14799 *
14800 * r2 = r3;
14801 * r2 += 8;
14802 * if (pkt_end >= r2) goto <access okay>
14803 * <handle exception>
14804 *
14805 * r2 = r3;
14806 * r2 += 8;
14807 * if (pkt_end <= r2) goto <handle exception>
14808 * <access okay>
14809 *
14810 * Where:
14811 * pkt_end == dst_reg, r2 == src_reg
14812 * r2=pkt(id=n,off=8,r=0)
14813 * r3=pkt(id=n,off=0,r=0)
14814 *
14815 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
14816 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
14817 * and [r3, r3 + 8-1) respectively is safe to access depending on
14818 * the check.
14819 */
14820
14821 /* If our ids match, then we must have the same max_value. And we
14822 * don't care about the other reg's fixed offset, since if it's too big
14823 * the range won't allow anything.
14824 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
14825 */
14826 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14827 if (reg->type == type && reg->id == dst_reg->id)
14828 /* keep the maximum range already checked */
14829 reg->range = max(reg->range, new_range);
14830 }));
14831 }
14832
14833 /*
14834 * <reg1> <op> <reg2>, currently assuming reg2 is a constant
14835 */
is_scalar_branch_taken(struct bpf_reg_state * reg1,struct bpf_reg_state * reg2,u8 opcode,bool is_jmp32)14836 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14837 u8 opcode, bool is_jmp32)
14838 {
14839 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off;
14840 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off;
14841 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value;
14842 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value;
14843 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value;
14844 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value;
14845 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value;
14846 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value;
14847 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value;
14848 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value;
14849
14850 switch (opcode) {
14851 case BPF_JEQ:
14852 /* constants, umin/umax and smin/smax checks would be
14853 * redundant in this case because they all should match
14854 */
14855 if (tnum_is_const(t1) && tnum_is_const(t2))
14856 return t1.value == t2.value;
14857 /* non-overlapping ranges */
14858 if (umin1 > umax2 || umax1 < umin2)
14859 return 0;
14860 if (smin1 > smax2 || smax1 < smin2)
14861 return 0;
14862 if (!is_jmp32) {
14863 /* if 64-bit ranges are inconclusive, see if we can
14864 * utilize 32-bit subrange knowledge to eliminate
14865 * branches that can't be taken a priori
14866 */
14867 if (reg1->u32_min_value > reg2->u32_max_value ||
14868 reg1->u32_max_value < reg2->u32_min_value)
14869 return 0;
14870 if (reg1->s32_min_value > reg2->s32_max_value ||
14871 reg1->s32_max_value < reg2->s32_min_value)
14872 return 0;
14873 }
14874 break;
14875 case BPF_JNE:
14876 /* constants, umin/umax and smin/smax checks would be
14877 * redundant in this case because they all should match
14878 */
14879 if (tnum_is_const(t1) && tnum_is_const(t2))
14880 return t1.value != t2.value;
14881 /* non-overlapping ranges */
14882 if (umin1 > umax2 || umax1 < umin2)
14883 return 1;
14884 if (smin1 > smax2 || smax1 < smin2)
14885 return 1;
14886 if (!is_jmp32) {
14887 /* if 64-bit ranges are inconclusive, see if we can
14888 * utilize 32-bit subrange knowledge to eliminate
14889 * branches that can't be taken a priori
14890 */
14891 if (reg1->u32_min_value > reg2->u32_max_value ||
14892 reg1->u32_max_value < reg2->u32_min_value)
14893 return 1;
14894 if (reg1->s32_min_value > reg2->s32_max_value ||
14895 reg1->s32_max_value < reg2->s32_min_value)
14896 return 1;
14897 }
14898 break;
14899 case BPF_JSET:
14900 if (!is_reg_const(reg2, is_jmp32)) {
14901 swap(reg1, reg2);
14902 swap(t1, t2);
14903 }
14904 if (!is_reg_const(reg2, is_jmp32))
14905 return -1;
14906 if ((~t1.mask & t1.value) & t2.value)
14907 return 1;
14908 if (!((t1.mask | t1.value) & t2.value))
14909 return 0;
14910 break;
14911 case BPF_JGT:
14912 if (umin1 > umax2)
14913 return 1;
14914 else if (umax1 <= umin2)
14915 return 0;
14916 break;
14917 case BPF_JSGT:
14918 if (smin1 > smax2)
14919 return 1;
14920 else if (smax1 <= smin2)
14921 return 0;
14922 break;
14923 case BPF_JLT:
14924 if (umax1 < umin2)
14925 return 1;
14926 else if (umin1 >= umax2)
14927 return 0;
14928 break;
14929 case BPF_JSLT:
14930 if (smax1 < smin2)
14931 return 1;
14932 else if (smin1 >= smax2)
14933 return 0;
14934 break;
14935 case BPF_JGE:
14936 if (umin1 >= umax2)
14937 return 1;
14938 else if (umax1 < umin2)
14939 return 0;
14940 break;
14941 case BPF_JSGE:
14942 if (smin1 >= smax2)
14943 return 1;
14944 else if (smax1 < smin2)
14945 return 0;
14946 break;
14947 case BPF_JLE:
14948 if (umax1 <= umin2)
14949 return 1;
14950 else if (umin1 > umax2)
14951 return 0;
14952 break;
14953 case BPF_JSLE:
14954 if (smax1 <= smin2)
14955 return 1;
14956 else if (smin1 > smax2)
14957 return 0;
14958 break;
14959 }
14960
14961 return -1;
14962 }
14963
flip_opcode(u32 opcode)14964 static int flip_opcode(u32 opcode)
14965 {
14966 /* How can we transform "a <op> b" into "b <op> a"? */
14967 static const u8 opcode_flip[16] = {
14968 /* these stay the same */
14969 [BPF_JEQ >> 4] = BPF_JEQ,
14970 [BPF_JNE >> 4] = BPF_JNE,
14971 [BPF_JSET >> 4] = BPF_JSET,
14972 /* these swap "lesser" and "greater" (L and G in the opcodes) */
14973 [BPF_JGE >> 4] = BPF_JLE,
14974 [BPF_JGT >> 4] = BPF_JLT,
14975 [BPF_JLE >> 4] = BPF_JGE,
14976 [BPF_JLT >> 4] = BPF_JGT,
14977 [BPF_JSGE >> 4] = BPF_JSLE,
14978 [BPF_JSGT >> 4] = BPF_JSLT,
14979 [BPF_JSLE >> 4] = BPF_JSGE,
14980 [BPF_JSLT >> 4] = BPF_JSGT
14981 };
14982 return opcode_flip[opcode >> 4];
14983 }
14984
is_pkt_ptr_branch_taken(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,u8 opcode)14985 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14986 struct bpf_reg_state *src_reg,
14987 u8 opcode)
14988 {
14989 struct bpf_reg_state *pkt;
14990
14991 if (src_reg->type == PTR_TO_PACKET_END) {
14992 pkt = dst_reg;
14993 } else if (dst_reg->type == PTR_TO_PACKET_END) {
14994 pkt = src_reg;
14995 opcode = flip_opcode(opcode);
14996 } else {
14997 return -1;
14998 }
14999
15000 if (pkt->range >= 0)
15001 return -1;
15002
15003 switch (opcode) {
15004 case BPF_JLE:
15005 /* pkt <= pkt_end */
15006 fallthrough;
15007 case BPF_JGT:
15008 /* pkt > pkt_end */
15009 if (pkt->range == BEYOND_PKT_END)
15010 /* pkt has at last one extra byte beyond pkt_end */
15011 return opcode == BPF_JGT;
15012 break;
15013 case BPF_JLT:
15014 /* pkt < pkt_end */
15015 fallthrough;
15016 case BPF_JGE:
15017 /* pkt >= pkt_end */
15018 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
15019 return opcode == BPF_JGE;
15020 break;
15021 }
15022 return -1;
15023 }
15024
15025 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;"
15026 * and return:
15027 * 1 - branch will be taken and "goto target" will be executed
15028 * 0 - branch will not be taken and fall-through to next insn
15029 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value
15030 * range [0,10]
15031 */
is_branch_taken(struct bpf_reg_state * reg1,struct bpf_reg_state * reg2,u8 opcode,bool is_jmp32)15032 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
15033 u8 opcode, bool is_jmp32)
15034 {
15035 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32)
15036 return is_pkt_ptr_branch_taken(reg1, reg2, opcode);
15037
15038 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) {
15039 u64 val;
15040
15041 /* arrange that reg2 is a scalar, and reg1 is a pointer */
15042 if (!is_reg_const(reg2, is_jmp32)) {
15043 opcode = flip_opcode(opcode);
15044 swap(reg1, reg2);
15045 }
15046 /* and ensure that reg2 is a constant */
15047 if (!is_reg_const(reg2, is_jmp32))
15048 return -1;
15049
15050 if (!reg_not_null(reg1))
15051 return -1;
15052
15053 /* If pointer is valid tests against zero will fail so we can
15054 * use this to direct branch taken.
15055 */
15056 val = reg_const_value(reg2, is_jmp32);
15057 if (val != 0)
15058 return -1;
15059
15060 switch (opcode) {
15061 case BPF_JEQ:
15062 return 0;
15063 case BPF_JNE:
15064 return 1;
15065 default:
15066 return -1;
15067 }
15068 }
15069
15070 /* now deal with two scalars, but not necessarily constants */
15071 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
15072 }
15073
15074 /* Opcode that corresponds to a *false* branch condition.
15075 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2
15076 */
rev_opcode(u8 opcode)15077 static u8 rev_opcode(u8 opcode)
15078 {
15079 switch (opcode) {
15080 case BPF_JEQ: return BPF_JNE;
15081 case BPF_JNE: return BPF_JEQ;
15082 /* JSET doesn't have it's reverse opcode in BPF, so add
15083 * BPF_X flag to denote the reverse of that operation
15084 */
15085 case BPF_JSET: return BPF_JSET | BPF_X;
15086 case BPF_JSET | BPF_X: return BPF_JSET;
15087 case BPF_JGE: return BPF_JLT;
15088 case BPF_JGT: return BPF_JLE;
15089 case BPF_JLE: return BPF_JGT;
15090 case BPF_JLT: return BPF_JGE;
15091 case BPF_JSGE: return BPF_JSLT;
15092 case BPF_JSGT: return BPF_JSLE;
15093 case BPF_JSLE: return BPF_JSGT;
15094 case BPF_JSLT: return BPF_JSGE;
15095 default: return 0;
15096 }
15097 }
15098
15099 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */
regs_refine_cond_op(struct bpf_reg_state * reg1,struct bpf_reg_state * reg2,u8 opcode,bool is_jmp32)15100 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
15101 u8 opcode, bool is_jmp32)
15102 {
15103 struct tnum t;
15104 u64 val;
15105
15106 /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */
15107 switch (opcode) {
15108 case BPF_JGE:
15109 case BPF_JGT:
15110 case BPF_JSGE:
15111 case BPF_JSGT:
15112 opcode = flip_opcode(opcode);
15113 swap(reg1, reg2);
15114 break;
15115 default:
15116 break;
15117 }
15118
15119 switch (opcode) {
15120 case BPF_JEQ:
15121 if (is_jmp32) {
15122 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
15123 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
15124 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
15125 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
15126 reg2->u32_min_value = reg1->u32_min_value;
15127 reg2->u32_max_value = reg1->u32_max_value;
15128 reg2->s32_min_value = reg1->s32_min_value;
15129 reg2->s32_max_value = reg1->s32_max_value;
15130
15131 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
15132 reg1->var_off = tnum_with_subreg(reg1->var_off, t);
15133 reg2->var_off = tnum_with_subreg(reg2->var_off, t);
15134 } else {
15135 reg1->umin_value = max(reg1->umin_value, reg2->umin_value);
15136 reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
15137 reg1->smin_value = max(reg1->smin_value, reg2->smin_value);
15138 reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
15139 reg2->umin_value = reg1->umin_value;
15140 reg2->umax_value = reg1->umax_value;
15141 reg2->smin_value = reg1->smin_value;
15142 reg2->smax_value = reg1->smax_value;
15143
15144 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off);
15145 reg2->var_off = reg1->var_off;
15146 }
15147 break;
15148 case BPF_JNE:
15149 if (!is_reg_const(reg2, is_jmp32))
15150 swap(reg1, reg2);
15151 if (!is_reg_const(reg2, is_jmp32))
15152 break;
15153
15154 /* try to recompute the bound of reg1 if reg2 is a const and
15155 * is exactly the edge of reg1.
15156 */
15157 val = reg_const_value(reg2, is_jmp32);
15158 if (is_jmp32) {
15159 /* u32_min_value is not equal to 0xffffffff at this point,
15160 * because otherwise u32_max_value is 0xffffffff as well,
15161 * in such a case both reg1 and reg2 would be constants,
15162 * jump would be predicted and reg_set_min_max() won't
15163 * be called.
15164 *
15165 * Same reasoning works for all {u,s}{min,max}{32,64} cases
15166 * below.
15167 */
15168 if (reg1->u32_min_value == (u32)val)
15169 reg1->u32_min_value++;
15170 if (reg1->u32_max_value == (u32)val)
15171 reg1->u32_max_value--;
15172 if (reg1->s32_min_value == (s32)val)
15173 reg1->s32_min_value++;
15174 if (reg1->s32_max_value == (s32)val)
15175 reg1->s32_max_value--;
15176 } else {
15177 if (reg1->umin_value == (u64)val)
15178 reg1->umin_value++;
15179 if (reg1->umax_value == (u64)val)
15180 reg1->umax_value--;
15181 if (reg1->smin_value == (s64)val)
15182 reg1->smin_value++;
15183 if (reg1->smax_value == (s64)val)
15184 reg1->smax_value--;
15185 }
15186 break;
15187 case BPF_JSET:
15188 if (!is_reg_const(reg2, is_jmp32))
15189 swap(reg1, reg2);
15190 if (!is_reg_const(reg2, is_jmp32))
15191 break;
15192 val = reg_const_value(reg2, is_jmp32);
15193 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X)
15194 * requires single bit to learn something useful. E.g., if we
15195 * know that `r1 & 0x3` is true, then which bits (0, 1, or both)
15196 * are actually set? We can learn something definite only if
15197 * it's a single-bit value to begin with.
15198 *
15199 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have
15200 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor
15201 * bit 1 is set, which we can readily use in adjustments.
15202 */
15203 if (!is_power_of_2(val))
15204 break;
15205 if (is_jmp32) {
15206 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val));
15207 reg1->var_off = tnum_with_subreg(reg1->var_off, t);
15208 } else {
15209 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val));
15210 }
15211 break;
15212 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */
15213 if (!is_reg_const(reg2, is_jmp32))
15214 swap(reg1, reg2);
15215 if (!is_reg_const(reg2, is_jmp32))
15216 break;
15217 val = reg_const_value(reg2, is_jmp32);
15218 if (is_jmp32) {
15219 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
15220 reg1->var_off = tnum_with_subreg(reg1->var_off, t);
15221 } else {
15222 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val));
15223 }
15224 break;
15225 case BPF_JLE:
15226 if (is_jmp32) {
15227 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
15228 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
15229 } else {
15230 reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
15231 reg2->umin_value = max(reg1->umin_value, reg2->umin_value);
15232 }
15233 break;
15234 case BPF_JLT:
15235 if (is_jmp32) {
15236 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1);
15237 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value);
15238 } else {
15239 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1);
15240 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value);
15241 }
15242 break;
15243 case BPF_JSLE:
15244 if (is_jmp32) {
15245 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
15246 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
15247 } else {
15248 reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
15249 reg2->smin_value = max(reg1->smin_value, reg2->smin_value);
15250 }
15251 break;
15252 case BPF_JSLT:
15253 if (is_jmp32) {
15254 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1);
15255 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value);
15256 } else {
15257 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1);
15258 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
15259 }
15260 break;
15261 default:
15262 return;
15263 }
15264 }
15265
15266 /* Adjusts the register min/max values in the case that the dst_reg and
15267 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
15268 * check, in which case we have a fake SCALAR_VALUE representing insn->imm).
15269 * Technically we can do similar adjustments for pointers to the same object,
15270 * but we don't support that right now.
15271 */
reg_set_min_max(struct bpf_verifier_env * env,struct bpf_reg_state * true_reg1,struct bpf_reg_state * true_reg2,struct bpf_reg_state * false_reg1,struct bpf_reg_state * false_reg2,u8 opcode,bool is_jmp32)15272 static int reg_set_min_max(struct bpf_verifier_env *env,
15273 struct bpf_reg_state *true_reg1,
15274 struct bpf_reg_state *true_reg2,
15275 struct bpf_reg_state *false_reg1,
15276 struct bpf_reg_state *false_reg2,
15277 u8 opcode, bool is_jmp32)
15278 {
15279 int err;
15280
15281 /* If either register is a pointer, we can't learn anything about its
15282 * variable offset from the compare (unless they were a pointer into
15283 * the same object, but we don't bother with that).
15284 */
15285 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
15286 return 0;
15287
15288 /* fallthrough (FALSE) branch */
15289 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32);
15290 reg_bounds_sync(false_reg1);
15291 reg_bounds_sync(false_reg2);
15292
15293 /* jump (TRUE) branch */
15294 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32);
15295 reg_bounds_sync(true_reg1);
15296 reg_bounds_sync(true_reg2);
15297
15298 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1");
15299 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2");
15300 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1");
15301 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2");
15302 return err;
15303 }
15304
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)15305 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
15306 struct bpf_reg_state *reg, u32 id,
15307 bool is_null)
15308 {
15309 if (type_may_be_null(reg->type) && reg->id == id &&
15310 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
15311 /* Old offset (both fixed and variable parts) should have been
15312 * known-zero, because we don't allow pointer arithmetic on
15313 * pointers that might be NULL. If we see this happening, don't
15314 * convert the register.
15315 *
15316 * But in some cases, some helpers that return local kptrs
15317 * advance offset for the returned pointer. In those cases, it
15318 * is fine to expect to see reg->off.
15319 */
15320 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
15321 return;
15322 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
15323 WARN_ON_ONCE(reg->off))
15324 return;
15325
15326 if (is_null) {
15327 reg->type = SCALAR_VALUE;
15328 /* We don't need id and ref_obj_id from this point
15329 * onwards anymore, thus we should better reset it,
15330 * so that state pruning has chances to take effect.
15331 */
15332 reg->id = 0;
15333 reg->ref_obj_id = 0;
15334
15335 return;
15336 }
15337
15338 mark_ptr_not_null_reg(reg);
15339
15340 if (!reg_may_point_to_spin_lock(reg)) {
15341 /* For not-NULL ptr, reg->ref_obj_id will be reset
15342 * in release_reference().
15343 *
15344 * reg->id is still used by spin_lock ptr. Other
15345 * than spin_lock ptr type, reg->id can be reset.
15346 */
15347 reg->id = 0;
15348 }
15349 }
15350 }
15351
15352 /* The logic is similar to find_good_pkt_pointers(), both could eventually
15353 * be folded together at some point.
15354 */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)15355 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
15356 bool is_null)
15357 {
15358 struct bpf_func_state *state = vstate->frame[vstate->curframe];
15359 struct bpf_reg_state *regs = state->regs, *reg;
15360 u32 ref_obj_id = regs[regno].ref_obj_id;
15361 u32 id = regs[regno].id;
15362
15363 if (ref_obj_id && ref_obj_id == id && is_null)
15364 /* regs[regno] is in the " == NULL" branch.
15365 * No one could have freed the reference state before
15366 * doing the NULL check.
15367 */
15368 WARN_ON_ONCE(release_reference_state(state, id));
15369
15370 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
15371 mark_ptr_or_null_reg(state, reg, id, is_null);
15372 }));
15373 }
15374
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)15375 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
15376 struct bpf_reg_state *dst_reg,
15377 struct bpf_reg_state *src_reg,
15378 struct bpf_verifier_state *this_branch,
15379 struct bpf_verifier_state *other_branch)
15380 {
15381 if (BPF_SRC(insn->code) != BPF_X)
15382 return false;
15383
15384 /* Pointers are always 64-bit. */
15385 if (BPF_CLASS(insn->code) == BPF_JMP32)
15386 return false;
15387
15388 switch (BPF_OP(insn->code)) {
15389 case BPF_JGT:
15390 if ((dst_reg->type == PTR_TO_PACKET &&
15391 src_reg->type == PTR_TO_PACKET_END) ||
15392 (dst_reg->type == PTR_TO_PACKET_META &&
15393 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15394 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
15395 find_good_pkt_pointers(this_branch, dst_reg,
15396 dst_reg->type, false);
15397 mark_pkt_end(other_branch, insn->dst_reg, true);
15398 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
15399 src_reg->type == PTR_TO_PACKET) ||
15400 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15401 src_reg->type == PTR_TO_PACKET_META)) {
15402 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
15403 find_good_pkt_pointers(other_branch, src_reg,
15404 src_reg->type, true);
15405 mark_pkt_end(this_branch, insn->src_reg, false);
15406 } else {
15407 return false;
15408 }
15409 break;
15410 case BPF_JLT:
15411 if ((dst_reg->type == PTR_TO_PACKET &&
15412 src_reg->type == PTR_TO_PACKET_END) ||
15413 (dst_reg->type == PTR_TO_PACKET_META &&
15414 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15415 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
15416 find_good_pkt_pointers(other_branch, dst_reg,
15417 dst_reg->type, true);
15418 mark_pkt_end(this_branch, insn->dst_reg, false);
15419 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
15420 src_reg->type == PTR_TO_PACKET) ||
15421 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15422 src_reg->type == PTR_TO_PACKET_META)) {
15423 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
15424 find_good_pkt_pointers(this_branch, src_reg,
15425 src_reg->type, false);
15426 mark_pkt_end(other_branch, insn->src_reg, true);
15427 } else {
15428 return false;
15429 }
15430 break;
15431 case BPF_JGE:
15432 if ((dst_reg->type == PTR_TO_PACKET &&
15433 src_reg->type == PTR_TO_PACKET_END) ||
15434 (dst_reg->type == PTR_TO_PACKET_META &&
15435 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15436 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
15437 find_good_pkt_pointers(this_branch, dst_reg,
15438 dst_reg->type, true);
15439 mark_pkt_end(other_branch, insn->dst_reg, false);
15440 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
15441 src_reg->type == PTR_TO_PACKET) ||
15442 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15443 src_reg->type == PTR_TO_PACKET_META)) {
15444 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
15445 find_good_pkt_pointers(other_branch, src_reg,
15446 src_reg->type, false);
15447 mark_pkt_end(this_branch, insn->src_reg, true);
15448 } else {
15449 return false;
15450 }
15451 break;
15452 case BPF_JLE:
15453 if ((dst_reg->type == PTR_TO_PACKET &&
15454 src_reg->type == PTR_TO_PACKET_END) ||
15455 (dst_reg->type == PTR_TO_PACKET_META &&
15456 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15457 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
15458 find_good_pkt_pointers(other_branch, dst_reg,
15459 dst_reg->type, false);
15460 mark_pkt_end(this_branch, insn->dst_reg, true);
15461 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
15462 src_reg->type == PTR_TO_PACKET) ||
15463 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15464 src_reg->type == PTR_TO_PACKET_META)) {
15465 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
15466 find_good_pkt_pointers(this_branch, src_reg,
15467 src_reg->type, true);
15468 mark_pkt_end(other_branch, insn->src_reg, false);
15469 } else {
15470 return false;
15471 }
15472 break;
15473 default:
15474 return false;
15475 }
15476
15477 return true;
15478 }
15479
__collect_linked_regs(struct linked_regs * reg_set,struct bpf_reg_state * reg,u32 id,u32 frameno,u32 spi_or_reg,bool is_reg)15480 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg,
15481 u32 id, u32 frameno, u32 spi_or_reg, bool is_reg)
15482 {
15483 struct linked_reg *e;
15484
15485 if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id)
15486 return;
15487
15488 e = linked_regs_push(reg_set);
15489 if (e) {
15490 e->frameno = frameno;
15491 e->is_reg = is_reg;
15492 e->regno = spi_or_reg;
15493 } else {
15494 reg->id = 0;
15495 }
15496 }
15497
15498 /* For all R being scalar registers or spilled scalar registers
15499 * in verifier state, save R in linked_regs if R->id == id.
15500 * If there are too many Rs sharing same id, reset id for leftover Rs.
15501 */
collect_linked_regs(struct bpf_verifier_state * vstate,u32 id,struct linked_regs * linked_regs)15502 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id,
15503 struct linked_regs *linked_regs)
15504 {
15505 struct bpf_func_state *func;
15506 struct bpf_reg_state *reg;
15507 int i, j;
15508
15509 id = id & ~BPF_ADD_CONST;
15510 for (i = vstate->curframe; i >= 0; i--) {
15511 func = vstate->frame[i];
15512 for (j = 0; j < BPF_REG_FP; j++) {
15513 reg = &func->regs[j];
15514 __collect_linked_regs(linked_regs, reg, id, i, j, true);
15515 }
15516 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
15517 if (!is_spilled_reg(&func->stack[j]))
15518 continue;
15519 reg = &func->stack[j].spilled_ptr;
15520 __collect_linked_regs(linked_regs, reg, id, i, j, false);
15521 }
15522 }
15523 }
15524
15525 /* For all R in linked_regs, copy known_reg range into R
15526 * if R->id == known_reg->id.
15527 */
sync_linked_regs(struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg,struct linked_regs * linked_regs)15528 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg,
15529 struct linked_regs *linked_regs)
15530 {
15531 struct bpf_reg_state fake_reg;
15532 struct bpf_reg_state *reg;
15533 struct linked_reg *e;
15534 int i;
15535
15536 for (i = 0; i < linked_regs->cnt; ++i) {
15537 e = &linked_regs->entries[i];
15538 reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno]
15539 : &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr;
15540 if (reg->type != SCALAR_VALUE || reg == known_reg)
15541 continue;
15542 if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST))
15543 continue;
15544 if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) ||
15545 reg->off == known_reg->off) {
15546 s32 saved_subreg_def = reg->subreg_def;
15547
15548 copy_register_state(reg, known_reg);
15549 reg->subreg_def = saved_subreg_def;
15550 } else {
15551 s32 saved_subreg_def = reg->subreg_def;
15552 s32 saved_off = reg->off;
15553
15554 fake_reg.type = SCALAR_VALUE;
15555 __mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off);
15556
15557 /* reg = known_reg; reg += delta */
15558 copy_register_state(reg, known_reg);
15559 /*
15560 * Must preserve off, id and add_const flag,
15561 * otherwise another sync_linked_regs() will be incorrect.
15562 */
15563 reg->off = saved_off;
15564 reg->subreg_def = saved_subreg_def;
15565
15566 scalar32_min_max_add(reg, &fake_reg);
15567 scalar_min_max_add(reg, &fake_reg);
15568 reg->var_off = tnum_add(reg->var_off, fake_reg.var_off);
15569 }
15570 }
15571 }
15572
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)15573 static int check_cond_jmp_op(struct bpf_verifier_env *env,
15574 struct bpf_insn *insn, int *insn_idx)
15575 {
15576 struct bpf_verifier_state *this_branch = env->cur_state;
15577 struct bpf_verifier_state *other_branch;
15578 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
15579 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
15580 struct bpf_reg_state *eq_branch_regs;
15581 struct linked_regs linked_regs = {};
15582 u8 opcode = BPF_OP(insn->code);
15583 bool is_jmp32;
15584 int pred = -1;
15585 int err;
15586
15587 /* Only conditional jumps are expected to reach here. */
15588 if (opcode == BPF_JA || opcode > BPF_JCOND) {
15589 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
15590 return -EINVAL;
15591 }
15592
15593 if (opcode == BPF_JCOND) {
15594 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
15595 int idx = *insn_idx;
15596
15597 if (insn->code != (BPF_JMP | BPF_JCOND) ||
15598 insn->src_reg != BPF_MAY_GOTO ||
15599 insn->dst_reg || insn->imm || insn->off == 0) {
15600 verbose(env, "invalid may_goto off %d imm %d\n",
15601 insn->off, insn->imm);
15602 return -EINVAL;
15603 }
15604 prev_st = find_prev_entry(env, cur_st->parent, idx);
15605
15606 /* branch out 'fallthrough' insn as a new state to explore */
15607 queued_st = push_stack(env, idx + 1, idx, false);
15608 if (!queued_st)
15609 return -ENOMEM;
15610
15611 queued_st->may_goto_depth++;
15612 if (prev_st)
15613 widen_imprecise_scalars(env, prev_st, queued_st);
15614 *insn_idx += insn->off;
15615 return 0;
15616 }
15617
15618 /* check src2 operand */
15619 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15620 if (err)
15621 return err;
15622
15623 dst_reg = ®s[insn->dst_reg];
15624 if (BPF_SRC(insn->code) == BPF_X) {
15625 if (insn->imm != 0) {
15626 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
15627 return -EINVAL;
15628 }
15629
15630 /* check src1 operand */
15631 err = check_reg_arg(env, insn->src_reg, SRC_OP);
15632 if (err)
15633 return err;
15634
15635 src_reg = ®s[insn->src_reg];
15636 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
15637 is_pointer_value(env, insn->src_reg)) {
15638 verbose(env, "R%d pointer comparison prohibited\n",
15639 insn->src_reg);
15640 return -EACCES;
15641 }
15642 } else {
15643 if (insn->src_reg != BPF_REG_0) {
15644 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
15645 return -EINVAL;
15646 }
15647 src_reg = &env->fake_reg[0];
15648 memset(src_reg, 0, sizeof(*src_reg));
15649 src_reg->type = SCALAR_VALUE;
15650 __mark_reg_known(src_reg, insn->imm);
15651 }
15652
15653 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
15654 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32);
15655 if (pred >= 0) {
15656 /* If we get here with a dst_reg pointer type it is because
15657 * above is_branch_taken() special cased the 0 comparison.
15658 */
15659 if (!__is_pointer_value(false, dst_reg))
15660 err = mark_chain_precision(env, insn->dst_reg);
15661 if (BPF_SRC(insn->code) == BPF_X && !err &&
15662 !__is_pointer_value(false, src_reg))
15663 err = mark_chain_precision(env, insn->src_reg);
15664 if (err)
15665 return err;
15666 }
15667
15668 if (pred == 1) {
15669 /* Only follow the goto, ignore fall-through. If needed, push
15670 * the fall-through branch for simulation under speculative
15671 * execution.
15672 */
15673 if (!env->bypass_spec_v1 &&
15674 !sanitize_speculative_path(env, insn, *insn_idx + 1,
15675 *insn_idx))
15676 return -EFAULT;
15677 if (env->log.level & BPF_LOG_LEVEL)
15678 print_insn_state(env, this_branch->frame[this_branch->curframe]);
15679 *insn_idx += insn->off;
15680 return 0;
15681 } else if (pred == 0) {
15682 /* Only follow the fall-through branch, since that's where the
15683 * program will go. If needed, push the goto branch for
15684 * simulation under speculative execution.
15685 */
15686 if (!env->bypass_spec_v1 &&
15687 !sanitize_speculative_path(env, insn,
15688 *insn_idx + insn->off + 1,
15689 *insn_idx))
15690 return -EFAULT;
15691 if (env->log.level & BPF_LOG_LEVEL)
15692 print_insn_state(env, this_branch->frame[this_branch->curframe]);
15693 return 0;
15694 }
15695
15696 /* Push scalar registers sharing same ID to jump history,
15697 * do this before creating 'other_branch', so that both
15698 * 'this_branch' and 'other_branch' share this history
15699 * if parent state is created.
15700 */
15701 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id)
15702 collect_linked_regs(this_branch, src_reg->id, &linked_regs);
15703 if (dst_reg->type == SCALAR_VALUE && dst_reg->id)
15704 collect_linked_regs(this_branch, dst_reg->id, &linked_regs);
15705 if (linked_regs.cnt > 1) {
15706 err = push_insn_history(env, this_branch, 0, linked_regs_pack(&linked_regs));
15707 if (err)
15708 return err;
15709 }
15710
15711 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
15712 false);
15713 if (!other_branch)
15714 return -EFAULT;
15715 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
15716
15717 if (BPF_SRC(insn->code) == BPF_X) {
15718 err = reg_set_min_max(env,
15719 &other_branch_regs[insn->dst_reg],
15720 &other_branch_regs[insn->src_reg],
15721 dst_reg, src_reg, opcode, is_jmp32);
15722 } else /* BPF_SRC(insn->code) == BPF_K */ {
15723 /* reg_set_min_max() can mangle the fake_reg. Make a copy
15724 * so that these are two different memory locations. The
15725 * src_reg is not used beyond here in context of K.
15726 */
15727 memcpy(&env->fake_reg[1], &env->fake_reg[0],
15728 sizeof(env->fake_reg[0]));
15729 err = reg_set_min_max(env,
15730 &other_branch_regs[insn->dst_reg],
15731 &env->fake_reg[0],
15732 dst_reg, &env->fake_reg[1],
15733 opcode, is_jmp32);
15734 }
15735 if (err)
15736 return err;
15737
15738 if (BPF_SRC(insn->code) == BPF_X &&
15739 src_reg->type == SCALAR_VALUE && src_reg->id &&
15740 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
15741 sync_linked_regs(this_branch, src_reg, &linked_regs);
15742 sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs);
15743 }
15744 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
15745 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
15746 sync_linked_regs(this_branch, dst_reg, &linked_regs);
15747 sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs);
15748 }
15749
15750 /* if one pointer register is compared to another pointer
15751 * register check if PTR_MAYBE_NULL could be lifted.
15752 * E.g. register A - maybe null
15753 * register B - not null
15754 * for JNE A, B, ... - A is not null in the false branch;
15755 * for JEQ A, B, ... - A is not null in the true branch.
15756 *
15757 * Since PTR_TO_BTF_ID points to a kernel struct that does
15758 * not need to be null checked by the BPF program, i.e.,
15759 * could be null even without PTR_MAYBE_NULL marking, so
15760 * only propagate nullness when neither reg is that type.
15761 */
15762 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
15763 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
15764 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
15765 base_type(src_reg->type) != PTR_TO_BTF_ID &&
15766 base_type(dst_reg->type) != PTR_TO_BTF_ID) {
15767 eq_branch_regs = NULL;
15768 switch (opcode) {
15769 case BPF_JEQ:
15770 eq_branch_regs = other_branch_regs;
15771 break;
15772 case BPF_JNE:
15773 eq_branch_regs = regs;
15774 break;
15775 default:
15776 /* do nothing */
15777 break;
15778 }
15779 if (eq_branch_regs) {
15780 if (type_may_be_null(src_reg->type))
15781 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
15782 else
15783 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
15784 }
15785 }
15786
15787 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
15788 * NOTE: these optimizations below are related with pointer comparison
15789 * which will never be JMP32.
15790 */
15791 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
15792 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
15793 type_may_be_null(dst_reg->type)) {
15794 /* Mark all identical registers in each branch as either
15795 * safe or unknown depending R == 0 or R != 0 conditional.
15796 */
15797 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
15798 opcode == BPF_JNE);
15799 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
15800 opcode == BPF_JEQ);
15801 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
15802 this_branch, other_branch) &&
15803 is_pointer_value(env, insn->dst_reg)) {
15804 verbose(env, "R%d pointer comparison prohibited\n",
15805 insn->dst_reg);
15806 return -EACCES;
15807 }
15808 if (env->log.level & BPF_LOG_LEVEL)
15809 print_insn_state(env, this_branch->frame[this_branch->curframe]);
15810 return 0;
15811 }
15812
15813 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)15814 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
15815 {
15816 struct bpf_insn_aux_data *aux = cur_aux(env);
15817 struct bpf_reg_state *regs = cur_regs(env);
15818 struct bpf_reg_state *dst_reg;
15819 struct bpf_map *map;
15820 int err;
15821
15822 if (BPF_SIZE(insn->code) != BPF_DW) {
15823 verbose(env, "invalid BPF_LD_IMM insn\n");
15824 return -EINVAL;
15825 }
15826 if (insn->off != 0) {
15827 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
15828 return -EINVAL;
15829 }
15830
15831 err = check_reg_arg(env, insn->dst_reg, DST_OP);
15832 if (err)
15833 return err;
15834
15835 dst_reg = ®s[insn->dst_reg];
15836 if (insn->src_reg == 0) {
15837 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
15838
15839 dst_reg->type = SCALAR_VALUE;
15840 __mark_reg_known(®s[insn->dst_reg], imm);
15841 return 0;
15842 }
15843
15844 /* All special src_reg cases are listed below. From this point onwards
15845 * we either succeed and assign a corresponding dst_reg->type after
15846 * zeroing the offset, or fail and reject the program.
15847 */
15848 mark_reg_known_zero(env, regs, insn->dst_reg);
15849
15850 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
15851 dst_reg->type = aux->btf_var.reg_type;
15852 switch (base_type(dst_reg->type)) {
15853 case PTR_TO_MEM:
15854 dst_reg->mem_size = aux->btf_var.mem_size;
15855 break;
15856 case PTR_TO_BTF_ID:
15857 dst_reg->btf = aux->btf_var.btf;
15858 dst_reg->btf_id = aux->btf_var.btf_id;
15859 break;
15860 default:
15861 verbose(env, "bpf verifier is misconfigured\n");
15862 return -EFAULT;
15863 }
15864 return 0;
15865 }
15866
15867 if (insn->src_reg == BPF_PSEUDO_FUNC) {
15868 struct bpf_prog_aux *aux = env->prog->aux;
15869 u32 subprogno = find_subprog(env,
15870 env->insn_idx + insn->imm + 1);
15871
15872 if (!aux->func_info) {
15873 verbose(env, "missing btf func_info\n");
15874 return -EINVAL;
15875 }
15876 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
15877 verbose(env, "callback function not static\n");
15878 return -EINVAL;
15879 }
15880
15881 dst_reg->type = PTR_TO_FUNC;
15882 dst_reg->subprogno = subprogno;
15883 return 0;
15884 }
15885
15886 map = env->used_maps[aux->map_index];
15887 dst_reg->map_ptr = map;
15888
15889 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
15890 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
15891 if (map->map_type == BPF_MAP_TYPE_ARENA) {
15892 __mark_reg_unknown(env, dst_reg);
15893 return 0;
15894 }
15895 dst_reg->type = PTR_TO_MAP_VALUE;
15896 dst_reg->off = aux->map_off;
15897 WARN_ON_ONCE(map->max_entries != 1);
15898 /* We want reg->id to be same (0) as map_value is not distinct */
15899 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
15900 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
15901 dst_reg->type = CONST_PTR_TO_MAP;
15902 } else {
15903 verbose(env, "bpf verifier is misconfigured\n");
15904 return -EINVAL;
15905 }
15906
15907 return 0;
15908 }
15909
may_access_skb(enum bpf_prog_type type)15910 static bool may_access_skb(enum bpf_prog_type type)
15911 {
15912 switch (type) {
15913 case BPF_PROG_TYPE_SOCKET_FILTER:
15914 case BPF_PROG_TYPE_SCHED_CLS:
15915 case BPF_PROG_TYPE_SCHED_ACT:
15916 return true;
15917 default:
15918 return false;
15919 }
15920 }
15921
15922 /* verify safety of LD_ABS|LD_IND instructions:
15923 * - they can only appear in the programs where ctx == skb
15924 * - since they are wrappers of function calls, they scratch R1-R5 registers,
15925 * preserve R6-R9, and store return value into R0
15926 *
15927 * Implicit input:
15928 * ctx == skb == R6 == CTX
15929 *
15930 * Explicit input:
15931 * SRC == any register
15932 * IMM == 32-bit immediate
15933 *
15934 * Output:
15935 * R0 - 8/16/32-bit skb data converted to cpu endianness
15936 */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)15937 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
15938 {
15939 struct bpf_reg_state *regs = cur_regs(env);
15940 static const int ctx_reg = BPF_REG_6;
15941 u8 mode = BPF_MODE(insn->code);
15942 int i, err;
15943
15944 if (!may_access_skb(resolve_prog_type(env->prog))) {
15945 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
15946 return -EINVAL;
15947 }
15948
15949 if (!env->ops->gen_ld_abs) {
15950 verbose(env, "bpf verifier is misconfigured\n");
15951 return -EINVAL;
15952 }
15953
15954 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
15955 BPF_SIZE(insn->code) == BPF_DW ||
15956 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
15957 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
15958 return -EINVAL;
15959 }
15960
15961 /* check whether implicit source operand (register R6) is readable */
15962 err = check_reg_arg(env, ctx_reg, SRC_OP);
15963 if (err)
15964 return err;
15965
15966 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
15967 * gen_ld_abs() may terminate the program at runtime, leading to
15968 * reference leak.
15969 */
15970 err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]");
15971 if (err)
15972 return err;
15973
15974 if (regs[ctx_reg].type != PTR_TO_CTX) {
15975 verbose(env,
15976 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
15977 return -EINVAL;
15978 }
15979
15980 if (mode == BPF_IND) {
15981 /* check explicit source operand */
15982 err = check_reg_arg(env, insn->src_reg, SRC_OP);
15983 if (err)
15984 return err;
15985 }
15986
15987 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg);
15988 if (err < 0)
15989 return err;
15990
15991 /* reset caller saved regs to unreadable */
15992 for (i = 0; i < CALLER_SAVED_REGS; i++) {
15993 mark_reg_not_init(env, regs, caller_saved[i]);
15994 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
15995 }
15996
15997 /* mark destination R0 register as readable, since it contains
15998 * the value fetched from the packet.
15999 * Already marked as written above.
16000 */
16001 mark_reg_unknown(env, regs, BPF_REG_0);
16002 /* ld_abs load up to 32-bit skb data. */
16003 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
16004 return 0;
16005 }
16006
check_return_code(struct bpf_verifier_env * env,int regno,const char * reg_name)16007 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name)
16008 {
16009 const char *exit_ctx = "At program exit";
16010 struct tnum enforce_attach_type_range = tnum_unknown;
16011 const struct bpf_prog *prog = env->prog;
16012 struct bpf_reg_state *reg;
16013 struct bpf_retval_range range = retval_range(0, 1);
16014 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
16015 int err;
16016 struct bpf_func_state *frame = env->cur_state->frame[0];
16017 const bool is_subprog = frame->subprogno;
16018 bool return_32bit = false;
16019
16020 /* LSM and struct_ops func-ptr's return type could be "void" */
16021 if (!is_subprog || frame->in_exception_callback_fn) {
16022 switch (prog_type) {
16023 case BPF_PROG_TYPE_LSM:
16024 if (prog->expected_attach_type == BPF_LSM_CGROUP)
16025 /* See below, can be 0 or 0-1 depending on hook. */
16026 break;
16027 fallthrough;
16028 case BPF_PROG_TYPE_STRUCT_OPS:
16029 if (!prog->aux->attach_func_proto->type)
16030 return 0;
16031 break;
16032 default:
16033 break;
16034 }
16035 }
16036
16037 /* eBPF calling convention is such that R0 is used
16038 * to return the value from eBPF program.
16039 * Make sure that it's readable at this time
16040 * of bpf_exit, which means that program wrote
16041 * something into it earlier
16042 */
16043 err = check_reg_arg(env, regno, SRC_OP);
16044 if (err)
16045 return err;
16046
16047 if (is_pointer_value(env, regno)) {
16048 verbose(env, "R%d leaks addr as return value\n", regno);
16049 return -EACCES;
16050 }
16051
16052 reg = cur_regs(env) + regno;
16053
16054 if (frame->in_async_callback_fn) {
16055 /* enforce return zero from async callbacks like timer */
16056 exit_ctx = "At async callback return";
16057 range = retval_range(0, 0);
16058 goto enforce_retval;
16059 }
16060
16061 if (is_subprog && !frame->in_exception_callback_fn) {
16062 if (reg->type != SCALAR_VALUE) {
16063 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
16064 regno, reg_type_str(env, reg->type));
16065 return -EINVAL;
16066 }
16067 return 0;
16068 }
16069
16070 switch (prog_type) {
16071 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
16072 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
16073 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
16074 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
16075 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
16076 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
16077 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
16078 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
16079 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
16080 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
16081 range = retval_range(1, 1);
16082 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
16083 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
16084 range = retval_range(0, 3);
16085 break;
16086 case BPF_PROG_TYPE_CGROUP_SKB:
16087 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
16088 range = retval_range(0, 3);
16089 enforce_attach_type_range = tnum_range(2, 3);
16090 }
16091 break;
16092 case BPF_PROG_TYPE_CGROUP_SOCK:
16093 case BPF_PROG_TYPE_SOCK_OPS:
16094 case BPF_PROG_TYPE_CGROUP_DEVICE:
16095 case BPF_PROG_TYPE_CGROUP_SYSCTL:
16096 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
16097 break;
16098 case BPF_PROG_TYPE_RAW_TRACEPOINT:
16099 if (!env->prog->aux->attach_btf_id)
16100 return 0;
16101 range = retval_range(0, 0);
16102 break;
16103 case BPF_PROG_TYPE_TRACING:
16104 switch (env->prog->expected_attach_type) {
16105 case BPF_TRACE_FENTRY:
16106 case BPF_TRACE_FEXIT:
16107 range = retval_range(0, 0);
16108 break;
16109 case BPF_TRACE_RAW_TP:
16110 case BPF_MODIFY_RETURN:
16111 return 0;
16112 case BPF_TRACE_ITER:
16113 break;
16114 default:
16115 return -ENOTSUPP;
16116 }
16117 break;
16118 case BPF_PROG_TYPE_KPROBE:
16119 switch (env->prog->expected_attach_type) {
16120 case BPF_TRACE_KPROBE_SESSION:
16121 case BPF_TRACE_UPROBE_SESSION:
16122 range = retval_range(0, 1);
16123 break;
16124 default:
16125 return 0;
16126 }
16127 break;
16128 case BPF_PROG_TYPE_SK_LOOKUP:
16129 range = retval_range(SK_DROP, SK_PASS);
16130 break;
16131
16132 case BPF_PROG_TYPE_LSM:
16133 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
16134 /* no range found, any return value is allowed */
16135 if (!get_func_retval_range(env->prog, &range))
16136 return 0;
16137 /* no restricted range, any return value is allowed */
16138 if (range.minval == S32_MIN && range.maxval == S32_MAX)
16139 return 0;
16140 return_32bit = true;
16141 } else if (!env->prog->aux->attach_func_proto->type) {
16142 /* Make sure programs that attach to void
16143 * hooks don't try to modify return value.
16144 */
16145 range = retval_range(1, 1);
16146 }
16147 break;
16148
16149 case BPF_PROG_TYPE_NETFILTER:
16150 range = retval_range(NF_DROP, NF_ACCEPT);
16151 break;
16152 case BPF_PROG_TYPE_EXT:
16153 /* freplace program can return anything as its return value
16154 * depends on the to-be-replaced kernel func or bpf program.
16155 */
16156 default:
16157 return 0;
16158 }
16159
16160 enforce_retval:
16161 if (reg->type != SCALAR_VALUE) {
16162 verbose(env, "%s the register R%d is not a known value (%s)\n",
16163 exit_ctx, regno, reg_type_str(env, reg->type));
16164 return -EINVAL;
16165 }
16166
16167 err = mark_chain_precision(env, regno);
16168 if (err)
16169 return err;
16170
16171 if (!retval_range_within(range, reg, return_32bit)) {
16172 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name);
16173 if (!is_subprog &&
16174 prog->expected_attach_type == BPF_LSM_CGROUP &&
16175 prog_type == BPF_PROG_TYPE_LSM &&
16176 !prog->aux->attach_func_proto->type)
16177 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
16178 return -EINVAL;
16179 }
16180
16181 if (!tnum_is_unknown(enforce_attach_type_range) &&
16182 tnum_in(enforce_attach_type_range, reg->var_off))
16183 env->prog->enforce_expected_attach_type = 1;
16184 return 0;
16185 }
16186
mark_subprog_changes_pkt_data(struct bpf_verifier_env * env,int off)16187 static void mark_subprog_changes_pkt_data(struct bpf_verifier_env *env, int off)
16188 {
16189 struct bpf_subprog_info *subprog;
16190
16191 subprog = find_containing_subprog(env, off);
16192 subprog->changes_pkt_data = true;
16193 }
16194
16195 /* 't' is an index of a call-site.
16196 * 'w' is a callee entry point.
16197 * Eventually this function would be called when env->cfg.insn_state[w] == EXPLORED.
16198 * Rely on DFS traversal order and absence of recursive calls to guarantee that
16199 * callee's change_pkt_data marks would be correct at that moment.
16200 */
merge_callee_effects(struct bpf_verifier_env * env,int t,int w)16201 static void merge_callee_effects(struct bpf_verifier_env *env, int t, int w)
16202 {
16203 struct bpf_subprog_info *caller, *callee;
16204
16205 caller = find_containing_subprog(env, t);
16206 callee = find_containing_subprog(env, w);
16207 caller->changes_pkt_data |= callee->changes_pkt_data;
16208 }
16209
16210 /* non-recursive DFS pseudo code
16211 * 1 procedure DFS-iterative(G,v):
16212 * 2 label v as discovered
16213 * 3 let S be a stack
16214 * 4 S.push(v)
16215 * 5 while S is not empty
16216 * 6 t <- S.peek()
16217 * 7 if t is what we're looking for:
16218 * 8 return t
16219 * 9 for all edges e in G.adjacentEdges(t) do
16220 * 10 if edge e is already labelled
16221 * 11 continue with the next edge
16222 * 12 w <- G.adjacentVertex(t,e)
16223 * 13 if vertex w is not discovered and not explored
16224 * 14 label e as tree-edge
16225 * 15 label w as discovered
16226 * 16 S.push(w)
16227 * 17 continue at 5
16228 * 18 else if vertex w is discovered
16229 * 19 label e as back-edge
16230 * 20 else
16231 * 21 // vertex w is explored
16232 * 22 label e as forward- or cross-edge
16233 * 23 label t as explored
16234 * 24 S.pop()
16235 *
16236 * convention:
16237 * 0x10 - discovered
16238 * 0x11 - discovered and fall-through edge labelled
16239 * 0x12 - discovered and fall-through and branch edges labelled
16240 * 0x20 - explored
16241 */
16242
16243 enum {
16244 DISCOVERED = 0x10,
16245 EXPLORED = 0x20,
16246 FALLTHROUGH = 1,
16247 BRANCH = 2,
16248 };
16249
mark_prune_point(struct bpf_verifier_env * env,int idx)16250 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
16251 {
16252 env->insn_aux_data[idx].prune_point = true;
16253 }
16254
is_prune_point(struct bpf_verifier_env * env,int insn_idx)16255 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
16256 {
16257 return env->insn_aux_data[insn_idx].prune_point;
16258 }
16259
mark_force_checkpoint(struct bpf_verifier_env * env,int idx)16260 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
16261 {
16262 env->insn_aux_data[idx].force_checkpoint = true;
16263 }
16264
is_force_checkpoint(struct bpf_verifier_env * env,int insn_idx)16265 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
16266 {
16267 return env->insn_aux_data[insn_idx].force_checkpoint;
16268 }
16269
mark_calls_callback(struct bpf_verifier_env * env,int idx)16270 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
16271 {
16272 env->insn_aux_data[idx].calls_callback = true;
16273 }
16274
calls_callback(struct bpf_verifier_env * env,int insn_idx)16275 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
16276 {
16277 return env->insn_aux_data[insn_idx].calls_callback;
16278 }
16279
16280 enum {
16281 DONE_EXPLORING = 0,
16282 KEEP_EXPLORING = 1,
16283 };
16284
16285 /* t, w, e - match pseudo-code above:
16286 * t - index of current instruction
16287 * w - next instruction
16288 * e - edge
16289 */
push_insn(int t,int w,int e,struct bpf_verifier_env * env)16290 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
16291 {
16292 int *insn_stack = env->cfg.insn_stack;
16293 int *insn_state = env->cfg.insn_state;
16294
16295 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
16296 return DONE_EXPLORING;
16297
16298 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
16299 return DONE_EXPLORING;
16300
16301 if (w < 0 || w >= env->prog->len) {
16302 verbose_linfo(env, t, "%d: ", t);
16303 verbose(env, "jump out of range from insn %d to %d\n", t, w);
16304 return -EINVAL;
16305 }
16306
16307 if (e == BRANCH) {
16308 /* mark branch target for state pruning */
16309 mark_prune_point(env, w);
16310 mark_jmp_point(env, w);
16311 }
16312
16313 if (insn_state[w] == 0) {
16314 /* tree-edge */
16315 insn_state[t] = DISCOVERED | e;
16316 insn_state[w] = DISCOVERED;
16317 if (env->cfg.cur_stack >= env->prog->len)
16318 return -E2BIG;
16319 insn_stack[env->cfg.cur_stack++] = w;
16320 return KEEP_EXPLORING;
16321 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
16322 if (env->bpf_capable)
16323 return DONE_EXPLORING;
16324 verbose_linfo(env, t, "%d: ", t);
16325 verbose_linfo(env, w, "%d: ", w);
16326 verbose(env, "back-edge from insn %d to %d\n", t, w);
16327 return -EINVAL;
16328 } else if (insn_state[w] == EXPLORED) {
16329 /* forward- or cross-edge */
16330 insn_state[t] = DISCOVERED | e;
16331 } else {
16332 verbose(env, "insn state internal bug\n");
16333 return -EFAULT;
16334 }
16335 return DONE_EXPLORING;
16336 }
16337
visit_func_call_insn(int t,struct bpf_insn * insns,struct bpf_verifier_env * env,bool visit_callee)16338 static int visit_func_call_insn(int t, struct bpf_insn *insns,
16339 struct bpf_verifier_env *env,
16340 bool visit_callee)
16341 {
16342 int ret, insn_sz;
16343 int w;
16344
16345 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
16346 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
16347 if (ret)
16348 return ret;
16349
16350 mark_prune_point(env, t + insn_sz);
16351 /* when we exit from subprog, we need to record non-linear history */
16352 mark_jmp_point(env, t + insn_sz);
16353
16354 if (visit_callee) {
16355 w = t + insns[t].imm + 1;
16356 mark_prune_point(env, t);
16357 merge_callee_effects(env, t, w);
16358 ret = push_insn(t, w, BRANCH, env);
16359 }
16360 return ret;
16361 }
16362
16363 /* Bitmask with 1s for all caller saved registers */
16364 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1)
16365
16366 /* Return a bitmask specifying which caller saved registers are
16367 * clobbered by a call to a helper *as if* this helper follows
16368 * bpf_fastcall contract:
16369 * - includes R0 if function is non-void;
16370 * - includes R1-R5 if corresponding parameter has is described
16371 * in the function prototype.
16372 */
helper_fastcall_clobber_mask(const struct bpf_func_proto * fn)16373 static u32 helper_fastcall_clobber_mask(const struct bpf_func_proto *fn)
16374 {
16375 u32 mask;
16376 int i;
16377
16378 mask = 0;
16379 if (fn->ret_type != RET_VOID)
16380 mask |= BIT(BPF_REG_0);
16381 for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i)
16382 if (fn->arg_type[i] != ARG_DONTCARE)
16383 mask |= BIT(BPF_REG_1 + i);
16384 return mask;
16385 }
16386
16387 /* True if do_misc_fixups() replaces calls to helper number 'imm',
16388 * replacement patch is presumed to follow bpf_fastcall contract
16389 * (see mark_fastcall_pattern_for_call() below).
16390 */
verifier_inlines_helper_call(struct bpf_verifier_env * env,s32 imm)16391 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm)
16392 {
16393 switch (imm) {
16394 #ifdef CONFIG_X86_64
16395 case BPF_FUNC_get_smp_processor_id:
16396 return env->prog->jit_requested && bpf_jit_supports_percpu_insn();
16397 #endif
16398 default:
16399 return false;
16400 }
16401 }
16402
16403 /* Same as helper_fastcall_clobber_mask() but for kfuncs, see comment above */
kfunc_fastcall_clobber_mask(struct bpf_kfunc_call_arg_meta * meta)16404 static u32 kfunc_fastcall_clobber_mask(struct bpf_kfunc_call_arg_meta *meta)
16405 {
16406 u32 vlen, i, mask;
16407
16408 vlen = btf_type_vlen(meta->func_proto);
16409 mask = 0;
16410 if (!btf_type_is_void(btf_type_by_id(meta->btf, meta->func_proto->type)))
16411 mask |= BIT(BPF_REG_0);
16412 for (i = 0; i < vlen; ++i)
16413 mask |= BIT(BPF_REG_1 + i);
16414 return mask;
16415 }
16416
16417 /* Same as verifier_inlines_helper_call() but for kfuncs, see comment above */
is_fastcall_kfunc_call(struct bpf_kfunc_call_arg_meta * meta)16418 static bool is_fastcall_kfunc_call(struct bpf_kfunc_call_arg_meta *meta)
16419 {
16420 return meta->kfunc_flags & KF_FASTCALL;
16421 }
16422
16423 /* LLVM define a bpf_fastcall function attribute.
16424 * This attribute means that function scratches only some of
16425 * the caller saved registers defined by ABI.
16426 * For BPF the set of such registers could be defined as follows:
16427 * - R0 is scratched only if function is non-void;
16428 * - R1-R5 are scratched only if corresponding parameter type is defined
16429 * in the function prototype.
16430 *
16431 * The contract between kernel and clang allows to simultaneously use
16432 * such functions and maintain backwards compatibility with old
16433 * kernels that don't understand bpf_fastcall calls:
16434 *
16435 * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5
16436 * registers are not scratched by the call;
16437 *
16438 * - as a post-processing step, clang visits each bpf_fastcall call and adds
16439 * spill/fill for every live r0-r5;
16440 *
16441 * - stack offsets used for the spill/fill are allocated as lowest
16442 * stack offsets in whole function and are not used for any other
16443 * purposes;
16444 *
16445 * - when kernel loads a program, it looks for such patterns
16446 * (bpf_fastcall function surrounded by spills/fills) and checks if
16447 * spill/fill stack offsets are used exclusively in fastcall patterns;
16448 *
16449 * - if so, and if verifier or current JIT inlines the call to the
16450 * bpf_fastcall function (e.g. a helper call), kernel removes unnecessary
16451 * spill/fill pairs;
16452 *
16453 * - when old kernel loads a program, presence of spill/fill pairs
16454 * keeps BPF program valid, albeit slightly less efficient.
16455 *
16456 * For example:
16457 *
16458 * r1 = 1;
16459 * r2 = 2;
16460 * *(u64 *)(r10 - 8) = r1; r1 = 1;
16461 * *(u64 *)(r10 - 16) = r2; r2 = 2;
16462 * call %[to_be_inlined] --> call %[to_be_inlined]
16463 * r2 = *(u64 *)(r10 - 16); r0 = r1;
16464 * r1 = *(u64 *)(r10 - 8); r0 += r2;
16465 * r0 = r1; exit;
16466 * r0 += r2;
16467 * exit;
16468 *
16469 * The purpose of mark_fastcall_pattern_for_call is to:
16470 * - look for such patterns;
16471 * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern;
16472 * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction;
16473 * - update env->subprog_info[*]->fastcall_stack_off to find an offset
16474 * at which bpf_fastcall spill/fill stack slots start;
16475 * - update env->subprog_info[*]->keep_fastcall_stack.
16476 *
16477 * The .fastcall_pattern and .fastcall_stack_off are used by
16478 * check_fastcall_stack_contract() to check if every stack access to
16479 * fastcall spill/fill stack slot originates from spill/fill
16480 * instructions, members of fastcall patterns.
16481 *
16482 * If such condition holds true for a subprogram, fastcall patterns could
16483 * be rewritten by remove_fastcall_spills_fills().
16484 * Otherwise bpf_fastcall patterns are not changed in the subprogram
16485 * (code, presumably, generated by an older clang version).
16486 *
16487 * For example, it is *not* safe to remove spill/fill below:
16488 *
16489 * r1 = 1;
16490 * *(u64 *)(r10 - 8) = r1; r1 = 1;
16491 * call %[to_be_inlined] --> call %[to_be_inlined]
16492 * r1 = *(u64 *)(r10 - 8); r0 = *(u64 *)(r10 - 8); <---- wrong !!!
16493 * r0 = *(u64 *)(r10 - 8); r0 += r1;
16494 * r0 += r1; exit;
16495 * exit;
16496 */
mark_fastcall_pattern_for_call(struct bpf_verifier_env * env,struct bpf_subprog_info * subprog,int insn_idx,s16 lowest_off)16497 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env,
16498 struct bpf_subprog_info *subprog,
16499 int insn_idx, s16 lowest_off)
16500 {
16501 struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx;
16502 struct bpf_insn *call = &env->prog->insnsi[insn_idx];
16503 const struct bpf_func_proto *fn;
16504 u32 clobbered_regs_mask = ALL_CALLER_SAVED_REGS;
16505 u32 expected_regs_mask;
16506 bool can_be_inlined = false;
16507 s16 off;
16508 int i;
16509
16510 if (bpf_helper_call(call)) {
16511 if (get_helper_proto(env, call->imm, &fn) < 0)
16512 /* error would be reported later */
16513 return;
16514 clobbered_regs_mask = helper_fastcall_clobber_mask(fn);
16515 can_be_inlined = fn->allow_fastcall &&
16516 (verifier_inlines_helper_call(env, call->imm) ||
16517 bpf_jit_inlines_helper_call(call->imm));
16518 }
16519
16520 if (bpf_pseudo_kfunc_call(call)) {
16521 struct bpf_kfunc_call_arg_meta meta;
16522 int err;
16523
16524 err = fetch_kfunc_meta(env, call, &meta, NULL);
16525 if (err < 0)
16526 /* error would be reported later */
16527 return;
16528
16529 clobbered_regs_mask = kfunc_fastcall_clobber_mask(&meta);
16530 can_be_inlined = is_fastcall_kfunc_call(&meta);
16531 }
16532
16533 if (clobbered_regs_mask == ALL_CALLER_SAVED_REGS)
16534 return;
16535
16536 /* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */
16537 expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS;
16538
16539 /* match pairs of form:
16540 *
16541 * *(u64 *)(r10 - Y) = rX (where Y % 8 == 0)
16542 * ...
16543 * call %[to_be_inlined]
16544 * ...
16545 * rX = *(u64 *)(r10 - Y)
16546 */
16547 for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) {
16548 if (insn_idx - i < 0 || insn_idx + i >= env->prog->len)
16549 break;
16550 stx = &insns[insn_idx - i];
16551 ldx = &insns[insn_idx + i];
16552 /* must be a stack spill/fill pair */
16553 if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) ||
16554 ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) ||
16555 stx->dst_reg != BPF_REG_10 ||
16556 ldx->src_reg != BPF_REG_10)
16557 break;
16558 /* must be a spill/fill for the same reg */
16559 if (stx->src_reg != ldx->dst_reg)
16560 break;
16561 /* must be one of the previously unseen registers */
16562 if ((BIT(stx->src_reg) & expected_regs_mask) == 0)
16563 break;
16564 /* must be a spill/fill for the same expected offset,
16565 * no need to check offset alignment, BPF_DW stack access
16566 * is always 8-byte aligned.
16567 */
16568 if (stx->off != off || ldx->off != off)
16569 break;
16570 expected_regs_mask &= ~BIT(stx->src_reg);
16571 env->insn_aux_data[insn_idx - i].fastcall_pattern = 1;
16572 env->insn_aux_data[insn_idx + i].fastcall_pattern = 1;
16573 }
16574 if (i == 1)
16575 return;
16576
16577 /* Conditionally set 'fastcall_spills_num' to allow forward
16578 * compatibility when more helper functions are marked as
16579 * bpf_fastcall at compile time than current kernel supports, e.g:
16580 *
16581 * 1: *(u64 *)(r10 - 8) = r1
16582 * 2: call A ;; assume A is bpf_fastcall for current kernel
16583 * 3: r1 = *(u64 *)(r10 - 8)
16584 * 4: *(u64 *)(r10 - 8) = r1
16585 * 5: call B ;; assume B is not bpf_fastcall for current kernel
16586 * 6: r1 = *(u64 *)(r10 - 8)
16587 *
16588 * There is no need to block bpf_fastcall rewrite for such program.
16589 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy,
16590 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills()
16591 * does not remove spill/fill pair {4,6}.
16592 */
16593 if (can_be_inlined)
16594 env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1;
16595 else
16596 subprog->keep_fastcall_stack = 1;
16597 subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off);
16598 }
16599
mark_fastcall_patterns(struct bpf_verifier_env * env)16600 static int mark_fastcall_patterns(struct bpf_verifier_env *env)
16601 {
16602 struct bpf_subprog_info *subprog = env->subprog_info;
16603 struct bpf_insn *insn;
16604 s16 lowest_off;
16605 int s, i;
16606
16607 for (s = 0; s < env->subprog_cnt; ++s, ++subprog) {
16608 /* find lowest stack spill offset used in this subprog */
16609 lowest_off = 0;
16610 for (i = subprog->start; i < (subprog + 1)->start; ++i) {
16611 insn = env->prog->insnsi + i;
16612 if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) ||
16613 insn->dst_reg != BPF_REG_10)
16614 continue;
16615 lowest_off = min(lowest_off, insn->off);
16616 }
16617 /* use this offset to find fastcall patterns */
16618 for (i = subprog->start; i < (subprog + 1)->start; ++i) {
16619 insn = env->prog->insnsi + i;
16620 if (insn->code != (BPF_JMP | BPF_CALL))
16621 continue;
16622 mark_fastcall_pattern_for_call(env, subprog, i, lowest_off);
16623 }
16624 }
16625 return 0;
16626 }
16627
16628 /* Visits the instruction at index t and returns one of the following:
16629 * < 0 - an error occurred
16630 * DONE_EXPLORING - the instruction was fully explored
16631 * KEEP_EXPLORING - there is still work to be done before it is fully explored
16632 */
visit_insn(int t,struct bpf_verifier_env * env)16633 static int visit_insn(int t, struct bpf_verifier_env *env)
16634 {
16635 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
16636 int ret, off, insn_sz;
16637
16638 if (bpf_pseudo_func(insn))
16639 return visit_func_call_insn(t, insns, env, true);
16640
16641 /* All non-branch instructions have a single fall-through edge. */
16642 if (BPF_CLASS(insn->code) != BPF_JMP &&
16643 BPF_CLASS(insn->code) != BPF_JMP32) {
16644 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
16645 return push_insn(t, t + insn_sz, FALLTHROUGH, env);
16646 }
16647
16648 switch (BPF_OP(insn->code)) {
16649 case BPF_EXIT:
16650 return DONE_EXPLORING;
16651
16652 case BPF_CALL:
16653 if (is_async_callback_calling_insn(insn))
16654 /* Mark this call insn as a prune point to trigger
16655 * is_state_visited() check before call itself is
16656 * processed by __check_func_call(). Otherwise new
16657 * async state will be pushed for further exploration.
16658 */
16659 mark_prune_point(env, t);
16660 /* For functions that invoke callbacks it is not known how many times
16661 * callback would be called. Verifier models callback calling functions
16662 * by repeatedly visiting callback bodies and returning to origin call
16663 * instruction.
16664 * In order to stop such iteration verifier needs to identify when a
16665 * state identical some state from a previous iteration is reached.
16666 * Check below forces creation of checkpoint before callback calling
16667 * instruction to allow search for such identical states.
16668 */
16669 if (is_sync_callback_calling_insn(insn)) {
16670 mark_calls_callback(env, t);
16671 mark_force_checkpoint(env, t);
16672 mark_prune_point(env, t);
16673 mark_jmp_point(env, t);
16674 }
16675 if (bpf_helper_call(insn) && bpf_helper_changes_pkt_data(insn->imm))
16676 mark_subprog_changes_pkt_data(env, t);
16677 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
16678 struct bpf_kfunc_call_arg_meta meta;
16679
16680 ret = fetch_kfunc_meta(env, insn, &meta, NULL);
16681 if (ret == 0 && is_iter_next_kfunc(&meta)) {
16682 mark_prune_point(env, t);
16683 /* Checking and saving state checkpoints at iter_next() call
16684 * is crucial for fast convergence of open-coded iterator loop
16685 * logic, so we need to force it. If we don't do that,
16686 * is_state_visited() might skip saving a checkpoint, causing
16687 * unnecessarily long sequence of not checkpointed
16688 * instructions and jumps, leading to exhaustion of jump
16689 * history buffer, and potentially other undesired outcomes.
16690 * It is expected that with correct open-coded iterators
16691 * convergence will happen quickly, so we don't run a risk of
16692 * exhausting memory.
16693 */
16694 mark_force_checkpoint(env, t);
16695 }
16696 }
16697 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
16698
16699 case BPF_JA:
16700 if (BPF_SRC(insn->code) != BPF_K)
16701 return -EINVAL;
16702
16703 if (BPF_CLASS(insn->code) == BPF_JMP)
16704 off = insn->off;
16705 else
16706 off = insn->imm;
16707
16708 /* unconditional jump with single edge */
16709 ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
16710 if (ret)
16711 return ret;
16712
16713 mark_prune_point(env, t + off + 1);
16714 mark_jmp_point(env, t + off + 1);
16715
16716 return ret;
16717
16718 default:
16719 /* conditional jump with two edges */
16720 mark_prune_point(env, t);
16721 if (is_may_goto_insn(insn))
16722 mark_force_checkpoint(env, t);
16723
16724 ret = push_insn(t, t + 1, FALLTHROUGH, env);
16725 if (ret)
16726 return ret;
16727
16728 return push_insn(t, t + insn->off + 1, BRANCH, env);
16729 }
16730 }
16731
16732 /* non-recursive depth-first-search to detect loops in BPF program
16733 * loop == back-edge in directed graph
16734 */
check_cfg(struct bpf_verifier_env * env)16735 static int check_cfg(struct bpf_verifier_env *env)
16736 {
16737 int insn_cnt = env->prog->len;
16738 int *insn_stack, *insn_state;
16739 int ex_insn_beg, i, ret = 0;
16740 bool ex_done = false;
16741
16742 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
16743 if (!insn_state)
16744 return -ENOMEM;
16745
16746 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
16747 if (!insn_stack) {
16748 kvfree(insn_state);
16749 return -ENOMEM;
16750 }
16751
16752 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
16753 insn_stack[0] = 0; /* 0 is the first instruction */
16754 env->cfg.cur_stack = 1;
16755
16756 walk_cfg:
16757 while (env->cfg.cur_stack > 0) {
16758 int t = insn_stack[env->cfg.cur_stack - 1];
16759
16760 ret = visit_insn(t, env);
16761 switch (ret) {
16762 case DONE_EXPLORING:
16763 insn_state[t] = EXPLORED;
16764 env->cfg.cur_stack--;
16765 break;
16766 case KEEP_EXPLORING:
16767 break;
16768 default:
16769 if (ret > 0) {
16770 verbose(env, "visit_insn internal bug\n");
16771 ret = -EFAULT;
16772 }
16773 goto err_free;
16774 }
16775 }
16776
16777 if (env->cfg.cur_stack < 0) {
16778 verbose(env, "pop stack internal bug\n");
16779 ret = -EFAULT;
16780 goto err_free;
16781 }
16782
16783 if (env->exception_callback_subprog && !ex_done) {
16784 ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
16785
16786 insn_state[ex_insn_beg] = DISCOVERED;
16787 insn_stack[0] = ex_insn_beg;
16788 env->cfg.cur_stack = 1;
16789 ex_done = true;
16790 goto walk_cfg;
16791 }
16792
16793 for (i = 0; i < insn_cnt; i++) {
16794 struct bpf_insn *insn = &env->prog->insnsi[i];
16795
16796 if (insn_state[i] != EXPLORED) {
16797 verbose(env, "unreachable insn %d\n", i);
16798 ret = -EINVAL;
16799 goto err_free;
16800 }
16801 if (bpf_is_ldimm64(insn)) {
16802 if (insn_state[i + 1] != 0) {
16803 verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
16804 ret = -EINVAL;
16805 goto err_free;
16806 }
16807 i++; /* skip second half of ldimm64 */
16808 }
16809 }
16810 ret = 0; /* cfg looks good */
16811 env->prog->aux->changes_pkt_data = env->subprog_info[0].changes_pkt_data;
16812
16813 err_free:
16814 kvfree(insn_state);
16815 kvfree(insn_stack);
16816 env->cfg.insn_state = env->cfg.insn_stack = NULL;
16817 return ret;
16818 }
16819
check_abnormal_return(struct bpf_verifier_env * env)16820 static int check_abnormal_return(struct bpf_verifier_env *env)
16821 {
16822 int i;
16823
16824 for (i = 1; i < env->subprog_cnt; i++) {
16825 if (env->subprog_info[i].has_ld_abs) {
16826 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
16827 return -EINVAL;
16828 }
16829 if (env->subprog_info[i].has_tail_call) {
16830 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
16831 return -EINVAL;
16832 }
16833 }
16834 return 0;
16835 }
16836
16837 /* The minimum supported BTF func info size */
16838 #define MIN_BPF_FUNCINFO_SIZE 8
16839 #define MAX_FUNCINFO_REC_SIZE 252
16840
check_btf_func_early(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)16841 static int check_btf_func_early(struct bpf_verifier_env *env,
16842 const union bpf_attr *attr,
16843 bpfptr_t uattr)
16844 {
16845 u32 krec_size = sizeof(struct bpf_func_info);
16846 const struct btf_type *type, *func_proto;
16847 u32 i, nfuncs, urec_size, min_size;
16848 struct bpf_func_info *krecord;
16849 struct bpf_prog *prog;
16850 const struct btf *btf;
16851 u32 prev_offset = 0;
16852 bpfptr_t urecord;
16853 int ret = -ENOMEM;
16854
16855 nfuncs = attr->func_info_cnt;
16856 if (!nfuncs) {
16857 if (check_abnormal_return(env))
16858 return -EINVAL;
16859 return 0;
16860 }
16861
16862 urec_size = attr->func_info_rec_size;
16863 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
16864 urec_size > MAX_FUNCINFO_REC_SIZE ||
16865 urec_size % sizeof(u32)) {
16866 verbose(env, "invalid func info rec size %u\n", urec_size);
16867 return -EINVAL;
16868 }
16869
16870 prog = env->prog;
16871 btf = prog->aux->btf;
16872
16873 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
16874 min_size = min_t(u32, krec_size, urec_size);
16875
16876 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
16877 if (!krecord)
16878 return -ENOMEM;
16879
16880 for (i = 0; i < nfuncs; i++) {
16881 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
16882 if (ret) {
16883 if (ret == -E2BIG) {
16884 verbose(env, "nonzero tailing record in func info");
16885 /* set the size kernel expects so loader can zero
16886 * out the rest of the record.
16887 */
16888 if (copy_to_bpfptr_offset(uattr,
16889 offsetof(union bpf_attr, func_info_rec_size),
16890 &min_size, sizeof(min_size)))
16891 ret = -EFAULT;
16892 }
16893 goto err_free;
16894 }
16895
16896 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
16897 ret = -EFAULT;
16898 goto err_free;
16899 }
16900
16901 /* check insn_off */
16902 ret = -EINVAL;
16903 if (i == 0) {
16904 if (krecord[i].insn_off) {
16905 verbose(env,
16906 "nonzero insn_off %u for the first func info record",
16907 krecord[i].insn_off);
16908 goto err_free;
16909 }
16910 } else if (krecord[i].insn_off <= prev_offset) {
16911 verbose(env,
16912 "same or smaller insn offset (%u) than previous func info record (%u)",
16913 krecord[i].insn_off, prev_offset);
16914 goto err_free;
16915 }
16916
16917 /* check type_id */
16918 type = btf_type_by_id(btf, krecord[i].type_id);
16919 if (!type || !btf_type_is_func(type)) {
16920 verbose(env, "invalid type id %d in func info",
16921 krecord[i].type_id);
16922 goto err_free;
16923 }
16924
16925 func_proto = btf_type_by_id(btf, type->type);
16926 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
16927 /* btf_func_check() already verified it during BTF load */
16928 goto err_free;
16929
16930 prev_offset = krecord[i].insn_off;
16931 bpfptr_add(&urecord, urec_size);
16932 }
16933
16934 prog->aux->func_info = krecord;
16935 prog->aux->func_info_cnt = nfuncs;
16936 return 0;
16937
16938 err_free:
16939 kvfree(krecord);
16940 return ret;
16941 }
16942
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)16943 static int check_btf_func(struct bpf_verifier_env *env,
16944 const union bpf_attr *attr,
16945 bpfptr_t uattr)
16946 {
16947 const struct btf_type *type, *func_proto, *ret_type;
16948 u32 i, nfuncs, urec_size;
16949 struct bpf_func_info *krecord;
16950 struct bpf_func_info_aux *info_aux = NULL;
16951 struct bpf_prog *prog;
16952 const struct btf *btf;
16953 bpfptr_t urecord;
16954 bool scalar_return;
16955 int ret = -ENOMEM;
16956
16957 nfuncs = attr->func_info_cnt;
16958 if (!nfuncs) {
16959 if (check_abnormal_return(env))
16960 return -EINVAL;
16961 return 0;
16962 }
16963 if (nfuncs != env->subprog_cnt) {
16964 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
16965 return -EINVAL;
16966 }
16967
16968 urec_size = attr->func_info_rec_size;
16969
16970 prog = env->prog;
16971 btf = prog->aux->btf;
16972
16973 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
16974
16975 krecord = prog->aux->func_info;
16976 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
16977 if (!info_aux)
16978 return -ENOMEM;
16979
16980 for (i = 0; i < nfuncs; i++) {
16981 /* check insn_off */
16982 ret = -EINVAL;
16983
16984 if (env->subprog_info[i].start != krecord[i].insn_off) {
16985 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
16986 goto err_free;
16987 }
16988
16989 /* Already checked type_id */
16990 type = btf_type_by_id(btf, krecord[i].type_id);
16991 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
16992 /* Already checked func_proto */
16993 func_proto = btf_type_by_id(btf, type->type);
16994
16995 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
16996 scalar_return =
16997 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
16998 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
16999 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
17000 goto err_free;
17001 }
17002 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
17003 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
17004 goto err_free;
17005 }
17006
17007 bpfptr_add(&urecord, urec_size);
17008 }
17009
17010 prog->aux->func_info_aux = info_aux;
17011 return 0;
17012
17013 err_free:
17014 kfree(info_aux);
17015 return ret;
17016 }
17017
adjust_btf_func(struct bpf_verifier_env * env)17018 static void adjust_btf_func(struct bpf_verifier_env *env)
17019 {
17020 struct bpf_prog_aux *aux = env->prog->aux;
17021 int i;
17022
17023 if (!aux->func_info)
17024 return;
17025
17026 /* func_info is not available for hidden subprogs */
17027 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
17028 aux->func_info[i].insn_off = env->subprog_info[i].start;
17029 }
17030
17031 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
17032 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
17033
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)17034 static int check_btf_line(struct bpf_verifier_env *env,
17035 const union bpf_attr *attr,
17036 bpfptr_t uattr)
17037 {
17038 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
17039 struct bpf_subprog_info *sub;
17040 struct bpf_line_info *linfo;
17041 struct bpf_prog *prog;
17042 const struct btf *btf;
17043 bpfptr_t ulinfo;
17044 int err;
17045
17046 nr_linfo = attr->line_info_cnt;
17047 if (!nr_linfo)
17048 return 0;
17049 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
17050 return -EINVAL;
17051
17052 rec_size = attr->line_info_rec_size;
17053 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
17054 rec_size > MAX_LINEINFO_REC_SIZE ||
17055 rec_size & (sizeof(u32) - 1))
17056 return -EINVAL;
17057
17058 /* Need to zero it in case the userspace may
17059 * pass in a smaller bpf_line_info object.
17060 */
17061 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
17062 GFP_KERNEL | __GFP_NOWARN);
17063 if (!linfo)
17064 return -ENOMEM;
17065
17066 prog = env->prog;
17067 btf = prog->aux->btf;
17068
17069 s = 0;
17070 sub = env->subprog_info;
17071 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
17072 expected_size = sizeof(struct bpf_line_info);
17073 ncopy = min_t(u32, expected_size, rec_size);
17074 for (i = 0; i < nr_linfo; i++) {
17075 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
17076 if (err) {
17077 if (err == -E2BIG) {
17078 verbose(env, "nonzero tailing record in line_info");
17079 if (copy_to_bpfptr_offset(uattr,
17080 offsetof(union bpf_attr, line_info_rec_size),
17081 &expected_size, sizeof(expected_size)))
17082 err = -EFAULT;
17083 }
17084 goto err_free;
17085 }
17086
17087 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
17088 err = -EFAULT;
17089 goto err_free;
17090 }
17091
17092 /*
17093 * Check insn_off to ensure
17094 * 1) strictly increasing AND
17095 * 2) bounded by prog->len
17096 *
17097 * The linfo[0].insn_off == 0 check logically falls into
17098 * the later "missing bpf_line_info for func..." case
17099 * because the first linfo[0].insn_off must be the
17100 * first sub also and the first sub must have
17101 * subprog_info[0].start == 0.
17102 */
17103 if ((i && linfo[i].insn_off <= prev_offset) ||
17104 linfo[i].insn_off >= prog->len) {
17105 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
17106 i, linfo[i].insn_off, prev_offset,
17107 prog->len);
17108 err = -EINVAL;
17109 goto err_free;
17110 }
17111
17112 if (!prog->insnsi[linfo[i].insn_off].code) {
17113 verbose(env,
17114 "Invalid insn code at line_info[%u].insn_off\n",
17115 i);
17116 err = -EINVAL;
17117 goto err_free;
17118 }
17119
17120 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
17121 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
17122 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
17123 err = -EINVAL;
17124 goto err_free;
17125 }
17126
17127 if (s != env->subprog_cnt) {
17128 if (linfo[i].insn_off == sub[s].start) {
17129 sub[s].linfo_idx = i;
17130 s++;
17131 } else if (sub[s].start < linfo[i].insn_off) {
17132 verbose(env, "missing bpf_line_info for func#%u\n", s);
17133 err = -EINVAL;
17134 goto err_free;
17135 }
17136 }
17137
17138 prev_offset = linfo[i].insn_off;
17139 bpfptr_add(&ulinfo, rec_size);
17140 }
17141
17142 if (s != env->subprog_cnt) {
17143 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
17144 env->subprog_cnt - s, s);
17145 err = -EINVAL;
17146 goto err_free;
17147 }
17148
17149 prog->aux->linfo = linfo;
17150 prog->aux->nr_linfo = nr_linfo;
17151
17152 return 0;
17153
17154 err_free:
17155 kvfree(linfo);
17156 return err;
17157 }
17158
17159 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
17160 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
17161
check_core_relo(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)17162 static int check_core_relo(struct bpf_verifier_env *env,
17163 const union bpf_attr *attr,
17164 bpfptr_t uattr)
17165 {
17166 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
17167 struct bpf_core_relo core_relo = {};
17168 struct bpf_prog *prog = env->prog;
17169 const struct btf *btf = prog->aux->btf;
17170 struct bpf_core_ctx ctx = {
17171 .log = &env->log,
17172 .btf = btf,
17173 };
17174 bpfptr_t u_core_relo;
17175 int err;
17176
17177 nr_core_relo = attr->core_relo_cnt;
17178 if (!nr_core_relo)
17179 return 0;
17180 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
17181 return -EINVAL;
17182
17183 rec_size = attr->core_relo_rec_size;
17184 if (rec_size < MIN_CORE_RELO_SIZE ||
17185 rec_size > MAX_CORE_RELO_SIZE ||
17186 rec_size % sizeof(u32))
17187 return -EINVAL;
17188
17189 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
17190 expected_size = sizeof(struct bpf_core_relo);
17191 ncopy = min_t(u32, expected_size, rec_size);
17192
17193 /* Unlike func_info and line_info, copy and apply each CO-RE
17194 * relocation record one at a time.
17195 */
17196 for (i = 0; i < nr_core_relo; i++) {
17197 /* future proofing when sizeof(bpf_core_relo) changes */
17198 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
17199 if (err) {
17200 if (err == -E2BIG) {
17201 verbose(env, "nonzero tailing record in core_relo");
17202 if (copy_to_bpfptr_offset(uattr,
17203 offsetof(union bpf_attr, core_relo_rec_size),
17204 &expected_size, sizeof(expected_size)))
17205 err = -EFAULT;
17206 }
17207 break;
17208 }
17209
17210 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
17211 err = -EFAULT;
17212 break;
17213 }
17214
17215 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
17216 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
17217 i, core_relo.insn_off, prog->len);
17218 err = -EINVAL;
17219 break;
17220 }
17221
17222 err = bpf_core_apply(&ctx, &core_relo, i,
17223 &prog->insnsi[core_relo.insn_off / 8]);
17224 if (err)
17225 break;
17226 bpfptr_add(&u_core_relo, rec_size);
17227 }
17228 return err;
17229 }
17230
check_btf_info_early(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)17231 static int check_btf_info_early(struct bpf_verifier_env *env,
17232 const union bpf_attr *attr,
17233 bpfptr_t uattr)
17234 {
17235 struct btf *btf;
17236 int err;
17237
17238 if (!attr->func_info_cnt && !attr->line_info_cnt) {
17239 if (check_abnormal_return(env))
17240 return -EINVAL;
17241 return 0;
17242 }
17243
17244 btf = btf_get_by_fd(attr->prog_btf_fd);
17245 if (IS_ERR(btf))
17246 return PTR_ERR(btf);
17247 if (btf_is_kernel(btf)) {
17248 btf_put(btf);
17249 return -EACCES;
17250 }
17251 env->prog->aux->btf = btf;
17252
17253 err = check_btf_func_early(env, attr, uattr);
17254 if (err)
17255 return err;
17256 return 0;
17257 }
17258
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)17259 static int check_btf_info(struct bpf_verifier_env *env,
17260 const union bpf_attr *attr,
17261 bpfptr_t uattr)
17262 {
17263 int err;
17264
17265 if (!attr->func_info_cnt && !attr->line_info_cnt) {
17266 if (check_abnormal_return(env))
17267 return -EINVAL;
17268 return 0;
17269 }
17270
17271 err = check_btf_func(env, attr, uattr);
17272 if (err)
17273 return err;
17274
17275 err = check_btf_line(env, attr, uattr);
17276 if (err)
17277 return err;
17278
17279 err = check_core_relo(env, attr, uattr);
17280 if (err)
17281 return err;
17282
17283 return 0;
17284 }
17285
17286 /* check %cur's range satisfies %old's */
range_within(const struct bpf_reg_state * old,const struct bpf_reg_state * cur)17287 static bool range_within(const struct bpf_reg_state *old,
17288 const struct bpf_reg_state *cur)
17289 {
17290 return old->umin_value <= cur->umin_value &&
17291 old->umax_value >= cur->umax_value &&
17292 old->smin_value <= cur->smin_value &&
17293 old->smax_value >= cur->smax_value &&
17294 old->u32_min_value <= cur->u32_min_value &&
17295 old->u32_max_value >= cur->u32_max_value &&
17296 old->s32_min_value <= cur->s32_min_value &&
17297 old->s32_max_value >= cur->s32_max_value;
17298 }
17299
17300 /* If in the old state two registers had the same id, then they need to have
17301 * the same id in the new state as well. But that id could be different from
17302 * the old state, so we need to track the mapping from old to new ids.
17303 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
17304 * regs with old id 5 must also have new id 9 for the new state to be safe. But
17305 * regs with a different old id could still have new id 9, we don't care about
17306 * that.
17307 * So we look through our idmap to see if this old id has been seen before. If
17308 * so, we require the new id to match; otherwise, we add the id pair to the map.
17309 */
check_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)17310 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
17311 {
17312 struct bpf_id_pair *map = idmap->map;
17313 unsigned int i;
17314
17315 /* either both IDs should be set or both should be zero */
17316 if (!!old_id != !!cur_id)
17317 return false;
17318
17319 if (old_id == 0) /* cur_id == 0 as well */
17320 return true;
17321
17322 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
17323 if (!map[i].old) {
17324 /* Reached an empty slot; haven't seen this id before */
17325 map[i].old = old_id;
17326 map[i].cur = cur_id;
17327 return true;
17328 }
17329 if (map[i].old == old_id)
17330 return map[i].cur == cur_id;
17331 if (map[i].cur == cur_id)
17332 return false;
17333 }
17334 /* We ran out of idmap slots, which should be impossible */
17335 WARN_ON_ONCE(1);
17336 return false;
17337 }
17338
17339 /* Similar to check_ids(), but allocate a unique temporary ID
17340 * for 'old_id' or 'cur_id' of zero.
17341 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
17342 */
check_scalar_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)17343 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
17344 {
17345 old_id = old_id ? old_id : ++idmap->tmp_id_gen;
17346 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
17347
17348 return check_ids(old_id, cur_id, idmap);
17349 }
17350
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st)17351 static void clean_func_state(struct bpf_verifier_env *env,
17352 struct bpf_func_state *st)
17353 {
17354 enum bpf_reg_liveness live;
17355 int i, j;
17356
17357 for (i = 0; i < BPF_REG_FP; i++) {
17358 live = st->regs[i].live;
17359 /* liveness must not touch this register anymore */
17360 st->regs[i].live |= REG_LIVE_DONE;
17361 if (!(live & REG_LIVE_READ))
17362 /* since the register is unused, clear its state
17363 * to make further comparison simpler
17364 */
17365 __mark_reg_not_init(env, &st->regs[i]);
17366 }
17367
17368 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
17369 live = st->stack[i].spilled_ptr.live;
17370 /* liveness must not touch this stack slot anymore */
17371 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
17372 if (!(live & REG_LIVE_READ)) {
17373 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
17374 for (j = 0; j < BPF_REG_SIZE; j++)
17375 st->stack[i].slot_type[j] = STACK_INVALID;
17376 }
17377 }
17378 }
17379
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)17380 static void clean_verifier_state(struct bpf_verifier_env *env,
17381 struct bpf_verifier_state *st)
17382 {
17383 int i;
17384
17385 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
17386 /* all regs in this state in all frames were already marked */
17387 return;
17388
17389 for (i = 0; i <= st->curframe; i++)
17390 clean_func_state(env, st->frame[i]);
17391 }
17392
17393 /* the parentage chains form a tree.
17394 * the verifier states are added to state lists at given insn and
17395 * pushed into state stack for future exploration.
17396 * when the verifier reaches bpf_exit insn some of the verifer states
17397 * stored in the state lists have their final liveness state already,
17398 * but a lot of states will get revised from liveness point of view when
17399 * the verifier explores other branches.
17400 * Example:
17401 * 1: r0 = 1
17402 * 2: if r1 == 100 goto pc+1
17403 * 3: r0 = 2
17404 * 4: exit
17405 * when the verifier reaches exit insn the register r0 in the state list of
17406 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
17407 * of insn 2 and goes exploring further. At the insn 4 it will walk the
17408 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
17409 *
17410 * Since the verifier pushes the branch states as it sees them while exploring
17411 * the program the condition of walking the branch instruction for the second
17412 * time means that all states below this branch were already explored and
17413 * their final liveness marks are already propagated.
17414 * Hence when the verifier completes the search of state list in is_state_visited()
17415 * we can call this clean_live_states() function to mark all liveness states
17416 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
17417 * will not be used.
17418 * This function also clears the registers and stack for states that !READ
17419 * to simplify state merging.
17420 *
17421 * Important note here that walking the same branch instruction in the callee
17422 * doesn't meant that the states are DONE. The verifier has to compare
17423 * the callsites
17424 */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)17425 static void clean_live_states(struct bpf_verifier_env *env, int insn,
17426 struct bpf_verifier_state *cur)
17427 {
17428 struct bpf_verifier_state_list *sl;
17429
17430 sl = *explored_state(env, insn);
17431 while (sl) {
17432 if (sl->state.branches)
17433 goto next;
17434 if (sl->state.insn_idx != insn ||
17435 !same_callsites(&sl->state, cur))
17436 goto next;
17437 clean_verifier_state(env, &sl->state);
17438 next:
17439 sl = sl->next;
17440 }
17441 }
17442
regs_exact(const struct bpf_reg_state * rold,const struct bpf_reg_state * rcur,struct bpf_idmap * idmap)17443 static bool regs_exact(const struct bpf_reg_state *rold,
17444 const struct bpf_reg_state *rcur,
17445 struct bpf_idmap *idmap)
17446 {
17447 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
17448 check_ids(rold->id, rcur->id, idmap) &&
17449 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
17450 }
17451
17452 enum exact_level {
17453 NOT_EXACT,
17454 EXACT,
17455 RANGE_WITHIN
17456 };
17457
17458 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_idmap * idmap,enum exact_level exact)17459 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
17460 struct bpf_reg_state *rcur, struct bpf_idmap *idmap,
17461 enum exact_level exact)
17462 {
17463 if (exact == EXACT)
17464 return regs_exact(rold, rcur, idmap);
17465
17466 if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT)
17467 /* explored state didn't use this */
17468 return true;
17469 if (rold->type == NOT_INIT) {
17470 if (exact == NOT_EXACT || rcur->type == NOT_INIT)
17471 /* explored state can't have used this */
17472 return true;
17473 }
17474
17475 /* Enforce that register types have to match exactly, including their
17476 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
17477 * rule.
17478 *
17479 * One can make a point that using a pointer register as unbounded
17480 * SCALAR would be technically acceptable, but this could lead to
17481 * pointer leaks because scalars are allowed to leak while pointers
17482 * are not. We could make this safe in special cases if root is
17483 * calling us, but it's probably not worth the hassle.
17484 *
17485 * Also, register types that are *not* MAYBE_NULL could technically be
17486 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
17487 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
17488 * to the same map).
17489 * However, if the old MAYBE_NULL register then got NULL checked,
17490 * doing so could have affected others with the same id, and we can't
17491 * check for that because we lost the id when we converted to
17492 * a non-MAYBE_NULL variant.
17493 * So, as a general rule we don't allow mixing MAYBE_NULL and
17494 * non-MAYBE_NULL registers as well.
17495 */
17496 if (rold->type != rcur->type)
17497 return false;
17498
17499 switch (base_type(rold->type)) {
17500 case SCALAR_VALUE:
17501 if (env->explore_alu_limits) {
17502 /* explore_alu_limits disables tnum_in() and range_within()
17503 * logic and requires everything to be strict
17504 */
17505 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
17506 check_scalar_ids(rold->id, rcur->id, idmap);
17507 }
17508 if (!rold->precise && exact == NOT_EXACT)
17509 return true;
17510 if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST))
17511 return false;
17512 if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off))
17513 return false;
17514 /* Why check_ids() for scalar registers?
17515 *
17516 * Consider the following BPF code:
17517 * 1: r6 = ... unbound scalar, ID=a ...
17518 * 2: r7 = ... unbound scalar, ID=b ...
17519 * 3: if (r6 > r7) goto +1
17520 * 4: r6 = r7
17521 * 5: if (r6 > X) goto ...
17522 * 6: ... memory operation using r7 ...
17523 *
17524 * First verification path is [1-6]:
17525 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
17526 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark
17527 * r7 <= X, because r6 and r7 share same id.
17528 * Next verification path is [1-4, 6].
17529 *
17530 * Instruction (6) would be reached in two states:
17531 * I. r6{.id=b}, r7{.id=b} via path 1-6;
17532 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
17533 *
17534 * Use check_ids() to distinguish these states.
17535 * ---
17536 * Also verify that new value satisfies old value range knowledge.
17537 */
17538 return range_within(rold, rcur) &&
17539 tnum_in(rold->var_off, rcur->var_off) &&
17540 check_scalar_ids(rold->id, rcur->id, idmap);
17541 case PTR_TO_MAP_KEY:
17542 case PTR_TO_MAP_VALUE:
17543 case PTR_TO_MEM:
17544 case PTR_TO_BUF:
17545 case PTR_TO_TP_BUFFER:
17546 /* If the new min/max/var_off satisfy the old ones and
17547 * everything else matches, we are OK.
17548 */
17549 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
17550 range_within(rold, rcur) &&
17551 tnum_in(rold->var_off, rcur->var_off) &&
17552 check_ids(rold->id, rcur->id, idmap) &&
17553 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
17554 case PTR_TO_PACKET_META:
17555 case PTR_TO_PACKET:
17556 /* We must have at least as much range as the old ptr
17557 * did, so that any accesses which were safe before are
17558 * still safe. This is true even if old range < old off,
17559 * since someone could have accessed through (ptr - k), or
17560 * even done ptr -= k in a register, to get a safe access.
17561 */
17562 if (rold->range > rcur->range)
17563 return false;
17564 /* If the offsets don't match, we can't trust our alignment;
17565 * nor can we be sure that we won't fall out of range.
17566 */
17567 if (rold->off != rcur->off)
17568 return false;
17569 /* id relations must be preserved */
17570 if (!check_ids(rold->id, rcur->id, idmap))
17571 return false;
17572 /* new val must satisfy old val knowledge */
17573 return range_within(rold, rcur) &&
17574 tnum_in(rold->var_off, rcur->var_off);
17575 case PTR_TO_STACK:
17576 /* two stack pointers are equal only if they're pointing to
17577 * the same stack frame, since fp-8 in foo != fp-8 in bar
17578 */
17579 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
17580 case PTR_TO_ARENA:
17581 return true;
17582 default:
17583 return regs_exact(rold, rcur, idmap);
17584 }
17585 }
17586
17587 static struct bpf_reg_state unbound_reg;
17588
unbound_reg_init(void)17589 static __init int unbound_reg_init(void)
17590 {
17591 __mark_reg_unknown_imprecise(&unbound_reg);
17592 unbound_reg.live |= REG_LIVE_READ;
17593 return 0;
17594 }
17595 late_initcall(unbound_reg_init);
17596
is_stack_all_misc(struct bpf_verifier_env * env,struct bpf_stack_state * stack)17597 static bool is_stack_all_misc(struct bpf_verifier_env *env,
17598 struct bpf_stack_state *stack)
17599 {
17600 u32 i;
17601
17602 for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) {
17603 if ((stack->slot_type[i] == STACK_MISC) ||
17604 (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack))
17605 continue;
17606 return false;
17607 }
17608
17609 return true;
17610 }
17611
scalar_reg_for_stack(struct bpf_verifier_env * env,struct bpf_stack_state * stack)17612 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env,
17613 struct bpf_stack_state *stack)
17614 {
17615 if (is_spilled_scalar_reg64(stack))
17616 return &stack->spilled_ptr;
17617
17618 if (is_stack_all_misc(env, stack))
17619 return &unbound_reg;
17620
17621 return NULL;
17622 }
17623
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_idmap * idmap,enum exact_level exact)17624 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
17625 struct bpf_func_state *cur, struct bpf_idmap *idmap,
17626 enum exact_level exact)
17627 {
17628 int i, spi;
17629
17630 /* walk slots of the explored stack and ignore any additional
17631 * slots in the current stack, since explored(safe) state
17632 * didn't use them
17633 */
17634 for (i = 0; i < old->allocated_stack; i++) {
17635 struct bpf_reg_state *old_reg, *cur_reg;
17636
17637 spi = i / BPF_REG_SIZE;
17638
17639 if (exact != NOT_EXACT &&
17640 (i >= cur->allocated_stack ||
17641 old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
17642 cur->stack[spi].slot_type[i % BPF_REG_SIZE]))
17643 return false;
17644
17645 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)
17646 && exact == NOT_EXACT) {
17647 i += BPF_REG_SIZE - 1;
17648 /* explored state didn't use this */
17649 continue;
17650 }
17651
17652 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
17653 continue;
17654
17655 if (env->allow_uninit_stack &&
17656 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
17657 continue;
17658
17659 /* explored stack has more populated slots than current stack
17660 * and these slots were used
17661 */
17662 if (i >= cur->allocated_stack)
17663 return false;
17664
17665 /* 64-bit scalar spill vs all slots MISC and vice versa.
17666 * Load from all slots MISC produces unbound scalar.
17667 * Construct a fake register for such stack and call
17668 * regsafe() to ensure scalar ids are compared.
17669 */
17670 old_reg = scalar_reg_for_stack(env, &old->stack[spi]);
17671 cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]);
17672 if (old_reg && cur_reg) {
17673 if (!regsafe(env, old_reg, cur_reg, idmap, exact))
17674 return false;
17675 i += BPF_REG_SIZE - 1;
17676 continue;
17677 }
17678
17679 /* if old state was safe with misc data in the stack
17680 * it will be safe with zero-initialized stack.
17681 * The opposite is not true
17682 */
17683 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
17684 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
17685 continue;
17686 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
17687 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
17688 /* Ex: old explored (safe) state has STACK_SPILL in
17689 * this stack slot, but current has STACK_MISC ->
17690 * this verifier states are not equivalent,
17691 * return false to continue verification of this path
17692 */
17693 return false;
17694 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
17695 continue;
17696 /* Both old and cur are having same slot_type */
17697 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
17698 case STACK_SPILL:
17699 /* when explored and current stack slot are both storing
17700 * spilled registers, check that stored pointers types
17701 * are the same as well.
17702 * Ex: explored safe path could have stored
17703 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
17704 * but current path has stored:
17705 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
17706 * such verifier states are not equivalent.
17707 * return false to continue verification of this path
17708 */
17709 if (!regsafe(env, &old->stack[spi].spilled_ptr,
17710 &cur->stack[spi].spilled_ptr, idmap, exact))
17711 return false;
17712 break;
17713 case STACK_DYNPTR:
17714 old_reg = &old->stack[spi].spilled_ptr;
17715 cur_reg = &cur->stack[spi].spilled_ptr;
17716 if (old_reg->dynptr.type != cur_reg->dynptr.type ||
17717 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
17718 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
17719 return false;
17720 break;
17721 case STACK_ITER:
17722 old_reg = &old->stack[spi].spilled_ptr;
17723 cur_reg = &cur->stack[spi].spilled_ptr;
17724 /* iter.depth is not compared between states as it
17725 * doesn't matter for correctness and would otherwise
17726 * prevent convergence; we maintain it only to prevent
17727 * infinite loop check triggering, see
17728 * iter_active_depths_differ()
17729 */
17730 if (old_reg->iter.btf != cur_reg->iter.btf ||
17731 old_reg->iter.btf_id != cur_reg->iter.btf_id ||
17732 old_reg->iter.state != cur_reg->iter.state ||
17733 /* ignore {old_reg,cur_reg}->iter.depth, see above */
17734 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
17735 return false;
17736 break;
17737 case STACK_MISC:
17738 case STACK_ZERO:
17739 case STACK_INVALID:
17740 continue;
17741 /* Ensure that new unhandled slot types return false by default */
17742 default:
17743 return false;
17744 }
17745 }
17746 return true;
17747 }
17748
refsafe(struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_idmap * idmap)17749 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
17750 struct bpf_idmap *idmap)
17751 {
17752 int i;
17753
17754 if (old->acquired_refs != cur->acquired_refs)
17755 return false;
17756
17757 for (i = 0; i < old->acquired_refs; i++) {
17758 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) ||
17759 old->refs[i].type != cur->refs[i].type)
17760 return false;
17761 switch (old->refs[i].type) {
17762 case REF_TYPE_PTR:
17763 break;
17764 case REF_TYPE_LOCK:
17765 if (old->refs[i].ptr != cur->refs[i].ptr)
17766 return false;
17767 break;
17768 default:
17769 WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type);
17770 return false;
17771 }
17772 }
17773
17774 return true;
17775 }
17776
17777 /* compare two verifier states
17778 *
17779 * all states stored in state_list are known to be valid, since
17780 * verifier reached 'bpf_exit' instruction through them
17781 *
17782 * this function is called when verifier exploring different branches of
17783 * execution popped from the state stack. If it sees an old state that has
17784 * more strict register state and more strict stack state then this execution
17785 * branch doesn't need to be explored further, since verifier already
17786 * concluded that more strict state leads to valid finish.
17787 *
17788 * Therefore two states are equivalent if register state is more conservative
17789 * and explored stack state is more conservative than the current one.
17790 * Example:
17791 * explored current
17792 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
17793 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
17794 *
17795 * In other words if current stack state (one being explored) has more
17796 * valid slots than old one that already passed validation, it means
17797 * the verifier can stop exploring and conclude that current state is valid too
17798 *
17799 * Similarly with registers. If explored state has register type as invalid
17800 * whereas register type in current state is meaningful, it means that
17801 * the current state will reach 'bpf_exit' instruction safely
17802 */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,enum exact_level exact)17803 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
17804 struct bpf_func_state *cur, enum exact_level exact)
17805 {
17806 int i;
17807
17808 if (old->callback_depth > cur->callback_depth)
17809 return false;
17810
17811 for (i = 0; i < MAX_BPF_REG; i++)
17812 if (!regsafe(env, &old->regs[i], &cur->regs[i],
17813 &env->idmap_scratch, exact))
17814 return false;
17815
17816 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
17817 return false;
17818
17819 if (!refsafe(old, cur, &env->idmap_scratch))
17820 return false;
17821
17822 return true;
17823 }
17824
reset_idmap_scratch(struct bpf_verifier_env * env)17825 static void reset_idmap_scratch(struct bpf_verifier_env *env)
17826 {
17827 env->idmap_scratch.tmp_id_gen = env->id_gen;
17828 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
17829 }
17830
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur,enum exact_level exact)17831 static bool states_equal(struct bpf_verifier_env *env,
17832 struct bpf_verifier_state *old,
17833 struct bpf_verifier_state *cur,
17834 enum exact_level exact)
17835 {
17836 int i;
17837
17838 if (old->curframe != cur->curframe)
17839 return false;
17840
17841 reset_idmap_scratch(env);
17842
17843 /* Verification state from speculative execution simulation
17844 * must never prune a non-speculative execution one.
17845 */
17846 if (old->speculative && !cur->speculative)
17847 return false;
17848
17849 if (old->active_rcu_lock != cur->active_rcu_lock)
17850 return false;
17851
17852 if (old->active_preempt_lock != cur->active_preempt_lock)
17853 return false;
17854
17855 if (old->in_sleepable != cur->in_sleepable)
17856 return false;
17857
17858 /* for states to be equal callsites have to be the same
17859 * and all frame states need to be equivalent
17860 */
17861 for (i = 0; i <= old->curframe; i++) {
17862 if (old->frame[i]->callsite != cur->frame[i]->callsite)
17863 return false;
17864 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
17865 return false;
17866 }
17867 return true;
17868 }
17869
17870 /* Return 0 if no propagation happened. Return negative error code if error
17871 * happened. Otherwise, return the propagated bit.
17872 */
propagate_liveness_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_reg_state * parent_reg)17873 static int propagate_liveness_reg(struct bpf_verifier_env *env,
17874 struct bpf_reg_state *reg,
17875 struct bpf_reg_state *parent_reg)
17876 {
17877 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
17878 u8 flag = reg->live & REG_LIVE_READ;
17879 int err;
17880
17881 /* When comes here, read flags of PARENT_REG or REG could be any of
17882 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
17883 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
17884 */
17885 if (parent_flag == REG_LIVE_READ64 ||
17886 /* Or if there is no read flag from REG. */
17887 !flag ||
17888 /* Or if the read flag from REG is the same as PARENT_REG. */
17889 parent_flag == flag)
17890 return 0;
17891
17892 err = mark_reg_read(env, reg, parent_reg, flag);
17893 if (err)
17894 return err;
17895
17896 return flag;
17897 }
17898
17899 /* A write screens off any subsequent reads; but write marks come from the
17900 * straight-line code between a state and its parent. When we arrive at an
17901 * equivalent state (jump target or such) we didn't arrive by the straight-line
17902 * code, so read marks in the state must propagate to the parent regardless
17903 * of the state's write marks. That's what 'parent == state->parent' comparison
17904 * in mark_reg_read() is for.
17905 */
propagate_liveness(struct bpf_verifier_env * env,const struct bpf_verifier_state * vstate,struct bpf_verifier_state * vparent)17906 static int propagate_liveness(struct bpf_verifier_env *env,
17907 const struct bpf_verifier_state *vstate,
17908 struct bpf_verifier_state *vparent)
17909 {
17910 struct bpf_reg_state *state_reg, *parent_reg;
17911 struct bpf_func_state *state, *parent;
17912 int i, frame, err = 0;
17913
17914 if (vparent->curframe != vstate->curframe) {
17915 WARN(1, "propagate_live: parent frame %d current frame %d\n",
17916 vparent->curframe, vstate->curframe);
17917 return -EFAULT;
17918 }
17919 /* Propagate read liveness of registers... */
17920 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
17921 for (frame = 0; frame <= vstate->curframe; frame++) {
17922 parent = vparent->frame[frame];
17923 state = vstate->frame[frame];
17924 parent_reg = parent->regs;
17925 state_reg = state->regs;
17926 /* We don't need to worry about FP liveness, it's read-only */
17927 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
17928 err = propagate_liveness_reg(env, &state_reg[i],
17929 &parent_reg[i]);
17930 if (err < 0)
17931 return err;
17932 if (err == REG_LIVE_READ64)
17933 mark_insn_zext(env, &parent_reg[i]);
17934 }
17935
17936 /* Propagate stack slots. */
17937 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
17938 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
17939 parent_reg = &parent->stack[i].spilled_ptr;
17940 state_reg = &state->stack[i].spilled_ptr;
17941 err = propagate_liveness_reg(env, state_reg,
17942 parent_reg);
17943 if (err < 0)
17944 return err;
17945 }
17946 }
17947 return 0;
17948 }
17949
17950 /* find precise scalars in the previous equivalent state and
17951 * propagate them into the current state
17952 */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old)17953 static int propagate_precision(struct bpf_verifier_env *env,
17954 const struct bpf_verifier_state *old)
17955 {
17956 struct bpf_reg_state *state_reg;
17957 struct bpf_func_state *state;
17958 int i, err = 0, fr;
17959 bool first;
17960
17961 for (fr = old->curframe; fr >= 0; fr--) {
17962 state = old->frame[fr];
17963 state_reg = state->regs;
17964 first = true;
17965 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
17966 if (state_reg->type != SCALAR_VALUE ||
17967 !state_reg->precise ||
17968 !(state_reg->live & REG_LIVE_READ))
17969 continue;
17970 if (env->log.level & BPF_LOG_LEVEL2) {
17971 if (first)
17972 verbose(env, "frame %d: propagating r%d", fr, i);
17973 else
17974 verbose(env, ",r%d", i);
17975 }
17976 bt_set_frame_reg(&env->bt, fr, i);
17977 first = false;
17978 }
17979
17980 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
17981 if (!is_spilled_reg(&state->stack[i]))
17982 continue;
17983 state_reg = &state->stack[i].spilled_ptr;
17984 if (state_reg->type != SCALAR_VALUE ||
17985 !state_reg->precise ||
17986 !(state_reg->live & REG_LIVE_READ))
17987 continue;
17988 if (env->log.level & BPF_LOG_LEVEL2) {
17989 if (first)
17990 verbose(env, "frame %d: propagating fp%d",
17991 fr, (-i - 1) * BPF_REG_SIZE);
17992 else
17993 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
17994 }
17995 bt_set_frame_slot(&env->bt, fr, i);
17996 first = false;
17997 }
17998 if (!first)
17999 verbose(env, "\n");
18000 }
18001
18002 err = mark_chain_precision_batch(env);
18003 if (err < 0)
18004 return err;
18005
18006 return 0;
18007 }
18008
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)18009 static bool states_maybe_looping(struct bpf_verifier_state *old,
18010 struct bpf_verifier_state *cur)
18011 {
18012 struct bpf_func_state *fold, *fcur;
18013 int i, fr = cur->curframe;
18014
18015 if (old->curframe != fr)
18016 return false;
18017
18018 fold = old->frame[fr];
18019 fcur = cur->frame[fr];
18020 for (i = 0; i < MAX_BPF_REG; i++)
18021 if (memcmp(&fold->regs[i], &fcur->regs[i],
18022 offsetof(struct bpf_reg_state, parent)))
18023 return false;
18024 return true;
18025 }
18026
is_iter_next_insn(struct bpf_verifier_env * env,int insn_idx)18027 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
18028 {
18029 return env->insn_aux_data[insn_idx].is_iter_next;
18030 }
18031
18032 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
18033 * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
18034 * states to match, which otherwise would look like an infinite loop. So while
18035 * iter_next() calls are taken care of, we still need to be careful and
18036 * prevent erroneous and too eager declaration of "ininite loop", when
18037 * iterators are involved.
18038 *
18039 * Here's a situation in pseudo-BPF assembly form:
18040 *
18041 * 0: again: ; set up iter_next() call args
18042 * 1: r1 = &it ; <CHECKPOINT HERE>
18043 * 2: call bpf_iter_num_next ; this is iter_next() call
18044 * 3: if r0 == 0 goto done
18045 * 4: ... something useful here ...
18046 * 5: goto again ; another iteration
18047 * 6: done:
18048 * 7: r1 = &it
18049 * 8: call bpf_iter_num_destroy ; clean up iter state
18050 * 9: exit
18051 *
18052 * This is a typical loop. Let's assume that we have a prune point at 1:,
18053 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
18054 * again`, assuming other heuristics don't get in a way).
18055 *
18056 * When we first time come to 1:, let's say we have some state X. We proceed
18057 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
18058 * Now we come back to validate that forked ACTIVE state. We proceed through
18059 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
18060 * are converging. But the problem is that we don't know that yet, as this
18061 * convergence has to happen at iter_next() call site only. So if nothing is
18062 * done, at 1: verifier will use bounded loop logic and declare infinite
18063 * looping (and would be *technically* correct, if not for iterator's
18064 * "eventual sticky NULL" contract, see process_iter_next_call()). But we
18065 * don't want that. So what we do in process_iter_next_call() when we go on
18066 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
18067 * a different iteration. So when we suspect an infinite loop, we additionally
18068 * check if any of the *ACTIVE* iterator states depths differ. If yes, we
18069 * pretend we are not looping and wait for next iter_next() call.
18070 *
18071 * This only applies to ACTIVE state. In DRAINED state we don't expect to
18072 * loop, because that would actually mean infinite loop, as DRAINED state is
18073 * "sticky", and so we'll keep returning into the same instruction with the
18074 * same state (at least in one of possible code paths).
18075 *
18076 * This approach allows to keep infinite loop heuristic even in the face of
18077 * active iterator. E.g., C snippet below is and will be detected as
18078 * inifintely looping:
18079 *
18080 * struct bpf_iter_num it;
18081 * int *p, x;
18082 *
18083 * bpf_iter_num_new(&it, 0, 10);
18084 * while ((p = bpf_iter_num_next(&t))) {
18085 * x = p;
18086 * while (x--) {} // <<-- infinite loop here
18087 * }
18088 *
18089 */
iter_active_depths_differ(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)18090 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
18091 {
18092 struct bpf_reg_state *slot, *cur_slot;
18093 struct bpf_func_state *state;
18094 int i, fr;
18095
18096 for (fr = old->curframe; fr >= 0; fr--) {
18097 state = old->frame[fr];
18098 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
18099 if (state->stack[i].slot_type[0] != STACK_ITER)
18100 continue;
18101
18102 slot = &state->stack[i].spilled_ptr;
18103 if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
18104 continue;
18105
18106 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
18107 if (cur_slot->iter.depth != slot->iter.depth)
18108 return true;
18109 }
18110 }
18111 return false;
18112 }
18113
is_state_visited(struct bpf_verifier_env * env,int insn_idx)18114 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
18115 {
18116 struct bpf_verifier_state_list *new_sl;
18117 struct bpf_verifier_state_list *sl, **pprev;
18118 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
18119 int i, j, n, err, states_cnt = 0;
18120 bool force_new_state, add_new_state, force_exact;
18121
18122 force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) ||
18123 /* Avoid accumulating infinitely long jmp history */
18124 cur->insn_hist_end - cur->insn_hist_start > 40;
18125
18126 /* bpf progs typically have pruning point every 4 instructions
18127 * http://vger.kernel.org/bpfconf2019.html#session-1
18128 * Do not add new state for future pruning if the verifier hasn't seen
18129 * at least 2 jumps and at least 8 instructions.
18130 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
18131 * In tests that amounts to up to 50% reduction into total verifier
18132 * memory consumption and 20% verifier time speedup.
18133 */
18134 add_new_state = force_new_state;
18135 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
18136 env->insn_processed - env->prev_insn_processed >= 8)
18137 add_new_state = true;
18138
18139 pprev = explored_state(env, insn_idx);
18140 sl = *pprev;
18141
18142 clean_live_states(env, insn_idx, cur);
18143
18144 while (sl) {
18145 states_cnt++;
18146 if (sl->state.insn_idx != insn_idx)
18147 goto next;
18148
18149 if (sl->state.branches) {
18150 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
18151
18152 if (frame->in_async_callback_fn &&
18153 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
18154 /* Different async_entry_cnt means that the verifier is
18155 * processing another entry into async callback.
18156 * Seeing the same state is not an indication of infinite
18157 * loop or infinite recursion.
18158 * But finding the same state doesn't mean that it's safe
18159 * to stop processing the current state. The previous state
18160 * hasn't yet reached bpf_exit, since state.branches > 0.
18161 * Checking in_async_callback_fn alone is not enough either.
18162 * Since the verifier still needs to catch infinite loops
18163 * inside async callbacks.
18164 */
18165 goto skip_inf_loop_check;
18166 }
18167 /* BPF open-coded iterators loop detection is special.
18168 * states_maybe_looping() logic is too simplistic in detecting
18169 * states that *might* be equivalent, because it doesn't know
18170 * about ID remapping, so don't even perform it.
18171 * See process_iter_next_call() and iter_active_depths_differ()
18172 * for overview of the logic. When current and one of parent
18173 * states are detected as equivalent, it's a good thing: we prove
18174 * convergence and can stop simulating further iterations.
18175 * It's safe to assume that iterator loop will finish, taking into
18176 * account iter_next() contract of eventually returning
18177 * sticky NULL result.
18178 *
18179 * Note, that states have to be compared exactly in this case because
18180 * read and precision marks might not be finalized inside the loop.
18181 * E.g. as in the program below:
18182 *
18183 * 1. r7 = -16
18184 * 2. r6 = bpf_get_prandom_u32()
18185 * 3. while (bpf_iter_num_next(&fp[-8])) {
18186 * 4. if (r6 != 42) {
18187 * 5. r7 = -32
18188 * 6. r6 = bpf_get_prandom_u32()
18189 * 7. continue
18190 * 8. }
18191 * 9. r0 = r10
18192 * 10. r0 += r7
18193 * 11. r8 = *(u64 *)(r0 + 0)
18194 * 12. r6 = bpf_get_prandom_u32()
18195 * 13. }
18196 *
18197 * Here verifier would first visit path 1-3, create a checkpoint at 3
18198 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
18199 * not have read or precision mark for r7 yet, thus inexact states
18200 * comparison would discard current state with r7=-32
18201 * => unsafe memory access at 11 would not be caught.
18202 */
18203 if (is_iter_next_insn(env, insn_idx)) {
18204 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
18205 struct bpf_func_state *cur_frame;
18206 struct bpf_reg_state *iter_state, *iter_reg;
18207 int spi;
18208
18209 cur_frame = cur->frame[cur->curframe];
18210 /* btf_check_iter_kfuncs() enforces that
18211 * iter state pointer is always the first arg
18212 */
18213 iter_reg = &cur_frame->regs[BPF_REG_1];
18214 /* current state is valid due to states_equal(),
18215 * so we can assume valid iter and reg state,
18216 * no need for extra (re-)validations
18217 */
18218 spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
18219 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
18220 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
18221 update_loop_entry(cur, &sl->state);
18222 goto hit;
18223 }
18224 }
18225 goto skip_inf_loop_check;
18226 }
18227 if (is_may_goto_insn_at(env, insn_idx)) {
18228 if (sl->state.may_goto_depth != cur->may_goto_depth &&
18229 states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
18230 update_loop_entry(cur, &sl->state);
18231 goto hit;
18232 }
18233 }
18234 if (calls_callback(env, insn_idx)) {
18235 if (states_equal(env, &sl->state, cur, RANGE_WITHIN))
18236 goto hit;
18237 goto skip_inf_loop_check;
18238 }
18239 /* attempt to detect infinite loop to avoid unnecessary doomed work */
18240 if (states_maybe_looping(&sl->state, cur) &&
18241 states_equal(env, &sl->state, cur, EXACT) &&
18242 !iter_active_depths_differ(&sl->state, cur) &&
18243 sl->state.may_goto_depth == cur->may_goto_depth &&
18244 sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
18245 verbose_linfo(env, insn_idx, "; ");
18246 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
18247 verbose(env, "cur state:");
18248 print_verifier_state(env, cur->frame[cur->curframe], true);
18249 verbose(env, "old state:");
18250 print_verifier_state(env, sl->state.frame[cur->curframe], true);
18251 return -EINVAL;
18252 }
18253 /* if the verifier is processing a loop, avoid adding new state
18254 * too often, since different loop iterations have distinct
18255 * states and may not help future pruning.
18256 * This threshold shouldn't be too low to make sure that
18257 * a loop with large bound will be rejected quickly.
18258 * The most abusive loop will be:
18259 * r1 += 1
18260 * if r1 < 1000000 goto pc-2
18261 * 1M insn_procssed limit / 100 == 10k peak states.
18262 * This threshold shouldn't be too high either, since states
18263 * at the end of the loop are likely to be useful in pruning.
18264 */
18265 skip_inf_loop_check:
18266 if (!force_new_state &&
18267 env->jmps_processed - env->prev_jmps_processed < 20 &&
18268 env->insn_processed - env->prev_insn_processed < 100)
18269 add_new_state = false;
18270 goto miss;
18271 }
18272 /* If sl->state is a part of a loop and this loop's entry is a part of
18273 * current verification path then states have to be compared exactly.
18274 * 'force_exact' is needed to catch the following case:
18275 *
18276 * initial Here state 'succ' was processed first,
18277 * | it was eventually tracked to produce a
18278 * V state identical to 'hdr'.
18279 * .---------> hdr All branches from 'succ' had been explored
18280 * | | and thus 'succ' has its .branches == 0.
18281 * | V
18282 * | .------... Suppose states 'cur' and 'succ' correspond
18283 * | | | to the same instruction + callsites.
18284 * | V V In such case it is necessary to check
18285 * | ... ... if 'succ' and 'cur' are states_equal().
18286 * | | | If 'succ' and 'cur' are a part of the
18287 * | V V same loop exact flag has to be set.
18288 * | succ <- cur To check if that is the case, verify
18289 * | | if loop entry of 'succ' is in current
18290 * | V DFS path.
18291 * | ...
18292 * | |
18293 * '----'
18294 *
18295 * Additional details are in the comment before get_loop_entry().
18296 */
18297 loop_entry = get_loop_entry(&sl->state);
18298 force_exact = loop_entry && loop_entry->branches > 0;
18299 if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) {
18300 if (force_exact)
18301 update_loop_entry(cur, loop_entry);
18302 hit:
18303 sl->hit_cnt++;
18304 /* reached equivalent register/stack state,
18305 * prune the search.
18306 * Registers read by the continuation are read by us.
18307 * If we have any write marks in env->cur_state, they
18308 * will prevent corresponding reads in the continuation
18309 * from reaching our parent (an explored_state). Our
18310 * own state will get the read marks recorded, but
18311 * they'll be immediately forgotten as we're pruning
18312 * this state and will pop a new one.
18313 */
18314 err = propagate_liveness(env, &sl->state, cur);
18315
18316 /* if previous state reached the exit with precision and
18317 * current state is equivalent to it (except precision marks)
18318 * the precision needs to be propagated back in
18319 * the current state.
18320 */
18321 if (is_jmp_point(env, env->insn_idx))
18322 err = err ? : push_insn_history(env, cur, 0, 0);
18323 err = err ? : propagate_precision(env, &sl->state);
18324 if (err)
18325 return err;
18326 return 1;
18327 }
18328 miss:
18329 /* when new state is not going to be added do not increase miss count.
18330 * Otherwise several loop iterations will remove the state
18331 * recorded earlier. The goal of these heuristics is to have
18332 * states from some iterations of the loop (some in the beginning
18333 * and some at the end) to help pruning.
18334 */
18335 if (add_new_state)
18336 sl->miss_cnt++;
18337 /* heuristic to determine whether this state is beneficial
18338 * to keep checking from state equivalence point of view.
18339 * Higher numbers increase max_states_per_insn and verification time,
18340 * but do not meaningfully decrease insn_processed.
18341 * 'n' controls how many times state could miss before eviction.
18342 * Use bigger 'n' for checkpoints because evicting checkpoint states
18343 * too early would hinder iterator convergence.
18344 */
18345 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
18346 if (sl->miss_cnt > sl->hit_cnt * n + n) {
18347 /* the state is unlikely to be useful. Remove it to
18348 * speed up verification
18349 */
18350 *pprev = sl->next;
18351 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
18352 !sl->state.used_as_loop_entry) {
18353 u32 br = sl->state.branches;
18354
18355 WARN_ONCE(br,
18356 "BUG live_done but branches_to_explore %d\n",
18357 br);
18358 free_verifier_state(&sl->state, false);
18359 kfree(sl);
18360 env->peak_states--;
18361 } else {
18362 /* cannot free this state, since parentage chain may
18363 * walk it later. Add it for free_list instead to
18364 * be freed at the end of verification
18365 */
18366 sl->next = env->free_list;
18367 env->free_list = sl;
18368 }
18369 sl = *pprev;
18370 continue;
18371 }
18372 next:
18373 pprev = &sl->next;
18374 sl = *pprev;
18375 }
18376
18377 if (env->max_states_per_insn < states_cnt)
18378 env->max_states_per_insn = states_cnt;
18379
18380 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
18381 return 0;
18382
18383 if (!add_new_state)
18384 return 0;
18385
18386 /* There were no equivalent states, remember the current one.
18387 * Technically the current state is not proven to be safe yet,
18388 * but it will either reach outer most bpf_exit (which means it's safe)
18389 * or it will be rejected. When there are no loops the verifier won't be
18390 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
18391 * again on the way to bpf_exit.
18392 * When looping the sl->state.branches will be > 0 and this state
18393 * will not be considered for equivalence until branches == 0.
18394 */
18395 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
18396 if (!new_sl)
18397 return -ENOMEM;
18398 env->total_states++;
18399 env->peak_states++;
18400 env->prev_jmps_processed = env->jmps_processed;
18401 env->prev_insn_processed = env->insn_processed;
18402
18403 /* forget precise markings we inherited, see __mark_chain_precision */
18404 if (env->bpf_capable)
18405 mark_all_scalars_imprecise(env, cur);
18406
18407 /* add new state to the head of linked list */
18408 new = &new_sl->state;
18409 err = copy_verifier_state(new, cur);
18410 if (err) {
18411 free_verifier_state(new, false);
18412 kfree(new_sl);
18413 return err;
18414 }
18415 new->insn_idx = insn_idx;
18416 WARN_ONCE(new->branches != 1,
18417 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
18418
18419 cur->parent = new;
18420 cur->first_insn_idx = insn_idx;
18421 cur->insn_hist_start = cur->insn_hist_end;
18422 cur->dfs_depth = new->dfs_depth + 1;
18423 new_sl->next = *explored_state(env, insn_idx);
18424 *explored_state(env, insn_idx) = new_sl;
18425 /* connect new state to parentage chain. Current frame needs all
18426 * registers connected. Only r6 - r9 of the callers are alive (pushed
18427 * to the stack implicitly by JITs) so in callers' frames connect just
18428 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
18429 * the state of the call instruction (with WRITTEN set), and r0 comes
18430 * from callee with its full parentage chain, anyway.
18431 */
18432 /* clear write marks in current state: the writes we did are not writes
18433 * our child did, so they don't screen off its reads from us.
18434 * (There are no read marks in current state, because reads always mark
18435 * their parent and current state never has children yet. Only
18436 * explored_states can get read marks.)
18437 */
18438 for (j = 0; j <= cur->curframe; j++) {
18439 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
18440 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
18441 for (i = 0; i < BPF_REG_FP; i++)
18442 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
18443 }
18444
18445 /* all stack frames are accessible from callee, clear them all */
18446 for (j = 0; j <= cur->curframe; j++) {
18447 struct bpf_func_state *frame = cur->frame[j];
18448 struct bpf_func_state *newframe = new->frame[j];
18449
18450 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
18451 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
18452 frame->stack[i].spilled_ptr.parent =
18453 &newframe->stack[i].spilled_ptr;
18454 }
18455 }
18456 return 0;
18457 }
18458
18459 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)18460 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
18461 {
18462 switch (base_type(type)) {
18463 case PTR_TO_CTX:
18464 case PTR_TO_SOCKET:
18465 case PTR_TO_SOCK_COMMON:
18466 case PTR_TO_TCP_SOCK:
18467 case PTR_TO_XDP_SOCK:
18468 case PTR_TO_BTF_ID:
18469 case PTR_TO_ARENA:
18470 return false;
18471 default:
18472 return true;
18473 }
18474 }
18475
18476 /* If an instruction was previously used with particular pointer types, then we
18477 * need to be careful to avoid cases such as the below, where it may be ok
18478 * for one branch accessing the pointer, but not ok for the other branch:
18479 *
18480 * R1 = sock_ptr
18481 * goto X;
18482 * ...
18483 * R1 = some_other_valid_ptr;
18484 * goto X;
18485 * ...
18486 * R2 = *(u32 *)(R1 + 0);
18487 */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)18488 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
18489 {
18490 return src != prev && (!reg_type_mismatch_ok(src) ||
18491 !reg_type_mismatch_ok(prev));
18492 }
18493
save_aux_ptr_type(struct bpf_verifier_env * env,enum bpf_reg_type type,bool allow_trust_mismatch)18494 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
18495 bool allow_trust_mismatch)
18496 {
18497 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
18498
18499 if (*prev_type == NOT_INIT) {
18500 /* Saw a valid insn
18501 * dst_reg = *(u32 *)(src_reg + off)
18502 * save type to validate intersecting paths
18503 */
18504 *prev_type = type;
18505 } else if (reg_type_mismatch(type, *prev_type)) {
18506 /* Abuser program is trying to use the same insn
18507 * dst_reg = *(u32*) (src_reg + off)
18508 * with different pointer types:
18509 * src_reg == ctx in one branch and
18510 * src_reg == stack|map in some other branch.
18511 * Reject it.
18512 */
18513 if (allow_trust_mismatch &&
18514 base_type(type) == PTR_TO_BTF_ID &&
18515 base_type(*prev_type) == PTR_TO_BTF_ID) {
18516 /*
18517 * Have to support a use case when one path through
18518 * the program yields TRUSTED pointer while another
18519 * is UNTRUSTED. Fallback to UNTRUSTED to generate
18520 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
18521 */
18522 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
18523 } else {
18524 verbose(env, "same insn cannot be used with different pointers\n");
18525 return -EINVAL;
18526 }
18527 }
18528
18529 return 0;
18530 }
18531
do_check(struct bpf_verifier_env * env)18532 static int do_check(struct bpf_verifier_env *env)
18533 {
18534 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
18535 struct bpf_verifier_state *state = env->cur_state;
18536 struct bpf_insn *insns = env->prog->insnsi;
18537 struct bpf_reg_state *regs;
18538 int insn_cnt = env->prog->len;
18539 bool do_print_state = false;
18540 int prev_insn_idx = -1;
18541
18542 for (;;) {
18543 bool exception_exit = false;
18544 struct bpf_insn *insn;
18545 u8 class;
18546 int err;
18547
18548 /* reset current history entry on each new instruction */
18549 env->cur_hist_ent = NULL;
18550
18551 env->prev_insn_idx = prev_insn_idx;
18552 if (env->insn_idx >= insn_cnt) {
18553 verbose(env, "invalid insn idx %d insn_cnt %d\n",
18554 env->insn_idx, insn_cnt);
18555 return -EFAULT;
18556 }
18557
18558 insn = &insns[env->insn_idx];
18559 class = BPF_CLASS(insn->code);
18560
18561 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
18562 verbose(env,
18563 "BPF program is too large. Processed %d insn\n",
18564 env->insn_processed);
18565 return -E2BIG;
18566 }
18567
18568 state->last_insn_idx = env->prev_insn_idx;
18569
18570 if (is_prune_point(env, env->insn_idx)) {
18571 err = is_state_visited(env, env->insn_idx);
18572 if (err < 0)
18573 return err;
18574 if (err == 1) {
18575 /* found equivalent state, can prune the search */
18576 if (env->log.level & BPF_LOG_LEVEL) {
18577 if (do_print_state)
18578 verbose(env, "\nfrom %d to %d%s: safe\n",
18579 env->prev_insn_idx, env->insn_idx,
18580 env->cur_state->speculative ?
18581 " (speculative execution)" : "");
18582 else
18583 verbose(env, "%d: safe\n", env->insn_idx);
18584 }
18585 goto process_bpf_exit;
18586 }
18587 }
18588
18589 if (is_jmp_point(env, env->insn_idx)) {
18590 err = push_insn_history(env, state, 0, 0);
18591 if (err)
18592 return err;
18593 }
18594
18595 if (signal_pending(current))
18596 return -EAGAIN;
18597
18598 if (need_resched())
18599 cond_resched();
18600
18601 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
18602 verbose(env, "\nfrom %d to %d%s:",
18603 env->prev_insn_idx, env->insn_idx,
18604 env->cur_state->speculative ?
18605 " (speculative execution)" : "");
18606 print_verifier_state(env, state->frame[state->curframe], true);
18607 do_print_state = false;
18608 }
18609
18610 if (env->log.level & BPF_LOG_LEVEL) {
18611 const struct bpf_insn_cbs cbs = {
18612 .cb_call = disasm_kfunc_name,
18613 .cb_print = verbose,
18614 .private_data = env,
18615 };
18616
18617 if (verifier_state_scratched(env))
18618 print_insn_state(env, state->frame[state->curframe]);
18619
18620 verbose_linfo(env, env->insn_idx, "; ");
18621 env->prev_log_pos = env->log.end_pos;
18622 verbose(env, "%d: ", env->insn_idx);
18623 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
18624 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
18625 env->prev_log_pos = env->log.end_pos;
18626 }
18627
18628 if (bpf_prog_is_offloaded(env->prog->aux)) {
18629 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
18630 env->prev_insn_idx);
18631 if (err)
18632 return err;
18633 }
18634
18635 regs = cur_regs(env);
18636 sanitize_mark_insn_seen(env);
18637 prev_insn_idx = env->insn_idx;
18638
18639 if (class == BPF_ALU || class == BPF_ALU64) {
18640 err = check_alu_op(env, insn);
18641 if (err)
18642 return err;
18643
18644 } else if (class == BPF_LDX) {
18645 enum bpf_reg_type src_reg_type;
18646
18647 /* check for reserved fields is already done */
18648
18649 /* check src operand */
18650 err = check_reg_arg(env, insn->src_reg, SRC_OP);
18651 if (err)
18652 return err;
18653
18654 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
18655 if (err)
18656 return err;
18657
18658 src_reg_type = regs[insn->src_reg].type;
18659
18660 /* check that memory (src_reg + off) is readable,
18661 * the state of dst_reg will be updated by this func
18662 */
18663 err = check_mem_access(env, env->insn_idx, insn->src_reg,
18664 insn->off, BPF_SIZE(insn->code),
18665 BPF_READ, insn->dst_reg, false,
18666 BPF_MODE(insn->code) == BPF_MEMSX);
18667 err = err ?: save_aux_ptr_type(env, src_reg_type, true);
18668 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], "ldx");
18669 if (err)
18670 return err;
18671 } else if (class == BPF_STX) {
18672 enum bpf_reg_type dst_reg_type;
18673
18674 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
18675 err = check_atomic(env, env->insn_idx, insn);
18676 if (err)
18677 return err;
18678 env->insn_idx++;
18679 continue;
18680 }
18681
18682 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
18683 verbose(env, "BPF_STX uses reserved fields\n");
18684 return -EINVAL;
18685 }
18686
18687 /* check src1 operand */
18688 err = check_reg_arg(env, insn->src_reg, SRC_OP);
18689 if (err)
18690 return err;
18691 /* check src2 operand */
18692 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
18693 if (err)
18694 return err;
18695
18696 dst_reg_type = regs[insn->dst_reg].type;
18697
18698 /* check that memory (dst_reg + off) is writeable */
18699 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
18700 insn->off, BPF_SIZE(insn->code),
18701 BPF_WRITE, insn->src_reg, false, false);
18702 if (err)
18703 return err;
18704
18705 err = save_aux_ptr_type(env, dst_reg_type, false);
18706 if (err)
18707 return err;
18708 } else if (class == BPF_ST) {
18709 enum bpf_reg_type dst_reg_type;
18710
18711 if (BPF_MODE(insn->code) != BPF_MEM ||
18712 insn->src_reg != BPF_REG_0) {
18713 verbose(env, "BPF_ST uses reserved fields\n");
18714 return -EINVAL;
18715 }
18716 /* check src operand */
18717 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
18718 if (err)
18719 return err;
18720
18721 dst_reg_type = regs[insn->dst_reg].type;
18722
18723 /* check that memory (dst_reg + off) is writeable */
18724 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
18725 insn->off, BPF_SIZE(insn->code),
18726 BPF_WRITE, -1, false, false);
18727 if (err)
18728 return err;
18729
18730 err = save_aux_ptr_type(env, dst_reg_type, false);
18731 if (err)
18732 return err;
18733 } else if (class == BPF_JMP || class == BPF_JMP32) {
18734 u8 opcode = BPF_OP(insn->code);
18735
18736 env->jmps_processed++;
18737 if (opcode == BPF_CALL) {
18738 if (BPF_SRC(insn->code) != BPF_K ||
18739 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
18740 && insn->off != 0) ||
18741 (insn->src_reg != BPF_REG_0 &&
18742 insn->src_reg != BPF_PSEUDO_CALL &&
18743 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
18744 insn->dst_reg != BPF_REG_0 ||
18745 class == BPF_JMP32) {
18746 verbose(env, "BPF_CALL uses reserved fields\n");
18747 return -EINVAL;
18748 }
18749
18750 if (cur_func(env)->active_locks) {
18751 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
18752 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
18753 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
18754 verbose(env, "function calls are not allowed while holding a lock\n");
18755 return -EINVAL;
18756 }
18757 }
18758 if (insn->src_reg == BPF_PSEUDO_CALL) {
18759 err = check_func_call(env, insn, &env->insn_idx);
18760 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
18761 err = check_kfunc_call(env, insn, &env->insn_idx);
18762 if (!err && is_bpf_throw_kfunc(insn)) {
18763 exception_exit = true;
18764 goto process_bpf_exit_full;
18765 }
18766 } else {
18767 err = check_helper_call(env, insn, &env->insn_idx);
18768 }
18769 if (err)
18770 return err;
18771
18772 mark_reg_scratched(env, BPF_REG_0);
18773 } else if (opcode == BPF_JA) {
18774 if (BPF_SRC(insn->code) != BPF_K ||
18775 insn->src_reg != BPF_REG_0 ||
18776 insn->dst_reg != BPF_REG_0 ||
18777 (class == BPF_JMP && insn->imm != 0) ||
18778 (class == BPF_JMP32 && insn->off != 0)) {
18779 verbose(env, "BPF_JA uses reserved fields\n");
18780 return -EINVAL;
18781 }
18782
18783 if (class == BPF_JMP)
18784 env->insn_idx += insn->off + 1;
18785 else
18786 env->insn_idx += insn->imm + 1;
18787 continue;
18788
18789 } else if (opcode == BPF_EXIT) {
18790 if (BPF_SRC(insn->code) != BPF_K ||
18791 insn->imm != 0 ||
18792 insn->src_reg != BPF_REG_0 ||
18793 insn->dst_reg != BPF_REG_0 ||
18794 class == BPF_JMP32) {
18795 verbose(env, "BPF_EXIT uses reserved fields\n");
18796 return -EINVAL;
18797 }
18798 process_bpf_exit_full:
18799 /* We must do check_reference_leak here before
18800 * prepare_func_exit to handle the case when
18801 * state->curframe > 0, it may be a callback
18802 * function, for which reference_state must
18803 * match caller reference state when it exits.
18804 */
18805 err = check_resource_leak(env, exception_exit, !env->cur_state->curframe,
18806 "BPF_EXIT instruction");
18807 if (err)
18808 return err;
18809
18810 /* The side effect of the prepare_func_exit
18811 * which is being skipped is that it frees
18812 * bpf_func_state. Typically, process_bpf_exit
18813 * will only be hit with outermost exit.
18814 * copy_verifier_state in pop_stack will handle
18815 * freeing of any extra bpf_func_state left over
18816 * from not processing all nested function
18817 * exits. We also skip return code checks as
18818 * they are not needed for exceptional exits.
18819 */
18820 if (exception_exit)
18821 goto process_bpf_exit;
18822
18823 if (state->curframe) {
18824 /* exit from nested function */
18825 err = prepare_func_exit(env, &env->insn_idx);
18826 if (err)
18827 return err;
18828 do_print_state = true;
18829 continue;
18830 }
18831
18832 err = check_return_code(env, BPF_REG_0, "R0");
18833 if (err)
18834 return err;
18835 process_bpf_exit:
18836 mark_verifier_state_scratched(env);
18837 update_branch_counts(env, env->cur_state);
18838 err = pop_stack(env, &prev_insn_idx,
18839 &env->insn_idx, pop_log);
18840 if (err < 0) {
18841 if (err != -ENOENT)
18842 return err;
18843 break;
18844 } else {
18845 do_print_state = true;
18846 continue;
18847 }
18848 } else {
18849 err = check_cond_jmp_op(env, insn, &env->insn_idx);
18850 if (err)
18851 return err;
18852 }
18853 } else if (class == BPF_LD) {
18854 u8 mode = BPF_MODE(insn->code);
18855
18856 if (mode == BPF_ABS || mode == BPF_IND) {
18857 err = check_ld_abs(env, insn);
18858 if (err)
18859 return err;
18860
18861 } else if (mode == BPF_IMM) {
18862 err = check_ld_imm(env, insn);
18863 if (err)
18864 return err;
18865
18866 env->insn_idx++;
18867 sanitize_mark_insn_seen(env);
18868 } else {
18869 verbose(env, "invalid BPF_LD mode\n");
18870 return -EINVAL;
18871 }
18872 } else {
18873 verbose(env, "unknown insn class %d\n", class);
18874 return -EINVAL;
18875 }
18876
18877 env->insn_idx++;
18878 }
18879
18880 return 0;
18881 }
18882
find_btf_percpu_datasec(struct btf * btf)18883 static int find_btf_percpu_datasec(struct btf *btf)
18884 {
18885 const struct btf_type *t;
18886 const char *tname;
18887 int i, n;
18888
18889 /*
18890 * Both vmlinux and module each have their own ".data..percpu"
18891 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
18892 * types to look at only module's own BTF types.
18893 */
18894 n = btf_nr_types(btf);
18895 if (btf_is_module(btf))
18896 i = btf_nr_types(btf_vmlinux);
18897 else
18898 i = 1;
18899
18900 for(; i < n; i++) {
18901 t = btf_type_by_id(btf, i);
18902 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
18903 continue;
18904
18905 tname = btf_name_by_offset(btf, t->name_off);
18906 if (!strcmp(tname, ".data..percpu"))
18907 return i;
18908 }
18909
18910 return -ENOENT;
18911 }
18912
18913 /* replace pseudo btf_id with kernel symbol address */
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)18914 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
18915 struct bpf_insn *insn,
18916 struct bpf_insn_aux_data *aux)
18917 {
18918 const struct btf_var_secinfo *vsi;
18919 const struct btf_type *datasec;
18920 struct btf_mod_pair *btf_mod;
18921 const struct btf_type *t;
18922 const char *sym_name;
18923 bool percpu = false;
18924 u32 type, id = insn->imm;
18925 struct btf *btf;
18926 s32 datasec_id;
18927 u64 addr;
18928 int i, btf_fd, err;
18929
18930 btf_fd = insn[1].imm;
18931 if (btf_fd) {
18932 btf = btf_get_by_fd(btf_fd);
18933 if (IS_ERR(btf)) {
18934 verbose(env, "invalid module BTF object FD specified.\n");
18935 return -EINVAL;
18936 }
18937 } else {
18938 if (!btf_vmlinux) {
18939 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
18940 return -EINVAL;
18941 }
18942 btf = btf_vmlinux;
18943 btf_get(btf);
18944 }
18945
18946 t = btf_type_by_id(btf, id);
18947 if (!t) {
18948 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
18949 err = -ENOENT;
18950 goto err_put;
18951 }
18952
18953 if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
18954 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
18955 err = -EINVAL;
18956 goto err_put;
18957 }
18958
18959 sym_name = btf_name_by_offset(btf, t->name_off);
18960 addr = kallsyms_lookup_name(sym_name);
18961 if (!addr) {
18962 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
18963 sym_name);
18964 err = -ENOENT;
18965 goto err_put;
18966 }
18967 insn[0].imm = (u32)addr;
18968 insn[1].imm = addr >> 32;
18969
18970 if (btf_type_is_func(t)) {
18971 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
18972 aux->btf_var.mem_size = 0;
18973 goto check_btf;
18974 }
18975
18976 datasec_id = find_btf_percpu_datasec(btf);
18977 if (datasec_id > 0) {
18978 datasec = btf_type_by_id(btf, datasec_id);
18979 for_each_vsi(i, datasec, vsi) {
18980 if (vsi->type == id) {
18981 percpu = true;
18982 break;
18983 }
18984 }
18985 }
18986
18987 type = t->type;
18988 t = btf_type_skip_modifiers(btf, type, NULL);
18989 if (percpu) {
18990 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
18991 aux->btf_var.btf = btf;
18992 aux->btf_var.btf_id = type;
18993 } else if (!btf_type_is_struct(t)) {
18994 const struct btf_type *ret;
18995 const char *tname;
18996 u32 tsize;
18997
18998 /* resolve the type size of ksym. */
18999 ret = btf_resolve_size(btf, t, &tsize);
19000 if (IS_ERR(ret)) {
19001 tname = btf_name_by_offset(btf, t->name_off);
19002 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
19003 tname, PTR_ERR(ret));
19004 err = -EINVAL;
19005 goto err_put;
19006 }
19007 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
19008 aux->btf_var.mem_size = tsize;
19009 } else {
19010 aux->btf_var.reg_type = PTR_TO_BTF_ID;
19011 aux->btf_var.btf = btf;
19012 aux->btf_var.btf_id = type;
19013 }
19014 check_btf:
19015 /* check whether we recorded this BTF (and maybe module) already */
19016 for (i = 0; i < env->used_btf_cnt; i++) {
19017 if (env->used_btfs[i].btf == btf) {
19018 btf_put(btf);
19019 return 0;
19020 }
19021 }
19022
19023 if (env->used_btf_cnt >= MAX_USED_BTFS) {
19024 err = -E2BIG;
19025 goto err_put;
19026 }
19027
19028 btf_mod = &env->used_btfs[env->used_btf_cnt];
19029 btf_mod->btf = btf;
19030 btf_mod->module = NULL;
19031
19032 /* if we reference variables from kernel module, bump its refcount */
19033 if (btf_is_module(btf)) {
19034 btf_mod->module = btf_try_get_module(btf);
19035 if (!btf_mod->module) {
19036 err = -ENXIO;
19037 goto err_put;
19038 }
19039 }
19040
19041 env->used_btf_cnt++;
19042
19043 return 0;
19044 err_put:
19045 btf_put(btf);
19046 return err;
19047 }
19048
is_tracing_prog_type(enum bpf_prog_type type)19049 static bool is_tracing_prog_type(enum bpf_prog_type type)
19050 {
19051 switch (type) {
19052 case BPF_PROG_TYPE_KPROBE:
19053 case BPF_PROG_TYPE_TRACEPOINT:
19054 case BPF_PROG_TYPE_PERF_EVENT:
19055 case BPF_PROG_TYPE_RAW_TRACEPOINT:
19056 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
19057 return true;
19058 default:
19059 return false;
19060 }
19061 }
19062
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)19063 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
19064 struct bpf_map *map,
19065 struct bpf_prog *prog)
19066
19067 {
19068 enum bpf_prog_type prog_type = resolve_prog_type(prog);
19069
19070 if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
19071 btf_record_has_field(map->record, BPF_RB_ROOT)) {
19072 if (is_tracing_prog_type(prog_type)) {
19073 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
19074 return -EINVAL;
19075 }
19076 }
19077
19078 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
19079 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
19080 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
19081 return -EINVAL;
19082 }
19083
19084 if (is_tracing_prog_type(prog_type)) {
19085 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
19086 return -EINVAL;
19087 }
19088 }
19089
19090 if (btf_record_has_field(map->record, BPF_TIMER)) {
19091 if (is_tracing_prog_type(prog_type)) {
19092 verbose(env, "tracing progs cannot use bpf_timer yet\n");
19093 return -EINVAL;
19094 }
19095 }
19096
19097 if (btf_record_has_field(map->record, BPF_WORKQUEUE)) {
19098 if (is_tracing_prog_type(prog_type)) {
19099 verbose(env, "tracing progs cannot use bpf_wq yet\n");
19100 return -EINVAL;
19101 }
19102 }
19103
19104 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
19105 !bpf_offload_prog_map_match(prog, map)) {
19106 verbose(env, "offload device mismatch between prog and map\n");
19107 return -EINVAL;
19108 }
19109
19110 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
19111 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
19112 return -EINVAL;
19113 }
19114
19115 if (prog->sleepable)
19116 switch (map->map_type) {
19117 case BPF_MAP_TYPE_HASH:
19118 case BPF_MAP_TYPE_LRU_HASH:
19119 case BPF_MAP_TYPE_ARRAY:
19120 case BPF_MAP_TYPE_PERCPU_HASH:
19121 case BPF_MAP_TYPE_PERCPU_ARRAY:
19122 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
19123 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
19124 case BPF_MAP_TYPE_HASH_OF_MAPS:
19125 case BPF_MAP_TYPE_RINGBUF:
19126 case BPF_MAP_TYPE_USER_RINGBUF:
19127 case BPF_MAP_TYPE_INODE_STORAGE:
19128 case BPF_MAP_TYPE_SK_STORAGE:
19129 case BPF_MAP_TYPE_TASK_STORAGE:
19130 case BPF_MAP_TYPE_CGRP_STORAGE:
19131 case BPF_MAP_TYPE_QUEUE:
19132 case BPF_MAP_TYPE_STACK:
19133 case BPF_MAP_TYPE_ARENA:
19134 break;
19135 default:
19136 verbose(env,
19137 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
19138 return -EINVAL;
19139 }
19140
19141 return 0;
19142 }
19143
bpf_map_is_cgroup_storage(struct bpf_map * map)19144 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
19145 {
19146 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
19147 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
19148 }
19149
19150 /* Add map behind fd to used maps list, if it's not already there, and return
19151 * its index. Also set *reused to true if this map was already in the list of
19152 * used maps.
19153 * Returns <0 on error, or >= 0 index, on success.
19154 */
add_used_map_from_fd(struct bpf_verifier_env * env,int fd,bool * reused)19155 static int add_used_map_from_fd(struct bpf_verifier_env *env, int fd, bool *reused)
19156 {
19157 CLASS(fd, f)(fd);
19158 struct bpf_map *map;
19159 int i;
19160
19161 map = __bpf_map_get(f);
19162 if (IS_ERR(map)) {
19163 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
19164 return PTR_ERR(map);
19165 }
19166
19167 /* check whether we recorded this map already */
19168 for (i = 0; i < env->used_map_cnt; i++) {
19169 if (env->used_maps[i] == map) {
19170 *reused = true;
19171 return i;
19172 }
19173 }
19174
19175 if (env->used_map_cnt >= MAX_USED_MAPS) {
19176 verbose(env, "The total number of maps per program has reached the limit of %u\n",
19177 MAX_USED_MAPS);
19178 return -E2BIG;
19179 }
19180
19181 if (env->prog->sleepable)
19182 atomic64_inc(&map->sleepable_refcnt);
19183
19184 /* hold the map. If the program is rejected by verifier,
19185 * the map will be released by release_maps() or it
19186 * will be used by the valid program until it's unloaded
19187 * and all maps are released in bpf_free_used_maps()
19188 */
19189 bpf_map_inc(map);
19190
19191 *reused = false;
19192 env->used_maps[env->used_map_cnt++] = map;
19193
19194 return env->used_map_cnt - 1;
19195 }
19196
19197 /* find and rewrite pseudo imm in ld_imm64 instructions:
19198 *
19199 * 1. if it accesses map FD, replace it with actual map pointer.
19200 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
19201 *
19202 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
19203 */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)19204 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
19205 {
19206 struct bpf_insn *insn = env->prog->insnsi;
19207 int insn_cnt = env->prog->len;
19208 int i, err;
19209
19210 err = bpf_prog_calc_tag(env->prog);
19211 if (err)
19212 return err;
19213
19214 for (i = 0; i < insn_cnt; i++, insn++) {
19215 if (BPF_CLASS(insn->code) == BPF_LDX &&
19216 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
19217 insn->imm != 0)) {
19218 verbose(env, "BPF_LDX uses reserved fields\n");
19219 return -EINVAL;
19220 }
19221
19222 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
19223 struct bpf_insn_aux_data *aux;
19224 struct bpf_map *map;
19225 int map_idx;
19226 u64 addr;
19227 u32 fd;
19228 bool reused;
19229
19230 if (i == insn_cnt - 1 || insn[1].code != 0 ||
19231 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
19232 insn[1].off != 0) {
19233 verbose(env, "invalid bpf_ld_imm64 insn\n");
19234 return -EINVAL;
19235 }
19236
19237 if (insn[0].src_reg == 0)
19238 /* valid generic load 64-bit imm */
19239 goto next_insn;
19240
19241 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
19242 aux = &env->insn_aux_data[i];
19243 err = check_pseudo_btf_id(env, insn, aux);
19244 if (err)
19245 return err;
19246 goto next_insn;
19247 }
19248
19249 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
19250 aux = &env->insn_aux_data[i];
19251 aux->ptr_type = PTR_TO_FUNC;
19252 goto next_insn;
19253 }
19254
19255 /* In final convert_pseudo_ld_imm64() step, this is
19256 * converted into regular 64-bit imm load insn.
19257 */
19258 switch (insn[0].src_reg) {
19259 case BPF_PSEUDO_MAP_VALUE:
19260 case BPF_PSEUDO_MAP_IDX_VALUE:
19261 break;
19262 case BPF_PSEUDO_MAP_FD:
19263 case BPF_PSEUDO_MAP_IDX:
19264 if (insn[1].imm == 0)
19265 break;
19266 fallthrough;
19267 default:
19268 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
19269 return -EINVAL;
19270 }
19271
19272 switch (insn[0].src_reg) {
19273 case BPF_PSEUDO_MAP_IDX_VALUE:
19274 case BPF_PSEUDO_MAP_IDX:
19275 if (bpfptr_is_null(env->fd_array)) {
19276 verbose(env, "fd_idx without fd_array is invalid\n");
19277 return -EPROTO;
19278 }
19279 if (copy_from_bpfptr_offset(&fd, env->fd_array,
19280 insn[0].imm * sizeof(fd),
19281 sizeof(fd)))
19282 return -EFAULT;
19283 break;
19284 default:
19285 fd = insn[0].imm;
19286 break;
19287 }
19288
19289 map_idx = add_used_map_from_fd(env, fd, &reused);
19290 if (map_idx < 0)
19291 return map_idx;
19292 map = env->used_maps[map_idx];
19293
19294 aux = &env->insn_aux_data[i];
19295 aux->map_index = map_idx;
19296
19297 err = check_map_prog_compatibility(env, map, env->prog);
19298 if (err)
19299 return err;
19300
19301 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
19302 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
19303 addr = (unsigned long)map;
19304 } else {
19305 u32 off = insn[1].imm;
19306
19307 if (off >= BPF_MAX_VAR_OFF) {
19308 verbose(env, "direct value offset of %u is not allowed\n", off);
19309 return -EINVAL;
19310 }
19311
19312 if (!map->ops->map_direct_value_addr) {
19313 verbose(env, "no direct value access support for this map type\n");
19314 return -EINVAL;
19315 }
19316
19317 err = map->ops->map_direct_value_addr(map, &addr, off);
19318 if (err) {
19319 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
19320 map->value_size, off);
19321 return err;
19322 }
19323
19324 aux->map_off = off;
19325 addr += off;
19326 }
19327
19328 insn[0].imm = (u32)addr;
19329 insn[1].imm = addr >> 32;
19330
19331 /* proceed with extra checks only if its newly added used map */
19332 if (reused)
19333 goto next_insn;
19334
19335 if (bpf_map_is_cgroup_storage(map) &&
19336 bpf_cgroup_storage_assign(env->prog->aux, map)) {
19337 verbose(env, "only one cgroup storage of each type is allowed\n");
19338 return -EBUSY;
19339 }
19340 if (map->map_type == BPF_MAP_TYPE_ARENA) {
19341 if (env->prog->aux->arena) {
19342 verbose(env, "Only one arena per program\n");
19343 return -EBUSY;
19344 }
19345 if (!env->allow_ptr_leaks || !env->bpf_capable) {
19346 verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n");
19347 return -EPERM;
19348 }
19349 if (!env->prog->jit_requested) {
19350 verbose(env, "JIT is required to use arena\n");
19351 return -EOPNOTSUPP;
19352 }
19353 if (!bpf_jit_supports_arena()) {
19354 verbose(env, "JIT doesn't support arena\n");
19355 return -EOPNOTSUPP;
19356 }
19357 env->prog->aux->arena = (void *)map;
19358 if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) {
19359 verbose(env, "arena's user address must be set via map_extra or mmap()\n");
19360 return -EINVAL;
19361 }
19362 }
19363
19364 next_insn:
19365 insn++;
19366 i++;
19367 continue;
19368 }
19369
19370 /* Basic sanity check before we invest more work here. */
19371 if (!bpf_opcode_in_insntable(insn->code)) {
19372 verbose(env, "unknown opcode %02x\n", insn->code);
19373 return -EINVAL;
19374 }
19375 }
19376
19377 /* now all pseudo BPF_LD_IMM64 instructions load valid
19378 * 'struct bpf_map *' into a register instead of user map_fd.
19379 * These pointers will be used later by verifier to validate map access.
19380 */
19381 return 0;
19382 }
19383
19384 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)19385 static void release_maps(struct bpf_verifier_env *env)
19386 {
19387 __bpf_free_used_maps(env->prog->aux, env->used_maps,
19388 env->used_map_cnt);
19389 }
19390
19391 /* drop refcnt of maps used by the rejected program */
release_btfs(struct bpf_verifier_env * env)19392 static void release_btfs(struct bpf_verifier_env *env)
19393 {
19394 __bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt);
19395 }
19396
19397 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)19398 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
19399 {
19400 struct bpf_insn *insn = env->prog->insnsi;
19401 int insn_cnt = env->prog->len;
19402 int i;
19403
19404 for (i = 0; i < insn_cnt; i++, insn++) {
19405 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
19406 continue;
19407 if (insn->src_reg == BPF_PSEUDO_FUNC)
19408 continue;
19409 insn->src_reg = 0;
19410 }
19411 }
19412
19413 /* single env->prog->insni[off] instruction was replaced with the range
19414 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
19415 * [0, off) and [off, end) to new locations, so the patched range stays zero
19416 */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_insn_aux_data * new_data,struct bpf_prog * new_prog,u32 off,u32 cnt)19417 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
19418 struct bpf_insn_aux_data *new_data,
19419 struct bpf_prog *new_prog, u32 off, u32 cnt)
19420 {
19421 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
19422 struct bpf_insn *insn = new_prog->insnsi;
19423 u32 old_seen = old_data[off].seen;
19424 u32 prog_len;
19425 int i;
19426
19427 /* aux info at OFF always needs adjustment, no matter fast path
19428 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
19429 * original insn at old prog.
19430 */
19431 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
19432
19433 if (cnt == 1)
19434 return;
19435 prog_len = new_prog->len;
19436
19437 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
19438 memcpy(new_data + off + cnt - 1, old_data + off,
19439 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
19440 for (i = off; i < off + cnt - 1; i++) {
19441 /* Expand insni[off]'s seen count to the patched range. */
19442 new_data[i].seen = old_seen;
19443 new_data[i].zext_dst = insn_has_def32(env, insn + i);
19444 }
19445 env->insn_aux_data = new_data;
19446 vfree(old_data);
19447 }
19448
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)19449 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
19450 {
19451 int i;
19452
19453 if (len == 1)
19454 return;
19455 /* NOTE: fake 'exit' subprog should be updated as well. */
19456 for (i = 0; i <= env->subprog_cnt; i++) {
19457 if (env->subprog_info[i].start <= off)
19458 continue;
19459 env->subprog_info[i].start += len - 1;
19460 }
19461 }
19462
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)19463 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
19464 {
19465 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
19466 int i, sz = prog->aux->size_poke_tab;
19467 struct bpf_jit_poke_descriptor *desc;
19468
19469 for (i = 0; i < sz; i++) {
19470 desc = &tab[i];
19471 if (desc->insn_idx <= off)
19472 continue;
19473 desc->insn_idx += len - 1;
19474 }
19475 }
19476
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)19477 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
19478 const struct bpf_insn *patch, u32 len)
19479 {
19480 struct bpf_prog *new_prog;
19481 struct bpf_insn_aux_data *new_data = NULL;
19482
19483 if (len > 1) {
19484 new_data = vzalloc(array_size(env->prog->len + len - 1,
19485 sizeof(struct bpf_insn_aux_data)));
19486 if (!new_data)
19487 return NULL;
19488 }
19489
19490 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
19491 if (IS_ERR(new_prog)) {
19492 if (PTR_ERR(new_prog) == -ERANGE)
19493 verbose(env,
19494 "insn %d cannot be patched due to 16-bit range\n",
19495 env->insn_aux_data[off].orig_idx);
19496 vfree(new_data);
19497 return NULL;
19498 }
19499 adjust_insn_aux_data(env, new_data, new_prog, off, len);
19500 adjust_subprog_starts(env, off, len);
19501 adjust_poke_descs(new_prog, off, len);
19502 return new_prog;
19503 }
19504
19505 /*
19506 * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the
19507 * jump offset by 'delta'.
19508 */
adjust_jmp_off(struct bpf_prog * prog,u32 tgt_idx,u32 delta)19509 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta)
19510 {
19511 struct bpf_insn *insn = prog->insnsi;
19512 u32 insn_cnt = prog->len, i;
19513 s32 imm;
19514 s16 off;
19515
19516 for (i = 0; i < insn_cnt; i++, insn++) {
19517 u8 code = insn->code;
19518
19519 if (tgt_idx <= i && i < tgt_idx + delta)
19520 continue;
19521
19522 if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) ||
19523 BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT)
19524 continue;
19525
19526 if (insn->code == (BPF_JMP32 | BPF_JA)) {
19527 if (i + 1 + insn->imm != tgt_idx)
19528 continue;
19529 if (check_add_overflow(insn->imm, delta, &imm))
19530 return -ERANGE;
19531 insn->imm = imm;
19532 } else {
19533 if (i + 1 + insn->off != tgt_idx)
19534 continue;
19535 if (check_add_overflow(insn->off, delta, &off))
19536 return -ERANGE;
19537 insn->off = off;
19538 }
19539 }
19540 return 0;
19541 }
19542
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)19543 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
19544 u32 off, u32 cnt)
19545 {
19546 int i, j;
19547
19548 /* find first prog starting at or after off (first to remove) */
19549 for (i = 0; i < env->subprog_cnt; i++)
19550 if (env->subprog_info[i].start >= off)
19551 break;
19552 /* find first prog starting at or after off + cnt (first to stay) */
19553 for (j = i; j < env->subprog_cnt; j++)
19554 if (env->subprog_info[j].start >= off + cnt)
19555 break;
19556 /* if j doesn't start exactly at off + cnt, we are just removing
19557 * the front of previous prog
19558 */
19559 if (env->subprog_info[j].start != off + cnt)
19560 j--;
19561
19562 if (j > i) {
19563 struct bpf_prog_aux *aux = env->prog->aux;
19564 int move;
19565
19566 /* move fake 'exit' subprog as well */
19567 move = env->subprog_cnt + 1 - j;
19568
19569 memmove(env->subprog_info + i,
19570 env->subprog_info + j,
19571 sizeof(*env->subprog_info) * move);
19572 env->subprog_cnt -= j - i;
19573
19574 /* remove func_info */
19575 if (aux->func_info) {
19576 move = aux->func_info_cnt - j;
19577
19578 memmove(aux->func_info + i,
19579 aux->func_info + j,
19580 sizeof(*aux->func_info) * move);
19581 aux->func_info_cnt -= j - i;
19582 /* func_info->insn_off is set after all code rewrites,
19583 * in adjust_btf_func() - no need to adjust
19584 */
19585 }
19586 } else {
19587 /* convert i from "first prog to remove" to "first to adjust" */
19588 if (env->subprog_info[i].start == off)
19589 i++;
19590 }
19591
19592 /* update fake 'exit' subprog as well */
19593 for (; i <= env->subprog_cnt; i++)
19594 env->subprog_info[i].start -= cnt;
19595
19596 return 0;
19597 }
19598
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)19599 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
19600 u32 cnt)
19601 {
19602 struct bpf_prog *prog = env->prog;
19603 u32 i, l_off, l_cnt, nr_linfo;
19604 struct bpf_line_info *linfo;
19605
19606 nr_linfo = prog->aux->nr_linfo;
19607 if (!nr_linfo)
19608 return 0;
19609
19610 linfo = prog->aux->linfo;
19611
19612 /* find first line info to remove, count lines to be removed */
19613 for (i = 0; i < nr_linfo; i++)
19614 if (linfo[i].insn_off >= off)
19615 break;
19616
19617 l_off = i;
19618 l_cnt = 0;
19619 for (; i < nr_linfo; i++)
19620 if (linfo[i].insn_off < off + cnt)
19621 l_cnt++;
19622 else
19623 break;
19624
19625 /* First live insn doesn't match first live linfo, it needs to "inherit"
19626 * last removed linfo. prog is already modified, so prog->len == off
19627 * means no live instructions after (tail of the program was removed).
19628 */
19629 if (prog->len != off && l_cnt &&
19630 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
19631 l_cnt--;
19632 linfo[--i].insn_off = off + cnt;
19633 }
19634
19635 /* remove the line info which refer to the removed instructions */
19636 if (l_cnt) {
19637 memmove(linfo + l_off, linfo + i,
19638 sizeof(*linfo) * (nr_linfo - i));
19639
19640 prog->aux->nr_linfo -= l_cnt;
19641 nr_linfo = prog->aux->nr_linfo;
19642 }
19643
19644 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
19645 for (i = l_off; i < nr_linfo; i++)
19646 linfo[i].insn_off -= cnt;
19647
19648 /* fix up all subprogs (incl. 'exit') which start >= off */
19649 for (i = 0; i <= env->subprog_cnt; i++)
19650 if (env->subprog_info[i].linfo_idx > l_off) {
19651 /* program may have started in the removed region but
19652 * may not be fully removed
19653 */
19654 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
19655 env->subprog_info[i].linfo_idx -= l_cnt;
19656 else
19657 env->subprog_info[i].linfo_idx = l_off;
19658 }
19659
19660 return 0;
19661 }
19662
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)19663 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
19664 {
19665 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19666 unsigned int orig_prog_len = env->prog->len;
19667 int err;
19668
19669 if (bpf_prog_is_offloaded(env->prog->aux))
19670 bpf_prog_offload_remove_insns(env, off, cnt);
19671
19672 err = bpf_remove_insns(env->prog, off, cnt);
19673 if (err)
19674 return err;
19675
19676 err = adjust_subprog_starts_after_remove(env, off, cnt);
19677 if (err)
19678 return err;
19679
19680 err = bpf_adj_linfo_after_remove(env, off, cnt);
19681 if (err)
19682 return err;
19683
19684 memmove(aux_data + off, aux_data + off + cnt,
19685 sizeof(*aux_data) * (orig_prog_len - off - cnt));
19686
19687 return 0;
19688 }
19689
19690 /* The verifier does more data flow analysis than llvm and will not
19691 * explore branches that are dead at run time. Malicious programs can
19692 * have dead code too. Therefore replace all dead at-run-time code
19693 * with 'ja -1'.
19694 *
19695 * Just nops are not optimal, e.g. if they would sit at the end of the
19696 * program and through another bug we would manage to jump there, then
19697 * we'd execute beyond program memory otherwise. Returning exception
19698 * code also wouldn't work since we can have subprogs where the dead
19699 * code could be located.
19700 */
sanitize_dead_code(struct bpf_verifier_env * env)19701 static void sanitize_dead_code(struct bpf_verifier_env *env)
19702 {
19703 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19704 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
19705 struct bpf_insn *insn = env->prog->insnsi;
19706 const int insn_cnt = env->prog->len;
19707 int i;
19708
19709 for (i = 0; i < insn_cnt; i++) {
19710 if (aux_data[i].seen)
19711 continue;
19712 memcpy(insn + i, &trap, sizeof(trap));
19713 aux_data[i].zext_dst = false;
19714 }
19715 }
19716
insn_is_cond_jump(u8 code)19717 static bool insn_is_cond_jump(u8 code)
19718 {
19719 u8 op;
19720
19721 op = BPF_OP(code);
19722 if (BPF_CLASS(code) == BPF_JMP32)
19723 return op != BPF_JA;
19724
19725 if (BPF_CLASS(code) != BPF_JMP)
19726 return false;
19727
19728 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
19729 }
19730
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)19731 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
19732 {
19733 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19734 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
19735 struct bpf_insn *insn = env->prog->insnsi;
19736 const int insn_cnt = env->prog->len;
19737 int i;
19738
19739 for (i = 0; i < insn_cnt; i++, insn++) {
19740 if (!insn_is_cond_jump(insn->code))
19741 continue;
19742
19743 if (!aux_data[i + 1].seen)
19744 ja.off = insn->off;
19745 else if (!aux_data[i + 1 + insn->off].seen)
19746 ja.off = 0;
19747 else
19748 continue;
19749
19750 if (bpf_prog_is_offloaded(env->prog->aux))
19751 bpf_prog_offload_replace_insn(env, i, &ja);
19752
19753 memcpy(insn, &ja, sizeof(ja));
19754 }
19755 }
19756
opt_remove_dead_code(struct bpf_verifier_env * env)19757 static int opt_remove_dead_code(struct bpf_verifier_env *env)
19758 {
19759 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19760 int insn_cnt = env->prog->len;
19761 int i, err;
19762
19763 for (i = 0; i < insn_cnt; i++) {
19764 int j;
19765
19766 j = 0;
19767 while (i + j < insn_cnt && !aux_data[i + j].seen)
19768 j++;
19769 if (!j)
19770 continue;
19771
19772 err = verifier_remove_insns(env, i, j);
19773 if (err)
19774 return err;
19775 insn_cnt = env->prog->len;
19776 }
19777
19778 return 0;
19779 }
19780
19781 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
19782
opt_remove_nops(struct bpf_verifier_env * env)19783 static int opt_remove_nops(struct bpf_verifier_env *env)
19784 {
19785 const struct bpf_insn ja = NOP;
19786 struct bpf_insn *insn = env->prog->insnsi;
19787 int insn_cnt = env->prog->len;
19788 int i, err;
19789
19790 for (i = 0; i < insn_cnt; i++) {
19791 if (memcmp(&insn[i], &ja, sizeof(ja)))
19792 continue;
19793
19794 err = verifier_remove_insns(env, i, 1);
19795 if (err)
19796 return err;
19797 insn_cnt--;
19798 i--;
19799 }
19800
19801 return 0;
19802 }
19803
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)19804 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
19805 const union bpf_attr *attr)
19806 {
19807 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
19808 struct bpf_insn_aux_data *aux = env->insn_aux_data;
19809 int i, patch_len, delta = 0, len = env->prog->len;
19810 struct bpf_insn *insns = env->prog->insnsi;
19811 struct bpf_prog *new_prog;
19812 bool rnd_hi32;
19813
19814 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
19815 zext_patch[1] = BPF_ZEXT_REG(0);
19816 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
19817 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
19818 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
19819 for (i = 0; i < len; i++) {
19820 int adj_idx = i + delta;
19821 struct bpf_insn insn;
19822 int load_reg;
19823
19824 insn = insns[adj_idx];
19825 load_reg = insn_def_regno(&insn);
19826 if (!aux[adj_idx].zext_dst) {
19827 u8 code, class;
19828 u32 imm_rnd;
19829
19830 if (!rnd_hi32)
19831 continue;
19832
19833 code = insn.code;
19834 class = BPF_CLASS(code);
19835 if (load_reg == -1)
19836 continue;
19837
19838 /* NOTE: arg "reg" (the fourth one) is only used for
19839 * BPF_STX + SRC_OP, so it is safe to pass NULL
19840 * here.
19841 */
19842 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
19843 if (class == BPF_LD &&
19844 BPF_MODE(code) == BPF_IMM)
19845 i++;
19846 continue;
19847 }
19848
19849 /* ctx load could be transformed into wider load. */
19850 if (class == BPF_LDX &&
19851 aux[adj_idx].ptr_type == PTR_TO_CTX)
19852 continue;
19853
19854 imm_rnd = get_random_u32();
19855 rnd_hi32_patch[0] = insn;
19856 rnd_hi32_patch[1].imm = imm_rnd;
19857 rnd_hi32_patch[3].dst_reg = load_reg;
19858 patch = rnd_hi32_patch;
19859 patch_len = 4;
19860 goto apply_patch_buffer;
19861 }
19862
19863 /* Add in an zero-extend instruction if a) the JIT has requested
19864 * it or b) it's a CMPXCHG.
19865 *
19866 * The latter is because: BPF_CMPXCHG always loads a value into
19867 * R0, therefore always zero-extends. However some archs'
19868 * equivalent instruction only does this load when the
19869 * comparison is successful. This detail of CMPXCHG is
19870 * orthogonal to the general zero-extension behaviour of the
19871 * CPU, so it's treated independently of bpf_jit_needs_zext.
19872 */
19873 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
19874 continue;
19875
19876 /* Zero-extension is done by the caller. */
19877 if (bpf_pseudo_kfunc_call(&insn))
19878 continue;
19879
19880 if (WARN_ON(load_reg == -1)) {
19881 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
19882 return -EFAULT;
19883 }
19884
19885 zext_patch[0] = insn;
19886 zext_patch[1].dst_reg = load_reg;
19887 zext_patch[1].src_reg = load_reg;
19888 patch = zext_patch;
19889 patch_len = 2;
19890 apply_patch_buffer:
19891 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
19892 if (!new_prog)
19893 return -ENOMEM;
19894 env->prog = new_prog;
19895 insns = new_prog->insnsi;
19896 aux = env->insn_aux_data;
19897 delta += patch_len - 1;
19898 }
19899
19900 return 0;
19901 }
19902
19903 /* convert load instructions that access fields of a context type into a
19904 * sequence of instructions that access fields of the underlying structure:
19905 * struct __sk_buff -> struct sk_buff
19906 * struct bpf_sock_ops -> struct sock
19907 */
convert_ctx_accesses(struct bpf_verifier_env * env)19908 static int convert_ctx_accesses(struct bpf_verifier_env *env)
19909 {
19910 struct bpf_subprog_info *subprogs = env->subprog_info;
19911 const struct bpf_verifier_ops *ops = env->ops;
19912 int i, cnt, size, ctx_field_size, delta = 0, epilogue_cnt = 0;
19913 const int insn_cnt = env->prog->len;
19914 struct bpf_insn *epilogue_buf = env->epilogue_buf;
19915 struct bpf_insn *insn_buf = env->insn_buf;
19916 struct bpf_insn *insn;
19917 u32 target_size, size_default, off;
19918 struct bpf_prog *new_prog;
19919 enum bpf_access_type type;
19920 bool is_narrower_load;
19921 int epilogue_idx = 0;
19922
19923 if (ops->gen_epilogue) {
19924 epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog,
19925 -(subprogs[0].stack_depth + 8));
19926 if (epilogue_cnt >= INSN_BUF_SIZE) {
19927 verbose(env, "bpf verifier is misconfigured\n");
19928 return -EINVAL;
19929 } else if (epilogue_cnt) {
19930 /* Save the ARG_PTR_TO_CTX for the epilogue to use */
19931 cnt = 0;
19932 subprogs[0].stack_depth += 8;
19933 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1,
19934 -subprogs[0].stack_depth);
19935 insn_buf[cnt++] = env->prog->insnsi[0];
19936 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
19937 if (!new_prog)
19938 return -ENOMEM;
19939 env->prog = new_prog;
19940 delta += cnt - 1;
19941 }
19942 }
19943
19944 if (ops->gen_prologue || env->seen_direct_write) {
19945 if (!ops->gen_prologue) {
19946 verbose(env, "bpf verifier is misconfigured\n");
19947 return -EINVAL;
19948 }
19949 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
19950 env->prog);
19951 if (cnt >= INSN_BUF_SIZE) {
19952 verbose(env, "bpf verifier is misconfigured\n");
19953 return -EINVAL;
19954 } else if (cnt) {
19955 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
19956 if (!new_prog)
19957 return -ENOMEM;
19958
19959 env->prog = new_prog;
19960 delta += cnt - 1;
19961 }
19962 }
19963
19964 if (delta)
19965 WARN_ON(adjust_jmp_off(env->prog, 0, delta));
19966
19967 if (bpf_prog_is_offloaded(env->prog->aux))
19968 return 0;
19969
19970 insn = env->prog->insnsi + delta;
19971
19972 for (i = 0; i < insn_cnt; i++, insn++) {
19973 bpf_convert_ctx_access_t convert_ctx_access;
19974 u8 mode;
19975
19976 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
19977 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
19978 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
19979 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
19980 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
19981 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
19982 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
19983 type = BPF_READ;
19984 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
19985 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
19986 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
19987 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
19988 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
19989 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
19990 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
19991 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
19992 type = BPF_WRITE;
19993 } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) ||
19994 insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) &&
19995 env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) {
19996 insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code);
19997 env->prog->aux->num_exentries++;
19998 continue;
19999 } else if (insn->code == (BPF_JMP | BPF_EXIT) &&
20000 epilogue_cnt &&
20001 i + delta < subprogs[1].start) {
20002 /* Generate epilogue for the main prog */
20003 if (epilogue_idx) {
20004 /* jump back to the earlier generated epilogue */
20005 insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1);
20006 cnt = 1;
20007 } else {
20008 memcpy(insn_buf, epilogue_buf,
20009 epilogue_cnt * sizeof(*epilogue_buf));
20010 cnt = epilogue_cnt;
20011 /* epilogue_idx cannot be 0. It must have at
20012 * least one ctx ptr saving insn before the
20013 * epilogue.
20014 */
20015 epilogue_idx = i + delta;
20016 }
20017 goto patch_insn_buf;
20018 } else {
20019 continue;
20020 }
20021
20022 if (type == BPF_WRITE &&
20023 env->insn_aux_data[i + delta].sanitize_stack_spill) {
20024 struct bpf_insn patch[] = {
20025 *insn,
20026 BPF_ST_NOSPEC(),
20027 };
20028
20029 cnt = ARRAY_SIZE(patch);
20030 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
20031 if (!new_prog)
20032 return -ENOMEM;
20033
20034 delta += cnt - 1;
20035 env->prog = new_prog;
20036 insn = new_prog->insnsi + i + delta;
20037 continue;
20038 }
20039
20040 switch ((int)env->insn_aux_data[i + delta].ptr_type) {
20041 case PTR_TO_CTX:
20042 if (!ops->convert_ctx_access)
20043 continue;
20044 convert_ctx_access = ops->convert_ctx_access;
20045 break;
20046 case PTR_TO_SOCKET:
20047 case PTR_TO_SOCK_COMMON:
20048 convert_ctx_access = bpf_sock_convert_ctx_access;
20049 break;
20050 case PTR_TO_TCP_SOCK:
20051 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
20052 break;
20053 case PTR_TO_XDP_SOCK:
20054 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
20055 break;
20056 case PTR_TO_BTF_ID:
20057 case PTR_TO_BTF_ID | PTR_UNTRUSTED:
20058 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
20059 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
20060 * be said once it is marked PTR_UNTRUSTED, hence we must handle
20061 * any faults for loads into such types. BPF_WRITE is disallowed
20062 * for this case.
20063 */
20064 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
20065 if (type == BPF_READ) {
20066 if (BPF_MODE(insn->code) == BPF_MEM)
20067 insn->code = BPF_LDX | BPF_PROBE_MEM |
20068 BPF_SIZE((insn)->code);
20069 else
20070 insn->code = BPF_LDX | BPF_PROBE_MEMSX |
20071 BPF_SIZE((insn)->code);
20072 env->prog->aux->num_exentries++;
20073 }
20074 continue;
20075 case PTR_TO_ARENA:
20076 if (BPF_MODE(insn->code) == BPF_MEMSX) {
20077 verbose(env, "sign extending loads from arena are not supported yet\n");
20078 return -EOPNOTSUPP;
20079 }
20080 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code);
20081 env->prog->aux->num_exentries++;
20082 continue;
20083 default:
20084 continue;
20085 }
20086
20087 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
20088 size = BPF_LDST_BYTES(insn);
20089 mode = BPF_MODE(insn->code);
20090
20091 /* If the read access is a narrower load of the field,
20092 * convert to a 4/8-byte load, to minimum program type specific
20093 * convert_ctx_access changes. If conversion is successful,
20094 * we will apply proper mask to the result.
20095 */
20096 is_narrower_load = size < ctx_field_size;
20097 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
20098 off = insn->off;
20099 if (is_narrower_load) {
20100 u8 size_code;
20101
20102 if (type == BPF_WRITE) {
20103 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
20104 return -EINVAL;
20105 }
20106
20107 size_code = BPF_H;
20108 if (ctx_field_size == 4)
20109 size_code = BPF_W;
20110 else if (ctx_field_size == 8)
20111 size_code = BPF_DW;
20112
20113 insn->off = off & ~(size_default - 1);
20114 insn->code = BPF_LDX | BPF_MEM | size_code;
20115 }
20116
20117 target_size = 0;
20118 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
20119 &target_size);
20120 if (cnt == 0 || cnt >= INSN_BUF_SIZE ||
20121 (ctx_field_size && !target_size)) {
20122 verbose(env, "bpf verifier is misconfigured\n");
20123 return -EINVAL;
20124 }
20125
20126 if (is_narrower_load && size < target_size) {
20127 u8 shift = bpf_ctx_narrow_access_offset(
20128 off, size, size_default) * 8;
20129 if (shift && cnt + 1 >= INSN_BUF_SIZE) {
20130 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
20131 return -EINVAL;
20132 }
20133 if (ctx_field_size <= 4) {
20134 if (shift)
20135 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
20136 insn->dst_reg,
20137 shift);
20138 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
20139 (1 << size * 8) - 1);
20140 } else {
20141 if (shift)
20142 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
20143 insn->dst_reg,
20144 shift);
20145 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
20146 (1ULL << size * 8) - 1);
20147 }
20148 }
20149 if (mode == BPF_MEMSX)
20150 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
20151 insn->dst_reg, insn->dst_reg,
20152 size * 8, 0);
20153
20154 patch_insn_buf:
20155 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20156 if (!new_prog)
20157 return -ENOMEM;
20158
20159 delta += cnt - 1;
20160
20161 /* keep walking new program and skip insns we just inserted */
20162 env->prog = new_prog;
20163 insn = new_prog->insnsi + i + delta;
20164 }
20165
20166 return 0;
20167 }
20168
jit_subprogs(struct bpf_verifier_env * env)20169 static int jit_subprogs(struct bpf_verifier_env *env)
20170 {
20171 struct bpf_prog *prog = env->prog, **func, *tmp;
20172 int i, j, subprog_start, subprog_end = 0, len, subprog;
20173 struct bpf_map *map_ptr;
20174 struct bpf_insn *insn;
20175 void *old_bpf_func;
20176 int err, num_exentries;
20177
20178 if (env->subprog_cnt <= 1)
20179 return 0;
20180
20181 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
20182 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
20183 continue;
20184
20185 /* Upon error here we cannot fall back to interpreter but
20186 * need a hard reject of the program. Thus -EFAULT is
20187 * propagated in any case.
20188 */
20189 subprog = find_subprog(env, i + insn->imm + 1);
20190 if (subprog < 0) {
20191 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
20192 i + insn->imm + 1);
20193 return -EFAULT;
20194 }
20195 /* temporarily remember subprog id inside insn instead of
20196 * aux_data, since next loop will split up all insns into funcs
20197 */
20198 insn->off = subprog;
20199 /* remember original imm in case JIT fails and fallback
20200 * to interpreter will be needed
20201 */
20202 env->insn_aux_data[i].call_imm = insn->imm;
20203 /* point imm to __bpf_call_base+1 from JITs point of view */
20204 insn->imm = 1;
20205 if (bpf_pseudo_func(insn)) {
20206 #if defined(MODULES_VADDR)
20207 u64 addr = MODULES_VADDR;
20208 #else
20209 u64 addr = VMALLOC_START;
20210 #endif
20211 /* jit (e.g. x86_64) may emit fewer instructions
20212 * if it learns a u32 imm is the same as a u64 imm.
20213 * Set close enough to possible prog address.
20214 */
20215 insn[0].imm = (u32)addr;
20216 insn[1].imm = addr >> 32;
20217 }
20218 }
20219
20220 err = bpf_prog_alloc_jited_linfo(prog);
20221 if (err)
20222 goto out_undo_insn;
20223
20224 err = -ENOMEM;
20225 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
20226 if (!func)
20227 goto out_undo_insn;
20228
20229 for (i = 0; i < env->subprog_cnt; i++) {
20230 subprog_start = subprog_end;
20231 subprog_end = env->subprog_info[i + 1].start;
20232
20233 len = subprog_end - subprog_start;
20234 /* bpf_prog_run() doesn't call subprogs directly,
20235 * hence main prog stats include the runtime of subprogs.
20236 * subprogs don't have IDs and not reachable via prog_get_next_id
20237 * func[i]->stats will never be accessed and stays NULL
20238 */
20239 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
20240 if (!func[i])
20241 goto out_free;
20242 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
20243 len * sizeof(struct bpf_insn));
20244 func[i]->type = prog->type;
20245 func[i]->len = len;
20246 if (bpf_prog_calc_tag(func[i]))
20247 goto out_free;
20248 func[i]->is_func = 1;
20249 func[i]->sleepable = prog->sleepable;
20250 func[i]->aux->func_idx = i;
20251 /* Below members will be freed only at prog->aux */
20252 func[i]->aux->btf = prog->aux->btf;
20253 func[i]->aux->func_info = prog->aux->func_info;
20254 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
20255 func[i]->aux->poke_tab = prog->aux->poke_tab;
20256 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
20257
20258 for (j = 0; j < prog->aux->size_poke_tab; j++) {
20259 struct bpf_jit_poke_descriptor *poke;
20260
20261 poke = &prog->aux->poke_tab[j];
20262 if (poke->insn_idx < subprog_end &&
20263 poke->insn_idx >= subprog_start)
20264 poke->aux = func[i]->aux;
20265 }
20266
20267 func[i]->aux->name[0] = 'F';
20268 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
20269 if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE)
20270 func[i]->aux->jits_use_priv_stack = true;
20271
20272 func[i]->jit_requested = 1;
20273 func[i]->blinding_requested = prog->blinding_requested;
20274 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
20275 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
20276 func[i]->aux->linfo = prog->aux->linfo;
20277 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
20278 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
20279 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
20280 func[i]->aux->arena = prog->aux->arena;
20281 num_exentries = 0;
20282 insn = func[i]->insnsi;
20283 for (j = 0; j < func[i]->len; j++, insn++) {
20284 if (BPF_CLASS(insn->code) == BPF_LDX &&
20285 (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
20286 BPF_MODE(insn->code) == BPF_PROBE_MEM32 ||
20287 BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
20288 num_exentries++;
20289 if ((BPF_CLASS(insn->code) == BPF_STX ||
20290 BPF_CLASS(insn->code) == BPF_ST) &&
20291 BPF_MODE(insn->code) == BPF_PROBE_MEM32)
20292 num_exentries++;
20293 if (BPF_CLASS(insn->code) == BPF_STX &&
20294 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC)
20295 num_exentries++;
20296 }
20297 func[i]->aux->num_exentries = num_exentries;
20298 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
20299 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
20300 func[i]->aux->changes_pkt_data = env->subprog_info[i].changes_pkt_data;
20301 if (!i)
20302 func[i]->aux->exception_boundary = env->seen_exception;
20303 func[i] = bpf_int_jit_compile(func[i]);
20304 if (!func[i]->jited) {
20305 err = -ENOTSUPP;
20306 goto out_free;
20307 }
20308 cond_resched();
20309 }
20310
20311 /* at this point all bpf functions were successfully JITed
20312 * now populate all bpf_calls with correct addresses and
20313 * run last pass of JIT
20314 */
20315 for (i = 0; i < env->subprog_cnt; i++) {
20316 insn = func[i]->insnsi;
20317 for (j = 0; j < func[i]->len; j++, insn++) {
20318 if (bpf_pseudo_func(insn)) {
20319 subprog = insn->off;
20320 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
20321 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
20322 continue;
20323 }
20324 if (!bpf_pseudo_call(insn))
20325 continue;
20326 subprog = insn->off;
20327 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
20328 }
20329
20330 /* we use the aux data to keep a list of the start addresses
20331 * of the JITed images for each function in the program
20332 *
20333 * for some architectures, such as powerpc64, the imm field
20334 * might not be large enough to hold the offset of the start
20335 * address of the callee's JITed image from __bpf_call_base
20336 *
20337 * in such cases, we can lookup the start address of a callee
20338 * by using its subprog id, available from the off field of
20339 * the call instruction, as an index for this list
20340 */
20341 func[i]->aux->func = func;
20342 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
20343 func[i]->aux->real_func_cnt = env->subprog_cnt;
20344 }
20345 for (i = 0; i < env->subprog_cnt; i++) {
20346 old_bpf_func = func[i]->bpf_func;
20347 tmp = bpf_int_jit_compile(func[i]);
20348 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
20349 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
20350 err = -ENOTSUPP;
20351 goto out_free;
20352 }
20353 cond_resched();
20354 }
20355
20356 /* finally lock prog and jit images for all functions and
20357 * populate kallsysm. Begin at the first subprogram, since
20358 * bpf_prog_load will add the kallsyms for the main program.
20359 */
20360 for (i = 1; i < env->subprog_cnt; i++) {
20361 err = bpf_prog_lock_ro(func[i]);
20362 if (err)
20363 goto out_free;
20364 }
20365
20366 for (i = 1; i < env->subprog_cnt; i++)
20367 bpf_prog_kallsyms_add(func[i]);
20368
20369 /* Last step: make now unused interpreter insns from main
20370 * prog consistent for later dump requests, so they can
20371 * later look the same as if they were interpreted only.
20372 */
20373 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
20374 if (bpf_pseudo_func(insn)) {
20375 insn[0].imm = env->insn_aux_data[i].call_imm;
20376 insn[1].imm = insn->off;
20377 insn->off = 0;
20378 continue;
20379 }
20380 if (!bpf_pseudo_call(insn))
20381 continue;
20382 insn->off = env->insn_aux_data[i].call_imm;
20383 subprog = find_subprog(env, i + insn->off + 1);
20384 insn->imm = subprog;
20385 }
20386
20387 prog->jited = 1;
20388 prog->bpf_func = func[0]->bpf_func;
20389 prog->jited_len = func[0]->jited_len;
20390 prog->aux->extable = func[0]->aux->extable;
20391 prog->aux->num_exentries = func[0]->aux->num_exentries;
20392 prog->aux->func = func;
20393 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
20394 prog->aux->real_func_cnt = env->subprog_cnt;
20395 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
20396 prog->aux->exception_boundary = func[0]->aux->exception_boundary;
20397 bpf_prog_jit_attempt_done(prog);
20398 return 0;
20399 out_free:
20400 /* We failed JIT'ing, so at this point we need to unregister poke
20401 * descriptors from subprogs, so that kernel is not attempting to
20402 * patch it anymore as we're freeing the subprog JIT memory.
20403 */
20404 for (i = 0; i < prog->aux->size_poke_tab; i++) {
20405 map_ptr = prog->aux->poke_tab[i].tail_call.map;
20406 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
20407 }
20408 /* At this point we're guaranteed that poke descriptors are not
20409 * live anymore. We can just unlink its descriptor table as it's
20410 * released with the main prog.
20411 */
20412 for (i = 0; i < env->subprog_cnt; i++) {
20413 if (!func[i])
20414 continue;
20415 func[i]->aux->poke_tab = NULL;
20416 bpf_jit_free(func[i]);
20417 }
20418 kfree(func);
20419 out_undo_insn:
20420 /* cleanup main prog to be interpreted */
20421 prog->jit_requested = 0;
20422 prog->blinding_requested = 0;
20423 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
20424 if (!bpf_pseudo_call(insn))
20425 continue;
20426 insn->off = 0;
20427 insn->imm = env->insn_aux_data[i].call_imm;
20428 }
20429 bpf_prog_jit_attempt_done(prog);
20430 return err;
20431 }
20432
fixup_call_args(struct bpf_verifier_env * env)20433 static int fixup_call_args(struct bpf_verifier_env *env)
20434 {
20435 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
20436 struct bpf_prog *prog = env->prog;
20437 struct bpf_insn *insn = prog->insnsi;
20438 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
20439 int i, depth;
20440 #endif
20441 int err = 0;
20442
20443 if (env->prog->jit_requested &&
20444 !bpf_prog_is_offloaded(env->prog->aux)) {
20445 err = jit_subprogs(env);
20446 if (err == 0)
20447 return 0;
20448 if (err == -EFAULT)
20449 return err;
20450 }
20451 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
20452 if (has_kfunc_call) {
20453 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
20454 return -EINVAL;
20455 }
20456 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
20457 /* When JIT fails the progs with bpf2bpf calls and tail_calls
20458 * have to be rejected, since interpreter doesn't support them yet.
20459 */
20460 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
20461 return -EINVAL;
20462 }
20463 for (i = 0; i < prog->len; i++, insn++) {
20464 if (bpf_pseudo_func(insn)) {
20465 /* When JIT fails the progs with callback calls
20466 * have to be rejected, since interpreter doesn't support them yet.
20467 */
20468 verbose(env, "callbacks are not allowed in non-JITed programs\n");
20469 return -EINVAL;
20470 }
20471
20472 if (!bpf_pseudo_call(insn))
20473 continue;
20474 depth = get_callee_stack_depth(env, insn, i);
20475 if (depth < 0)
20476 return depth;
20477 bpf_patch_call_args(insn, depth);
20478 }
20479 err = 0;
20480 #endif
20481 return err;
20482 }
20483
20484 /* replace a generic kfunc with a specialized version if necessary */
specialize_kfunc(struct bpf_verifier_env * env,u32 func_id,u16 offset,unsigned long * addr)20485 static void specialize_kfunc(struct bpf_verifier_env *env,
20486 u32 func_id, u16 offset, unsigned long *addr)
20487 {
20488 struct bpf_prog *prog = env->prog;
20489 bool seen_direct_write;
20490 void *xdp_kfunc;
20491 bool is_rdonly;
20492
20493 if (bpf_dev_bound_kfunc_id(func_id)) {
20494 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
20495 if (xdp_kfunc) {
20496 *addr = (unsigned long)xdp_kfunc;
20497 return;
20498 }
20499 /* fallback to default kfunc when not supported by netdev */
20500 }
20501
20502 if (offset)
20503 return;
20504
20505 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
20506 seen_direct_write = env->seen_direct_write;
20507 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
20508
20509 if (is_rdonly)
20510 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
20511
20512 /* restore env->seen_direct_write to its original value, since
20513 * may_access_direct_pkt_data mutates it
20514 */
20515 env->seen_direct_write = seen_direct_write;
20516 }
20517 }
20518
__fixup_collection_insert_kfunc(struct bpf_insn_aux_data * insn_aux,u16 struct_meta_reg,u16 node_offset_reg,struct bpf_insn * insn,struct bpf_insn * insn_buf,int * cnt)20519 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
20520 u16 struct_meta_reg,
20521 u16 node_offset_reg,
20522 struct bpf_insn *insn,
20523 struct bpf_insn *insn_buf,
20524 int *cnt)
20525 {
20526 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
20527 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
20528
20529 insn_buf[0] = addr[0];
20530 insn_buf[1] = addr[1];
20531 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
20532 insn_buf[3] = *insn;
20533 *cnt = 4;
20534 }
20535
fixup_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn * insn_buf,int insn_idx,int * cnt)20536 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
20537 struct bpf_insn *insn_buf, int insn_idx, int *cnt)
20538 {
20539 const struct bpf_kfunc_desc *desc;
20540
20541 if (!insn->imm) {
20542 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
20543 return -EINVAL;
20544 }
20545
20546 *cnt = 0;
20547
20548 /* insn->imm has the btf func_id. Replace it with an offset relative to
20549 * __bpf_call_base, unless the JIT needs to call functions that are
20550 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
20551 */
20552 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
20553 if (!desc) {
20554 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
20555 insn->imm);
20556 return -EFAULT;
20557 }
20558
20559 if (!bpf_jit_supports_far_kfunc_call())
20560 insn->imm = BPF_CALL_IMM(desc->addr);
20561 if (insn->off)
20562 return 0;
20563 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
20564 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
20565 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
20566 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
20567 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
20568
20569 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
20570 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
20571 insn_idx);
20572 return -EFAULT;
20573 }
20574
20575 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
20576 insn_buf[1] = addr[0];
20577 insn_buf[2] = addr[1];
20578 insn_buf[3] = *insn;
20579 *cnt = 4;
20580 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
20581 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
20582 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
20583 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
20584 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
20585
20586 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
20587 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
20588 insn_idx);
20589 return -EFAULT;
20590 }
20591
20592 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
20593 !kptr_struct_meta) {
20594 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
20595 insn_idx);
20596 return -EFAULT;
20597 }
20598
20599 insn_buf[0] = addr[0];
20600 insn_buf[1] = addr[1];
20601 insn_buf[2] = *insn;
20602 *cnt = 3;
20603 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
20604 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
20605 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
20606 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
20607 int struct_meta_reg = BPF_REG_3;
20608 int node_offset_reg = BPF_REG_4;
20609
20610 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
20611 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
20612 struct_meta_reg = BPF_REG_4;
20613 node_offset_reg = BPF_REG_5;
20614 }
20615
20616 if (!kptr_struct_meta) {
20617 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
20618 insn_idx);
20619 return -EFAULT;
20620 }
20621
20622 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
20623 node_offset_reg, insn, insn_buf, cnt);
20624 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
20625 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
20626 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
20627 *cnt = 1;
20628 } else if (is_bpf_wq_set_callback_impl_kfunc(desc->func_id)) {
20629 struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(BPF_REG_4, (long)env->prog->aux) };
20630
20631 insn_buf[0] = ld_addrs[0];
20632 insn_buf[1] = ld_addrs[1];
20633 insn_buf[2] = *insn;
20634 *cnt = 3;
20635 }
20636 return 0;
20637 }
20638
20639 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
add_hidden_subprog(struct bpf_verifier_env * env,struct bpf_insn * patch,int len)20640 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
20641 {
20642 struct bpf_subprog_info *info = env->subprog_info;
20643 int cnt = env->subprog_cnt;
20644 struct bpf_prog *prog;
20645
20646 /* We only reserve one slot for hidden subprogs in subprog_info. */
20647 if (env->hidden_subprog_cnt) {
20648 verbose(env, "verifier internal error: only one hidden subprog supported\n");
20649 return -EFAULT;
20650 }
20651 /* We're not patching any existing instruction, just appending the new
20652 * ones for the hidden subprog. Hence all of the adjustment operations
20653 * in bpf_patch_insn_data are no-ops.
20654 */
20655 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
20656 if (!prog)
20657 return -ENOMEM;
20658 env->prog = prog;
20659 info[cnt + 1].start = info[cnt].start;
20660 info[cnt].start = prog->len - len + 1;
20661 env->subprog_cnt++;
20662 env->hidden_subprog_cnt++;
20663 return 0;
20664 }
20665
20666 /* Do various post-verification rewrites in a single program pass.
20667 * These rewrites simplify JIT and interpreter implementations.
20668 */
do_misc_fixups(struct bpf_verifier_env * env)20669 static int do_misc_fixups(struct bpf_verifier_env *env)
20670 {
20671 struct bpf_prog *prog = env->prog;
20672 enum bpf_attach_type eatype = prog->expected_attach_type;
20673 enum bpf_prog_type prog_type = resolve_prog_type(prog);
20674 struct bpf_insn *insn = prog->insnsi;
20675 const struct bpf_func_proto *fn;
20676 const int insn_cnt = prog->len;
20677 const struct bpf_map_ops *ops;
20678 struct bpf_insn_aux_data *aux;
20679 struct bpf_insn *insn_buf = env->insn_buf;
20680 struct bpf_prog *new_prog;
20681 struct bpf_map *map_ptr;
20682 int i, ret, cnt, delta = 0, cur_subprog = 0;
20683 struct bpf_subprog_info *subprogs = env->subprog_info;
20684 u16 stack_depth = subprogs[cur_subprog].stack_depth;
20685 u16 stack_depth_extra = 0;
20686
20687 if (env->seen_exception && !env->exception_callback_subprog) {
20688 struct bpf_insn patch[] = {
20689 env->prog->insnsi[insn_cnt - 1],
20690 BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
20691 BPF_EXIT_INSN(),
20692 };
20693
20694 ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
20695 if (ret < 0)
20696 return ret;
20697 prog = env->prog;
20698 insn = prog->insnsi;
20699
20700 env->exception_callback_subprog = env->subprog_cnt - 1;
20701 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */
20702 mark_subprog_exc_cb(env, env->exception_callback_subprog);
20703 }
20704
20705 for (i = 0; i < insn_cnt;) {
20706 if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) {
20707 if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) ||
20708 (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) {
20709 /* convert to 32-bit mov that clears upper 32-bit */
20710 insn->code = BPF_ALU | BPF_MOV | BPF_X;
20711 /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */
20712 insn->off = 0;
20713 insn->imm = 0;
20714 } /* cast from as(0) to as(1) should be handled by JIT */
20715 goto next_insn;
20716 }
20717
20718 if (env->insn_aux_data[i + delta].needs_zext)
20719 /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */
20720 insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code);
20721
20722 /* Make sdiv/smod divide-by-minus-one exceptions impossible. */
20723 if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) ||
20724 insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) ||
20725 insn->code == (BPF_ALU | BPF_MOD | BPF_K) ||
20726 insn->code == (BPF_ALU | BPF_DIV | BPF_K)) &&
20727 insn->off == 1 && insn->imm == -1) {
20728 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
20729 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
20730 struct bpf_insn *patchlet;
20731 struct bpf_insn chk_and_sdiv[] = {
20732 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20733 BPF_NEG | BPF_K, insn->dst_reg,
20734 0, 0, 0),
20735 };
20736 struct bpf_insn chk_and_smod[] = {
20737 BPF_MOV32_IMM(insn->dst_reg, 0),
20738 };
20739
20740 patchlet = isdiv ? chk_and_sdiv : chk_and_smod;
20741 cnt = isdiv ? ARRAY_SIZE(chk_and_sdiv) : ARRAY_SIZE(chk_and_smod);
20742
20743 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
20744 if (!new_prog)
20745 return -ENOMEM;
20746
20747 delta += cnt - 1;
20748 env->prog = prog = new_prog;
20749 insn = new_prog->insnsi + i + delta;
20750 goto next_insn;
20751 }
20752
20753 /* Make divide-by-zero and divide-by-minus-one exceptions impossible. */
20754 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
20755 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
20756 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
20757 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
20758 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
20759 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
20760 bool is_sdiv = isdiv && insn->off == 1;
20761 bool is_smod = !isdiv && insn->off == 1;
20762 struct bpf_insn *patchlet;
20763 struct bpf_insn chk_and_div[] = {
20764 /* [R,W]x div 0 -> 0 */
20765 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20766 BPF_JNE | BPF_K, insn->src_reg,
20767 0, 2, 0),
20768 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
20769 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20770 *insn,
20771 };
20772 struct bpf_insn chk_and_mod[] = {
20773 /* [R,W]x mod 0 -> [R,W]x */
20774 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20775 BPF_JEQ | BPF_K, insn->src_reg,
20776 0, 1 + (is64 ? 0 : 1), 0),
20777 *insn,
20778 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20779 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
20780 };
20781 struct bpf_insn chk_and_sdiv[] = {
20782 /* [R,W]x sdiv 0 -> 0
20783 * LLONG_MIN sdiv -1 -> LLONG_MIN
20784 * INT_MIN sdiv -1 -> INT_MIN
20785 */
20786 BPF_MOV64_REG(BPF_REG_AX, insn->src_reg),
20787 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20788 BPF_ADD | BPF_K, BPF_REG_AX,
20789 0, 0, 1),
20790 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20791 BPF_JGT | BPF_K, BPF_REG_AX,
20792 0, 4, 1),
20793 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20794 BPF_JEQ | BPF_K, BPF_REG_AX,
20795 0, 1, 0),
20796 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20797 BPF_MOV | BPF_K, insn->dst_reg,
20798 0, 0, 0),
20799 /* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */
20800 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20801 BPF_NEG | BPF_K, insn->dst_reg,
20802 0, 0, 0),
20803 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20804 *insn,
20805 };
20806 struct bpf_insn chk_and_smod[] = {
20807 /* [R,W]x mod 0 -> [R,W]x */
20808 /* [R,W]x mod -1 -> 0 */
20809 BPF_MOV64_REG(BPF_REG_AX, insn->src_reg),
20810 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20811 BPF_ADD | BPF_K, BPF_REG_AX,
20812 0, 0, 1),
20813 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20814 BPF_JGT | BPF_K, BPF_REG_AX,
20815 0, 3, 1),
20816 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20817 BPF_JEQ | BPF_K, BPF_REG_AX,
20818 0, 3 + (is64 ? 0 : 1), 1),
20819 BPF_MOV32_IMM(insn->dst_reg, 0),
20820 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20821 *insn,
20822 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20823 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
20824 };
20825
20826 if (is_sdiv) {
20827 patchlet = chk_and_sdiv;
20828 cnt = ARRAY_SIZE(chk_and_sdiv);
20829 } else if (is_smod) {
20830 patchlet = chk_and_smod;
20831 cnt = ARRAY_SIZE(chk_and_smod) - (is64 ? 2 : 0);
20832 } else {
20833 patchlet = isdiv ? chk_and_div : chk_and_mod;
20834 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
20835 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
20836 }
20837
20838 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
20839 if (!new_prog)
20840 return -ENOMEM;
20841
20842 delta += cnt - 1;
20843 env->prog = prog = new_prog;
20844 insn = new_prog->insnsi + i + delta;
20845 goto next_insn;
20846 }
20847
20848 /* Make it impossible to de-reference a userspace address */
20849 if (BPF_CLASS(insn->code) == BPF_LDX &&
20850 (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
20851 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) {
20852 struct bpf_insn *patch = &insn_buf[0];
20853 u64 uaddress_limit = bpf_arch_uaddress_limit();
20854
20855 if (!uaddress_limit)
20856 goto next_insn;
20857
20858 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
20859 if (insn->off)
20860 *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off);
20861 *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32);
20862 *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2);
20863 *patch++ = *insn;
20864 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
20865 *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0);
20866
20867 cnt = patch - insn_buf;
20868 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20869 if (!new_prog)
20870 return -ENOMEM;
20871
20872 delta += cnt - 1;
20873 env->prog = prog = new_prog;
20874 insn = new_prog->insnsi + i + delta;
20875 goto next_insn;
20876 }
20877
20878 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
20879 if (BPF_CLASS(insn->code) == BPF_LD &&
20880 (BPF_MODE(insn->code) == BPF_ABS ||
20881 BPF_MODE(insn->code) == BPF_IND)) {
20882 cnt = env->ops->gen_ld_abs(insn, insn_buf);
20883 if (cnt == 0 || cnt >= INSN_BUF_SIZE) {
20884 verbose(env, "bpf verifier is misconfigured\n");
20885 return -EINVAL;
20886 }
20887
20888 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20889 if (!new_prog)
20890 return -ENOMEM;
20891
20892 delta += cnt - 1;
20893 env->prog = prog = new_prog;
20894 insn = new_prog->insnsi + i + delta;
20895 goto next_insn;
20896 }
20897
20898 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
20899 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
20900 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
20901 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
20902 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
20903 struct bpf_insn *patch = &insn_buf[0];
20904 bool issrc, isneg, isimm;
20905 u32 off_reg;
20906
20907 aux = &env->insn_aux_data[i + delta];
20908 if (!aux->alu_state ||
20909 aux->alu_state == BPF_ALU_NON_POINTER)
20910 goto next_insn;
20911
20912 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
20913 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
20914 BPF_ALU_SANITIZE_SRC;
20915 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
20916
20917 off_reg = issrc ? insn->src_reg : insn->dst_reg;
20918 if (isimm) {
20919 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
20920 } else {
20921 if (isneg)
20922 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
20923 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
20924 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
20925 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
20926 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
20927 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
20928 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
20929 }
20930 if (!issrc)
20931 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
20932 insn->src_reg = BPF_REG_AX;
20933 if (isneg)
20934 insn->code = insn->code == code_add ?
20935 code_sub : code_add;
20936 *patch++ = *insn;
20937 if (issrc && isneg && !isimm)
20938 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
20939 cnt = patch - insn_buf;
20940
20941 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20942 if (!new_prog)
20943 return -ENOMEM;
20944
20945 delta += cnt - 1;
20946 env->prog = prog = new_prog;
20947 insn = new_prog->insnsi + i + delta;
20948 goto next_insn;
20949 }
20950
20951 if (is_may_goto_insn(insn)) {
20952 int stack_off = -stack_depth - 8;
20953
20954 stack_depth_extra = 8;
20955 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off);
20956 if (insn->off >= 0)
20957 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2);
20958 else
20959 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1);
20960 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
20961 insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off);
20962 cnt = 4;
20963
20964 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20965 if (!new_prog)
20966 return -ENOMEM;
20967
20968 delta += cnt - 1;
20969 env->prog = prog = new_prog;
20970 insn = new_prog->insnsi + i + delta;
20971 goto next_insn;
20972 }
20973
20974 if (insn->code != (BPF_JMP | BPF_CALL))
20975 goto next_insn;
20976 if (insn->src_reg == BPF_PSEUDO_CALL)
20977 goto next_insn;
20978 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
20979 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
20980 if (ret)
20981 return ret;
20982 if (cnt == 0)
20983 goto next_insn;
20984
20985 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20986 if (!new_prog)
20987 return -ENOMEM;
20988
20989 delta += cnt - 1;
20990 env->prog = prog = new_prog;
20991 insn = new_prog->insnsi + i + delta;
20992 goto next_insn;
20993 }
20994
20995 /* Skip inlining the helper call if the JIT does it. */
20996 if (bpf_jit_inlines_helper_call(insn->imm))
20997 goto next_insn;
20998
20999 if (insn->imm == BPF_FUNC_get_route_realm)
21000 prog->dst_needed = 1;
21001 if (insn->imm == BPF_FUNC_get_prandom_u32)
21002 bpf_user_rnd_init_once();
21003 if (insn->imm == BPF_FUNC_override_return)
21004 prog->kprobe_override = 1;
21005 if (insn->imm == BPF_FUNC_tail_call) {
21006 /* If we tail call into other programs, we
21007 * cannot make any assumptions since they can
21008 * be replaced dynamically during runtime in
21009 * the program array.
21010 */
21011 prog->cb_access = 1;
21012 if (!allow_tail_call_in_subprogs(env))
21013 prog->aux->stack_depth = MAX_BPF_STACK;
21014 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
21015
21016 /* mark bpf_tail_call as different opcode to avoid
21017 * conditional branch in the interpreter for every normal
21018 * call and to prevent accidental JITing by JIT compiler
21019 * that doesn't support bpf_tail_call yet
21020 */
21021 insn->imm = 0;
21022 insn->code = BPF_JMP | BPF_TAIL_CALL;
21023
21024 aux = &env->insn_aux_data[i + delta];
21025 if (env->bpf_capable && !prog->blinding_requested &&
21026 prog->jit_requested &&
21027 !bpf_map_key_poisoned(aux) &&
21028 !bpf_map_ptr_poisoned(aux) &&
21029 !bpf_map_ptr_unpriv(aux)) {
21030 struct bpf_jit_poke_descriptor desc = {
21031 .reason = BPF_POKE_REASON_TAIL_CALL,
21032 .tail_call.map = aux->map_ptr_state.map_ptr,
21033 .tail_call.key = bpf_map_key_immediate(aux),
21034 .insn_idx = i + delta,
21035 };
21036
21037 ret = bpf_jit_add_poke_descriptor(prog, &desc);
21038 if (ret < 0) {
21039 verbose(env, "adding tail call poke descriptor failed\n");
21040 return ret;
21041 }
21042
21043 insn->imm = ret + 1;
21044 goto next_insn;
21045 }
21046
21047 if (!bpf_map_ptr_unpriv(aux))
21048 goto next_insn;
21049
21050 /* instead of changing every JIT dealing with tail_call
21051 * emit two extra insns:
21052 * if (index >= max_entries) goto out;
21053 * index &= array->index_mask;
21054 * to avoid out-of-bounds cpu speculation
21055 */
21056 if (bpf_map_ptr_poisoned(aux)) {
21057 verbose(env, "tail_call abusing map_ptr\n");
21058 return -EINVAL;
21059 }
21060
21061 map_ptr = aux->map_ptr_state.map_ptr;
21062 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
21063 map_ptr->max_entries, 2);
21064 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
21065 container_of(map_ptr,
21066 struct bpf_array,
21067 map)->index_mask);
21068 insn_buf[2] = *insn;
21069 cnt = 3;
21070 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21071 if (!new_prog)
21072 return -ENOMEM;
21073
21074 delta += cnt - 1;
21075 env->prog = prog = new_prog;
21076 insn = new_prog->insnsi + i + delta;
21077 goto next_insn;
21078 }
21079
21080 if (insn->imm == BPF_FUNC_timer_set_callback) {
21081 /* The verifier will process callback_fn as many times as necessary
21082 * with different maps and the register states prepared by
21083 * set_timer_callback_state will be accurate.
21084 *
21085 * The following use case is valid:
21086 * map1 is shared by prog1, prog2, prog3.
21087 * prog1 calls bpf_timer_init for some map1 elements
21088 * prog2 calls bpf_timer_set_callback for some map1 elements.
21089 * Those that were not bpf_timer_init-ed will return -EINVAL.
21090 * prog3 calls bpf_timer_start for some map1 elements.
21091 * Those that were not both bpf_timer_init-ed and
21092 * bpf_timer_set_callback-ed will return -EINVAL.
21093 */
21094 struct bpf_insn ld_addrs[2] = {
21095 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
21096 };
21097
21098 insn_buf[0] = ld_addrs[0];
21099 insn_buf[1] = ld_addrs[1];
21100 insn_buf[2] = *insn;
21101 cnt = 3;
21102
21103 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21104 if (!new_prog)
21105 return -ENOMEM;
21106
21107 delta += cnt - 1;
21108 env->prog = prog = new_prog;
21109 insn = new_prog->insnsi + i + delta;
21110 goto patch_call_imm;
21111 }
21112
21113 if (is_storage_get_function(insn->imm)) {
21114 if (!in_sleepable(env) ||
21115 env->insn_aux_data[i + delta].storage_get_func_atomic)
21116 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
21117 else
21118 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
21119 insn_buf[1] = *insn;
21120 cnt = 2;
21121
21122 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21123 if (!new_prog)
21124 return -ENOMEM;
21125
21126 delta += cnt - 1;
21127 env->prog = prog = new_prog;
21128 insn = new_prog->insnsi + i + delta;
21129 goto patch_call_imm;
21130 }
21131
21132 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
21133 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
21134 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
21135 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
21136 */
21137 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
21138 insn_buf[1] = *insn;
21139 cnt = 2;
21140
21141 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21142 if (!new_prog)
21143 return -ENOMEM;
21144
21145 delta += cnt - 1;
21146 env->prog = prog = new_prog;
21147 insn = new_prog->insnsi + i + delta;
21148 goto patch_call_imm;
21149 }
21150
21151 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
21152 * and other inlining handlers are currently limited to 64 bit
21153 * only.
21154 */
21155 if (prog->jit_requested && BITS_PER_LONG == 64 &&
21156 (insn->imm == BPF_FUNC_map_lookup_elem ||
21157 insn->imm == BPF_FUNC_map_update_elem ||
21158 insn->imm == BPF_FUNC_map_delete_elem ||
21159 insn->imm == BPF_FUNC_map_push_elem ||
21160 insn->imm == BPF_FUNC_map_pop_elem ||
21161 insn->imm == BPF_FUNC_map_peek_elem ||
21162 insn->imm == BPF_FUNC_redirect_map ||
21163 insn->imm == BPF_FUNC_for_each_map_elem ||
21164 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
21165 aux = &env->insn_aux_data[i + delta];
21166 if (bpf_map_ptr_poisoned(aux))
21167 goto patch_call_imm;
21168
21169 map_ptr = aux->map_ptr_state.map_ptr;
21170 ops = map_ptr->ops;
21171 if (insn->imm == BPF_FUNC_map_lookup_elem &&
21172 ops->map_gen_lookup) {
21173 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
21174 if (cnt == -EOPNOTSUPP)
21175 goto patch_map_ops_generic;
21176 if (cnt <= 0 || cnt >= INSN_BUF_SIZE) {
21177 verbose(env, "bpf verifier is misconfigured\n");
21178 return -EINVAL;
21179 }
21180
21181 new_prog = bpf_patch_insn_data(env, i + delta,
21182 insn_buf, cnt);
21183 if (!new_prog)
21184 return -ENOMEM;
21185
21186 delta += cnt - 1;
21187 env->prog = prog = new_prog;
21188 insn = new_prog->insnsi + i + delta;
21189 goto next_insn;
21190 }
21191
21192 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
21193 (void *(*)(struct bpf_map *map, void *key))NULL));
21194 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
21195 (long (*)(struct bpf_map *map, void *key))NULL));
21196 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
21197 (long (*)(struct bpf_map *map, void *key, void *value,
21198 u64 flags))NULL));
21199 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
21200 (long (*)(struct bpf_map *map, void *value,
21201 u64 flags))NULL));
21202 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
21203 (long (*)(struct bpf_map *map, void *value))NULL));
21204 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
21205 (long (*)(struct bpf_map *map, void *value))NULL));
21206 BUILD_BUG_ON(!__same_type(ops->map_redirect,
21207 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
21208 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
21209 (long (*)(struct bpf_map *map,
21210 bpf_callback_t callback_fn,
21211 void *callback_ctx,
21212 u64 flags))NULL));
21213 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
21214 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
21215
21216 patch_map_ops_generic:
21217 switch (insn->imm) {
21218 case BPF_FUNC_map_lookup_elem:
21219 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
21220 goto next_insn;
21221 case BPF_FUNC_map_update_elem:
21222 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
21223 goto next_insn;
21224 case BPF_FUNC_map_delete_elem:
21225 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
21226 goto next_insn;
21227 case BPF_FUNC_map_push_elem:
21228 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
21229 goto next_insn;
21230 case BPF_FUNC_map_pop_elem:
21231 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
21232 goto next_insn;
21233 case BPF_FUNC_map_peek_elem:
21234 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
21235 goto next_insn;
21236 case BPF_FUNC_redirect_map:
21237 insn->imm = BPF_CALL_IMM(ops->map_redirect);
21238 goto next_insn;
21239 case BPF_FUNC_for_each_map_elem:
21240 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
21241 goto next_insn;
21242 case BPF_FUNC_map_lookup_percpu_elem:
21243 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
21244 goto next_insn;
21245 }
21246
21247 goto patch_call_imm;
21248 }
21249
21250 /* Implement bpf_jiffies64 inline. */
21251 if (prog->jit_requested && BITS_PER_LONG == 64 &&
21252 insn->imm == BPF_FUNC_jiffies64) {
21253 struct bpf_insn ld_jiffies_addr[2] = {
21254 BPF_LD_IMM64(BPF_REG_0,
21255 (unsigned long)&jiffies),
21256 };
21257
21258 insn_buf[0] = ld_jiffies_addr[0];
21259 insn_buf[1] = ld_jiffies_addr[1];
21260 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
21261 BPF_REG_0, 0);
21262 cnt = 3;
21263
21264 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
21265 cnt);
21266 if (!new_prog)
21267 return -ENOMEM;
21268
21269 delta += cnt - 1;
21270 env->prog = prog = new_prog;
21271 insn = new_prog->insnsi + i + delta;
21272 goto next_insn;
21273 }
21274
21275 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
21276 /* Implement bpf_get_smp_processor_id() inline. */
21277 if (insn->imm == BPF_FUNC_get_smp_processor_id &&
21278 verifier_inlines_helper_call(env, insn->imm)) {
21279 /* BPF_FUNC_get_smp_processor_id inlining is an
21280 * optimization, so if pcpu_hot.cpu_number is ever
21281 * changed in some incompatible and hard to support
21282 * way, it's fine to back out this inlining logic
21283 */
21284 #ifdef CONFIG_SMP
21285 insn_buf[0] = BPF_MOV32_IMM(BPF_REG_0, (u32)(unsigned long)&pcpu_hot.cpu_number);
21286 insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0);
21287 insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0);
21288 cnt = 3;
21289 #else
21290 insn_buf[0] = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
21291 cnt = 1;
21292 #endif
21293 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21294 if (!new_prog)
21295 return -ENOMEM;
21296
21297 delta += cnt - 1;
21298 env->prog = prog = new_prog;
21299 insn = new_prog->insnsi + i + delta;
21300 goto next_insn;
21301 }
21302 #endif
21303 /* Implement bpf_get_func_arg inline. */
21304 if (prog_type == BPF_PROG_TYPE_TRACING &&
21305 insn->imm == BPF_FUNC_get_func_arg) {
21306 /* Load nr_args from ctx - 8 */
21307 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
21308 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
21309 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
21310 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
21311 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
21312 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
21313 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
21314 insn_buf[7] = BPF_JMP_A(1);
21315 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
21316 cnt = 9;
21317
21318 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21319 if (!new_prog)
21320 return -ENOMEM;
21321
21322 delta += cnt - 1;
21323 env->prog = prog = new_prog;
21324 insn = new_prog->insnsi + i + delta;
21325 goto next_insn;
21326 }
21327
21328 /* Implement bpf_get_func_ret inline. */
21329 if (prog_type == BPF_PROG_TYPE_TRACING &&
21330 insn->imm == BPF_FUNC_get_func_ret) {
21331 if (eatype == BPF_TRACE_FEXIT ||
21332 eatype == BPF_MODIFY_RETURN) {
21333 /* Load nr_args from ctx - 8 */
21334 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
21335 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
21336 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
21337 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
21338 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
21339 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
21340 cnt = 6;
21341 } else {
21342 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
21343 cnt = 1;
21344 }
21345
21346 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21347 if (!new_prog)
21348 return -ENOMEM;
21349
21350 delta += cnt - 1;
21351 env->prog = prog = new_prog;
21352 insn = new_prog->insnsi + i + delta;
21353 goto next_insn;
21354 }
21355
21356 /* Implement get_func_arg_cnt inline. */
21357 if (prog_type == BPF_PROG_TYPE_TRACING &&
21358 insn->imm == BPF_FUNC_get_func_arg_cnt) {
21359 /* Load nr_args from ctx - 8 */
21360 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
21361
21362 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
21363 if (!new_prog)
21364 return -ENOMEM;
21365
21366 env->prog = prog = new_prog;
21367 insn = new_prog->insnsi + i + delta;
21368 goto next_insn;
21369 }
21370
21371 /* Implement bpf_get_func_ip inline. */
21372 if (prog_type == BPF_PROG_TYPE_TRACING &&
21373 insn->imm == BPF_FUNC_get_func_ip) {
21374 /* Load IP address from ctx - 16 */
21375 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
21376
21377 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
21378 if (!new_prog)
21379 return -ENOMEM;
21380
21381 env->prog = prog = new_prog;
21382 insn = new_prog->insnsi + i + delta;
21383 goto next_insn;
21384 }
21385
21386 /* Implement bpf_get_branch_snapshot inline. */
21387 if (IS_ENABLED(CONFIG_PERF_EVENTS) &&
21388 prog->jit_requested && BITS_PER_LONG == 64 &&
21389 insn->imm == BPF_FUNC_get_branch_snapshot) {
21390 /* We are dealing with the following func protos:
21391 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags);
21392 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt);
21393 */
21394 const u32 br_entry_size = sizeof(struct perf_branch_entry);
21395
21396 /* struct perf_branch_entry is part of UAPI and is
21397 * used as an array element, so extremely unlikely to
21398 * ever grow or shrink
21399 */
21400 BUILD_BUG_ON(br_entry_size != 24);
21401
21402 /* if (unlikely(flags)) return -EINVAL */
21403 insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7);
21404
21405 /* Transform size (bytes) into number of entries (cnt = size / 24).
21406 * But to avoid expensive division instruction, we implement
21407 * divide-by-3 through multiplication, followed by further
21408 * division by 8 through 3-bit right shift.
21409 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr.,
21410 * p. 227, chapter "Unsigned Division by 3" for details and proofs.
21411 *
21412 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab.
21413 */
21414 insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab);
21415 insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0);
21416 insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36);
21417
21418 /* call perf_snapshot_branch_stack implementation */
21419 insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack));
21420 /* if (entry_cnt == 0) return -ENOENT */
21421 insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4);
21422 /* return entry_cnt * sizeof(struct perf_branch_entry) */
21423 insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size);
21424 insn_buf[7] = BPF_JMP_A(3);
21425 /* return -EINVAL; */
21426 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
21427 insn_buf[9] = BPF_JMP_A(1);
21428 /* return -ENOENT; */
21429 insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT);
21430 cnt = 11;
21431
21432 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21433 if (!new_prog)
21434 return -ENOMEM;
21435
21436 delta += cnt - 1;
21437 env->prog = prog = new_prog;
21438 insn = new_prog->insnsi + i + delta;
21439 goto next_insn;
21440 }
21441
21442 /* Implement bpf_kptr_xchg inline */
21443 if (prog->jit_requested && BITS_PER_LONG == 64 &&
21444 insn->imm == BPF_FUNC_kptr_xchg &&
21445 bpf_jit_supports_ptr_xchg()) {
21446 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2);
21447 insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0);
21448 cnt = 2;
21449
21450 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21451 if (!new_prog)
21452 return -ENOMEM;
21453
21454 delta += cnt - 1;
21455 env->prog = prog = new_prog;
21456 insn = new_prog->insnsi + i + delta;
21457 goto next_insn;
21458 }
21459 patch_call_imm:
21460 fn = env->ops->get_func_proto(insn->imm, env->prog);
21461 /* all functions that have prototype and verifier allowed
21462 * programs to call them, must be real in-kernel functions
21463 */
21464 if (!fn->func) {
21465 verbose(env,
21466 "kernel subsystem misconfigured func %s#%d\n",
21467 func_id_name(insn->imm), insn->imm);
21468 return -EFAULT;
21469 }
21470 insn->imm = fn->func - __bpf_call_base;
21471 next_insn:
21472 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
21473 subprogs[cur_subprog].stack_depth += stack_depth_extra;
21474 subprogs[cur_subprog].stack_extra = stack_depth_extra;
21475 cur_subprog++;
21476 stack_depth = subprogs[cur_subprog].stack_depth;
21477 stack_depth_extra = 0;
21478 }
21479 i++;
21480 insn++;
21481 }
21482
21483 env->prog->aux->stack_depth = subprogs[0].stack_depth;
21484 for (i = 0; i < env->subprog_cnt; i++) {
21485 int subprog_start = subprogs[i].start;
21486 int stack_slots = subprogs[i].stack_extra / 8;
21487
21488 if (!stack_slots)
21489 continue;
21490 if (stack_slots > 1) {
21491 verbose(env, "verifier bug: stack_slots supports may_goto only\n");
21492 return -EFAULT;
21493 }
21494
21495 /* Add ST insn to subprog prologue to init extra stack */
21496 insn_buf[0] = BPF_ST_MEM(BPF_DW, BPF_REG_FP,
21497 -subprogs[i].stack_depth, BPF_MAX_LOOPS);
21498 /* Copy first actual insn to preserve it */
21499 insn_buf[1] = env->prog->insnsi[subprog_start];
21500
21501 new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, 2);
21502 if (!new_prog)
21503 return -ENOMEM;
21504 env->prog = prog = new_prog;
21505 /*
21506 * If may_goto is a first insn of a prog there could be a jmp
21507 * insn that points to it, hence adjust all such jmps to point
21508 * to insn after BPF_ST that inits may_goto count.
21509 * Adjustment will succeed because bpf_patch_insn_data() didn't fail.
21510 */
21511 WARN_ON(adjust_jmp_off(env->prog, subprog_start, 1));
21512 }
21513
21514 /* Since poke tab is now finalized, publish aux to tracker. */
21515 for (i = 0; i < prog->aux->size_poke_tab; i++) {
21516 map_ptr = prog->aux->poke_tab[i].tail_call.map;
21517 if (!map_ptr->ops->map_poke_track ||
21518 !map_ptr->ops->map_poke_untrack ||
21519 !map_ptr->ops->map_poke_run) {
21520 verbose(env, "bpf verifier is misconfigured\n");
21521 return -EINVAL;
21522 }
21523
21524 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
21525 if (ret < 0) {
21526 verbose(env, "tracking tail call prog failed\n");
21527 return ret;
21528 }
21529 }
21530
21531 sort_kfunc_descs_by_imm_off(env->prog);
21532
21533 return 0;
21534 }
21535
inline_bpf_loop(struct bpf_verifier_env * env,int position,s32 stack_base,u32 callback_subprogno,u32 * total_cnt)21536 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
21537 int position,
21538 s32 stack_base,
21539 u32 callback_subprogno,
21540 u32 *total_cnt)
21541 {
21542 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
21543 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
21544 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
21545 int reg_loop_max = BPF_REG_6;
21546 int reg_loop_cnt = BPF_REG_7;
21547 int reg_loop_ctx = BPF_REG_8;
21548
21549 struct bpf_insn *insn_buf = env->insn_buf;
21550 struct bpf_prog *new_prog;
21551 u32 callback_start;
21552 u32 call_insn_offset;
21553 s32 callback_offset;
21554 u32 cnt = 0;
21555
21556 /* This represents an inlined version of bpf_iter.c:bpf_loop,
21557 * be careful to modify this code in sync.
21558 */
21559
21560 /* Return error and jump to the end of the patch if
21561 * expected number of iterations is too big.
21562 */
21563 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2);
21564 insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG);
21565 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16);
21566 /* spill R6, R7, R8 to use these as loop vars */
21567 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset);
21568 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset);
21569 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset);
21570 /* initialize loop vars */
21571 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1);
21572 insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0);
21573 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3);
21574 /* loop header,
21575 * if reg_loop_cnt >= reg_loop_max skip the loop body
21576 */
21577 insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5);
21578 /* callback call,
21579 * correct callback offset would be set after patching
21580 */
21581 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt);
21582 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx);
21583 insn_buf[cnt++] = BPF_CALL_REL(0);
21584 /* increment loop counter */
21585 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1);
21586 /* jump to loop header if callback returned 0 */
21587 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6);
21588 /* return value of bpf_loop,
21589 * set R0 to the number of iterations
21590 */
21591 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt);
21592 /* restore original values of R6, R7, R8 */
21593 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset);
21594 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset);
21595 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset);
21596
21597 *total_cnt = cnt;
21598 new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt);
21599 if (!new_prog)
21600 return new_prog;
21601
21602 /* callback start is known only after patching */
21603 callback_start = env->subprog_info[callback_subprogno].start;
21604 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
21605 call_insn_offset = position + 12;
21606 callback_offset = callback_start - call_insn_offset - 1;
21607 new_prog->insnsi[call_insn_offset].imm = callback_offset;
21608
21609 return new_prog;
21610 }
21611
is_bpf_loop_call(struct bpf_insn * insn)21612 static bool is_bpf_loop_call(struct bpf_insn *insn)
21613 {
21614 return insn->code == (BPF_JMP | BPF_CALL) &&
21615 insn->src_reg == 0 &&
21616 insn->imm == BPF_FUNC_loop;
21617 }
21618
21619 /* For all sub-programs in the program (including main) check
21620 * insn_aux_data to see if there are bpf_loop calls that require
21621 * inlining. If such calls are found the calls are replaced with a
21622 * sequence of instructions produced by `inline_bpf_loop` function and
21623 * subprog stack_depth is increased by the size of 3 registers.
21624 * This stack space is used to spill values of the R6, R7, R8. These
21625 * registers are used to store the loop bound, counter and context
21626 * variables.
21627 */
optimize_bpf_loop(struct bpf_verifier_env * env)21628 static int optimize_bpf_loop(struct bpf_verifier_env *env)
21629 {
21630 struct bpf_subprog_info *subprogs = env->subprog_info;
21631 int i, cur_subprog = 0, cnt, delta = 0;
21632 struct bpf_insn *insn = env->prog->insnsi;
21633 int insn_cnt = env->prog->len;
21634 u16 stack_depth = subprogs[cur_subprog].stack_depth;
21635 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
21636 u16 stack_depth_extra = 0;
21637
21638 for (i = 0; i < insn_cnt; i++, insn++) {
21639 struct bpf_loop_inline_state *inline_state =
21640 &env->insn_aux_data[i + delta].loop_inline_state;
21641
21642 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
21643 struct bpf_prog *new_prog;
21644
21645 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
21646 new_prog = inline_bpf_loop(env,
21647 i + delta,
21648 -(stack_depth + stack_depth_extra),
21649 inline_state->callback_subprogno,
21650 &cnt);
21651 if (!new_prog)
21652 return -ENOMEM;
21653
21654 delta += cnt - 1;
21655 env->prog = new_prog;
21656 insn = new_prog->insnsi + i + delta;
21657 }
21658
21659 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
21660 subprogs[cur_subprog].stack_depth += stack_depth_extra;
21661 cur_subprog++;
21662 stack_depth = subprogs[cur_subprog].stack_depth;
21663 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
21664 stack_depth_extra = 0;
21665 }
21666 }
21667
21668 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
21669
21670 return 0;
21671 }
21672
21673 /* Remove unnecessary spill/fill pairs, members of fastcall pattern,
21674 * adjust subprograms stack depth when possible.
21675 */
remove_fastcall_spills_fills(struct bpf_verifier_env * env)21676 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env)
21677 {
21678 struct bpf_subprog_info *subprog = env->subprog_info;
21679 struct bpf_insn_aux_data *aux = env->insn_aux_data;
21680 struct bpf_insn *insn = env->prog->insnsi;
21681 int insn_cnt = env->prog->len;
21682 u32 spills_num;
21683 bool modified = false;
21684 int i, j;
21685
21686 for (i = 0; i < insn_cnt; i++, insn++) {
21687 if (aux[i].fastcall_spills_num > 0) {
21688 spills_num = aux[i].fastcall_spills_num;
21689 /* NOPs would be removed by opt_remove_nops() */
21690 for (j = 1; j <= spills_num; ++j) {
21691 *(insn - j) = NOP;
21692 *(insn + j) = NOP;
21693 }
21694 modified = true;
21695 }
21696 if ((subprog + 1)->start == i + 1) {
21697 if (modified && !subprog->keep_fastcall_stack)
21698 subprog->stack_depth = -subprog->fastcall_stack_off;
21699 subprog++;
21700 modified = false;
21701 }
21702 }
21703
21704 return 0;
21705 }
21706
free_states(struct bpf_verifier_env * env)21707 static void free_states(struct bpf_verifier_env *env)
21708 {
21709 struct bpf_verifier_state_list *sl, *sln;
21710 int i;
21711
21712 sl = env->free_list;
21713 while (sl) {
21714 sln = sl->next;
21715 free_verifier_state(&sl->state, false);
21716 kfree(sl);
21717 sl = sln;
21718 }
21719 env->free_list = NULL;
21720
21721 if (!env->explored_states)
21722 return;
21723
21724 for (i = 0; i < state_htab_size(env); i++) {
21725 sl = env->explored_states[i];
21726
21727 while (sl) {
21728 sln = sl->next;
21729 free_verifier_state(&sl->state, false);
21730 kfree(sl);
21731 sl = sln;
21732 }
21733 env->explored_states[i] = NULL;
21734 }
21735 }
21736
do_check_common(struct bpf_verifier_env * env,int subprog)21737 static int do_check_common(struct bpf_verifier_env *env, int subprog)
21738 {
21739 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
21740 struct bpf_subprog_info *sub = subprog_info(env, subprog);
21741 struct bpf_verifier_state *state;
21742 struct bpf_reg_state *regs;
21743 int ret, i;
21744
21745 env->prev_linfo = NULL;
21746 env->pass_cnt++;
21747
21748 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
21749 if (!state)
21750 return -ENOMEM;
21751 state->curframe = 0;
21752 state->speculative = false;
21753 state->branches = 1;
21754 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
21755 if (!state->frame[0]) {
21756 kfree(state);
21757 return -ENOMEM;
21758 }
21759 env->cur_state = state;
21760 init_func_state(env, state->frame[0],
21761 BPF_MAIN_FUNC /* callsite */,
21762 0 /* frameno */,
21763 subprog);
21764 state->first_insn_idx = env->subprog_info[subprog].start;
21765 state->last_insn_idx = -1;
21766
21767 regs = state->frame[state->curframe]->regs;
21768 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
21769 const char *sub_name = subprog_name(env, subprog);
21770 struct bpf_subprog_arg_info *arg;
21771 struct bpf_reg_state *reg;
21772
21773 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog);
21774 ret = btf_prepare_func_args(env, subprog);
21775 if (ret)
21776 goto out;
21777
21778 if (subprog_is_exc_cb(env, subprog)) {
21779 state->frame[0]->in_exception_callback_fn = true;
21780 /* We have already ensured that the callback returns an integer, just
21781 * like all global subprogs. We need to determine it only has a single
21782 * scalar argument.
21783 */
21784 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) {
21785 verbose(env, "exception cb only supports single integer argument\n");
21786 ret = -EINVAL;
21787 goto out;
21788 }
21789 }
21790 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) {
21791 arg = &sub->args[i - BPF_REG_1];
21792 reg = ®s[i];
21793
21794 if (arg->arg_type == ARG_PTR_TO_CTX) {
21795 reg->type = PTR_TO_CTX;
21796 mark_reg_known_zero(env, regs, i);
21797 } else if (arg->arg_type == ARG_ANYTHING) {
21798 reg->type = SCALAR_VALUE;
21799 mark_reg_unknown(env, regs, i);
21800 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
21801 /* assume unspecial LOCAL dynptr type */
21802 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen);
21803 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
21804 reg->type = PTR_TO_MEM;
21805 if (arg->arg_type & PTR_MAYBE_NULL)
21806 reg->type |= PTR_MAYBE_NULL;
21807 mark_reg_known_zero(env, regs, i);
21808 reg->mem_size = arg->mem_size;
21809 reg->id = ++env->id_gen;
21810 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
21811 reg->type = PTR_TO_BTF_ID;
21812 if (arg->arg_type & PTR_MAYBE_NULL)
21813 reg->type |= PTR_MAYBE_NULL;
21814 if (arg->arg_type & PTR_UNTRUSTED)
21815 reg->type |= PTR_UNTRUSTED;
21816 if (arg->arg_type & PTR_TRUSTED)
21817 reg->type |= PTR_TRUSTED;
21818 mark_reg_known_zero(env, regs, i);
21819 reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */
21820 reg->btf_id = arg->btf_id;
21821 reg->id = ++env->id_gen;
21822 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
21823 /* caller can pass either PTR_TO_ARENA or SCALAR */
21824 mark_reg_unknown(env, regs, i);
21825 } else {
21826 WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n",
21827 i - BPF_REG_1, arg->arg_type);
21828 ret = -EFAULT;
21829 goto out;
21830 }
21831 }
21832 } else {
21833 /* if main BPF program has associated BTF info, validate that
21834 * it's matching expected signature, and otherwise mark BTF
21835 * info for main program as unreliable
21836 */
21837 if (env->prog->aux->func_info_aux) {
21838 ret = btf_prepare_func_args(env, 0);
21839 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX)
21840 env->prog->aux->func_info_aux[0].unreliable = true;
21841 }
21842
21843 /* 1st arg to a function */
21844 regs[BPF_REG_1].type = PTR_TO_CTX;
21845 mark_reg_known_zero(env, regs, BPF_REG_1);
21846 }
21847
21848 ret = do_check(env);
21849 out:
21850 /* check for NULL is necessary, since cur_state can be freed inside
21851 * do_check() under memory pressure.
21852 */
21853 if (env->cur_state) {
21854 free_verifier_state(env->cur_state, true);
21855 env->cur_state = NULL;
21856 }
21857 while (!pop_stack(env, NULL, NULL, false));
21858 if (!ret && pop_log)
21859 bpf_vlog_reset(&env->log, 0);
21860 free_states(env);
21861 return ret;
21862 }
21863
21864 /* Lazily verify all global functions based on their BTF, if they are called
21865 * from main BPF program or any of subprograms transitively.
21866 * BPF global subprogs called from dead code are not validated.
21867 * All callable global functions must pass verification.
21868 * Otherwise the whole program is rejected.
21869 * Consider:
21870 * int bar(int);
21871 * int foo(int f)
21872 * {
21873 * return bar(f);
21874 * }
21875 * int bar(int b)
21876 * {
21877 * ...
21878 * }
21879 * foo() will be verified first for R1=any_scalar_value. During verification it
21880 * will be assumed that bar() already verified successfully and call to bar()
21881 * from foo() will be checked for type match only. Later bar() will be verified
21882 * independently to check that it's safe for R1=any_scalar_value.
21883 */
do_check_subprogs(struct bpf_verifier_env * env)21884 static int do_check_subprogs(struct bpf_verifier_env *env)
21885 {
21886 struct bpf_prog_aux *aux = env->prog->aux;
21887 struct bpf_func_info_aux *sub_aux;
21888 int i, ret, new_cnt;
21889
21890 if (!aux->func_info)
21891 return 0;
21892
21893 /* exception callback is presumed to be always called */
21894 if (env->exception_callback_subprog)
21895 subprog_aux(env, env->exception_callback_subprog)->called = true;
21896
21897 again:
21898 new_cnt = 0;
21899 for (i = 1; i < env->subprog_cnt; i++) {
21900 if (!subprog_is_global(env, i))
21901 continue;
21902
21903 sub_aux = subprog_aux(env, i);
21904 if (!sub_aux->called || sub_aux->verified)
21905 continue;
21906
21907 env->insn_idx = env->subprog_info[i].start;
21908 WARN_ON_ONCE(env->insn_idx == 0);
21909 ret = do_check_common(env, i);
21910 if (ret) {
21911 return ret;
21912 } else if (env->log.level & BPF_LOG_LEVEL) {
21913 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n",
21914 i, subprog_name(env, i));
21915 }
21916
21917 /* We verified new global subprog, it might have called some
21918 * more global subprogs that we haven't verified yet, so we
21919 * need to do another pass over subprogs to verify those.
21920 */
21921 sub_aux->verified = true;
21922 new_cnt++;
21923 }
21924
21925 /* We can't loop forever as we verify at least one global subprog on
21926 * each pass.
21927 */
21928 if (new_cnt)
21929 goto again;
21930
21931 return 0;
21932 }
21933
do_check_main(struct bpf_verifier_env * env)21934 static int do_check_main(struct bpf_verifier_env *env)
21935 {
21936 int ret;
21937
21938 env->insn_idx = 0;
21939 ret = do_check_common(env, 0);
21940 if (!ret)
21941 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
21942 return ret;
21943 }
21944
21945
print_verification_stats(struct bpf_verifier_env * env)21946 static void print_verification_stats(struct bpf_verifier_env *env)
21947 {
21948 int i;
21949
21950 if (env->log.level & BPF_LOG_STATS) {
21951 verbose(env, "verification time %lld usec\n",
21952 div_u64(env->verification_time, 1000));
21953 verbose(env, "stack depth ");
21954 for (i = 0; i < env->subprog_cnt; i++) {
21955 u32 depth = env->subprog_info[i].stack_depth;
21956
21957 verbose(env, "%d", depth);
21958 if (i + 1 < env->subprog_cnt)
21959 verbose(env, "+");
21960 }
21961 verbose(env, "\n");
21962 }
21963 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
21964 "total_states %d peak_states %d mark_read %d\n",
21965 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
21966 env->max_states_per_insn, env->total_states,
21967 env->peak_states, env->longest_mark_read_walk);
21968 }
21969
check_struct_ops_btf_id(struct bpf_verifier_env * env)21970 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
21971 {
21972 const struct btf_type *t, *func_proto;
21973 const struct bpf_struct_ops_desc *st_ops_desc;
21974 const struct bpf_struct_ops *st_ops;
21975 const struct btf_member *member;
21976 struct bpf_prog *prog = env->prog;
21977 u32 btf_id, member_idx;
21978 struct btf *btf;
21979 const char *mname;
21980 int err;
21981
21982 if (!prog->gpl_compatible) {
21983 verbose(env, "struct ops programs must have a GPL compatible license\n");
21984 return -EINVAL;
21985 }
21986
21987 if (!prog->aux->attach_btf_id)
21988 return -ENOTSUPP;
21989
21990 btf = prog->aux->attach_btf;
21991 if (btf_is_module(btf)) {
21992 /* Make sure st_ops is valid through the lifetime of env */
21993 env->attach_btf_mod = btf_try_get_module(btf);
21994 if (!env->attach_btf_mod) {
21995 verbose(env, "struct_ops module %s is not found\n",
21996 btf_get_name(btf));
21997 return -ENOTSUPP;
21998 }
21999 }
22000
22001 btf_id = prog->aux->attach_btf_id;
22002 st_ops_desc = bpf_struct_ops_find(btf, btf_id);
22003 if (!st_ops_desc) {
22004 verbose(env, "attach_btf_id %u is not a supported struct\n",
22005 btf_id);
22006 return -ENOTSUPP;
22007 }
22008 st_ops = st_ops_desc->st_ops;
22009
22010 t = st_ops_desc->type;
22011 member_idx = prog->expected_attach_type;
22012 if (member_idx >= btf_type_vlen(t)) {
22013 verbose(env, "attach to invalid member idx %u of struct %s\n",
22014 member_idx, st_ops->name);
22015 return -EINVAL;
22016 }
22017
22018 member = &btf_type_member(t)[member_idx];
22019 mname = btf_name_by_offset(btf, member->name_off);
22020 func_proto = btf_type_resolve_func_ptr(btf, member->type,
22021 NULL);
22022 if (!func_proto) {
22023 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
22024 mname, member_idx, st_ops->name);
22025 return -EINVAL;
22026 }
22027
22028 err = bpf_struct_ops_supported(st_ops, __btf_member_bit_offset(t, member) / 8);
22029 if (err) {
22030 verbose(env, "attach to unsupported member %s of struct %s\n",
22031 mname, st_ops->name);
22032 return err;
22033 }
22034
22035 if (st_ops->check_member) {
22036 err = st_ops->check_member(t, member, prog);
22037
22038 if (err) {
22039 verbose(env, "attach to unsupported member %s of struct %s\n",
22040 mname, st_ops->name);
22041 return err;
22042 }
22043 }
22044
22045 if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) {
22046 verbose(env, "Private stack not supported by jit\n");
22047 return -EACCES;
22048 }
22049
22050 /* btf_ctx_access() used this to provide argument type info */
22051 prog->aux->ctx_arg_info =
22052 st_ops_desc->arg_info[member_idx].info;
22053 prog->aux->ctx_arg_info_size =
22054 st_ops_desc->arg_info[member_idx].cnt;
22055
22056 prog->aux->attach_func_proto = func_proto;
22057 prog->aux->attach_func_name = mname;
22058 env->ops = st_ops->verifier_ops;
22059
22060 return 0;
22061 }
22062 #define SECURITY_PREFIX "security_"
22063
check_attach_modify_return(unsigned long addr,const char * func_name)22064 static int check_attach_modify_return(unsigned long addr, const char *func_name)
22065 {
22066 if (within_error_injection_list(addr) ||
22067 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
22068 return 0;
22069
22070 return -EINVAL;
22071 }
22072
22073 /* list of non-sleepable functions that are otherwise on
22074 * ALLOW_ERROR_INJECTION list
22075 */
22076 BTF_SET_START(btf_non_sleepable_error_inject)
22077 /* Three functions below can be called from sleepable and non-sleepable context.
22078 * Assume non-sleepable from bpf safety point of view.
22079 */
BTF_ID(func,__filemap_add_folio)22080 BTF_ID(func, __filemap_add_folio)
22081 #ifdef CONFIG_FAIL_PAGE_ALLOC
22082 BTF_ID(func, should_fail_alloc_page)
22083 #endif
22084 #ifdef CONFIG_FAILSLAB
22085 BTF_ID(func, should_failslab)
22086 #endif
22087 BTF_SET_END(btf_non_sleepable_error_inject)
22088
22089 static int check_non_sleepable_error_inject(u32 btf_id)
22090 {
22091 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
22092 }
22093
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)22094 int bpf_check_attach_target(struct bpf_verifier_log *log,
22095 const struct bpf_prog *prog,
22096 const struct bpf_prog *tgt_prog,
22097 u32 btf_id,
22098 struct bpf_attach_target_info *tgt_info)
22099 {
22100 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
22101 bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING;
22102 char trace_symbol[KSYM_SYMBOL_LEN];
22103 const char prefix[] = "btf_trace_";
22104 struct bpf_raw_event_map *btp;
22105 int ret = 0, subprog = -1, i;
22106 const struct btf_type *t;
22107 bool conservative = true;
22108 const char *tname, *fname;
22109 struct btf *btf;
22110 long addr = 0;
22111 struct module *mod = NULL;
22112
22113 if (!btf_id) {
22114 bpf_log(log, "Tracing programs must provide btf_id\n");
22115 return -EINVAL;
22116 }
22117 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
22118 if (!btf) {
22119 bpf_log(log,
22120 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
22121 return -EINVAL;
22122 }
22123 t = btf_type_by_id(btf, btf_id);
22124 if (!t) {
22125 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
22126 return -EINVAL;
22127 }
22128 tname = btf_name_by_offset(btf, t->name_off);
22129 if (!tname) {
22130 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
22131 return -EINVAL;
22132 }
22133 if (tgt_prog) {
22134 struct bpf_prog_aux *aux = tgt_prog->aux;
22135 bool tgt_changes_pkt_data;
22136
22137 if (bpf_prog_is_dev_bound(prog->aux) &&
22138 !bpf_prog_dev_bound_match(prog, tgt_prog)) {
22139 bpf_log(log, "Target program bound device mismatch");
22140 return -EINVAL;
22141 }
22142
22143 for (i = 0; i < aux->func_info_cnt; i++)
22144 if (aux->func_info[i].type_id == btf_id) {
22145 subprog = i;
22146 break;
22147 }
22148 if (subprog == -1) {
22149 bpf_log(log, "Subprog %s doesn't exist\n", tname);
22150 return -EINVAL;
22151 }
22152 if (aux->func && aux->func[subprog]->aux->exception_cb) {
22153 bpf_log(log,
22154 "%s programs cannot attach to exception callback\n",
22155 prog_extension ? "Extension" : "FENTRY/FEXIT");
22156 return -EINVAL;
22157 }
22158 conservative = aux->func_info_aux[subprog].unreliable;
22159 if (prog_extension) {
22160 if (conservative) {
22161 bpf_log(log,
22162 "Cannot replace static functions\n");
22163 return -EINVAL;
22164 }
22165 if (!prog->jit_requested) {
22166 bpf_log(log,
22167 "Extension programs should be JITed\n");
22168 return -EINVAL;
22169 }
22170 tgt_changes_pkt_data = aux->func
22171 ? aux->func[subprog]->aux->changes_pkt_data
22172 : aux->changes_pkt_data;
22173 if (prog->aux->changes_pkt_data && !tgt_changes_pkt_data) {
22174 bpf_log(log,
22175 "Extension program changes packet data, while original does not\n");
22176 return -EINVAL;
22177 }
22178 }
22179 if (!tgt_prog->jited) {
22180 bpf_log(log, "Can attach to only JITed progs\n");
22181 return -EINVAL;
22182 }
22183 if (prog_tracing) {
22184 if (aux->attach_tracing_prog) {
22185 /*
22186 * Target program is an fentry/fexit which is already attached
22187 * to another tracing program. More levels of nesting
22188 * attachment are not allowed.
22189 */
22190 bpf_log(log, "Cannot nest tracing program attach more than once\n");
22191 return -EINVAL;
22192 }
22193 } else if (tgt_prog->type == prog->type) {
22194 /*
22195 * To avoid potential call chain cycles, prevent attaching of a
22196 * program extension to another extension. It's ok to attach
22197 * fentry/fexit to extension program.
22198 */
22199 bpf_log(log, "Cannot recursively attach\n");
22200 return -EINVAL;
22201 }
22202 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
22203 prog_extension &&
22204 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
22205 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
22206 /* Program extensions can extend all program types
22207 * except fentry/fexit. The reason is the following.
22208 * The fentry/fexit programs are used for performance
22209 * analysis, stats and can be attached to any program
22210 * type. When extension program is replacing XDP function
22211 * it is necessary to allow performance analysis of all
22212 * functions. Both original XDP program and its program
22213 * extension. Hence attaching fentry/fexit to
22214 * BPF_PROG_TYPE_EXT is allowed. If extending of
22215 * fentry/fexit was allowed it would be possible to create
22216 * long call chain fentry->extension->fentry->extension
22217 * beyond reasonable stack size. Hence extending fentry
22218 * is not allowed.
22219 */
22220 bpf_log(log, "Cannot extend fentry/fexit\n");
22221 return -EINVAL;
22222 }
22223 } else {
22224 if (prog_extension) {
22225 bpf_log(log, "Cannot replace kernel functions\n");
22226 return -EINVAL;
22227 }
22228 }
22229
22230 switch (prog->expected_attach_type) {
22231 case BPF_TRACE_RAW_TP:
22232 if (tgt_prog) {
22233 bpf_log(log,
22234 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
22235 return -EINVAL;
22236 }
22237 if (!btf_type_is_typedef(t)) {
22238 bpf_log(log, "attach_btf_id %u is not a typedef\n",
22239 btf_id);
22240 return -EINVAL;
22241 }
22242 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
22243 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
22244 btf_id, tname);
22245 return -EINVAL;
22246 }
22247 tname += sizeof(prefix) - 1;
22248
22249 /* The func_proto of "btf_trace_##tname" is generated from typedef without argument
22250 * names. Thus using bpf_raw_event_map to get argument names.
22251 */
22252 btp = bpf_get_raw_tracepoint(tname);
22253 if (!btp)
22254 return -EINVAL;
22255 fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL,
22256 trace_symbol);
22257 bpf_put_raw_tracepoint(btp);
22258
22259 if (fname)
22260 ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC);
22261
22262 if (!fname || ret < 0) {
22263 bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n",
22264 prefix, tname);
22265 t = btf_type_by_id(btf, t->type);
22266 if (!btf_type_is_ptr(t))
22267 /* should never happen in valid vmlinux build */
22268 return -EINVAL;
22269 } else {
22270 t = btf_type_by_id(btf, ret);
22271 if (!btf_type_is_func(t))
22272 /* should never happen in valid vmlinux build */
22273 return -EINVAL;
22274 }
22275
22276 t = btf_type_by_id(btf, t->type);
22277 if (!btf_type_is_func_proto(t))
22278 /* should never happen in valid vmlinux build */
22279 return -EINVAL;
22280
22281 break;
22282 case BPF_TRACE_ITER:
22283 if (!btf_type_is_func(t)) {
22284 bpf_log(log, "attach_btf_id %u is not a function\n",
22285 btf_id);
22286 return -EINVAL;
22287 }
22288 t = btf_type_by_id(btf, t->type);
22289 if (!btf_type_is_func_proto(t))
22290 return -EINVAL;
22291 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
22292 if (ret)
22293 return ret;
22294 break;
22295 default:
22296 if (!prog_extension)
22297 return -EINVAL;
22298 fallthrough;
22299 case BPF_MODIFY_RETURN:
22300 case BPF_LSM_MAC:
22301 case BPF_LSM_CGROUP:
22302 case BPF_TRACE_FENTRY:
22303 case BPF_TRACE_FEXIT:
22304 if (!btf_type_is_func(t)) {
22305 bpf_log(log, "attach_btf_id %u is not a function\n",
22306 btf_id);
22307 return -EINVAL;
22308 }
22309 if (prog_extension &&
22310 btf_check_type_match(log, prog, btf, t))
22311 return -EINVAL;
22312 t = btf_type_by_id(btf, t->type);
22313 if (!btf_type_is_func_proto(t))
22314 return -EINVAL;
22315
22316 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
22317 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
22318 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
22319 return -EINVAL;
22320
22321 if (tgt_prog && conservative)
22322 t = NULL;
22323
22324 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
22325 if (ret < 0)
22326 return ret;
22327
22328 if (tgt_prog) {
22329 if (subprog == 0)
22330 addr = (long) tgt_prog->bpf_func;
22331 else
22332 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
22333 } else {
22334 if (btf_is_module(btf)) {
22335 mod = btf_try_get_module(btf);
22336 if (mod)
22337 addr = find_kallsyms_symbol_value(mod, tname);
22338 else
22339 addr = 0;
22340 } else {
22341 addr = kallsyms_lookup_name(tname);
22342 }
22343 if (!addr) {
22344 module_put(mod);
22345 bpf_log(log,
22346 "The address of function %s cannot be found\n",
22347 tname);
22348 return -ENOENT;
22349 }
22350 }
22351
22352 if (prog->sleepable) {
22353 ret = -EINVAL;
22354 switch (prog->type) {
22355 case BPF_PROG_TYPE_TRACING:
22356
22357 /* fentry/fexit/fmod_ret progs can be sleepable if they are
22358 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
22359 */
22360 if (!check_non_sleepable_error_inject(btf_id) &&
22361 within_error_injection_list(addr))
22362 ret = 0;
22363 /* fentry/fexit/fmod_ret progs can also be sleepable if they are
22364 * in the fmodret id set with the KF_SLEEPABLE flag.
22365 */
22366 else {
22367 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
22368 prog);
22369
22370 if (flags && (*flags & KF_SLEEPABLE))
22371 ret = 0;
22372 }
22373 break;
22374 case BPF_PROG_TYPE_LSM:
22375 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
22376 * Only some of them are sleepable.
22377 */
22378 if (bpf_lsm_is_sleepable_hook(btf_id))
22379 ret = 0;
22380 break;
22381 default:
22382 break;
22383 }
22384 if (ret) {
22385 module_put(mod);
22386 bpf_log(log, "%s is not sleepable\n", tname);
22387 return ret;
22388 }
22389 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
22390 if (tgt_prog) {
22391 module_put(mod);
22392 bpf_log(log, "can't modify return codes of BPF programs\n");
22393 return -EINVAL;
22394 }
22395 ret = -EINVAL;
22396 if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
22397 !check_attach_modify_return(addr, tname))
22398 ret = 0;
22399 if (ret) {
22400 module_put(mod);
22401 bpf_log(log, "%s() is not modifiable\n", tname);
22402 return ret;
22403 }
22404 }
22405
22406 break;
22407 }
22408 tgt_info->tgt_addr = addr;
22409 tgt_info->tgt_name = tname;
22410 tgt_info->tgt_type = t;
22411 tgt_info->tgt_mod = mod;
22412 return 0;
22413 }
22414
BTF_SET_START(btf_id_deny)22415 BTF_SET_START(btf_id_deny)
22416 BTF_ID_UNUSED
22417 #ifdef CONFIG_SMP
22418 BTF_ID(func, migrate_disable)
22419 BTF_ID(func, migrate_enable)
22420 #endif
22421 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
22422 BTF_ID(func, rcu_read_unlock_strict)
22423 #endif
22424 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
22425 BTF_ID(func, preempt_count_add)
22426 BTF_ID(func, preempt_count_sub)
22427 #endif
22428 #ifdef CONFIG_PREEMPT_RCU
22429 BTF_ID(func, __rcu_read_lock)
22430 BTF_ID(func, __rcu_read_unlock)
22431 #endif
22432 BTF_SET_END(btf_id_deny)
22433
22434 static bool can_be_sleepable(struct bpf_prog *prog)
22435 {
22436 if (prog->type == BPF_PROG_TYPE_TRACING) {
22437 switch (prog->expected_attach_type) {
22438 case BPF_TRACE_FENTRY:
22439 case BPF_TRACE_FEXIT:
22440 case BPF_MODIFY_RETURN:
22441 case BPF_TRACE_ITER:
22442 return true;
22443 default:
22444 return false;
22445 }
22446 }
22447 return prog->type == BPF_PROG_TYPE_LSM ||
22448 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
22449 prog->type == BPF_PROG_TYPE_STRUCT_OPS;
22450 }
22451
check_attach_btf_id(struct bpf_verifier_env * env)22452 static int check_attach_btf_id(struct bpf_verifier_env *env)
22453 {
22454 struct bpf_prog *prog = env->prog;
22455 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
22456 struct bpf_attach_target_info tgt_info = {};
22457 u32 btf_id = prog->aux->attach_btf_id;
22458 struct bpf_trampoline *tr;
22459 int ret;
22460 u64 key;
22461
22462 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
22463 if (prog->sleepable)
22464 /* attach_btf_id checked to be zero already */
22465 return 0;
22466 verbose(env, "Syscall programs can only be sleepable\n");
22467 return -EINVAL;
22468 }
22469
22470 if (prog->sleepable && !can_be_sleepable(prog)) {
22471 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
22472 return -EINVAL;
22473 }
22474
22475 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
22476 return check_struct_ops_btf_id(env);
22477
22478 if (prog->type != BPF_PROG_TYPE_TRACING &&
22479 prog->type != BPF_PROG_TYPE_LSM &&
22480 prog->type != BPF_PROG_TYPE_EXT)
22481 return 0;
22482
22483 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
22484 if (ret)
22485 return ret;
22486
22487 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
22488 /* to make freplace equivalent to their targets, they need to
22489 * inherit env->ops and expected_attach_type for the rest of the
22490 * verification
22491 */
22492 env->ops = bpf_verifier_ops[tgt_prog->type];
22493 prog->expected_attach_type = tgt_prog->expected_attach_type;
22494 }
22495
22496 /* store info about the attachment target that will be used later */
22497 prog->aux->attach_func_proto = tgt_info.tgt_type;
22498 prog->aux->attach_func_name = tgt_info.tgt_name;
22499 prog->aux->mod = tgt_info.tgt_mod;
22500
22501 if (tgt_prog) {
22502 prog->aux->saved_dst_prog_type = tgt_prog->type;
22503 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
22504 }
22505
22506 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
22507 prog->aux->attach_btf_trace = true;
22508 return 0;
22509 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
22510 if (!bpf_iter_prog_supported(prog))
22511 return -EINVAL;
22512 return 0;
22513 }
22514
22515 if (prog->type == BPF_PROG_TYPE_LSM) {
22516 ret = bpf_lsm_verify_prog(&env->log, prog);
22517 if (ret < 0)
22518 return ret;
22519 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
22520 btf_id_set_contains(&btf_id_deny, btf_id)) {
22521 return -EINVAL;
22522 }
22523
22524 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
22525 tr = bpf_trampoline_get(key, &tgt_info);
22526 if (!tr)
22527 return -ENOMEM;
22528
22529 if (tgt_prog && tgt_prog->aux->tail_call_reachable)
22530 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
22531
22532 prog->aux->dst_trampoline = tr;
22533 return 0;
22534 }
22535
bpf_get_btf_vmlinux(void)22536 struct btf *bpf_get_btf_vmlinux(void)
22537 {
22538 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
22539 mutex_lock(&bpf_verifier_lock);
22540 if (!btf_vmlinux)
22541 btf_vmlinux = btf_parse_vmlinux();
22542 mutex_unlock(&bpf_verifier_lock);
22543 }
22544 return btf_vmlinux;
22545 }
22546
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,bpfptr_t uattr,__u32 uattr_size)22547 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
22548 {
22549 u64 start_time = ktime_get_ns();
22550 struct bpf_verifier_env *env;
22551 int i, len, ret = -EINVAL, err;
22552 u32 log_true_size;
22553 bool is_priv;
22554
22555 /* no program is valid */
22556 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
22557 return -EINVAL;
22558
22559 /* 'struct bpf_verifier_env' can be global, but since it's not small,
22560 * allocate/free it every time bpf_check() is called
22561 */
22562 env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
22563 if (!env)
22564 return -ENOMEM;
22565
22566 env->bt.env = env;
22567
22568 len = (*prog)->len;
22569 env->insn_aux_data =
22570 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
22571 ret = -ENOMEM;
22572 if (!env->insn_aux_data)
22573 goto err_free_env;
22574 for (i = 0; i < len; i++)
22575 env->insn_aux_data[i].orig_idx = i;
22576 env->prog = *prog;
22577 env->ops = bpf_verifier_ops[env->prog->type];
22578 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
22579
22580 env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token);
22581 env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token);
22582 env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token);
22583 env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token);
22584 env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF);
22585
22586 bpf_get_btf_vmlinux();
22587
22588 /* grab the mutex to protect few globals used by verifier */
22589 if (!is_priv)
22590 mutex_lock(&bpf_verifier_lock);
22591
22592 /* user could have requested verbose verifier output
22593 * and supplied buffer to store the verification trace
22594 */
22595 ret = bpf_vlog_init(&env->log, attr->log_level,
22596 (char __user *) (unsigned long) attr->log_buf,
22597 attr->log_size);
22598 if (ret)
22599 goto err_unlock;
22600
22601 mark_verifier_state_clean(env);
22602
22603 if (IS_ERR(btf_vmlinux)) {
22604 /* Either gcc or pahole or kernel are broken. */
22605 verbose(env, "in-kernel BTF is malformed\n");
22606 ret = PTR_ERR(btf_vmlinux);
22607 goto skip_full_check;
22608 }
22609
22610 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
22611 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
22612 env->strict_alignment = true;
22613 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
22614 env->strict_alignment = false;
22615
22616 if (is_priv)
22617 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
22618 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS;
22619
22620 env->explored_states = kvcalloc(state_htab_size(env),
22621 sizeof(struct bpf_verifier_state_list *),
22622 GFP_USER);
22623 ret = -ENOMEM;
22624 if (!env->explored_states)
22625 goto skip_full_check;
22626
22627 ret = check_btf_info_early(env, attr, uattr);
22628 if (ret < 0)
22629 goto skip_full_check;
22630
22631 ret = add_subprog_and_kfunc(env);
22632 if (ret < 0)
22633 goto skip_full_check;
22634
22635 ret = check_subprogs(env);
22636 if (ret < 0)
22637 goto skip_full_check;
22638
22639 ret = check_btf_info(env, attr, uattr);
22640 if (ret < 0)
22641 goto skip_full_check;
22642
22643 ret = resolve_pseudo_ldimm64(env);
22644 if (ret < 0)
22645 goto skip_full_check;
22646
22647 if (bpf_prog_is_offloaded(env->prog->aux)) {
22648 ret = bpf_prog_offload_verifier_prep(env->prog);
22649 if (ret)
22650 goto skip_full_check;
22651 }
22652
22653 ret = check_cfg(env);
22654 if (ret < 0)
22655 goto skip_full_check;
22656
22657 ret = check_attach_btf_id(env);
22658 if (ret)
22659 goto skip_full_check;
22660
22661 ret = mark_fastcall_patterns(env);
22662 if (ret < 0)
22663 goto skip_full_check;
22664
22665 ret = do_check_main(env);
22666 ret = ret ?: do_check_subprogs(env);
22667
22668 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
22669 ret = bpf_prog_offload_finalize(env);
22670
22671 skip_full_check:
22672 kvfree(env->explored_states);
22673
22674 /* might decrease stack depth, keep it before passes that
22675 * allocate additional slots.
22676 */
22677 if (ret == 0)
22678 ret = remove_fastcall_spills_fills(env);
22679
22680 if (ret == 0)
22681 ret = check_max_stack_depth(env);
22682
22683 /* instruction rewrites happen after this point */
22684 if (ret == 0)
22685 ret = optimize_bpf_loop(env);
22686
22687 if (is_priv) {
22688 if (ret == 0)
22689 opt_hard_wire_dead_code_branches(env);
22690 if (ret == 0)
22691 ret = opt_remove_dead_code(env);
22692 if (ret == 0)
22693 ret = opt_remove_nops(env);
22694 } else {
22695 if (ret == 0)
22696 sanitize_dead_code(env);
22697 }
22698
22699 if (ret == 0)
22700 /* program is valid, convert *(u32*)(ctx + off) accesses */
22701 ret = convert_ctx_accesses(env);
22702
22703 if (ret == 0)
22704 ret = do_misc_fixups(env);
22705
22706 /* do 32-bit optimization after insn patching has done so those patched
22707 * insns could be handled correctly.
22708 */
22709 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
22710 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
22711 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
22712 : false;
22713 }
22714
22715 if (ret == 0)
22716 ret = fixup_call_args(env);
22717
22718 env->verification_time = ktime_get_ns() - start_time;
22719 print_verification_stats(env);
22720 env->prog->aux->verified_insns = env->insn_processed;
22721
22722 /* preserve original error even if log finalization is successful */
22723 err = bpf_vlog_finalize(&env->log, &log_true_size);
22724 if (err)
22725 ret = err;
22726
22727 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
22728 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
22729 &log_true_size, sizeof(log_true_size))) {
22730 ret = -EFAULT;
22731 goto err_release_maps;
22732 }
22733
22734 if (ret)
22735 goto err_release_maps;
22736
22737 if (env->used_map_cnt) {
22738 /* if program passed verifier, update used_maps in bpf_prog_info */
22739 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
22740 sizeof(env->used_maps[0]),
22741 GFP_KERNEL);
22742
22743 if (!env->prog->aux->used_maps) {
22744 ret = -ENOMEM;
22745 goto err_release_maps;
22746 }
22747
22748 memcpy(env->prog->aux->used_maps, env->used_maps,
22749 sizeof(env->used_maps[0]) * env->used_map_cnt);
22750 env->prog->aux->used_map_cnt = env->used_map_cnt;
22751 }
22752 if (env->used_btf_cnt) {
22753 /* if program passed verifier, update used_btfs in bpf_prog_aux */
22754 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
22755 sizeof(env->used_btfs[0]),
22756 GFP_KERNEL);
22757 if (!env->prog->aux->used_btfs) {
22758 ret = -ENOMEM;
22759 goto err_release_maps;
22760 }
22761
22762 memcpy(env->prog->aux->used_btfs, env->used_btfs,
22763 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
22764 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
22765 }
22766 if (env->used_map_cnt || env->used_btf_cnt) {
22767 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
22768 * bpf_ld_imm64 instructions
22769 */
22770 convert_pseudo_ld_imm64(env);
22771 }
22772
22773 adjust_btf_func(env);
22774
22775 err_release_maps:
22776 if (!env->prog->aux->used_maps)
22777 /* if we didn't copy map pointers into bpf_prog_info, release
22778 * them now. Otherwise free_used_maps() will release them.
22779 */
22780 release_maps(env);
22781 if (!env->prog->aux->used_btfs)
22782 release_btfs(env);
22783
22784 /* extension progs temporarily inherit the attach_type of their targets
22785 for verification purposes, so set it back to zero before returning
22786 */
22787 if (env->prog->type == BPF_PROG_TYPE_EXT)
22788 env->prog->expected_attach_type = 0;
22789
22790 *prog = env->prog;
22791
22792 module_put(env->attach_btf_mod);
22793 err_unlock:
22794 if (!is_priv)
22795 mutex_unlock(&bpf_verifier_lock);
22796 vfree(env->insn_aux_data);
22797 kvfree(env->insn_hist);
22798 err_free_env:
22799 kvfree(env);
22800 return ret;
22801 }
22802