xref: /linux/kernel/bpf/task_iter.c (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2020 Facebook */
3 
4 #include <linux/init.h>
5 #include <linux/namei.h>
6 #include <linux/pid_namespace.h>
7 #include <linux/fs.h>
8 #include <linux/filter.h>
9 #include <linux/bpf_mem_alloc.h>
10 #include <linux/btf_ids.h>
11 #include <linux/mm_types.h>
12 #include "mmap_unlock_work.h"
13 
14 static const char * const iter_task_type_names[] = {
15 	"ALL",
16 	"TID",
17 	"PID",
18 };
19 
20 struct bpf_iter_seq_task_common {
21 	struct pid_namespace *ns;
22 	enum bpf_iter_task_type	type;
23 	u32 pid;
24 	u32 pid_visiting;
25 };
26 
27 struct bpf_iter_seq_task_info {
28 	/* The first field must be struct bpf_iter_seq_task_common.
29 	 * this is assumed by {init, fini}_seq_pidns() callback functions.
30 	 */
31 	struct bpf_iter_seq_task_common common;
32 	u32 tid;
33 };
34 
35 static struct task_struct *task_group_seq_get_next(struct bpf_iter_seq_task_common *common,
36 						   u32 *tid,
37 						   bool skip_if_dup_files)
38 {
39 	struct task_struct *task;
40 	struct pid *pid;
41 	u32 next_tid;
42 
43 	if (!*tid) {
44 		/* The first time, the iterator calls this function. */
45 		pid = find_pid_ns(common->pid, common->ns);
46 		task = get_pid_task(pid, PIDTYPE_TGID);
47 		if (!task)
48 			return NULL;
49 
50 		*tid = common->pid;
51 		common->pid_visiting = common->pid;
52 
53 		return task;
54 	}
55 
56 	/* If the control returns to user space and comes back to the
57 	 * kernel again, *tid and common->pid_visiting should be the
58 	 * same for task_seq_start() to pick up the correct task.
59 	 */
60 	if (*tid == common->pid_visiting) {
61 		pid = find_pid_ns(common->pid_visiting, common->ns);
62 		task = get_pid_task(pid, PIDTYPE_PID);
63 
64 		return task;
65 	}
66 
67 	task = find_task_by_pid_ns(common->pid_visiting, common->ns);
68 	if (!task)
69 		return NULL;
70 
71 retry:
72 	task = __next_thread(task);
73 	if (!task)
74 		return NULL;
75 
76 	next_tid = __task_pid_nr_ns(task, PIDTYPE_PID, common->ns);
77 	if (!next_tid)
78 		goto retry;
79 
80 	if (skip_if_dup_files && task->files == task->group_leader->files)
81 		goto retry;
82 
83 	*tid = common->pid_visiting = next_tid;
84 	get_task_struct(task);
85 	return task;
86 }
87 
88 static struct task_struct *task_seq_get_next(struct bpf_iter_seq_task_common *common,
89 					     u32 *tid,
90 					     bool skip_if_dup_files)
91 {
92 	struct task_struct *task = NULL;
93 	struct pid *pid;
94 
95 	if (common->type == BPF_TASK_ITER_TID) {
96 		if (*tid && *tid != common->pid)
97 			return NULL;
98 		rcu_read_lock();
99 		pid = find_pid_ns(common->pid, common->ns);
100 		if (pid) {
101 			task = get_pid_task(pid, PIDTYPE_PID);
102 			*tid = common->pid;
103 		}
104 		rcu_read_unlock();
105 
106 		return task;
107 	}
108 
109 	if (common->type == BPF_TASK_ITER_TGID) {
110 		rcu_read_lock();
111 		task = task_group_seq_get_next(common, tid, skip_if_dup_files);
112 		rcu_read_unlock();
113 
114 		return task;
115 	}
116 
117 	rcu_read_lock();
118 retry:
119 	pid = find_ge_pid(*tid, common->ns);
120 	if (pid) {
121 		*tid = pid_nr_ns(pid, common->ns);
122 		task = get_pid_task(pid, PIDTYPE_PID);
123 		if (!task) {
124 			++*tid;
125 			goto retry;
126 		} else if (skip_if_dup_files && !thread_group_leader(task) &&
127 			   task->files == task->group_leader->files) {
128 			put_task_struct(task);
129 			task = NULL;
130 			++*tid;
131 			goto retry;
132 		}
133 	}
134 	rcu_read_unlock();
135 
136 	return task;
137 }
138 
139 static void *task_seq_start(struct seq_file *seq, loff_t *pos)
140 {
141 	struct bpf_iter_seq_task_info *info = seq->private;
142 	struct task_struct *task;
143 
144 	task = task_seq_get_next(&info->common, &info->tid, false);
145 	if (!task)
146 		return NULL;
147 
148 	if (*pos == 0)
149 		++*pos;
150 	return task;
151 }
152 
153 static void *task_seq_next(struct seq_file *seq, void *v, loff_t *pos)
154 {
155 	struct bpf_iter_seq_task_info *info = seq->private;
156 	struct task_struct *task;
157 
158 	++*pos;
159 	++info->tid;
160 	put_task_struct((struct task_struct *)v);
161 	task = task_seq_get_next(&info->common, &info->tid, false);
162 	if (!task)
163 		return NULL;
164 
165 	return task;
166 }
167 
168 struct bpf_iter__task {
169 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
170 	__bpf_md_ptr(struct task_struct *, task);
171 };
172 
173 DEFINE_BPF_ITER_FUNC(task, struct bpf_iter_meta *meta, struct task_struct *task)
174 
175 static int __task_seq_show(struct seq_file *seq, struct task_struct *task,
176 			   bool in_stop)
177 {
178 	struct bpf_iter_meta meta;
179 	struct bpf_iter__task ctx;
180 	struct bpf_prog *prog;
181 
182 	meta.seq = seq;
183 	prog = bpf_iter_get_info(&meta, in_stop);
184 	if (!prog)
185 		return 0;
186 
187 	ctx.meta = &meta;
188 	ctx.task = task;
189 	return bpf_iter_run_prog(prog, &ctx);
190 }
191 
192 static int task_seq_show(struct seq_file *seq, void *v)
193 {
194 	return __task_seq_show(seq, v, false);
195 }
196 
197 static void task_seq_stop(struct seq_file *seq, void *v)
198 {
199 	if (!v)
200 		(void)__task_seq_show(seq, v, true);
201 	else
202 		put_task_struct((struct task_struct *)v);
203 }
204 
205 static int bpf_iter_attach_task(struct bpf_prog *prog,
206 				union bpf_iter_link_info *linfo,
207 				struct bpf_iter_aux_info *aux)
208 {
209 	unsigned int flags;
210 	struct pid *pid;
211 	pid_t tgid;
212 
213 	if ((!!linfo->task.tid + !!linfo->task.pid + !!linfo->task.pid_fd) > 1)
214 		return -EINVAL;
215 
216 	aux->task.type = BPF_TASK_ITER_ALL;
217 	if (linfo->task.tid != 0) {
218 		aux->task.type = BPF_TASK_ITER_TID;
219 		aux->task.pid = linfo->task.tid;
220 	}
221 	if (linfo->task.pid != 0) {
222 		aux->task.type = BPF_TASK_ITER_TGID;
223 		aux->task.pid = linfo->task.pid;
224 	}
225 	if (linfo->task.pid_fd != 0) {
226 		aux->task.type = BPF_TASK_ITER_TGID;
227 
228 		pid = pidfd_get_pid(linfo->task.pid_fd, &flags);
229 		if (IS_ERR(pid))
230 			return PTR_ERR(pid);
231 
232 		tgid = pid_nr_ns(pid, task_active_pid_ns(current));
233 		aux->task.pid = tgid;
234 		put_pid(pid);
235 	}
236 
237 	return 0;
238 }
239 
240 static const struct seq_operations task_seq_ops = {
241 	.start	= task_seq_start,
242 	.next	= task_seq_next,
243 	.stop	= task_seq_stop,
244 	.show	= task_seq_show,
245 };
246 
247 struct bpf_iter_seq_task_file_info {
248 	/* The first field must be struct bpf_iter_seq_task_common.
249 	 * this is assumed by {init, fini}_seq_pidns() callback functions.
250 	 */
251 	struct bpf_iter_seq_task_common common;
252 	struct task_struct *task;
253 	u32 tid;
254 	u32 fd;
255 };
256 
257 static struct file *
258 task_file_seq_get_next(struct bpf_iter_seq_task_file_info *info)
259 {
260 	u32 saved_tid = info->tid;
261 	struct task_struct *curr_task;
262 	unsigned int curr_fd = info->fd;
263 	struct file *f;
264 
265 	/* If this function returns a non-NULL file object,
266 	 * it held a reference to the task/file.
267 	 * Otherwise, it does not hold any reference.
268 	 */
269 again:
270 	if (info->task) {
271 		curr_task = info->task;
272 		curr_fd = info->fd;
273 	} else {
274 		curr_task = task_seq_get_next(&info->common, &info->tid, true);
275                 if (!curr_task) {
276                         info->task = NULL;
277                         return NULL;
278                 }
279 
280 		/* set info->task */
281 		info->task = curr_task;
282 		if (saved_tid == info->tid)
283 			curr_fd = info->fd;
284 		else
285 			curr_fd = 0;
286 	}
287 
288 	f = fget_task_next(curr_task, &curr_fd);
289 	if (f) {
290 		/* set info->fd */
291 		info->fd = curr_fd;
292 		return f;
293 	}
294 
295 	/* the current task is done, go to the next task */
296 	put_task_struct(curr_task);
297 
298 	if (info->common.type == BPF_TASK_ITER_TID) {
299 		info->task = NULL;
300 		return NULL;
301 	}
302 
303 	info->task = NULL;
304 	info->fd = 0;
305 	saved_tid = ++(info->tid);
306 	goto again;
307 }
308 
309 static void *task_file_seq_start(struct seq_file *seq, loff_t *pos)
310 {
311 	struct bpf_iter_seq_task_file_info *info = seq->private;
312 	struct file *file;
313 
314 	info->task = NULL;
315 	file = task_file_seq_get_next(info);
316 	if (file && *pos == 0)
317 		++*pos;
318 
319 	return file;
320 }
321 
322 static void *task_file_seq_next(struct seq_file *seq, void *v, loff_t *pos)
323 {
324 	struct bpf_iter_seq_task_file_info *info = seq->private;
325 
326 	++*pos;
327 	++info->fd;
328 	fput((struct file *)v);
329 	return task_file_seq_get_next(info);
330 }
331 
332 struct bpf_iter__task_file {
333 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
334 	__bpf_md_ptr(struct task_struct *, task);
335 	u32 fd __aligned(8);
336 	__bpf_md_ptr(struct file *, file);
337 };
338 
339 DEFINE_BPF_ITER_FUNC(task_file, struct bpf_iter_meta *meta,
340 		     struct task_struct *task, u32 fd,
341 		     struct file *file)
342 
343 static int __task_file_seq_show(struct seq_file *seq, struct file *file,
344 				bool in_stop)
345 {
346 	struct bpf_iter_seq_task_file_info *info = seq->private;
347 	struct bpf_iter__task_file ctx;
348 	struct bpf_iter_meta meta;
349 	struct bpf_prog *prog;
350 
351 	meta.seq = seq;
352 	prog = bpf_iter_get_info(&meta, in_stop);
353 	if (!prog)
354 		return 0;
355 
356 	ctx.meta = &meta;
357 	ctx.task = info->task;
358 	ctx.fd = info->fd;
359 	ctx.file = file;
360 	return bpf_iter_run_prog(prog, &ctx);
361 }
362 
363 static int task_file_seq_show(struct seq_file *seq, void *v)
364 {
365 	return __task_file_seq_show(seq, v, false);
366 }
367 
368 static void task_file_seq_stop(struct seq_file *seq, void *v)
369 {
370 	struct bpf_iter_seq_task_file_info *info = seq->private;
371 
372 	if (!v) {
373 		(void)__task_file_seq_show(seq, v, true);
374 	} else {
375 		fput((struct file *)v);
376 		put_task_struct(info->task);
377 		info->task = NULL;
378 	}
379 }
380 
381 static int init_seq_pidns(void *priv_data, struct bpf_iter_aux_info *aux)
382 {
383 	struct bpf_iter_seq_task_common *common = priv_data;
384 
385 	common->ns = get_pid_ns(task_active_pid_ns(current));
386 	common->type = aux->task.type;
387 	common->pid = aux->task.pid;
388 
389 	return 0;
390 }
391 
392 static void fini_seq_pidns(void *priv_data)
393 {
394 	struct bpf_iter_seq_task_common *common = priv_data;
395 
396 	put_pid_ns(common->ns);
397 }
398 
399 static const struct seq_operations task_file_seq_ops = {
400 	.start	= task_file_seq_start,
401 	.next	= task_file_seq_next,
402 	.stop	= task_file_seq_stop,
403 	.show	= task_file_seq_show,
404 };
405 
406 struct bpf_iter_seq_task_vma_info {
407 	/* The first field must be struct bpf_iter_seq_task_common.
408 	 * this is assumed by {init, fini}_seq_pidns() callback functions.
409 	 */
410 	struct bpf_iter_seq_task_common common;
411 	struct task_struct *task;
412 	struct mm_struct *mm;
413 	struct vm_area_struct *vma;
414 	u32 tid;
415 	unsigned long prev_vm_start;
416 	unsigned long prev_vm_end;
417 };
418 
419 enum bpf_task_vma_iter_find_op {
420 	task_vma_iter_first_vma,   /* use find_vma() with addr 0 */
421 	task_vma_iter_next_vma,    /* use vma_next() with curr_vma */
422 	task_vma_iter_find_vma,    /* use find_vma() to find next vma */
423 };
424 
425 static struct vm_area_struct *
426 task_vma_seq_get_next(struct bpf_iter_seq_task_vma_info *info)
427 {
428 	enum bpf_task_vma_iter_find_op op;
429 	struct vm_area_struct *curr_vma;
430 	struct task_struct *curr_task;
431 	struct mm_struct *curr_mm;
432 	u32 saved_tid = info->tid;
433 
434 	/* If this function returns a non-NULL vma, it holds a reference to
435 	 * the task_struct, holds a refcount on mm->mm_users, and holds
436 	 * read lock on vma->mm->mmap_lock.
437 	 * If this function returns NULL, it does not hold any reference or
438 	 * lock.
439 	 */
440 	if (info->task) {
441 		curr_task = info->task;
442 		curr_vma = info->vma;
443 		curr_mm = info->mm;
444 		/* In case of lock contention, drop mmap_lock to unblock
445 		 * the writer.
446 		 *
447 		 * After relock, call find(mm, prev_vm_end - 1) to find
448 		 * new vma to process.
449 		 *
450 		 *   +------+------+-----------+
451 		 *   | VMA1 | VMA2 | VMA3      |
452 		 *   +------+------+-----------+
453 		 *   |      |      |           |
454 		 *  4k     8k     16k         400k
455 		 *
456 		 * For example, curr_vma == VMA2. Before unlock, we set
457 		 *
458 		 *    prev_vm_start = 8k
459 		 *    prev_vm_end   = 16k
460 		 *
461 		 * There are a few cases:
462 		 *
463 		 * 1) VMA2 is freed, but VMA3 exists.
464 		 *
465 		 *    find_vma() will return VMA3, just process VMA3.
466 		 *
467 		 * 2) VMA2 still exists.
468 		 *
469 		 *    find_vma() will return VMA2, process VMA2->next.
470 		 *
471 		 * 3) no more vma in this mm.
472 		 *
473 		 *    Process the next task.
474 		 *
475 		 * 4) find_vma() returns a different vma, VMA2'.
476 		 *
477 		 *    4.1) If VMA2 covers same range as VMA2', skip VMA2',
478 		 *         because we already covered the range;
479 		 *    4.2) VMA2 and VMA2' covers different ranges, process
480 		 *         VMA2'.
481 		 */
482 		if (mmap_lock_is_contended(curr_mm)) {
483 			info->prev_vm_start = curr_vma->vm_start;
484 			info->prev_vm_end = curr_vma->vm_end;
485 			op = task_vma_iter_find_vma;
486 			mmap_read_unlock(curr_mm);
487 			if (mmap_read_lock_killable(curr_mm)) {
488 				mmput(curr_mm);
489 				goto finish;
490 			}
491 		} else {
492 			op = task_vma_iter_next_vma;
493 		}
494 	} else {
495 again:
496 		curr_task = task_seq_get_next(&info->common, &info->tid, true);
497 		if (!curr_task) {
498 			info->tid++;
499 			goto finish;
500 		}
501 
502 		if (saved_tid != info->tid) {
503 			/* new task, process the first vma */
504 			op = task_vma_iter_first_vma;
505 		} else {
506 			/* Found the same tid, which means the user space
507 			 * finished data in previous buffer and read more.
508 			 * We dropped mmap_lock before returning to user
509 			 * space, so it is necessary to use find_vma() to
510 			 * find the next vma to process.
511 			 */
512 			op = task_vma_iter_find_vma;
513 		}
514 
515 		curr_mm = get_task_mm(curr_task);
516 		if (!curr_mm)
517 			goto next_task;
518 
519 		if (mmap_read_lock_killable(curr_mm)) {
520 			mmput(curr_mm);
521 			goto finish;
522 		}
523 	}
524 
525 	switch (op) {
526 	case task_vma_iter_first_vma:
527 		curr_vma = find_vma(curr_mm, 0);
528 		break;
529 	case task_vma_iter_next_vma:
530 		curr_vma = find_vma(curr_mm, curr_vma->vm_end);
531 		break;
532 	case task_vma_iter_find_vma:
533 		/* We dropped mmap_lock so it is necessary to use find_vma
534 		 * to find the next vma. This is similar to the  mechanism
535 		 * in show_smaps_rollup().
536 		 */
537 		curr_vma = find_vma(curr_mm, info->prev_vm_end - 1);
538 		/* case 1) and 4.2) above just use curr_vma */
539 
540 		/* check for case 2) or case 4.1) above */
541 		if (curr_vma &&
542 		    curr_vma->vm_start == info->prev_vm_start &&
543 		    curr_vma->vm_end == info->prev_vm_end)
544 			curr_vma = find_vma(curr_mm, curr_vma->vm_end);
545 		break;
546 	}
547 	if (!curr_vma) {
548 		/* case 3) above, or case 2) 4.1) with vma->next == NULL */
549 		mmap_read_unlock(curr_mm);
550 		mmput(curr_mm);
551 		goto next_task;
552 	}
553 	info->task = curr_task;
554 	info->vma = curr_vma;
555 	info->mm = curr_mm;
556 	return curr_vma;
557 
558 next_task:
559 	if (info->common.type == BPF_TASK_ITER_TID)
560 		goto finish;
561 
562 	put_task_struct(curr_task);
563 	info->task = NULL;
564 	info->mm = NULL;
565 	info->tid++;
566 	goto again;
567 
568 finish:
569 	if (curr_task)
570 		put_task_struct(curr_task);
571 	info->task = NULL;
572 	info->vma = NULL;
573 	info->mm = NULL;
574 	return NULL;
575 }
576 
577 static void *task_vma_seq_start(struct seq_file *seq, loff_t *pos)
578 {
579 	struct bpf_iter_seq_task_vma_info *info = seq->private;
580 	struct vm_area_struct *vma;
581 
582 	vma = task_vma_seq_get_next(info);
583 	if (vma && *pos == 0)
584 		++*pos;
585 
586 	return vma;
587 }
588 
589 static void *task_vma_seq_next(struct seq_file *seq, void *v, loff_t *pos)
590 {
591 	struct bpf_iter_seq_task_vma_info *info = seq->private;
592 
593 	++*pos;
594 	return task_vma_seq_get_next(info);
595 }
596 
597 struct bpf_iter__task_vma {
598 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
599 	__bpf_md_ptr(struct task_struct *, task);
600 	__bpf_md_ptr(struct vm_area_struct *, vma);
601 };
602 
603 DEFINE_BPF_ITER_FUNC(task_vma, struct bpf_iter_meta *meta,
604 		     struct task_struct *task, struct vm_area_struct *vma)
605 
606 static int __task_vma_seq_show(struct seq_file *seq, bool in_stop)
607 {
608 	struct bpf_iter_seq_task_vma_info *info = seq->private;
609 	struct bpf_iter__task_vma ctx;
610 	struct bpf_iter_meta meta;
611 	struct bpf_prog *prog;
612 
613 	meta.seq = seq;
614 	prog = bpf_iter_get_info(&meta, in_stop);
615 	if (!prog)
616 		return 0;
617 
618 	ctx.meta = &meta;
619 	ctx.task = info->task;
620 	ctx.vma = info->vma;
621 	return bpf_iter_run_prog(prog, &ctx);
622 }
623 
624 static int task_vma_seq_show(struct seq_file *seq, void *v)
625 {
626 	return __task_vma_seq_show(seq, false);
627 }
628 
629 static void task_vma_seq_stop(struct seq_file *seq, void *v)
630 {
631 	struct bpf_iter_seq_task_vma_info *info = seq->private;
632 
633 	if (!v) {
634 		(void)__task_vma_seq_show(seq, true);
635 	} else {
636 		/* info->vma has not been seen by the BPF program. If the
637 		 * user space reads more, task_vma_seq_get_next should
638 		 * return this vma again. Set prev_vm_start to ~0UL,
639 		 * so that we don't skip the vma returned by the next
640 		 * find_vma() (case task_vma_iter_find_vma in
641 		 * task_vma_seq_get_next()).
642 		 */
643 		info->prev_vm_start = ~0UL;
644 		info->prev_vm_end = info->vma->vm_end;
645 		mmap_read_unlock(info->mm);
646 		mmput(info->mm);
647 		info->mm = NULL;
648 		put_task_struct(info->task);
649 		info->task = NULL;
650 	}
651 }
652 
653 static const struct seq_operations task_vma_seq_ops = {
654 	.start	= task_vma_seq_start,
655 	.next	= task_vma_seq_next,
656 	.stop	= task_vma_seq_stop,
657 	.show	= task_vma_seq_show,
658 };
659 
660 static const struct bpf_iter_seq_info task_seq_info = {
661 	.seq_ops		= &task_seq_ops,
662 	.init_seq_private	= init_seq_pidns,
663 	.fini_seq_private	= fini_seq_pidns,
664 	.seq_priv_size		= sizeof(struct bpf_iter_seq_task_info),
665 };
666 
667 static int bpf_iter_fill_link_info(const struct bpf_iter_aux_info *aux, struct bpf_link_info *info)
668 {
669 	switch (aux->task.type) {
670 	case BPF_TASK_ITER_TID:
671 		info->iter.task.tid = aux->task.pid;
672 		break;
673 	case BPF_TASK_ITER_TGID:
674 		info->iter.task.pid = aux->task.pid;
675 		break;
676 	default:
677 		break;
678 	}
679 	return 0;
680 }
681 
682 static void bpf_iter_task_show_fdinfo(const struct bpf_iter_aux_info *aux, struct seq_file *seq)
683 {
684 	seq_printf(seq, "task_type:\t%s\n", iter_task_type_names[aux->task.type]);
685 	if (aux->task.type == BPF_TASK_ITER_TID)
686 		seq_printf(seq, "tid:\t%u\n", aux->task.pid);
687 	else if (aux->task.type == BPF_TASK_ITER_TGID)
688 		seq_printf(seq, "pid:\t%u\n", aux->task.pid);
689 }
690 
691 static struct bpf_iter_reg task_reg_info = {
692 	.target			= "task",
693 	.attach_target		= bpf_iter_attach_task,
694 	.feature		= BPF_ITER_RESCHED,
695 	.ctx_arg_info_size	= 1,
696 	.ctx_arg_info		= {
697 		{ offsetof(struct bpf_iter__task, task),
698 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
699 	},
700 	.seq_info		= &task_seq_info,
701 	.fill_link_info		= bpf_iter_fill_link_info,
702 	.show_fdinfo		= bpf_iter_task_show_fdinfo,
703 };
704 
705 static const struct bpf_iter_seq_info task_file_seq_info = {
706 	.seq_ops		= &task_file_seq_ops,
707 	.init_seq_private	= init_seq_pidns,
708 	.fini_seq_private	= fini_seq_pidns,
709 	.seq_priv_size		= sizeof(struct bpf_iter_seq_task_file_info),
710 };
711 
712 static struct bpf_iter_reg task_file_reg_info = {
713 	.target			= "task_file",
714 	.attach_target		= bpf_iter_attach_task,
715 	.feature		= BPF_ITER_RESCHED,
716 	.ctx_arg_info_size	= 2,
717 	.ctx_arg_info		= {
718 		{ offsetof(struct bpf_iter__task_file, task),
719 		  PTR_TO_BTF_ID_OR_NULL },
720 		{ offsetof(struct bpf_iter__task_file, file),
721 		  PTR_TO_BTF_ID_OR_NULL },
722 	},
723 	.seq_info		= &task_file_seq_info,
724 	.fill_link_info		= bpf_iter_fill_link_info,
725 	.show_fdinfo		= bpf_iter_task_show_fdinfo,
726 };
727 
728 static const struct bpf_iter_seq_info task_vma_seq_info = {
729 	.seq_ops		= &task_vma_seq_ops,
730 	.init_seq_private	= init_seq_pidns,
731 	.fini_seq_private	= fini_seq_pidns,
732 	.seq_priv_size		= sizeof(struct bpf_iter_seq_task_vma_info),
733 };
734 
735 static struct bpf_iter_reg task_vma_reg_info = {
736 	.target			= "task_vma",
737 	.attach_target		= bpf_iter_attach_task,
738 	.feature		= BPF_ITER_RESCHED,
739 	.ctx_arg_info_size	= 2,
740 	.ctx_arg_info		= {
741 		{ offsetof(struct bpf_iter__task_vma, task),
742 		  PTR_TO_BTF_ID_OR_NULL },
743 		{ offsetof(struct bpf_iter__task_vma, vma),
744 		  PTR_TO_BTF_ID_OR_NULL },
745 	},
746 	.seq_info		= &task_vma_seq_info,
747 	.fill_link_info		= bpf_iter_fill_link_info,
748 	.show_fdinfo		= bpf_iter_task_show_fdinfo,
749 };
750 
751 BPF_CALL_5(bpf_find_vma, struct task_struct *, task, u64, start,
752 	   bpf_callback_t, callback_fn, void *, callback_ctx, u64, flags)
753 {
754 	struct mmap_unlock_irq_work *work = NULL;
755 	struct vm_area_struct *vma;
756 	bool irq_work_busy = false;
757 	struct mm_struct *mm;
758 	int ret = -ENOENT;
759 
760 	if (flags)
761 		return -EINVAL;
762 
763 	if (!task)
764 		return -ENOENT;
765 
766 	mm = task->mm;
767 	if (!mm)
768 		return -ENOENT;
769 
770 	irq_work_busy = bpf_mmap_unlock_get_irq_work(&work);
771 
772 	if (irq_work_busy || !mmap_read_trylock(mm))
773 		return -EBUSY;
774 
775 	vma = find_vma(mm, start);
776 
777 	if (vma && vma->vm_start <= start && vma->vm_end > start) {
778 		callback_fn((u64)(long)task, (u64)(long)vma,
779 			    (u64)(long)callback_ctx, 0, 0);
780 		ret = 0;
781 	}
782 	bpf_mmap_unlock_mm(work, mm);
783 	return ret;
784 }
785 
786 const struct bpf_func_proto bpf_find_vma_proto = {
787 	.func		= bpf_find_vma,
788 	.ret_type	= RET_INTEGER,
789 	.arg1_type	= ARG_PTR_TO_BTF_ID,
790 	.arg1_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
791 	.arg2_type	= ARG_ANYTHING,
792 	.arg3_type	= ARG_PTR_TO_FUNC,
793 	.arg4_type	= ARG_PTR_TO_STACK_OR_NULL,
794 	.arg5_type	= ARG_ANYTHING,
795 };
796 
797 struct bpf_iter_task_vma_kern_data {
798 	struct task_struct *task;
799 	struct mm_struct *mm;
800 	struct mmap_unlock_irq_work *work;
801 	struct vma_iterator vmi;
802 };
803 
804 struct bpf_iter_task_vma {
805 	/* opaque iterator state; having __u64 here allows to preserve correct
806 	 * alignment requirements in vmlinux.h, generated from BTF
807 	 */
808 	__u64 __opaque[1];
809 } __attribute__((aligned(8)));
810 
811 /* Non-opaque version of bpf_iter_task_vma */
812 struct bpf_iter_task_vma_kern {
813 	struct bpf_iter_task_vma_kern_data *data;
814 } __attribute__((aligned(8)));
815 
816 __bpf_kfunc_start_defs();
817 
818 __bpf_kfunc int bpf_iter_task_vma_new(struct bpf_iter_task_vma *it,
819 				      struct task_struct *task, u64 addr)
820 {
821 	struct bpf_iter_task_vma_kern *kit = (void *)it;
822 	bool irq_work_busy = false;
823 	int err;
824 
825 	BUILD_BUG_ON(sizeof(struct bpf_iter_task_vma_kern) != sizeof(struct bpf_iter_task_vma));
826 	BUILD_BUG_ON(__alignof__(struct bpf_iter_task_vma_kern) != __alignof__(struct bpf_iter_task_vma));
827 
828 	/* is_iter_reg_valid_uninit guarantees that kit hasn't been initialized
829 	 * before, so non-NULL kit->data doesn't point to previously
830 	 * bpf_mem_alloc'd bpf_iter_task_vma_kern_data
831 	 */
832 	kit->data = bpf_mem_alloc(&bpf_global_ma, sizeof(struct bpf_iter_task_vma_kern_data));
833 	if (!kit->data)
834 		return -ENOMEM;
835 
836 	kit->data->task = get_task_struct(task);
837 	kit->data->mm = task->mm;
838 	if (!kit->data->mm) {
839 		err = -ENOENT;
840 		goto err_cleanup_iter;
841 	}
842 
843 	/* kit->data->work == NULL is valid after bpf_mmap_unlock_get_irq_work */
844 	irq_work_busy = bpf_mmap_unlock_get_irq_work(&kit->data->work);
845 	if (irq_work_busy || !mmap_read_trylock(kit->data->mm)) {
846 		err = -EBUSY;
847 		goto err_cleanup_iter;
848 	}
849 
850 	vma_iter_init(&kit->data->vmi, kit->data->mm, addr);
851 	return 0;
852 
853 err_cleanup_iter:
854 	if (kit->data->task)
855 		put_task_struct(kit->data->task);
856 	bpf_mem_free(&bpf_global_ma, kit->data);
857 	/* NULL kit->data signals failed bpf_iter_task_vma initialization */
858 	kit->data = NULL;
859 	return err;
860 }
861 
862 __bpf_kfunc struct vm_area_struct *bpf_iter_task_vma_next(struct bpf_iter_task_vma *it)
863 {
864 	struct bpf_iter_task_vma_kern *kit = (void *)it;
865 
866 	if (!kit->data) /* bpf_iter_task_vma_new failed */
867 		return NULL;
868 	return vma_next(&kit->data->vmi);
869 }
870 
871 __bpf_kfunc void bpf_iter_task_vma_destroy(struct bpf_iter_task_vma *it)
872 {
873 	struct bpf_iter_task_vma_kern *kit = (void *)it;
874 
875 	if (kit->data) {
876 		bpf_mmap_unlock_mm(kit->data->work, kit->data->mm);
877 		put_task_struct(kit->data->task);
878 		bpf_mem_free(&bpf_global_ma, kit->data);
879 	}
880 }
881 
882 __bpf_kfunc_end_defs();
883 
884 #ifdef CONFIG_CGROUPS
885 
886 struct bpf_iter_css_task {
887 	__u64 __opaque[1];
888 } __attribute__((aligned(8)));
889 
890 struct bpf_iter_css_task_kern {
891 	struct css_task_iter *css_it;
892 } __attribute__((aligned(8)));
893 
894 __bpf_kfunc_start_defs();
895 
896 __bpf_kfunc int bpf_iter_css_task_new(struct bpf_iter_css_task *it,
897 		struct cgroup_subsys_state *css, unsigned int flags)
898 {
899 	struct bpf_iter_css_task_kern *kit = (void *)it;
900 
901 	BUILD_BUG_ON(sizeof(struct bpf_iter_css_task_kern) != sizeof(struct bpf_iter_css_task));
902 	BUILD_BUG_ON(__alignof__(struct bpf_iter_css_task_kern) !=
903 					__alignof__(struct bpf_iter_css_task));
904 	kit->css_it = NULL;
905 	switch (flags) {
906 	case CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED:
907 	case CSS_TASK_ITER_PROCS:
908 	case 0:
909 		break;
910 	default:
911 		return -EINVAL;
912 	}
913 
914 	kit->css_it = bpf_mem_alloc(&bpf_global_ma, sizeof(struct css_task_iter));
915 	if (!kit->css_it)
916 		return -ENOMEM;
917 	css_task_iter_start(css, flags, kit->css_it);
918 	return 0;
919 }
920 
921 __bpf_kfunc struct task_struct *bpf_iter_css_task_next(struct bpf_iter_css_task *it)
922 {
923 	struct bpf_iter_css_task_kern *kit = (void *)it;
924 
925 	if (!kit->css_it)
926 		return NULL;
927 	return css_task_iter_next(kit->css_it);
928 }
929 
930 __bpf_kfunc void bpf_iter_css_task_destroy(struct bpf_iter_css_task *it)
931 {
932 	struct bpf_iter_css_task_kern *kit = (void *)it;
933 
934 	if (!kit->css_it)
935 		return;
936 	css_task_iter_end(kit->css_it);
937 	bpf_mem_free(&bpf_global_ma, kit->css_it);
938 }
939 
940 __bpf_kfunc_end_defs();
941 
942 #endif /* CONFIG_CGROUPS */
943 
944 struct bpf_iter_task {
945 	__u64 __opaque[3];
946 } __attribute__((aligned(8)));
947 
948 struct bpf_iter_task_kern {
949 	struct task_struct *task;
950 	struct task_struct *pos;
951 	unsigned int flags;
952 } __attribute__((aligned(8)));
953 
954 enum {
955 	/* all process in the system */
956 	BPF_TASK_ITER_ALL_PROCS,
957 	/* all threads in the system */
958 	BPF_TASK_ITER_ALL_THREADS,
959 	/* all threads of a specific process */
960 	BPF_TASK_ITER_PROC_THREADS
961 };
962 
963 __bpf_kfunc_start_defs();
964 
965 __bpf_kfunc int bpf_iter_task_new(struct bpf_iter_task *it,
966 		struct task_struct *task__nullable, unsigned int flags)
967 {
968 	struct bpf_iter_task_kern *kit = (void *)it;
969 
970 	BUILD_BUG_ON(sizeof(struct bpf_iter_task_kern) > sizeof(struct bpf_iter_task));
971 	BUILD_BUG_ON(__alignof__(struct bpf_iter_task_kern) !=
972 					__alignof__(struct bpf_iter_task));
973 
974 	kit->pos = NULL;
975 
976 	switch (flags) {
977 	case BPF_TASK_ITER_ALL_THREADS:
978 	case BPF_TASK_ITER_ALL_PROCS:
979 		break;
980 	case BPF_TASK_ITER_PROC_THREADS:
981 		if (!task__nullable)
982 			return -EINVAL;
983 		break;
984 	default:
985 		return -EINVAL;
986 	}
987 
988 	if (flags == BPF_TASK_ITER_PROC_THREADS)
989 		kit->task = task__nullable;
990 	else
991 		kit->task = &init_task;
992 	kit->pos = kit->task;
993 	kit->flags = flags;
994 	return 0;
995 }
996 
997 __bpf_kfunc struct task_struct *bpf_iter_task_next(struct bpf_iter_task *it)
998 {
999 	struct bpf_iter_task_kern *kit = (void *)it;
1000 	struct task_struct *pos;
1001 	unsigned int flags;
1002 
1003 	flags = kit->flags;
1004 	pos = kit->pos;
1005 
1006 	if (!pos)
1007 		return pos;
1008 
1009 	if (flags == BPF_TASK_ITER_ALL_PROCS)
1010 		goto get_next_task;
1011 
1012 	kit->pos = __next_thread(kit->pos);
1013 	if (kit->pos || flags == BPF_TASK_ITER_PROC_THREADS)
1014 		return pos;
1015 
1016 get_next_task:
1017 	kit->task = next_task(kit->task);
1018 	if (kit->task == &init_task)
1019 		kit->pos = NULL;
1020 	else
1021 		kit->pos = kit->task;
1022 
1023 	return pos;
1024 }
1025 
1026 __bpf_kfunc void bpf_iter_task_destroy(struct bpf_iter_task *it)
1027 {
1028 }
1029 
1030 __bpf_kfunc_end_defs();
1031 
1032 DEFINE_PER_CPU(struct mmap_unlock_irq_work, mmap_unlock_work);
1033 
1034 static void do_mmap_read_unlock(struct irq_work *entry)
1035 {
1036 	struct mmap_unlock_irq_work *work;
1037 
1038 	if (WARN_ON_ONCE(IS_ENABLED(CONFIG_PREEMPT_RT)))
1039 		return;
1040 
1041 	work = container_of(entry, struct mmap_unlock_irq_work, irq_work);
1042 	mmap_read_unlock_non_owner(work->mm);
1043 }
1044 
1045 static int __init task_iter_init(void)
1046 {
1047 	struct mmap_unlock_irq_work *work;
1048 	int ret, cpu;
1049 
1050 	for_each_possible_cpu(cpu) {
1051 		work = per_cpu_ptr(&mmap_unlock_work, cpu);
1052 		init_irq_work(&work->irq_work, do_mmap_read_unlock);
1053 	}
1054 
1055 	task_reg_info.ctx_arg_info[0].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_TASK];
1056 	ret = bpf_iter_reg_target(&task_reg_info);
1057 	if (ret)
1058 		return ret;
1059 
1060 	task_file_reg_info.ctx_arg_info[0].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_TASK];
1061 	task_file_reg_info.ctx_arg_info[1].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_FILE];
1062 	ret =  bpf_iter_reg_target(&task_file_reg_info);
1063 	if (ret)
1064 		return ret;
1065 
1066 	task_vma_reg_info.ctx_arg_info[0].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_TASK];
1067 	task_vma_reg_info.ctx_arg_info[1].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA];
1068 	return bpf_iter_reg_target(&task_vma_reg_info);
1069 }
1070 late_initcall(task_iter_init);
1071