xref: /linux/kernel/bpf/ringbuf.c (revision da5b2ad1c2f18834cb1ce429e2e5a5cf5cbdf21b)
1 #include <linux/bpf.h>
2 #include <linux/btf.h>
3 #include <linux/err.h>
4 #include <linux/irq_work.h>
5 #include <linux/slab.h>
6 #include <linux/filter.h>
7 #include <linux/mm.h>
8 #include <linux/vmalloc.h>
9 #include <linux/wait.h>
10 #include <linux/poll.h>
11 #include <linux/kmemleak.h>
12 #include <uapi/linux/btf.h>
13 #include <linux/btf_ids.h>
14 
15 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
16 
17 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
18 #define RINGBUF_PGOFF \
19 	(offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
20 /* consumer page and producer page */
21 #define RINGBUF_POS_PAGES 2
22 #define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES)
23 
24 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
25 
26 struct bpf_ringbuf {
27 	wait_queue_head_t waitq;
28 	struct irq_work work;
29 	u64 mask;
30 	struct page **pages;
31 	int nr_pages;
32 	spinlock_t spinlock ____cacheline_aligned_in_smp;
33 	/* For user-space producer ring buffers, an atomic_t busy bit is used
34 	 * to synchronize access to the ring buffers in the kernel, rather than
35 	 * the spinlock that is used for kernel-producer ring buffers. This is
36 	 * done because the ring buffer must hold a lock across a BPF program's
37 	 * callback:
38 	 *
39 	 *    __bpf_user_ringbuf_peek() // lock acquired
40 	 * -> program callback_fn()
41 	 * -> __bpf_user_ringbuf_sample_release() // lock released
42 	 *
43 	 * It is unsafe and incorrect to hold an IRQ spinlock across what could
44 	 * be a long execution window, so we instead simply disallow concurrent
45 	 * access to the ring buffer by kernel consumers, and return -EBUSY from
46 	 * __bpf_user_ringbuf_peek() if the busy bit is held by another task.
47 	 */
48 	atomic_t busy ____cacheline_aligned_in_smp;
49 	/* Consumer and producer counters are put into separate pages to
50 	 * allow each position to be mapped with different permissions.
51 	 * This prevents a user-space application from modifying the
52 	 * position and ruining in-kernel tracking. The permissions of the
53 	 * pages depend on who is producing samples: user-space or the
54 	 * kernel. Note that the pending counter is placed in the same
55 	 * page as the producer, so that it shares the same cache line.
56 	 *
57 	 * Kernel-producer
58 	 * ---------------
59 	 * The producer position and data pages are mapped as r/o in
60 	 * userspace. For this approach, bits in the header of samples are
61 	 * used to signal to user-space, and to other producers, whether a
62 	 * sample is currently being written.
63 	 *
64 	 * User-space producer
65 	 * -------------------
66 	 * Only the page containing the consumer position is mapped r/o in
67 	 * user-space. User-space producers also use bits of the header to
68 	 * communicate to the kernel, but the kernel must carefully check and
69 	 * validate each sample to ensure that they're correctly formatted, and
70 	 * fully contained within the ring buffer.
71 	 */
72 	unsigned long consumer_pos __aligned(PAGE_SIZE);
73 	unsigned long producer_pos __aligned(PAGE_SIZE);
74 	unsigned long pending_pos;
75 	char data[] __aligned(PAGE_SIZE);
76 };
77 
78 struct bpf_ringbuf_map {
79 	struct bpf_map map;
80 	struct bpf_ringbuf *rb;
81 };
82 
83 /* 8-byte ring buffer record header structure */
84 struct bpf_ringbuf_hdr {
85 	u32 len;
86 	u32 pg_off;
87 };
88 
89 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
90 {
91 	const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
92 			    __GFP_NOWARN | __GFP_ZERO;
93 	int nr_meta_pages = RINGBUF_NR_META_PAGES;
94 	int nr_data_pages = data_sz >> PAGE_SHIFT;
95 	int nr_pages = nr_meta_pages + nr_data_pages;
96 	struct page **pages, *page;
97 	struct bpf_ringbuf *rb;
98 	size_t array_size;
99 	int i;
100 
101 	/* Each data page is mapped twice to allow "virtual"
102 	 * continuous read of samples wrapping around the end of ring
103 	 * buffer area:
104 	 * ------------------------------------------------------
105 	 * | meta pages |  real data pages  |  same data pages  |
106 	 * ------------------------------------------------------
107 	 * |            | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
108 	 * ------------------------------------------------------
109 	 * |            | TA             DA | TA             DA |
110 	 * ------------------------------------------------------
111 	 *                               ^^^^^^^
112 	 *                                  |
113 	 * Here, no need to worry about special handling of wrapped-around
114 	 * data due to double-mapped data pages. This works both in kernel and
115 	 * when mmap()'ed in user-space, simplifying both kernel and
116 	 * user-space implementations significantly.
117 	 */
118 	array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
119 	pages = bpf_map_area_alloc(array_size, numa_node);
120 	if (!pages)
121 		return NULL;
122 
123 	for (i = 0; i < nr_pages; i++) {
124 		page = alloc_pages_node(numa_node, flags, 0);
125 		if (!page) {
126 			nr_pages = i;
127 			goto err_free_pages;
128 		}
129 		pages[i] = page;
130 		if (i >= nr_meta_pages)
131 			pages[nr_data_pages + i] = page;
132 	}
133 
134 	rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
135 		  VM_MAP | VM_USERMAP, PAGE_KERNEL);
136 	if (rb) {
137 		kmemleak_not_leak(pages);
138 		rb->pages = pages;
139 		rb->nr_pages = nr_pages;
140 		return rb;
141 	}
142 
143 err_free_pages:
144 	for (i = 0; i < nr_pages; i++)
145 		__free_page(pages[i]);
146 	bpf_map_area_free(pages);
147 	return NULL;
148 }
149 
150 static void bpf_ringbuf_notify(struct irq_work *work)
151 {
152 	struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
153 
154 	wake_up_all(&rb->waitq);
155 }
156 
157 /* Maximum size of ring buffer area is limited by 32-bit page offset within
158  * record header, counted in pages. Reserve 8 bits for extensibility, and
159  * take into account few extra pages for consumer/producer pages and
160  * non-mmap()'able parts, the current maximum size would be:
161  *
162  *     (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
163  *
164  * This gives 64GB limit, which seems plenty for single ring buffer. Now
165  * considering that the maximum value of data_sz is (4GB - 1), there
166  * will be no overflow, so just note the size limit in the comments.
167  */
168 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
169 {
170 	struct bpf_ringbuf *rb;
171 
172 	rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
173 	if (!rb)
174 		return NULL;
175 
176 	spin_lock_init(&rb->spinlock);
177 	atomic_set(&rb->busy, 0);
178 	init_waitqueue_head(&rb->waitq);
179 	init_irq_work(&rb->work, bpf_ringbuf_notify);
180 
181 	rb->mask = data_sz - 1;
182 	rb->consumer_pos = 0;
183 	rb->producer_pos = 0;
184 	rb->pending_pos = 0;
185 
186 	return rb;
187 }
188 
189 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
190 {
191 	struct bpf_ringbuf_map *rb_map;
192 
193 	if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
194 		return ERR_PTR(-EINVAL);
195 
196 	if (attr->key_size || attr->value_size ||
197 	    !is_power_of_2(attr->max_entries) ||
198 	    !PAGE_ALIGNED(attr->max_entries))
199 		return ERR_PTR(-EINVAL);
200 
201 	rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE);
202 	if (!rb_map)
203 		return ERR_PTR(-ENOMEM);
204 
205 	bpf_map_init_from_attr(&rb_map->map, attr);
206 
207 	rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
208 	if (!rb_map->rb) {
209 		bpf_map_area_free(rb_map);
210 		return ERR_PTR(-ENOMEM);
211 	}
212 
213 	return &rb_map->map;
214 }
215 
216 static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
217 {
218 	/* copy pages pointer and nr_pages to local variable, as we are going
219 	 * to unmap rb itself with vunmap() below
220 	 */
221 	struct page **pages = rb->pages;
222 	int i, nr_pages = rb->nr_pages;
223 
224 	vunmap(rb);
225 	for (i = 0; i < nr_pages; i++)
226 		__free_page(pages[i]);
227 	bpf_map_area_free(pages);
228 }
229 
230 static void ringbuf_map_free(struct bpf_map *map)
231 {
232 	struct bpf_ringbuf_map *rb_map;
233 
234 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
235 	bpf_ringbuf_free(rb_map->rb);
236 	bpf_map_area_free(rb_map);
237 }
238 
239 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
240 {
241 	return ERR_PTR(-ENOTSUPP);
242 }
243 
244 static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
245 				    u64 flags)
246 {
247 	return -ENOTSUPP;
248 }
249 
250 static long ringbuf_map_delete_elem(struct bpf_map *map, void *key)
251 {
252 	return -ENOTSUPP;
253 }
254 
255 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
256 				    void *next_key)
257 {
258 	return -ENOTSUPP;
259 }
260 
261 static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma)
262 {
263 	struct bpf_ringbuf_map *rb_map;
264 
265 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
266 
267 	if (vma->vm_flags & VM_WRITE) {
268 		/* allow writable mapping for the consumer_pos only */
269 		if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
270 			return -EPERM;
271 	} else {
272 		vm_flags_clear(vma, VM_MAYWRITE);
273 	}
274 	/* remap_vmalloc_range() checks size and offset constraints */
275 	return remap_vmalloc_range(vma, rb_map->rb,
276 				   vma->vm_pgoff + RINGBUF_PGOFF);
277 }
278 
279 static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma)
280 {
281 	struct bpf_ringbuf_map *rb_map;
282 
283 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
284 
285 	if (vma->vm_flags & VM_WRITE) {
286 		if (vma->vm_pgoff == 0)
287 			/* Disallow writable mappings to the consumer pointer,
288 			 * and allow writable mappings to both the producer
289 			 * position, and the ring buffer data itself.
290 			 */
291 			return -EPERM;
292 	} else {
293 		vm_flags_clear(vma, VM_MAYWRITE);
294 	}
295 	/* remap_vmalloc_range() checks size and offset constraints */
296 	return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF);
297 }
298 
299 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
300 {
301 	unsigned long cons_pos, prod_pos;
302 
303 	cons_pos = smp_load_acquire(&rb->consumer_pos);
304 	prod_pos = smp_load_acquire(&rb->producer_pos);
305 	return prod_pos - cons_pos;
306 }
307 
308 static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb)
309 {
310 	return rb->mask + 1;
311 }
312 
313 static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp,
314 				      struct poll_table_struct *pts)
315 {
316 	struct bpf_ringbuf_map *rb_map;
317 
318 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
319 	poll_wait(filp, &rb_map->rb->waitq, pts);
320 
321 	if (ringbuf_avail_data_sz(rb_map->rb))
322 		return EPOLLIN | EPOLLRDNORM;
323 	return 0;
324 }
325 
326 static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp,
327 				      struct poll_table_struct *pts)
328 {
329 	struct bpf_ringbuf_map *rb_map;
330 
331 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
332 	poll_wait(filp, &rb_map->rb->waitq, pts);
333 
334 	if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb))
335 		return EPOLLOUT | EPOLLWRNORM;
336 	return 0;
337 }
338 
339 static u64 ringbuf_map_mem_usage(const struct bpf_map *map)
340 {
341 	struct bpf_ringbuf *rb;
342 	int nr_data_pages;
343 	int nr_meta_pages;
344 	u64 usage = sizeof(struct bpf_ringbuf_map);
345 
346 	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
347 	usage += (u64)rb->nr_pages << PAGE_SHIFT;
348 	nr_meta_pages = RINGBUF_NR_META_PAGES;
349 	nr_data_pages = map->max_entries >> PAGE_SHIFT;
350 	usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *);
351 	return usage;
352 }
353 
354 BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
355 const struct bpf_map_ops ringbuf_map_ops = {
356 	.map_meta_equal = bpf_map_meta_equal,
357 	.map_alloc = ringbuf_map_alloc,
358 	.map_free = ringbuf_map_free,
359 	.map_mmap = ringbuf_map_mmap_kern,
360 	.map_poll = ringbuf_map_poll_kern,
361 	.map_lookup_elem = ringbuf_map_lookup_elem,
362 	.map_update_elem = ringbuf_map_update_elem,
363 	.map_delete_elem = ringbuf_map_delete_elem,
364 	.map_get_next_key = ringbuf_map_get_next_key,
365 	.map_mem_usage = ringbuf_map_mem_usage,
366 	.map_btf_id = &ringbuf_map_btf_ids[0],
367 };
368 
369 BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
370 const struct bpf_map_ops user_ringbuf_map_ops = {
371 	.map_meta_equal = bpf_map_meta_equal,
372 	.map_alloc = ringbuf_map_alloc,
373 	.map_free = ringbuf_map_free,
374 	.map_mmap = ringbuf_map_mmap_user,
375 	.map_poll = ringbuf_map_poll_user,
376 	.map_lookup_elem = ringbuf_map_lookup_elem,
377 	.map_update_elem = ringbuf_map_update_elem,
378 	.map_delete_elem = ringbuf_map_delete_elem,
379 	.map_get_next_key = ringbuf_map_get_next_key,
380 	.map_mem_usage = ringbuf_map_mem_usage,
381 	.map_btf_id = &user_ringbuf_map_btf_ids[0],
382 };
383 
384 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
385  * calculate offset from record metadata to ring buffer in pages, rounded
386  * down. This page offset is stored as part of record metadata and allows to
387  * restore struct bpf_ringbuf * from record pointer. This page offset is
388  * stored at offset 4 of record metadata header.
389  */
390 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
391 				     struct bpf_ringbuf_hdr *hdr)
392 {
393 	return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
394 }
395 
396 /* Given pointer to ring buffer record header, restore pointer to struct
397  * bpf_ringbuf itself by using page offset stored at offset 4
398  */
399 static struct bpf_ringbuf *
400 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
401 {
402 	unsigned long addr = (unsigned long)(void *)hdr;
403 	unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
404 
405 	return (void*)((addr & PAGE_MASK) - off);
406 }
407 
408 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
409 {
410 	unsigned long cons_pos, prod_pos, new_prod_pos, pend_pos, flags;
411 	struct bpf_ringbuf_hdr *hdr;
412 	u32 len, pg_off, tmp_size, hdr_len;
413 
414 	if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
415 		return NULL;
416 
417 	len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
418 	if (len > ringbuf_total_data_sz(rb))
419 		return NULL;
420 
421 	cons_pos = smp_load_acquire(&rb->consumer_pos);
422 
423 	if (in_nmi()) {
424 		if (!spin_trylock_irqsave(&rb->spinlock, flags))
425 			return NULL;
426 	} else {
427 		spin_lock_irqsave(&rb->spinlock, flags);
428 	}
429 
430 	pend_pos = rb->pending_pos;
431 	prod_pos = rb->producer_pos;
432 	new_prod_pos = prod_pos + len;
433 
434 	while (pend_pos < prod_pos) {
435 		hdr = (void *)rb->data + (pend_pos & rb->mask);
436 		hdr_len = READ_ONCE(hdr->len);
437 		if (hdr_len & BPF_RINGBUF_BUSY_BIT)
438 			break;
439 		tmp_size = hdr_len & ~BPF_RINGBUF_DISCARD_BIT;
440 		tmp_size = round_up(tmp_size + BPF_RINGBUF_HDR_SZ, 8);
441 		pend_pos += tmp_size;
442 	}
443 	rb->pending_pos = pend_pos;
444 
445 	/* check for out of ringbuf space:
446 	 * - by ensuring producer position doesn't advance more than
447 	 *   (ringbuf_size - 1) ahead
448 	 * - by ensuring oldest not yet committed record until newest
449 	 *   record does not span more than (ringbuf_size - 1)
450 	 */
451 	if (new_prod_pos - cons_pos > rb->mask ||
452 	    new_prod_pos - pend_pos > rb->mask) {
453 		spin_unlock_irqrestore(&rb->spinlock, flags);
454 		return NULL;
455 	}
456 
457 	hdr = (void *)rb->data + (prod_pos & rb->mask);
458 	pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
459 	hdr->len = size | BPF_RINGBUF_BUSY_BIT;
460 	hdr->pg_off = pg_off;
461 
462 	/* pairs with consumer's smp_load_acquire() */
463 	smp_store_release(&rb->producer_pos, new_prod_pos);
464 
465 	spin_unlock_irqrestore(&rb->spinlock, flags);
466 
467 	return (void *)hdr + BPF_RINGBUF_HDR_SZ;
468 }
469 
470 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
471 {
472 	struct bpf_ringbuf_map *rb_map;
473 
474 	if (unlikely(flags))
475 		return 0;
476 
477 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
478 	return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
479 }
480 
481 const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
482 	.func		= bpf_ringbuf_reserve,
483 	.ret_type	= RET_PTR_TO_RINGBUF_MEM_OR_NULL,
484 	.arg1_type	= ARG_CONST_MAP_PTR,
485 	.arg2_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
486 	.arg3_type	= ARG_ANYTHING,
487 };
488 
489 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
490 {
491 	unsigned long rec_pos, cons_pos;
492 	struct bpf_ringbuf_hdr *hdr;
493 	struct bpf_ringbuf *rb;
494 	u32 new_len;
495 
496 	hdr = sample - BPF_RINGBUF_HDR_SZ;
497 	rb = bpf_ringbuf_restore_from_rec(hdr);
498 	new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
499 	if (discard)
500 		new_len |= BPF_RINGBUF_DISCARD_BIT;
501 
502 	/* update record header with correct final size prefix */
503 	xchg(&hdr->len, new_len);
504 
505 	/* if consumer caught up and is waiting for our record, notify about
506 	 * new data availability
507 	 */
508 	rec_pos = (void *)hdr - (void *)rb->data;
509 	cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
510 
511 	if (flags & BPF_RB_FORCE_WAKEUP)
512 		irq_work_queue(&rb->work);
513 	else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
514 		irq_work_queue(&rb->work);
515 }
516 
517 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
518 {
519 	bpf_ringbuf_commit(sample, flags, false /* discard */);
520 	return 0;
521 }
522 
523 const struct bpf_func_proto bpf_ringbuf_submit_proto = {
524 	.func		= bpf_ringbuf_submit,
525 	.ret_type	= RET_VOID,
526 	.arg1_type	= ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
527 	.arg2_type	= ARG_ANYTHING,
528 };
529 
530 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
531 {
532 	bpf_ringbuf_commit(sample, flags, true /* discard */);
533 	return 0;
534 }
535 
536 const struct bpf_func_proto bpf_ringbuf_discard_proto = {
537 	.func		= bpf_ringbuf_discard,
538 	.ret_type	= RET_VOID,
539 	.arg1_type	= ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
540 	.arg2_type	= ARG_ANYTHING,
541 };
542 
543 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
544 	   u64, flags)
545 {
546 	struct bpf_ringbuf_map *rb_map;
547 	void *rec;
548 
549 	if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
550 		return -EINVAL;
551 
552 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
553 	rec = __bpf_ringbuf_reserve(rb_map->rb, size);
554 	if (!rec)
555 		return -EAGAIN;
556 
557 	memcpy(rec, data, size);
558 	bpf_ringbuf_commit(rec, flags, false /* discard */);
559 	return 0;
560 }
561 
562 const struct bpf_func_proto bpf_ringbuf_output_proto = {
563 	.func		= bpf_ringbuf_output,
564 	.ret_type	= RET_INTEGER,
565 	.arg1_type	= ARG_CONST_MAP_PTR,
566 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
567 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
568 	.arg4_type	= ARG_ANYTHING,
569 };
570 
571 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
572 {
573 	struct bpf_ringbuf *rb;
574 
575 	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
576 
577 	switch (flags) {
578 	case BPF_RB_AVAIL_DATA:
579 		return ringbuf_avail_data_sz(rb);
580 	case BPF_RB_RING_SIZE:
581 		return ringbuf_total_data_sz(rb);
582 	case BPF_RB_CONS_POS:
583 		return smp_load_acquire(&rb->consumer_pos);
584 	case BPF_RB_PROD_POS:
585 		return smp_load_acquire(&rb->producer_pos);
586 	default:
587 		return 0;
588 	}
589 }
590 
591 const struct bpf_func_proto bpf_ringbuf_query_proto = {
592 	.func		= bpf_ringbuf_query,
593 	.ret_type	= RET_INTEGER,
594 	.arg1_type	= ARG_CONST_MAP_PTR,
595 	.arg2_type	= ARG_ANYTHING,
596 };
597 
598 BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags,
599 	   struct bpf_dynptr_kern *, ptr)
600 {
601 	struct bpf_ringbuf_map *rb_map;
602 	void *sample;
603 	int err;
604 
605 	if (unlikely(flags)) {
606 		bpf_dynptr_set_null(ptr);
607 		return -EINVAL;
608 	}
609 
610 	err = bpf_dynptr_check_size(size);
611 	if (err) {
612 		bpf_dynptr_set_null(ptr);
613 		return err;
614 	}
615 
616 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
617 
618 	sample = __bpf_ringbuf_reserve(rb_map->rb, size);
619 	if (!sample) {
620 		bpf_dynptr_set_null(ptr);
621 		return -EINVAL;
622 	}
623 
624 	bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size);
625 
626 	return 0;
627 }
628 
629 const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = {
630 	.func		= bpf_ringbuf_reserve_dynptr,
631 	.ret_type	= RET_INTEGER,
632 	.arg1_type	= ARG_CONST_MAP_PTR,
633 	.arg2_type	= ARG_ANYTHING,
634 	.arg3_type	= ARG_ANYTHING,
635 	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT,
636 };
637 
638 BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
639 {
640 	if (!ptr->data)
641 		return 0;
642 
643 	bpf_ringbuf_commit(ptr->data, flags, false /* discard */);
644 
645 	bpf_dynptr_set_null(ptr);
646 
647 	return 0;
648 }
649 
650 const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = {
651 	.func		= bpf_ringbuf_submit_dynptr,
652 	.ret_type	= RET_VOID,
653 	.arg1_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
654 	.arg2_type	= ARG_ANYTHING,
655 };
656 
657 BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
658 {
659 	if (!ptr->data)
660 		return 0;
661 
662 	bpf_ringbuf_commit(ptr->data, flags, true /* discard */);
663 
664 	bpf_dynptr_set_null(ptr);
665 
666 	return 0;
667 }
668 
669 const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = {
670 	.func		= bpf_ringbuf_discard_dynptr,
671 	.ret_type	= RET_VOID,
672 	.arg1_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
673 	.arg2_type	= ARG_ANYTHING,
674 };
675 
676 static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size)
677 {
678 	int err;
679 	u32 hdr_len, sample_len, total_len, flags, *hdr;
680 	u64 cons_pos, prod_pos;
681 
682 	/* Synchronizes with smp_store_release() in user-space producer. */
683 	prod_pos = smp_load_acquire(&rb->producer_pos);
684 	if (prod_pos % 8)
685 		return -EINVAL;
686 
687 	/* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */
688 	cons_pos = smp_load_acquire(&rb->consumer_pos);
689 	if (cons_pos >= prod_pos)
690 		return -ENODATA;
691 
692 	hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask));
693 	/* Synchronizes with smp_store_release() in user-space producer. */
694 	hdr_len = smp_load_acquire(hdr);
695 	flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT);
696 	sample_len = hdr_len & ~flags;
697 	total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8);
698 
699 	/* The sample must fit within the region advertised by the producer position. */
700 	if (total_len > prod_pos - cons_pos)
701 		return -EINVAL;
702 
703 	/* The sample must fit within the data region of the ring buffer. */
704 	if (total_len > ringbuf_total_data_sz(rb))
705 		return -E2BIG;
706 
707 	/* The sample must fit into a struct bpf_dynptr. */
708 	err = bpf_dynptr_check_size(sample_len);
709 	if (err)
710 		return -E2BIG;
711 
712 	if (flags & BPF_RINGBUF_DISCARD_BIT) {
713 		/* If the discard bit is set, the sample should be skipped.
714 		 *
715 		 * Update the consumer pos, and return -EAGAIN so the caller
716 		 * knows to skip this sample and try to read the next one.
717 		 */
718 		smp_store_release(&rb->consumer_pos, cons_pos + total_len);
719 		return -EAGAIN;
720 	}
721 
722 	if (flags & BPF_RINGBUF_BUSY_BIT)
723 		return -ENODATA;
724 
725 	*sample = (void *)((uintptr_t)rb->data +
726 			   (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask));
727 	*size = sample_len;
728 	return 0;
729 }
730 
731 static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags)
732 {
733 	u64 consumer_pos;
734 	u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
735 
736 	/* Using smp_load_acquire() is unnecessary here, as the busy-bit
737 	 * prevents another task from writing to consumer_pos after it was read
738 	 * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek().
739 	 */
740 	consumer_pos = rb->consumer_pos;
741 	 /* Synchronizes with smp_load_acquire() in user-space producer. */
742 	smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size);
743 }
744 
745 BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map,
746 	   void *, callback_fn, void *, callback_ctx, u64, flags)
747 {
748 	struct bpf_ringbuf *rb;
749 	long samples, discarded_samples = 0, ret = 0;
750 	bpf_callback_t callback = (bpf_callback_t)callback_fn;
751 	u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP;
752 	int busy = 0;
753 
754 	if (unlikely(flags & ~wakeup_flags))
755 		return -EINVAL;
756 
757 	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
758 
759 	/* If another consumer is already consuming a sample, wait for them to finish. */
760 	if (!atomic_try_cmpxchg(&rb->busy, &busy, 1))
761 		return -EBUSY;
762 
763 	for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) {
764 		int err;
765 		u32 size;
766 		void *sample;
767 		struct bpf_dynptr_kern dynptr;
768 
769 		err = __bpf_user_ringbuf_peek(rb, &sample, &size);
770 		if (err) {
771 			if (err == -ENODATA) {
772 				break;
773 			} else if (err == -EAGAIN) {
774 				discarded_samples++;
775 				continue;
776 			} else {
777 				ret = err;
778 				goto schedule_work_return;
779 			}
780 		}
781 
782 		bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size);
783 		ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0);
784 		__bpf_user_ringbuf_sample_release(rb, size, flags);
785 	}
786 	ret = samples - discarded_samples;
787 
788 schedule_work_return:
789 	/* Prevent the clearing of the busy-bit from being reordered before the
790 	 * storing of any rb consumer or producer positions.
791 	 */
792 	atomic_set_release(&rb->busy, 0);
793 
794 	if (flags & BPF_RB_FORCE_WAKEUP)
795 		irq_work_queue(&rb->work);
796 	else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0)
797 		irq_work_queue(&rb->work);
798 	return ret;
799 }
800 
801 const struct bpf_func_proto bpf_user_ringbuf_drain_proto = {
802 	.func		= bpf_user_ringbuf_drain,
803 	.ret_type	= RET_INTEGER,
804 	.arg1_type	= ARG_CONST_MAP_PTR,
805 	.arg2_type	= ARG_PTR_TO_FUNC,
806 	.arg3_type	= ARG_PTR_TO_STACK_OR_NULL,
807 	.arg4_type	= ARG_ANYTHING,
808 };
809