1 #include <linux/bpf.h> 2 #include <linux/btf.h> 3 #include <linux/err.h> 4 #include <linux/irq_work.h> 5 #include <linux/slab.h> 6 #include <linux/filter.h> 7 #include <linux/mm.h> 8 #include <linux/vmalloc.h> 9 #include <linux/wait.h> 10 #include <linux/poll.h> 11 #include <linux/kmemleak.h> 12 #include <uapi/linux/btf.h> 13 #include <linux/btf_ids.h> 14 #include <asm/rqspinlock.h> 15 16 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE | BPF_F_RB_OVERWRITE) 17 18 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */ 19 #define RINGBUF_PGOFF \ 20 (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT) 21 /* consumer page and producer page */ 22 #define RINGBUF_POS_PAGES 2 23 #define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES) 24 25 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4) 26 27 struct bpf_ringbuf { 28 wait_queue_head_t waitq; 29 struct irq_work work; 30 u64 mask; 31 struct page **pages; 32 int nr_pages; 33 bool overwrite_mode; 34 rqspinlock_t spinlock ____cacheline_aligned_in_smp; 35 /* For user-space producer ring buffers, an atomic_t busy bit is used 36 * to synchronize access to the ring buffers in the kernel, rather than 37 * the spinlock that is used for kernel-producer ring buffers. This is 38 * done because the ring buffer must hold a lock across a BPF program's 39 * callback: 40 * 41 * __bpf_user_ringbuf_peek() // lock acquired 42 * -> program callback_fn() 43 * -> __bpf_user_ringbuf_sample_release() // lock released 44 * 45 * It is unsafe and incorrect to hold an IRQ spinlock across what could 46 * be a long execution window, so we instead simply disallow concurrent 47 * access to the ring buffer by kernel consumers, and return -EBUSY from 48 * __bpf_user_ringbuf_peek() if the busy bit is held by another task. 49 */ 50 atomic_t busy ____cacheline_aligned_in_smp; 51 /* Consumer and producer counters are put into separate pages to 52 * allow each position to be mapped with different permissions. 53 * This prevents a user-space application from modifying the 54 * position and ruining in-kernel tracking. The permissions of the 55 * pages depend on who is producing samples: user-space or the 56 * kernel. Note that the pending counter is placed in the same 57 * page as the producer, so that it shares the same cache line. 58 * 59 * Kernel-producer 60 * --------------- 61 * The producer position and data pages are mapped as r/o in 62 * userspace. For this approach, bits in the header of samples are 63 * used to signal to user-space, and to other producers, whether a 64 * sample is currently being written. 65 * 66 * User-space producer 67 * ------------------- 68 * Only the page containing the consumer position is mapped r/o in 69 * user-space. User-space producers also use bits of the header to 70 * communicate to the kernel, but the kernel must carefully check and 71 * validate each sample to ensure that they're correctly formatted, and 72 * fully contained within the ring buffer. 73 */ 74 unsigned long consumer_pos __aligned(PAGE_SIZE); 75 unsigned long producer_pos __aligned(PAGE_SIZE); 76 unsigned long pending_pos; 77 unsigned long overwrite_pos; /* position after the last overwritten record */ 78 char data[] __aligned(PAGE_SIZE); 79 }; 80 81 struct bpf_ringbuf_map { 82 struct bpf_map map; 83 struct bpf_ringbuf *rb; 84 }; 85 86 /* 8-byte ring buffer record header structure */ 87 struct bpf_ringbuf_hdr { 88 u32 len; 89 u32 pg_off; 90 }; 91 92 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node) 93 { 94 const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL | 95 __GFP_NOWARN | __GFP_ZERO; 96 int nr_meta_pages = RINGBUF_NR_META_PAGES; 97 int nr_data_pages = data_sz >> PAGE_SHIFT; 98 int nr_pages = nr_meta_pages + nr_data_pages; 99 struct page **pages, *page; 100 struct bpf_ringbuf *rb; 101 size_t array_size; 102 int i; 103 104 /* Each data page is mapped twice to allow "virtual" 105 * continuous read of samples wrapping around the end of ring 106 * buffer area: 107 * ------------------------------------------------------ 108 * | meta pages | real data pages | same data pages | 109 * ------------------------------------------------------ 110 * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 | 111 * ------------------------------------------------------ 112 * | | TA DA | TA DA | 113 * ------------------------------------------------------ 114 * ^^^^^^^ 115 * | 116 * Here, no need to worry about special handling of wrapped-around 117 * data due to double-mapped data pages. This works both in kernel and 118 * when mmap()'ed in user-space, simplifying both kernel and 119 * user-space implementations significantly. 120 */ 121 array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages); 122 pages = bpf_map_area_alloc(array_size, numa_node); 123 if (!pages) 124 return NULL; 125 126 for (i = 0; i < nr_pages; i++) { 127 page = alloc_pages_node(numa_node, flags, 0); 128 if (!page) { 129 nr_pages = i; 130 goto err_free_pages; 131 } 132 pages[i] = page; 133 if (i >= nr_meta_pages) 134 pages[nr_data_pages + i] = page; 135 } 136 137 rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages, 138 VM_MAP | VM_USERMAP, PAGE_KERNEL); 139 if (rb) { 140 kmemleak_not_leak(pages); 141 rb->pages = pages; 142 rb->nr_pages = nr_pages; 143 return rb; 144 } 145 146 err_free_pages: 147 for (i = 0; i < nr_pages; i++) 148 __free_page(pages[i]); 149 bpf_map_area_free(pages); 150 return NULL; 151 } 152 153 static void bpf_ringbuf_notify(struct irq_work *work) 154 { 155 struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work); 156 157 wake_up_all(&rb->waitq); 158 } 159 160 /* Maximum size of ring buffer area is limited by 32-bit page offset within 161 * record header, counted in pages. Reserve 8 bits for extensibility, and 162 * take into account few extra pages for consumer/producer pages and 163 * non-mmap()'able parts, the current maximum size would be: 164 * 165 * (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE) 166 * 167 * This gives 64GB limit, which seems plenty for single ring buffer. Now 168 * considering that the maximum value of data_sz is (4GB - 1), there 169 * will be no overflow, so just note the size limit in the comments. 170 */ 171 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node, bool overwrite_mode) 172 { 173 struct bpf_ringbuf *rb; 174 175 rb = bpf_ringbuf_area_alloc(data_sz, numa_node); 176 if (!rb) 177 return NULL; 178 179 raw_res_spin_lock_init(&rb->spinlock); 180 atomic_set(&rb->busy, 0); 181 init_waitqueue_head(&rb->waitq); 182 init_irq_work(&rb->work, bpf_ringbuf_notify); 183 184 rb->mask = data_sz - 1; 185 rb->consumer_pos = 0; 186 rb->producer_pos = 0; 187 rb->pending_pos = 0; 188 rb->overwrite_mode = overwrite_mode; 189 190 return rb; 191 } 192 193 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr) 194 { 195 bool overwrite_mode = false; 196 struct bpf_ringbuf_map *rb_map; 197 198 if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK) 199 return ERR_PTR(-EINVAL); 200 201 if (attr->map_flags & BPF_F_RB_OVERWRITE) { 202 if (attr->map_type != BPF_MAP_TYPE_RINGBUF) 203 return ERR_PTR(-EINVAL); 204 overwrite_mode = true; 205 } 206 207 if (attr->key_size || attr->value_size || 208 !is_power_of_2(attr->max_entries) || 209 !PAGE_ALIGNED(attr->max_entries)) 210 return ERR_PTR(-EINVAL); 211 212 rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE); 213 if (!rb_map) 214 return ERR_PTR(-ENOMEM); 215 216 bpf_map_init_from_attr(&rb_map->map, attr); 217 218 rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node, overwrite_mode); 219 if (!rb_map->rb) { 220 bpf_map_area_free(rb_map); 221 return ERR_PTR(-ENOMEM); 222 } 223 224 return &rb_map->map; 225 } 226 227 static void bpf_ringbuf_free(struct bpf_ringbuf *rb) 228 { 229 irq_work_sync(&rb->work); 230 231 /* copy pages pointer and nr_pages to local variable, as we are going 232 * to unmap rb itself with vunmap() below 233 */ 234 struct page **pages = rb->pages; 235 int i, nr_pages = rb->nr_pages; 236 237 vunmap(rb); 238 for (i = 0; i < nr_pages; i++) 239 __free_page(pages[i]); 240 bpf_map_area_free(pages); 241 } 242 243 static void ringbuf_map_free(struct bpf_map *map) 244 { 245 struct bpf_ringbuf_map *rb_map; 246 247 rb_map = container_of(map, struct bpf_ringbuf_map, map); 248 bpf_ringbuf_free(rb_map->rb); 249 bpf_map_area_free(rb_map); 250 } 251 252 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key) 253 { 254 return ERR_PTR(-ENOTSUPP); 255 } 256 257 static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value, 258 u64 flags) 259 { 260 return -ENOTSUPP; 261 } 262 263 static long ringbuf_map_delete_elem(struct bpf_map *map, void *key) 264 { 265 return -ENOTSUPP; 266 } 267 268 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key, 269 void *next_key) 270 { 271 return -ENOTSUPP; 272 } 273 274 static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma) 275 { 276 struct bpf_ringbuf_map *rb_map; 277 278 rb_map = container_of(map, struct bpf_ringbuf_map, map); 279 280 if (vma->vm_flags & VM_WRITE) { 281 /* allow writable mapping for the consumer_pos only */ 282 if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE) 283 return -EPERM; 284 } 285 /* remap_vmalloc_range() checks size and offset constraints */ 286 return remap_vmalloc_range(vma, rb_map->rb, 287 vma->vm_pgoff + RINGBUF_PGOFF); 288 } 289 290 static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma) 291 { 292 struct bpf_ringbuf_map *rb_map; 293 294 rb_map = container_of(map, struct bpf_ringbuf_map, map); 295 296 if (vma->vm_flags & VM_WRITE) { 297 if (vma->vm_pgoff == 0) 298 /* Disallow writable mappings to the consumer pointer, 299 * and allow writable mappings to both the producer 300 * position, and the ring buffer data itself. 301 */ 302 return -EPERM; 303 } 304 /* remap_vmalloc_range() checks size and offset constraints */ 305 return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF); 306 } 307 308 /* 309 * Return an estimate of the available data in the ring buffer. 310 * Note: the returned value can exceed the actual ring buffer size because the 311 * function is not synchronized with the producer. The producer acquires the 312 * ring buffer's spinlock, but this function does not. 313 */ 314 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb) 315 { 316 unsigned long cons_pos, prod_pos, over_pos; 317 318 cons_pos = smp_load_acquire(&rb->consumer_pos); 319 320 if (unlikely(rb->overwrite_mode)) { 321 over_pos = smp_load_acquire(&rb->overwrite_pos); 322 prod_pos = smp_load_acquire(&rb->producer_pos); 323 return prod_pos - max(cons_pos, over_pos); 324 } else { 325 prod_pos = smp_load_acquire(&rb->producer_pos); 326 return prod_pos - cons_pos; 327 } 328 } 329 330 static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb) 331 { 332 return rb->mask + 1; 333 } 334 335 static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp, 336 struct poll_table_struct *pts) 337 { 338 struct bpf_ringbuf_map *rb_map; 339 340 rb_map = container_of(map, struct bpf_ringbuf_map, map); 341 poll_wait(filp, &rb_map->rb->waitq, pts); 342 343 if (ringbuf_avail_data_sz(rb_map->rb)) 344 return EPOLLIN | EPOLLRDNORM; 345 return 0; 346 } 347 348 static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp, 349 struct poll_table_struct *pts) 350 { 351 struct bpf_ringbuf_map *rb_map; 352 353 rb_map = container_of(map, struct bpf_ringbuf_map, map); 354 poll_wait(filp, &rb_map->rb->waitq, pts); 355 356 if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb)) 357 return EPOLLOUT | EPOLLWRNORM; 358 return 0; 359 } 360 361 static u64 ringbuf_map_mem_usage(const struct bpf_map *map) 362 { 363 struct bpf_ringbuf *rb; 364 int nr_data_pages; 365 int nr_meta_pages; 366 u64 usage = sizeof(struct bpf_ringbuf_map); 367 368 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 369 usage += (u64)rb->nr_pages << PAGE_SHIFT; 370 nr_meta_pages = RINGBUF_NR_META_PAGES; 371 nr_data_pages = map->max_entries >> PAGE_SHIFT; 372 usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *); 373 return usage; 374 } 375 376 BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map) 377 const struct bpf_map_ops ringbuf_map_ops = { 378 .map_meta_equal = bpf_map_meta_equal, 379 .map_alloc = ringbuf_map_alloc, 380 .map_free = ringbuf_map_free, 381 .map_mmap = ringbuf_map_mmap_kern, 382 .map_poll = ringbuf_map_poll_kern, 383 .map_lookup_elem = ringbuf_map_lookup_elem, 384 .map_update_elem = ringbuf_map_update_elem, 385 .map_delete_elem = ringbuf_map_delete_elem, 386 .map_get_next_key = ringbuf_map_get_next_key, 387 .map_mem_usage = ringbuf_map_mem_usage, 388 .map_btf_id = &ringbuf_map_btf_ids[0], 389 }; 390 391 BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map) 392 const struct bpf_map_ops user_ringbuf_map_ops = { 393 .map_meta_equal = bpf_map_meta_equal, 394 .map_alloc = ringbuf_map_alloc, 395 .map_free = ringbuf_map_free, 396 .map_mmap = ringbuf_map_mmap_user, 397 .map_poll = ringbuf_map_poll_user, 398 .map_lookup_elem = ringbuf_map_lookup_elem, 399 .map_update_elem = ringbuf_map_update_elem, 400 .map_delete_elem = ringbuf_map_delete_elem, 401 .map_get_next_key = ringbuf_map_get_next_key, 402 .map_mem_usage = ringbuf_map_mem_usage, 403 .map_btf_id = &user_ringbuf_map_btf_ids[0], 404 }; 405 406 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself, 407 * calculate offset from record metadata to ring buffer in pages, rounded 408 * down. This page offset is stored as part of record metadata and allows to 409 * restore struct bpf_ringbuf * from record pointer. This page offset is 410 * stored at offset 4 of record metadata header. 411 */ 412 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb, 413 struct bpf_ringbuf_hdr *hdr) 414 { 415 return ((void *)hdr - (void *)rb) >> PAGE_SHIFT; 416 } 417 418 /* Given pointer to ring buffer record header, restore pointer to struct 419 * bpf_ringbuf itself by using page offset stored at offset 4 420 */ 421 static struct bpf_ringbuf * 422 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr) 423 { 424 unsigned long addr = (unsigned long)(void *)hdr; 425 unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT; 426 427 return (void*)((addr & PAGE_MASK) - off); 428 } 429 430 static bool bpf_ringbuf_has_space(const struct bpf_ringbuf *rb, 431 unsigned long new_prod_pos, 432 unsigned long cons_pos, 433 unsigned long pend_pos) 434 { 435 /* 436 * No space if oldest not yet committed record until the newest 437 * record span more than (ringbuf_size - 1). 438 */ 439 if (new_prod_pos - pend_pos > rb->mask) 440 return false; 441 442 /* Ok, we have space in overwrite mode */ 443 if (unlikely(rb->overwrite_mode)) 444 return true; 445 446 /* 447 * No space if producer position advances more than (ringbuf_size - 1) 448 * ahead of consumer position when not in overwrite mode. 449 */ 450 if (new_prod_pos - cons_pos > rb->mask) 451 return false; 452 453 return true; 454 } 455 456 static u32 bpf_ringbuf_round_up_hdr_len(u32 hdr_len) 457 { 458 hdr_len &= ~BPF_RINGBUF_DISCARD_BIT; 459 return round_up(hdr_len + BPF_RINGBUF_HDR_SZ, 8); 460 } 461 462 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size) 463 { 464 unsigned long cons_pos, prod_pos, new_prod_pos, pend_pos, over_pos, flags; 465 struct bpf_ringbuf_hdr *hdr; 466 u32 len, pg_off, hdr_len; 467 468 if (unlikely(size > RINGBUF_MAX_RECORD_SZ)) 469 return NULL; 470 471 len = round_up(size + BPF_RINGBUF_HDR_SZ, 8); 472 if (len > ringbuf_total_data_sz(rb)) 473 return NULL; 474 475 cons_pos = smp_load_acquire(&rb->consumer_pos); 476 477 if (raw_res_spin_lock_irqsave(&rb->spinlock, flags)) 478 return NULL; 479 480 pend_pos = rb->pending_pos; 481 prod_pos = rb->producer_pos; 482 new_prod_pos = prod_pos + len; 483 484 while (pend_pos < prod_pos) { 485 hdr = (void *)rb->data + (pend_pos & rb->mask); 486 hdr_len = READ_ONCE(hdr->len); 487 if (hdr_len & BPF_RINGBUF_BUSY_BIT) 488 break; 489 pend_pos += bpf_ringbuf_round_up_hdr_len(hdr_len); 490 } 491 rb->pending_pos = pend_pos; 492 493 if (!bpf_ringbuf_has_space(rb, new_prod_pos, cons_pos, pend_pos)) { 494 raw_res_spin_unlock_irqrestore(&rb->spinlock, flags); 495 return NULL; 496 } 497 498 /* 499 * In overwrite mode, advance overwrite_pos when the ring buffer is full. 500 * The key points are to stay on record boundaries and consume enough records 501 * to fit the new one. 502 */ 503 if (unlikely(rb->overwrite_mode)) { 504 over_pos = rb->overwrite_pos; 505 while (new_prod_pos - over_pos > rb->mask) { 506 hdr = (void *)rb->data + (over_pos & rb->mask); 507 hdr_len = READ_ONCE(hdr->len); 508 /* 509 * The bpf_ringbuf_has_space() check above ensures we won’t 510 * step over a record currently being worked on by another 511 * producer. 512 */ 513 over_pos += bpf_ringbuf_round_up_hdr_len(hdr_len); 514 } 515 /* 516 * smp_store_release(&rb->producer_pos, new_prod_pos) at 517 * the end of the function ensures that when consumer sees 518 * the updated rb->producer_pos, it always sees the updated 519 * rb->overwrite_pos, so when consumer reads overwrite_pos 520 * after smp_load_acquire(r->producer_pos), the overwrite_pos 521 * will always be valid. 522 */ 523 WRITE_ONCE(rb->overwrite_pos, over_pos); 524 } 525 526 hdr = (void *)rb->data + (prod_pos & rb->mask); 527 pg_off = bpf_ringbuf_rec_pg_off(rb, hdr); 528 hdr->len = size | BPF_RINGBUF_BUSY_BIT; 529 hdr->pg_off = pg_off; 530 531 /* pairs with consumer's smp_load_acquire() */ 532 smp_store_release(&rb->producer_pos, new_prod_pos); 533 534 raw_res_spin_unlock_irqrestore(&rb->spinlock, flags); 535 536 return (void *)hdr + BPF_RINGBUF_HDR_SZ; 537 } 538 539 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags) 540 { 541 struct bpf_ringbuf_map *rb_map; 542 543 if (unlikely(flags)) 544 return 0; 545 546 rb_map = container_of(map, struct bpf_ringbuf_map, map); 547 return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size); 548 } 549 550 const struct bpf_func_proto bpf_ringbuf_reserve_proto = { 551 .func = bpf_ringbuf_reserve, 552 .ret_type = RET_PTR_TO_RINGBUF_MEM_OR_NULL, 553 .arg1_type = ARG_CONST_MAP_PTR, 554 .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 555 .arg3_type = ARG_ANYTHING, 556 }; 557 558 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard) 559 { 560 unsigned long rec_pos, cons_pos; 561 struct bpf_ringbuf_hdr *hdr; 562 struct bpf_ringbuf *rb; 563 u32 new_len; 564 565 hdr = sample - BPF_RINGBUF_HDR_SZ; 566 rb = bpf_ringbuf_restore_from_rec(hdr); 567 new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT; 568 if (discard) 569 new_len |= BPF_RINGBUF_DISCARD_BIT; 570 571 /* update record header with correct final size prefix */ 572 xchg(&hdr->len, new_len); 573 574 /* if consumer caught up and is waiting for our record, notify about 575 * new data availability 576 */ 577 rec_pos = (void *)hdr - (void *)rb->data; 578 cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask; 579 580 if (flags & BPF_RB_FORCE_WAKEUP) 581 irq_work_queue(&rb->work); 582 else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP)) 583 irq_work_queue(&rb->work); 584 } 585 586 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags) 587 { 588 bpf_ringbuf_commit(sample, flags, false /* discard */); 589 return 0; 590 } 591 592 const struct bpf_func_proto bpf_ringbuf_submit_proto = { 593 .func = bpf_ringbuf_submit, 594 .ret_type = RET_VOID, 595 .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, 596 .arg2_type = ARG_ANYTHING, 597 }; 598 599 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags) 600 { 601 bpf_ringbuf_commit(sample, flags, true /* discard */); 602 return 0; 603 } 604 605 const struct bpf_func_proto bpf_ringbuf_discard_proto = { 606 .func = bpf_ringbuf_discard, 607 .ret_type = RET_VOID, 608 .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, 609 .arg2_type = ARG_ANYTHING, 610 }; 611 612 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size, 613 u64, flags) 614 { 615 struct bpf_ringbuf_map *rb_map; 616 void *rec; 617 618 if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP))) 619 return -EINVAL; 620 621 rb_map = container_of(map, struct bpf_ringbuf_map, map); 622 rec = __bpf_ringbuf_reserve(rb_map->rb, size); 623 if (!rec) 624 return -EAGAIN; 625 626 memcpy(rec, data, size); 627 bpf_ringbuf_commit(rec, flags, false /* discard */); 628 return 0; 629 } 630 631 const struct bpf_func_proto bpf_ringbuf_output_proto = { 632 .func = bpf_ringbuf_output, 633 .ret_type = RET_INTEGER, 634 .arg1_type = ARG_CONST_MAP_PTR, 635 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 636 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 637 .arg4_type = ARG_ANYTHING, 638 }; 639 640 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags) 641 { 642 struct bpf_ringbuf *rb; 643 644 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 645 646 switch (flags) { 647 case BPF_RB_AVAIL_DATA: 648 return ringbuf_avail_data_sz(rb); 649 case BPF_RB_RING_SIZE: 650 return ringbuf_total_data_sz(rb); 651 case BPF_RB_CONS_POS: 652 return smp_load_acquire(&rb->consumer_pos); 653 case BPF_RB_PROD_POS: 654 return smp_load_acquire(&rb->producer_pos); 655 case BPF_RB_OVERWRITE_POS: 656 return smp_load_acquire(&rb->overwrite_pos); 657 default: 658 return 0; 659 } 660 } 661 662 const struct bpf_func_proto bpf_ringbuf_query_proto = { 663 .func = bpf_ringbuf_query, 664 .ret_type = RET_INTEGER, 665 .arg1_type = ARG_CONST_MAP_PTR, 666 .arg2_type = ARG_ANYTHING, 667 }; 668 669 BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags, 670 struct bpf_dynptr_kern *, ptr) 671 { 672 struct bpf_ringbuf_map *rb_map; 673 void *sample; 674 int err; 675 676 if (unlikely(flags)) { 677 bpf_dynptr_set_null(ptr); 678 return -EINVAL; 679 } 680 681 err = bpf_dynptr_check_size(size); 682 if (err) { 683 bpf_dynptr_set_null(ptr); 684 return err; 685 } 686 687 rb_map = container_of(map, struct bpf_ringbuf_map, map); 688 689 sample = __bpf_ringbuf_reserve(rb_map->rb, size); 690 if (!sample) { 691 bpf_dynptr_set_null(ptr); 692 return -EINVAL; 693 } 694 695 bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size); 696 697 return 0; 698 } 699 700 const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = { 701 .func = bpf_ringbuf_reserve_dynptr, 702 .ret_type = RET_INTEGER, 703 .arg1_type = ARG_CONST_MAP_PTR, 704 .arg2_type = ARG_ANYTHING, 705 .arg3_type = ARG_ANYTHING, 706 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT | MEM_WRITE, 707 }; 708 709 BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) 710 { 711 if (!ptr->data) 712 return 0; 713 714 bpf_ringbuf_commit(ptr->data, flags, false /* discard */); 715 716 bpf_dynptr_set_null(ptr); 717 718 return 0; 719 } 720 721 const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = { 722 .func = bpf_ringbuf_submit_dynptr, 723 .ret_type = RET_VOID, 724 .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, 725 .arg2_type = ARG_ANYTHING, 726 }; 727 728 BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) 729 { 730 if (!ptr->data) 731 return 0; 732 733 bpf_ringbuf_commit(ptr->data, flags, true /* discard */); 734 735 bpf_dynptr_set_null(ptr); 736 737 return 0; 738 } 739 740 const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = { 741 .func = bpf_ringbuf_discard_dynptr, 742 .ret_type = RET_VOID, 743 .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, 744 .arg2_type = ARG_ANYTHING, 745 }; 746 747 static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size) 748 { 749 int err; 750 u32 hdr_len, sample_len, total_len, flags, *hdr; 751 u64 cons_pos, prod_pos; 752 753 /* Synchronizes with smp_store_release() in user-space producer. */ 754 prod_pos = smp_load_acquire(&rb->producer_pos); 755 if (prod_pos % 8) 756 return -EINVAL; 757 758 /* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */ 759 cons_pos = smp_load_acquire(&rb->consumer_pos); 760 if (cons_pos >= prod_pos) 761 return -ENODATA; 762 763 hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask)); 764 /* Synchronizes with smp_store_release() in user-space producer. */ 765 hdr_len = smp_load_acquire(hdr); 766 flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT); 767 sample_len = hdr_len & ~flags; 768 total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8); 769 770 /* The sample must fit within the region advertised by the producer position. */ 771 if (total_len > prod_pos - cons_pos) 772 return -EINVAL; 773 774 /* The sample must fit within the data region of the ring buffer. */ 775 if (total_len > ringbuf_total_data_sz(rb)) 776 return -E2BIG; 777 778 /* The sample must fit into a struct bpf_dynptr. */ 779 err = bpf_dynptr_check_size(sample_len); 780 if (err) 781 return -E2BIG; 782 783 if (flags & BPF_RINGBUF_DISCARD_BIT) { 784 /* If the discard bit is set, the sample should be skipped. 785 * 786 * Update the consumer pos, and return -EAGAIN so the caller 787 * knows to skip this sample and try to read the next one. 788 */ 789 smp_store_release(&rb->consumer_pos, cons_pos + total_len); 790 return -EAGAIN; 791 } 792 793 if (flags & BPF_RINGBUF_BUSY_BIT) 794 return -ENODATA; 795 796 *sample = (void *)((uintptr_t)rb->data + 797 (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask)); 798 *size = sample_len; 799 return 0; 800 } 801 802 static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags) 803 { 804 u64 consumer_pos; 805 u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8); 806 807 /* Using smp_load_acquire() is unnecessary here, as the busy-bit 808 * prevents another task from writing to consumer_pos after it was read 809 * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek(). 810 */ 811 consumer_pos = rb->consumer_pos; 812 /* Synchronizes with smp_load_acquire() in user-space producer. */ 813 smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size); 814 } 815 816 BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map, 817 void *, callback_fn, void *, callback_ctx, u64, flags) 818 { 819 struct bpf_ringbuf *rb; 820 long samples, discarded_samples = 0, ret = 0; 821 bpf_callback_t callback = (bpf_callback_t)callback_fn; 822 u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP; 823 int busy = 0; 824 825 if (unlikely(flags & ~wakeup_flags)) 826 return -EINVAL; 827 828 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 829 830 /* If another consumer is already consuming a sample, wait for them to finish. */ 831 if (!atomic_try_cmpxchg(&rb->busy, &busy, 1)) 832 return -EBUSY; 833 834 for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) { 835 int err; 836 u32 size; 837 void *sample; 838 struct bpf_dynptr_kern dynptr; 839 840 err = __bpf_user_ringbuf_peek(rb, &sample, &size); 841 if (err) { 842 if (err == -ENODATA) { 843 break; 844 } else if (err == -EAGAIN) { 845 discarded_samples++; 846 continue; 847 } else { 848 ret = err; 849 goto schedule_work_return; 850 } 851 } 852 853 bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size); 854 ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0); 855 __bpf_user_ringbuf_sample_release(rb, size, flags); 856 } 857 ret = samples - discarded_samples; 858 859 schedule_work_return: 860 /* Prevent the clearing of the busy-bit from being reordered before the 861 * storing of any rb consumer or producer positions. 862 */ 863 atomic_set_release(&rb->busy, 0); 864 865 if (flags & BPF_RB_FORCE_WAKEUP) 866 irq_work_queue(&rb->work); 867 else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0) 868 irq_work_queue(&rb->work); 869 return ret; 870 } 871 872 const struct bpf_func_proto bpf_user_ringbuf_drain_proto = { 873 .func = bpf_user_ringbuf_drain, 874 .ret_type = RET_INTEGER, 875 .arg1_type = ARG_CONST_MAP_PTR, 876 .arg2_type = ARG_PTR_TO_FUNC, 877 .arg3_type = ARG_PTR_TO_STACK_OR_NULL, 878 .arg4_type = ARG_ANYTHING, 879 }; 880