xref: /linux/kernel/bpf/task_iter.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2020 Facebook */
3 
4 #include <linux/init.h>
5 #include <linux/namei.h>
6 #include <linux/pid_namespace.h>
7 #include <linux/fs.h>
8 #include <linux/fdtable.h>
9 #include <linux/filter.h>
10 #include <linux/bpf_mem_alloc.h>
11 #include <linux/btf_ids.h>
12 #include <linux/mm_types.h>
13 #include "mmap_unlock_work.h"
14 
15 static const char * const iter_task_type_names[] = {
16 	"ALL",
17 	"TID",
18 	"PID",
19 };
20 
21 struct bpf_iter_seq_task_common {
22 	struct pid_namespace *ns;
23 	enum bpf_iter_task_type	type;
24 	u32 pid;
25 	u32 pid_visiting;
26 };
27 
28 struct bpf_iter_seq_task_info {
29 	/* The first field must be struct bpf_iter_seq_task_common.
30 	 * this is assumed by {init, fini}_seq_pidns() callback functions.
31 	 */
32 	struct bpf_iter_seq_task_common common;
33 	u32 tid;
34 };
35 
36 static struct task_struct *task_group_seq_get_next(struct bpf_iter_seq_task_common *common,
37 						   u32 *tid,
38 						   bool skip_if_dup_files)
39 {
40 	struct task_struct *task;
41 	struct pid *pid;
42 	u32 next_tid;
43 
44 	if (!*tid) {
45 		/* The first time, the iterator calls this function. */
46 		pid = find_pid_ns(common->pid, common->ns);
47 		task = get_pid_task(pid, PIDTYPE_TGID);
48 		if (!task)
49 			return NULL;
50 
51 		*tid = common->pid;
52 		common->pid_visiting = common->pid;
53 
54 		return task;
55 	}
56 
57 	/* If the control returns to user space and comes back to the
58 	 * kernel again, *tid and common->pid_visiting should be the
59 	 * same for task_seq_start() to pick up the correct task.
60 	 */
61 	if (*tid == common->pid_visiting) {
62 		pid = find_pid_ns(common->pid_visiting, common->ns);
63 		task = get_pid_task(pid, PIDTYPE_PID);
64 
65 		return task;
66 	}
67 
68 	task = find_task_by_pid_ns(common->pid_visiting, common->ns);
69 	if (!task)
70 		return NULL;
71 
72 retry:
73 	task = __next_thread(task);
74 	if (!task)
75 		return NULL;
76 
77 	next_tid = __task_pid_nr_ns(task, PIDTYPE_PID, common->ns);
78 	if (!next_tid)
79 		goto retry;
80 
81 	if (skip_if_dup_files && task->files == task->group_leader->files)
82 		goto retry;
83 
84 	*tid = common->pid_visiting = next_tid;
85 	get_task_struct(task);
86 	return task;
87 }
88 
89 static struct task_struct *task_seq_get_next(struct bpf_iter_seq_task_common *common,
90 					     u32 *tid,
91 					     bool skip_if_dup_files)
92 {
93 	struct task_struct *task = NULL;
94 	struct pid *pid;
95 
96 	if (common->type == BPF_TASK_ITER_TID) {
97 		if (*tid && *tid != common->pid)
98 			return NULL;
99 		rcu_read_lock();
100 		pid = find_pid_ns(common->pid, common->ns);
101 		if (pid) {
102 			task = get_pid_task(pid, PIDTYPE_PID);
103 			*tid = common->pid;
104 		}
105 		rcu_read_unlock();
106 
107 		return task;
108 	}
109 
110 	if (common->type == BPF_TASK_ITER_TGID) {
111 		rcu_read_lock();
112 		task = task_group_seq_get_next(common, tid, skip_if_dup_files);
113 		rcu_read_unlock();
114 
115 		return task;
116 	}
117 
118 	rcu_read_lock();
119 retry:
120 	pid = find_ge_pid(*tid, common->ns);
121 	if (pid) {
122 		*tid = pid_nr_ns(pid, common->ns);
123 		task = get_pid_task(pid, PIDTYPE_PID);
124 		if (!task) {
125 			++*tid;
126 			goto retry;
127 		} else if (skip_if_dup_files && !thread_group_leader(task) &&
128 			   task->files == task->group_leader->files) {
129 			put_task_struct(task);
130 			task = NULL;
131 			++*tid;
132 			goto retry;
133 		}
134 	}
135 	rcu_read_unlock();
136 
137 	return task;
138 }
139 
140 static void *task_seq_start(struct seq_file *seq, loff_t *pos)
141 {
142 	struct bpf_iter_seq_task_info *info = seq->private;
143 	struct task_struct *task;
144 
145 	task = task_seq_get_next(&info->common, &info->tid, false);
146 	if (!task)
147 		return NULL;
148 
149 	if (*pos == 0)
150 		++*pos;
151 	return task;
152 }
153 
154 static void *task_seq_next(struct seq_file *seq, void *v, loff_t *pos)
155 {
156 	struct bpf_iter_seq_task_info *info = seq->private;
157 	struct task_struct *task;
158 
159 	++*pos;
160 	++info->tid;
161 	put_task_struct((struct task_struct *)v);
162 	task = task_seq_get_next(&info->common, &info->tid, false);
163 	if (!task)
164 		return NULL;
165 
166 	return task;
167 }
168 
169 struct bpf_iter__task {
170 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
171 	__bpf_md_ptr(struct task_struct *, task);
172 };
173 
174 DEFINE_BPF_ITER_FUNC(task, struct bpf_iter_meta *meta, struct task_struct *task)
175 
176 static int __task_seq_show(struct seq_file *seq, struct task_struct *task,
177 			   bool in_stop)
178 {
179 	struct bpf_iter_meta meta;
180 	struct bpf_iter__task ctx;
181 	struct bpf_prog *prog;
182 
183 	meta.seq = seq;
184 	prog = bpf_iter_get_info(&meta, in_stop);
185 	if (!prog)
186 		return 0;
187 
188 	ctx.meta = &meta;
189 	ctx.task = task;
190 	return bpf_iter_run_prog(prog, &ctx);
191 }
192 
193 static int task_seq_show(struct seq_file *seq, void *v)
194 {
195 	return __task_seq_show(seq, v, false);
196 }
197 
198 static void task_seq_stop(struct seq_file *seq, void *v)
199 {
200 	if (!v)
201 		(void)__task_seq_show(seq, v, true);
202 	else
203 		put_task_struct((struct task_struct *)v);
204 }
205 
206 static int bpf_iter_attach_task(struct bpf_prog *prog,
207 				union bpf_iter_link_info *linfo,
208 				struct bpf_iter_aux_info *aux)
209 {
210 	unsigned int flags;
211 	struct pid *pid;
212 	pid_t tgid;
213 
214 	if ((!!linfo->task.tid + !!linfo->task.pid + !!linfo->task.pid_fd) > 1)
215 		return -EINVAL;
216 
217 	aux->task.type = BPF_TASK_ITER_ALL;
218 	if (linfo->task.tid != 0) {
219 		aux->task.type = BPF_TASK_ITER_TID;
220 		aux->task.pid = linfo->task.tid;
221 	}
222 	if (linfo->task.pid != 0) {
223 		aux->task.type = BPF_TASK_ITER_TGID;
224 		aux->task.pid = linfo->task.pid;
225 	}
226 	if (linfo->task.pid_fd != 0) {
227 		aux->task.type = BPF_TASK_ITER_TGID;
228 
229 		pid = pidfd_get_pid(linfo->task.pid_fd, &flags);
230 		if (IS_ERR(pid))
231 			return PTR_ERR(pid);
232 
233 		tgid = pid_nr_ns(pid, task_active_pid_ns(current));
234 		aux->task.pid = tgid;
235 		put_pid(pid);
236 	}
237 
238 	return 0;
239 }
240 
241 static const struct seq_operations task_seq_ops = {
242 	.start	= task_seq_start,
243 	.next	= task_seq_next,
244 	.stop	= task_seq_stop,
245 	.show	= task_seq_show,
246 };
247 
248 struct bpf_iter_seq_task_file_info {
249 	/* The first field must be struct bpf_iter_seq_task_common.
250 	 * this is assumed by {init, fini}_seq_pidns() callback functions.
251 	 */
252 	struct bpf_iter_seq_task_common common;
253 	struct task_struct *task;
254 	u32 tid;
255 	u32 fd;
256 };
257 
258 static struct file *
259 task_file_seq_get_next(struct bpf_iter_seq_task_file_info *info)
260 {
261 	u32 saved_tid = info->tid;
262 	struct task_struct *curr_task;
263 	unsigned int curr_fd = info->fd;
264 	struct file *f;
265 
266 	/* If this function returns a non-NULL file object,
267 	 * it held a reference to the task/file.
268 	 * Otherwise, it does not hold any reference.
269 	 */
270 again:
271 	if (info->task) {
272 		curr_task = info->task;
273 		curr_fd = info->fd;
274 	} else {
275 		curr_task = task_seq_get_next(&info->common, &info->tid, true);
276                 if (!curr_task) {
277                         info->task = NULL;
278                         return NULL;
279                 }
280 
281 		/* set info->task */
282 		info->task = curr_task;
283 		if (saved_tid == info->tid)
284 			curr_fd = info->fd;
285 		else
286 			curr_fd = 0;
287 	}
288 
289 	rcu_read_lock();
290 	f = task_lookup_next_fdget_rcu(curr_task, &curr_fd);
291 	if (f) {
292 		/* set info->fd */
293 		info->fd = curr_fd;
294 		rcu_read_unlock();
295 		return f;
296 	}
297 
298 	/* the current task is done, go to the next task */
299 	rcu_read_unlock();
300 	put_task_struct(curr_task);
301 
302 	if (info->common.type == BPF_TASK_ITER_TID) {
303 		info->task = NULL;
304 		return NULL;
305 	}
306 
307 	info->task = NULL;
308 	info->fd = 0;
309 	saved_tid = ++(info->tid);
310 	goto again;
311 }
312 
313 static void *task_file_seq_start(struct seq_file *seq, loff_t *pos)
314 {
315 	struct bpf_iter_seq_task_file_info *info = seq->private;
316 	struct file *file;
317 
318 	info->task = NULL;
319 	file = task_file_seq_get_next(info);
320 	if (file && *pos == 0)
321 		++*pos;
322 
323 	return file;
324 }
325 
326 static void *task_file_seq_next(struct seq_file *seq, void *v, loff_t *pos)
327 {
328 	struct bpf_iter_seq_task_file_info *info = seq->private;
329 
330 	++*pos;
331 	++info->fd;
332 	fput((struct file *)v);
333 	return task_file_seq_get_next(info);
334 }
335 
336 struct bpf_iter__task_file {
337 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
338 	__bpf_md_ptr(struct task_struct *, task);
339 	u32 fd __aligned(8);
340 	__bpf_md_ptr(struct file *, file);
341 };
342 
343 DEFINE_BPF_ITER_FUNC(task_file, struct bpf_iter_meta *meta,
344 		     struct task_struct *task, u32 fd,
345 		     struct file *file)
346 
347 static int __task_file_seq_show(struct seq_file *seq, struct file *file,
348 				bool in_stop)
349 {
350 	struct bpf_iter_seq_task_file_info *info = seq->private;
351 	struct bpf_iter__task_file ctx;
352 	struct bpf_iter_meta meta;
353 	struct bpf_prog *prog;
354 
355 	meta.seq = seq;
356 	prog = bpf_iter_get_info(&meta, in_stop);
357 	if (!prog)
358 		return 0;
359 
360 	ctx.meta = &meta;
361 	ctx.task = info->task;
362 	ctx.fd = info->fd;
363 	ctx.file = file;
364 	return bpf_iter_run_prog(prog, &ctx);
365 }
366 
367 static int task_file_seq_show(struct seq_file *seq, void *v)
368 {
369 	return __task_file_seq_show(seq, v, false);
370 }
371 
372 static void task_file_seq_stop(struct seq_file *seq, void *v)
373 {
374 	struct bpf_iter_seq_task_file_info *info = seq->private;
375 
376 	if (!v) {
377 		(void)__task_file_seq_show(seq, v, true);
378 	} else {
379 		fput((struct file *)v);
380 		put_task_struct(info->task);
381 		info->task = NULL;
382 	}
383 }
384 
385 static int init_seq_pidns(void *priv_data, struct bpf_iter_aux_info *aux)
386 {
387 	struct bpf_iter_seq_task_common *common = priv_data;
388 
389 	common->ns = get_pid_ns(task_active_pid_ns(current));
390 	common->type = aux->task.type;
391 	common->pid = aux->task.pid;
392 
393 	return 0;
394 }
395 
396 static void fini_seq_pidns(void *priv_data)
397 {
398 	struct bpf_iter_seq_task_common *common = priv_data;
399 
400 	put_pid_ns(common->ns);
401 }
402 
403 static const struct seq_operations task_file_seq_ops = {
404 	.start	= task_file_seq_start,
405 	.next	= task_file_seq_next,
406 	.stop	= task_file_seq_stop,
407 	.show	= task_file_seq_show,
408 };
409 
410 struct bpf_iter_seq_task_vma_info {
411 	/* The first field must be struct bpf_iter_seq_task_common.
412 	 * this is assumed by {init, fini}_seq_pidns() callback functions.
413 	 */
414 	struct bpf_iter_seq_task_common common;
415 	struct task_struct *task;
416 	struct mm_struct *mm;
417 	struct vm_area_struct *vma;
418 	u32 tid;
419 	unsigned long prev_vm_start;
420 	unsigned long prev_vm_end;
421 };
422 
423 enum bpf_task_vma_iter_find_op {
424 	task_vma_iter_first_vma,   /* use find_vma() with addr 0 */
425 	task_vma_iter_next_vma,    /* use vma_next() with curr_vma */
426 	task_vma_iter_find_vma,    /* use find_vma() to find next vma */
427 };
428 
429 static struct vm_area_struct *
430 task_vma_seq_get_next(struct bpf_iter_seq_task_vma_info *info)
431 {
432 	enum bpf_task_vma_iter_find_op op;
433 	struct vm_area_struct *curr_vma;
434 	struct task_struct *curr_task;
435 	struct mm_struct *curr_mm;
436 	u32 saved_tid = info->tid;
437 
438 	/* If this function returns a non-NULL vma, it holds a reference to
439 	 * the task_struct, holds a refcount on mm->mm_users, and holds
440 	 * read lock on vma->mm->mmap_lock.
441 	 * If this function returns NULL, it does not hold any reference or
442 	 * lock.
443 	 */
444 	if (info->task) {
445 		curr_task = info->task;
446 		curr_vma = info->vma;
447 		curr_mm = info->mm;
448 		/* In case of lock contention, drop mmap_lock to unblock
449 		 * the writer.
450 		 *
451 		 * After relock, call find(mm, prev_vm_end - 1) to find
452 		 * new vma to process.
453 		 *
454 		 *   +------+------+-----------+
455 		 *   | VMA1 | VMA2 | VMA3      |
456 		 *   +------+------+-----------+
457 		 *   |      |      |           |
458 		 *  4k     8k     16k         400k
459 		 *
460 		 * For example, curr_vma == VMA2. Before unlock, we set
461 		 *
462 		 *    prev_vm_start = 8k
463 		 *    prev_vm_end   = 16k
464 		 *
465 		 * There are a few cases:
466 		 *
467 		 * 1) VMA2 is freed, but VMA3 exists.
468 		 *
469 		 *    find_vma() will return VMA3, just process VMA3.
470 		 *
471 		 * 2) VMA2 still exists.
472 		 *
473 		 *    find_vma() will return VMA2, process VMA2->next.
474 		 *
475 		 * 3) no more vma in this mm.
476 		 *
477 		 *    Process the next task.
478 		 *
479 		 * 4) find_vma() returns a different vma, VMA2'.
480 		 *
481 		 *    4.1) If VMA2 covers same range as VMA2', skip VMA2',
482 		 *         because we already covered the range;
483 		 *    4.2) VMA2 and VMA2' covers different ranges, process
484 		 *         VMA2'.
485 		 */
486 		if (mmap_lock_is_contended(curr_mm)) {
487 			info->prev_vm_start = curr_vma->vm_start;
488 			info->prev_vm_end = curr_vma->vm_end;
489 			op = task_vma_iter_find_vma;
490 			mmap_read_unlock(curr_mm);
491 			if (mmap_read_lock_killable(curr_mm)) {
492 				mmput(curr_mm);
493 				goto finish;
494 			}
495 		} else {
496 			op = task_vma_iter_next_vma;
497 		}
498 	} else {
499 again:
500 		curr_task = task_seq_get_next(&info->common, &info->tid, true);
501 		if (!curr_task) {
502 			info->tid++;
503 			goto finish;
504 		}
505 
506 		if (saved_tid != info->tid) {
507 			/* new task, process the first vma */
508 			op = task_vma_iter_first_vma;
509 		} else {
510 			/* Found the same tid, which means the user space
511 			 * finished data in previous buffer and read more.
512 			 * We dropped mmap_lock before returning to user
513 			 * space, so it is necessary to use find_vma() to
514 			 * find the next vma to process.
515 			 */
516 			op = task_vma_iter_find_vma;
517 		}
518 
519 		curr_mm = get_task_mm(curr_task);
520 		if (!curr_mm)
521 			goto next_task;
522 
523 		if (mmap_read_lock_killable(curr_mm)) {
524 			mmput(curr_mm);
525 			goto finish;
526 		}
527 	}
528 
529 	switch (op) {
530 	case task_vma_iter_first_vma:
531 		curr_vma = find_vma(curr_mm, 0);
532 		break;
533 	case task_vma_iter_next_vma:
534 		curr_vma = find_vma(curr_mm, curr_vma->vm_end);
535 		break;
536 	case task_vma_iter_find_vma:
537 		/* We dropped mmap_lock so it is necessary to use find_vma
538 		 * to find the next vma. This is similar to the  mechanism
539 		 * in show_smaps_rollup().
540 		 */
541 		curr_vma = find_vma(curr_mm, info->prev_vm_end - 1);
542 		/* case 1) and 4.2) above just use curr_vma */
543 
544 		/* check for case 2) or case 4.1) above */
545 		if (curr_vma &&
546 		    curr_vma->vm_start == info->prev_vm_start &&
547 		    curr_vma->vm_end == info->prev_vm_end)
548 			curr_vma = find_vma(curr_mm, curr_vma->vm_end);
549 		break;
550 	}
551 	if (!curr_vma) {
552 		/* case 3) above, or case 2) 4.1) with vma->next == NULL */
553 		mmap_read_unlock(curr_mm);
554 		mmput(curr_mm);
555 		goto next_task;
556 	}
557 	info->task = curr_task;
558 	info->vma = curr_vma;
559 	info->mm = curr_mm;
560 	return curr_vma;
561 
562 next_task:
563 	if (info->common.type == BPF_TASK_ITER_TID)
564 		goto finish;
565 
566 	put_task_struct(curr_task);
567 	info->task = NULL;
568 	info->mm = NULL;
569 	info->tid++;
570 	goto again;
571 
572 finish:
573 	if (curr_task)
574 		put_task_struct(curr_task);
575 	info->task = NULL;
576 	info->vma = NULL;
577 	info->mm = NULL;
578 	return NULL;
579 }
580 
581 static void *task_vma_seq_start(struct seq_file *seq, loff_t *pos)
582 {
583 	struct bpf_iter_seq_task_vma_info *info = seq->private;
584 	struct vm_area_struct *vma;
585 
586 	vma = task_vma_seq_get_next(info);
587 	if (vma && *pos == 0)
588 		++*pos;
589 
590 	return vma;
591 }
592 
593 static void *task_vma_seq_next(struct seq_file *seq, void *v, loff_t *pos)
594 {
595 	struct bpf_iter_seq_task_vma_info *info = seq->private;
596 
597 	++*pos;
598 	return task_vma_seq_get_next(info);
599 }
600 
601 struct bpf_iter__task_vma {
602 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
603 	__bpf_md_ptr(struct task_struct *, task);
604 	__bpf_md_ptr(struct vm_area_struct *, vma);
605 };
606 
607 DEFINE_BPF_ITER_FUNC(task_vma, struct bpf_iter_meta *meta,
608 		     struct task_struct *task, struct vm_area_struct *vma)
609 
610 static int __task_vma_seq_show(struct seq_file *seq, bool in_stop)
611 {
612 	struct bpf_iter_seq_task_vma_info *info = seq->private;
613 	struct bpf_iter__task_vma ctx;
614 	struct bpf_iter_meta meta;
615 	struct bpf_prog *prog;
616 
617 	meta.seq = seq;
618 	prog = bpf_iter_get_info(&meta, in_stop);
619 	if (!prog)
620 		return 0;
621 
622 	ctx.meta = &meta;
623 	ctx.task = info->task;
624 	ctx.vma = info->vma;
625 	return bpf_iter_run_prog(prog, &ctx);
626 }
627 
628 static int task_vma_seq_show(struct seq_file *seq, void *v)
629 {
630 	return __task_vma_seq_show(seq, false);
631 }
632 
633 static void task_vma_seq_stop(struct seq_file *seq, void *v)
634 {
635 	struct bpf_iter_seq_task_vma_info *info = seq->private;
636 
637 	if (!v) {
638 		(void)__task_vma_seq_show(seq, true);
639 	} else {
640 		/* info->vma has not been seen by the BPF program. If the
641 		 * user space reads more, task_vma_seq_get_next should
642 		 * return this vma again. Set prev_vm_start to ~0UL,
643 		 * so that we don't skip the vma returned by the next
644 		 * find_vma() (case task_vma_iter_find_vma in
645 		 * task_vma_seq_get_next()).
646 		 */
647 		info->prev_vm_start = ~0UL;
648 		info->prev_vm_end = info->vma->vm_end;
649 		mmap_read_unlock(info->mm);
650 		mmput(info->mm);
651 		info->mm = NULL;
652 		put_task_struct(info->task);
653 		info->task = NULL;
654 	}
655 }
656 
657 static const struct seq_operations task_vma_seq_ops = {
658 	.start	= task_vma_seq_start,
659 	.next	= task_vma_seq_next,
660 	.stop	= task_vma_seq_stop,
661 	.show	= task_vma_seq_show,
662 };
663 
664 static const struct bpf_iter_seq_info task_seq_info = {
665 	.seq_ops		= &task_seq_ops,
666 	.init_seq_private	= init_seq_pidns,
667 	.fini_seq_private	= fini_seq_pidns,
668 	.seq_priv_size		= sizeof(struct bpf_iter_seq_task_info),
669 };
670 
671 static int bpf_iter_fill_link_info(const struct bpf_iter_aux_info *aux, struct bpf_link_info *info)
672 {
673 	switch (aux->task.type) {
674 	case BPF_TASK_ITER_TID:
675 		info->iter.task.tid = aux->task.pid;
676 		break;
677 	case BPF_TASK_ITER_TGID:
678 		info->iter.task.pid = aux->task.pid;
679 		break;
680 	default:
681 		break;
682 	}
683 	return 0;
684 }
685 
686 static void bpf_iter_task_show_fdinfo(const struct bpf_iter_aux_info *aux, struct seq_file *seq)
687 {
688 	seq_printf(seq, "task_type:\t%s\n", iter_task_type_names[aux->task.type]);
689 	if (aux->task.type == BPF_TASK_ITER_TID)
690 		seq_printf(seq, "tid:\t%u\n", aux->task.pid);
691 	else if (aux->task.type == BPF_TASK_ITER_TGID)
692 		seq_printf(seq, "pid:\t%u\n", aux->task.pid);
693 }
694 
695 static struct bpf_iter_reg task_reg_info = {
696 	.target			= "task",
697 	.attach_target		= bpf_iter_attach_task,
698 	.feature		= BPF_ITER_RESCHED,
699 	.ctx_arg_info_size	= 1,
700 	.ctx_arg_info		= {
701 		{ offsetof(struct bpf_iter__task, task),
702 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
703 	},
704 	.seq_info		= &task_seq_info,
705 	.fill_link_info		= bpf_iter_fill_link_info,
706 	.show_fdinfo		= bpf_iter_task_show_fdinfo,
707 };
708 
709 static const struct bpf_iter_seq_info task_file_seq_info = {
710 	.seq_ops		= &task_file_seq_ops,
711 	.init_seq_private	= init_seq_pidns,
712 	.fini_seq_private	= fini_seq_pidns,
713 	.seq_priv_size		= sizeof(struct bpf_iter_seq_task_file_info),
714 };
715 
716 static struct bpf_iter_reg task_file_reg_info = {
717 	.target			= "task_file",
718 	.attach_target		= bpf_iter_attach_task,
719 	.feature		= BPF_ITER_RESCHED,
720 	.ctx_arg_info_size	= 2,
721 	.ctx_arg_info		= {
722 		{ offsetof(struct bpf_iter__task_file, task),
723 		  PTR_TO_BTF_ID_OR_NULL },
724 		{ offsetof(struct bpf_iter__task_file, file),
725 		  PTR_TO_BTF_ID_OR_NULL },
726 	},
727 	.seq_info		= &task_file_seq_info,
728 	.fill_link_info		= bpf_iter_fill_link_info,
729 	.show_fdinfo		= bpf_iter_task_show_fdinfo,
730 };
731 
732 static const struct bpf_iter_seq_info task_vma_seq_info = {
733 	.seq_ops		= &task_vma_seq_ops,
734 	.init_seq_private	= init_seq_pidns,
735 	.fini_seq_private	= fini_seq_pidns,
736 	.seq_priv_size		= sizeof(struct bpf_iter_seq_task_vma_info),
737 };
738 
739 static struct bpf_iter_reg task_vma_reg_info = {
740 	.target			= "task_vma",
741 	.attach_target		= bpf_iter_attach_task,
742 	.feature		= BPF_ITER_RESCHED,
743 	.ctx_arg_info_size	= 2,
744 	.ctx_arg_info		= {
745 		{ offsetof(struct bpf_iter__task_vma, task),
746 		  PTR_TO_BTF_ID_OR_NULL },
747 		{ offsetof(struct bpf_iter__task_vma, vma),
748 		  PTR_TO_BTF_ID_OR_NULL },
749 	},
750 	.seq_info		= &task_vma_seq_info,
751 	.fill_link_info		= bpf_iter_fill_link_info,
752 	.show_fdinfo		= bpf_iter_task_show_fdinfo,
753 };
754 
755 BPF_CALL_5(bpf_find_vma, struct task_struct *, task, u64, start,
756 	   bpf_callback_t, callback_fn, void *, callback_ctx, u64, flags)
757 {
758 	struct mmap_unlock_irq_work *work = NULL;
759 	struct vm_area_struct *vma;
760 	bool irq_work_busy = false;
761 	struct mm_struct *mm;
762 	int ret = -ENOENT;
763 
764 	if (flags)
765 		return -EINVAL;
766 
767 	if (!task)
768 		return -ENOENT;
769 
770 	mm = task->mm;
771 	if (!mm)
772 		return -ENOENT;
773 
774 	irq_work_busy = bpf_mmap_unlock_get_irq_work(&work);
775 
776 	if (irq_work_busy || !mmap_read_trylock(mm))
777 		return -EBUSY;
778 
779 	vma = find_vma(mm, start);
780 
781 	if (vma && vma->vm_start <= start && vma->vm_end > start) {
782 		callback_fn((u64)(long)task, (u64)(long)vma,
783 			    (u64)(long)callback_ctx, 0, 0);
784 		ret = 0;
785 	}
786 	bpf_mmap_unlock_mm(work, mm);
787 	return ret;
788 }
789 
790 const struct bpf_func_proto bpf_find_vma_proto = {
791 	.func		= bpf_find_vma,
792 	.ret_type	= RET_INTEGER,
793 	.arg1_type	= ARG_PTR_TO_BTF_ID,
794 	.arg1_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
795 	.arg2_type	= ARG_ANYTHING,
796 	.arg3_type	= ARG_PTR_TO_FUNC,
797 	.arg4_type	= ARG_PTR_TO_STACK_OR_NULL,
798 	.arg5_type	= ARG_ANYTHING,
799 };
800 
801 struct bpf_iter_task_vma_kern_data {
802 	struct task_struct *task;
803 	struct mm_struct *mm;
804 	struct mmap_unlock_irq_work *work;
805 	struct vma_iterator vmi;
806 };
807 
808 struct bpf_iter_task_vma {
809 	/* opaque iterator state; having __u64 here allows to preserve correct
810 	 * alignment requirements in vmlinux.h, generated from BTF
811 	 */
812 	__u64 __opaque[1];
813 } __attribute__((aligned(8)));
814 
815 /* Non-opaque version of bpf_iter_task_vma */
816 struct bpf_iter_task_vma_kern {
817 	struct bpf_iter_task_vma_kern_data *data;
818 } __attribute__((aligned(8)));
819 
820 __bpf_kfunc_start_defs();
821 
822 __bpf_kfunc int bpf_iter_task_vma_new(struct bpf_iter_task_vma *it,
823 				      struct task_struct *task, u64 addr)
824 {
825 	struct bpf_iter_task_vma_kern *kit = (void *)it;
826 	bool irq_work_busy = false;
827 	int err;
828 
829 	BUILD_BUG_ON(sizeof(struct bpf_iter_task_vma_kern) != sizeof(struct bpf_iter_task_vma));
830 	BUILD_BUG_ON(__alignof__(struct bpf_iter_task_vma_kern) != __alignof__(struct bpf_iter_task_vma));
831 
832 	/* is_iter_reg_valid_uninit guarantees that kit hasn't been initialized
833 	 * before, so non-NULL kit->data doesn't point to previously
834 	 * bpf_mem_alloc'd bpf_iter_task_vma_kern_data
835 	 */
836 	kit->data = bpf_mem_alloc(&bpf_global_ma, sizeof(struct bpf_iter_task_vma_kern_data));
837 	if (!kit->data)
838 		return -ENOMEM;
839 
840 	kit->data->task = get_task_struct(task);
841 	kit->data->mm = task->mm;
842 	if (!kit->data->mm) {
843 		err = -ENOENT;
844 		goto err_cleanup_iter;
845 	}
846 
847 	/* kit->data->work == NULL is valid after bpf_mmap_unlock_get_irq_work */
848 	irq_work_busy = bpf_mmap_unlock_get_irq_work(&kit->data->work);
849 	if (irq_work_busy || !mmap_read_trylock(kit->data->mm)) {
850 		err = -EBUSY;
851 		goto err_cleanup_iter;
852 	}
853 
854 	vma_iter_init(&kit->data->vmi, kit->data->mm, addr);
855 	return 0;
856 
857 err_cleanup_iter:
858 	if (kit->data->task)
859 		put_task_struct(kit->data->task);
860 	bpf_mem_free(&bpf_global_ma, kit->data);
861 	/* NULL kit->data signals failed bpf_iter_task_vma initialization */
862 	kit->data = NULL;
863 	return err;
864 }
865 
866 __bpf_kfunc struct vm_area_struct *bpf_iter_task_vma_next(struct bpf_iter_task_vma *it)
867 {
868 	struct bpf_iter_task_vma_kern *kit = (void *)it;
869 
870 	if (!kit->data) /* bpf_iter_task_vma_new failed */
871 		return NULL;
872 	return vma_next(&kit->data->vmi);
873 }
874 
875 __bpf_kfunc void bpf_iter_task_vma_destroy(struct bpf_iter_task_vma *it)
876 {
877 	struct bpf_iter_task_vma_kern *kit = (void *)it;
878 
879 	if (kit->data) {
880 		bpf_mmap_unlock_mm(kit->data->work, kit->data->mm);
881 		put_task_struct(kit->data->task);
882 		bpf_mem_free(&bpf_global_ma, kit->data);
883 	}
884 }
885 
886 __bpf_kfunc_end_defs();
887 
888 #ifdef CONFIG_CGROUPS
889 
890 struct bpf_iter_css_task {
891 	__u64 __opaque[1];
892 } __attribute__((aligned(8)));
893 
894 struct bpf_iter_css_task_kern {
895 	struct css_task_iter *css_it;
896 } __attribute__((aligned(8)));
897 
898 __bpf_kfunc_start_defs();
899 
900 __bpf_kfunc int bpf_iter_css_task_new(struct bpf_iter_css_task *it,
901 		struct cgroup_subsys_state *css, unsigned int flags)
902 {
903 	struct bpf_iter_css_task_kern *kit = (void *)it;
904 
905 	BUILD_BUG_ON(sizeof(struct bpf_iter_css_task_kern) != sizeof(struct bpf_iter_css_task));
906 	BUILD_BUG_ON(__alignof__(struct bpf_iter_css_task_kern) !=
907 					__alignof__(struct bpf_iter_css_task));
908 	kit->css_it = NULL;
909 	switch (flags) {
910 	case CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED:
911 	case CSS_TASK_ITER_PROCS:
912 	case 0:
913 		break;
914 	default:
915 		return -EINVAL;
916 	}
917 
918 	kit->css_it = bpf_mem_alloc(&bpf_global_ma, sizeof(struct css_task_iter));
919 	if (!kit->css_it)
920 		return -ENOMEM;
921 	css_task_iter_start(css, flags, kit->css_it);
922 	return 0;
923 }
924 
925 __bpf_kfunc struct task_struct *bpf_iter_css_task_next(struct bpf_iter_css_task *it)
926 {
927 	struct bpf_iter_css_task_kern *kit = (void *)it;
928 
929 	if (!kit->css_it)
930 		return NULL;
931 	return css_task_iter_next(kit->css_it);
932 }
933 
934 __bpf_kfunc void bpf_iter_css_task_destroy(struct bpf_iter_css_task *it)
935 {
936 	struct bpf_iter_css_task_kern *kit = (void *)it;
937 
938 	if (!kit->css_it)
939 		return;
940 	css_task_iter_end(kit->css_it);
941 	bpf_mem_free(&bpf_global_ma, kit->css_it);
942 }
943 
944 __bpf_kfunc_end_defs();
945 
946 #endif /* CONFIG_CGROUPS */
947 
948 struct bpf_iter_task {
949 	__u64 __opaque[3];
950 } __attribute__((aligned(8)));
951 
952 struct bpf_iter_task_kern {
953 	struct task_struct *task;
954 	struct task_struct *pos;
955 	unsigned int flags;
956 } __attribute__((aligned(8)));
957 
958 enum {
959 	/* all process in the system */
960 	BPF_TASK_ITER_ALL_PROCS,
961 	/* all threads in the system */
962 	BPF_TASK_ITER_ALL_THREADS,
963 	/* all threads of a specific process */
964 	BPF_TASK_ITER_PROC_THREADS
965 };
966 
967 __bpf_kfunc_start_defs();
968 
969 __bpf_kfunc int bpf_iter_task_new(struct bpf_iter_task *it,
970 		struct task_struct *task__nullable, unsigned int flags)
971 {
972 	struct bpf_iter_task_kern *kit = (void *)it;
973 
974 	BUILD_BUG_ON(sizeof(struct bpf_iter_task_kern) > sizeof(struct bpf_iter_task));
975 	BUILD_BUG_ON(__alignof__(struct bpf_iter_task_kern) !=
976 					__alignof__(struct bpf_iter_task));
977 
978 	kit->pos = NULL;
979 
980 	switch (flags) {
981 	case BPF_TASK_ITER_ALL_THREADS:
982 	case BPF_TASK_ITER_ALL_PROCS:
983 		break;
984 	case BPF_TASK_ITER_PROC_THREADS:
985 		if (!task__nullable)
986 			return -EINVAL;
987 		break;
988 	default:
989 		return -EINVAL;
990 	}
991 
992 	if (flags == BPF_TASK_ITER_PROC_THREADS)
993 		kit->task = task__nullable;
994 	else
995 		kit->task = &init_task;
996 	kit->pos = kit->task;
997 	kit->flags = flags;
998 	return 0;
999 }
1000 
1001 __bpf_kfunc struct task_struct *bpf_iter_task_next(struct bpf_iter_task *it)
1002 {
1003 	struct bpf_iter_task_kern *kit = (void *)it;
1004 	struct task_struct *pos;
1005 	unsigned int flags;
1006 
1007 	flags = kit->flags;
1008 	pos = kit->pos;
1009 
1010 	if (!pos)
1011 		return pos;
1012 
1013 	if (flags == BPF_TASK_ITER_ALL_PROCS)
1014 		goto get_next_task;
1015 
1016 	kit->pos = __next_thread(kit->pos);
1017 	if (kit->pos || flags == BPF_TASK_ITER_PROC_THREADS)
1018 		return pos;
1019 
1020 get_next_task:
1021 	kit->task = next_task(kit->task);
1022 	if (kit->task == &init_task)
1023 		kit->pos = NULL;
1024 	else
1025 		kit->pos = kit->task;
1026 
1027 	return pos;
1028 }
1029 
1030 __bpf_kfunc void bpf_iter_task_destroy(struct bpf_iter_task *it)
1031 {
1032 }
1033 
1034 __bpf_kfunc_end_defs();
1035 
1036 DEFINE_PER_CPU(struct mmap_unlock_irq_work, mmap_unlock_work);
1037 
1038 static void do_mmap_read_unlock(struct irq_work *entry)
1039 {
1040 	struct mmap_unlock_irq_work *work;
1041 
1042 	if (WARN_ON_ONCE(IS_ENABLED(CONFIG_PREEMPT_RT)))
1043 		return;
1044 
1045 	work = container_of(entry, struct mmap_unlock_irq_work, irq_work);
1046 	mmap_read_unlock_non_owner(work->mm);
1047 }
1048 
1049 static int __init task_iter_init(void)
1050 {
1051 	struct mmap_unlock_irq_work *work;
1052 	int ret, cpu;
1053 
1054 	for_each_possible_cpu(cpu) {
1055 		work = per_cpu_ptr(&mmap_unlock_work, cpu);
1056 		init_irq_work(&work->irq_work, do_mmap_read_unlock);
1057 	}
1058 
1059 	task_reg_info.ctx_arg_info[0].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_TASK];
1060 	ret = bpf_iter_reg_target(&task_reg_info);
1061 	if (ret)
1062 		return ret;
1063 
1064 	task_file_reg_info.ctx_arg_info[0].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_TASK];
1065 	task_file_reg_info.ctx_arg_info[1].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_FILE];
1066 	ret =  bpf_iter_reg_target(&task_file_reg_info);
1067 	if (ret)
1068 		return ret;
1069 
1070 	task_vma_reg_info.ctx_arg_info[0].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_TASK];
1071 	task_vma_reg_info.ctx_arg_info[1].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA];
1072 	return bpf_iter_reg_target(&task_vma_reg_info);
1073 }
1074 late_initcall(task_iter_init);
1075