1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2016 Facebook 3 */ 4 #include <linux/bpf.h> 5 #include <linux/jhash.h> 6 #include <linux/filter.h> 7 #include <linux/kernel.h> 8 #include <linux/stacktrace.h> 9 #include <linux/perf_event.h> 10 #include <linux/elf.h> 11 #include <linux/pagemap.h> 12 #include <linux/irq_work.h> 13 #include <linux/btf_ids.h> 14 #include "percpu_freelist.h" 15 16 #define STACK_CREATE_FLAG_MASK \ 17 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY | \ 18 BPF_F_STACK_BUILD_ID) 19 20 struct stack_map_bucket { 21 struct pcpu_freelist_node fnode; 22 u32 hash; 23 u32 nr; 24 u64 data[]; 25 }; 26 27 struct bpf_stack_map { 28 struct bpf_map map; 29 void *elems; 30 struct pcpu_freelist freelist; 31 u32 n_buckets; 32 struct stack_map_bucket *buckets[]; 33 }; 34 35 /* irq_work to run up_read() for build_id lookup in nmi context */ 36 struct stack_map_irq_work { 37 struct irq_work irq_work; 38 struct mm_struct *mm; 39 }; 40 41 static void do_up_read(struct irq_work *entry) 42 { 43 struct stack_map_irq_work *work; 44 45 if (WARN_ON_ONCE(IS_ENABLED(CONFIG_PREEMPT_RT))) 46 return; 47 48 work = container_of(entry, struct stack_map_irq_work, irq_work); 49 mmap_read_unlock_non_owner(work->mm); 50 } 51 52 static DEFINE_PER_CPU(struct stack_map_irq_work, up_read_work); 53 54 static inline bool stack_map_use_build_id(struct bpf_map *map) 55 { 56 return (map->map_flags & BPF_F_STACK_BUILD_ID); 57 } 58 59 static inline int stack_map_data_size(struct bpf_map *map) 60 { 61 return stack_map_use_build_id(map) ? 62 sizeof(struct bpf_stack_build_id) : sizeof(u64); 63 } 64 65 static int prealloc_elems_and_freelist(struct bpf_stack_map *smap) 66 { 67 u32 elem_size = sizeof(struct stack_map_bucket) + smap->map.value_size; 68 int err; 69 70 smap->elems = bpf_map_area_alloc(elem_size * smap->map.max_entries, 71 smap->map.numa_node); 72 if (!smap->elems) 73 return -ENOMEM; 74 75 err = pcpu_freelist_init(&smap->freelist); 76 if (err) 77 goto free_elems; 78 79 pcpu_freelist_populate(&smap->freelist, smap->elems, elem_size, 80 smap->map.max_entries); 81 return 0; 82 83 free_elems: 84 bpf_map_area_free(smap->elems); 85 return err; 86 } 87 88 /* Called from syscall */ 89 static struct bpf_map *stack_map_alloc(union bpf_attr *attr) 90 { 91 u32 value_size = attr->value_size; 92 struct bpf_stack_map *smap; 93 u64 cost, n_buckets; 94 int err; 95 96 if (!bpf_capable()) 97 return ERR_PTR(-EPERM); 98 99 if (attr->map_flags & ~STACK_CREATE_FLAG_MASK) 100 return ERR_PTR(-EINVAL); 101 102 /* check sanity of attributes */ 103 if (attr->max_entries == 0 || attr->key_size != 4 || 104 value_size < 8 || value_size % 8) 105 return ERR_PTR(-EINVAL); 106 107 BUILD_BUG_ON(sizeof(struct bpf_stack_build_id) % sizeof(u64)); 108 if (attr->map_flags & BPF_F_STACK_BUILD_ID) { 109 if (value_size % sizeof(struct bpf_stack_build_id) || 110 value_size / sizeof(struct bpf_stack_build_id) 111 > sysctl_perf_event_max_stack) 112 return ERR_PTR(-EINVAL); 113 } else if (value_size / 8 > sysctl_perf_event_max_stack) 114 return ERR_PTR(-EINVAL); 115 116 /* hash table size must be power of 2 */ 117 n_buckets = roundup_pow_of_two(attr->max_entries); 118 119 cost = n_buckets * sizeof(struct stack_map_bucket *) + sizeof(*smap); 120 cost += n_buckets * (value_size + sizeof(struct stack_map_bucket)); 121 smap = bpf_map_area_alloc(cost, bpf_map_attr_numa_node(attr)); 122 if (!smap) 123 return ERR_PTR(-ENOMEM); 124 125 bpf_map_init_from_attr(&smap->map, attr); 126 smap->map.value_size = value_size; 127 smap->n_buckets = n_buckets; 128 129 err = get_callchain_buffers(sysctl_perf_event_max_stack); 130 if (err) 131 goto free_smap; 132 133 err = prealloc_elems_and_freelist(smap); 134 if (err) 135 goto put_buffers; 136 137 return &smap->map; 138 139 put_buffers: 140 put_callchain_buffers(); 141 free_smap: 142 bpf_map_area_free(smap); 143 return ERR_PTR(err); 144 } 145 146 #define BPF_BUILD_ID 3 147 /* 148 * Parse build id from the note segment. This logic can be shared between 149 * 32-bit and 64-bit system, because Elf32_Nhdr and Elf64_Nhdr are 150 * identical. 151 */ 152 static inline int stack_map_parse_build_id(void *page_addr, 153 unsigned char *build_id, 154 void *note_start, 155 Elf32_Word note_size) 156 { 157 Elf32_Word note_offs = 0, new_offs; 158 159 /* check for overflow */ 160 if (note_start < page_addr || note_start + note_size < note_start) 161 return -EINVAL; 162 163 /* only supports note that fits in the first page */ 164 if (note_start + note_size > page_addr + PAGE_SIZE) 165 return -EINVAL; 166 167 while (note_offs + sizeof(Elf32_Nhdr) < note_size) { 168 Elf32_Nhdr *nhdr = (Elf32_Nhdr *)(note_start + note_offs); 169 170 if (nhdr->n_type == BPF_BUILD_ID && 171 nhdr->n_namesz == sizeof("GNU") && 172 nhdr->n_descsz > 0 && 173 nhdr->n_descsz <= BPF_BUILD_ID_SIZE) { 174 memcpy(build_id, 175 note_start + note_offs + 176 ALIGN(sizeof("GNU"), 4) + sizeof(Elf32_Nhdr), 177 nhdr->n_descsz); 178 memset(build_id + nhdr->n_descsz, 0, 179 BPF_BUILD_ID_SIZE - nhdr->n_descsz); 180 return 0; 181 } 182 new_offs = note_offs + sizeof(Elf32_Nhdr) + 183 ALIGN(nhdr->n_namesz, 4) + ALIGN(nhdr->n_descsz, 4); 184 if (new_offs <= note_offs) /* overflow */ 185 break; 186 note_offs = new_offs; 187 } 188 return -EINVAL; 189 } 190 191 /* Parse build ID from 32-bit ELF */ 192 static int stack_map_get_build_id_32(void *page_addr, 193 unsigned char *build_id) 194 { 195 Elf32_Ehdr *ehdr = (Elf32_Ehdr *)page_addr; 196 Elf32_Phdr *phdr; 197 int i; 198 199 /* only supports phdr that fits in one page */ 200 if (ehdr->e_phnum > 201 (PAGE_SIZE - sizeof(Elf32_Ehdr)) / sizeof(Elf32_Phdr)) 202 return -EINVAL; 203 204 phdr = (Elf32_Phdr *)(page_addr + sizeof(Elf32_Ehdr)); 205 206 for (i = 0; i < ehdr->e_phnum; ++i) { 207 if (phdr[i].p_type == PT_NOTE && 208 !stack_map_parse_build_id(page_addr, build_id, 209 page_addr + phdr[i].p_offset, 210 phdr[i].p_filesz)) 211 return 0; 212 } 213 return -EINVAL; 214 } 215 216 /* Parse build ID from 64-bit ELF */ 217 static int stack_map_get_build_id_64(void *page_addr, 218 unsigned char *build_id) 219 { 220 Elf64_Ehdr *ehdr = (Elf64_Ehdr *)page_addr; 221 Elf64_Phdr *phdr; 222 int i; 223 224 /* only supports phdr that fits in one page */ 225 if (ehdr->e_phnum > 226 (PAGE_SIZE - sizeof(Elf64_Ehdr)) / sizeof(Elf64_Phdr)) 227 return -EINVAL; 228 229 phdr = (Elf64_Phdr *)(page_addr + sizeof(Elf64_Ehdr)); 230 231 for (i = 0; i < ehdr->e_phnum; ++i) { 232 if (phdr[i].p_type == PT_NOTE && 233 !stack_map_parse_build_id(page_addr, build_id, 234 page_addr + phdr[i].p_offset, 235 phdr[i].p_filesz)) 236 return 0; 237 } 238 return -EINVAL; 239 } 240 241 /* Parse build ID of ELF file mapped to vma */ 242 static int stack_map_get_build_id(struct vm_area_struct *vma, 243 unsigned char *build_id) 244 { 245 Elf32_Ehdr *ehdr; 246 struct page *page; 247 void *page_addr; 248 int ret; 249 250 /* only works for page backed storage */ 251 if (!vma->vm_file) 252 return -EINVAL; 253 254 page = find_get_page(vma->vm_file->f_mapping, 0); 255 if (!page) 256 return -EFAULT; /* page not mapped */ 257 258 ret = -EINVAL; 259 page_addr = kmap_atomic(page); 260 ehdr = (Elf32_Ehdr *)page_addr; 261 262 /* compare magic x7f "ELF" */ 263 if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG) != 0) 264 goto out; 265 266 /* only support executable file and shared object file */ 267 if (ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) 268 goto out; 269 270 if (ehdr->e_ident[EI_CLASS] == ELFCLASS32) 271 ret = stack_map_get_build_id_32(page_addr, build_id); 272 else if (ehdr->e_ident[EI_CLASS] == ELFCLASS64) 273 ret = stack_map_get_build_id_64(page_addr, build_id); 274 out: 275 kunmap_atomic(page_addr); 276 put_page(page); 277 return ret; 278 } 279 280 static void stack_map_get_build_id_offset(struct bpf_stack_build_id *id_offs, 281 u64 *ips, u32 trace_nr, bool user) 282 { 283 int i; 284 struct vm_area_struct *vma; 285 bool irq_work_busy = false; 286 struct stack_map_irq_work *work = NULL; 287 288 if (irqs_disabled()) { 289 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 290 work = this_cpu_ptr(&up_read_work); 291 if (irq_work_is_busy(&work->irq_work)) { 292 /* cannot queue more up_read, fallback */ 293 irq_work_busy = true; 294 } 295 } else { 296 /* 297 * PREEMPT_RT does not allow to trylock mmap sem in 298 * interrupt disabled context. Force the fallback code. 299 */ 300 irq_work_busy = true; 301 } 302 } 303 304 /* 305 * We cannot do up_read() when the irq is disabled, because of 306 * risk to deadlock with rq_lock. To do build_id lookup when the 307 * irqs are disabled, we need to run up_read() in irq_work. We use 308 * a percpu variable to do the irq_work. If the irq_work is 309 * already used by another lookup, we fall back to report ips. 310 * 311 * Same fallback is used for kernel stack (!user) on a stackmap 312 * with build_id. 313 */ 314 if (!user || !current || !current->mm || irq_work_busy || 315 !mmap_read_trylock_non_owner(current->mm)) { 316 /* cannot access current->mm, fall back to ips */ 317 for (i = 0; i < trace_nr; i++) { 318 id_offs[i].status = BPF_STACK_BUILD_ID_IP; 319 id_offs[i].ip = ips[i]; 320 memset(id_offs[i].build_id, 0, BPF_BUILD_ID_SIZE); 321 } 322 return; 323 } 324 325 for (i = 0; i < trace_nr; i++) { 326 vma = find_vma(current->mm, ips[i]); 327 if (!vma || stack_map_get_build_id(vma, id_offs[i].build_id)) { 328 /* per entry fall back to ips */ 329 id_offs[i].status = BPF_STACK_BUILD_ID_IP; 330 id_offs[i].ip = ips[i]; 331 memset(id_offs[i].build_id, 0, BPF_BUILD_ID_SIZE); 332 continue; 333 } 334 id_offs[i].offset = (vma->vm_pgoff << PAGE_SHIFT) + ips[i] 335 - vma->vm_start; 336 id_offs[i].status = BPF_STACK_BUILD_ID_VALID; 337 } 338 339 if (!work) { 340 mmap_read_unlock_non_owner(current->mm); 341 } else { 342 work->mm = current->mm; 343 irq_work_queue(&work->irq_work); 344 } 345 } 346 347 static struct perf_callchain_entry * 348 get_callchain_entry_for_task(struct task_struct *task, u32 init_nr) 349 { 350 #ifdef CONFIG_STACKTRACE 351 struct perf_callchain_entry *entry; 352 int rctx; 353 354 entry = get_callchain_entry(&rctx); 355 356 if (!entry) 357 return NULL; 358 359 entry->nr = init_nr + 360 stack_trace_save_tsk(task, (unsigned long *)(entry->ip + init_nr), 361 sysctl_perf_event_max_stack - init_nr, 0); 362 363 /* stack_trace_save_tsk() works on unsigned long array, while 364 * perf_callchain_entry uses u64 array. For 32-bit systems, it is 365 * necessary to fix this mismatch. 366 */ 367 if (__BITS_PER_LONG != 64) { 368 unsigned long *from = (unsigned long *) entry->ip; 369 u64 *to = entry->ip; 370 int i; 371 372 /* copy data from the end to avoid using extra buffer */ 373 for (i = entry->nr - 1; i >= (int)init_nr; i--) 374 to[i] = (u64)(from[i]); 375 } 376 377 put_callchain_entry(rctx); 378 379 return entry; 380 #else /* CONFIG_STACKTRACE */ 381 return NULL; 382 #endif 383 } 384 385 static long __bpf_get_stackid(struct bpf_map *map, 386 struct perf_callchain_entry *trace, u64 flags) 387 { 388 struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map); 389 struct stack_map_bucket *bucket, *new_bucket, *old_bucket; 390 u32 max_depth = map->value_size / stack_map_data_size(map); 391 /* stack_map_alloc() checks that max_depth <= sysctl_perf_event_max_stack */ 392 u32 init_nr = sysctl_perf_event_max_stack - max_depth; 393 u32 skip = flags & BPF_F_SKIP_FIELD_MASK; 394 u32 hash, id, trace_nr, trace_len; 395 bool user = flags & BPF_F_USER_STACK; 396 u64 *ips; 397 bool hash_matches; 398 399 /* get_perf_callchain() guarantees that trace->nr >= init_nr 400 * and trace-nr <= sysctl_perf_event_max_stack, so trace_nr <= max_depth 401 */ 402 trace_nr = trace->nr - init_nr; 403 404 if (trace_nr <= skip) 405 /* skipping more than usable stack trace */ 406 return -EFAULT; 407 408 trace_nr -= skip; 409 trace_len = trace_nr * sizeof(u64); 410 ips = trace->ip + skip + init_nr; 411 hash = jhash2((u32 *)ips, trace_len / sizeof(u32), 0); 412 id = hash & (smap->n_buckets - 1); 413 bucket = READ_ONCE(smap->buckets[id]); 414 415 hash_matches = bucket && bucket->hash == hash; 416 /* fast cmp */ 417 if (hash_matches && flags & BPF_F_FAST_STACK_CMP) 418 return id; 419 420 if (stack_map_use_build_id(map)) { 421 /* for build_id+offset, pop a bucket before slow cmp */ 422 new_bucket = (struct stack_map_bucket *) 423 pcpu_freelist_pop(&smap->freelist); 424 if (unlikely(!new_bucket)) 425 return -ENOMEM; 426 new_bucket->nr = trace_nr; 427 stack_map_get_build_id_offset( 428 (struct bpf_stack_build_id *)new_bucket->data, 429 ips, trace_nr, user); 430 trace_len = trace_nr * sizeof(struct bpf_stack_build_id); 431 if (hash_matches && bucket->nr == trace_nr && 432 memcmp(bucket->data, new_bucket->data, trace_len) == 0) { 433 pcpu_freelist_push(&smap->freelist, &new_bucket->fnode); 434 return id; 435 } 436 if (bucket && !(flags & BPF_F_REUSE_STACKID)) { 437 pcpu_freelist_push(&smap->freelist, &new_bucket->fnode); 438 return -EEXIST; 439 } 440 } else { 441 if (hash_matches && bucket->nr == trace_nr && 442 memcmp(bucket->data, ips, trace_len) == 0) 443 return id; 444 if (bucket && !(flags & BPF_F_REUSE_STACKID)) 445 return -EEXIST; 446 447 new_bucket = (struct stack_map_bucket *) 448 pcpu_freelist_pop(&smap->freelist); 449 if (unlikely(!new_bucket)) 450 return -ENOMEM; 451 memcpy(new_bucket->data, ips, trace_len); 452 } 453 454 new_bucket->hash = hash; 455 new_bucket->nr = trace_nr; 456 457 old_bucket = xchg(&smap->buckets[id], new_bucket); 458 if (old_bucket) 459 pcpu_freelist_push(&smap->freelist, &old_bucket->fnode); 460 return id; 461 } 462 463 BPF_CALL_3(bpf_get_stackid, struct pt_regs *, regs, struct bpf_map *, map, 464 u64, flags) 465 { 466 u32 max_depth = map->value_size / stack_map_data_size(map); 467 /* stack_map_alloc() checks that max_depth <= sysctl_perf_event_max_stack */ 468 u32 init_nr = sysctl_perf_event_max_stack - max_depth; 469 bool user = flags & BPF_F_USER_STACK; 470 struct perf_callchain_entry *trace; 471 bool kernel = !user; 472 473 if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK | 474 BPF_F_FAST_STACK_CMP | BPF_F_REUSE_STACKID))) 475 return -EINVAL; 476 477 trace = get_perf_callchain(regs, init_nr, kernel, user, 478 sysctl_perf_event_max_stack, false, false); 479 480 if (unlikely(!trace)) 481 /* couldn't fetch the stack trace */ 482 return -EFAULT; 483 484 return __bpf_get_stackid(map, trace, flags); 485 } 486 487 const struct bpf_func_proto bpf_get_stackid_proto = { 488 .func = bpf_get_stackid, 489 .gpl_only = true, 490 .ret_type = RET_INTEGER, 491 .arg1_type = ARG_PTR_TO_CTX, 492 .arg2_type = ARG_CONST_MAP_PTR, 493 .arg3_type = ARG_ANYTHING, 494 }; 495 496 static __u64 count_kernel_ip(struct perf_callchain_entry *trace) 497 { 498 __u64 nr_kernel = 0; 499 500 while (nr_kernel < trace->nr) { 501 if (trace->ip[nr_kernel] == PERF_CONTEXT_USER) 502 break; 503 nr_kernel++; 504 } 505 return nr_kernel; 506 } 507 508 BPF_CALL_3(bpf_get_stackid_pe, struct bpf_perf_event_data_kern *, ctx, 509 struct bpf_map *, map, u64, flags) 510 { 511 struct perf_event *event = ctx->event; 512 struct perf_callchain_entry *trace; 513 bool kernel, user; 514 __u64 nr_kernel; 515 int ret; 516 517 /* perf_sample_data doesn't have callchain, use bpf_get_stackid */ 518 if (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 519 return bpf_get_stackid((unsigned long)(ctx->regs), 520 (unsigned long) map, flags, 0, 0); 521 522 if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK | 523 BPF_F_FAST_STACK_CMP | BPF_F_REUSE_STACKID))) 524 return -EINVAL; 525 526 user = flags & BPF_F_USER_STACK; 527 kernel = !user; 528 529 trace = ctx->data->callchain; 530 if (unlikely(!trace)) 531 return -EFAULT; 532 533 nr_kernel = count_kernel_ip(trace); 534 535 if (kernel) { 536 __u64 nr = trace->nr; 537 538 trace->nr = nr_kernel; 539 ret = __bpf_get_stackid(map, trace, flags); 540 541 /* restore nr */ 542 trace->nr = nr; 543 } else { /* user */ 544 u64 skip = flags & BPF_F_SKIP_FIELD_MASK; 545 546 skip += nr_kernel; 547 if (skip > BPF_F_SKIP_FIELD_MASK) 548 return -EFAULT; 549 550 flags = (flags & ~BPF_F_SKIP_FIELD_MASK) | skip; 551 ret = __bpf_get_stackid(map, trace, flags); 552 } 553 return ret; 554 } 555 556 const struct bpf_func_proto bpf_get_stackid_proto_pe = { 557 .func = bpf_get_stackid_pe, 558 .gpl_only = false, 559 .ret_type = RET_INTEGER, 560 .arg1_type = ARG_PTR_TO_CTX, 561 .arg2_type = ARG_CONST_MAP_PTR, 562 .arg3_type = ARG_ANYTHING, 563 }; 564 565 static long __bpf_get_stack(struct pt_regs *regs, struct task_struct *task, 566 struct perf_callchain_entry *trace_in, 567 void *buf, u32 size, u64 flags) 568 { 569 u32 init_nr, trace_nr, copy_len, elem_size, num_elem; 570 bool user_build_id = flags & BPF_F_USER_BUILD_ID; 571 u32 skip = flags & BPF_F_SKIP_FIELD_MASK; 572 bool user = flags & BPF_F_USER_STACK; 573 struct perf_callchain_entry *trace; 574 bool kernel = !user; 575 int err = -EINVAL; 576 u64 *ips; 577 578 if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK | 579 BPF_F_USER_BUILD_ID))) 580 goto clear; 581 if (kernel && user_build_id) 582 goto clear; 583 584 elem_size = (user && user_build_id) ? sizeof(struct bpf_stack_build_id) 585 : sizeof(u64); 586 if (unlikely(size % elem_size)) 587 goto clear; 588 589 /* cannot get valid user stack for task without user_mode regs */ 590 if (task && user && !user_mode(regs)) 591 goto err_fault; 592 593 num_elem = size / elem_size; 594 if (sysctl_perf_event_max_stack < num_elem) 595 init_nr = 0; 596 else 597 init_nr = sysctl_perf_event_max_stack - num_elem; 598 599 if (trace_in) 600 trace = trace_in; 601 else if (kernel && task) 602 trace = get_callchain_entry_for_task(task, init_nr); 603 else 604 trace = get_perf_callchain(regs, init_nr, kernel, user, 605 sysctl_perf_event_max_stack, 606 false, false); 607 if (unlikely(!trace)) 608 goto err_fault; 609 610 trace_nr = trace->nr - init_nr; 611 if (trace_nr < skip) 612 goto err_fault; 613 614 trace_nr -= skip; 615 trace_nr = (trace_nr <= num_elem) ? trace_nr : num_elem; 616 copy_len = trace_nr * elem_size; 617 ips = trace->ip + skip + init_nr; 618 if (user && user_build_id) 619 stack_map_get_build_id_offset(buf, ips, trace_nr, user); 620 else 621 memcpy(buf, ips, copy_len); 622 623 if (size > copy_len) 624 memset(buf + copy_len, 0, size - copy_len); 625 return copy_len; 626 627 err_fault: 628 err = -EFAULT; 629 clear: 630 memset(buf, 0, size); 631 return err; 632 } 633 634 BPF_CALL_4(bpf_get_stack, struct pt_regs *, regs, void *, buf, u32, size, 635 u64, flags) 636 { 637 return __bpf_get_stack(regs, NULL, NULL, buf, size, flags); 638 } 639 640 const struct bpf_func_proto bpf_get_stack_proto = { 641 .func = bpf_get_stack, 642 .gpl_only = true, 643 .ret_type = RET_INTEGER, 644 .arg1_type = ARG_PTR_TO_CTX, 645 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 646 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 647 .arg4_type = ARG_ANYTHING, 648 }; 649 650 BPF_CALL_4(bpf_get_task_stack, struct task_struct *, task, void *, buf, 651 u32, size, u64, flags) 652 { 653 struct pt_regs *regs = task_pt_regs(task); 654 655 return __bpf_get_stack(regs, task, NULL, buf, size, flags); 656 } 657 658 BTF_ID_LIST_SINGLE(bpf_get_task_stack_btf_ids, struct, task_struct) 659 660 const struct bpf_func_proto bpf_get_task_stack_proto = { 661 .func = bpf_get_task_stack, 662 .gpl_only = false, 663 .ret_type = RET_INTEGER, 664 .arg1_type = ARG_PTR_TO_BTF_ID, 665 .arg1_btf_id = &bpf_get_task_stack_btf_ids[0], 666 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 667 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 668 .arg4_type = ARG_ANYTHING, 669 }; 670 671 BPF_CALL_4(bpf_get_stack_pe, struct bpf_perf_event_data_kern *, ctx, 672 void *, buf, u32, size, u64, flags) 673 { 674 struct pt_regs *regs = (struct pt_regs *)(ctx->regs); 675 struct perf_event *event = ctx->event; 676 struct perf_callchain_entry *trace; 677 bool kernel, user; 678 int err = -EINVAL; 679 __u64 nr_kernel; 680 681 if (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 682 return __bpf_get_stack(regs, NULL, NULL, buf, size, flags); 683 684 if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK | 685 BPF_F_USER_BUILD_ID))) 686 goto clear; 687 688 user = flags & BPF_F_USER_STACK; 689 kernel = !user; 690 691 err = -EFAULT; 692 trace = ctx->data->callchain; 693 if (unlikely(!trace)) 694 goto clear; 695 696 nr_kernel = count_kernel_ip(trace); 697 698 if (kernel) { 699 __u64 nr = trace->nr; 700 701 trace->nr = nr_kernel; 702 err = __bpf_get_stack(regs, NULL, trace, buf, size, flags); 703 704 /* restore nr */ 705 trace->nr = nr; 706 } else { /* user */ 707 u64 skip = flags & BPF_F_SKIP_FIELD_MASK; 708 709 skip += nr_kernel; 710 if (skip > BPF_F_SKIP_FIELD_MASK) 711 goto clear; 712 713 flags = (flags & ~BPF_F_SKIP_FIELD_MASK) | skip; 714 err = __bpf_get_stack(regs, NULL, trace, buf, size, flags); 715 } 716 return err; 717 718 clear: 719 memset(buf, 0, size); 720 return err; 721 722 } 723 724 const struct bpf_func_proto bpf_get_stack_proto_pe = { 725 .func = bpf_get_stack_pe, 726 .gpl_only = true, 727 .ret_type = RET_INTEGER, 728 .arg1_type = ARG_PTR_TO_CTX, 729 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 730 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 731 .arg4_type = ARG_ANYTHING, 732 }; 733 734 /* Called from eBPF program */ 735 static void *stack_map_lookup_elem(struct bpf_map *map, void *key) 736 { 737 return ERR_PTR(-EOPNOTSUPP); 738 } 739 740 /* Called from syscall */ 741 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value) 742 { 743 struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map); 744 struct stack_map_bucket *bucket, *old_bucket; 745 u32 id = *(u32 *)key, trace_len; 746 747 if (unlikely(id >= smap->n_buckets)) 748 return -ENOENT; 749 750 bucket = xchg(&smap->buckets[id], NULL); 751 if (!bucket) 752 return -ENOENT; 753 754 trace_len = bucket->nr * stack_map_data_size(map); 755 memcpy(value, bucket->data, trace_len); 756 memset(value + trace_len, 0, map->value_size - trace_len); 757 758 old_bucket = xchg(&smap->buckets[id], bucket); 759 if (old_bucket) 760 pcpu_freelist_push(&smap->freelist, &old_bucket->fnode); 761 return 0; 762 } 763 764 static int stack_map_get_next_key(struct bpf_map *map, void *key, 765 void *next_key) 766 { 767 struct bpf_stack_map *smap = container_of(map, 768 struct bpf_stack_map, map); 769 u32 id; 770 771 WARN_ON_ONCE(!rcu_read_lock_held()); 772 773 if (!key) { 774 id = 0; 775 } else { 776 id = *(u32 *)key; 777 if (id >= smap->n_buckets || !smap->buckets[id]) 778 id = 0; 779 else 780 id++; 781 } 782 783 while (id < smap->n_buckets && !smap->buckets[id]) 784 id++; 785 786 if (id >= smap->n_buckets) 787 return -ENOENT; 788 789 *(u32 *)next_key = id; 790 return 0; 791 } 792 793 static int stack_map_update_elem(struct bpf_map *map, void *key, void *value, 794 u64 map_flags) 795 { 796 return -EINVAL; 797 } 798 799 /* Called from syscall or from eBPF program */ 800 static int stack_map_delete_elem(struct bpf_map *map, void *key) 801 { 802 struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map); 803 struct stack_map_bucket *old_bucket; 804 u32 id = *(u32 *)key; 805 806 if (unlikely(id >= smap->n_buckets)) 807 return -E2BIG; 808 809 old_bucket = xchg(&smap->buckets[id], NULL); 810 if (old_bucket) { 811 pcpu_freelist_push(&smap->freelist, &old_bucket->fnode); 812 return 0; 813 } else { 814 return -ENOENT; 815 } 816 } 817 818 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 819 static void stack_map_free(struct bpf_map *map) 820 { 821 struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map); 822 823 bpf_map_area_free(smap->elems); 824 pcpu_freelist_destroy(&smap->freelist); 825 bpf_map_area_free(smap); 826 put_callchain_buffers(); 827 } 828 829 static int stack_trace_map_btf_id; 830 const struct bpf_map_ops stack_trace_map_ops = { 831 .map_meta_equal = bpf_map_meta_equal, 832 .map_alloc = stack_map_alloc, 833 .map_free = stack_map_free, 834 .map_get_next_key = stack_map_get_next_key, 835 .map_lookup_elem = stack_map_lookup_elem, 836 .map_update_elem = stack_map_update_elem, 837 .map_delete_elem = stack_map_delete_elem, 838 .map_check_btf = map_check_no_btf, 839 .map_btf_name = "bpf_stack_map", 840 .map_btf_id = &stack_trace_map_btf_id, 841 }; 842 843 static int __init stack_map_init(void) 844 { 845 int cpu; 846 struct stack_map_irq_work *work; 847 848 for_each_possible_cpu(cpu) { 849 work = per_cpu_ptr(&up_read_work, cpu); 850 init_irq_work(&work->irq_work, do_up_read); 851 } 852 return 0; 853 } 854 subsys_initcall(stack_map_init); 855