xref: /linux/kernel/bpf/trampoline.c (revision ae4a3160d19cd16b874737ebc1798c7bc2fe3c9e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2019 Facebook */
3 #include <linux/hash.h>
4 #include <linux/bpf.h>
5 #include <linux/filter.h>
6 #include <linux/ftrace.h>
7 #include <linux/rbtree_latch.h>
8 #include <linux/perf_event.h>
9 #include <linux/btf.h>
10 #include <linux/rcupdate_trace.h>
11 #include <linux/rcupdate_wait.h>
12 #include <linux/static_call.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/bpf_lsm.h>
15 #include <linux/delay.h>
16 
17 /* dummy _ops. The verifier will operate on target program's ops. */
18 const struct bpf_verifier_ops bpf_extension_verifier_ops = {
19 };
20 const struct bpf_prog_ops bpf_extension_prog_ops = {
21 };
22 
23 /* btf_vmlinux has ~22k attachable functions. 1k htab is enough. */
24 #define TRAMPOLINE_HASH_BITS 10
25 #define TRAMPOLINE_TABLE_SIZE (1 << TRAMPOLINE_HASH_BITS)
26 
27 static struct hlist_head trampoline_table[TRAMPOLINE_TABLE_SIZE];
28 
29 /* serializes access to trampoline_table */
30 static DEFINE_MUTEX(trampoline_mutex);
31 
32 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
33 static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex);
34 
35 static int bpf_tramp_ftrace_ops_func(struct ftrace_ops *ops, enum ftrace_ops_cmd cmd)
36 {
37 	struct bpf_trampoline *tr = ops->private;
38 	int ret = 0;
39 
40 	if (cmd == FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF) {
41 		/* This is called inside register_ftrace_direct_multi(), so
42 		 * tr->mutex is already locked.
43 		 */
44 		lockdep_assert_held_once(&tr->mutex);
45 
46 		/* Instead of updating the trampoline here, we propagate
47 		 * -EAGAIN to register_ftrace_direct(). Then we can
48 		 * retry register_ftrace_direct() after updating the
49 		 * trampoline.
50 		 */
51 		if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) &&
52 		    !(tr->flags & BPF_TRAMP_F_ORIG_STACK)) {
53 			if (WARN_ON_ONCE(tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY))
54 				return -EBUSY;
55 
56 			tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY;
57 			return -EAGAIN;
58 		}
59 
60 		return 0;
61 	}
62 
63 	/* The normal locking order is
64 	 *    tr->mutex => direct_mutex (ftrace.c) => ftrace_lock (ftrace.c)
65 	 *
66 	 * The following two commands are called from
67 	 *
68 	 *   prepare_direct_functions_for_ipmodify
69 	 *   cleanup_direct_functions_after_ipmodify
70 	 *
71 	 * In both cases, direct_mutex is already locked. Use
72 	 * mutex_trylock(&tr->mutex) to avoid deadlock in race condition
73 	 * (something else is making changes to this same trampoline).
74 	 */
75 	if (!mutex_trylock(&tr->mutex)) {
76 		/* sleep 1 ms to make sure whatever holding tr->mutex makes
77 		 * some progress.
78 		 */
79 		msleep(1);
80 		return -EAGAIN;
81 	}
82 
83 	switch (cmd) {
84 	case FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER:
85 		tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY;
86 
87 		if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) &&
88 		    !(tr->flags & BPF_TRAMP_F_ORIG_STACK))
89 			ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */);
90 		break;
91 	case FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER:
92 		tr->flags &= ~BPF_TRAMP_F_SHARE_IPMODIFY;
93 
94 		if (tr->flags & BPF_TRAMP_F_ORIG_STACK)
95 			ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */);
96 		break;
97 	default:
98 		ret = -EINVAL;
99 		break;
100 	}
101 
102 	mutex_unlock(&tr->mutex);
103 	return ret;
104 }
105 #endif
106 
107 bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
108 {
109 	enum bpf_attach_type eatype = prog->expected_attach_type;
110 	enum bpf_prog_type ptype = prog->type;
111 
112 	return (ptype == BPF_PROG_TYPE_TRACING &&
113 		(eatype == BPF_TRACE_FENTRY || eatype == BPF_TRACE_FEXIT ||
114 		 eatype == BPF_MODIFY_RETURN)) ||
115 		(ptype == BPF_PROG_TYPE_LSM && eatype == BPF_LSM_MAC);
116 }
117 
118 void bpf_image_ksym_init(void *data, unsigned int size, struct bpf_ksym *ksym)
119 {
120 	ksym->start = (unsigned long) data;
121 	ksym->end = ksym->start + size;
122 }
123 
124 void bpf_image_ksym_add(struct bpf_ksym *ksym)
125 {
126 	bpf_ksym_add(ksym);
127 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start,
128 			   PAGE_SIZE, false, ksym->name);
129 }
130 
131 void bpf_image_ksym_del(struct bpf_ksym *ksym)
132 {
133 	bpf_ksym_del(ksym);
134 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start,
135 			   PAGE_SIZE, true, ksym->name);
136 }
137 
138 static struct bpf_trampoline *bpf_trampoline_lookup(u64 key)
139 {
140 	struct bpf_trampoline *tr;
141 	struct hlist_head *head;
142 	int i;
143 
144 	mutex_lock(&trampoline_mutex);
145 	head = &trampoline_table[hash_64(key, TRAMPOLINE_HASH_BITS)];
146 	hlist_for_each_entry(tr, head, hlist) {
147 		if (tr->key == key) {
148 			refcount_inc(&tr->refcnt);
149 			goto out;
150 		}
151 	}
152 	tr = kzalloc(sizeof(*tr), GFP_KERNEL);
153 	if (!tr)
154 		goto out;
155 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
156 	tr->fops = kzalloc(sizeof(struct ftrace_ops), GFP_KERNEL);
157 	if (!tr->fops) {
158 		kfree(tr);
159 		tr = NULL;
160 		goto out;
161 	}
162 	tr->fops->private = tr;
163 	tr->fops->ops_func = bpf_tramp_ftrace_ops_func;
164 #endif
165 
166 	tr->key = key;
167 	INIT_HLIST_NODE(&tr->hlist);
168 	hlist_add_head(&tr->hlist, head);
169 	refcount_set(&tr->refcnt, 1);
170 	mutex_init(&tr->mutex);
171 	for (i = 0; i < BPF_TRAMP_MAX; i++)
172 		INIT_HLIST_HEAD(&tr->progs_hlist[i]);
173 out:
174 	mutex_unlock(&trampoline_mutex);
175 	return tr;
176 }
177 
178 static int unregister_fentry(struct bpf_trampoline *tr, void *old_addr)
179 {
180 	void *ip = tr->func.addr;
181 	int ret;
182 
183 	if (tr->func.ftrace_managed)
184 		ret = unregister_ftrace_direct(tr->fops, (long)old_addr, false);
185 	else
186 		ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, BPF_MOD_NOP,
187 					 old_addr, NULL);
188 
189 	return ret;
190 }
191 
192 static int modify_fentry(struct bpf_trampoline *tr, void *old_addr, void *new_addr,
193 			 bool lock_direct_mutex)
194 {
195 	void *ip = tr->func.addr;
196 	int ret;
197 
198 	if (tr->func.ftrace_managed) {
199 		if (lock_direct_mutex)
200 			ret = modify_ftrace_direct(tr->fops, (long)new_addr);
201 		else
202 			ret = modify_ftrace_direct_nolock(tr->fops, (long)new_addr);
203 	} else {
204 		ret = bpf_arch_text_poke(ip,
205 					 old_addr ? BPF_MOD_CALL : BPF_MOD_NOP,
206 					 new_addr ? BPF_MOD_CALL : BPF_MOD_NOP,
207 					 old_addr, new_addr);
208 	}
209 	return ret;
210 }
211 
212 /* first time registering */
213 static int register_fentry(struct bpf_trampoline *tr, void *new_addr)
214 {
215 	void *ip = tr->func.addr;
216 	unsigned long faddr;
217 	int ret;
218 
219 	faddr = ftrace_location((unsigned long)ip);
220 	if (faddr) {
221 		if (!tr->fops)
222 			return -ENOTSUPP;
223 		tr->func.ftrace_managed = true;
224 	}
225 
226 	if (tr->func.ftrace_managed) {
227 		ret = ftrace_set_filter_ip(tr->fops, (unsigned long)ip, 0, 1);
228 		if (ret)
229 			return ret;
230 		ret = register_ftrace_direct(tr->fops, (long)new_addr);
231 	} else {
232 		ret = bpf_arch_text_poke(ip, BPF_MOD_NOP, BPF_MOD_CALL,
233 					 NULL, new_addr);
234 	}
235 
236 	return ret;
237 }
238 
239 static struct bpf_tramp_links *
240 bpf_trampoline_get_progs(const struct bpf_trampoline *tr, int *total, bool *ip_arg)
241 {
242 	struct bpf_tramp_link *link;
243 	struct bpf_tramp_links *tlinks;
244 	struct bpf_tramp_link **links;
245 	int kind;
246 
247 	*total = 0;
248 	tlinks = kcalloc(BPF_TRAMP_MAX, sizeof(*tlinks), GFP_KERNEL);
249 	if (!tlinks)
250 		return ERR_PTR(-ENOMEM);
251 
252 	for (kind = 0; kind < BPF_TRAMP_MAX; kind++) {
253 		tlinks[kind].nr_links = tr->progs_cnt[kind];
254 		*total += tr->progs_cnt[kind];
255 		links = tlinks[kind].links;
256 
257 		hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) {
258 			*ip_arg |= link->link.prog->call_get_func_ip;
259 			*links++ = link;
260 		}
261 	}
262 	return tlinks;
263 }
264 
265 static void bpf_tramp_image_free(struct bpf_tramp_image *im)
266 {
267 	bpf_image_ksym_del(&im->ksym);
268 	arch_free_bpf_trampoline(im->image, im->size);
269 	bpf_jit_uncharge_modmem(im->size);
270 	percpu_ref_exit(&im->pcref);
271 	kfree_rcu(im, rcu);
272 }
273 
274 static void __bpf_tramp_image_put_deferred(struct work_struct *work)
275 {
276 	struct bpf_tramp_image *im;
277 
278 	im = container_of(work, struct bpf_tramp_image, work);
279 	bpf_tramp_image_free(im);
280 }
281 
282 /* callback, fexit step 3 or fentry step 2 */
283 static void __bpf_tramp_image_put_rcu(struct rcu_head *rcu)
284 {
285 	struct bpf_tramp_image *im;
286 
287 	im = container_of(rcu, struct bpf_tramp_image, rcu);
288 	INIT_WORK(&im->work, __bpf_tramp_image_put_deferred);
289 	schedule_work(&im->work);
290 }
291 
292 /* callback, fexit step 2. Called after percpu_ref_kill confirms. */
293 static void __bpf_tramp_image_release(struct percpu_ref *pcref)
294 {
295 	struct bpf_tramp_image *im;
296 
297 	im = container_of(pcref, struct bpf_tramp_image, pcref);
298 	call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu);
299 }
300 
301 /* callback, fexit or fentry step 1 */
302 static void __bpf_tramp_image_put_rcu_tasks(struct rcu_head *rcu)
303 {
304 	struct bpf_tramp_image *im;
305 
306 	im = container_of(rcu, struct bpf_tramp_image, rcu);
307 	if (im->ip_after_call)
308 		/* the case of fmod_ret/fexit trampoline and CONFIG_PREEMPTION=y */
309 		percpu_ref_kill(&im->pcref);
310 	else
311 		/* the case of fentry trampoline */
312 		call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu);
313 }
314 
315 static void bpf_tramp_image_put(struct bpf_tramp_image *im)
316 {
317 	/* The trampoline image that calls original function is using:
318 	 * rcu_read_lock_trace to protect sleepable bpf progs
319 	 * rcu_read_lock to protect normal bpf progs
320 	 * percpu_ref to protect trampoline itself
321 	 * rcu tasks to protect trampoline asm not covered by percpu_ref
322 	 * (which are few asm insns before __bpf_tramp_enter and
323 	 *  after __bpf_tramp_exit)
324 	 *
325 	 * The trampoline is unreachable before bpf_tramp_image_put().
326 	 *
327 	 * First, patch the trampoline to avoid calling into fexit progs.
328 	 * The progs will be freed even if the original function is still
329 	 * executing or sleeping.
330 	 * In case of CONFIG_PREEMPT=y use call_rcu_tasks() to wait on
331 	 * first few asm instructions to execute and call into
332 	 * __bpf_tramp_enter->percpu_ref_get.
333 	 * Then use percpu_ref_kill to wait for the trampoline and the original
334 	 * function to finish.
335 	 * Then use call_rcu_tasks() to make sure few asm insns in
336 	 * the trampoline epilogue are done as well.
337 	 *
338 	 * In !PREEMPT case the task that got interrupted in the first asm
339 	 * insns won't go through an RCU quiescent state which the
340 	 * percpu_ref_kill will be waiting for. Hence the first
341 	 * call_rcu_tasks() is not necessary.
342 	 */
343 	if (im->ip_after_call) {
344 		int err = bpf_arch_text_poke(im->ip_after_call, BPF_MOD_NOP,
345 					     BPF_MOD_JUMP, NULL,
346 					     im->ip_epilogue);
347 		WARN_ON(err);
348 		if (IS_ENABLED(CONFIG_TASKS_RCU))
349 			call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu_tasks);
350 		else
351 			percpu_ref_kill(&im->pcref);
352 		return;
353 	}
354 
355 	/* The trampoline without fexit and fmod_ret progs doesn't call original
356 	 * function and doesn't use percpu_ref.
357 	 * Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
358 	 * Then use call_rcu_tasks() to wait for the rest of trampoline asm
359 	 * and normal progs.
360 	 */
361 	call_rcu_tasks_trace(&im->rcu, __bpf_tramp_image_put_rcu_tasks);
362 }
363 
364 static struct bpf_tramp_image *bpf_tramp_image_alloc(u64 key, int size)
365 {
366 	struct bpf_tramp_image *im;
367 	struct bpf_ksym *ksym;
368 	void *image;
369 	int err = -ENOMEM;
370 
371 	im = kzalloc(sizeof(*im), GFP_KERNEL);
372 	if (!im)
373 		goto out;
374 
375 	err = bpf_jit_charge_modmem(size);
376 	if (err)
377 		goto out_free_im;
378 	im->size = size;
379 
380 	err = -ENOMEM;
381 	im->image = image = arch_alloc_bpf_trampoline(size);
382 	if (!image)
383 		goto out_uncharge;
384 
385 	err = percpu_ref_init(&im->pcref, __bpf_tramp_image_release, 0, GFP_KERNEL);
386 	if (err)
387 		goto out_free_image;
388 
389 	ksym = &im->ksym;
390 	INIT_LIST_HEAD_RCU(&ksym->lnode);
391 	snprintf(ksym->name, KSYM_NAME_LEN, "bpf_trampoline_%llu", key);
392 	bpf_image_ksym_init(image, size, ksym);
393 	bpf_image_ksym_add(ksym);
394 	return im;
395 
396 out_free_image:
397 	arch_free_bpf_trampoline(im->image, im->size);
398 out_uncharge:
399 	bpf_jit_uncharge_modmem(size);
400 out_free_im:
401 	kfree(im);
402 out:
403 	return ERR_PTR(err);
404 }
405 
406 static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex)
407 {
408 	struct bpf_tramp_image *im;
409 	struct bpf_tramp_links *tlinks;
410 	u32 orig_flags = tr->flags;
411 	bool ip_arg = false;
412 	int err, total, size;
413 
414 	tlinks = bpf_trampoline_get_progs(tr, &total, &ip_arg);
415 	if (IS_ERR(tlinks))
416 		return PTR_ERR(tlinks);
417 
418 	if (total == 0) {
419 		err = unregister_fentry(tr, tr->cur_image->image);
420 		bpf_tramp_image_put(tr->cur_image);
421 		tr->cur_image = NULL;
422 		goto out;
423 	}
424 
425 	/* clear all bits except SHARE_IPMODIFY and TAIL_CALL_CTX */
426 	tr->flags &= (BPF_TRAMP_F_SHARE_IPMODIFY | BPF_TRAMP_F_TAIL_CALL_CTX);
427 
428 	if (tlinks[BPF_TRAMP_FEXIT].nr_links ||
429 	    tlinks[BPF_TRAMP_MODIFY_RETURN].nr_links) {
430 		/* NOTE: BPF_TRAMP_F_RESTORE_REGS and BPF_TRAMP_F_SKIP_FRAME
431 		 * should not be set together.
432 		 */
433 		tr->flags |= BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME;
434 	} else {
435 		tr->flags |= BPF_TRAMP_F_RESTORE_REGS;
436 	}
437 
438 	if (ip_arg)
439 		tr->flags |= BPF_TRAMP_F_IP_ARG;
440 
441 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
442 again:
443 	if ((tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY) &&
444 	    (tr->flags & BPF_TRAMP_F_CALL_ORIG))
445 		tr->flags |= BPF_TRAMP_F_ORIG_STACK;
446 #endif
447 
448 	size = arch_bpf_trampoline_size(&tr->func.model, tr->flags,
449 					tlinks, tr->func.addr);
450 	if (size < 0) {
451 		err = size;
452 		goto out;
453 	}
454 
455 	if (size > PAGE_SIZE) {
456 		err = -E2BIG;
457 		goto out;
458 	}
459 
460 	im = bpf_tramp_image_alloc(tr->key, size);
461 	if (IS_ERR(im)) {
462 		err = PTR_ERR(im);
463 		goto out;
464 	}
465 
466 	err = arch_prepare_bpf_trampoline(im, im->image, im->image + size,
467 					  &tr->func.model, tr->flags, tlinks,
468 					  tr->func.addr);
469 	if (err < 0)
470 		goto out_free;
471 
472 	err = arch_protect_bpf_trampoline(im->image, im->size);
473 	if (err)
474 		goto out_free;
475 
476 	WARN_ON(tr->cur_image && total == 0);
477 	if (tr->cur_image)
478 		/* progs already running at this address */
479 		err = modify_fentry(tr, tr->cur_image->image, im->image, lock_direct_mutex);
480 	else
481 		/* first time registering */
482 		err = register_fentry(tr, im->image);
483 
484 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
485 	if (err == -EAGAIN) {
486 		/* -EAGAIN from bpf_tramp_ftrace_ops_func. Now
487 		 * BPF_TRAMP_F_SHARE_IPMODIFY is set, we can generate the
488 		 * trampoline again, and retry register.
489 		 */
490 		bpf_tramp_image_free(im);
491 		goto again;
492 	}
493 #endif
494 	if (err)
495 		goto out_free;
496 
497 	if (tr->cur_image)
498 		bpf_tramp_image_put(tr->cur_image);
499 	tr->cur_image = im;
500 out:
501 	/* If any error happens, restore previous flags */
502 	if (err)
503 		tr->flags = orig_flags;
504 	kfree(tlinks);
505 	return err;
506 
507 out_free:
508 	bpf_tramp_image_free(im);
509 	goto out;
510 }
511 
512 static enum bpf_tramp_prog_type bpf_attach_type_to_tramp(struct bpf_prog *prog)
513 {
514 	switch (prog->expected_attach_type) {
515 	case BPF_TRACE_FENTRY:
516 		return BPF_TRAMP_FENTRY;
517 	case BPF_MODIFY_RETURN:
518 		return BPF_TRAMP_MODIFY_RETURN;
519 	case BPF_TRACE_FEXIT:
520 		return BPF_TRAMP_FEXIT;
521 	case BPF_LSM_MAC:
522 		if (!prog->aux->attach_func_proto->type)
523 			/* The function returns void, we cannot modify its
524 			 * return value.
525 			 */
526 			return BPF_TRAMP_FEXIT;
527 		else
528 			return BPF_TRAMP_MODIFY_RETURN;
529 	default:
530 		return BPF_TRAMP_REPLACE;
531 	}
532 }
533 
534 static int bpf_freplace_check_tgt_prog(struct bpf_prog *tgt_prog)
535 {
536 	struct bpf_prog_aux *aux = tgt_prog->aux;
537 
538 	guard(mutex)(&aux->ext_mutex);
539 	if (aux->prog_array_member_cnt)
540 		/* Program extensions can not extend target prog when the target
541 		 * prog has been updated to any prog_array map as tail callee.
542 		 * It's to prevent a potential infinite loop like:
543 		 * tgt prog entry -> tgt prog subprog -> freplace prog entry
544 		 * --tailcall-> tgt prog entry.
545 		 */
546 		return -EBUSY;
547 
548 	aux->is_extended = true;
549 	return 0;
550 }
551 
552 static int __bpf_trampoline_link_prog(struct bpf_tramp_link *link,
553 				      struct bpf_trampoline *tr,
554 				      struct bpf_prog *tgt_prog)
555 {
556 	enum bpf_tramp_prog_type kind;
557 	struct bpf_tramp_link *link_exiting;
558 	int err = 0;
559 	int cnt = 0, i;
560 
561 	kind = bpf_attach_type_to_tramp(link->link.prog);
562 	if (tr->extension_prog)
563 		/* cannot attach fentry/fexit if extension prog is attached.
564 		 * cannot overwrite extension prog either.
565 		 */
566 		return -EBUSY;
567 
568 	for (i = 0; i < BPF_TRAMP_MAX; i++)
569 		cnt += tr->progs_cnt[i];
570 
571 	if (kind == BPF_TRAMP_REPLACE) {
572 		/* Cannot attach extension if fentry/fexit are in use. */
573 		if (cnt)
574 			return -EBUSY;
575 		err = bpf_freplace_check_tgt_prog(tgt_prog);
576 		if (err)
577 			return err;
578 		tr->extension_prog = link->link.prog;
579 		return bpf_arch_text_poke(tr->func.addr, BPF_MOD_NOP,
580 					  BPF_MOD_JUMP, NULL,
581 					  link->link.prog->bpf_func);
582 	}
583 	if (cnt >= BPF_MAX_TRAMP_LINKS)
584 		return -E2BIG;
585 	if (!hlist_unhashed(&link->tramp_hlist))
586 		/* prog already linked */
587 		return -EBUSY;
588 	hlist_for_each_entry(link_exiting, &tr->progs_hlist[kind], tramp_hlist) {
589 		if (link_exiting->link.prog != link->link.prog)
590 			continue;
591 		/* prog already linked */
592 		return -EBUSY;
593 	}
594 
595 	hlist_add_head(&link->tramp_hlist, &tr->progs_hlist[kind]);
596 	tr->progs_cnt[kind]++;
597 	err = bpf_trampoline_update(tr, true /* lock_direct_mutex */);
598 	if (err) {
599 		hlist_del_init(&link->tramp_hlist);
600 		tr->progs_cnt[kind]--;
601 	}
602 	return err;
603 }
604 
605 int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
606 			     struct bpf_trampoline *tr,
607 			     struct bpf_prog *tgt_prog)
608 {
609 	int err;
610 
611 	mutex_lock(&tr->mutex);
612 	err = __bpf_trampoline_link_prog(link, tr, tgt_prog);
613 	mutex_unlock(&tr->mutex);
614 	return err;
615 }
616 
617 static int __bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
618 					struct bpf_trampoline *tr,
619 					struct bpf_prog *tgt_prog)
620 {
621 	enum bpf_tramp_prog_type kind;
622 	int err;
623 
624 	kind = bpf_attach_type_to_tramp(link->link.prog);
625 	if (kind == BPF_TRAMP_REPLACE) {
626 		WARN_ON_ONCE(!tr->extension_prog);
627 		err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP,
628 					 BPF_MOD_NOP,
629 					 tr->extension_prog->bpf_func, NULL);
630 		tr->extension_prog = NULL;
631 		guard(mutex)(&tgt_prog->aux->ext_mutex);
632 		tgt_prog->aux->is_extended = false;
633 		return err;
634 	}
635 	hlist_del_init(&link->tramp_hlist);
636 	tr->progs_cnt[kind]--;
637 	return bpf_trampoline_update(tr, true /* lock_direct_mutex */);
638 }
639 
640 /* bpf_trampoline_unlink_prog() should never fail. */
641 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
642 			       struct bpf_trampoline *tr,
643 			       struct bpf_prog *tgt_prog)
644 {
645 	int err;
646 
647 	mutex_lock(&tr->mutex);
648 	err = __bpf_trampoline_unlink_prog(link, tr, tgt_prog);
649 	mutex_unlock(&tr->mutex);
650 	return err;
651 }
652 
653 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
654 static void bpf_shim_tramp_link_release(struct bpf_link *link)
655 {
656 	struct bpf_shim_tramp_link *shim_link =
657 		container_of(link, struct bpf_shim_tramp_link, link.link);
658 
659 	/* paired with 'shim_link->trampoline = tr' in bpf_trampoline_link_cgroup_shim */
660 	if (!shim_link->trampoline)
661 		return;
662 
663 	WARN_ON_ONCE(bpf_trampoline_unlink_prog(&shim_link->link, shim_link->trampoline, NULL));
664 	bpf_trampoline_put(shim_link->trampoline);
665 }
666 
667 static void bpf_shim_tramp_link_dealloc(struct bpf_link *link)
668 {
669 	struct bpf_shim_tramp_link *shim_link =
670 		container_of(link, struct bpf_shim_tramp_link, link.link);
671 
672 	kfree(shim_link);
673 }
674 
675 static const struct bpf_link_ops bpf_shim_tramp_link_lops = {
676 	.release = bpf_shim_tramp_link_release,
677 	.dealloc = bpf_shim_tramp_link_dealloc,
678 };
679 
680 static struct bpf_shim_tramp_link *cgroup_shim_alloc(const struct bpf_prog *prog,
681 						     bpf_func_t bpf_func,
682 						     int cgroup_atype,
683 						     enum bpf_attach_type attach_type)
684 {
685 	struct bpf_shim_tramp_link *shim_link = NULL;
686 	struct bpf_prog *p;
687 
688 	shim_link = kzalloc(sizeof(*shim_link), GFP_USER);
689 	if (!shim_link)
690 		return NULL;
691 
692 	p = bpf_prog_alloc(1, 0);
693 	if (!p) {
694 		kfree(shim_link);
695 		return NULL;
696 	}
697 
698 	p->jited = false;
699 	p->bpf_func = bpf_func;
700 
701 	p->aux->cgroup_atype = cgroup_atype;
702 	p->aux->attach_func_proto = prog->aux->attach_func_proto;
703 	p->aux->attach_btf_id = prog->aux->attach_btf_id;
704 	p->aux->attach_btf = prog->aux->attach_btf;
705 	btf_get(p->aux->attach_btf);
706 	p->type = BPF_PROG_TYPE_LSM;
707 	p->expected_attach_type = BPF_LSM_MAC;
708 	bpf_prog_inc(p);
709 	bpf_link_init(&shim_link->link.link, BPF_LINK_TYPE_UNSPEC,
710 		      &bpf_shim_tramp_link_lops, p, attach_type);
711 	bpf_cgroup_atype_get(p->aux->attach_btf_id, cgroup_atype);
712 
713 	return shim_link;
714 }
715 
716 static struct bpf_shim_tramp_link *cgroup_shim_find(struct bpf_trampoline *tr,
717 						    bpf_func_t bpf_func)
718 {
719 	struct bpf_tramp_link *link;
720 	int kind;
721 
722 	for (kind = 0; kind < BPF_TRAMP_MAX; kind++) {
723 		hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) {
724 			struct bpf_prog *p = link->link.prog;
725 
726 			if (p->bpf_func == bpf_func)
727 				return container_of(link, struct bpf_shim_tramp_link, link);
728 		}
729 	}
730 
731 	return NULL;
732 }
733 
734 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
735 				    int cgroup_atype,
736 				    enum bpf_attach_type attach_type)
737 {
738 	struct bpf_shim_tramp_link *shim_link = NULL;
739 	struct bpf_attach_target_info tgt_info = {};
740 	struct bpf_trampoline *tr;
741 	bpf_func_t bpf_func;
742 	u64 key;
743 	int err;
744 
745 	err = bpf_check_attach_target(NULL, prog, NULL,
746 				      prog->aux->attach_btf_id,
747 				      &tgt_info);
748 	if (err)
749 		return err;
750 
751 	key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf,
752 					 prog->aux->attach_btf_id);
753 
754 	bpf_lsm_find_cgroup_shim(prog, &bpf_func);
755 	tr = bpf_trampoline_get(key, &tgt_info);
756 	if (!tr)
757 		return  -ENOMEM;
758 
759 	mutex_lock(&tr->mutex);
760 
761 	shim_link = cgroup_shim_find(tr, bpf_func);
762 	if (shim_link) {
763 		/* Reusing existing shim attached by the other program. */
764 		bpf_link_inc(&shim_link->link.link);
765 
766 		mutex_unlock(&tr->mutex);
767 		bpf_trampoline_put(tr); /* bpf_trampoline_get above */
768 		return 0;
769 	}
770 
771 	/* Allocate and install new shim. */
772 
773 	shim_link = cgroup_shim_alloc(prog, bpf_func, cgroup_atype, attach_type);
774 	if (!shim_link) {
775 		err = -ENOMEM;
776 		goto err;
777 	}
778 
779 	err = __bpf_trampoline_link_prog(&shim_link->link, tr, NULL);
780 	if (err)
781 		goto err;
782 
783 	shim_link->trampoline = tr;
784 	/* note, we're still holding tr refcnt from above */
785 
786 	mutex_unlock(&tr->mutex);
787 
788 	return 0;
789 err:
790 	mutex_unlock(&tr->mutex);
791 
792 	if (shim_link)
793 		bpf_link_put(&shim_link->link.link);
794 
795 	/* have to release tr while _not_ holding its mutex */
796 	bpf_trampoline_put(tr); /* bpf_trampoline_get above */
797 
798 	return err;
799 }
800 
801 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
802 {
803 	struct bpf_shim_tramp_link *shim_link = NULL;
804 	struct bpf_trampoline *tr;
805 	bpf_func_t bpf_func;
806 	u64 key;
807 
808 	key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf,
809 					 prog->aux->attach_btf_id);
810 
811 	bpf_lsm_find_cgroup_shim(prog, &bpf_func);
812 	tr = bpf_trampoline_lookup(key);
813 	if (WARN_ON_ONCE(!tr))
814 		return;
815 
816 	mutex_lock(&tr->mutex);
817 	shim_link = cgroup_shim_find(tr, bpf_func);
818 	mutex_unlock(&tr->mutex);
819 
820 	if (shim_link)
821 		bpf_link_put(&shim_link->link.link);
822 
823 	bpf_trampoline_put(tr); /* bpf_trampoline_lookup above */
824 }
825 #endif
826 
827 struct bpf_trampoline *bpf_trampoline_get(u64 key,
828 					  struct bpf_attach_target_info *tgt_info)
829 {
830 	struct bpf_trampoline *tr;
831 
832 	tr = bpf_trampoline_lookup(key);
833 	if (!tr)
834 		return NULL;
835 
836 	mutex_lock(&tr->mutex);
837 	if (tr->func.addr)
838 		goto out;
839 
840 	memcpy(&tr->func.model, &tgt_info->fmodel, sizeof(tgt_info->fmodel));
841 	tr->func.addr = (void *)tgt_info->tgt_addr;
842 out:
843 	mutex_unlock(&tr->mutex);
844 	return tr;
845 }
846 
847 void bpf_trampoline_put(struct bpf_trampoline *tr)
848 {
849 	int i;
850 
851 	if (!tr)
852 		return;
853 	mutex_lock(&trampoline_mutex);
854 	if (!refcount_dec_and_test(&tr->refcnt))
855 		goto out;
856 	WARN_ON_ONCE(mutex_is_locked(&tr->mutex));
857 
858 	for (i = 0; i < BPF_TRAMP_MAX; i++)
859 		if (WARN_ON_ONCE(!hlist_empty(&tr->progs_hlist[i])))
860 			goto out;
861 
862 	/* This code will be executed even when the last bpf_tramp_image
863 	 * is alive. All progs are detached from the trampoline and the
864 	 * trampoline image is patched with jmp into epilogue to skip
865 	 * fexit progs. The fentry-only trampoline will be freed via
866 	 * multiple rcu callbacks.
867 	 */
868 	hlist_del(&tr->hlist);
869 	if (tr->fops) {
870 		ftrace_free_filter(tr->fops);
871 		kfree(tr->fops);
872 	}
873 	kfree(tr);
874 out:
875 	mutex_unlock(&trampoline_mutex);
876 }
877 
878 #define NO_START_TIME 1
879 static __always_inline u64 notrace bpf_prog_start_time(void)
880 {
881 	u64 start = NO_START_TIME;
882 
883 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
884 		start = sched_clock();
885 		if (unlikely(!start))
886 			start = NO_START_TIME;
887 	}
888 	return start;
889 }
890 
891 /* The logic is similar to bpf_prog_run(), but with an explicit
892  * rcu_read_lock() and migrate_disable() which are required
893  * for the trampoline. The macro is split into
894  * call __bpf_prog_enter
895  * call prog->bpf_func
896  * call __bpf_prog_exit
897  *
898  * __bpf_prog_enter returns:
899  * 0 - skip execution of the bpf prog
900  * 1 - execute bpf prog
901  * [2..MAX_U64] - execute bpf prog and record execution time.
902  *     This is start time.
903  */
904 static u64 notrace __bpf_prog_enter_recur(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx)
905 	__acquires(RCU)
906 {
907 	rcu_read_lock_dont_migrate();
908 
909 	run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
910 
911 	if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
912 		bpf_prog_inc_misses_counter(prog);
913 		if (prog->aux->recursion_detected)
914 			prog->aux->recursion_detected(prog);
915 		return 0;
916 	}
917 	return bpf_prog_start_time();
918 }
919 
920 static void notrace __update_prog_stats(struct bpf_prog *prog, u64 start)
921 {
922 	struct bpf_prog_stats *stats;
923 	unsigned long flags;
924 	u64 duration;
925 
926 	/*
927 	 * static_key could be enabled in __bpf_prog_enter* and disabled in
928 	 * __bpf_prog_exit*. And vice versa. Check that 'start' is valid.
929 	 */
930 	if (start <= NO_START_TIME)
931 		return;
932 
933 	duration = sched_clock() - start;
934 	stats = this_cpu_ptr(prog->stats);
935 	flags = u64_stats_update_begin_irqsave(&stats->syncp);
936 	u64_stats_inc(&stats->cnt);
937 	u64_stats_add(&stats->nsecs, duration);
938 	u64_stats_update_end_irqrestore(&stats->syncp, flags);
939 }
940 
941 static __always_inline void notrace update_prog_stats(struct bpf_prog *prog,
942 						      u64 start)
943 {
944 	if (static_branch_unlikely(&bpf_stats_enabled_key))
945 		__update_prog_stats(prog, start);
946 }
947 
948 static void notrace __bpf_prog_exit_recur(struct bpf_prog *prog, u64 start,
949 					  struct bpf_tramp_run_ctx *run_ctx)
950 	__releases(RCU)
951 {
952 	bpf_reset_run_ctx(run_ctx->saved_run_ctx);
953 
954 	update_prog_stats(prog, start);
955 	this_cpu_dec(*(prog->active));
956 	rcu_read_unlock_migrate();
957 }
958 
959 static u64 notrace __bpf_prog_enter_lsm_cgroup(struct bpf_prog *prog,
960 					       struct bpf_tramp_run_ctx *run_ctx)
961 	__acquires(RCU)
962 {
963 	/* Runtime stats are exported via actual BPF_LSM_CGROUP
964 	 * programs, not the shims.
965 	 */
966 	rcu_read_lock_dont_migrate();
967 
968 	run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
969 
970 	return NO_START_TIME;
971 }
972 
973 static void notrace __bpf_prog_exit_lsm_cgroup(struct bpf_prog *prog, u64 start,
974 					       struct bpf_tramp_run_ctx *run_ctx)
975 	__releases(RCU)
976 {
977 	bpf_reset_run_ctx(run_ctx->saved_run_ctx);
978 
979 	rcu_read_unlock_migrate();
980 }
981 
982 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
983 					     struct bpf_tramp_run_ctx *run_ctx)
984 {
985 	rcu_read_lock_trace();
986 	migrate_disable();
987 	might_fault();
988 
989 	run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
990 
991 	if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
992 		bpf_prog_inc_misses_counter(prog);
993 		if (prog->aux->recursion_detected)
994 			prog->aux->recursion_detected(prog);
995 		return 0;
996 	}
997 	return bpf_prog_start_time();
998 }
999 
1000 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1001 					     struct bpf_tramp_run_ctx *run_ctx)
1002 {
1003 	bpf_reset_run_ctx(run_ctx->saved_run_ctx);
1004 
1005 	update_prog_stats(prog, start);
1006 	this_cpu_dec(*(prog->active));
1007 	migrate_enable();
1008 	rcu_read_unlock_trace();
1009 }
1010 
1011 static u64 notrace __bpf_prog_enter_sleepable(struct bpf_prog *prog,
1012 					      struct bpf_tramp_run_ctx *run_ctx)
1013 {
1014 	rcu_read_lock_trace();
1015 	migrate_disable();
1016 	might_fault();
1017 
1018 	run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
1019 
1020 	return bpf_prog_start_time();
1021 }
1022 
1023 static void notrace __bpf_prog_exit_sleepable(struct bpf_prog *prog, u64 start,
1024 					      struct bpf_tramp_run_ctx *run_ctx)
1025 {
1026 	bpf_reset_run_ctx(run_ctx->saved_run_ctx);
1027 
1028 	update_prog_stats(prog, start);
1029 	migrate_enable();
1030 	rcu_read_unlock_trace();
1031 }
1032 
1033 static u64 notrace __bpf_prog_enter(struct bpf_prog *prog,
1034 				    struct bpf_tramp_run_ctx *run_ctx)
1035 	__acquires(RCU)
1036 {
1037 	rcu_read_lock_dont_migrate();
1038 
1039 	run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
1040 
1041 	return bpf_prog_start_time();
1042 }
1043 
1044 static void notrace __bpf_prog_exit(struct bpf_prog *prog, u64 start,
1045 				    struct bpf_tramp_run_ctx *run_ctx)
1046 	__releases(RCU)
1047 {
1048 	bpf_reset_run_ctx(run_ctx->saved_run_ctx);
1049 
1050 	update_prog_stats(prog, start);
1051 	rcu_read_unlock_migrate();
1052 }
1053 
1054 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr)
1055 {
1056 	percpu_ref_get(&tr->pcref);
1057 }
1058 
1059 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr)
1060 {
1061 	percpu_ref_put(&tr->pcref);
1062 }
1063 
1064 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog)
1065 {
1066 	bool sleepable = prog->sleepable;
1067 
1068 	if (bpf_prog_check_recur(prog))
1069 		return sleepable ? __bpf_prog_enter_sleepable_recur :
1070 			__bpf_prog_enter_recur;
1071 
1072 	if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM &&
1073 	    prog->expected_attach_type == BPF_LSM_CGROUP)
1074 		return __bpf_prog_enter_lsm_cgroup;
1075 
1076 	return sleepable ? __bpf_prog_enter_sleepable : __bpf_prog_enter;
1077 }
1078 
1079 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog)
1080 {
1081 	bool sleepable = prog->sleepable;
1082 
1083 	if (bpf_prog_check_recur(prog))
1084 		return sleepable ? __bpf_prog_exit_sleepable_recur :
1085 			__bpf_prog_exit_recur;
1086 
1087 	if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM &&
1088 	    prog->expected_attach_type == BPF_LSM_CGROUP)
1089 		return __bpf_prog_exit_lsm_cgroup;
1090 
1091 	return sleepable ? __bpf_prog_exit_sleepable : __bpf_prog_exit;
1092 }
1093 
1094 int __weak
1095 arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1096 			    const struct btf_func_model *m, u32 flags,
1097 			    struct bpf_tramp_links *tlinks,
1098 			    void *func_addr)
1099 {
1100 	return -ENOTSUPP;
1101 }
1102 
1103 void * __weak arch_alloc_bpf_trampoline(unsigned int size)
1104 {
1105 	void *image;
1106 
1107 	if (WARN_ON_ONCE(size > PAGE_SIZE))
1108 		return NULL;
1109 	image = bpf_jit_alloc_exec(PAGE_SIZE);
1110 	if (image)
1111 		set_vm_flush_reset_perms(image);
1112 	return image;
1113 }
1114 
1115 void __weak arch_free_bpf_trampoline(void *image, unsigned int size)
1116 {
1117 	WARN_ON_ONCE(size > PAGE_SIZE);
1118 	/* bpf_jit_free_exec doesn't need "size", but
1119 	 * bpf_prog_pack_free() needs it.
1120 	 */
1121 	bpf_jit_free_exec(image);
1122 }
1123 
1124 int __weak arch_protect_bpf_trampoline(void *image, unsigned int size)
1125 {
1126 	WARN_ON_ONCE(size > PAGE_SIZE);
1127 	return set_memory_rox((long)image, 1);
1128 }
1129 
1130 int __weak arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1131 				    struct bpf_tramp_links *tlinks, void *func_addr)
1132 {
1133 	return -ENOTSUPP;
1134 }
1135 
1136 static int __init init_trampolines(void)
1137 {
1138 	int i;
1139 
1140 	for (i = 0; i < TRAMPOLINE_TABLE_SIZE; i++)
1141 		INIT_HLIST_HEAD(&trampoline_table[i]);
1142 	return 0;
1143 }
1144 late_initcall(init_trampolines);
1145