1 #include <linux/bpf.h> 2 #include <linux/btf.h> 3 #include <linux/err.h> 4 #include <linux/irq_work.h> 5 #include <linux/slab.h> 6 #include <linux/filter.h> 7 #include <linux/mm.h> 8 #include <linux/vmalloc.h> 9 #include <linux/wait.h> 10 #include <linux/poll.h> 11 #include <linux/kmemleak.h> 12 #include <uapi/linux/btf.h> 13 #include <linux/btf_ids.h> 14 15 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE) 16 17 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */ 18 #define RINGBUF_PGOFF \ 19 (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT) 20 /* consumer page and producer page */ 21 #define RINGBUF_POS_PAGES 2 22 #define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES) 23 24 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4) 25 26 struct bpf_ringbuf { 27 wait_queue_head_t waitq; 28 struct irq_work work; 29 u64 mask; 30 struct page **pages; 31 int nr_pages; 32 spinlock_t spinlock ____cacheline_aligned_in_smp; 33 /* For user-space producer ring buffers, an atomic_t busy bit is used 34 * to synchronize access to the ring buffers in the kernel, rather than 35 * the spinlock that is used for kernel-producer ring buffers. This is 36 * done because the ring buffer must hold a lock across a BPF program's 37 * callback: 38 * 39 * __bpf_user_ringbuf_peek() // lock acquired 40 * -> program callback_fn() 41 * -> __bpf_user_ringbuf_sample_release() // lock released 42 * 43 * It is unsafe and incorrect to hold an IRQ spinlock across what could 44 * be a long execution window, so we instead simply disallow concurrent 45 * access to the ring buffer by kernel consumers, and return -EBUSY from 46 * __bpf_user_ringbuf_peek() if the busy bit is held by another task. 47 */ 48 atomic_t busy ____cacheline_aligned_in_smp; 49 /* Consumer and producer counters are put into separate pages to 50 * allow each position to be mapped with different permissions. 51 * This prevents a user-space application from modifying the 52 * position and ruining in-kernel tracking. The permissions of the 53 * pages depend on who is producing samples: user-space or the 54 * kernel. 55 * 56 * Kernel-producer 57 * --------------- 58 * The producer position and data pages are mapped as r/o in 59 * userspace. For this approach, bits in the header of samples are 60 * used to signal to user-space, and to other producers, whether a 61 * sample is currently being written. 62 * 63 * User-space producer 64 * ------------------- 65 * Only the page containing the consumer position is mapped r/o in 66 * user-space. User-space producers also use bits of the header to 67 * communicate to the kernel, but the kernel must carefully check and 68 * validate each sample to ensure that they're correctly formatted, and 69 * fully contained within the ring buffer. 70 */ 71 unsigned long consumer_pos __aligned(PAGE_SIZE); 72 unsigned long producer_pos __aligned(PAGE_SIZE); 73 char data[] __aligned(PAGE_SIZE); 74 }; 75 76 struct bpf_ringbuf_map { 77 struct bpf_map map; 78 struct bpf_ringbuf *rb; 79 }; 80 81 /* 8-byte ring buffer record header structure */ 82 struct bpf_ringbuf_hdr { 83 u32 len; 84 u32 pg_off; 85 }; 86 87 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node) 88 { 89 const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL | 90 __GFP_NOWARN | __GFP_ZERO; 91 int nr_meta_pages = RINGBUF_NR_META_PAGES; 92 int nr_data_pages = data_sz >> PAGE_SHIFT; 93 int nr_pages = nr_meta_pages + nr_data_pages; 94 struct page **pages, *page; 95 struct bpf_ringbuf *rb; 96 size_t array_size; 97 int i; 98 99 /* Each data page is mapped twice to allow "virtual" 100 * continuous read of samples wrapping around the end of ring 101 * buffer area: 102 * ------------------------------------------------------ 103 * | meta pages | real data pages | same data pages | 104 * ------------------------------------------------------ 105 * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 | 106 * ------------------------------------------------------ 107 * | | TA DA | TA DA | 108 * ------------------------------------------------------ 109 * ^^^^^^^ 110 * | 111 * Here, no need to worry about special handling of wrapped-around 112 * data due to double-mapped data pages. This works both in kernel and 113 * when mmap()'ed in user-space, simplifying both kernel and 114 * user-space implementations significantly. 115 */ 116 array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages); 117 pages = bpf_map_area_alloc(array_size, numa_node); 118 if (!pages) 119 return NULL; 120 121 for (i = 0; i < nr_pages; i++) { 122 page = alloc_pages_node(numa_node, flags, 0); 123 if (!page) { 124 nr_pages = i; 125 goto err_free_pages; 126 } 127 pages[i] = page; 128 if (i >= nr_meta_pages) 129 pages[nr_data_pages + i] = page; 130 } 131 132 rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages, 133 VM_MAP | VM_USERMAP, PAGE_KERNEL); 134 if (rb) { 135 kmemleak_not_leak(pages); 136 rb->pages = pages; 137 rb->nr_pages = nr_pages; 138 return rb; 139 } 140 141 err_free_pages: 142 for (i = 0; i < nr_pages; i++) 143 __free_page(pages[i]); 144 bpf_map_area_free(pages); 145 return NULL; 146 } 147 148 static void bpf_ringbuf_notify(struct irq_work *work) 149 { 150 struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work); 151 152 wake_up_all(&rb->waitq); 153 } 154 155 /* Maximum size of ring buffer area is limited by 32-bit page offset within 156 * record header, counted in pages. Reserve 8 bits for extensibility, and 157 * take into account few extra pages for consumer/producer pages and 158 * non-mmap()'able parts, the current maximum size would be: 159 * 160 * (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE) 161 * 162 * This gives 64GB limit, which seems plenty for single ring buffer. Now 163 * considering that the maximum value of data_sz is (4GB - 1), there 164 * will be no overflow, so just note the size limit in the comments. 165 */ 166 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node) 167 { 168 struct bpf_ringbuf *rb; 169 170 rb = bpf_ringbuf_area_alloc(data_sz, numa_node); 171 if (!rb) 172 return NULL; 173 174 spin_lock_init(&rb->spinlock); 175 atomic_set(&rb->busy, 0); 176 init_waitqueue_head(&rb->waitq); 177 init_irq_work(&rb->work, bpf_ringbuf_notify); 178 179 rb->mask = data_sz - 1; 180 rb->consumer_pos = 0; 181 rb->producer_pos = 0; 182 183 return rb; 184 } 185 186 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr) 187 { 188 struct bpf_ringbuf_map *rb_map; 189 190 if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK) 191 return ERR_PTR(-EINVAL); 192 193 if (attr->key_size || attr->value_size || 194 !is_power_of_2(attr->max_entries) || 195 !PAGE_ALIGNED(attr->max_entries)) 196 return ERR_PTR(-EINVAL); 197 198 rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE); 199 if (!rb_map) 200 return ERR_PTR(-ENOMEM); 201 202 bpf_map_init_from_attr(&rb_map->map, attr); 203 204 rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node); 205 if (!rb_map->rb) { 206 bpf_map_area_free(rb_map); 207 return ERR_PTR(-ENOMEM); 208 } 209 210 return &rb_map->map; 211 } 212 213 static void bpf_ringbuf_free(struct bpf_ringbuf *rb) 214 { 215 /* copy pages pointer and nr_pages to local variable, as we are going 216 * to unmap rb itself with vunmap() below 217 */ 218 struct page **pages = rb->pages; 219 int i, nr_pages = rb->nr_pages; 220 221 vunmap(rb); 222 for (i = 0; i < nr_pages; i++) 223 __free_page(pages[i]); 224 bpf_map_area_free(pages); 225 } 226 227 static void ringbuf_map_free(struct bpf_map *map) 228 { 229 struct bpf_ringbuf_map *rb_map; 230 231 rb_map = container_of(map, struct bpf_ringbuf_map, map); 232 bpf_ringbuf_free(rb_map->rb); 233 bpf_map_area_free(rb_map); 234 } 235 236 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key) 237 { 238 return ERR_PTR(-ENOTSUPP); 239 } 240 241 static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value, 242 u64 flags) 243 { 244 return -ENOTSUPP; 245 } 246 247 static long ringbuf_map_delete_elem(struct bpf_map *map, void *key) 248 { 249 return -ENOTSUPP; 250 } 251 252 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key, 253 void *next_key) 254 { 255 return -ENOTSUPP; 256 } 257 258 static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma) 259 { 260 struct bpf_ringbuf_map *rb_map; 261 262 rb_map = container_of(map, struct bpf_ringbuf_map, map); 263 264 if (vma->vm_flags & VM_WRITE) { 265 /* allow writable mapping for the consumer_pos only */ 266 if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE) 267 return -EPERM; 268 } else { 269 vm_flags_clear(vma, VM_MAYWRITE); 270 } 271 /* remap_vmalloc_range() checks size and offset constraints */ 272 return remap_vmalloc_range(vma, rb_map->rb, 273 vma->vm_pgoff + RINGBUF_PGOFF); 274 } 275 276 static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma) 277 { 278 struct bpf_ringbuf_map *rb_map; 279 280 rb_map = container_of(map, struct bpf_ringbuf_map, map); 281 282 if (vma->vm_flags & VM_WRITE) { 283 if (vma->vm_pgoff == 0) 284 /* Disallow writable mappings to the consumer pointer, 285 * and allow writable mappings to both the producer 286 * position, and the ring buffer data itself. 287 */ 288 return -EPERM; 289 } else { 290 vm_flags_clear(vma, VM_MAYWRITE); 291 } 292 /* remap_vmalloc_range() checks size and offset constraints */ 293 return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF); 294 } 295 296 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb) 297 { 298 unsigned long cons_pos, prod_pos; 299 300 cons_pos = smp_load_acquire(&rb->consumer_pos); 301 prod_pos = smp_load_acquire(&rb->producer_pos); 302 return prod_pos - cons_pos; 303 } 304 305 static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb) 306 { 307 return rb->mask + 1; 308 } 309 310 static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp, 311 struct poll_table_struct *pts) 312 { 313 struct bpf_ringbuf_map *rb_map; 314 315 rb_map = container_of(map, struct bpf_ringbuf_map, map); 316 poll_wait(filp, &rb_map->rb->waitq, pts); 317 318 if (ringbuf_avail_data_sz(rb_map->rb)) 319 return EPOLLIN | EPOLLRDNORM; 320 return 0; 321 } 322 323 static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp, 324 struct poll_table_struct *pts) 325 { 326 struct bpf_ringbuf_map *rb_map; 327 328 rb_map = container_of(map, struct bpf_ringbuf_map, map); 329 poll_wait(filp, &rb_map->rb->waitq, pts); 330 331 if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb)) 332 return EPOLLOUT | EPOLLWRNORM; 333 return 0; 334 } 335 336 static u64 ringbuf_map_mem_usage(const struct bpf_map *map) 337 { 338 struct bpf_ringbuf *rb; 339 int nr_data_pages; 340 int nr_meta_pages; 341 u64 usage = sizeof(struct bpf_ringbuf_map); 342 343 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 344 usage += (u64)rb->nr_pages << PAGE_SHIFT; 345 nr_meta_pages = RINGBUF_NR_META_PAGES; 346 nr_data_pages = map->max_entries >> PAGE_SHIFT; 347 usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *); 348 return usage; 349 } 350 351 BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map) 352 const struct bpf_map_ops ringbuf_map_ops = { 353 .map_meta_equal = bpf_map_meta_equal, 354 .map_alloc = ringbuf_map_alloc, 355 .map_free = ringbuf_map_free, 356 .map_mmap = ringbuf_map_mmap_kern, 357 .map_poll = ringbuf_map_poll_kern, 358 .map_lookup_elem = ringbuf_map_lookup_elem, 359 .map_update_elem = ringbuf_map_update_elem, 360 .map_delete_elem = ringbuf_map_delete_elem, 361 .map_get_next_key = ringbuf_map_get_next_key, 362 .map_mem_usage = ringbuf_map_mem_usage, 363 .map_btf_id = &ringbuf_map_btf_ids[0], 364 }; 365 366 BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map) 367 const struct bpf_map_ops user_ringbuf_map_ops = { 368 .map_meta_equal = bpf_map_meta_equal, 369 .map_alloc = ringbuf_map_alloc, 370 .map_free = ringbuf_map_free, 371 .map_mmap = ringbuf_map_mmap_user, 372 .map_poll = ringbuf_map_poll_user, 373 .map_lookup_elem = ringbuf_map_lookup_elem, 374 .map_update_elem = ringbuf_map_update_elem, 375 .map_delete_elem = ringbuf_map_delete_elem, 376 .map_get_next_key = ringbuf_map_get_next_key, 377 .map_mem_usage = ringbuf_map_mem_usage, 378 .map_btf_id = &user_ringbuf_map_btf_ids[0], 379 }; 380 381 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself, 382 * calculate offset from record metadata to ring buffer in pages, rounded 383 * down. This page offset is stored as part of record metadata and allows to 384 * restore struct bpf_ringbuf * from record pointer. This page offset is 385 * stored at offset 4 of record metadata header. 386 */ 387 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb, 388 struct bpf_ringbuf_hdr *hdr) 389 { 390 return ((void *)hdr - (void *)rb) >> PAGE_SHIFT; 391 } 392 393 /* Given pointer to ring buffer record header, restore pointer to struct 394 * bpf_ringbuf itself by using page offset stored at offset 4 395 */ 396 static struct bpf_ringbuf * 397 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr) 398 { 399 unsigned long addr = (unsigned long)(void *)hdr; 400 unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT; 401 402 return (void*)((addr & PAGE_MASK) - off); 403 } 404 405 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size) 406 { 407 unsigned long cons_pos, prod_pos, new_prod_pos, flags; 408 u32 len, pg_off; 409 struct bpf_ringbuf_hdr *hdr; 410 411 if (unlikely(size > RINGBUF_MAX_RECORD_SZ)) 412 return NULL; 413 414 len = round_up(size + BPF_RINGBUF_HDR_SZ, 8); 415 if (len > ringbuf_total_data_sz(rb)) 416 return NULL; 417 418 cons_pos = smp_load_acquire(&rb->consumer_pos); 419 420 if (in_nmi()) { 421 if (!spin_trylock_irqsave(&rb->spinlock, flags)) 422 return NULL; 423 } else { 424 spin_lock_irqsave(&rb->spinlock, flags); 425 } 426 427 prod_pos = rb->producer_pos; 428 new_prod_pos = prod_pos + len; 429 430 /* check for out of ringbuf space by ensuring producer position 431 * doesn't advance more than (ringbuf_size - 1) ahead 432 */ 433 if (new_prod_pos - cons_pos > rb->mask) { 434 spin_unlock_irqrestore(&rb->spinlock, flags); 435 return NULL; 436 } 437 438 hdr = (void *)rb->data + (prod_pos & rb->mask); 439 pg_off = bpf_ringbuf_rec_pg_off(rb, hdr); 440 hdr->len = size | BPF_RINGBUF_BUSY_BIT; 441 hdr->pg_off = pg_off; 442 443 /* pairs with consumer's smp_load_acquire() */ 444 smp_store_release(&rb->producer_pos, new_prod_pos); 445 446 spin_unlock_irqrestore(&rb->spinlock, flags); 447 448 return (void *)hdr + BPF_RINGBUF_HDR_SZ; 449 } 450 451 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags) 452 { 453 struct bpf_ringbuf_map *rb_map; 454 455 if (unlikely(flags)) 456 return 0; 457 458 rb_map = container_of(map, struct bpf_ringbuf_map, map); 459 return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size); 460 } 461 462 const struct bpf_func_proto bpf_ringbuf_reserve_proto = { 463 .func = bpf_ringbuf_reserve, 464 .ret_type = RET_PTR_TO_RINGBUF_MEM_OR_NULL, 465 .arg1_type = ARG_CONST_MAP_PTR, 466 .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 467 .arg3_type = ARG_ANYTHING, 468 }; 469 470 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard) 471 { 472 unsigned long rec_pos, cons_pos; 473 struct bpf_ringbuf_hdr *hdr; 474 struct bpf_ringbuf *rb; 475 u32 new_len; 476 477 hdr = sample - BPF_RINGBUF_HDR_SZ; 478 rb = bpf_ringbuf_restore_from_rec(hdr); 479 new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT; 480 if (discard) 481 new_len |= BPF_RINGBUF_DISCARD_BIT; 482 483 /* update record header with correct final size prefix */ 484 xchg(&hdr->len, new_len); 485 486 /* if consumer caught up and is waiting for our record, notify about 487 * new data availability 488 */ 489 rec_pos = (void *)hdr - (void *)rb->data; 490 cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask; 491 492 if (flags & BPF_RB_FORCE_WAKEUP) 493 irq_work_queue(&rb->work); 494 else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP)) 495 irq_work_queue(&rb->work); 496 } 497 498 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags) 499 { 500 bpf_ringbuf_commit(sample, flags, false /* discard */); 501 return 0; 502 } 503 504 const struct bpf_func_proto bpf_ringbuf_submit_proto = { 505 .func = bpf_ringbuf_submit, 506 .ret_type = RET_VOID, 507 .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, 508 .arg2_type = ARG_ANYTHING, 509 }; 510 511 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags) 512 { 513 bpf_ringbuf_commit(sample, flags, true /* discard */); 514 return 0; 515 } 516 517 const struct bpf_func_proto bpf_ringbuf_discard_proto = { 518 .func = bpf_ringbuf_discard, 519 .ret_type = RET_VOID, 520 .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, 521 .arg2_type = ARG_ANYTHING, 522 }; 523 524 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size, 525 u64, flags) 526 { 527 struct bpf_ringbuf_map *rb_map; 528 void *rec; 529 530 if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP))) 531 return -EINVAL; 532 533 rb_map = container_of(map, struct bpf_ringbuf_map, map); 534 rec = __bpf_ringbuf_reserve(rb_map->rb, size); 535 if (!rec) 536 return -EAGAIN; 537 538 memcpy(rec, data, size); 539 bpf_ringbuf_commit(rec, flags, false /* discard */); 540 return 0; 541 } 542 543 const struct bpf_func_proto bpf_ringbuf_output_proto = { 544 .func = bpf_ringbuf_output, 545 .ret_type = RET_INTEGER, 546 .arg1_type = ARG_CONST_MAP_PTR, 547 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 548 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 549 .arg4_type = ARG_ANYTHING, 550 }; 551 552 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags) 553 { 554 struct bpf_ringbuf *rb; 555 556 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 557 558 switch (flags) { 559 case BPF_RB_AVAIL_DATA: 560 return ringbuf_avail_data_sz(rb); 561 case BPF_RB_RING_SIZE: 562 return ringbuf_total_data_sz(rb); 563 case BPF_RB_CONS_POS: 564 return smp_load_acquire(&rb->consumer_pos); 565 case BPF_RB_PROD_POS: 566 return smp_load_acquire(&rb->producer_pos); 567 default: 568 return 0; 569 } 570 } 571 572 const struct bpf_func_proto bpf_ringbuf_query_proto = { 573 .func = bpf_ringbuf_query, 574 .ret_type = RET_INTEGER, 575 .arg1_type = ARG_CONST_MAP_PTR, 576 .arg2_type = ARG_ANYTHING, 577 }; 578 579 BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags, 580 struct bpf_dynptr_kern *, ptr) 581 { 582 struct bpf_ringbuf_map *rb_map; 583 void *sample; 584 int err; 585 586 if (unlikely(flags)) { 587 bpf_dynptr_set_null(ptr); 588 return -EINVAL; 589 } 590 591 err = bpf_dynptr_check_size(size); 592 if (err) { 593 bpf_dynptr_set_null(ptr); 594 return err; 595 } 596 597 rb_map = container_of(map, struct bpf_ringbuf_map, map); 598 599 sample = __bpf_ringbuf_reserve(rb_map->rb, size); 600 if (!sample) { 601 bpf_dynptr_set_null(ptr); 602 return -EINVAL; 603 } 604 605 bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size); 606 607 return 0; 608 } 609 610 const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = { 611 .func = bpf_ringbuf_reserve_dynptr, 612 .ret_type = RET_INTEGER, 613 .arg1_type = ARG_CONST_MAP_PTR, 614 .arg2_type = ARG_ANYTHING, 615 .arg3_type = ARG_ANYTHING, 616 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT, 617 }; 618 619 BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) 620 { 621 if (!ptr->data) 622 return 0; 623 624 bpf_ringbuf_commit(ptr->data, flags, false /* discard */); 625 626 bpf_dynptr_set_null(ptr); 627 628 return 0; 629 } 630 631 const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = { 632 .func = bpf_ringbuf_submit_dynptr, 633 .ret_type = RET_VOID, 634 .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, 635 .arg2_type = ARG_ANYTHING, 636 }; 637 638 BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) 639 { 640 if (!ptr->data) 641 return 0; 642 643 bpf_ringbuf_commit(ptr->data, flags, true /* discard */); 644 645 bpf_dynptr_set_null(ptr); 646 647 return 0; 648 } 649 650 const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = { 651 .func = bpf_ringbuf_discard_dynptr, 652 .ret_type = RET_VOID, 653 .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, 654 .arg2_type = ARG_ANYTHING, 655 }; 656 657 static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size) 658 { 659 int err; 660 u32 hdr_len, sample_len, total_len, flags, *hdr; 661 u64 cons_pos, prod_pos; 662 663 /* Synchronizes with smp_store_release() in user-space producer. */ 664 prod_pos = smp_load_acquire(&rb->producer_pos); 665 if (prod_pos % 8) 666 return -EINVAL; 667 668 /* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */ 669 cons_pos = smp_load_acquire(&rb->consumer_pos); 670 if (cons_pos >= prod_pos) 671 return -ENODATA; 672 673 hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask)); 674 /* Synchronizes with smp_store_release() in user-space producer. */ 675 hdr_len = smp_load_acquire(hdr); 676 flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT); 677 sample_len = hdr_len & ~flags; 678 total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8); 679 680 /* The sample must fit within the region advertised by the producer position. */ 681 if (total_len > prod_pos - cons_pos) 682 return -EINVAL; 683 684 /* The sample must fit within the data region of the ring buffer. */ 685 if (total_len > ringbuf_total_data_sz(rb)) 686 return -E2BIG; 687 688 /* The sample must fit into a struct bpf_dynptr. */ 689 err = bpf_dynptr_check_size(sample_len); 690 if (err) 691 return -E2BIG; 692 693 if (flags & BPF_RINGBUF_DISCARD_BIT) { 694 /* If the discard bit is set, the sample should be skipped. 695 * 696 * Update the consumer pos, and return -EAGAIN so the caller 697 * knows to skip this sample and try to read the next one. 698 */ 699 smp_store_release(&rb->consumer_pos, cons_pos + total_len); 700 return -EAGAIN; 701 } 702 703 if (flags & BPF_RINGBUF_BUSY_BIT) 704 return -ENODATA; 705 706 *sample = (void *)((uintptr_t)rb->data + 707 (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask)); 708 *size = sample_len; 709 return 0; 710 } 711 712 static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags) 713 { 714 u64 consumer_pos; 715 u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8); 716 717 /* Using smp_load_acquire() is unnecessary here, as the busy-bit 718 * prevents another task from writing to consumer_pos after it was read 719 * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek(). 720 */ 721 consumer_pos = rb->consumer_pos; 722 /* Synchronizes with smp_load_acquire() in user-space producer. */ 723 smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size); 724 } 725 726 BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map, 727 void *, callback_fn, void *, callback_ctx, u64, flags) 728 { 729 struct bpf_ringbuf *rb; 730 long samples, discarded_samples = 0, ret = 0; 731 bpf_callback_t callback = (bpf_callback_t)callback_fn; 732 u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP; 733 int busy = 0; 734 735 if (unlikely(flags & ~wakeup_flags)) 736 return -EINVAL; 737 738 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 739 740 /* If another consumer is already consuming a sample, wait for them to finish. */ 741 if (!atomic_try_cmpxchg(&rb->busy, &busy, 1)) 742 return -EBUSY; 743 744 for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) { 745 int err; 746 u32 size; 747 void *sample; 748 struct bpf_dynptr_kern dynptr; 749 750 err = __bpf_user_ringbuf_peek(rb, &sample, &size); 751 if (err) { 752 if (err == -ENODATA) { 753 break; 754 } else if (err == -EAGAIN) { 755 discarded_samples++; 756 continue; 757 } else { 758 ret = err; 759 goto schedule_work_return; 760 } 761 } 762 763 bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size); 764 ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0); 765 __bpf_user_ringbuf_sample_release(rb, size, flags); 766 } 767 ret = samples - discarded_samples; 768 769 schedule_work_return: 770 /* Prevent the clearing of the busy-bit from being reordered before the 771 * storing of any rb consumer or producer positions. 772 */ 773 smp_mb__before_atomic(); 774 atomic_set(&rb->busy, 0); 775 776 if (flags & BPF_RB_FORCE_WAKEUP) 777 irq_work_queue(&rb->work); 778 else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0) 779 irq_work_queue(&rb->work); 780 return ret; 781 } 782 783 const struct bpf_func_proto bpf_user_ringbuf_drain_proto = { 784 .func = bpf_user_ringbuf_drain, 785 .ret_type = RET_INTEGER, 786 .arg1_type = ARG_CONST_MAP_PTR, 787 .arg2_type = ARG_PTR_TO_FUNC, 788 .arg3_type = ARG_PTR_TO_STACK_OR_NULL, 789 .arg4_type = ARG_ANYTHING, 790 }; 791