1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2019 Facebook */ 3 #include <linux/hash.h> 4 #include <linux/bpf.h> 5 #include <linux/filter.h> 6 #include <linux/ftrace.h> 7 #include <linux/rbtree_latch.h> 8 #include <linux/perf_event.h> 9 #include <linux/btf.h> 10 #include <linux/rcupdate_trace.h> 11 #include <linux/rcupdate_wait.h> 12 #include <linux/static_call.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/bpf_lsm.h> 15 #include <linux/delay.h> 16 17 /* dummy _ops. The verifier will operate on target program's ops. */ 18 const struct bpf_verifier_ops bpf_extension_verifier_ops = { 19 }; 20 const struct bpf_prog_ops bpf_extension_prog_ops = { 21 }; 22 23 /* btf_vmlinux has ~22k attachable functions. 1k htab is enough. */ 24 #define TRAMPOLINE_HASH_BITS 10 25 #define TRAMPOLINE_TABLE_SIZE (1 << TRAMPOLINE_HASH_BITS) 26 27 static struct hlist_head trampoline_table[TRAMPOLINE_TABLE_SIZE]; 28 29 /* serializes access to trampoline_table */ 30 static DEFINE_MUTEX(trampoline_mutex); 31 32 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 33 static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex); 34 35 static int bpf_tramp_ftrace_ops_func(struct ftrace_ops *ops, enum ftrace_ops_cmd cmd) 36 { 37 struct bpf_trampoline *tr = ops->private; 38 int ret = 0; 39 40 if (cmd == FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF) { 41 /* This is called inside register_ftrace_direct_multi(), so 42 * tr->mutex is already locked. 43 */ 44 lockdep_assert_held_once(&tr->mutex); 45 46 /* Instead of updating the trampoline here, we propagate 47 * -EAGAIN to register_ftrace_direct(). Then we can 48 * retry register_ftrace_direct() after updating the 49 * trampoline. 50 */ 51 if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) && 52 !(tr->flags & BPF_TRAMP_F_ORIG_STACK)) { 53 if (WARN_ON_ONCE(tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY)) 54 return -EBUSY; 55 56 tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY; 57 return -EAGAIN; 58 } 59 60 return 0; 61 } 62 63 /* The normal locking order is 64 * tr->mutex => direct_mutex (ftrace.c) => ftrace_lock (ftrace.c) 65 * 66 * The following two commands are called from 67 * 68 * prepare_direct_functions_for_ipmodify 69 * cleanup_direct_functions_after_ipmodify 70 * 71 * In both cases, direct_mutex is already locked. Use 72 * mutex_trylock(&tr->mutex) to avoid deadlock in race condition 73 * (something else is making changes to this same trampoline). 74 */ 75 if (!mutex_trylock(&tr->mutex)) { 76 /* sleep 1 ms to make sure whatever holding tr->mutex makes 77 * some progress. 78 */ 79 msleep(1); 80 return -EAGAIN; 81 } 82 83 switch (cmd) { 84 case FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER: 85 tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY; 86 87 if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) && 88 !(tr->flags & BPF_TRAMP_F_ORIG_STACK)) 89 ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */); 90 break; 91 case FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER: 92 tr->flags &= ~BPF_TRAMP_F_SHARE_IPMODIFY; 93 94 if (tr->flags & BPF_TRAMP_F_ORIG_STACK) 95 ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */); 96 break; 97 default: 98 ret = -EINVAL; 99 break; 100 } 101 102 mutex_unlock(&tr->mutex); 103 return ret; 104 } 105 #endif 106 107 bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 108 { 109 enum bpf_attach_type eatype = prog->expected_attach_type; 110 enum bpf_prog_type ptype = prog->type; 111 112 return (ptype == BPF_PROG_TYPE_TRACING && 113 (eatype == BPF_TRACE_FENTRY || eatype == BPF_TRACE_FEXIT || 114 eatype == BPF_MODIFY_RETURN)) || 115 (ptype == BPF_PROG_TYPE_LSM && eatype == BPF_LSM_MAC); 116 } 117 118 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym) 119 { 120 ksym->start = (unsigned long) data; 121 ksym->end = ksym->start + PAGE_SIZE; 122 bpf_ksym_add(ksym); 123 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start, 124 PAGE_SIZE, false, ksym->name); 125 } 126 127 void bpf_image_ksym_del(struct bpf_ksym *ksym) 128 { 129 bpf_ksym_del(ksym); 130 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start, 131 PAGE_SIZE, true, ksym->name); 132 } 133 134 static struct bpf_trampoline *bpf_trampoline_lookup(u64 key) 135 { 136 struct bpf_trampoline *tr; 137 struct hlist_head *head; 138 int i; 139 140 mutex_lock(&trampoline_mutex); 141 head = &trampoline_table[hash_64(key, TRAMPOLINE_HASH_BITS)]; 142 hlist_for_each_entry(tr, head, hlist) { 143 if (tr->key == key) { 144 refcount_inc(&tr->refcnt); 145 goto out; 146 } 147 } 148 tr = kzalloc(sizeof(*tr), GFP_KERNEL); 149 if (!tr) 150 goto out; 151 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 152 tr->fops = kzalloc(sizeof(struct ftrace_ops), GFP_KERNEL); 153 if (!tr->fops) { 154 kfree(tr); 155 tr = NULL; 156 goto out; 157 } 158 tr->fops->private = tr; 159 tr->fops->ops_func = bpf_tramp_ftrace_ops_func; 160 #endif 161 162 tr->key = key; 163 INIT_HLIST_NODE(&tr->hlist); 164 hlist_add_head(&tr->hlist, head); 165 refcount_set(&tr->refcnt, 1); 166 mutex_init(&tr->mutex); 167 for (i = 0; i < BPF_TRAMP_MAX; i++) 168 INIT_HLIST_HEAD(&tr->progs_hlist[i]); 169 out: 170 mutex_unlock(&trampoline_mutex); 171 return tr; 172 } 173 174 static int unregister_fentry(struct bpf_trampoline *tr, void *old_addr) 175 { 176 void *ip = tr->func.addr; 177 int ret; 178 179 if (tr->func.ftrace_managed) 180 ret = unregister_ftrace_direct(tr->fops, (long)old_addr, false); 181 else 182 ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, NULL); 183 184 return ret; 185 } 186 187 static int modify_fentry(struct bpf_trampoline *tr, void *old_addr, void *new_addr, 188 bool lock_direct_mutex) 189 { 190 void *ip = tr->func.addr; 191 int ret; 192 193 if (tr->func.ftrace_managed) { 194 if (lock_direct_mutex) 195 ret = modify_ftrace_direct(tr->fops, (long)new_addr); 196 else 197 ret = modify_ftrace_direct_nolock(tr->fops, (long)new_addr); 198 } else { 199 ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, new_addr); 200 } 201 return ret; 202 } 203 204 /* first time registering */ 205 static int register_fentry(struct bpf_trampoline *tr, void *new_addr) 206 { 207 void *ip = tr->func.addr; 208 unsigned long faddr; 209 int ret; 210 211 faddr = ftrace_location((unsigned long)ip); 212 if (faddr) { 213 if (!tr->fops) 214 return -ENOTSUPP; 215 tr->func.ftrace_managed = true; 216 } 217 218 if (tr->func.ftrace_managed) { 219 ftrace_set_filter_ip(tr->fops, (unsigned long)ip, 0, 1); 220 ret = register_ftrace_direct(tr->fops, (long)new_addr); 221 } else { 222 ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, NULL, new_addr); 223 } 224 225 return ret; 226 } 227 228 static struct bpf_tramp_links * 229 bpf_trampoline_get_progs(const struct bpf_trampoline *tr, int *total, bool *ip_arg) 230 { 231 struct bpf_tramp_link *link; 232 struct bpf_tramp_links *tlinks; 233 struct bpf_tramp_link **links; 234 int kind; 235 236 *total = 0; 237 tlinks = kcalloc(BPF_TRAMP_MAX, sizeof(*tlinks), GFP_KERNEL); 238 if (!tlinks) 239 return ERR_PTR(-ENOMEM); 240 241 for (kind = 0; kind < BPF_TRAMP_MAX; kind++) { 242 tlinks[kind].nr_links = tr->progs_cnt[kind]; 243 *total += tr->progs_cnt[kind]; 244 links = tlinks[kind].links; 245 246 hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) { 247 *ip_arg |= link->link.prog->call_get_func_ip; 248 *links++ = link; 249 } 250 } 251 return tlinks; 252 } 253 254 static void __bpf_tramp_image_put_deferred(struct work_struct *work) 255 { 256 struct bpf_tramp_image *im; 257 258 im = container_of(work, struct bpf_tramp_image, work); 259 bpf_image_ksym_del(&im->ksym); 260 bpf_jit_free_exec(im->image); 261 bpf_jit_uncharge_modmem(PAGE_SIZE); 262 percpu_ref_exit(&im->pcref); 263 kfree_rcu(im, rcu); 264 } 265 266 /* callback, fexit step 3 or fentry step 2 */ 267 static void __bpf_tramp_image_put_rcu(struct rcu_head *rcu) 268 { 269 struct bpf_tramp_image *im; 270 271 im = container_of(rcu, struct bpf_tramp_image, rcu); 272 INIT_WORK(&im->work, __bpf_tramp_image_put_deferred); 273 schedule_work(&im->work); 274 } 275 276 /* callback, fexit step 2. Called after percpu_ref_kill confirms. */ 277 static void __bpf_tramp_image_release(struct percpu_ref *pcref) 278 { 279 struct bpf_tramp_image *im; 280 281 im = container_of(pcref, struct bpf_tramp_image, pcref); 282 call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu); 283 } 284 285 /* callback, fexit or fentry step 1 */ 286 static void __bpf_tramp_image_put_rcu_tasks(struct rcu_head *rcu) 287 { 288 struct bpf_tramp_image *im; 289 290 im = container_of(rcu, struct bpf_tramp_image, rcu); 291 if (im->ip_after_call) 292 /* the case of fmod_ret/fexit trampoline and CONFIG_PREEMPTION=y */ 293 percpu_ref_kill(&im->pcref); 294 else 295 /* the case of fentry trampoline */ 296 call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu); 297 } 298 299 static void bpf_tramp_image_put(struct bpf_tramp_image *im) 300 { 301 /* The trampoline image that calls original function is using: 302 * rcu_read_lock_trace to protect sleepable bpf progs 303 * rcu_read_lock to protect normal bpf progs 304 * percpu_ref to protect trampoline itself 305 * rcu tasks to protect trampoline asm not covered by percpu_ref 306 * (which are few asm insns before __bpf_tramp_enter and 307 * after __bpf_tramp_exit) 308 * 309 * The trampoline is unreachable before bpf_tramp_image_put(). 310 * 311 * First, patch the trampoline to avoid calling into fexit progs. 312 * The progs will be freed even if the original function is still 313 * executing or sleeping. 314 * In case of CONFIG_PREEMPT=y use call_rcu_tasks() to wait on 315 * first few asm instructions to execute and call into 316 * __bpf_tramp_enter->percpu_ref_get. 317 * Then use percpu_ref_kill to wait for the trampoline and the original 318 * function to finish. 319 * Then use call_rcu_tasks() to make sure few asm insns in 320 * the trampoline epilogue are done as well. 321 * 322 * In !PREEMPT case the task that got interrupted in the first asm 323 * insns won't go through an RCU quiescent state which the 324 * percpu_ref_kill will be waiting for. Hence the first 325 * call_rcu_tasks() is not necessary. 326 */ 327 if (im->ip_after_call) { 328 int err = bpf_arch_text_poke(im->ip_after_call, BPF_MOD_JUMP, 329 NULL, im->ip_epilogue); 330 WARN_ON(err); 331 if (IS_ENABLED(CONFIG_PREEMPTION)) 332 call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu_tasks); 333 else 334 percpu_ref_kill(&im->pcref); 335 return; 336 } 337 338 /* The trampoline without fexit and fmod_ret progs doesn't call original 339 * function and doesn't use percpu_ref. 340 * Use call_rcu_tasks_trace() to wait for sleepable progs to finish. 341 * Then use call_rcu_tasks() to wait for the rest of trampoline asm 342 * and normal progs. 343 */ 344 call_rcu_tasks_trace(&im->rcu, __bpf_tramp_image_put_rcu_tasks); 345 } 346 347 static struct bpf_tramp_image *bpf_tramp_image_alloc(u64 key, u32 idx) 348 { 349 struct bpf_tramp_image *im; 350 struct bpf_ksym *ksym; 351 void *image; 352 int err = -ENOMEM; 353 354 im = kzalloc(sizeof(*im), GFP_KERNEL); 355 if (!im) 356 goto out; 357 358 err = bpf_jit_charge_modmem(PAGE_SIZE); 359 if (err) 360 goto out_free_im; 361 362 err = -ENOMEM; 363 im->image = image = bpf_jit_alloc_exec(PAGE_SIZE); 364 if (!image) 365 goto out_uncharge; 366 set_vm_flush_reset_perms(image); 367 368 err = percpu_ref_init(&im->pcref, __bpf_tramp_image_release, 0, GFP_KERNEL); 369 if (err) 370 goto out_free_image; 371 372 ksym = &im->ksym; 373 INIT_LIST_HEAD_RCU(&ksym->lnode); 374 snprintf(ksym->name, KSYM_NAME_LEN, "bpf_trampoline_%llu_%u", key, idx); 375 bpf_image_ksym_add(image, ksym); 376 return im; 377 378 out_free_image: 379 bpf_jit_free_exec(im->image); 380 out_uncharge: 381 bpf_jit_uncharge_modmem(PAGE_SIZE); 382 out_free_im: 383 kfree(im); 384 out: 385 return ERR_PTR(err); 386 } 387 388 static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex) 389 { 390 struct bpf_tramp_image *im; 391 struct bpf_tramp_links *tlinks; 392 u32 orig_flags = tr->flags; 393 bool ip_arg = false; 394 int err, total; 395 396 tlinks = bpf_trampoline_get_progs(tr, &total, &ip_arg); 397 if (IS_ERR(tlinks)) 398 return PTR_ERR(tlinks); 399 400 if (total == 0) { 401 err = unregister_fentry(tr, tr->cur_image->image); 402 bpf_tramp_image_put(tr->cur_image); 403 tr->cur_image = NULL; 404 tr->selector = 0; 405 goto out; 406 } 407 408 im = bpf_tramp_image_alloc(tr->key, tr->selector); 409 if (IS_ERR(im)) { 410 err = PTR_ERR(im); 411 goto out; 412 } 413 414 /* clear all bits except SHARE_IPMODIFY */ 415 tr->flags &= BPF_TRAMP_F_SHARE_IPMODIFY; 416 417 if (tlinks[BPF_TRAMP_FEXIT].nr_links || 418 tlinks[BPF_TRAMP_MODIFY_RETURN].nr_links) { 419 /* NOTE: BPF_TRAMP_F_RESTORE_REGS and BPF_TRAMP_F_SKIP_FRAME 420 * should not be set together. 421 */ 422 tr->flags |= BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME; 423 } else { 424 tr->flags |= BPF_TRAMP_F_RESTORE_REGS; 425 } 426 427 if (ip_arg) 428 tr->flags |= BPF_TRAMP_F_IP_ARG; 429 430 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 431 again: 432 if ((tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY) && 433 (tr->flags & BPF_TRAMP_F_CALL_ORIG)) 434 tr->flags |= BPF_TRAMP_F_ORIG_STACK; 435 #endif 436 437 err = arch_prepare_bpf_trampoline(im, im->image, im->image + PAGE_SIZE, 438 &tr->func.model, tr->flags, tlinks, 439 tr->func.addr); 440 if (err < 0) 441 goto out; 442 443 set_memory_rox((long)im->image, 1); 444 445 WARN_ON(tr->cur_image && tr->selector == 0); 446 WARN_ON(!tr->cur_image && tr->selector); 447 if (tr->cur_image) 448 /* progs already running at this address */ 449 err = modify_fentry(tr, tr->cur_image->image, im->image, lock_direct_mutex); 450 else 451 /* first time registering */ 452 err = register_fentry(tr, im->image); 453 454 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 455 if (err == -EAGAIN) { 456 /* -EAGAIN from bpf_tramp_ftrace_ops_func. Now 457 * BPF_TRAMP_F_SHARE_IPMODIFY is set, we can generate the 458 * trampoline again, and retry register. 459 */ 460 /* reset fops->func and fops->trampoline for re-register */ 461 tr->fops->func = NULL; 462 tr->fops->trampoline = 0; 463 464 /* reset im->image memory attr for arch_prepare_bpf_trampoline */ 465 set_memory_nx((long)im->image, 1); 466 set_memory_rw((long)im->image, 1); 467 goto again; 468 } 469 #endif 470 if (err) 471 goto out; 472 473 if (tr->cur_image) 474 bpf_tramp_image_put(tr->cur_image); 475 tr->cur_image = im; 476 tr->selector++; 477 out: 478 /* If any error happens, restore previous flags */ 479 if (err) 480 tr->flags = orig_flags; 481 kfree(tlinks); 482 return err; 483 } 484 485 static enum bpf_tramp_prog_type bpf_attach_type_to_tramp(struct bpf_prog *prog) 486 { 487 switch (prog->expected_attach_type) { 488 case BPF_TRACE_FENTRY: 489 return BPF_TRAMP_FENTRY; 490 case BPF_MODIFY_RETURN: 491 return BPF_TRAMP_MODIFY_RETURN; 492 case BPF_TRACE_FEXIT: 493 return BPF_TRAMP_FEXIT; 494 case BPF_LSM_MAC: 495 if (!prog->aux->attach_func_proto->type) 496 /* The function returns void, we cannot modify its 497 * return value. 498 */ 499 return BPF_TRAMP_FEXIT; 500 else 501 return BPF_TRAMP_MODIFY_RETURN; 502 default: 503 return BPF_TRAMP_REPLACE; 504 } 505 } 506 507 static int __bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr) 508 { 509 enum bpf_tramp_prog_type kind; 510 struct bpf_tramp_link *link_exiting; 511 int err = 0; 512 int cnt = 0, i; 513 514 kind = bpf_attach_type_to_tramp(link->link.prog); 515 if (tr->extension_prog) 516 /* cannot attach fentry/fexit if extension prog is attached. 517 * cannot overwrite extension prog either. 518 */ 519 return -EBUSY; 520 521 for (i = 0; i < BPF_TRAMP_MAX; i++) 522 cnt += tr->progs_cnt[i]; 523 524 if (kind == BPF_TRAMP_REPLACE) { 525 /* Cannot attach extension if fentry/fexit are in use. */ 526 if (cnt) 527 return -EBUSY; 528 tr->extension_prog = link->link.prog; 529 return bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP, NULL, 530 link->link.prog->bpf_func); 531 } 532 if (cnt >= BPF_MAX_TRAMP_LINKS) 533 return -E2BIG; 534 if (!hlist_unhashed(&link->tramp_hlist)) 535 /* prog already linked */ 536 return -EBUSY; 537 hlist_for_each_entry(link_exiting, &tr->progs_hlist[kind], tramp_hlist) { 538 if (link_exiting->link.prog != link->link.prog) 539 continue; 540 /* prog already linked */ 541 return -EBUSY; 542 } 543 544 hlist_add_head(&link->tramp_hlist, &tr->progs_hlist[kind]); 545 tr->progs_cnt[kind]++; 546 err = bpf_trampoline_update(tr, true /* lock_direct_mutex */); 547 if (err) { 548 hlist_del_init(&link->tramp_hlist); 549 tr->progs_cnt[kind]--; 550 } 551 return err; 552 } 553 554 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr) 555 { 556 int err; 557 558 mutex_lock(&tr->mutex); 559 err = __bpf_trampoline_link_prog(link, tr); 560 mutex_unlock(&tr->mutex); 561 return err; 562 } 563 564 static int __bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr) 565 { 566 enum bpf_tramp_prog_type kind; 567 int err; 568 569 kind = bpf_attach_type_to_tramp(link->link.prog); 570 if (kind == BPF_TRAMP_REPLACE) { 571 WARN_ON_ONCE(!tr->extension_prog); 572 err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP, 573 tr->extension_prog->bpf_func, NULL); 574 tr->extension_prog = NULL; 575 return err; 576 } 577 hlist_del_init(&link->tramp_hlist); 578 tr->progs_cnt[kind]--; 579 return bpf_trampoline_update(tr, true /* lock_direct_mutex */); 580 } 581 582 /* bpf_trampoline_unlink_prog() should never fail. */ 583 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr) 584 { 585 int err; 586 587 mutex_lock(&tr->mutex); 588 err = __bpf_trampoline_unlink_prog(link, tr); 589 mutex_unlock(&tr->mutex); 590 return err; 591 } 592 593 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 594 static void bpf_shim_tramp_link_release(struct bpf_link *link) 595 { 596 struct bpf_shim_tramp_link *shim_link = 597 container_of(link, struct bpf_shim_tramp_link, link.link); 598 599 /* paired with 'shim_link->trampoline = tr' in bpf_trampoline_link_cgroup_shim */ 600 if (!shim_link->trampoline) 601 return; 602 603 WARN_ON_ONCE(bpf_trampoline_unlink_prog(&shim_link->link, shim_link->trampoline)); 604 bpf_trampoline_put(shim_link->trampoline); 605 } 606 607 static void bpf_shim_tramp_link_dealloc(struct bpf_link *link) 608 { 609 struct bpf_shim_tramp_link *shim_link = 610 container_of(link, struct bpf_shim_tramp_link, link.link); 611 612 kfree(shim_link); 613 } 614 615 static const struct bpf_link_ops bpf_shim_tramp_link_lops = { 616 .release = bpf_shim_tramp_link_release, 617 .dealloc = bpf_shim_tramp_link_dealloc, 618 }; 619 620 static struct bpf_shim_tramp_link *cgroup_shim_alloc(const struct bpf_prog *prog, 621 bpf_func_t bpf_func, 622 int cgroup_atype) 623 { 624 struct bpf_shim_tramp_link *shim_link = NULL; 625 struct bpf_prog *p; 626 627 shim_link = kzalloc(sizeof(*shim_link), GFP_USER); 628 if (!shim_link) 629 return NULL; 630 631 p = bpf_prog_alloc(1, 0); 632 if (!p) { 633 kfree(shim_link); 634 return NULL; 635 } 636 637 p->jited = false; 638 p->bpf_func = bpf_func; 639 640 p->aux->cgroup_atype = cgroup_atype; 641 p->aux->attach_func_proto = prog->aux->attach_func_proto; 642 p->aux->attach_btf_id = prog->aux->attach_btf_id; 643 p->aux->attach_btf = prog->aux->attach_btf; 644 btf_get(p->aux->attach_btf); 645 p->type = BPF_PROG_TYPE_LSM; 646 p->expected_attach_type = BPF_LSM_MAC; 647 bpf_prog_inc(p); 648 bpf_link_init(&shim_link->link.link, BPF_LINK_TYPE_UNSPEC, 649 &bpf_shim_tramp_link_lops, p); 650 bpf_cgroup_atype_get(p->aux->attach_btf_id, cgroup_atype); 651 652 return shim_link; 653 } 654 655 static struct bpf_shim_tramp_link *cgroup_shim_find(struct bpf_trampoline *tr, 656 bpf_func_t bpf_func) 657 { 658 struct bpf_tramp_link *link; 659 int kind; 660 661 for (kind = 0; kind < BPF_TRAMP_MAX; kind++) { 662 hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) { 663 struct bpf_prog *p = link->link.prog; 664 665 if (p->bpf_func == bpf_func) 666 return container_of(link, struct bpf_shim_tramp_link, link); 667 } 668 } 669 670 return NULL; 671 } 672 673 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 674 int cgroup_atype) 675 { 676 struct bpf_shim_tramp_link *shim_link = NULL; 677 struct bpf_attach_target_info tgt_info = {}; 678 struct bpf_trampoline *tr; 679 bpf_func_t bpf_func; 680 u64 key; 681 int err; 682 683 err = bpf_check_attach_target(NULL, prog, NULL, 684 prog->aux->attach_btf_id, 685 &tgt_info); 686 if (err) 687 return err; 688 689 key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf, 690 prog->aux->attach_btf_id); 691 692 bpf_lsm_find_cgroup_shim(prog, &bpf_func); 693 tr = bpf_trampoline_get(key, &tgt_info); 694 if (!tr) 695 return -ENOMEM; 696 697 mutex_lock(&tr->mutex); 698 699 shim_link = cgroup_shim_find(tr, bpf_func); 700 if (shim_link) { 701 /* Reusing existing shim attached by the other program. */ 702 bpf_link_inc(&shim_link->link.link); 703 704 mutex_unlock(&tr->mutex); 705 bpf_trampoline_put(tr); /* bpf_trampoline_get above */ 706 return 0; 707 } 708 709 /* Allocate and install new shim. */ 710 711 shim_link = cgroup_shim_alloc(prog, bpf_func, cgroup_atype); 712 if (!shim_link) { 713 err = -ENOMEM; 714 goto err; 715 } 716 717 err = __bpf_trampoline_link_prog(&shim_link->link, tr); 718 if (err) 719 goto err; 720 721 shim_link->trampoline = tr; 722 /* note, we're still holding tr refcnt from above */ 723 724 mutex_unlock(&tr->mutex); 725 726 return 0; 727 err: 728 mutex_unlock(&tr->mutex); 729 730 if (shim_link) 731 bpf_link_put(&shim_link->link.link); 732 733 /* have to release tr while _not_ holding its mutex */ 734 bpf_trampoline_put(tr); /* bpf_trampoline_get above */ 735 736 return err; 737 } 738 739 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 740 { 741 struct bpf_shim_tramp_link *shim_link = NULL; 742 struct bpf_trampoline *tr; 743 bpf_func_t bpf_func; 744 u64 key; 745 746 key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf, 747 prog->aux->attach_btf_id); 748 749 bpf_lsm_find_cgroup_shim(prog, &bpf_func); 750 tr = bpf_trampoline_lookup(key); 751 if (WARN_ON_ONCE(!tr)) 752 return; 753 754 mutex_lock(&tr->mutex); 755 shim_link = cgroup_shim_find(tr, bpf_func); 756 mutex_unlock(&tr->mutex); 757 758 if (shim_link) 759 bpf_link_put(&shim_link->link.link); 760 761 bpf_trampoline_put(tr); /* bpf_trampoline_lookup above */ 762 } 763 #endif 764 765 struct bpf_trampoline *bpf_trampoline_get(u64 key, 766 struct bpf_attach_target_info *tgt_info) 767 { 768 struct bpf_trampoline *tr; 769 770 tr = bpf_trampoline_lookup(key); 771 if (!tr) 772 return NULL; 773 774 mutex_lock(&tr->mutex); 775 if (tr->func.addr) 776 goto out; 777 778 memcpy(&tr->func.model, &tgt_info->fmodel, sizeof(tgt_info->fmodel)); 779 tr->func.addr = (void *)tgt_info->tgt_addr; 780 out: 781 mutex_unlock(&tr->mutex); 782 return tr; 783 } 784 785 void bpf_trampoline_put(struct bpf_trampoline *tr) 786 { 787 int i; 788 789 if (!tr) 790 return; 791 mutex_lock(&trampoline_mutex); 792 if (!refcount_dec_and_test(&tr->refcnt)) 793 goto out; 794 WARN_ON_ONCE(mutex_is_locked(&tr->mutex)); 795 796 for (i = 0; i < BPF_TRAMP_MAX; i++) 797 if (WARN_ON_ONCE(!hlist_empty(&tr->progs_hlist[i]))) 798 goto out; 799 800 /* This code will be executed even when the last bpf_tramp_image 801 * is alive. All progs are detached from the trampoline and the 802 * trampoline image is patched with jmp into epilogue to skip 803 * fexit progs. The fentry-only trampoline will be freed via 804 * multiple rcu callbacks. 805 */ 806 hlist_del(&tr->hlist); 807 if (tr->fops) { 808 ftrace_free_filter(tr->fops); 809 kfree(tr->fops); 810 } 811 kfree(tr); 812 out: 813 mutex_unlock(&trampoline_mutex); 814 } 815 816 #define NO_START_TIME 1 817 static __always_inline u64 notrace bpf_prog_start_time(void) 818 { 819 u64 start = NO_START_TIME; 820 821 if (static_branch_unlikely(&bpf_stats_enabled_key)) { 822 start = sched_clock(); 823 if (unlikely(!start)) 824 start = NO_START_TIME; 825 } 826 return start; 827 } 828 829 /* The logic is similar to bpf_prog_run(), but with an explicit 830 * rcu_read_lock() and migrate_disable() which are required 831 * for the trampoline. The macro is split into 832 * call __bpf_prog_enter 833 * call prog->bpf_func 834 * call __bpf_prog_exit 835 * 836 * __bpf_prog_enter returns: 837 * 0 - skip execution of the bpf prog 838 * 1 - execute bpf prog 839 * [2..MAX_U64] - execute bpf prog and record execution time. 840 * This is start time. 841 */ 842 static u64 notrace __bpf_prog_enter_recur(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx) 843 __acquires(RCU) 844 { 845 rcu_read_lock(); 846 migrate_disable(); 847 848 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); 849 850 if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) { 851 bpf_prog_inc_misses_counter(prog); 852 return 0; 853 } 854 return bpf_prog_start_time(); 855 } 856 857 static void notrace update_prog_stats(struct bpf_prog *prog, 858 u64 start) 859 { 860 struct bpf_prog_stats *stats; 861 862 if (static_branch_unlikely(&bpf_stats_enabled_key) && 863 /* static_key could be enabled in __bpf_prog_enter* 864 * and disabled in __bpf_prog_exit*. 865 * And vice versa. 866 * Hence check that 'start' is valid. 867 */ 868 start > NO_START_TIME) { 869 unsigned long flags; 870 871 stats = this_cpu_ptr(prog->stats); 872 flags = u64_stats_update_begin_irqsave(&stats->syncp); 873 u64_stats_inc(&stats->cnt); 874 u64_stats_add(&stats->nsecs, sched_clock() - start); 875 u64_stats_update_end_irqrestore(&stats->syncp, flags); 876 } 877 } 878 879 static void notrace __bpf_prog_exit_recur(struct bpf_prog *prog, u64 start, 880 struct bpf_tramp_run_ctx *run_ctx) 881 __releases(RCU) 882 { 883 bpf_reset_run_ctx(run_ctx->saved_run_ctx); 884 885 update_prog_stats(prog, start); 886 this_cpu_dec(*(prog->active)); 887 migrate_enable(); 888 rcu_read_unlock(); 889 } 890 891 static u64 notrace __bpf_prog_enter_lsm_cgroup(struct bpf_prog *prog, 892 struct bpf_tramp_run_ctx *run_ctx) 893 __acquires(RCU) 894 { 895 /* Runtime stats are exported via actual BPF_LSM_CGROUP 896 * programs, not the shims. 897 */ 898 rcu_read_lock(); 899 migrate_disable(); 900 901 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); 902 903 return NO_START_TIME; 904 } 905 906 static void notrace __bpf_prog_exit_lsm_cgroup(struct bpf_prog *prog, u64 start, 907 struct bpf_tramp_run_ctx *run_ctx) 908 __releases(RCU) 909 { 910 bpf_reset_run_ctx(run_ctx->saved_run_ctx); 911 912 migrate_enable(); 913 rcu_read_unlock(); 914 } 915 916 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 917 struct bpf_tramp_run_ctx *run_ctx) 918 { 919 rcu_read_lock_trace(); 920 migrate_disable(); 921 might_fault(); 922 923 if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) { 924 bpf_prog_inc_misses_counter(prog); 925 return 0; 926 } 927 928 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); 929 930 return bpf_prog_start_time(); 931 } 932 933 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 934 struct bpf_tramp_run_ctx *run_ctx) 935 { 936 bpf_reset_run_ctx(run_ctx->saved_run_ctx); 937 938 update_prog_stats(prog, start); 939 this_cpu_dec(*(prog->active)); 940 migrate_enable(); 941 rcu_read_unlock_trace(); 942 } 943 944 static u64 notrace __bpf_prog_enter_sleepable(struct bpf_prog *prog, 945 struct bpf_tramp_run_ctx *run_ctx) 946 { 947 rcu_read_lock_trace(); 948 migrate_disable(); 949 might_fault(); 950 951 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); 952 953 return bpf_prog_start_time(); 954 } 955 956 static void notrace __bpf_prog_exit_sleepable(struct bpf_prog *prog, u64 start, 957 struct bpf_tramp_run_ctx *run_ctx) 958 { 959 bpf_reset_run_ctx(run_ctx->saved_run_ctx); 960 961 update_prog_stats(prog, start); 962 migrate_enable(); 963 rcu_read_unlock_trace(); 964 } 965 966 static u64 notrace __bpf_prog_enter(struct bpf_prog *prog, 967 struct bpf_tramp_run_ctx *run_ctx) 968 __acquires(RCU) 969 { 970 rcu_read_lock(); 971 migrate_disable(); 972 973 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); 974 975 return bpf_prog_start_time(); 976 } 977 978 static void notrace __bpf_prog_exit(struct bpf_prog *prog, u64 start, 979 struct bpf_tramp_run_ctx *run_ctx) 980 __releases(RCU) 981 { 982 bpf_reset_run_ctx(run_ctx->saved_run_ctx); 983 984 update_prog_stats(prog, start); 985 migrate_enable(); 986 rcu_read_unlock(); 987 } 988 989 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr) 990 { 991 percpu_ref_get(&tr->pcref); 992 } 993 994 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr) 995 { 996 percpu_ref_put(&tr->pcref); 997 } 998 999 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog) 1000 { 1001 bool sleepable = prog->aux->sleepable; 1002 1003 if (bpf_prog_check_recur(prog)) 1004 return sleepable ? __bpf_prog_enter_sleepable_recur : 1005 __bpf_prog_enter_recur; 1006 1007 if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM && 1008 prog->expected_attach_type == BPF_LSM_CGROUP) 1009 return __bpf_prog_enter_lsm_cgroup; 1010 1011 return sleepable ? __bpf_prog_enter_sleepable : __bpf_prog_enter; 1012 } 1013 1014 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog) 1015 { 1016 bool sleepable = prog->aux->sleepable; 1017 1018 if (bpf_prog_check_recur(prog)) 1019 return sleepable ? __bpf_prog_exit_sleepable_recur : 1020 __bpf_prog_exit_recur; 1021 1022 if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM && 1023 prog->expected_attach_type == BPF_LSM_CGROUP) 1024 return __bpf_prog_exit_lsm_cgroup; 1025 1026 return sleepable ? __bpf_prog_exit_sleepable : __bpf_prog_exit; 1027 } 1028 1029 int __weak 1030 arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end, 1031 const struct btf_func_model *m, u32 flags, 1032 struct bpf_tramp_links *tlinks, 1033 void *orig_call) 1034 { 1035 return -ENOTSUPP; 1036 } 1037 1038 static int __init init_trampolines(void) 1039 { 1040 int i; 1041 1042 for (i = 0; i < TRAMPOLINE_TABLE_SIZE; i++) 1043 INIT_HLIST_HEAD(&trampoline_table[i]); 1044 return 0; 1045 } 1046 late_initcall(init_trampolines); 1047