1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2019 Facebook */ 3 #include <linux/hash.h> 4 #include <linux/bpf.h> 5 #include <linux/filter.h> 6 #include <linux/ftrace.h> 7 #include <linux/rbtree_latch.h> 8 #include <linux/perf_event.h> 9 #include <linux/btf.h> 10 #include <linux/rcupdate_trace.h> 11 #include <linux/rcupdate_wait.h> 12 #include <linux/static_call.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/bpf_lsm.h> 15 #include <linux/delay.h> 16 17 /* dummy _ops. The verifier will operate on target program's ops. */ 18 const struct bpf_verifier_ops bpf_extension_verifier_ops = { 19 }; 20 const struct bpf_prog_ops bpf_extension_prog_ops = { 21 }; 22 23 /* btf_vmlinux has ~22k attachable functions. 1k htab is enough. */ 24 #define TRAMPOLINE_HASH_BITS 10 25 #define TRAMPOLINE_TABLE_SIZE (1 << TRAMPOLINE_HASH_BITS) 26 27 static struct hlist_head trampoline_table[TRAMPOLINE_TABLE_SIZE]; 28 29 /* serializes access to trampoline_table */ 30 static DEFINE_MUTEX(trampoline_mutex); 31 32 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 33 static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex); 34 35 static int bpf_tramp_ftrace_ops_func(struct ftrace_ops *ops, enum ftrace_ops_cmd cmd) 36 { 37 struct bpf_trampoline *tr = ops->private; 38 int ret = 0; 39 40 if (cmd == FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF) { 41 /* This is called inside register_ftrace_direct_multi(), so 42 * tr->mutex is already locked. 43 */ 44 lockdep_assert_held_once(&tr->mutex); 45 46 /* Instead of updating the trampoline here, we propagate 47 * -EAGAIN to register_ftrace_direct(). Then we can 48 * retry register_ftrace_direct() after updating the 49 * trampoline. 50 */ 51 if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) && 52 !(tr->flags & BPF_TRAMP_F_ORIG_STACK)) { 53 if (WARN_ON_ONCE(tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY)) 54 return -EBUSY; 55 56 tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY; 57 return -EAGAIN; 58 } 59 60 return 0; 61 } 62 63 /* The normal locking order is 64 * tr->mutex => direct_mutex (ftrace.c) => ftrace_lock (ftrace.c) 65 * 66 * The following two commands are called from 67 * 68 * prepare_direct_functions_for_ipmodify 69 * cleanup_direct_functions_after_ipmodify 70 * 71 * In both cases, direct_mutex is already locked. Use 72 * mutex_trylock(&tr->mutex) to avoid deadlock in race condition 73 * (something else is making changes to this same trampoline). 74 */ 75 if (!mutex_trylock(&tr->mutex)) { 76 /* sleep 1 ms to make sure whatever holding tr->mutex makes 77 * some progress. 78 */ 79 msleep(1); 80 return -EAGAIN; 81 } 82 83 switch (cmd) { 84 case FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER: 85 tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY; 86 87 if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) && 88 !(tr->flags & BPF_TRAMP_F_ORIG_STACK)) 89 ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */); 90 break; 91 case FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER: 92 tr->flags &= ~BPF_TRAMP_F_SHARE_IPMODIFY; 93 94 if (tr->flags & BPF_TRAMP_F_ORIG_STACK) 95 ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */); 96 break; 97 default: 98 ret = -EINVAL; 99 break; 100 } 101 102 mutex_unlock(&tr->mutex); 103 return ret; 104 } 105 #endif 106 107 bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 108 { 109 enum bpf_attach_type eatype = prog->expected_attach_type; 110 enum bpf_prog_type ptype = prog->type; 111 112 return (ptype == BPF_PROG_TYPE_TRACING && 113 (eatype == BPF_TRACE_FENTRY || eatype == BPF_TRACE_FEXIT || 114 eatype == BPF_MODIFY_RETURN)) || 115 (ptype == BPF_PROG_TYPE_LSM && eatype == BPF_LSM_MAC); 116 } 117 118 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym) 119 { 120 ksym->start = (unsigned long) data; 121 ksym->end = ksym->start + PAGE_SIZE; 122 bpf_ksym_add(ksym); 123 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start, 124 PAGE_SIZE, false, ksym->name); 125 } 126 127 void bpf_image_ksym_del(struct bpf_ksym *ksym) 128 { 129 bpf_ksym_del(ksym); 130 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start, 131 PAGE_SIZE, true, ksym->name); 132 } 133 134 static struct bpf_trampoline *bpf_trampoline_lookup(u64 key) 135 { 136 struct bpf_trampoline *tr; 137 struct hlist_head *head; 138 int i; 139 140 mutex_lock(&trampoline_mutex); 141 head = &trampoline_table[hash_64(key, TRAMPOLINE_HASH_BITS)]; 142 hlist_for_each_entry(tr, head, hlist) { 143 if (tr->key == key) { 144 refcount_inc(&tr->refcnt); 145 goto out; 146 } 147 } 148 tr = kzalloc(sizeof(*tr), GFP_KERNEL); 149 if (!tr) 150 goto out; 151 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 152 tr->fops = kzalloc(sizeof(struct ftrace_ops), GFP_KERNEL); 153 if (!tr->fops) { 154 kfree(tr); 155 tr = NULL; 156 goto out; 157 } 158 tr->fops->private = tr; 159 tr->fops->ops_func = bpf_tramp_ftrace_ops_func; 160 #endif 161 162 tr->key = key; 163 INIT_HLIST_NODE(&tr->hlist); 164 hlist_add_head(&tr->hlist, head); 165 refcount_set(&tr->refcnt, 1); 166 mutex_init(&tr->mutex); 167 for (i = 0; i < BPF_TRAMP_MAX; i++) 168 INIT_HLIST_HEAD(&tr->progs_hlist[i]); 169 out: 170 mutex_unlock(&trampoline_mutex); 171 return tr; 172 } 173 174 static int unregister_fentry(struct bpf_trampoline *tr, void *old_addr) 175 { 176 void *ip = tr->func.addr; 177 int ret; 178 179 if (tr->func.ftrace_managed) 180 ret = unregister_ftrace_direct(tr->fops, (long)old_addr, false); 181 else 182 ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, NULL); 183 184 return ret; 185 } 186 187 static int modify_fentry(struct bpf_trampoline *tr, void *old_addr, void *new_addr, 188 bool lock_direct_mutex) 189 { 190 void *ip = tr->func.addr; 191 int ret; 192 193 if (tr->func.ftrace_managed) { 194 if (lock_direct_mutex) 195 ret = modify_ftrace_direct(tr->fops, (long)new_addr); 196 else 197 ret = modify_ftrace_direct_nolock(tr->fops, (long)new_addr); 198 } else { 199 ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, new_addr); 200 } 201 return ret; 202 } 203 204 /* first time registering */ 205 static int register_fentry(struct bpf_trampoline *tr, void *new_addr) 206 { 207 void *ip = tr->func.addr; 208 unsigned long faddr; 209 int ret; 210 211 faddr = ftrace_location((unsigned long)ip); 212 if (faddr) { 213 if (!tr->fops) 214 return -ENOTSUPP; 215 tr->func.ftrace_managed = true; 216 } 217 218 if (tr->func.ftrace_managed) { 219 ftrace_set_filter_ip(tr->fops, (unsigned long)ip, 0, 1); 220 ret = register_ftrace_direct(tr->fops, (long)new_addr); 221 } else { 222 ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, NULL, new_addr); 223 } 224 225 return ret; 226 } 227 228 static struct bpf_tramp_links * 229 bpf_trampoline_get_progs(const struct bpf_trampoline *tr, int *total, bool *ip_arg) 230 { 231 struct bpf_tramp_link *link; 232 struct bpf_tramp_links *tlinks; 233 struct bpf_tramp_link **links; 234 int kind; 235 236 *total = 0; 237 tlinks = kcalloc(BPF_TRAMP_MAX, sizeof(*tlinks), GFP_KERNEL); 238 if (!tlinks) 239 return ERR_PTR(-ENOMEM); 240 241 for (kind = 0; kind < BPF_TRAMP_MAX; kind++) { 242 tlinks[kind].nr_links = tr->progs_cnt[kind]; 243 *total += tr->progs_cnt[kind]; 244 links = tlinks[kind].links; 245 246 hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) { 247 *ip_arg |= link->link.prog->call_get_func_ip; 248 *links++ = link; 249 } 250 } 251 return tlinks; 252 } 253 254 static void bpf_tramp_image_free(struct bpf_tramp_image *im) 255 { 256 bpf_image_ksym_del(&im->ksym); 257 bpf_jit_free_exec(im->image); 258 bpf_jit_uncharge_modmem(PAGE_SIZE); 259 percpu_ref_exit(&im->pcref); 260 kfree_rcu(im, rcu); 261 } 262 263 static void __bpf_tramp_image_put_deferred(struct work_struct *work) 264 { 265 struct bpf_tramp_image *im; 266 267 im = container_of(work, struct bpf_tramp_image, work); 268 bpf_tramp_image_free(im); 269 } 270 271 /* callback, fexit step 3 or fentry step 2 */ 272 static void __bpf_tramp_image_put_rcu(struct rcu_head *rcu) 273 { 274 struct bpf_tramp_image *im; 275 276 im = container_of(rcu, struct bpf_tramp_image, rcu); 277 INIT_WORK(&im->work, __bpf_tramp_image_put_deferred); 278 schedule_work(&im->work); 279 } 280 281 /* callback, fexit step 2. Called after percpu_ref_kill confirms. */ 282 static void __bpf_tramp_image_release(struct percpu_ref *pcref) 283 { 284 struct bpf_tramp_image *im; 285 286 im = container_of(pcref, struct bpf_tramp_image, pcref); 287 call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu); 288 } 289 290 /* callback, fexit or fentry step 1 */ 291 static void __bpf_tramp_image_put_rcu_tasks(struct rcu_head *rcu) 292 { 293 struct bpf_tramp_image *im; 294 295 im = container_of(rcu, struct bpf_tramp_image, rcu); 296 if (im->ip_after_call) 297 /* the case of fmod_ret/fexit trampoline and CONFIG_PREEMPTION=y */ 298 percpu_ref_kill(&im->pcref); 299 else 300 /* the case of fentry trampoline */ 301 call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu); 302 } 303 304 static void bpf_tramp_image_put(struct bpf_tramp_image *im) 305 { 306 /* The trampoline image that calls original function is using: 307 * rcu_read_lock_trace to protect sleepable bpf progs 308 * rcu_read_lock to protect normal bpf progs 309 * percpu_ref to protect trampoline itself 310 * rcu tasks to protect trampoline asm not covered by percpu_ref 311 * (which are few asm insns before __bpf_tramp_enter and 312 * after __bpf_tramp_exit) 313 * 314 * The trampoline is unreachable before bpf_tramp_image_put(). 315 * 316 * First, patch the trampoline to avoid calling into fexit progs. 317 * The progs will be freed even if the original function is still 318 * executing or sleeping. 319 * In case of CONFIG_PREEMPT=y use call_rcu_tasks() to wait on 320 * first few asm instructions to execute and call into 321 * __bpf_tramp_enter->percpu_ref_get. 322 * Then use percpu_ref_kill to wait for the trampoline and the original 323 * function to finish. 324 * Then use call_rcu_tasks() to make sure few asm insns in 325 * the trampoline epilogue are done as well. 326 * 327 * In !PREEMPT case the task that got interrupted in the first asm 328 * insns won't go through an RCU quiescent state which the 329 * percpu_ref_kill will be waiting for. Hence the first 330 * call_rcu_tasks() is not necessary. 331 */ 332 if (im->ip_after_call) { 333 int err = bpf_arch_text_poke(im->ip_after_call, BPF_MOD_JUMP, 334 NULL, im->ip_epilogue); 335 WARN_ON(err); 336 if (IS_ENABLED(CONFIG_PREEMPTION)) 337 call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu_tasks); 338 else 339 percpu_ref_kill(&im->pcref); 340 return; 341 } 342 343 /* The trampoline without fexit and fmod_ret progs doesn't call original 344 * function and doesn't use percpu_ref. 345 * Use call_rcu_tasks_trace() to wait for sleepable progs to finish. 346 * Then use call_rcu_tasks() to wait for the rest of trampoline asm 347 * and normal progs. 348 */ 349 call_rcu_tasks_trace(&im->rcu, __bpf_tramp_image_put_rcu_tasks); 350 } 351 352 static struct bpf_tramp_image *bpf_tramp_image_alloc(u64 key) 353 { 354 struct bpf_tramp_image *im; 355 struct bpf_ksym *ksym; 356 void *image; 357 int err = -ENOMEM; 358 359 im = kzalloc(sizeof(*im), GFP_KERNEL); 360 if (!im) 361 goto out; 362 363 err = bpf_jit_charge_modmem(PAGE_SIZE); 364 if (err) 365 goto out_free_im; 366 367 err = -ENOMEM; 368 im->image = image = bpf_jit_alloc_exec(PAGE_SIZE); 369 if (!image) 370 goto out_uncharge; 371 set_vm_flush_reset_perms(image); 372 373 err = percpu_ref_init(&im->pcref, __bpf_tramp_image_release, 0, GFP_KERNEL); 374 if (err) 375 goto out_free_image; 376 377 ksym = &im->ksym; 378 INIT_LIST_HEAD_RCU(&ksym->lnode); 379 snprintf(ksym->name, KSYM_NAME_LEN, "bpf_trampoline_%llu", key); 380 bpf_image_ksym_add(image, ksym); 381 return im; 382 383 out_free_image: 384 bpf_jit_free_exec(im->image); 385 out_uncharge: 386 bpf_jit_uncharge_modmem(PAGE_SIZE); 387 out_free_im: 388 kfree(im); 389 out: 390 return ERR_PTR(err); 391 } 392 393 static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex) 394 { 395 struct bpf_tramp_image *im; 396 struct bpf_tramp_links *tlinks; 397 u32 orig_flags = tr->flags; 398 bool ip_arg = false; 399 int err, total; 400 401 tlinks = bpf_trampoline_get_progs(tr, &total, &ip_arg); 402 if (IS_ERR(tlinks)) 403 return PTR_ERR(tlinks); 404 405 if (total == 0) { 406 err = unregister_fentry(tr, tr->cur_image->image); 407 bpf_tramp_image_put(tr->cur_image); 408 tr->cur_image = NULL; 409 goto out; 410 } 411 412 im = bpf_tramp_image_alloc(tr->key); 413 if (IS_ERR(im)) { 414 err = PTR_ERR(im); 415 goto out; 416 } 417 418 /* clear all bits except SHARE_IPMODIFY */ 419 tr->flags &= BPF_TRAMP_F_SHARE_IPMODIFY; 420 421 if (tlinks[BPF_TRAMP_FEXIT].nr_links || 422 tlinks[BPF_TRAMP_MODIFY_RETURN].nr_links) { 423 /* NOTE: BPF_TRAMP_F_RESTORE_REGS and BPF_TRAMP_F_SKIP_FRAME 424 * should not be set together. 425 */ 426 tr->flags |= BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME; 427 } else { 428 tr->flags |= BPF_TRAMP_F_RESTORE_REGS; 429 } 430 431 if (ip_arg) 432 tr->flags |= BPF_TRAMP_F_IP_ARG; 433 434 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 435 again: 436 if ((tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY) && 437 (tr->flags & BPF_TRAMP_F_CALL_ORIG)) 438 tr->flags |= BPF_TRAMP_F_ORIG_STACK; 439 #endif 440 441 err = arch_prepare_bpf_trampoline(im, im->image, im->image + PAGE_SIZE, 442 &tr->func.model, tr->flags, tlinks, 443 tr->func.addr); 444 if (err < 0) 445 goto out_free; 446 447 set_memory_rox((long)im->image, 1); 448 449 WARN_ON(tr->cur_image && total == 0); 450 if (tr->cur_image) 451 /* progs already running at this address */ 452 err = modify_fentry(tr, tr->cur_image->image, im->image, lock_direct_mutex); 453 else 454 /* first time registering */ 455 err = register_fentry(tr, im->image); 456 457 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 458 if (err == -EAGAIN) { 459 /* -EAGAIN from bpf_tramp_ftrace_ops_func. Now 460 * BPF_TRAMP_F_SHARE_IPMODIFY is set, we can generate the 461 * trampoline again, and retry register. 462 */ 463 /* reset fops->func and fops->trampoline for re-register */ 464 tr->fops->func = NULL; 465 tr->fops->trampoline = 0; 466 467 /* reset im->image memory attr for arch_prepare_bpf_trampoline */ 468 set_memory_nx((long)im->image, 1); 469 set_memory_rw((long)im->image, 1); 470 goto again; 471 } 472 #endif 473 if (err) 474 goto out_free; 475 476 if (tr->cur_image) 477 bpf_tramp_image_put(tr->cur_image); 478 tr->cur_image = im; 479 out: 480 /* If any error happens, restore previous flags */ 481 if (err) 482 tr->flags = orig_flags; 483 kfree(tlinks); 484 return err; 485 486 out_free: 487 bpf_tramp_image_free(im); 488 goto out; 489 } 490 491 static enum bpf_tramp_prog_type bpf_attach_type_to_tramp(struct bpf_prog *prog) 492 { 493 switch (prog->expected_attach_type) { 494 case BPF_TRACE_FENTRY: 495 return BPF_TRAMP_FENTRY; 496 case BPF_MODIFY_RETURN: 497 return BPF_TRAMP_MODIFY_RETURN; 498 case BPF_TRACE_FEXIT: 499 return BPF_TRAMP_FEXIT; 500 case BPF_LSM_MAC: 501 if (!prog->aux->attach_func_proto->type) 502 /* The function returns void, we cannot modify its 503 * return value. 504 */ 505 return BPF_TRAMP_FEXIT; 506 else 507 return BPF_TRAMP_MODIFY_RETURN; 508 default: 509 return BPF_TRAMP_REPLACE; 510 } 511 } 512 513 static int __bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr) 514 { 515 enum bpf_tramp_prog_type kind; 516 struct bpf_tramp_link *link_exiting; 517 int err = 0; 518 int cnt = 0, i; 519 520 kind = bpf_attach_type_to_tramp(link->link.prog); 521 if (tr->extension_prog) 522 /* cannot attach fentry/fexit if extension prog is attached. 523 * cannot overwrite extension prog either. 524 */ 525 return -EBUSY; 526 527 for (i = 0; i < BPF_TRAMP_MAX; i++) 528 cnt += tr->progs_cnt[i]; 529 530 if (kind == BPF_TRAMP_REPLACE) { 531 /* Cannot attach extension if fentry/fexit are in use. */ 532 if (cnt) 533 return -EBUSY; 534 tr->extension_prog = link->link.prog; 535 return bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP, NULL, 536 link->link.prog->bpf_func); 537 } 538 if (cnt >= BPF_MAX_TRAMP_LINKS) 539 return -E2BIG; 540 if (!hlist_unhashed(&link->tramp_hlist)) 541 /* prog already linked */ 542 return -EBUSY; 543 hlist_for_each_entry(link_exiting, &tr->progs_hlist[kind], tramp_hlist) { 544 if (link_exiting->link.prog != link->link.prog) 545 continue; 546 /* prog already linked */ 547 return -EBUSY; 548 } 549 550 hlist_add_head(&link->tramp_hlist, &tr->progs_hlist[kind]); 551 tr->progs_cnt[kind]++; 552 err = bpf_trampoline_update(tr, true /* lock_direct_mutex */); 553 if (err) { 554 hlist_del_init(&link->tramp_hlist); 555 tr->progs_cnt[kind]--; 556 } 557 return err; 558 } 559 560 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr) 561 { 562 int err; 563 564 mutex_lock(&tr->mutex); 565 err = __bpf_trampoline_link_prog(link, tr); 566 mutex_unlock(&tr->mutex); 567 return err; 568 } 569 570 static int __bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr) 571 { 572 enum bpf_tramp_prog_type kind; 573 int err; 574 575 kind = bpf_attach_type_to_tramp(link->link.prog); 576 if (kind == BPF_TRAMP_REPLACE) { 577 WARN_ON_ONCE(!tr->extension_prog); 578 err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP, 579 tr->extension_prog->bpf_func, NULL); 580 tr->extension_prog = NULL; 581 return err; 582 } 583 hlist_del_init(&link->tramp_hlist); 584 tr->progs_cnt[kind]--; 585 return bpf_trampoline_update(tr, true /* lock_direct_mutex */); 586 } 587 588 /* bpf_trampoline_unlink_prog() should never fail. */ 589 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr) 590 { 591 int err; 592 593 mutex_lock(&tr->mutex); 594 err = __bpf_trampoline_unlink_prog(link, tr); 595 mutex_unlock(&tr->mutex); 596 return err; 597 } 598 599 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 600 static void bpf_shim_tramp_link_release(struct bpf_link *link) 601 { 602 struct bpf_shim_tramp_link *shim_link = 603 container_of(link, struct bpf_shim_tramp_link, link.link); 604 605 /* paired with 'shim_link->trampoline = tr' in bpf_trampoline_link_cgroup_shim */ 606 if (!shim_link->trampoline) 607 return; 608 609 WARN_ON_ONCE(bpf_trampoline_unlink_prog(&shim_link->link, shim_link->trampoline)); 610 bpf_trampoline_put(shim_link->trampoline); 611 } 612 613 static void bpf_shim_tramp_link_dealloc(struct bpf_link *link) 614 { 615 struct bpf_shim_tramp_link *shim_link = 616 container_of(link, struct bpf_shim_tramp_link, link.link); 617 618 kfree(shim_link); 619 } 620 621 static const struct bpf_link_ops bpf_shim_tramp_link_lops = { 622 .release = bpf_shim_tramp_link_release, 623 .dealloc = bpf_shim_tramp_link_dealloc, 624 }; 625 626 static struct bpf_shim_tramp_link *cgroup_shim_alloc(const struct bpf_prog *prog, 627 bpf_func_t bpf_func, 628 int cgroup_atype) 629 { 630 struct bpf_shim_tramp_link *shim_link = NULL; 631 struct bpf_prog *p; 632 633 shim_link = kzalloc(sizeof(*shim_link), GFP_USER); 634 if (!shim_link) 635 return NULL; 636 637 p = bpf_prog_alloc(1, 0); 638 if (!p) { 639 kfree(shim_link); 640 return NULL; 641 } 642 643 p->jited = false; 644 p->bpf_func = bpf_func; 645 646 p->aux->cgroup_atype = cgroup_atype; 647 p->aux->attach_func_proto = prog->aux->attach_func_proto; 648 p->aux->attach_btf_id = prog->aux->attach_btf_id; 649 p->aux->attach_btf = prog->aux->attach_btf; 650 btf_get(p->aux->attach_btf); 651 p->type = BPF_PROG_TYPE_LSM; 652 p->expected_attach_type = BPF_LSM_MAC; 653 bpf_prog_inc(p); 654 bpf_link_init(&shim_link->link.link, BPF_LINK_TYPE_UNSPEC, 655 &bpf_shim_tramp_link_lops, p); 656 bpf_cgroup_atype_get(p->aux->attach_btf_id, cgroup_atype); 657 658 return shim_link; 659 } 660 661 static struct bpf_shim_tramp_link *cgroup_shim_find(struct bpf_trampoline *tr, 662 bpf_func_t bpf_func) 663 { 664 struct bpf_tramp_link *link; 665 int kind; 666 667 for (kind = 0; kind < BPF_TRAMP_MAX; kind++) { 668 hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) { 669 struct bpf_prog *p = link->link.prog; 670 671 if (p->bpf_func == bpf_func) 672 return container_of(link, struct bpf_shim_tramp_link, link); 673 } 674 } 675 676 return NULL; 677 } 678 679 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 680 int cgroup_atype) 681 { 682 struct bpf_shim_tramp_link *shim_link = NULL; 683 struct bpf_attach_target_info tgt_info = {}; 684 struct bpf_trampoline *tr; 685 bpf_func_t bpf_func; 686 u64 key; 687 int err; 688 689 err = bpf_check_attach_target(NULL, prog, NULL, 690 prog->aux->attach_btf_id, 691 &tgt_info); 692 if (err) 693 return err; 694 695 key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf, 696 prog->aux->attach_btf_id); 697 698 bpf_lsm_find_cgroup_shim(prog, &bpf_func); 699 tr = bpf_trampoline_get(key, &tgt_info); 700 if (!tr) 701 return -ENOMEM; 702 703 mutex_lock(&tr->mutex); 704 705 shim_link = cgroup_shim_find(tr, bpf_func); 706 if (shim_link) { 707 /* Reusing existing shim attached by the other program. */ 708 bpf_link_inc(&shim_link->link.link); 709 710 mutex_unlock(&tr->mutex); 711 bpf_trampoline_put(tr); /* bpf_trampoline_get above */ 712 return 0; 713 } 714 715 /* Allocate and install new shim. */ 716 717 shim_link = cgroup_shim_alloc(prog, bpf_func, cgroup_atype); 718 if (!shim_link) { 719 err = -ENOMEM; 720 goto err; 721 } 722 723 err = __bpf_trampoline_link_prog(&shim_link->link, tr); 724 if (err) 725 goto err; 726 727 shim_link->trampoline = tr; 728 /* note, we're still holding tr refcnt from above */ 729 730 mutex_unlock(&tr->mutex); 731 732 return 0; 733 err: 734 mutex_unlock(&tr->mutex); 735 736 if (shim_link) 737 bpf_link_put(&shim_link->link.link); 738 739 /* have to release tr while _not_ holding its mutex */ 740 bpf_trampoline_put(tr); /* bpf_trampoline_get above */ 741 742 return err; 743 } 744 745 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 746 { 747 struct bpf_shim_tramp_link *shim_link = NULL; 748 struct bpf_trampoline *tr; 749 bpf_func_t bpf_func; 750 u64 key; 751 752 key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf, 753 prog->aux->attach_btf_id); 754 755 bpf_lsm_find_cgroup_shim(prog, &bpf_func); 756 tr = bpf_trampoline_lookup(key); 757 if (WARN_ON_ONCE(!tr)) 758 return; 759 760 mutex_lock(&tr->mutex); 761 shim_link = cgroup_shim_find(tr, bpf_func); 762 mutex_unlock(&tr->mutex); 763 764 if (shim_link) 765 bpf_link_put(&shim_link->link.link); 766 767 bpf_trampoline_put(tr); /* bpf_trampoline_lookup above */ 768 } 769 #endif 770 771 struct bpf_trampoline *bpf_trampoline_get(u64 key, 772 struct bpf_attach_target_info *tgt_info) 773 { 774 struct bpf_trampoline *tr; 775 776 tr = bpf_trampoline_lookup(key); 777 if (!tr) 778 return NULL; 779 780 mutex_lock(&tr->mutex); 781 if (tr->func.addr) 782 goto out; 783 784 memcpy(&tr->func.model, &tgt_info->fmodel, sizeof(tgt_info->fmodel)); 785 tr->func.addr = (void *)tgt_info->tgt_addr; 786 out: 787 mutex_unlock(&tr->mutex); 788 return tr; 789 } 790 791 void bpf_trampoline_put(struct bpf_trampoline *tr) 792 { 793 int i; 794 795 if (!tr) 796 return; 797 mutex_lock(&trampoline_mutex); 798 if (!refcount_dec_and_test(&tr->refcnt)) 799 goto out; 800 WARN_ON_ONCE(mutex_is_locked(&tr->mutex)); 801 802 for (i = 0; i < BPF_TRAMP_MAX; i++) 803 if (WARN_ON_ONCE(!hlist_empty(&tr->progs_hlist[i]))) 804 goto out; 805 806 /* This code will be executed even when the last bpf_tramp_image 807 * is alive. All progs are detached from the trampoline and the 808 * trampoline image is patched with jmp into epilogue to skip 809 * fexit progs. The fentry-only trampoline will be freed via 810 * multiple rcu callbacks. 811 */ 812 hlist_del(&tr->hlist); 813 if (tr->fops) { 814 ftrace_free_filter(tr->fops); 815 kfree(tr->fops); 816 } 817 kfree(tr); 818 out: 819 mutex_unlock(&trampoline_mutex); 820 } 821 822 #define NO_START_TIME 1 823 static __always_inline u64 notrace bpf_prog_start_time(void) 824 { 825 u64 start = NO_START_TIME; 826 827 if (static_branch_unlikely(&bpf_stats_enabled_key)) { 828 start = sched_clock(); 829 if (unlikely(!start)) 830 start = NO_START_TIME; 831 } 832 return start; 833 } 834 835 /* The logic is similar to bpf_prog_run(), but with an explicit 836 * rcu_read_lock() and migrate_disable() which are required 837 * for the trampoline. The macro is split into 838 * call __bpf_prog_enter 839 * call prog->bpf_func 840 * call __bpf_prog_exit 841 * 842 * __bpf_prog_enter returns: 843 * 0 - skip execution of the bpf prog 844 * 1 - execute bpf prog 845 * [2..MAX_U64] - execute bpf prog and record execution time. 846 * This is start time. 847 */ 848 static u64 notrace __bpf_prog_enter_recur(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx) 849 __acquires(RCU) 850 { 851 rcu_read_lock(); 852 migrate_disable(); 853 854 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); 855 856 if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) { 857 bpf_prog_inc_misses_counter(prog); 858 return 0; 859 } 860 return bpf_prog_start_time(); 861 } 862 863 static void notrace update_prog_stats(struct bpf_prog *prog, 864 u64 start) 865 { 866 struct bpf_prog_stats *stats; 867 868 if (static_branch_unlikely(&bpf_stats_enabled_key) && 869 /* static_key could be enabled in __bpf_prog_enter* 870 * and disabled in __bpf_prog_exit*. 871 * And vice versa. 872 * Hence check that 'start' is valid. 873 */ 874 start > NO_START_TIME) { 875 unsigned long flags; 876 877 stats = this_cpu_ptr(prog->stats); 878 flags = u64_stats_update_begin_irqsave(&stats->syncp); 879 u64_stats_inc(&stats->cnt); 880 u64_stats_add(&stats->nsecs, sched_clock() - start); 881 u64_stats_update_end_irqrestore(&stats->syncp, flags); 882 } 883 } 884 885 static void notrace __bpf_prog_exit_recur(struct bpf_prog *prog, u64 start, 886 struct bpf_tramp_run_ctx *run_ctx) 887 __releases(RCU) 888 { 889 bpf_reset_run_ctx(run_ctx->saved_run_ctx); 890 891 update_prog_stats(prog, start); 892 this_cpu_dec(*(prog->active)); 893 migrate_enable(); 894 rcu_read_unlock(); 895 } 896 897 static u64 notrace __bpf_prog_enter_lsm_cgroup(struct bpf_prog *prog, 898 struct bpf_tramp_run_ctx *run_ctx) 899 __acquires(RCU) 900 { 901 /* Runtime stats are exported via actual BPF_LSM_CGROUP 902 * programs, not the shims. 903 */ 904 rcu_read_lock(); 905 migrate_disable(); 906 907 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); 908 909 return NO_START_TIME; 910 } 911 912 static void notrace __bpf_prog_exit_lsm_cgroup(struct bpf_prog *prog, u64 start, 913 struct bpf_tramp_run_ctx *run_ctx) 914 __releases(RCU) 915 { 916 bpf_reset_run_ctx(run_ctx->saved_run_ctx); 917 918 migrate_enable(); 919 rcu_read_unlock(); 920 } 921 922 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 923 struct bpf_tramp_run_ctx *run_ctx) 924 { 925 rcu_read_lock_trace(); 926 migrate_disable(); 927 might_fault(); 928 929 if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) { 930 bpf_prog_inc_misses_counter(prog); 931 return 0; 932 } 933 934 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); 935 936 return bpf_prog_start_time(); 937 } 938 939 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 940 struct bpf_tramp_run_ctx *run_ctx) 941 { 942 bpf_reset_run_ctx(run_ctx->saved_run_ctx); 943 944 update_prog_stats(prog, start); 945 this_cpu_dec(*(prog->active)); 946 migrate_enable(); 947 rcu_read_unlock_trace(); 948 } 949 950 static u64 notrace __bpf_prog_enter_sleepable(struct bpf_prog *prog, 951 struct bpf_tramp_run_ctx *run_ctx) 952 { 953 rcu_read_lock_trace(); 954 migrate_disable(); 955 might_fault(); 956 957 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); 958 959 return bpf_prog_start_time(); 960 } 961 962 static void notrace __bpf_prog_exit_sleepable(struct bpf_prog *prog, u64 start, 963 struct bpf_tramp_run_ctx *run_ctx) 964 { 965 bpf_reset_run_ctx(run_ctx->saved_run_ctx); 966 967 update_prog_stats(prog, start); 968 migrate_enable(); 969 rcu_read_unlock_trace(); 970 } 971 972 static u64 notrace __bpf_prog_enter(struct bpf_prog *prog, 973 struct bpf_tramp_run_ctx *run_ctx) 974 __acquires(RCU) 975 { 976 rcu_read_lock(); 977 migrate_disable(); 978 979 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); 980 981 return bpf_prog_start_time(); 982 } 983 984 static void notrace __bpf_prog_exit(struct bpf_prog *prog, u64 start, 985 struct bpf_tramp_run_ctx *run_ctx) 986 __releases(RCU) 987 { 988 bpf_reset_run_ctx(run_ctx->saved_run_ctx); 989 990 update_prog_stats(prog, start); 991 migrate_enable(); 992 rcu_read_unlock(); 993 } 994 995 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr) 996 { 997 percpu_ref_get(&tr->pcref); 998 } 999 1000 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr) 1001 { 1002 percpu_ref_put(&tr->pcref); 1003 } 1004 1005 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog) 1006 { 1007 bool sleepable = prog->aux->sleepable; 1008 1009 if (bpf_prog_check_recur(prog)) 1010 return sleepable ? __bpf_prog_enter_sleepable_recur : 1011 __bpf_prog_enter_recur; 1012 1013 if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM && 1014 prog->expected_attach_type == BPF_LSM_CGROUP) 1015 return __bpf_prog_enter_lsm_cgroup; 1016 1017 return sleepable ? __bpf_prog_enter_sleepable : __bpf_prog_enter; 1018 } 1019 1020 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog) 1021 { 1022 bool sleepable = prog->aux->sleepable; 1023 1024 if (bpf_prog_check_recur(prog)) 1025 return sleepable ? __bpf_prog_exit_sleepable_recur : 1026 __bpf_prog_exit_recur; 1027 1028 if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM && 1029 prog->expected_attach_type == BPF_LSM_CGROUP) 1030 return __bpf_prog_exit_lsm_cgroup; 1031 1032 return sleepable ? __bpf_prog_exit_sleepable : __bpf_prog_exit; 1033 } 1034 1035 int __weak 1036 arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end, 1037 const struct btf_func_model *m, u32 flags, 1038 struct bpf_tramp_links *tlinks, 1039 void *orig_call) 1040 { 1041 return -ENOTSUPP; 1042 } 1043 1044 static int __init init_trampolines(void) 1045 { 1046 int i; 1047 1048 for (i = 0; i < TRAMPOLINE_TABLE_SIZE; i++) 1049 INIT_HLIST_HEAD(&trampoline_table[i]); 1050 return 0; 1051 } 1052 late_initcall(init_trampolines); 1053