1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2019 Facebook */ 3 #include <linux/hash.h> 4 #include <linux/bpf.h> 5 #include <linux/filter.h> 6 #include <linux/ftrace.h> 7 #include <linux/rbtree_latch.h> 8 #include <linux/perf_event.h> 9 #include <linux/btf.h> 10 #include <linux/rcupdate_trace.h> 11 #include <linux/rcupdate_wait.h> 12 #include <linux/static_call.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/bpf_lsm.h> 15 #include <linux/delay.h> 16 17 /* dummy _ops. The verifier will operate on target program's ops. */ 18 const struct bpf_verifier_ops bpf_extension_verifier_ops = { 19 }; 20 const struct bpf_prog_ops bpf_extension_prog_ops = { 21 }; 22 23 /* btf_vmlinux has ~22k attachable functions. 1k htab is enough. */ 24 #define TRAMPOLINE_HASH_BITS 10 25 #define TRAMPOLINE_TABLE_SIZE (1 << TRAMPOLINE_HASH_BITS) 26 27 static struct hlist_head trampoline_table[TRAMPOLINE_TABLE_SIZE]; 28 29 /* serializes access to trampoline_table */ 30 static DEFINE_MUTEX(trampoline_mutex); 31 32 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 33 static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex); 34 35 static int bpf_tramp_ftrace_ops_func(struct ftrace_ops *ops, enum ftrace_ops_cmd cmd) 36 { 37 struct bpf_trampoline *tr = ops->private; 38 int ret = 0; 39 40 if (cmd == FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF) { 41 /* This is called inside register_ftrace_direct_multi(), so 42 * tr->mutex is already locked. 43 */ 44 lockdep_assert_held_once(&tr->mutex); 45 46 /* Instead of updating the trampoline here, we propagate 47 * -EAGAIN to register_ftrace_direct(). Then we can 48 * retry register_ftrace_direct() after updating the 49 * trampoline. 50 */ 51 if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) && 52 !(tr->flags & BPF_TRAMP_F_ORIG_STACK)) { 53 if (WARN_ON_ONCE(tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY)) 54 return -EBUSY; 55 56 tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY; 57 return -EAGAIN; 58 } 59 60 return 0; 61 } 62 63 /* The normal locking order is 64 * tr->mutex => direct_mutex (ftrace.c) => ftrace_lock (ftrace.c) 65 * 66 * The following two commands are called from 67 * 68 * prepare_direct_functions_for_ipmodify 69 * cleanup_direct_functions_after_ipmodify 70 * 71 * In both cases, direct_mutex is already locked. Use 72 * mutex_trylock(&tr->mutex) to avoid deadlock in race condition 73 * (something else is making changes to this same trampoline). 74 */ 75 if (!mutex_trylock(&tr->mutex)) { 76 /* sleep 1 ms to make sure whatever holding tr->mutex makes 77 * some progress. 78 */ 79 msleep(1); 80 return -EAGAIN; 81 } 82 83 switch (cmd) { 84 case FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER: 85 tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY; 86 87 if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) && 88 !(tr->flags & BPF_TRAMP_F_ORIG_STACK)) 89 ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */); 90 break; 91 case FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER: 92 tr->flags &= ~BPF_TRAMP_F_SHARE_IPMODIFY; 93 94 if (tr->flags & BPF_TRAMP_F_ORIG_STACK) 95 ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */); 96 break; 97 default: 98 ret = -EINVAL; 99 break; 100 } 101 102 mutex_unlock(&tr->mutex); 103 return ret; 104 } 105 #endif 106 107 bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 108 { 109 enum bpf_attach_type eatype = prog->expected_attach_type; 110 enum bpf_prog_type ptype = prog->type; 111 112 return (ptype == BPF_PROG_TYPE_TRACING && 113 (eatype == BPF_TRACE_FENTRY || eatype == BPF_TRACE_FEXIT || 114 eatype == BPF_MODIFY_RETURN)) || 115 (ptype == BPF_PROG_TYPE_LSM && eatype == BPF_LSM_MAC); 116 } 117 118 void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym) 119 { 120 ksym->start = (unsigned long) data; 121 ksym->end = ksym->start + size; 122 bpf_ksym_add(ksym); 123 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start, 124 PAGE_SIZE, false, ksym->name); 125 } 126 127 void bpf_image_ksym_del(struct bpf_ksym *ksym) 128 { 129 bpf_ksym_del(ksym); 130 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start, 131 PAGE_SIZE, true, ksym->name); 132 } 133 134 static struct bpf_trampoline *bpf_trampoline_lookup(u64 key) 135 { 136 struct bpf_trampoline *tr; 137 struct hlist_head *head; 138 int i; 139 140 mutex_lock(&trampoline_mutex); 141 head = &trampoline_table[hash_64(key, TRAMPOLINE_HASH_BITS)]; 142 hlist_for_each_entry(tr, head, hlist) { 143 if (tr->key == key) { 144 refcount_inc(&tr->refcnt); 145 goto out; 146 } 147 } 148 tr = kzalloc(sizeof(*tr), GFP_KERNEL); 149 if (!tr) 150 goto out; 151 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 152 tr->fops = kzalloc(sizeof(struct ftrace_ops), GFP_KERNEL); 153 if (!tr->fops) { 154 kfree(tr); 155 tr = NULL; 156 goto out; 157 } 158 tr->fops->private = tr; 159 tr->fops->ops_func = bpf_tramp_ftrace_ops_func; 160 #endif 161 162 tr->key = key; 163 INIT_HLIST_NODE(&tr->hlist); 164 hlist_add_head(&tr->hlist, head); 165 refcount_set(&tr->refcnt, 1); 166 mutex_init(&tr->mutex); 167 for (i = 0; i < BPF_TRAMP_MAX; i++) 168 INIT_HLIST_HEAD(&tr->progs_hlist[i]); 169 out: 170 mutex_unlock(&trampoline_mutex); 171 return tr; 172 } 173 174 static int unregister_fentry(struct bpf_trampoline *tr, void *old_addr) 175 { 176 void *ip = tr->func.addr; 177 int ret; 178 179 if (tr->func.ftrace_managed) 180 ret = unregister_ftrace_direct(tr->fops, (long)old_addr, false); 181 else 182 ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, NULL); 183 184 return ret; 185 } 186 187 static int modify_fentry(struct bpf_trampoline *tr, void *old_addr, void *new_addr, 188 bool lock_direct_mutex) 189 { 190 void *ip = tr->func.addr; 191 int ret; 192 193 if (tr->func.ftrace_managed) { 194 if (lock_direct_mutex) 195 ret = modify_ftrace_direct(tr->fops, (long)new_addr); 196 else 197 ret = modify_ftrace_direct_nolock(tr->fops, (long)new_addr); 198 } else { 199 ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, new_addr); 200 } 201 return ret; 202 } 203 204 /* first time registering */ 205 static int register_fentry(struct bpf_trampoline *tr, void *new_addr) 206 { 207 void *ip = tr->func.addr; 208 unsigned long faddr; 209 int ret; 210 211 faddr = ftrace_location((unsigned long)ip); 212 if (faddr) { 213 if (!tr->fops) 214 return -ENOTSUPP; 215 tr->func.ftrace_managed = true; 216 } 217 218 if (tr->func.ftrace_managed) { 219 ftrace_set_filter_ip(tr->fops, (unsigned long)ip, 0, 1); 220 ret = register_ftrace_direct(tr->fops, (long)new_addr); 221 } else { 222 ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, NULL, new_addr); 223 } 224 225 return ret; 226 } 227 228 static struct bpf_tramp_links * 229 bpf_trampoline_get_progs(const struct bpf_trampoline *tr, int *total, bool *ip_arg) 230 { 231 struct bpf_tramp_link *link; 232 struct bpf_tramp_links *tlinks; 233 struct bpf_tramp_link **links; 234 int kind; 235 236 *total = 0; 237 tlinks = kcalloc(BPF_TRAMP_MAX, sizeof(*tlinks), GFP_KERNEL); 238 if (!tlinks) 239 return ERR_PTR(-ENOMEM); 240 241 for (kind = 0; kind < BPF_TRAMP_MAX; kind++) { 242 tlinks[kind].nr_links = tr->progs_cnt[kind]; 243 *total += tr->progs_cnt[kind]; 244 links = tlinks[kind].links; 245 246 hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) { 247 *ip_arg |= link->link.prog->call_get_func_ip; 248 *links++ = link; 249 } 250 } 251 return tlinks; 252 } 253 254 static void bpf_tramp_image_free(struct bpf_tramp_image *im) 255 { 256 bpf_image_ksym_del(&im->ksym); 257 arch_free_bpf_trampoline(im->image, im->size); 258 bpf_jit_uncharge_modmem(im->size); 259 percpu_ref_exit(&im->pcref); 260 kfree_rcu(im, rcu); 261 } 262 263 static void __bpf_tramp_image_put_deferred(struct work_struct *work) 264 { 265 struct bpf_tramp_image *im; 266 267 im = container_of(work, struct bpf_tramp_image, work); 268 bpf_tramp_image_free(im); 269 } 270 271 /* callback, fexit step 3 or fentry step 2 */ 272 static void __bpf_tramp_image_put_rcu(struct rcu_head *rcu) 273 { 274 struct bpf_tramp_image *im; 275 276 im = container_of(rcu, struct bpf_tramp_image, rcu); 277 INIT_WORK(&im->work, __bpf_tramp_image_put_deferred); 278 schedule_work(&im->work); 279 } 280 281 /* callback, fexit step 2. Called after percpu_ref_kill confirms. */ 282 static void __bpf_tramp_image_release(struct percpu_ref *pcref) 283 { 284 struct bpf_tramp_image *im; 285 286 im = container_of(pcref, struct bpf_tramp_image, pcref); 287 call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu); 288 } 289 290 /* callback, fexit or fentry step 1 */ 291 static void __bpf_tramp_image_put_rcu_tasks(struct rcu_head *rcu) 292 { 293 struct bpf_tramp_image *im; 294 295 im = container_of(rcu, struct bpf_tramp_image, rcu); 296 if (im->ip_after_call) 297 /* the case of fmod_ret/fexit trampoline and CONFIG_PREEMPTION=y */ 298 percpu_ref_kill(&im->pcref); 299 else 300 /* the case of fentry trampoline */ 301 call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu); 302 } 303 304 static void bpf_tramp_image_put(struct bpf_tramp_image *im) 305 { 306 /* The trampoline image that calls original function is using: 307 * rcu_read_lock_trace to protect sleepable bpf progs 308 * rcu_read_lock to protect normal bpf progs 309 * percpu_ref to protect trampoline itself 310 * rcu tasks to protect trampoline asm not covered by percpu_ref 311 * (which are few asm insns before __bpf_tramp_enter and 312 * after __bpf_tramp_exit) 313 * 314 * The trampoline is unreachable before bpf_tramp_image_put(). 315 * 316 * First, patch the trampoline to avoid calling into fexit progs. 317 * The progs will be freed even if the original function is still 318 * executing or sleeping. 319 * In case of CONFIG_PREEMPT=y use call_rcu_tasks() to wait on 320 * first few asm instructions to execute and call into 321 * __bpf_tramp_enter->percpu_ref_get. 322 * Then use percpu_ref_kill to wait for the trampoline and the original 323 * function to finish. 324 * Then use call_rcu_tasks() to make sure few asm insns in 325 * the trampoline epilogue are done as well. 326 * 327 * In !PREEMPT case the task that got interrupted in the first asm 328 * insns won't go through an RCU quiescent state which the 329 * percpu_ref_kill will be waiting for. Hence the first 330 * call_rcu_tasks() is not necessary. 331 */ 332 if (im->ip_after_call) { 333 int err = bpf_arch_text_poke(im->ip_after_call, BPF_MOD_JUMP, 334 NULL, im->ip_epilogue); 335 WARN_ON(err); 336 if (IS_ENABLED(CONFIG_TASKS_RCU)) 337 call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu_tasks); 338 else 339 percpu_ref_kill(&im->pcref); 340 return; 341 } 342 343 /* The trampoline without fexit and fmod_ret progs doesn't call original 344 * function and doesn't use percpu_ref. 345 * Use call_rcu_tasks_trace() to wait for sleepable progs to finish. 346 * Then use call_rcu_tasks() to wait for the rest of trampoline asm 347 * and normal progs. 348 */ 349 call_rcu_tasks_trace(&im->rcu, __bpf_tramp_image_put_rcu_tasks); 350 } 351 352 static struct bpf_tramp_image *bpf_tramp_image_alloc(u64 key, int size) 353 { 354 struct bpf_tramp_image *im; 355 struct bpf_ksym *ksym; 356 void *image; 357 int err = -ENOMEM; 358 359 im = kzalloc(sizeof(*im), GFP_KERNEL); 360 if (!im) 361 goto out; 362 363 err = bpf_jit_charge_modmem(size); 364 if (err) 365 goto out_free_im; 366 im->size = size; 367 368 err = -ENOMEM; 369 im->image = image = arch_alloc_bpf_trampoline(size); 370 if (!image) 371 goto out_uncharge; 372 373 err = percpu_ref_init(&im->pcref, __bpf_tramp_image_release, 0, GFP_KERNEL); 374 if (err) 375 goto out_free_image; 376 377 ksym = &im->ksym; 378 INIT_LIST_HEAD_RCU(&ksym->lnode); 379 snprintf(ksym->name, KSYM_NAME_LEN, "bpf_trampoline_%llu", key); 380 bpf_image_ksym_add(image, size, ksym); 381 return im; 382 383 out_free_image: 384 arch_free_bpf_trampoline(im->image, im->size); 385 out_uncharge: 386 bpf_jit_uncharge_modmem(size); 387 out_free_im: 388 kfree(im); 389 out: 390 return ERR_PTR(err); 391 } 392 393 static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex) 394 { 395 struct bpf_tramp_image *im; 396 struct bpf_tramp_links *tlinks; 397 u32 orig_flags = tr->flags; 398 bool ip_arg = false; 399 int err, total, size; 400 401 tlinks = bpf_trampoline_get_progs(tr, &total, &ip_arg); 402 if (IS_ERR(tlinks)) 403 return PTR_ERR(tlinks); 404 405 if (total == 0) { 406 err = unregister_fentry(tr, tr->cur_image->image); 407 bpf_tramp_image_put(tr->cur_image); 408 tr->cur_image = NULL; 409 goto out; 410 } 411 412 /* clear all bits except SHARE_IPMODIFY and TAIL_CALL_CTX */ 413 tr->flags &= (BPF_TRAMP_F_SHARE_IPMODIFY | BPF_TRAMP_F_TAIL_CALL_CTX); 414 415 if (tlinks[BPF_TRAMP_FEXIT].nr_links || 416 tlinks[BPF_TRAMP_MODIFY_RETURN].nr_links) { 417 /* NOTE: BPF_TRAMP_F_RESTORE_REGS and BPF_TRAMP_F_SKIP_FRAME 418 * should not be set together. 419 */ 420 tr->flags |= BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME; 421 } else { 422 tr->flags |= BPF_TRAMP_F_RESTORE_REGS; 423 } 424 425 if (ip_arg) 426 tr->flags |= BPF_TRAMP_F_IP_ARG; 427 428 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 429 again: 430 if ((tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY) && 431 (tr->flags & BPF_TRAMP_F_CALL_ORIG)) 432 tr->flags |= BPF_TRAMP_F_ORIG_STACK; 433 #endif 434 435 size = arch_bpf_trampoline_size(&tr->func.model, tr->flags, 436 tlinks, tr->func.addr); 437 if (size < 0) { 438 err = size; 439 goto out; 440 } 441 442 if (size > PAGE_SIZE) { 443 err = -E2BIG; 444 goto out; 445 } 446 447 im = bpf_tramp_image_alloc(tr->key, size); 448 if (IS_ERR(im)) { 449 err = PTR_ERR(im); 450 goto out; 451 } 452 453 err = arch_prepare_bpf_trampoline(im, im->image, im->image + size, 454 &tr->func.model, tr->flags, tlinks, 455 tr->func.addr); 456 if (err < 0) 457 goto out_free; 458 459 err = arch_protect_bpf_trampoline(im->image, im->size); 460 if (err) 461 goto out_free; 462 463 WARN_ON(tr->cur_image && total == 0); 464 if (tr->cur_image) 465 /* progs already running at this address */ 466 err = modify_fentry(tr, tr->cur_image->image, im->image, lock_direct_mutex); 467 else 468 /* first time registering */ 469 err = register_fentry(tr, im->image); 470 471 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 472 if (err == -EAGAIN) { 473 /* -EAGAIN from bpf_tramp_ftrace_ops_func. Now 474 * BPF_TRAMP_F_SHARE_IPMODIFY is set, we can generate the 475 * trampoline again, and retry register. 476 */ 477 /* reset fops->func and fops->trampoline for re-register */ 478 tr->fops->func = NULL; 479 tr->fops->trampoline = 0; 480 481 /* free im memory and reallocate later */ 482 bpf_tramp_image_free(im); 483 goto again; 484 } 485 #endif 486 if (err) 487 goto out_free; 488 489 if (tr->cur_image) 490 bpf_tramp_image_put(tr->cur_image); 491 tr->cur_image = im; 492 out: 493 /* If any error happens, restore previous flags */ 494 if (err) 495 tr->flags = orig_flags; 496 kfree(tlinks); 497 return err; 498 499 out_free: 500 bpf_tramp_image_free(im); 501 goto out; 502 } 503 504 static enum bpf_tramp_prog_type bpf_attach_type_to_tramp(struct bpf_prog *prog) 505 { 506 switch (prog->expected_attach_type) { 507 case BPF_TRACE_FENTRY: 508 return BPF_TRAMP_FENTRY; 509 case BPF_MODIFY_RETURN: 510 return BPF_TRAMP_MODIFY_RETURN; 511 case BPF_TRACE_FEXIT: 512 return BPF_TRAMP_FEXIT; 513 case BPF_LSM_MAC: 514 if (!prog->aux->attach_func_proto->type) 515 /* The function returns void, we cannot modify its 516 * return value. 517 */ 518 return BPF_TRAMP_FEXIT; 519 else 520 return BPF_TRAMP_MODIFY_RETURN; 521 default: 522 return BPF_TRAMP_REPLACE; 523 } 524 } 525 526 static int bpf_freplace_check_tgt_prog(struct bpf_prog *tgt_prog) 527 { 528 struct bpf_prog_aux *aux = tgt_prog->aux; 529 530 guard(mutex)(&aux->ext_mutex); 531 if (aux->prog_array_member_cnt) 532 /* Program extensions can not extend target prog when the target 533 * prog has been updated to any prog_array map as tail callee. 534 * It's to prevent a potential infinite loop like: 535 * tgt prog entry -> tgt prog subprog -> freplace prog entry 536 * --tailcall-> tgt prog entry. 537 */ 538 return -EBUSY; 539 540 aux->is_extended = true; 541 return 0; 542 } 543 544 static int __bpf_trampoline_link_prog(struct bpf_tramp_link *link, 545 struct bpf_trampoline *tr, 546 struct bpf_prog *tgt_prog) 547 { 548 enum bpf_tramp_prog_type kind; 549 struct bpf_tramp_link *link_exiting; 550 int err = 0; 551 int cnt = 0, i; 552 553 kind = bpf_attach_type_to_tramp(link->link.prog); 554 if (tr->extension_prog) 555 /* cannot attach fentry/fexit if extension prog is attached. 556 * cannot overwrite extension prog either. 557 */ 558 return -EBUSY; 559 560 for (i = 0; i < BPF_TRAMP_MAX; i++) 561 cnt += tr->progs_cnt[i]; 562 563 if (kind == BPF_TRAMP_REPLACE) { 564 /* Cannot attach extension if fentry/fexit are in use. */ 565 if (cnt) 566 return -EBUSY; 567 err = bpf_freplace_check_tgt_prog(tgt_prog); 568 if (err) 569 return err; 570 tr->extension_prog = link->link.prog; 571 return bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP, NULL, 572 link->link.prog->bpf_func); 573 } 574 if (cnt >= BPF_MAX_TRAMP_LINKS) 575 return -E2BIG; 576 if (!hlist_unhashed(&link->tramp_hlist)) 577 /* prog already linked */ 578 return -EBUSY; 579 hlist_for_each_entry(link_exiting, &tr->progs_hlist[kind], tramp_hlist) { 580 if (link_exiting->link.prog != link->link.prog) 581 continue; 582 /* prog already linked */ 583 return -EBUSY; 584 } 585 586 hlist_add_head(&link->tramp_hlist, &tr->progs_hlist[kind]); 587 tr->progs_cnt[kind]++; 588 err = bpf_trampoline_update(tr, true /* lock_direct_mutex */); 589 if (err) { 590 hlist_del_init(&link->tramp_hlist); 591 tr->progs_cnt[kind]--; 592 } 593 return err; 594 } 595 596 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 597 struct bpf_trampoline *tr, 598 struct bpf_prog *tgt_prog) 599 { 600 int err; 601 602 mutex_lock(&tr->mutex); 603 err = __bpf_trampoline_link_prog(link, tr, tgt_prog); 604 mutex_unlock(&tr->mutex); 605 return err; 606 } 607 608 static int __bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 609 struct bpf_trampoline *tr, 610 struct bpf_prog *tgt_prog) 611 { 612 enum bpf_tramp_prog_type kind; 613 int err; 614 615 kind = bpf_attach_type_to_tramp(link->link.prog); 616 if (kind == BPF_TRAMP_REPLACE) { 617 WARN_ON_ONCE(!tr->extension_prog); 618 err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP, 619 tr->extension_prog->bpf_func, NULL); 620 tr->extension_prog = NULL; 621 guard(mutex)(&tgt_prog->aux->ext_mutex); 622 tgt_prog->aux->is_extended = false; 623 return err; 624 } 625 hlist_del_init(&link->tramp_hlist); 626 tr->progs_cnt[kind]--; 627 return bpf_trampoline_update(tr, true /* lock_direct_mutex */); 628 } 629 630 /* bpf_trampoline_unlink_prog() should never fail. */ 631 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 632 struct bpf_trampoline *tr, 633 struct bpf_prog *tgt_prog) 634 { 635 int err; 636 637 mutex_lock(&tr->mutex); 638 err = __bpf_trampoline_unlink_prog(link, tr, tgt_prog); 639 mutex_unlock(&tr->mutex); 640 return err; 641 } 642 643 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 644 static void bpf_shim_tramp_link_release(struct bpf_link *link) 645 { 646 struct bpf_shim_tramp_link *shim_link = 647 container_of(link, struct bpf_shim_tramp_link, link.link); 648 649 /* paired with 'shim_link->trampoline = tr' in bpf_trampoline_link_cgroup_shim */ 650 if (!shim_link->trampoline) 651 return; 652 653 WARN_ON_ONCE(bpf_trampoline_unlink_prog(&shim_link->link, shim_link->trampoline, NULL)); 654 bpf_trampoline_put(shim_link->trampoline); 655 } 656 657 static void bpf_shim_tramp_link_dealloc(struct bpf_link *link) 658 { 659 struct bpf_shim_tramp_link *shim_link = 660 container_of(link, struct bpf_shim_tramp_link, link.link); 661 662 kfree(shim_link); 663 } 664 665 static const struct bpf_link_ops bpf_shim_tramp_link_lops = { 666 .release = bpf_shim_tramp_link_release, 667 .dealloc = bpf_shim_tramp_link_dealloc, 668 }; 669 670 static struct bpf_shim_tramp_link *cgroup_shim_alloc(const struct bpf_prog *prog, 671 bpf_func_t bpf_func, 672 int cgroup_atype) 673 { 674 struct bpf_shim_tramp_link *shim_link = NULL; 675 struct bpf_prog *p; 676 677 shim_link = kzalloc(sizeof(*shim_link), GFP_USER); 678 if (!shim_link) 679 return NULL; 680 681 p = bpf_prog_alloc(1, 0); 682 if (!p) { 683 kfree(shim_link); 684 return NULL; 685 } 686 687 p->jited = false; 688 p->bpf_func = bpf_func; 689 690 p->aux->cgroup_atype = cgroup_atype; 691 p->aux->attach_func_proto = prog->aux->attach_func_proto; 692 p->aux->attach_btf_id = prog->aux->attach_btf_id; 693 p->aux->attach_btf = prog->aux->attach_btf; 694 btf_get(p->aux->attach_btf); 695 p->type = BPF_PROG_TYPE_LSM; 696 p->expected_attach_type = BPF_LSM_MAC; 697 bpf_prog_inc(p); 698 bpf_link_init(&shim_link->link.link, BPF_LINK_TYPE_UNSPEC, 699 &bpf_shim_tramp_link_lops, p); 700 bpf_cgroup_atype_get(p->aux->attach_btf_id, cgroup_atype); 701 702 return shim_link; 703 } 704 705 static struct bpf_shim_tramp_link *cgroup_shim_find(struct bpf_trampoline *tr, 706 bpf_func_t bpf_func) 707 { 708 struct bpf_tramp_link *link; 709 int kind; 710 711 for (kind = 0; kind < BPF_TRAMP_MAX; kind++) { 712 hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) { 713 struct bpf_prog *p = link->link.prog; 714 715 if (p->bpf_func == bpf_func) 716 return container_of(link, struct bpf_shim_tramp_link, link); 717 } 718 } 719 720 return NULL; 721 } 722 723 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 724 int cgroup_atype) 725 { 726 struct bpf_shim_tramp_link *shim_link = NULL; 727 struct bpf_attach_target_info tgt_info = {}; 728 struct bpf_trampoline *tr; 729 bpf_func_t bpf_func; 730 u64 key; 731 int err; 732 733 err = bpf_check_attach_target(NULL, prog, NULL, 734 prog->aux->attach_btf_id, 735 &tgt_info); 736 if (err) 737 return err; 738 739 key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf, 740 prog->aux->attach_btf_id); 741 742 bpf_lsm_find_cgroup_shim(prog, &bpf_func); 743 tr = bpf_trampoline_get(key, &tgt_info); 744 if (!tr) 745 return -ENOMEM; 746 747 mutex_lock(&tr->mutex); 748 749 shim_link = cgroup_shim_find(tr, bpf_func); 750 if (shim_link) { 751 /* Reusing existing shim attached by the other program. */ 752 bpf_link_inc(&shim_link->link.link); 753 754 mutex_unlock(&tr->mutex); 755 bpf_trampoline_put(tr); /* bpf_trampoline_get above */ 756 return 0; 757 } 758 759 /* Allocate and install new shim. */ 760 761 shim_link = cgroup_shim_alloc(prog, bpf_func, cgroup_atype); 762 if (!shim_link) { 763 err = -ENOMEM; 764 goto err; 765 } 766 767 err = __bpf_trampoline_link_prog(&shim_link->link, tr, NULL); 768 if (err) 769 goto err; 770 771 shim_link->trampoline = tr; 772 /* note, we're still holding tr refcnt from above */ 773 774 mutex_unlock(&tr->mutex); 775 776 return 0; 777 err: 778 mutex_unlock(&tr->mutex); 779 780 if (shim_link) 781 bpf_link_put(&shim_link->link.link); 782 783 /* have to release tr while _not_ holding its mutex */ 784 bpf_trampoline_put(tr); /* bpf_trampoline_get above */ 785 786 return err; 787 } 788 789 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 790 { 791 struct bpf_shim_tramp_link *shim_link = NULL; 792 struct bpf_trampoline *tr; 793 bpf_func_t bpf_func; 794 u64 key; 795 796 key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf, 797 prog->aux->attach_btf_id); 798 799 bpf_lsm_find_cgroup_shim(prog, &bpf_func); 800 tr = bpf_trampoline_lookup(key); 801 if (WARN_ON_ONCE(!tr)) 802 return; 803 804 mutex_lock(&tr->mutex); 805 shim_link = cgroup_shim_find(tr, bpf_func); 806 mutex_unlock(&tr->mutex); 807 808 if (shim_link) 809 bpf_link_put(&shim_link->link.link); 810 811 bpf_trampoline_put(tr); /* bpf_trampoline_lookup above */ 812 } 813 #endif 814 815 struct bpf_trampoline *bpf_trampoline_get(u64 key, 816 struct bpf_attach_target_info *tgt_info) 817 { 818 struct bpf_trampoline *tr; 819 820 tr = bpf_trampoline_lookup(key); 821 if (!tr) 822 return NULL; 823 824 mutex_lock(&tr->mutex); 825 if (tr->func.addr) 826 goto out; 827 828 memcpy(&tr->func.model, &tgt_info->fmodel, sizeof(tgt_info->fmodel)); 829 tr->func.addr = (void *)tgt_info->tgt_addr; 830 out: 831 mutex_unlock(&tr->mutex); 832 return tr; 833 } 834 835 void bpf_trampoline_put(struct bpf_trampoline *tr) 836 { 837 int i; 838 839 if (!tr) 840 return; 841 mutex_lock(&trampoline_mutex); 842 if (!refcount_dec_and_test(&tr->refcnt)) 843 goto out; 844 WARN_ON_ONCE(mutex_is_locked(&tr->mutex)); 845 846 for (i = 0; i < BPF_TRAMP_MAX; i++) 847 if (WARN_ON_ONCE(!hlist_empty(&tr->progs_hlist[i]))) 848 goto out; 849 850 /* This code will be executed even when the last bpf_tramp_image 851 * is alive. All progs are detached from the trampoline and the 852 * trampoline image is patched with jmp into epilogue to skip 853 * fexit progs. The fentry-only trampoline will be freed via 854 * multiple rcu callbacks. 855 */ 856 hlist_del(&tr->hlist); 857 if (tr->fops) { 858 ftrace_free_filter(tr->fops); 859 kfree(tr->fops); 860 } 861 kfree(tr); 862 out: 863 mutex_unlock(&trampoline_mutex); 864 } 865 866 #define NO_START_TIME 1 867 static __always_inline u64 notrace bpf_prog_start_time(void) 868 { 869 u64 start = NO_START_TIME; 870 871 if (static_branch_unlikely(&bpf_stats_enabled_key)) { 872 start = sched_clock(); 873 if (unlikely(!start)) 874 start = NO_START_TIME; 875 } 876 return start; 877 } 878 879 /* The logic is similar to bpf_prog_run(), but with an explicit 880 * rcu_read_lock() and migrate_disable() which are required 881 * for the trampoline. The macro is split into 882 * call __bpf_prog_enter 883 * call prog->bpf_func 884 * call __bpf_prog_exit 885 * 886 * __bpf_prog_enter returns: 887 * 0 - skip execution of the bpf prog 888 * 1 - execute bpf prog 889 * [2..MAX_U64] - execute bpf prog and record execution time. 890 * This is start time. 891 */ 892 static u64 notrace __bpf_prog_enter_recur(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx) 893 __acquires(RCU) 894 { 895 rcu_read_lock(); 896 migrate_disable(); 897 898 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); 899 900 if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) { 901 bpf_prog_inc_misses_counter(prog); 902 return 0; 903 } 904 return bpf_prog_start_time(); 905 } 906 907 static void notrace update_prog_stats(struct bpf_prog *prog, 908 u64 start) 909 { 910 struct bpf_prog_stats *stats; 911 912 if (static_branch_unlikely(&bpf_stats_enabled_key) && 913 /* static_key could be enabled in __bpf_prog_enter* 914 * and disabled in __bpf_prog_exit*. 915 * And vice versa. 916 * Hence check that 'start' is valid. 917 */ 918 start > NO_START_TIME) { 919 u64 duration = sched_clock() - start; 920 unsigned long flags; 921 922 stats = this_cpu_ptr(prog->stats); 923 flags = u64_stats_update_begin_irqsave(&stats->syncp); 924 u64_stats_inc(&stats->cnt); 925 u64_stats_add(&stats->nsecs, duration); 926 u64_stats_update_end_irqrestore(&stats->syncp, flags); 927 } 928 } 929 930 static void notrace __bpf_prog_exit_recur(struct bpf_prog *prog, u64 start, 931 struct bpf_tramp_run_ctx *run_ctx) 932 __releases(RCU) 933 { 934 bpf_reset_run_ctx(run_ctx->saved_run_ctx); 935 936 update_prog_stats(prog, start); 937 this_cpu_dec(*(prog->active)); 938 migrate_enable(); 939 rcu_read_unlock(); 940 } 941 942 static u64 notrace __bpf_prog_enter_lsm_cgroup(struct bpf_prog *prog, 943 struct bpf_tramp_run_ctx *run_ctx) 944 __acquires(RCU) 945 { 946 /* Runtime stats are exported via actual BPF_LSM_CGROUP 947 * programs, not the shims. 948 */ 949 rcu_read_lock(); 950 migrate_disable(); 951 952 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); 953 954 return NO_START_TIME; 955 } 956 957 static void notrace __bpf_prog_exit_lsm_cgroup(struct bpf_prog *prog, u64 start, 958 struct bpf_tramp_run_ctx *run_ctx) 959 __releases(RCU) 960 { 961 bpf_reset_run_ctx(run_ctx->saved_run_ctx); 962 963 migrate_enable(); 964 rcu_read_unlock(); 965 } 966 967 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 968 struct bpf_tramp_run_ctx *run_ctx) 969 { 970 rcu_read_lock_trace(); 971 migrate_disable(); 972 might_fault(); 973 974 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); 975 976 if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) { 977 bpf_prog_inc_misses_counter(prog); 978 return 0; 979 } 980 return bpf_prog_start_time(); 981 } 982 983 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 984 struct bpf_tramp_run_ctx *run_ctx) 985 { 986 bpf_reset_run_ctx(run_ctx->saved_run_ctx); 987 988 update_prog_stats(prog, start); 989 this_cpu_dec(*(prog->active)); 990 migrate_enable(); 991 rcu_read_unlock_trace(); 992 } 993 994 static u64 notrace __bpf_prog_enter_sleepable(struct bpf_prog *prog, 995 struct bpf_tramp_run_ctx *run_ctx) 996 { 997 rcu_read_lock_trace(); 998 migrate_disable(); 999 might_fault(); 1000 1001 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); 1002 1003 return bpf_prog_start_time(); 1004 } 1005 1006 static void notrace __bpf_prog_exit_sleepable(struct bpf_prog *prog, u64 start, 1007 struct bpf_tramp_run_ctx *run_ctx) 1008 { 1009 bpf_reset_run_ctx(run_ctx->saved_run_ctx); 1010 1011 update_prog_stats(prog, start); 1012 migrate_enable(); 1013 rcu_read_unlock_trace(); 1014 } 1015 1016 static u64 notrace __bpf_prog_enter(struct bpf_prog *prog, 1017 struct bpf_tramp_run_ctx *run_ctx) 1018 __acquires(RCU) 1019 { 1020 rcu_read_lock(); 1021 migrate_disable(); 1022 1023 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); 1024 1025 return bpf_prog_start_time(); 1026 } 1027 1028 static void notrace __bpf_prog_exit(struct bpf_prog *prog, u64 start, 1029 struct bpf_tramp_run_ctx *run_ctx) 1030 __releases(RCU) 1031 { 1032 bpf_reset_run_ctx(run_ctx->saved_run_ctx); 1033 1034 update_prog_stats(prog, start); 1035 migrate_enable(); 1036 rcu_read_unlock(); 1037 } 1038 1039 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr) 1040 { 1041 percpu_ref_get(&tr->pcref); 1042 } 1043 1044 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr) 1045 { 1046 percpu_ref_put(&tr->pcref); 1047 } 1048 1049 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog) 1050 { 1051 bool sleepable = prog->sleepable; 1052 1053 if (bpf_prog_check_recur(prog)) 1054 return sleepable ? __bpf_prog_enter_sleepable_recur : 1055 __bpf_prog_enter_recur; 1056 1057 if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM && 1058 prog->expected_attach_type == BPF_LSM_CGROUP) 1059 return __bpf_prog_enter_lsm_cgroup; 1060 1061 return sleepable ? __bpf_prog_enter_sleepable : __bpf_prog_enter; 1062 } 1063 1064 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog) 1065 { 1066 bool sleepable = prog->sleepable; 1067 1068 if (bpf_prog_check_recur(prog)) 1069 return sleepable ? __bpf_prog_exit_sleepable_recur : 1070 __bpf_prog_exit_recur; 1071 1072 if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM && 1073 prog->expected_attach_type == BPF_LSM_CGROUP) 1074 return __bpf_prog_exit_lsm_cgroup; 1075 1076 return sleepable ? __bpf_prog_exit_sleepable : __bpf_prog_exit; 1077 } 1078 1079 int __weak 1080 arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 1081 const struct btf_func_model *m, u32 flags, 1082 struct bpf_tramp_links *tlinks, 1083 void *func_addr) 1084 { 1085 return -ENOTSUPP; 1086 } 1087 1088 void * __weak arch_alloc_bpf_trampoline(unsigned int size) 1089 { 1090 void *image; 1091 1092 if (WARN_ON_ONCE(size > PAGE_SIZE)) 1093 return NULL; 1094 image = bpf_jit_alloc_exec(PAGE_SIZE); 1095 if (image) 1096 set_vm_flush_reset_perms(image); 1097 return image; 1098 } 1099 1100 void __weak arch_free_bpf_trampoline(void *image, unsigned int size) 1101 { 1102 WARN_ON_ONCE(size > PAGE_SIZE); 1103 /* bpf_jit_free_exec doesn't need "size", but 1104 * bpf_prog_pack_free() needs it. 1105 */ 1106 bpf_jit_free_exec(image); 1107 } 1108 1109 int __weak arch_protect_bpf_trampoline(void *image, unsigned int size) 1110 { 1111 WARN_ON_ONCE(size > PAGE_SIZE); 1112 return set_memory_rox((long)image, 1); 1113 } 1114 1115 int __weak arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 1116 struct bpf_tramp_links *tlinks, void *func_addr) 1117 { 1118 return -ENOTSUPP; 1119 } 1120 1121 static int __init init_trampolines(void) 1122 { 1123 int i; 1124 1125 for (i = 0; i < TRAMPOLINE_TABLE_SIZE; i++) 1126 INIT_HLIST_HEAD(&trampoline_table[i]); 1127 return 0; 1128 } 1129 late_initcall(init_trampolines); 1130