1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2019 Facebook */ 3 #include <linux/hash.h> 4 #include <linux/bpf.h> 5 #include <linux/filter.h> 6 #include <linux/ftrace.h> 7 #include <linux/rbtree_latch.h> 8 #include <linux/perf_event.h> 9 #include <linux/btf.h> 10 #include <linux/rcupdate_trace.h> 11 #include <linux/rcupdate_wait.h> 12 #include <linux/module.h> 13 #include <linux/static_call.h> 14 #include <linux/bpf_verifier.h> 15 #include <linux/bpf_lsm.h> 16 #include <linux/delay.h> 17 18 /* dummy _ops. The verifier will operate on target program's ops. */ 19 const struct bpf_verifier_ops bpf_extension_verifier_ops = { 20 }; 21 const struct bpf_prog_ops bpf_extension_prog_ops = { 22 }; 23 24 /* btf_vmlinux has ~22k attachable functions. 1k htab is enough. */ 25 #define TRAMPOLINE_HASH_BITS 10 26 #define TRAMPOLINE_TABLE_SIZE (1 << TRAMPOLINE_HASH_BITS) 27 28 static struct hlist_head trampoline_table[TRAMPOLINE_TABLE_SIZE]; 29 30 /* serializes access to trampoline_table */ 31 static DEFINE_MUTEX(trampoline_mutex); 32 33 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 34 static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex); 35 36 static int bpf_tramp_ftrace_ops_func(struct ftrace_ops *ops, enum ftrace_ops_cmd cmd) 37 { 38 struct bpf_trampoline *tr = ops->private; 39 int ret = 0; 40 41 if (cmd == FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF) { 42 /* This is called inside register_ftrace_direct_multi(), so 43 * tr->mutex is already locked. 44 */ 45 lockdep_assert_held_once(&tr->mutex); 46 47 /* Instead of updating the trampoline here, we propagate 48 * -EAGAIN to register_ftrace_direct_multi(). Then we can 49 * retry register_ftrace_direct_multi() after updating the 50 * trampoline. 51 */ 52 if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) && 53 !(tr->flags & BPF_TRAMP_F_ORIG_STACK)) { 54 if (WARN_ON_ONCE(tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY)) 55 return -EBUSY; 56 57 tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY; 58 return -EAGAIN; 59 } 60 61 return 0; 62 } 63 64 /* The normal locking order is 65 * tr->mutex => direct_mutex (ftrace.c) => ftrace_lock (ftrace.c) 66 * 67 * The following two commands are called from 68 * 69 * prepare_direct_functions_for_ipmodify 70 * cleanup_direct_functions_after_ipmodify 71 * 72 * In both cases, direct_mutex is already locked. Use 73 * mutex_trylock(&tr->mutex) to avoid deadlock in race condition 74 * (something else is making changes to this same trampoline). 75 */ 76 if (!mutex_trylock(&tr->mutex)) { 77 /* sleep 1 ms to make sure whatever holding tr->mutex makes 78 * some progress. 79 */ 80 msleep(1); 81 return -EAGAIN; 82 } 83 84 switch (cmd) { 85 case FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER: 86 tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY; 87 88 if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) && 89 !(tr->flags & BPF_TRAMP_F_ORIG_STACK)) 90 ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */); 91 break; 92 case FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER: 93 tr->flags &= ~BPF_TRAMP_F_SHARE_IPMODIFY; 94 95 if (tr->flags & BPF_TRAMP_F_ORIG_STACK) 96 ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */); 97 break; 98 default: 99 ret = -EINVAL; 100 break; 101 } 102 103 mutex_unlock(&tr->mutex); 104 return ret; 105 } 106 #endif 107 108 bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 109 { 110 enum bpf_attach_type eatype = prog->expected_attach_type; 111 enum bpf_prog_type ptype = prog->type; 112 113 return (ptype == BPF_PROG_TYPE_TRACING && 114 (eatype == BPF_TRACE_FENTRY || eatype == BPF_TRACE_FEXIT || 115 eatype == BPF_MODIFY_RETURN)) || 116 (ptype == BPF_PROG_TYPE_LSM && eatype == BPF_LSM_MAC); 117 } 118 119 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym) 120 { 121 ksym->start = (unsigned long) data; 122 ksym->end = ksym->start + PAGE_SIZE; 123 bpf_ksym_add(ksym); 124 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start, 125 PAGE_SIZE, false, ksym->name); 126 } 127 128 void bpf_image_ksym_del(struct bpf_ksym *ksym) 129 { 130 bpf_ksym_del(ksym); 131 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start, 132 PAGE_SIZE, true, ksym->name); 133 } 134 135 static struct bpf_trampoline *bpf_trampoline_lookup(u64 key) 136 { 137 struct bpf_trampoline *tr; 138 struct hlist_head *head; 139 int i; 140 141 mutex_lock(&trampoline_mutex); 142 head = &trampoline_table[hash_64(key, TRAMPOLINE_HASH_BITS)]; 143 hlist_for_each_entry(tr, head, hlist) { 144 if (tr->key == key) { 145 refcount_inc(&tr->refcnt); 146 goto out; 147 } 148 } 149 tr = kzalloc(sizeof(*tr), GFP_KERNEL); 150 if (!tr) 151 goto out; 152 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 153 tr->fops = kzalloc(sizeof(struct ftrace_ops), GFP_KERNEL); 154 if (!tr->fops) { 155 kfree(tr); 156 tr = NULL; 157 goto out; 158 } 159 tr->fops->private = tr; 160 tr->fops->ops_func = bpf_tramp_ftrace_ops_func; 161 #endif 162 163 tr->key = key; 164 INIT_HLIST_NODE(&tr->hlist); 165 hlist_add_head(&tr->hlist, head); 166 refcount_set(&tr->refcnt, 1); 167 mutex_init(&tr->mutex); 168 for (i = 0; i < BPF_TRAMP_MAX; i++) 169 INIT_HLIST_HEAD(&tr->progs_hlist[i]); 170 out: 171 mutex_unlock(&trampoline_mutex); 172 return tr; 173 } 174 175 static int bpf_trampoline_module_get(struct bpf_trampoline *tr) 176 { 177 struct module *mod; 178 int err = 0; 179 180 preempt_disable(); 181 mod = __module_text_address((unsigned long) tr->func.addr); 182 if (mod && !try_module_get(mod)) 183 err = -ENOENT; 184 preempt_enable(); 185 tr->mod = mod; 186 return err; 187 } 188 189 static void bpf_trampoline_module_put(struct bpf_trampoline *tr) 190 { 191 module_put(tr->mod); 192 tr->mod = NULL; 193 } 194 195 static int unregister_fentry(struct bpf_trampoline *tr, void *old_addr) 196 { 197 void *ip = tr->func.addr; 198 int ret; 199 200 if (tr->func.ftrace_managed) 201 ret = unregister_ftrace_direct_multi(tr->fops, (long)old_addr); 202 else 203 ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, NULL); 204 205 if (!ret) 206 bpf_trampoline_module_put(tr); 207 return ret; 208 } 209 210 static int modify_fentry(struct bpf_trampoline *tr, void *old_addr, void *new_addr, 211 bool lock_direct_mutex) 212 { 213 void *ip = tr->func.addr; 214 int ret; 215 216 if (tr->func.ftrace_managed) { 217 if (lock_direct_mutex) 218 ret = modify_ftrace_direct_multi(tr->fops, (long)new_addr); 219 else 220 ret = modify_ftrace_direct_multi_nolock(tr->fops, (long)new_addr); 221 } else { 222 ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, new_addr); 223 } 224 return ret; 225 } 226 227 /* first time registering */ 228 static int register_fentry(struct bpf_trampoline *tr, void *new_addr) 229 { 230 void *ip = tr->func.addr; 231 unsigned long faddr; 232 int ret; 233 234 faddr = ftrace_location((unsigned long)ip); 235 if (faddr) { 236 if (!tr->fops) 237 return -ENOTSUPP; 238 tr->func.ftrace_managed = true; 239 } 240 241 if (bpf_trampoline_module_get(tr)) 242 return -ENOENT; 243 244 if (tr->func.ftrace_managed) { 245 ftrace_set_filter_ip(tr->fops, (unsigned long)ip, 0, 1); 246 ret = register_ftrace_direct_multi(tr->fops, (long)new_addr); 247 } else { 248 ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, NULL, new_addr); 249 } 250 251 if (ret) 252 bpf_trampoline_module_put(tr); 253 return ret; 254 } 255 256 static struct bpf_tramp_links * 257 bpf_trampoline_get_progs(const struct bpf_trampoline *tr, int *total, bool *ip_arg) 258 { 259 struct bpf_tramp_link *link; 260 struct bpf_tramp_links *tlinks; 261 struct bpf_tramp_link **links; 262 int kind; 263 264 *total = 0; 265 tlinks = kcalloc(BPF_TRAMP_MAX, sizeof(*tlinks), GFP_KERNEL); 266 if (!tlinks) 267 return ERR_PTR(-ENOMEM); 268 269 for (kind = 0; kind < BPF_TRAMP_MAX; kind++) { 270 tlinks[kind].nr_links = tr->progs_cnt[kind]; 271 *total += tr->progs_cnt[kind]; 272 links = tlinks[kind].links; 273 274 hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) { 275 *ip_arg |= link->link.prog->call_get_func_ip; 276 *links++ = link; 277 } 278 } 279 return tlinks; 280 } 281 282 static void __bpf_tramp_image_put_deferred(struct work_struct *work) 283 { 284 struct bpf_tramp_image *im; 285 286 im = container_of(work, struct bpf_tramp_image, work); 287 bpf_image_ksym_del(&im->ksym); 288 bpf_jit_free_exec(im->image); 289 bpf_jit_uncharge_modmem(PAGE_SIZE); 290 percpu_ref_exit(&im->pcref); 291 kfree_rcu(im, rcu); 292 } 293 294 /* callback, fexit step 3 or fentry step 2 */ 295 static void __bpf_tramp_image_put_rcu(struct rcu_head *rcu) 296 { 297 struct bpf_tramp_image *im; 298 299 im = container_of(rcu, struct bpf_tramp_image, rcu); 300 INIT_WORK(&im->work, __bpf_tramp_image_put_deferred); 301 schedule_work(&im->work); 302 } 303 304 /* callback, fexit step 2. Called after percpu_ref_kill confirms. */ 305 static void __bpf_tramp_image_release(struct percpu_ref *pcref) 306 { 307 struct bpf_tramp_image *im; 308 309 im = container_of(pcref, struct bpf_tramp_image, pcref); 310 call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu); 311 } 312 313 /* callback, fexit or fentry step 1 */ 314 static void __bpf_tramp_image_put_rcu_tasks(struct rcu_head *rcu) 315 { 316 struct bpf_tramp_image *im; 317 318 im = container_of(rcu, struct bpf_tramp_image, rcu); 319 if (im->ip_after_call) 320 /* the case of fmod_ret/fexit trampoline and CONFIG_PREEMPTION=y */ 321 percpu_ref_kill(&im->pcref); 322 else 323 /* the case of fentry trampoline */ 324 call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu); 325 } 326 327 static void bpf_tramp_image_put(struct bpf_tramp_image *im) 328 { 329 /* The trampoline image that calls original function is using: 330 * rcu_read_lock_trace to protect sleepable bpf progs 331 * rcu_read_lock to protect normal bpf progs 332 * percpu_ref to protect trampoline itself 333 * rcu tasks to protect trampoline asm not covered by percpu_ref 334 * (which are few asm insns before __bpf_tramp_enter and 335 * after __bpf_tramp_exit) 336 * 337 * The trampoline is unreachable before bpf_tramp_image_put(). 338 * 339 * First, patch the trampoline to avoid calling into fexit progs. 340 * The progs will be freed even if the original function is still 341 * executing or sleeping. 342 * In case of CONFIG_PREEMPT=y use call_rcu_tasks() to wait on 343 * first few asm instructions to execute and call into 344 * __bpf_tramp_enter->percpu_ref_get. 345 * Then use percpu_ref_kill to wait for the trampoline and the original 346 * function to finish. 347 * Then use call_rcu_tasks() to make sure few asm insns in 348 * the trampoline epilogue are done as well. 349 * 350 * In !PREEMPT case the task that got interrupted in the first asm 351 * insns won't go through an RCU quiescent state which the 352 * percpu_ref_kill will be waiting for. Hence the first 353 * call_rcu_tasks() is not necessary. 354 */ 355 if (im->ip_after_call) { 356 int err = bpf_arch_text_poke(im->ip_after_call, BPF_MOD_JUMP, 357 NULL, im->ip_epilogue); 358 WARN_ON(err); 359 if (IS_ENABLED(CONFIG_PREEMPTION)) 360 call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu_tasks); 361 else 362 percpu_ref_kill(&im->pcref); 363 return; 364 } 365 366 /* The trampoline without fexit and fmod_ret progs doesn't call original 367 * function and doesn't use percpu_ref. 368 * Use call_rcu_tasks_trace() to wait for sleepable progs to finish. 369 * Then use call_rcu_tasks() to wait for the rest of trampoline asm 370 * and normal progs. 371 */ 372 call_rcu_tasks_trace(&im->rcu, __bpf_tramp_image_put_rcu_tasks); 373 } 374 375 static struct bpf_tramp_image *bpf_tramp_image_alloc(u64 key, u32 idx) 376 { 377 struct bpf_tramp_image *im; 378 struct bpf_ksym *ksym; 379 void *image; 380 int err = -ENOMEM; 381 382 im = kzalloc(sizeof(*im), GFP_KERNEL); 383 if (!im) 384 goto out; 385 386 err = bpf_jit_charge_modmem(PAGE_SIZE); 387 if (err) 388 goto out_free_im; 389 390 err = -ENOMEM; 391 im->image = image = bpf_jit_alloc_exec(PAGE_SIZE); 392 if (!image) 393 goto out_uncharge; 394 set_vm_flush_reset_perms(image); 395 396 err = percpu_ref_init(&im->pcref, __bpf_tramp_image_release, 0, GFP_KERNEL); 397 if (err) 398 goto out_free_image; 399 400 ksym = &im->ksym; 401 INIT_LIST_HEAD_RCU(&ksym->lnode); 402 snprintf(ksym->name, KSYM_NAME_LEN, "bpf_trampoline_%llu_%u", key, idx); 403 bpf_image_ksym_add(image, ksym); 404 return im; 405 406 out_free_image: 407 bpf_jit_free_exec(im->image); 408 out_uncharge: 409 bpf_jit_uncharge_modmem(PAGE_SIZE); 410 out_free_im: 411 kfree(im); 412 out: 413 return ERR_PTR(err); 414 } 415 416 static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex) 417 { 418 struct bpf_tramp_image *im; 419 struct bpf_tramp_links *tlinks; 420 u32 orig_flags = tr->flags; 421 bool ip_arg = false; 422 int err, total; 423 424 tlinks = bpf_trampoline_get_progs(tr, &total, &ip_arg); 425 if (IS_ERR(tlinks)) 426 return PTR_ERR(tlinks); 427 428 if (total == 0) { 429 err = unregister_fentry(tr, tr->cur_image->image); 430 bpf_tramp_image_put(tr->cur_image); 431 tr->cur_image = NULL; 432 tr->selector = 0; 433 goto out; 434 } 435 436 im = bpf_tramp_image_alloc(tr->key, tr->selector); 437 if (IS_ERR(im)) { 438 err = PTR_ERR(im); 439 goto out; 440 } 441 442 /* clear all bits except SHARE_IPMODIFY */ 443 tr->flags &= BPF_TRAMP_F_SHARE_IPMODIFY; 444 445 if (tlinks[BPF_TRAMP_FEXIT].nr_links || 446 tlinks[BPF_TRAMP_MODIFY_RETURN].nr_links) { 447 /* NOTE: BPF_TRAMP_F_RESTORE_REGS and BPF_TRAMP_F_SKIP_FRAME 448 * should not be set together. 449 */ 450 tr->flags |= BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME; 451 } else { 452 tr->flags |= BPF_TRAMP_F_RESTORE_REGS; 453 } 454 455 if (ip_arg) 456 tr->flags |= BPF_TRAMP_F_IP_ARG; 457 458 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 459 again: 460 if ((tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY) && 461 (tr->flags & BPF_TRAMP_F_CALL_ORIG)) 462 tr->flags |= BPF_TRAMP_F_ORIG_STACK; 463 #endif 464 465 err = arch_prepare_bpf_trampoline(im, im->image, im->image + PAGE_SIZE, 466 &tr->func.model, tr->flags, tlinks, 467 tr->func.addr); 468 if (err < 0) 469 goto out; 470 471 set_memory_rox((long)im->image, 1); 472 473 WARN_ON(tr->cur_image && tr->selector == 0); 474 WARN_ON(!tr->cur_image && tr->selector); 475 if (tr->cur_image) 476 /* progs already running at this address */ 477 err = modify_fentry(tr, tr->cur_image->image, im->image, lock_direct_mutex); 478 else 479 /* first time registering */ 480 err = register_fentry(tr, im->image); 481 482 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 483 if (err == -EAGAIN) { 484 /* -EAGAIN from bpf_tramp_ftrace_ops_func. Now 485 * BPF_TRAMP_F_SHARE_IPMODIFY is set, we can generate the 486 * trampoline again, and retry register. 487 */ 488 /* reset fops->func and fops->trampoline for re-register */ 489 tr->fops->func = NULL; 490 tr->fops->trampoline = 0; 491 492 /* reset im->image memory attr for arch_prepare_bpf_trampoline */ 493 set_memory_nx((long)im->image, 1); 494 set_memory_rw((long)im->image, 1); 495 goto again; 496 } 497 #endif 498 if (err) 499 goto out; 500 501 if (tr->cur_image) 502 bpf_tramp_image_put(tr->cur_image); 503 tr->cur_image = im; 504 tr->selector++; 505 out: 506 /* If any error happens, restore previous flags */ 507 if (err) 508 tr->flags = orig_flags; 509 kfree(tlinks); 510 return err; 511 } 512 513 static enum bpf_tramp_prog_type bpf_attach_type_to_tramp(struct bpf_prog *prog) 514 { 515 switch (prog->expected_attach_type) { 516 case BPF_TRACE_FENTRY: 517 return BPF_TRAMP_FENTRY; 518 case BPF_MODIFY_RETURN: 519 return BPF_TRAMP_MODIFY_RETURN; 520 case BPF_TRACE_FEXIT: 521 return BPF_TRAMP_FEXIT; 522 case BPF_LSM_MAC: 523 if (!prog->aux->attach_func_proto->type) 524 /* The function returns void, we cannot modify its 525 * return value. 526 */ 527 return BPF_TRAMP_FEXIT; 528 else 529 return BPF_TRAMP_MODIFY_RETURN; 530 default: 531 return BPF_TRAMP_REPLACE; 532 } 533 } 534 535 static int __bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr) 536 { 537 enum bpf_tramp_prog_type kind; 538 struct bpf_tramp_link *link_exiting; 539 int err = 0; 540 int cnt = 0, i; 541 542 kind = bpf_attach_type_to_tramp(link->link.prog); 543 if (tr->extension_prog) 544 /* cannot attach fentry/fexit if extension prog is attached. 545 * cannot overwrite extension prog either. 546 */ 547 return -EBUSY; 548 549 for (i = 0; i < BPF_TRAMP_MAX; i++) 550 cnt += tr->progs_cnt[i]; 551 552 if (kind == BPF_TRAMP_REPLACE) { 553 /* Cannot attach extension if fentry/fexit are in use. */ 554 if (cnt) 555 return -EBUSY; 556 tr->extension_prog = link->link.prog; 557 return bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP, NULL, 558 link->link.prog->bpf_func); 559 } 560 if (cnt >= BPF_MAX_TRAMP_LINKS) 561 return -E2BIG; 562 if (!hlist_unhashed(&link->tramp_hlist)) 563 /* prog already linked */ 564 return -EBUSY; 565 hlist_for_each_entry(link_exiting, &tr->progs_hlist[kind], tramp_hlist) { 566 if (link_exiting->link.prog != link->link.prog) 567 continue; 568 /* prog already linked */ 569 return -EBUSY; 570 } 571 572 hlist_add_head(&link->tramp_hlist, &tr->progs_hlist[kind]); 573 tr->progs_cnt[kind]++; 574 err = bpf_trampoline_update(tr, true /* lock_direct_mutex */); 575 if (err) { 576 hlist_del_init(&link->tramp_hlist); 577 tr->progs_cnt[kind]--; 578 } 579 return err; 580 } 581 582 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr) 583 { 584 int err; 585 586 mutex_lock(&tr->mutex); 587 err = __bpf_trampoline_link_prog(link, tr); 588 mutex_unlock(&tr->mutex); 589 return err; 590 } 591 592 static int __bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr) 593 { 594 enum bpf_tramp_prog_type kind; 595 int err; 596 597 kind = bpf_attach_type_to_tramp(link->link.prog); 598 if (kind == BPF_TRAMP_REPLACE) { 599 WARN_ON_ONCE(!tr->extension_prog); 600 err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP, 601 tr->extension_prog->bpf_func, NULL); 602 tr->extension_prog = NULL; 603 return err; 604 } 605 hlist_del_init(&link->tramp_hlist); 606 tr->progs_cnt[kind]--; 607 return bpf_trampoline_update(tr, true /* lock_direct_mutex */); 608 } 609 610 /* bpf_trampoline_unlink_prog() should never fail. */ 611 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr) 612 { 613 int err; 614 615 mutex_lock(&tr->mutex); 616 err = __bpf_trampoline_unlink_prog(link, tr); 617 mutex_unlock(&tr->mutex); 618 return err; 619 } 620 621 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 622 static void bpf_shim_tramp_link_release(struct bpf_link *link) 623 { 624 struct bpf_shim_tramp_link *shim_link = 625 container_of(link, struct bpf_shim_tramp_link, link.link); 626 627 /* paired with 'shim_link->trampoline = tr' in bpf_trampoline_link_cgroup_shim */ 628 if (!shim_link->trampoline) 629 return; 630 631 WARN_ON_ONCE(bpf_trampoline_unlink_prog(&shim_link->link, shim_link->trampoline)); 632 bpf_trampoline_put(shim_link->trampoline); 633 } 634 635 static void bpf_shim_tramp_link_dealloc(struct bpf_link *link) 636 { 637 struct bpf_shim_tramp_link *shim_link = 638 container_of(link, struct bpf_shim_tramp_link, link.link); 639 640 kfree(shim_link); 641 } 642 643 static const struct bpf_link_ops bpf_shim_tramp_link_lops = { 644 .release = bpf_shim_tramp_link_release, 645 .dealloc = bpf_shim_tramp_link_dealloc, 646 }; 647 648 static struct bpf_shim_tramp_link *cgroup_shim_alloc(const struct bpf_prog *prog, 649 bpf_func_t bpf_func, 650 int cgroup_atype) 651 { 652 struct bpf_shim_tramp_link *shim_link = NULL; 653 struct bpf_prog *p; 654 655 shim_link = kzalloc(sizeof(*shim_link), GFP_USER); 656 if (!shim_link) 657 return NULL; 658 659 p = bpf_prog_alloc(1, 0); 660 if (!p) { 661 kfree(shim_link); 662 return NULL; 663 } 664 665 p->jited = false; 666 p->bpf_func = bpf_func; 667 668 p->aux->cgroup_atype = cgroup_atype; 669 p->aux->attach_func_proto = prog->aux->attach_func_proto; 670 p->aux->attach_btf_id = prog->aux->attach_btf_id; 671 p->aux->attach_btf = prog->aux->attach_btf; 672 btf_get(p->aux->attach_btf); 673 p->type = BPF_PROG_TYPE_LSM; 674 p->expected_attach_type = BPF_LSM_MAC; 675 bpf_prog_inc(p); 676 bpf_link_init(&shim_link->link.link, BPF_LINK_TYPE_UNSPEC, 677 &bpf_shim_tramp_link_lops, p); 678 bpf_cgroup_atype_get(p->aux->attach_btf_id, cgroup_atype); 679 680 return shim_link; 681 } 682 683 static struct bpf_shim_tramp_link *cgroup_shim_find(struct bpf_trampoline *tr, 684 bpf_func_t bpf_func) 685 { 686 struct bpf_tramp_link *link; 687 int kind; 688 689 for (kind = 0; kind < BPF_TRAMP_MAX; kind++) { 690 hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) { 691 struct bpf_prog *p = link->link.prog; 692 693 if (p->bpf_func == bpf_func) 694 return container_of(link, struct bpf_shim_tramp_link, link); 695 } 696 } 697 698 return NULL; 699 } 700 701 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 702 int cgroup_atype) 703 { 704 struct bpf_shim_tramp_link *shim_link = NULL; 705 struct bpf_attach_target_info tgt_info = {}; 706 struct bpf_trampoline *tr; 707 bpf_func_t bpf_func; 708 u64 key; 709 int err; 710 711 err = bpf_check_attach_target(NULL, prog, NULL, 712 prog->aux->attach_btf_id, 713 &tgt_info); 714 if (err) 715 return err; 716 717 key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf, 718 prog->aux->attach_btf_id); 719 720 bpf_lsm_find_cgroup_shim(prog, &bpf_func); 721 tr = bpf_trampoline_get(key, &tgt_info); 722 if (!tr) 723 return -ENOMEM; 724 725 mutex_lock(&tr->mutex); 726 727 shim_link = cgroup_shim_find(tr, bpf_func); 728 if (shim_link) { 729 /* Reusing existing shim attached by the other program. */ 730 bpf_link_inc(&shim_link->link.link); 731 732 mutex_unlock(&tr->mutex); 733 bpf_trampoline_put(tr); /* bpf_trampoline_get above */ 734 return 0; 735 } 736 737 /* Allocate and install new shim. */ 738 739 shim_link = cgroup_shim_alloc(prog, bpf_func, cgroup_atype); 740 if (!shim_link) { 741 err = -ENOMEM; 742 goto err; 743 } 744 745 err = __bpf_trampoline_link_prog(&shim_link->link, tr); 746 if (err) 747 goto err; 748 749 shim_link->trampoline = tr; 750 /* note, we're still holding tr refcnt from above */ 751 752 mutex_unlock(&tr->mutex); 753 754 return 0; 755 err: 756 mutex_unlock(&tr->mutex); 757 758 if (shim_link) 759 bpf_link_put(&shim_link->link.link); 760 761 /* have to release tr while _not_ holding its mutex */ 762 bpf_trampoline_put(tr); /* bpf_trampoline_get above */ 763 764 return err; 765 } 766 767 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 768 { 769 struct bpf_shim_tramp_link *shim_link = NULL; 770 struct bpf_trampoline *tr; 771 bpf_func_t bpf_func; 772 u64 key; 773 774 key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf, 775 prog->aux->attach_btf_id); 776 777 bpf_lsm_find_cgroup_shim(prog, &bpf_func); 778 tr = bpf_trampoline_lookup(key); 779 if (WARN_ON_ONCE(!tr)) 780 return; 781 782 mutex_lock(&tr->mutex); 783 shim_link = cgroup_shim_find(tr, bpf_func); 784 mutex_unlock(&tr->mutex); 785 786 if (shim_link) 787 bpf_link_put(&shim_link->link.link); 788 789 bpf_trampoline_put(tr); /* bpf_trampoline_lookup above */ 790 } 791 #endif 792 793 struct bpf_trampoline *bpf_trampoline_get(u64 key, 794 struct bpf_attach_target_info *tgt_info) 795 { 796 struct bpf_trampoline *tr; 797 798 tr = bpf_trampoline_lookup(key); 799 if (!tr) 800 return NULL; 801 802 mutex_lock(&tr->mutex); 803 if (tr->func.addr) 804 goto out; 805 806 memcpy(&tr->func.model, &tgt_info->fmodel, sizeof(tgt_info->fmodel)); 807 tr->func.addr = (void *)tgt_info->tgt_addr; 808 out: 809 mutex_unlock(&tr->mutex); 810 return tr; 811 } 812 813 void bpf_trampoline_put(struct bpf_trampoline *tr) 814 { 815 int i; 816 817 if (!tr) 818 return; 819 mutex_lock(&trampoline_mutex); 820 if (!refcount_dec_and_test(&tr->refcnt)) 821 goto out; 822 WARN_ON_ONCE(mutex_is_locked(&tr->mutex)); 823 824 for (i = 0; i < BPF_TRAMP_MAX; i++) 825 if (WARN_ON_ONCE(!hlist_empty(&tr->progs_hlist[i]))) 826 goto out; 827 828 /* This code will be executed even when the last bpf_tramp_image 829 * is alive. All progs are detached from the trampoline and the 830 * trampoline image is patched with jmp into epilogue to skip 831 * fexit progs. The fentry-only trampoline will be freed via 832 * multiple rcu callbacks. 833 */ 834 hlist_del(&tr->hlist); 835 if (tr->fops) { 836 ftrace_free_filter(tr->fops); 837 kfree(tr->fops); 838 } 839 kfree(tr); 840 out: 841 mutex_unlock(&trampoline_mutex); 842 } 843 844 #define NO_START_TIME 1 845 static __always_inline u64 notrace bpf_prog_start_time(void) 846 { 847 u64 start = NO_START_TIME; 848 849 if (static_branch_unlikely(&bpf_stats_enabled_key)) { 850 start = sched_clock(); 851 if (unlikely(!start)) 852 start = NO_START_TIME; 853 } 854 return start; 855 } 856 857 /* The logic is similar to bpf_prog_run(), but with an explicit 858 * rcu_read_lock() and migrate_disable() which are required 859 * for the trampoline. The macro is split into 860 * call __bpf_prog_enter 861 * call prog->bpf_func 862 * call __bpf_prog_exit 863 * 864 * __bpf_prog_enter returns: 865 * 0 - skip execution of the bpf prog 866 * 1 - execute bpf prog 867 * [2..MAX_U64] - execute bpf prog and record execution time. 868 * This is start time. 869 */ 870 static u64 notrace __bpf_prog_enter_recur(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx) 871 __acquires(RCU) 872 { 873 rcu_read_lock(); 874 migrate_disable(); 875 876 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); 877 878 if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) { 879 bpf_prog_inc_misses_counter(prog); 880 return 0; 881 } 882 return bpf_prog_start_time(); 883 } 884 885 static void notrace update_prog_stats(struct bpf_prog *prog, 886 u64 start) 887 { 888 struct bpf_prog_stats *stats; 889 890 if (static_branch_unlikely(&bpf_stats_enabled_key) && 891 /* static_key could be enabled in __bpf_prog_enter* 892 * and disabled in __bpf_prog_exit*. 893 * And vice versa. 894 * Hence check that 'start' is valid. 895 */ 896 start > NO_START_TIME) { 897 unsigned long flags; 898 899 stats = this_cpu_ptr(prog->stats); 900 flags = u64_stats_update_begin_irqsave(&stats->syncp); 901 u64_stats_inc(&stats->cnt); 902 u64_stats_add(&stats->nsecs, sched_clock() - start); 903 u64_stats_update_end_irqrestore(&stats->syncp, flags); 904 } 905 } 906 907 static void notrace __bpf_prog_exit_recur(struct bpf_prog *prog, u64 start, 908 struct bpf_tramp_run_ctx *run_ctx) 909 __releases(RCU) 910 { 911 bpf_reset_run_ctx(run_ctx->saved_run_ctx); 912 913 update_prog_stats(prog, start); 914 this_cpu_dec(*(prog->active)); 915 migrate_enable(); 916 rcu_read_unlock(); 917 } 918 919 static u64 notrace __bpf_prog_enter_lsm_cgroup(struct bpf_prog *prog, 920 struct bpf_tramp_run_ctx *run_ctx) 921 __acquires(RCU) 922 { 923 /* Runtime stats are exported via actual BPF_LSM_CGROUP 924 * programs, not the shims. 925 */ 926 rcu_read_lock(); 927 migrate_disable(); 928 929 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); 930 931 return NO_START_TIME; 932 } 933 934 static void notrace __bpf_prog_exit_lsm_cgroup(struct bpf_prog *prog, u64 start, 935 struct bpf_tramp_run_ctx *run_ctx) 936 __releases(RCU) 937 { 938 bpf_reset_run_ctx(run_ctx->saved_run_ctx); 939 940 migrate_enable(); 941 rcu_read_unlock(); 942 } 943 944 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 945 struct bpf_tramp_run_ctx *run_ctx) 946 { 947 rcu_read_lock_trace(); 948 migrate_disable(); 949 might_fault(); 950 951 if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) { 952 bpf_prog_inc_misses_counter(prog); 953 return 0; 954 } 955 956 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); 957 958 return bpf_prog_start_time(); 959 } 960 961 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 962 struct bpf_tramp_run_ctx *run_ctx) 963 { 964 bpf_reset_run_ctx(run_ctx->saved_run_ctx); 965 966 update_prog_stats(prog, start); 967 this_cpu_dec(*(prog->active)); 968 migrate_enable(); 969 rcu_read_unlock_trace(); 970 } 971 972 static u64 notrace __bpf_prog_enter_sleepable(struct bpf_prog *prog, 973 struct bpf_tramp_run_ctx *run_ctx) 974 { 975 rcu_read_lock_trace(); 976 migrate_disable(); 977 might_fault(); 978 979 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); 980 981 return bpf_prog_start_time(); 982 } 983 984 static void notrace __bpf_prog_exit_sleepable(struct bpf_prog *prog, u64 start, 985 struct bpf_tramp_run_ctx *run_ctx) 986 { 987 bpf_reset_run_ctx(run_ctx->saved_run_ctx); 988 989 update_prog_stats(prog, start); 990 migrate_enable(); 991 rcu_read_unlock_trace(); 992 } 993 994 static u64 notrace __bpf_prog_enter(struct bpf_prog *prog, 995 struct bpf_tramp_run_ctx *run_ctx) 996 __acquires(RCU) 997 { 998 rcu_read_lock(); 999 migrate_disable(); 1000 1001 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); 1002 1003 return bpf_prog_start_time(); 1004 } 1005 1006 static void notrace __bpf_prog_exit(struct bpf_prog *prog, u64 start, 1007 struct bpf_tramp_run_ctx *run_ctx) 1008 __releases(RCU) 1009 { 1010 bpf_reset_run_ctx(run_ctx->saved_run_ctx); 1011 1012 update_prog_stats(prog, start); 1013 migrate_enable(); 1014 rcu_read_unlock(); 1015 } 1016 1017 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr) 1018 { 1019 percpu_ref_get(&tr->pcref); 1020 } 1021 1022 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr) 1023 { 1024 percpu_ref_put(&tr->pcref); 1025 } 1026 1027 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog) 1028 { 1029 bool sleepable = prog->aux->sleepable; 1030 1031 if (bpf_prog_check_recur(prog)) 1032 return sleepable ? __bpf_prog_enter_sleepable_recur : 1033 __bpf_prog_enter_recur; 1034 1035 if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM && 1036 prog->expected_attach_type == BPF_LSM_CGROUP) 1037 return __bpf_prog_enter_lsm_cgroup; 1038 1039 return sleepable ? __bpf_prog_enter_sleepable : __bpf_prog_enter; 1040 } 1041 1042 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog) 1043 { 1044 bool sleepable = prog->aux->sleepable; 1045 1046 if (bpf_prog_check_recur(prog)) 1047 return sleepable ? __bpf_prog_exit_sleepable_recur : 1048 __bpf_prog_exit_recur; 1049 1050 if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM && 1051 prog->expected_attach_type == BPF_LSM_CGROUP) 1052 return __bpf_prog_exit_lsm_cgroup; 1053 1054 return sleepable ? __bpf_prog_exit_sleepable : __bpf_prog_exit; 1055 } 1056 1057 int __weak 1058 arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end, 1059 const struct btf_func_model *m, u32 flags, 1060 struct bpf_tramp_links *tlinks, 1061 void *orig_call) 1062 { 1063 return -ENOTSUPP; 1064 } 1065 1066 static int __init init_trampolines(void) 1067 { 1068 int i; 1069 1070 for (i = 0; i < TRAMPOLINE_TABLE_SIZE; i++) 1071 INIT_HLIST_HEAD(&trampoline_table[i]); 1072 return 0; 1073 } 1074 late_initcall(init_trampolines); 1075