xref: /linux/kernel/bpf/trampoline.c (revision 0a94608f0f7de9b1135ffea3546afe68eafef57f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2019 Facebook */
3 #include <linux/hash.h>
4 #include <linux/bpf.h>
5 #include <linux/filter.h>
6 #include <linux/ftrace.h>
7 #include <linux/rbtree_latch.h>
8 #include <linux/perf_event.h>
9 #include <linux/btf.h>
10 #include <linux/rcupdate_trace.h>
11 #include <linux/rcupdate_wait.h>
12 #include <linux/module.h>
13 #include <linux/static_call.h>
14 
15 /* dummy _ops. The verifier will operate on target program's ops. */
16 const struct bpf_verifier_ops bpf_extension_verifier_ops = {
17 };
18 const struct bpf_prog_ops bpf_extension_prog_ops = {
19 };
20 
21 /* btf_vmlinux has ~22k attachable functions. 1k htab is enough. */
22 #define TRAMPOLINE_HASH_BITS 10
23 #define TRAMPOLINE_TABLE_SIZE (1 << TRAMPOLINE_HASH_BITS)
24 
25 static struct hlist_head trampoline_table[TRAMPOLINE_TABLE_SIZE];
26 
27 /* serializes access to trampoline_table */
28 static DEFINE_MUTEX(trampoline_mutex);
29 
30 bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
31 {
32 	enum bpf_attach_type eatype = prog->expected_attach_type;
33 
34 	return eatype == BPF_TRACE_FENTRY || eatype == BPF_TRACE_FEXIT ||
35 	       eatype == BPF_MODIFY_RETURN;
36 }
37 
38 void *bpf_jit_alloc_exec_page(void)
39 {
40 	void *image;
41 
42 	image = bpf_jit_alloc_exec(PAGE_SIZE);
43 	if (!image)
44 		return NULL;
45 
46 	set_vm_flush_reset_perms(image);
47 	/* Keep image as writeable. The alternative is to keep flipping ro/rw
48 	 * every time new program is attached or detached.
49 	 */
50 	set_memory_x((long)image, 1);
51 	return image;
52 }
53 
54 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym)
55 {
56 	ksym->start = (unsigned long) data;
57 	ksym->end = ksym->start + PAGE_SIZE;
58 	bpf_ksym_add(ksym);
59 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start,
60 			   PAGE_SIZE, false, ksym->name);
61 }
62 
63 void bpf_image_ksym_del(struct bpf_ksym *ksym)
64 {
65 	bpf_ksym_del(ksym);
66 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start,
67 			   PAGE_SIZE, true, ksym->name);
68 }
69 
70 static struct bpf_trampoline *bpf_trampoline_lookup(u64 key)
71 {
72 	struct bpf_trampoline *tr;
73 	struct hlist_head *head;
74 	int i;
75 
76 	mutex_lock(&trampoline_mutex);
77 	head = &trampoline_table[hash_64(key, TRAMPOLINE_HASH_BITS)];
78 	hlist_for_each_entry(tr, head, hlist) {
79 		if (tr->key == key) {
80 			refcount_inc(&tr->refcnt);
81 			goto out;
82 		}
83 	}
84 	tr = kzalloc(sizeof(*tr), GFP_KERNEL);
85 	if (!tr)
86 		goto out;
87 
88 	tr->key = key;
89 	INIT_HLIST_NODE(&tr->hlist);
90 	hlist_add_head(&tr->hlist, head);
91 	refcount_set(&tr->refcnt, 1);
92 	mutex_init(&tr->mutex);
93 	for (i = 0; i < BPF_TRAMP_MAX; i++)
94 		INIT_HLIST_HEAD(&tr->progs_hlist[i]);
95 out:
96 	mutex_unlock(&trampoline_mutex);
97 	return tr;
98 }
99 
100 static int bpf_trampoline_module_get(struct bpf_trampoline *tr)
101 {
102 	struct module *mod;
103 	int err = 0;
104 
105 	preempt_disable();
106 	mod = __module_text_address((unsigned long) tr->func.addr);
107 	if (mod && !try_module_get(mod))
108 		err = -ENOENT;
109 	preempt_enable();
110 	tr->mod = mod;
111 	return err;
112 }
113 
114 static void bpf_trampoline_module_put(struct bpf_trampoline *tr)
115 {
116 	module_put(tr->mod);
117 	tr->mod = NULL;
118 }
119 
120 static int unregister_fentry(struct bpf_trampoline *tr, void *old_addr)
121 {
122 	void *ip = tr->func.addr;
123 	int ret;
124 
125 	if (tr->func.ftrace_managed)
126 		ret = unregister_ftrace_direct((long)ip, (long)old_addr);
127 	else
128 		ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, NULL);
129 
130 	if (!ret)
131 		bpf_trampoline_module_put(tr);
132 	return ret;
133 }
134 
135 static int modify_fentry(struct bpf_trampoline *tr, void *old_addr, void *new_addr)
136 {
137 	void *ip = tr->func.addr;
138 	int ret;
139 
140 	if (tr->func.ftrace_managed)
141 		ret = modify_ftrace_direct((long)ip, (long)old_addr, (long)new_addr);
142 	else
143 		ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, new_addr);
144 	return ret;
145 }
146 
147 /* first time registering */
148 static int register_fentry(struct bpf_trampoline *tr, void *new_addr)
149 {
150 	void *ip = tr->func.addr;
151 	unsigned long faddr;
152 	int ret;
153 
154 	faddr = ftrace_location((unsigned long)ip);
155 	if (faddr)
156 		tr->func.ftrace_managed = true;
157 
158 	if (bpf_trampoline_module_get(tr))
159 		return -ENOENT;
160 
161 	if (tr->func.ftrace_managed)
162 		ret = register_ftrace_direct((long)ip, (long)new_addr);
163 	else
164 		ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, NULL, new_addr);
165 
166 	if (ret)
167 		bpf_trampoline_module_put(tr);
168 	return ret;
169 }
170 
171 static struct bpf_tramp_progs *
172 bpf_trampoline_get_progs(const struct bpf_trampoline *tr, int *total, bool *ip_arg)
173 {
174 	const struct bpf_prog_aux *aux;
175 	struct bpf_tramp_progs *tprogs;
176 	struct bpf_prog **progs;
177 	int kind;
178 
179 	*total = 0;
180 	tprogs = kcalloc(BPF_TRAMP_MAX, sizeof(*tprogs), GFP_KERNEL);
181 	if (!tprogs)
182 		return ERR_PTR(-ENOMEM);
183 
184 	for (kind = 0; kind < BPF_TRAMP_MAX; kind++) {
185 		tprogs[kind].nr_progs = tr->progs_cnt[kind];
186 		*total += tr->progs_cnt[kind];
187 		progs = tprogs[kind].progs;
188 
189 		hlist_for_each_entry(aux, &tr->progs_hlist[kind], tramp_hlist) {
190 			*ip_arg |= aux->prog->call_get_func_ip;
191 			*progs++ = aux->prog;
192 		}
193 	}
194 	return tprogs;
195 }
196 
197 static void __bpf_tramp_image_put_deferred(struct work_struct *work)
198 {
199 	struct bpf_tramp_image *im;
200 
201 	im = container_of(work, struct bpf_tramp_image, work);
202 	bpf_image_ksym_del(&im->ksym);
203 	bpf_jit_free_exec(im->image);
204 	bpf_jit_uncharge_modmem(PAGE_SIZE);
205 	percpu_ref_exit(&im->pcref);
206 	kfree_rcu(im, rcu);
207 }
208 
209 /* callback, fexit step 3 or fentry step 2 */
210 static void __bpf_tramp_image_put_rcu(struct rcu_head *rcu)
211 {
212 	struct bpf_tramp_image *im;
213 
214 	im = container_of(rcu, struct bpf_tramp_image, rcu);
215 	INIT_WORK(&im->work, __bpf_tramp_image_put_deferred);
216 	schedule_work(&im->work);
217 }
218 
219 /* callback, fexit step 2. Called after percpu_ref_kill confirms. */
220 static void __bpf_tramp_image_release(struct percpu_ref *pcref)
221 {
222 	struct bpf_tramp_image *im;
223 
224 	im = container_of(pcref, struct bpf_tramp_image, pcref);
225 	call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu);
226 }
227 
228 /* callback, fexit or fentry step 1 */
229 static void __bpf_tramp_image_put_rcu_tasks(struct rcu_head *rcu)
230 {
231 	struct bpf_tramp_image *im;
232 
233 	im = container_of(rcu, struct bpf_tramp_image, rcu);
234 	if (im->ip_after_call)
235 		/* the case of fmod_ret/fexit trampoline and CONFIG_PREEMPTION=y */
236 		percpu_ref_kill(&im->pcref);
237 	else
238 		/* the case of fentry trampoline */
239 		call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu);
240 }
241 
242 static void bpf_tramp_image_put(struct bpf_tramp_image *im)
243 {
244 	/* The trampoline image that calls original function is using:
245 	 * rcu_read_lock_trace to protect sleepable bpf progs
246 	 * rcu_read_lock to protect normal bpf progs
247 	 * percpu_ref to protect trampoline itself
248 	 * rcu tasks to protect trampoline asm not covered by percpu_ref
249 	 * (which are few asm insns before __bpf_tramp_enter and
250 	 *  after __bpf_tramp_exit)
251 	 *
252 	 * The trampoline is unreachable before bpf_tramp_image_put().
253 	 *
254 	 * First, patch the trampoline to avoid calling into fexit progs.
255 	 * The progs will be freed even if the original function is still
256 	 * executing or sleeping.
257 	 * In case of CONFIG_PREEMPT=y use call_rcu_tasks() to wait on
258 	 * first few asm instructions to execute and call into
259 	 * __bpf_tramp_enter->percpu_ref_get.
260 	 * Then use percpu_ref_kill to wait for the trampoline and the original
261 	 * function to finish.
262 	 * Then use call_rcu_tasks() to make sure few asm insns in
263 	 * the trampoline epilogue are done as well.
264 	 *
265 	 * In !PREEMPT case the task that got interrupted in the first asm
266 	 * insns won't go through an RCU quiescent state which the
267 	 * percpu_ref_kill will be waiting for. Hence the first
268 	 * call_rcu_tasks() is not necessary.
269 	 */
270 	if (im->ip_after_call) {
271 		int err = bpf_arch_text_poke(im->ip_after_call, BPF_MOD_JUMP,
272 					     NULL, im->ip_epilogue);
273 		WARN_ON(err);
274 		if (IS_ENABLED(CONFIG_PREEMPTION))
275 			call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu_tasks);
276 		else
277 			percpu_ref_kill(&im->pcref);
278 		return;
279 	}
280 
281 	/* The trampoline without fexit and fmod_ret progs doesn't call original
282 	 * function and doesn't use percpu_ref.
283 	 * Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
284 	 * Then use call_rcu_tasks() to wait for the rest of trampoline asm
285 	 * and normal progs.
286 	 */
287 	call_rcu_tasks_trace(&im->rcu, __bpf_tramp_image_put_rcu_tasks);
288 }
289 
290 static struct bpf_tramp_image *bpf_tramp_image_alloc(u64 key, u32 idx)
291 {
292 	struct bpf_tramp_image *im;
293 	struct bpf_ksym *ksym;
294 	void *image;
295 	int err = -ENOMEM;
296 
297 	im = kzalloc(sizeof(*im), GFP_KERNEL);
298 	if (!im)
299 		goto out;
300 
301 	err = bpf_jit_charge_modmem(PAGE_SIZE);
302 	if (err)
303 		goto out_free_im;
304 
305 	err = -ENOMEM;
306 	im->image = image = bpf_jit_alloc_exec_page();
307 	if (!image)
308 		goto out_uncharge;
309 
310 	err = percpu_ref_init(&im->pcref, __bpf_tramp_image_release, 0, GFP_KERNEL);
311 	if (err)
312 		goto out_free_image;
313 
314 	ksym = &im->ksym;
315 	INIT_LIST_HEAD_RCU(&ksym->lnode);
316 	snprintf(ksym->name, KSYM_NAME_LEN, "bpf_trampoline_%llu_%u", key, idx);
317 	bpf_image_ksym_add(image, ksym);
318 	return im;
319 
320 out_free_image:
321 	bpf_jit_free_exec(im->image);
322 out_uncharge:
323 	bpf_jit_uncharge_modmem(PAGE_SIZE);
324 out_free_im:
325 	kfree(im);
326 out:
327 	return ERR_PTR(err);
328 }
329 
330 static int bpf_trampoline_update(struct bpf_trampoline *tr)
331 {
332 	struct bpf_tramp_image *im;
333 	struct bpf_tramp_progs *tprogs;
334 	u32 flags = BPF_TRAMP_F_RESTORE_REGS;
335 	bool ip_arg = false;
336 	int err, total;
337 
338 	tprogs = bpf_trampoline_get_progs(tr, &total, &ip_arg);
339 	if (IS_ERR(tprogs))
340 		return PTR_ERR(tprogs);
341 
342 	if (total == 0) {
343 		err = unregister_fentry(tr, tr->cur_image->image);
344 		bpf_tramp_image_put(tr->cur_image);
345 		tr->cur_image = NULL;
346 		tr->selector = 0;
347 		goto out;
348 	}
349 
350 	im = bpf_tramp_image_alloc(tr->key, tr->selector);
351 	if (IS_ERR(im)) {
352 		err = PTR_ERR(im);
353 		goto out;
354 	}
355 
356 	if (tprogs[BPF_TRAMP_FEXIT].nr_progs ||
357 	    tprogs[BPF_TRAMP_MODIFY_RETURN].nr_progs)
358 		flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME;
359 
360 	if (ip_arg)
361 		flags |= BPF_TRAMP_F_IP_ARG;
362 
363 	err = arch_prepare_bpf_trampoline(im, im->image, im->image + PAGE_SIZE,
364 					  &tr->func.model, flags, tprogs,
365 					  tr->func.addr);
366 	if (err < 0)
367 		goto out;
368 
369 	WARN_ON(tr->cur_image && tr->selector == 0);
370 	WARN_ON(!tr->cur_image && tr->selector);
371 	if (tr->cur_image)
372 		/* progs already running at this address */
373 		err = modify_fentry(tr, tr->cur_image->image, im->image);
374 	else
375 		/* first time registering */
376 		err = register_fentry(tr, im->image);
377 	if (err)
378 		goto out;
379 	if (tr->cur_image)
380 		bpf_tramp_image_put(tr->cur_image);
381 	tr->cur_image = im;
382 	tr->selector++;
383 out:
384 	kfree(tprogs);
385 	return err;
386 }
387 
388 static enum bpf_tramp_prog_type bpf_attach_type_to_tramp(struct bpf_prog *prog)
389 {
390 	switch (prog->expected_attach_type) {
391 	case BPF_TRACE_FENTRY:
392 		return BPF_TRAMP_FENTRY;
393 	case BPF_MODIFY_RETURN:
394 		return BPF_TRAMP_MODIFY_RETURN;
395 	case BPF_TRACE_FEXIT:
396 		return BPF_TRAMP_FEXIT;
397 	case BPF_LSM_MAC:
398 		if (!prog->aux->attach_func_proto->type)
399 			/* The function returns void, we cannot modify its
400 			 * return value.
401 			 */
402 			return BPF_TRAMP_FEXIT;
403 		else
404 			return BPF_TRAMP_MODIFY_RETURN;
405 	default:
406 		return BPF_TRAMP_REPLACE;
407 	}
408 }
409 
410 int bpf_trampoline_link_prog(struct bpf_prog *prog, struct bpf_trampoline *tr)
411 {
412 	enum bpf_tramp_prog_type kind;
413 	int err = 0;
414 	int cnt;
415 
416 	kind = bpf_attach_type_to_tramp(prog);
417 	mutex_lock(&tr->mutex);
418 	if (tr->extension_prog) {
419 		/* cannot attach fentry/fexit if extension prog is attached.
420 		 * cannot overwrite extension prog either.
421 		 */
422 		err = -EBUSY;
423 		goto out;
424 	}
425 	cnt = tr->progs_cnt[BPF_TRAMP_FENTRY] + tr->progs_cnt[BPF_TRAMP_FEXIT];
426 	if (kind == BPF_TRAMP_REPLACE) {
427 		/* Cannot attach extension if fentry/fexit are in use. */
428 		if (cnt) {
429 			err = -EBUSY;
430 			goto out;
431 		}
432 		tr->extension_prog = prog;
433 		err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP, NULL,
434 					 prog->bpf_func);
435 		goto out;
436 	}
437 	if (cnt >= BPF_MAX_TRAMP_PROGS) {
438 		err = -E2BIG;
439 		goto out;
440 	}
441 	if (!hlist_unhashed(&prog->aux->tramp_hlist)) {
442 		/* prog already linked */
443 		err = -EBUSY;
444 		goto out;
445 	}
446 	hlist_add_head(&prog->aux->tramp_hlist, &tr->progs_hlist[kind]);
447 	tr->progs_cnt[kind]++;
448 	err = bpf_trampoline_update(tr);
449 	if (err) {
450 		hlist_del_init(&prog->aux->tramp_hlist);
451 		tr->progs_cnt[kind]--;
452 	}
453 out:
454 	mutex_unlock(&tr->mutex);
455 	return err;
456 }
457 
458 /* bpf_trampoline_unlink_prog() should never fail. */
459 int bpf_trampoline_unlink_prog(struct bpf_prog *prog, struct bpf_trampoline *tr)
460 {
461 	enum bpf_tramp_prog_type kind;
462 	int err;
463 
464 	kind = bpf_attach_type_to_tramp(prog);
465 	mutex_lock(&tr->mutex);
466 	if (kind == BPF_TRAMP_REPLACE) {
467 		WARN_ON_ONCE(!tr->extension_prog);
468 		err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP,
469 					 tr->extension_prog->bpf_func, NULL);
470 		tr->extension_prog = NULL;
471 		goto out;
472 	}
473 	hlist_del_init(&prog->aux->tramp_hlist);
474 	tr->progs_cnt[kind]--;
475 	err = bpf_trampoline_update(tr);
476 out:
477 	mutex_unlock(&tr->mutex);
478 	return err;
479 }
480 
481 struct bpf_trampoline *bpf_trampoline_get(u64 key,
482 					  struct bpf_attach_target_info *tgt_info)
483 {
484 	struct bpf_trampoline *tr;
485 
486 	tr = bpf_trampoline_lookup(key);
487 	if (!tr)
488 		return NULL;
489 
490 	mutex_lock(&tr->mutex);
491 	if (tr->func.addr)
492 		goto out;
493 
494 	memcpy(&tr->func.model, &tgt_info->fmodel, sizeof(tgt_info->fmodel));
495 	tr->func.addr = (void *)tgt_info->tgt_addr;
496 out:
497 	mutex_unlock(&tr->mutex);
498 	return tr;
499 }
500 
501 void bpf_trampoline_put(struct bpf_trampoline *tr)
502 {
503 	if (!tr)
504 		return;
505 	mutex_lock(&trampoline_mutex);
506 	if (!refcount_dec_and_test(&tr->refcnt))
507 		goto out;
508 	WARN_ON_ONCE(mutex_is_locked(&tr->mutex));
509 	if (WARN_ON_ONCE(!hlist_empty(&tr->progs_hlist[BPF_TRAMP_FENTRY])))
510 		goto out;
511 	if (WARN_ON_ONCE(!hlist_empty(&tr->progs_hlist[BPF_TRAMP_FEXIT])))
512 		goto out;
513 	/* This code will be executed even when the last bpf_tramp_image
514 	 * is alive. All progs are detached from the trampoline and the
515 	 * trampoline image is patched with jmp into epilogue to skip
516 	 * fexit progs. The fentry-only trampoline will be freed via
517 	 * multiple rcu callbacks.
518 	 */
519 	hlist_del(&tr->hlist);
520 	kfree(tr);
521 out:
522 	mutex_unlock(&trampoline_mutex);
523 }
524 
525 #define NO_START_TIME 1
526 static __always_inline u64 notrace bpf_prog_start_time(void)
527 {
528 	u64 start = NO_START_TIME;
529 
530 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
531 		start = sched_clock();
532 		if (unlikely(!start))
533 			start = NO_START_TIME;
534 	}
535 	return start;
536 }
537 
538 static void notrace inc_misses_counter(struct bpf_prog *prog)
539 {
540 	struct bpf_prog_stats *stats;
541 	unsigned int flags;
542 
543 	stats = this_cpu_ptr(prog->stats);
544 	flags = u64_stats_update_begin_irqsave(&stats->syncp);
545 	u64_stats_inc(&stats->misses);
546 	u64_stats_update_end_irqrestore(&stats->syncp, flags);
547 }
548 
549 /* The logic is similar to bpf_prog_run(), but with an explicit
550  * rcu_read_lock() and migrate_disable() which are required
551  * for the trampoline. The macro is split into
552  * call __bpf_prog_enter
553  * call prog->bpf_func
554  * call __bpf_prog_exit
555  *
556  * __bpf_prog_enter returns:
557  * 0 - skip execution of the bpf prog
558  * 1 - execute bpf prog
559  * [2..MAX_U64] - execute bpf prog and record execution time.
560  *     This is start time.
561  */
562 u64 notrace __bpf_prog_enter(struct bpf_prog *prog)
563 	__acquires(RCU)
564 {
565 	rcu_read_lock();
566 	migrate_disable();
567 	if (unlikely(__this_cpu_inc_return(*(prog->active)) != 1)) {
568 		inc_misses_counter(prog);
569 		return 0;
570 	}
571 	return bpf_prog_start_time();
572 }
573 
574 static void notrace update_prog_stats(struct bpf_prog *prog,
575 				      u64 start)
576 {
577 	struct bpf_prog_stats *stats;
578 
579 	if (static_branch_unlikely(&bpf_stats_enabled_key) &&
580 	    /* static_key could be enabled in __bpf_prog_enter*
581 	     * and disabled in __bpf_prog_exit*.
582 	     * And vice versa.
583 	     * Hence check that 'start' is valid.
584 	     */
585 	    start > NO_START_TIME) {
586 		unsigned long flags;
587 
588 		stats = this_cpu_ptr(prog->stats);
589 		flags = u64_stats_update_begin_irqsave(&stats->syncp);
590 		u64_stats_inc(&stats->cnt);
591 		u64_stats_add(&stats->nsecs, sched_clock() - start);
592 		u64_stats_update_end_irqrestore(&stats->syncp, flags);
593 	}
594 }
595 
596 void notrace __bpf_prog_exit(struct bpf_prog *prog, u64 start)
597 	__releases(RCU)
598 {
599 	update_prog_stats(prog, start);
600 	__this_cpu_dec(*(prog->active));
601 	migrate_enable();
602 	rcu_read_unlock();
603 }
604 
605 u64 notrace __bpf_prog_enter_sleepable(struct bpf_prog *prog)
606 {
607 	rcu_read_lock_trace();
608 	migrate_disable();
609 	might_fault();
610 	if (unlikely(__this_cpu_inc_return(*(prog->active)) != 1)) {
611 		inc_misses_counter(prog);
612 		return 0;
613 	}
614 	return bpf_prog_start_time();
615 }
616 
617 void notrace __bpf_prog_exit_sleepable(struct bpf_prog *prog, u64 start)
618 {
619 	update_prog_stats(prog, start);
620 	__this_cpu_dec(*(prog->active));
621 	migrate_enable();
622 	rcu_read_unlock_trace();
623 }
624 
625 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr)
626 {
627 	percpu_ref_get(&tr->pcref);
628 }
629 
630 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr)
631 {
632 	percpu_ref_put(&tr->pcref);
633 }
634 
635 int __weak
636 arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end,
637 			    const struct btf_func_model *m, u32 flags,
638 			    struct bpf_tramp_progs *tprogs,
639 			    void *orig_call)
640 {
641 	return -ENOTSUPP;
642 }
643 
644 static int __init init_trampolines(void)
645 {
646 	int i;
647 
648 	for (i = 0; i < TRAMPOLINE_TABLE_SIZE; i++)
649 		INIT_HLIST_HEAD(&trampoline_table[i]);
650 	return 0;
651 }
652 late_initcall(init_trampolines);
653