1 #include <linux/bpf.h> 2 #include <linux/btf.h> 3 #include <linux/err.h> 4 #include <linux/irq_work.h> 5 #include <linux/slab.h> 6 #include <linux/filter.h> 7 #include <linux/mm.h> 8 #include <linux/vmalloc.h> 9 #include <linux/wait.h> 10 #include <linux/poll.h> 11 #include <linux/kmemleak.h> 12 #include <uapi/linux/btf.h> 13 #include <linux/btf_ids.h> 14 15 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE) 16 17 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */ 18 #define RINGBUF_PGOFF \ 19 (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT) 20 /* consumer page and producer page */ 21 #define RINGBUF_POS_PAGES 2 22 #define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES) 23 24 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4) 25 26 struct bpf_ringbuf { 27 wait_queue_head_t waitq; 28 struct irq_work work; 29 u64 mask; 30 struct page **pages; 31 int nr_pages; 32 raw_spinlock_t spinlock ____cacheline_aligned_in_smp; 33 /* For user-space producer ring buffers, an atomic_t busy bit is used 34 * to synchronize access to the ring buffers in the kernel, rather than 35 * the spinlock that is used for kernel-producer ring buffers. This is 36 * done because the ring buffer must hold a lock across a BPF program's 37 * callback: 38 * 39 * __bpf_user_ringbuf_peek() // lock acquired 40 * -> program callback_fn() 41 * -> __bpf_user_ringbuf_sample_release() // lock released 42 * 43 * It is unsafe and incorrect to hold an IRQ spinlock across what could 44 * be a long execution window, so we instead simply disallow concurrent 45 * access to the ring buffer by kernel consumers, and return -EBUSY from 46 * __bpf_user_ringbuf_peek() if the busy bit is held by another task. 47 */ 48 atomic_t busy ____cacheline_aligned_in_smp; 49 /* Consumer and producer counters are put into separate pages to 50 * allow each position to be mapped with different permissions. 51 * This prevents a user-space application from modifying the 52 * position and ruining in-kernel tracking. The permissions of the 53 * pages depend on who is producing samples: user-space or the 54 * kernel. Note that the pending counter is placed in the same 55 * page as the producer, so that it shares the same cache line. 56 * 57 * Kernel-producer 58 * --------------- 59 * The producer position and data pages are mapped as r/o in 60 * userspace. For this approach, bits in the header of samples are 61 * used to signal to user-space, and to other producers, whether a 62 * sample is currently being written. 63 * 64 * User-space producer 65 * ------------------- 66 * Only the page containing the consumer position is mapped r/o in 67 * user-space. User-space producers also use bits of the header to 68 * communicate to the kernel, but the kernel must carefully check and 69 * validate each sample to ensure that they're correctly formatted, and 70 * fully contained within the ring buffer. 71 */ 72 unsigned long consumer_pos __aligned(PAGE_SIZE); 73 unsigned long producer_pos __aligned(PAGE_SIZE); 74 unsigned long pending_pos; 75 char data[] __aligned(PAGE_SIZE); 76 }; 77 78 struct bpf_ringbuf_map { 79 struct bpf_map map; 80 struct bpf_ringbuf *rb; 81 }; 82 83 /* 8-byte ring buffer record header structure */ 84 struct bpf_ringbuf_hdr { 85 u32 len; 86 u32 pg_off; 87 }; 88 89 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node) 90 { 91 const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL | 92 __GFP_NOWARN | __GFP_ZERO; 93 int nr_meta_pages = RINGBUF_NR_META_PAGES; 94 int nr_data_pages = data_sz >> PAGE_SHIFT; 95 int nr_pages = nr_meta_pages + nr_data_pages; 96 struct page **pages, *page; 97 struct bpf_ringbuf *rb; 98 size_t array_size; 99 int i; 100 101 /* Each data page is mapped twice to allow "virtual" 102 * continuous read of samples wrapping around the end of ring 103 * buffer area: 104 * ------------------------------------------------------ 105 * | meta pages | real data pages | same data pages | 106 * ------------------------------------------------------ 107 * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 | 108 * ------------------------------------------------------ 109 * | | TA DA | TA DA | 110 * ------------------------------------------------------ 111 * ^^^^^^^ 112 * | 113 * Here, no need to worry about special handling of wrapped-around 114 * data due to double-mapped data pages. This works both in kernel and 115 * when mmap()'ed in user-space, simplifying both kernel and 116 * user-space implementations significantly. 117 */ 118 array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages); 119 pages = bpf_map_area_alloc(array_size, numa_node); 120 if (!pages) 121 return NULL; 122 123 for (i = 0; i < nr_pages; i++) { 124 page = alloc_pages_node(numa_node, flags, 0); 125 if (!page) { 126 nr_pages = i; 127 goto err_free_pages; 128 } 129 pages[i] = page; 130 if (i >= nr_meta_pages) 131 pages[nr_data_pages + i] = page; 132 } 133 134 rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages, 135 VM_MAP | VM_USERMAP, PAGE_KERNEL); 136 if (rb) { 137 kmemleak_not_leak(pages); 138 rb->pages = pages; 139 rb->nr_pages = nr_pages; 140 return rb; 141 } 142 143 err_free_pages: 144 for (i = 0; i < nr_pages; i++) 145 __free_page(pages[i]); 146 bpf_map_area_free(pages); 147 return NULL; 148 } 149 150 static void bpf_ringbuf_notify(struct irq_work *work) 151 { 152 struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work); 153 154 wake_up_all(&rb->waitq); 155 } 156 157 /* Maximum size of ring buffer area is limited by 32-bit page offset within 158 * record header, counted in pages. Reserve 8 bits for extensibility, and 159 * take into account few extra pages for consumer/producer pages and 160 * non-mmap()'able parts, the current maximum size would be: 161 * 162 * (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE) 163 * 164 * This gives 64GB limit, which seems plenty for single ring buffer. Now 165 * considering that the maximum value of data_sz is (4GB - 1), there 166 * will be no overflow, so just note the size limit in the comments. 167 */ 168 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node) 169 { 170 struct bpf_ringbuf *rb; 171 172 rb = bpf_ringbuf_area_alloc(data_sz, numa_node); 173 if (!rb) 174 return NULL; 175 176 raw_spin_lock_init(&rb->spinlock); 177 atomic_set(&rb->busy, 0); 178 init_waitqueue_head(&rb->waitq); 179 init_irq_work(&rb->work, bpf_ringbuf_notify); 180 181 rb->mask = data_sz - 1; 182 rb->consumer_pos = 0; 183 rb->producer_pos = 0; 184 rb->pending_pos = 0; 185 186 return rb; 187 } 188 189 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr) 190 { 191 struct bpf_ringbuf_map *rb_map; 192 193 if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK) 194 return ERR_PTR(-EINVAL); 195 196 if (attr->key_size || attr->value_size || 197 !is_power_of_2(attr->max_entries) || 198 !PAGE_ALIGNED(attr->max_entries)) 199 return ERR_PTR(-EINVAL); 200 201 rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE); 202 if (!rb_map) 203 return ERR_PTR(-ENOMEM); 204 205 bpf_map_init_from_attr(&rb_map->map, attr); 206 207 rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node); 208 if (!rb_map->rb) { 209 bpf_map_area_free(rb_map); 210 return ERR_PTR(-ENOMEM); 211 } 212 213 return &rb_map->map; 214 } 215 216 static void bpf_ringbuf_free(struct bpf_ringbuf *rb) 217 { 218 /* copy pages pointer and nr_pages to local variable, as we are going 219 * to unmap rb itself with vunmap() below 220 */ 221 struct page **pages = rb->pages; 222 int i, nr_pages = rb->nr_pages; 223 224 vunmap(rb); 225 for (i = 0; i < nr_pages; i++) 226 __free_page(pages[i]); 227 bpf_map_area_free(pages); 228 } 229 230 static void ringbuf_map_free(struct bpf_map *map) 231 { 232 struct bpf_ringbuf_map *rb_map; 233 234 rb_map = container_of(map, struct bpf_ringbuf_map, map); 235 bpf_ringbuf_free(rb_map->rb); 236 bpf_map_area_free(rb_map); 237 } 238 239 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key) 240 { 241 return ERR_PTR(-ENOTSUPP); 242 } 243 244 static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value, 245 u64 flags) 246 { 247 return -ENOTSUPP; 248 } 249 250 static long ringbuf_map_delete_elem(struct bpf_map *map, void *key) 251 { 252 return -ENOTSUPP; 253 } 254 255 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key, 256 void *next_key) 257 { 258 return -ENOTSUPP; 259 } 260 261 static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma) 262 { 263 struct bpf_ringbuf_map *rb_map; 264 265 rb_map = container_of(map, struct bpf_ringbuf_map, map); 266 267 if (vma->vm_flags & VM_WRITE) { 268 /* allow writable mapping for the consumer_pos only */ 269 if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE) 270 return -EPERM; 271 } else { 272 vm_flags_clear(vma, VM_MAYWRITE); 273 } 274 /* remap_vmalloc_range() checks size and offset constraints */ 275 return remap_vmalloc_range(vma, rb_map->rb, 276 vma->vm_pgoff + RINGBUF_PGOFF); 277 } 278 279 static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma) 280 { 281 struct bpf_ringbuf_map *rb_map; 282 283 rb_map = container_of(map, struct bpf_ringbuf_map, map); 284 285 if (vma->vm_flags & VM_WRITE) { 286 if (vma->vm_pgoff == 0) 287 /* Disallow writable mappings to the consumer pointer, 288 * and allow writable mappings to both the producer 289 * position, and the ring buffer data itself. 290 */ 291 return -EPERM; 292 } else { 293 vm_flags_clear(vma, VM_MAYWRITE); 294 } 295 /* remap_vmalloc_range() checks size and offset constraints */ 296 return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF); 297 } 298 299 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb) 300 { 301 unsigned long cons_pos, prod_pos; 302 303 cons_pos = smp_load_acquire(&rb->consumer_pos); 304 prod_pos = smp_load_acquire(&rb->producer_pos); 305 return prod_pos - cons_pos; 306 } 307 308 static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb) 309 { 310 return rb->mask + 1; 311 } 312 313 static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp, 314 struct poll_table_struct *pts) 315 { 316 struct bpf_ringbuf_map *rb_map; 317 318 rb_map = container_of(map, struct bpf_ringbuf_map, map); 319 poll_wait(filp, &rb_map->rb->waitq, pts); 320 321 if (ringbuf_avail_data_sz(rb_map->rb)) 322 return EPOLLIN | EPOLLRDNORM; 323 return 0; 324 } 325 326 static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp, 327 struct poll_table_struct *pts) 328 { 329 struct bpf_ringbuf_map *rb_map; 330 331 rb_map = container_of(map, struct bpf_ringbuf_map, map); 332 poll_wait(filp, &rb_map->rb->waitq, pts); 333 334 if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb)) 335 return EPOLLOUT | EPOLLWRNORM; 336 return 0; 337 } 338 339 static u64 ringbuf_map_mem_usage(const struct bpf_map *map) 340 { 341 struct bpf_ringbuf *rb; 342 int nr_data_pages; 343 int nr_meta_pages; 344 u64 usage = sizeof(struct bpf_ringbuf_map); 345 346 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 347 usage += (u64)rb->nr_pages << PAGE_SHIFT; 348 nr_meta_pages = RINGBUF_NR_META_PAGES; 349 nr_data_pages = map->max_entries >> PAGE_SHIFT; 350 usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *); 351 return usage; 352 } 353 354 BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map) 355 const struct bpf_map_ops ringbuf_map_ops = { 356 .map_meta_equal = bpf_map_meta_equal, 357 .map_alloc = ringbuf_map_alloc, 358 .map_free = ringbuf_map_free, 359 .map_mmap = ringbuf_map_mmap_kern, 360 .map_poll = ringbuf_map_poll_kern, 361 .map_lookup_elem = ringbuf_map_lookup_elem, 362 .map_update_elem = ringbuf_map_update_elem, 363 .map_delete_elem = ringbuf_map_delete_elem, 364 .map_get_next_key = ringbuf_map_get_next_key, 365 .map_mem_usage = ringbuf_map_mem_usage, 366 .map_btf_id = &ringbuf_map_btf_ids[0], 367 }; 368 369 BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map) 370 const struct bpf_map_ops user_ringbuf_map_ops = { 371 .map_meta_equal = bpf_map_meta_equal, 372 .map_alloc = ringbuf_map_alloc, 373 .map_free = ringbuf_map_free, 374 .map_mmap = ringbuf_map_mmap_user, 375 .map_poll = ringbuf_map_poll_user, 376 .map_lookup_elem = ringbuf_map_lookup_elem, 377 .map_update_elem = ringbuf_map_update_elem, 378 .map_delete_elem = ringbuf_map_delete_elem, 379 .map_get_next_key = ringbuf_map_get_next_key, 380 .map_mem_usage = ringbuf_map_mem_usage, 381 .map_btf_id = &user_ringbuf_map_btf_ids[0], 382 }; 383 384 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself, 385 * calculate offset from record metadata to ring buffer in pages, rounded 386 * down. This page offset is stored as part of record metadata and allows to 387 * restore struct bpf_ringbuf * from record pointer. This page offset is 388 * stored at offset 4 of record metadata header. 389 */ 390 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb, 391 struct bpf_ringbuf_hdr *hdr) 392 { 393 return ((void *)hdr - (void *)rb) >> PAGE_SHIFT; 394 } 395 396 /* Given pointer to ring buffer record header, restore pointer to struct 397 * bpf_ringbuf itself by using page offset stored at offset 4 398 */ 399 static struct bpf_ringbuf * 400 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr) 401 { 402 unsigned long addr = (unsigned long)(void *)hdr; 403 unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT; 404 405 return (void*)((addr & PAGE_MASK) - off); 406 } 407 408 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size) 409 { 410 unsigned long cons_pos, prod_pos, new_prod_pos, pend_pos, flags; 411 struct bpf_ringbuf_hdr *hdr; 412 u32 len, pg_off, tmp_size, hdr_len; 413 414 if (unlikely(size > RINGBUF_MAX_RECORD_SZ)) 415 return NULL; 416 417 len = round_up(size + BPF_RINGBUF_HDR_SZ, 8); 418 if (len > ringbuf_total_data_sz(rb)) 419 return NULL; 420 421 cons_pos = smp_load_acquire(&rb->consumer_pos); 422 423 if (in_nmi()) { 424 if (!raw_spin_trylock_irqsave(&rb->spinlock, flags)) 425 return NULL; 426 } else { 427 raw_spin_lock_irqsave(&rb->spinlock, flags); 428 } 429 430 pend_pos = rb->pending_pos; 431 prod_pos = rb->producer_pos; 432 new_prod_pos = prod_pos + len; 433 434 while (pend_pos < prod_pos) { 435 hdr = (void *)rb->data + (pend_pos & rb->mask); 436 hdr_len = READ_ONCE(hdr->len); 437 if (hdr_len & BPF_RINGBUF_BUSY_BIT) 438 break; 439 tmp_size = hdr_len & ~BPF_RINGBUF_DISCARD_BIT; 440 tmp_size = round_up(tmp_size + BPF_RINGBUF_HDR_SZ, 8); 441 pend_pos += tmp_size; 442 } 443 rb->pending_pos = pend_pos; 444 445 /* check for out of ringbuf space: 446 * - by ensuring producer position doesn't advance more than 447 * (ringbuf_size - 1) ahead 448 * - by ensuring oldest not yet committed record until newest 449 * record does not span more than (ringbuf_size - 1) 450 */ 451 if (new_prod_pos - cons_pos > rb->mask || 452 new_prod_pos - pend_pos > rb->mask) { 453 raw_spin_unlock_irqrestore(&rb->spinlock, flags); 454 return NULL; 455 } 456 457 hdr = (void *)rb->data + (prod_pos & rb->mask); 458 pg_off = bpf_ringbuf_rec_pg_off(rb, hdr); 459 hdr->len = size | BPF_RINGBUF_BUSY_BIT; 460 hdr->pg_off = pg_off; 461 462 /* pairs with consumer's smp_load_acquire() */ 463 smp_store_release(&rb->producer_pos, new_prod_pos); 464 465 raw_spin_unlock_irqrestore(&rb->spinlock, flags); 466 467 return (void *)hdr + BPF_RINGBUF_HDR_SZ; 468 } 469 470 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags) 471 { 472 struct bpf_ringbuf_map *rb_map; 473 474 if (unlikely(flags)) 475 return 0; 476 477 rb_map = container_of(map, struct bpf_ringbuf_map, map); 478 return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size); 479 } 480 481 const struct bpf_func_proto bpf_ringbuf_reserve_proto = { 482 .func = bpf_ringbuf_reserve, 483 .ret_type = RET_PTR_TO_RINGBUF_MEM_OR_NULL, 484 .arg1_type = ARG_CONST_MAP_PTR, 485 .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 486 .arg3_type = ARG_ANYTHING, 487 }; 488 489 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard) 490 { 491 unsigned long rec_pos, cons_pos; 492 struct bpf_ringbuf_hdr *hdr; 493 struct bpf_ringbuf *rb; 494 u32 new_len; 495 496 hdr = sample - BPF_RINGBUF_HDR_SZ; 497 rb = bpf_ringbuf_restore_from_rec(hdr); 498 new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT; 499 if (discard) 500 new_len |= BPF_RINGBUF_DISCARD_BIT; 501 502 /* update record header with correct final size prefix */ 503 xchg(&hdr->len, new_len); 504 505 /* if consumer caught up and is waiting for our record, notify about 506 * new data availability 507 */ 508 rec_pos = (void *)hdr - (void *)rb->data; 509 cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask; 510 511 if (flags & BPF_RB_FORCE_WAKEUP) 512 irq_work_queue(&rb->work); 513 else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP)) 514 irq_work_queue(&rb->work); 515 } 516 517 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags) 518 { 519 bpf_ringbuf_commit(sample, flags, false /* discard */); 520 return 0; 521 } 522 523 const struct bpf_func_proto bpf_ringbuf_submit_proto = { 524 .func = bpf_ringbuf_submit, 525 .ret_type = RET_VOID, 526 .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, 527 .arg2_type = ARG_ANYTHING, 528 }; 529 530 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags) 531 { 532 bpf_ringbuf_commit(sample, flags, true /* discard */); 533 return 0; 534 } 535 536 const struct bpf_func_proto bpf_ringbuf_discard_proto = { 537 .func = bpf_ringbuf_discard, 538 .ret_type = RET_VOID, 539 .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, 540 .arg2_type = ARG_ANYTHING, 541 }; 542 543 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size, 544 u64, flags) 545 { 546 struct bpf_ringbuf_map *rb_map; 547 void *rec; 548 549 if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP))) 550 return -EINVAL; 551 552 rb_map = container_of(map, struct bpf_ringbuf_map, map); 553 rec = __bpf_ringbuf_reserve(rb_map->rb, size); 554 if (!rec) 555 return -EAGAIN; 556 557 memcpy(rec, data, size); 558 bpf_ringbuf_commit(rec, flags, false /* discard */); 559 return 0; 560 } 561 562 const struct bpf_func_proto bpf_ringbuf_output_proto = { 563 .func = bpf_ringbuf_output, 564 .ret_type = RET_INTEGER, 565 .arg1_type = ARG_CONST_MAP_PTR, 566 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 567 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 568 .arg4_type = ARG_ANYTHING, 569 }; 570 571 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags) 572 { 573 struct bpf_ringbuf *rb; 574 575 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 576 577 switch (flags) { 578 case BPF_RB_AVAIL_DATA: 579 return ringbuf_avail_data_sz(rb); 580 case BPF_RB_RING_SIZE: 581 return ringbuf_total_data_sz(rb); 582 case BPF_RB_CONS_POS: 583 return smp_load_acquire(&rb->consumer_pos); 584 case BPF_RB_PROD_POS: 585 return smp_load_acquire(&rb->producer_pos); 586 default: 587 return 0; 588 } 589 } 590 591 const struct bpf_func_proto bpf_ringbuf_query_proto = { 592 .func = bpf_ringbuf_query, 593 .ret_type = RET_INTEGER, 594 .arg1_type = ARG_CONST_MAP_PTR, 595 .arg2_type = ARG_ANYTHING, 596 }; 597 598 BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags, 599 struct bpf_dynptr_kern *, ptr) 600 { 601 struct bpf_ringbuf_map *rb_map; 602 void *sample; 603 int err; 604 605 if (unlikely(flags)) { 606 bpf_dynptr_set_null(ptr); 607 return -EINVAL; 608 } 609 610 err = bpf_dynptr_check_size(size); 611 if (err) { 612 bpf_dynptr_set_null(ptr); 613 return err; 614 } 615 616 rb_map = container_of(map, struct bpf_ringbuf_map, map); 617 618 sample = __bpf_ringbuf_reserve(rb_map->rb, size); 619 if (!sample) { 620 bpf_dynptr_set_null(ptr); 621 return -EINVAL; 622 } 623 624 bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size); 625 626 return 0; 627 } 628 629 const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = { 630 .func = bpf_ringbuf_reserve_dynptr, 631 .ret_type = RET_INTEGER, 632 .arg1_type = ARG_CONST_MAP_PTR, 633 .arg2_type = ARG_ANYTHING, 634 .arg3_type = ARG_ANYTHING, 635 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT | MEM_WRITE, 636 }; 637 638 BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) 639 { 640 if (!ptr->data) 641 return 0; 642 643 bpf_ringbuf_commit(ptr->data, flags, false /* discard */); 644 645 bpf_dynptr_set_null(ptr); 646 647 return 0; 648 } 649 650 const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = { 651 .func = bpf_ringbuf_submit_dynptr, 652 .ret_type = RET_VOID, 653 .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, 654 .arg2_type = ARG_ANYTHING, 655 }; 656 657 BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) 658 { 659 if (!ptr->data) 660 return 0; 661 662 bpf_ringbuf_commit(ptr->data, flags, true /* discard */); 663 664 bpf_dynptr_set_null(ptr); 665 666 return 0; 667 } 668 669 const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = { 670 .func = bpf_ringbuf_discard_dynptr, 671 .ret_type = RET_VOID, 672 .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, 673 .arg2_type = ARG_ANYTHING, 674 }; 675 676 static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size) 677 { 678 int err; 679 u32 hdr_len, sample_len, total_len, flags, *hdr; 680 u64 cons_pos, prod_pos; 681 682 /* Synchronizes with smp_store_release() in user-space producer. */ 683 prod_pos = smp_load_acquire(&rb->producer_pos); 684 if (prod_pos % 8) 685 return -EINVAL; 686 687 /* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */ 688 cons_pos = smp_load_acquire(&rb->consumer_pos); 689 if (cons_pos >= prod_pos) 690 return -ENODATA; 691 692 hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask)); 693 /* Synchronizes with smp_store_release() in user-space producer. */ 694 hdr_len = smp_load_acquire(hdr); 695 flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT); 696 sample_len = hdr_len & ~flags; 697 total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8); 698 699 /* The sample must fit within the region advertised by the producer position. */ 700 if (total_len > prod_pos - cons_pos) 701 return -EINVAL; 702 703 /* The sample must fit within the data region of the ring buffer. */ 704 if (total_len > ringbuf_total_data_sz(rb)) 705 return -E2BIG; 706 707 /* The sample must fit into a struct bpf_dynptr. */ 708 err = bpf_dynptr_check_size(sample_len); 709 if (err) 710 return -E2BIG; 711 712 if (flags & BPF_RINGBUF_DISCARD_BIT) { 713 /* If the discard bit is set, the sample should be skipped. 714 * 715 * Update the consumer pos, and return -EAGAIN so the caller 716 * knows to skip this sample and try to read the next one. 717 */ 718 smp_store_release(&rb->consumer_pos, cons_pos + total_len); 719 return -EAGAIN; 720 } 721 722 if (flags & BPF_RINGBUF_BUSY_BIT) 723 return -ENODATA; 724 725 *sample = (void *)((uintptr_t)rb->data + 726 (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask)); 727 *size = sample_len; 728 return 0; 729 } 730 731 static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags) 732 { 733 u64 consumer_pos; 734 u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8); 735 736 /* Using smp_load_acquire() is unnecessary here, as the busy-bit 737 * prevents another task from writing to consumer_pos after it was read 738 * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek(). 739 */ 740 consumer_pos = rb->consumer_pos; 741 /* Synchronizes with smp_load_acquire() in user-space producer. */ 742 smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size); 743 } 744 745 BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map, 746 void *, callback_fn, void *, callback_ctx, u64, flags) 747 { 748 struct bpf_ringbuf *rb; 749 long samples, discarded_samples = 0, ret = 0; 750 bpf_callback_t callback = (bpf_callback_t)callback_fn; 751 u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP; 752 int busy = 0; 753 754 if (unlikely(flags & ~wakeup_flags)) 755 return -EINVAL; 756 757 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 758 759 /* If another consumer is already consuming a sample, wait for them to finish. */ 760 if (!atomic_try_cmpxchg(&rb->busy, &busy, 1)) 761 return -EBUSY; 762 763 for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) { 764 int err; 765 u32 size; 766 void *sample; 767 struct bpf_dynptr_kern dynptr; 768 769 err = __bpf_user_ringbuf_peek(rb, &sample, &size); 770 if (err) { 771 if (err == -ENODATA) { 772 break; 773 } else if (err == -EAGAIN) { 774 discarded_samples++; 775 continue; 776 } else { 777 ret = err; 778 goto schedule_work_return; 779 } 780 } 781 782 bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size); 783 ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0); 784 __bpf_user_ringbuf_sample_release(rb, size, flags); 785 } 786 ret = samples - discarded_samples; 787 788 schedule_work_return: 789 /* Prevent the clearing of the busy-bit from being reordered before the 790 * storing of any rb consumer or producer positions. 791 */ 792 atomic_set_release(&rb->busy, 0); 793 794 if (flags & BPF_RB_FORCE_WAKEUP) 795 irq_work_queue(&rb->work); 796 else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0) 797 irq_work_queue(&rb->work); 798 return ret; 799 } 800 801 const struct bpf_func_proto bpf_user_ringbuf_drain_proto = { 802 .func = bpf_user_ringbuf_drain, 803 .ret_type = RET_INTEGER, 804 .arg1_type = ARG_CONST_MAP_PTR, 805 .arg2_type = ARG_PTR_TO_FUNC, 806 .arg3_type = ARG_PTR_TO_STACK_OR_NULL, 807 .arg4_type = ARG_ANYTHING, 808 }; 809