xref: /linux/kernel/bpf/ringbuf.c (revision f85f5ae45ad945270a8884261de8249431e8b5a6)
1 #include <linux/bpf.h>
2 #include <linux/btf.h>
3 #include <linux/err.h>
4 #include <linux/irq_work.h>
5 #include <linux/slab.h>
6 #include <linux/filter.h>
7 #include <linux/mm.h>
8 #include <linux/vmalloc.h>
9 #include <linux/wait.h>
10 #include <linux/poll.h>
11 #include <linux/kmemleak.h>
12 #include <uapi/linux/btf.h>
13 #include <linux/btf_ids.h>
14 
15 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
16 
17 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
18 #define RINGBUF_PGOFF \
19 	(offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
20 /* consumer page and producer page */
21 #define RINGBUF_POS_PAGES 2
22 #define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES)
23 
24 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
25 
26 struct bpf_ringbuf {
27 	wait_queue_head_t waitq;
28 	struct irq_work work;
29 	u64 mask;
30 	struct page **pages;
31 	int nr_pages;
32 	spinlock_t spinlock ____cacheline_aligned_in_smp;
33 	/* For user-space producer ring buffers, an atomic_t busy bit is used
34 	 * to synchronize access to the ring buffers in the kernel, rather than
35 	 * the spinlock that is used for kernel-producer ring buffers. This is
36 	 * done because the ring buffer must hold a lock across a BPF program's
37 	 * callback:
38 	 *
39 	 *    __bpf_user_ringbuf_peek() // lock acquired
40 	 * -> program callback_fn()
41 	 * -> __bpf_user_ringbuf_sample_release() // lock released
42 	 *
43 	 * It is unsafe and incorrect to hold an IRQ spinlock across what could
44 	 * be a long execution window, so we instead simply disallow concurrent
45 	 * access to the ring buffer by kernel consumers, and return -EBUSY from
46 	 * __bpf_user_ringbuf_peek() if the busy bit is held by another task.
47 	 */
48 	atomic_t busy ____cacheline_aligned_in_smp;
49 	/* Consumer and producer counters are put into separate pages to
50 	 * allow each position to be mapped with different permissions.
51 	 * This prevents a user-space application from modifying the
52 	 * position and ruining in-kernel tracking. The permissions of the
53 	 * pages depend on who is producing samples: user-space or the
54 	 * kernel.
55 	 *
56 	 * Kernel-producer
57 	 * ---------------
58 	 * The producer position and data pages are mapped as r/o in
59 	 * userspace. For this approach, bits in the header of samples are
60 	 * used to signal to user-space, and to other producers, whether a
61 	 * sample is currently being written.
62 	 *
63 	 * User-space producer
64 	 * -------------------
65 	 * Only the page containing the consumer position is mapped r/o in
66 	 * user-space. User-space producers also use bits of the header to
67 	 * communicate to the kernel, but the kernel must carefully check and
68 	 * validate each sample to ensure that they're correctly formatted, and
69 	 * fully contained within the ring buffer.
70 	 */
71 	unsigned long consumer_pos __aligned(PAGE_SIZE);
72 	unsigned long producer_pos __aligned(PAGE_SIZE);
73 	char data[] __aligned(PAGE_SIZE);
74 };
75 
76 struct bpf_ringbuf_map {
77 	struct bpf_map map;
78 	struct bpf_ringbuf *rb;
79 };
80 
81 /* 8-byte ring buffer record header structure */
82 struct bpf_ringbuf_hdr {
83 	u32 len;
84 	u32 pg_off;
85 };
86 
87 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
88 {
89 	const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
90 			    __GFP_NOWARN | __GFP_ZERO;
91 	int nr_meta_pages = RINGBUF_NR_META_PAGES;
92 	int nr_data_pages = data_sz >> PAGE_SHIFT;
93 	int nr_pages = nr_meta_pages + nr_data_pages;
94 	struct page **pages, *page;
95 	struct bpf_ringbuf *rb;
96 	size_t array_size;
97 	int i;
98 
99 	/* Each data page is mapped twice to allow "virtual"
100 	 * continuous read of samples wrapping around the end of ring
101 	 * buffer area:
102 	 * ------------------------------------------------------
103 	 * | meta pages |  real data pages  |  same data pages  |
104 	 * ------------------------------------------------------
105 	 * |            | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
106 	 * ------------------------------------------------------
107 	 * |            | TA             DA | TA             DA |
108 	 * ------------------------------------------------------
109 	 *                               ^^^^^^^
110 	 *                                  |
111 	 * Here, no need to worry about special handling of wrapped-around
112 	 * data due to double-mapped data pages. This works both in kernel and
113 	 * when mmap()'ed in user-space, simplifying both kernel and
114 	 * user-space implementations significantly.
115 	 */
116 	array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
117 	pages = bpf_map_area_alloc(array_size, numa_node);
118 	if (!pages)
119 		return NULL;
120 
121 	for (i = 0; i < nr_pages; i++) {
122 		page = alloc_pages_node(numa_node, flags, 0);
123 		if (!page) {
124 			nr_pages = i;
125 			goto err_free_pages;
126 		}
127 		pages[i] = page;
128 		if (i >= nr_meta_pages)
129 			pages[nr_data_pages + i] = page;
130 	}
131 
132 	rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
133 		  VM_MAP | VM_USERMAP, PAGE_KERNEL);
134 	if (rb) {
135 		kmemleak_not_leak(pages);
136 		rb->pages = pages;
137 		rb->nr_pages = nr_pages;
138 		return rb;
139 	}
140 
141 err_free_pages:
142 	for (i = 0; i < nr_pages; i++)
143 		__free_page(pages[i]);
144 	bpf_map_area_free(pages);
145 	return NULL;
146 }
147 
148 static void bpf_ringbuf_notify(struct irq_work *work)
149 {
150 	struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
151 
152 	wake_up_all(&rb->waitq);
153 }
154 
155 /* Maximum size of ring buffer area is limited by 32-bit page offset within
156  * record header, counted in pages. Reserve 8 bits for extensibility, and
157  * take into account few extra pages for consumer/producer pages and
158  * non-mmap()'able parts, the current maximum size would be:
159  *
160  *     (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
161  *
162  * This gives 64GB limit, which seems plenty for single ring buffer. Now
163  * considering that the maximum value of data_sz is (4GB - 1), there
164  * will be no overflow, so just note the size limit in the comments.
165  */
166 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
167 {
168 	struct bpf_ringbuf *rb;
169 
170 	rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
171 	if (!rb)
172 		return NULL;
173 
174 	spin_lock_init(&rb->spinlock);
175 	atomic_set(&rb->busy, 0);
176 	init_waitqueue_head(&rb->waitq);
177 	init_irq_work(&rb->work, bpf_ringbuf_notify);
178 
179 	rb->mask = data_sz - 1;
180 	rb->consumer_pos = 0;
181 	rb->producer_pos = 0;
182 
183 	return rb;
184 }
185 
186 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
187 {
188 	struct bpf_ringbuf_map *rb_map;
189 
190 	if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
191 		return ERR_PTR(-EINVAL);
192 
193 	if (attr->key_size || attr->value_size ||
194 	    !is_power_of_2(attr->max_entries) ||
195 	    !PAGE_ALIGNED(attr->max_entries))
196 		return ERR_PTR(-EINVAL);
197 
198 	rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE);
199 	if (!rb_map)
200 		return ERR_PTR(-ENOMEM);
201 
202 	bpf_map_init_from_attr(&rb_map->map, attr);
203 
204 	rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
205 	if (!rb_map->rb) {
206 		bpf_map_area_free(rb_map);
207 		return ERR_PTR(-ENOMEM);
208 	}
209 
210 	return &rb_map->map;
211 }
212 
213 static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
214 {
215 	/* copy pages pointer and nr_pages to local variable, as we are going
216 	 * to unmap rb itself with vunmap() below
217 	 */
218 	struct page **pages = rb->pages;
219 	int i, nr_pages = rb->nr_pages;
220 
221 	vunmap(rb);
222 	for (i = 0; i < nr_pages; i++)
223 		__free_page(pages[i]);
224 	bpf_map_area_free(pages);
225 }
226 
227 static void ringbuf_map_free(struct bpf_map *map)
228 {
229 	struct bpf_ringbuf_map *rb_map;
230 
231 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
232 	bpf_ringbuf_free(rb_map->rb);
233 	bpf_map_area_free(rb_map);
234 }
235 
236 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
237 {
238 	return ERR_PTR(-ENOTSUPP);
239 }
240 
241 static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
242 				    u64 flags)
243 {
244 	return -ENOTSUPP;
245 }
246 
247 static long ringbuf_map_delete_elem(struct bpf_map *map, void *key)
248 {
249 	return -ENOTSUPP;
250 }
251 
252 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
253 				    void *next_key)
254 {
255 	return -ENOTSUPP;
256 }
257 
258 static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma)
259 {
260 	struct bpf_ringbuf_map *rb_map;
261 
262 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
263 
264 	if (vma->vm_flags & VM_WRITE) {
265 		/* allow writable mapping for the consumer_pos only */
266 		if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
267 			return -EPERM;
268 	} else {
269 		vm_flags_clear(vma, VM_MAYWRITE);
270 	}
271 	/* remap_vmalloc_range() checks size and offset constraints */
272 	return remap_vmalloc_range(vma, rb_map->rb,
273 				   vma->vm_pgoff + RINGBUF_PGOFF);
274 }
275 
276 static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma)
277 {
278 	struct bpf_ringbuf_map *rb_map;
279 
280 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
281 
282 	if (vma->vm_flags & VM_WRITE) {
283 		if (vma->vm_pgoff == 0)
284 			/* Disallow writable mappings to the consumer pointer,
285 			 * and allow writable mappings to both the producer
286 			 * position, and the ring buffer data itself.
287 			 */
288 			return -EPERM;
289 	} else {
290 		vm_flags_clear(vma, VM_MAYWRITE);
291 	}
292 	/* remap_vmalloc_range() checks size and offset constraints */
293 	return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF);
294 }
295 
296 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
297 {
298 	unsigned long cons_pos, prod_pos;
299 
300 	cons_pos = smp_load_acquire(&rb->consumer_pos);
301 	prod_pos = smp_load_acquire(&rb->producer_pos);
302 	return prod_pos - cons_pos;
303 }
304 
305 static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb)
306 {
307 	return rb->mask + 1;
308 }
309 
310 static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp,
311 				      struct poll_table_struct *pts)
312 {
313 	struct bpf_ringbuf_map *rb_map;
314 
315 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
316 	poll_wait(filp, &rb_map->rb->waitq, pts);
317 
318 	if (ringbuf_avail_data_sz(rb_map->rb))
319 		return EPOLLIN | EPOLLRDNORM;
320 	return 0;
321 }
322 
323 static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp,
324 				      struct poll_table_struct *pts)
325 {
326 	struct bpf_ringbuf_map *rb_map;
327 
328 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
329 	poll_wait(filp, &rb_map->rb->waitq, pts);
330 
331 	if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb))
332 		return EPOLLOUT | EPOLLWRNORM;
333 	return 0;
334 }
335 
336 static u64 ringbuf_map_mem_usage(const struct bpf_map *map)
337 {
338 	struct bpf_ringbuf *rb;
339 	int nr_data_pages;
340 	int nr_meta_pages;
341 	u64 usage = sizeof(struct bpf_ringbuf_map);
342 
343 	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
344 	usage += (u64)rb->nr_pages << PAGE_SHIFT;
345 	nr_meta_pages = RINGBUF_NR_META_PAGES;
346 	nr_data_pages = map->max_entries >> PAGE_SHIFT;
347 	usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *);
348 	return usage;
349 }
350 
351 BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
352 const struct bpf_map_ops ringbuf_map_ops = {
353 	.map_meta_equal = bpf_map_meta_equal,
354 	.map_alloc = ringbuf_map_alloc,
355 	.map_free = ringbuf_map_free,
356 	.map_mmap = ringbuf_map_mmap_kern,
357 	.map_poll = ringbuf_map_poll_kern,
358 	.map_lookup_elem = ringbuf_map_lookup_elem,
359 	.map_update_elem = ringbuf_map_update_elem,
360 	.map_delete_elem = ringbuf_map_delete_elem,
361 	.map_get_next_key = ringbuf_map_get_next_key,
362 	.map_mem_usage = ringbuf_map_mem_usage,
363 	.map_btf_id = &ringbuf_map_btf_ids[0],
364 };
365 
366 BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
367 const struct bpf_map_ops user_ringbuf_map_ops = {
368 	.map_meta_equal = bpf_map_meta_equal,
369 	.map_alloc = ringbuf_map_alloc,
370 	.map_free = ringbuf_map_free,
371 	.map_mmap = ringbuf_map_mmap_user,
372 	.map_poll = ringbuf_map_poll_user,
373 	.map_lookup_elem = ringbuf_map_lookup_elem,
374 	.map_update_elem = ringbuf_map_update_elem,
375 	.map_delete_elem = ringbuf_map_delete_elem,
376 	.map_get_next_key = ringbuf_map_get_next_key,
377 	.map_mem_usage = ringbuf_map_mem_usage,
378 	.map_btf_id = &user_ringbuf_map_btf_ids[0],
379 };
380 
381 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
382  * calculate offset from record metadata to ring buffer in pages, rounded
383  * down. This page offset is stored as part of record metadata and allows to
384  * restore struct bpf_ringbuf * from record pointer. This page offset is
385  * stored at offset 4 of record metadata header.
386  */
387 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
388 				     struct bpf_ringbuf_hdr *hdr)
389 {
390 	return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
391 }
392 
393 /* Given pointer to ring buffer record header, restore pointer to struct
394  * bpf_ringbuf itself by using page offset stored at offset 4
395  */
396 static struct bpf_ringbuf *
397 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
398 {
399 	unsigned long addr = (unsigned long)(void *)hdr;
400 	unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
401 
402 	return (void*)((addr & PAGE_MASK) - off);
403 }
404 
405 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
406 {
407 	unsigned long cons_pos, prod_pos, new_prod_pos, flags;
408 	u32 len, pg_off;
409 	struct bpf_ringbuf_hdr *hdr;
410 
411 	if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
412 		return NULL;
413 
414 	len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
415 	if (len > ringbuf_total_data_sz(rb))
416 		return NULL;
417 
418 	cons_pos = smp_load_acquire(&rb->consumer_pos);
419 
420 	if (in_nmi()) {
421 		if (!spin_trylock_irqsave(&rb->spinlock, flags))
422 			return NULL;
423 	} else {
424 		spin_lock_irqsave(&rb->spinlock, flags);
425 	}
426 
427 	prod_pos = rb->producer_pos;
428 	new_prod_pos = prod_pos + len;
429 
430 	/* check for out of ringbuf space by ensuring producer position
431 	 * doesn't advance more than (ringbuf_size - 1) ahead
432 	 */
433 	if (new_prod_pos - cons_pos > rb->mask) {
434 		spin_unlock_irqrestore(&rb->spinlock, flags);
435 		return NULL;
436 	}
437 
438 	hdr = (void *)rb->data + (prod_pos & rb->mask);
439 	pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
440 	hdr->len = size | BPF_RINGBUF_BUSY_BIT;
441 	hdr->pg_off = pg_off;
442 
443 	/* pairs with consumer's smp_load_acquire() */
444 	smp_store_release(&rb->producer_pos, new_prod_pos);
445 
446 	spin_unlock_irqrestore(&rb->spinlock, flags);
447 
448 	return (void *)hdr + BPF_RINGBUF_HDR_SZ;
449 }
450 
451 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
452 {
453 	struct bpf_ringbuf_map *rb_map;
454 
455 	if (unlikely(flags))
456 		return 0;
457 
458 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
459 	return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
460 }
461 
462 const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
463 	.func		= bpf_ringbuf_reserve,
464 	.ret_type	= RET_PTR_TO_RINGBUF_MEM_OR_NULL,
465 	.arg1_type	= ARG_CONST_MAP_PTR,
466 	.arg2_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
467 	.arg3_type	= ARG_ANYTHING,
468 };
469 
470 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
471 {
472 	unsigned long rec_pos, cons_pos;
473 	struct bpf_ringbuf_hdr *hdr;
474 	struct bpf_ringbuf *rb;
475 	u32 new_len;
476 
477 	hdr = sample - BPF_RINGBUF_HDR_SZ;
478 	rb = bpf_ringbuf_restore_from_rec(hdr);
479 	new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
480 	if (discard)
481 		new_len |= BPF_RINGBUF_DISCARD_BIT;
482 
483 	/* update record header with correct final size prefix */
484 	xchg(&hdr->len, new_len);
485 
486 	/* if consumer caught up and is waiting for our record, notify about
487 	 * new data availability
488 	 */
489 	rec_pos = (void *)hdr - (void *)rb->data;
490 	cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
491 
492 	if (flags & BPF_RB_FORCE_WAKEUP)
493 		irq_work_queue(&rb->work);
494 	else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
495 		irq_work_queue(&rb->work);
496 }
497 
498 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
499 {
500 	bpf_ringbuf_commit(sample, flags, false /* discard */);
501 	return 0;
502 }
503 
504 const struct bpf_func_proto bpf_ringbuf_submit_proto = {
505 	.func		= bpf_ringbuf_submit,
506 	.ret_type	= RET_VOID,
507 	.arg1_type	= ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
508 	.arg2_type	= ARG_ANYTHING,
509 };
510 
511 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
512 {
513 	bpf_ringbuf_commit(sample, flags, true /* discard */);
514 	return 0;
515 }
516 
517 const struct bpf_func_proto bpf_ringbuf_discard_proto = {
518 	.func		= bpf_ringbuf_discard,
519 	.ret_type	= RET_VOID,
520 	.arg1_type	= ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
521 	.arg2_type	= ARG_ANYTHING,
522 };
523 
524 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
525 	   u64, flags)
526 {
527 	struct bpf_ringbuf_map *rb_map;
528 	void *rec;
529 
530 	if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
531 		return -EINVAL;
532 
533 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
534 	rec = __bpf_ringbuf_reserve(rb_map->rb, size);
535 	if (!rec)
536 		return -EAGAIN;
537 
538 	memcpy(rec, data, size);
539 	bpf_ringbuf_commit(rec, flags, false /* discard */);
540 	return 0;
541 }
542 
543 const struct bpf_func_proto bpf_ringbuf_output_proto = {
544 	.func		= bpf_ringbuf_output,
545 	.ret_type	= RET_INTEGER,
546 	.arg1_type	= ARG_CONST_MAP_PTR,
547 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
548 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
549 	.arg4_type	= ARG_ANYTHING,
550 };
551 
552 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
553 {
554 	struct bpf_ringbuf *rb;
555 
556 	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
557 
558 	switch (flags) {
559 	case BPF_RB_AVAIL_DATA:
560 		return ringbuf_avail_data_sz(rb);
561 	case BPF_RB_RING_SIZE:
562 		return ringbuf_total_data_sz(rb);
563 	case BPF_RB_CONS_POS:
564 		return smp_load_acquire(&rb->consumer_pos);
565 	case BPF_RB_PROD_POS:
566 		return smp_load_acquire(&rb->producer_pos);
567 	default:
568 		return 0;
569 	}
570 }
571 
572 const struct bpf_func_proto bpf_ringbuf_query_proto = {
573 	.func		= bpf_ringbuf_query,
574 	.ret_type	= RET_INTEGER,
575 	.arg1_type	= ARG_CONST_MAP_PTR,
576 	.arg2_type	= ARG_ANYTHING,
577 };
578 
579 BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags,
580 	   struct bpf_dynptr_kern *, ptr)
581 {
582 	struct bpf_ringbuf_map *rb_map;
583 	void *sample;
584 	int err;
585 
586 	if (unlikely(flags)) {
587 		bpf_dynptr_set_null(ptr);
588 		return -EINVAL;
589 	}
590 
591 	err = bpf_dynptr_check_size(size);
592 	if (err) {
593 		bpf_dynptr_set_null(ptr);
594 		return err;
595 	}
596 
597 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
598 
599 	sample = __bpf_ringbuf_reserve(rb_map->rb, size);
600 	if (!sample) {
601 		bpf_dynptr_set_null(ptr);
602 		return -EINVAL;
603 	}
604 
605 	bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size);
606 
607 	return 0;
608 }
609 
610 const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = {
611 	.func		= bpf_ringbuf_reserve_dynptr,
612 	.ret_type	= RET_INTEGER,
613 	.arg1_type	= ARG_CONST_MAP_PTR,
614 	.arg2_type	= ARG_ANYTHING,
615 	.arg3_type	= ARG_ANYTHING,
616 	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT,
617 };
618 
619 BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
620 {
621 	if (!ptr->data)
622 		return 0;
623 
624 	bpf_ringbuf_commit(ptr->data, flags, false /* discard */);
625 
626 	bpf_dynptr_set_null(ptr);
627 
628 	return 0;
629 }
630 
631 const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = {
632 	.func		= bpf_ringbuf_submit_dynptr,
633 	.ret_type	= RET_VOID,
634 	.arg1_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
635 	.arg2_type	= ARG_ANYTHING,
636 };
637 
638 BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
639 {
640 	if (!ptr->data)
641 		return 0;
642 
643 	bpf_ringbuf_commit(ptr->data, flags, true /* discard */);
644 
645 	bpf_dynptr_set_null(ptr);
646 
647 	return 0;
648 }
649 
650 const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = {
651 	.func		= bpf_ringbuf_discard_dynptr,
652 	.ret_type	= RET_VOID,
653 	.arg1_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
654 	.arg2_type	= ARG_ANYTHING,
655 };
656 
657 static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size)
658 {
659 	int err;
660 	u32 hdr_len, sample_len, total_len, flags, *hdr;
661 	u64 cons_pos, prod_pos;
662 
663 	/* Synchronizes with smp_store_release() in user-space producer. */
664 	prod_pos = smp_load_acquire(&rb->producer_pos);
665 	if (prod_pos % 8)
666 		return -EINVAL;
667 
668 	/* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */
669 	cons_pos = smp_load_acquire(&rb->consumer_pos);
670 	if (cons_pos >= prod_pos)
671 		return -ENODATA;
672 
673 	hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask));
674 	/* Synchronizes with smp_store_release() in user-space producer. */
675 	hdr_len = smp_load_acquire(hdr);
676 	flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT);
677 	sample_len = hdr_len & ~flags;
678 	total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8);
679 
680 	/* The sample must fit within the region advertised by the producer position. */
681 	if (total_len > prod_pos - cons_pos)
682 		return -EINVAL;
683 
684 	/* The sample must fit within the data region of the ring buffer. */
685 	if (total_len > ringbuf_total_data_sz(rb))
686 		return -E2BIG;
687 
688 	/* The sample must fit into a struct bpf_dynptr. */
689 	err = bpf_dynptr_check_size(sample_len);
690 	if (err)
691 		return -E2BIG;
692 
693 	if (flags & BPF_RINGBUF_DISCARD_BIT) {
694 		/* If the discard bit is set, the sample should be skipped.
695 		 *
696 		 * Update the consumer pos, and return -EAGAIN so the caller
697 		 * knows to skip this sample and try to read the next one.
698 		 */
699 		smp_store_release(&rb->consumer_pos, cons_pos + total_len);
700 		return -EAGAIN;
701 	}
702 
703 	if (flags & BPF_RINGBUF_BUSY_BIT)
704 		return -ENODATA;
705 
706 	*sample = (void *)((uintptr_t)rb->data +
707 			   (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask));
708 	*size = sample_len;
709 	return 0;
710 }
711 
712 static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags)
713 {
714 	u64 consumer_pos;
715 	u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
716 
717 	/* Using smp_load_acquire() is unnecessary here, as the busy-bit
718 	 * prevents another task from writing to consumer_pos after it was read
719 	 * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek().
720 	 */
721 	consumer_pos = rb->consumer_pos;
722 	 /* Synchronizes with smp_load_acquire() in user-space producer. */
723 	smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size);
724 }
725 
726 BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map,
727 	   void *, callback_fn, void *, callback_ctx, u64, flags)
728 {
729 	struct bpf_ringbuf *rb;
730 	long samples, discarded_samples = 0, ret = 0;
731 	bpf_callback_t callback = (bpf_callback_t)callback_fn;
732 	u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP;
733 	int busy = 0;
734 
735 	if (unlikely(flags & ~wakeup_flags))
736 		return -EINVAL;
737 
738 	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
739 
740 	/* If another consumer is already consuming a sample, wait for them to finish. */
741 	if (!atomic_try_cmpxchg(&rb->busy, &busy, 1))
742 		return -EBUSY;
743 
744 	for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) {
745 		int err;
746 		u32 size;
747 		void *sample;
748 		struct bpf_dynptr_kern dynptr;
749 
750 		err = __bpf_user_ringbuf_peek(rb, &sample, &size);
751 		if (err) {
752 			if (err == -ENODATA) {
753 				break;
754 			} else if (err == -EAGAIN) {
755 				discarded_samples++;
756 				continue;
757 			} else {
758 				ret = err;
759 				goto schedule_work_return;
760 			}
761 		}
762 
763 		bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size);
764 		ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0);
765 		__bpf_user_ringbuf_sample_release(rb, size, flags);
766 	}
767 	ret = samples - discarded_samples;
768 
769 schedule_work_return:
770 	/* Prevent the clearing of the busy-bit from being reordered before the
771 	 * storing of any rb consumer or producer positions.
772 	 */
773 	smp_mb__before_atomic();
774 	atomic_set(&rb->busy, 0);
775 
776 	if (flags & BPF_RB_FORCE_WAKEUP)
777 		irq_work_queue(&rb->work);
778 	else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0)
779 		irq_work_queue(&rb->work);
780 	return ret;
781 }
782 
783 const struct bpf_func_proto bpf_user_ringbuf_drain_proto = {
784 	.func		= bpf_user_ringbuf_drain,
785 	.ret_type	= RET_INTEGER,
786 	.arg1_type	= ARG_CONST_MAP_PTR,
787 	.arg2_type	= ARG_PTR_TO_FUNC,
788 	.arg3_type	= ARG_PTR_TO_STACK_OR_NULL,
789 	.arg4_type	= ARG_ANYTHING,
790 };
791