1 #include <linux/bpf.h> 2 #include <linux/btf.h> 3 #include <linux/err.h> 4 #include <linux/irq_work.h> 5 #include <linux/slab.h> 6 #include <linux/filter.h> 7 #include <linux/mm.h> 8 #include <linux/vmalloc.h> 9 #include <linux/wait.h> 10 #include <linux/poll.h> 11 #include <uapi/linux/btf.h> 12 13 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE) 14 15 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */ 16 #define RINGBUF_PGOFF \ 17 (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT) 18 /* consumer page and producer page */ 19 #define RINGBUF_POS_PAGES 2 20 21 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4) 22 23 /* Maximum size of ring buffer area is limited by 32-bit page offset within 24 * record header, counted in pages. Reserve 8 bits for extensibility, and take 25 * into account few extra pages for consumer/producer pages and 26 * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single 27 * ring buffer. 28 */ 29 #define RINGBUF_MAX_DATA_SZ \ 30 (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE) 31 32 struct bpf_ringbuf { 33 wait_queue_head_t waitq; 34 struct irq_work work; 35 u64 mask; 36 struct page **pages; 37 int nr_pages; 38 spinlock_t spinlock ____cacheline_aligned_in_smp; 39 /* Consumer and producer counters are put into separate pages to allow 40 * mapping consumer page as r/w, but restrict producer page to r/o. 41 * This protects producer position from being modified by user-space 42 * application and ruining in-kernel position tracking. 43 */ 44 unsigned long consumer_pos __aligned(PAGE_SIZE); 45 unsigned long producer_pos __aligned(PAGE_SIZE); 46 char data[] __aligned(PAGE_SIZE); 47 }; 48 49 struct bpf_ringbuf_map { 50 struct bpf_map map; 51 struct bpf_map_memory memory; 52 struct bpf_ringbuf *rb; 53 }; 54 55 /* 8-byte ring buffer record header structure */ 56 struct bpf_ringbuf_hdr { 57 u32 len; 58 u32 pg_off; 59 }; 60 61 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node) 62 { 63 const gfp_t flags = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | 64 __GFP_ZERO; 65 int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES; 66 int nr_data_pages = data_sz >> PAGE_SHIFT; 67 int nr_pages = nr_meta_pages + nr_data_pages; 68 struct page **pages, *page; 69 struct bpf_ringbuf *rb; 70 size_t array_size; 71 int i; 72 73 /* Each data page is mapped twice to allow "virtual" 74 * continuous read of samples wrapping around the end of ring 75 * buffer area: 76 * ------------------------------------------------------ 77 * | meta pages | real data pages | same data pages | 78 * ------------------------------------------------------ 79 * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 | 80 * ------------------------------------------------------ 81 * | | TA DA | TA DA | 82 * ------------------------------------------------------ 83 * ^^^^^^^ 84 * | 85 * Here, no need to worry about special handling of wrapped-around 86 * data due to double-mapped data pages. This works both in kernel and 87 * when mmap()'ed in user-space, simplifying both kernel and 88 * user-space implementations significantly. 89 */ 90 array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages); 91 if (array_size > PAGE_SIZE) 92 pages = vmalloc_node(array_size, numa_node); 93 else 94 pages = kmalloc_node(array_size, flags, numa_node); 95 if (!pages) 96 return NULL; 97 98 for (i = 0; i < nr_pages; i++) { 99 page = alloc_pages_node(numa_node, flags, 0); 100 if (!page) { 101 nr_pages = i; 102 goto err_free_pages; 103 } 104 pages[i] = page; 105 if (i >= nr_meta_pages) 106 pages[nr_data_pages + i] = page; 107 } 108 109 rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages, 110 VM_ALLOC | VM_USERMAP, PAGE_KERNEL); 111 if (rb) { 112 rb->pages = pages; 113 rb->nr_pages = nr_pages; 114 return rb; 115 } 116 117 err_free_pages: 118 for (i = 0; i < nr_pages; i++) 119 __free_page(pages[i]); 120 kvfree(pages); 121 return NULL; 122 } 123 124 static void bpf_ringbuf_notify(struct irq_work *work) 125 { 126 struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work); 127 128 wake_up_all(&rb->waitq); 129 } 130 131 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node) 132 { 133 struct bpf_ringbuf *rb; 134 135 if (!data_sz || !PAGE_ALIGNED(data_sz)) 136 return ERR_PTR(-EINVAL); 137 138 #ifdef CONFIG_64BIT 139 /* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */ 140 if (data_sz > RINGBUF_MAX_DATA_SZ) 141 return ERR_PTR(-E2BIG); 142 #endif 143 144 rb = bpf_ringbuf_area_alloc(data_sz, numa_node); 145 if (!rb) 146 return ERR_PTR(-ENOMEM); 147 148 spin_lock_init(&rb->spinlock); 149 init_waitqueue_head(&rb->waitq); 150 init_irq_work(&rb->work, bpf_ringbuf_notify); 151 152 rb->mask = data_sz - 1; 153 rb->consumer_pos = 0; 154 rb->producer_pos = 0; 155 156 return rb; 157 } 158 159 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr) 160 { 161 struct bpf_ringbuf_map *rb_map; 162 u64 cost; 163 int err; 164 165 if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK) 166 return ERR_PTR(-EINVAL); 167 168 if (attr->key_size || attr->value_size || 169 attr->max_entries == 0 || !PAGE_ALIGNED(attr->max_entries)) 170 return ERR_PTR(-EINVAL); 171 172 rb_map = kzalloc(sizeof(*rb_map), GFP_USER); 173 if (!rb_map) 174 return ERR_PTR(-ENOMEM); 175 176 bpf_map_init_from_attr(&rb_map->map, attr); 177 178 cost = sizeof(struct bpf_ringbuf_map) + 179 sizeof(struct bpf_ringbuf) + 180 attr->max_entries; 181 err = bpf_map_charge_init(&rb_map->map.memory, cost); 182 if (err) 183 goto err_free_map; 184 185 rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node); 186 if (IS_ERR(rb_map->rb)) { 187 err = PTR_ERR(rb_map->rb); 188 goto err_uncharge; 189 } 190 191 return &rb_map->map; 192 193 err_uncharge: 194 bpf_map_charge_finish(&rb_map->map.memory); 195 err_free_map: 196 kfree(rb_map); 197 return ERR_PTR(err); 198 } 199 200 static void bpf_ringbuf_free(struct bpf_ringbuf *rb) 201 { 202 /* copy pages pointer and nr_pages to local variable, as we are going 203 * to unmap rb itself with vunmap() below 204 */ 205 struct page **pages = rb->pages; 206 int i, nr_pages = rb->nr_pages; 207 208 vunmap(rb); 209 for (i = 0; i < nr_pages; i++) 210 __free_page(pages[i]); 211 kvfree(pages); 212 } 213 214 static void ringbuf_map_free(struct bpf_map *map) 215 { 216 struct bpf_ringbuf_map *rb_map; 217 218 /* at this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 219 * so the programs (can be more than one that used this map) were 220 * disconnected from events. Wait for outstanding critical sections in 221 * these programs to complete 222 */ 223 synchronize_rcu(); 224 225 rb_map = container_of(map, struct bpf_ringbuf_map, map); 226 bpf_ringbuf_free(rb_map->rb); 227 kfree(rb_map); 228 } 229 230 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key) 231 { 232 return ERR_PTR(-ENOTSUPP); 233 } 234 235 static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value, 236 u64 flags) 237 { 238 return -ENOTSUPP; 239 } 240 241 static int ringbuf_map_delete_elem(struct bpf_map *map, void *key) 242 { 243 return -ENOTSUPP; 244 } 245 246 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key, 247 void *next_key) 248 { 249 return -ENOTSUPP; 250 } 251 252 static size_t bpf_ringbuf_mmap_page_cnt(const struct bpf_ringbuf *rb) 253 { 254 size_t data_pages = (rb->mask + 1) >> PAGE_SHIFT; 255 256 /* consumer page + producer page + 2 x data pages */ 257 return RINGBUF_POS_PAGES + 2 * data_pages; 258 } 259 260 static int ringbuf_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) 261 { 262 struct bpf_ringbuf_map *rb_map; 263 size_t mmap_sz; 264 265 rb_map = container_of(map, struct bpf_ringbuf_map, map); 266 mmap_sz = bpf_ringbuf_mmap_page_cnt(rb_map->rb) << PAGE_SHIFT; 267 268 if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) > mmap_sz) 269 return -EINVAL; 270 271 return remap_vmalloc_range(vma, rb_map->rb, 272 vma->vm_pgoff + RINGBUF_PGOFF); 273 } 274 275 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb) 276 { 277 unsigned long cons_pos, prod_pos; 278 279 cons_pos = smp_load_acquire(&rb->consumer_pos); 280 prod_pos = smp_load_acquire(&rb->producer_pos); 281 return prod_pos - cons_pos; 282 } 283 284 static __poll_t ringbuf_map_poll(struct bpf_map *map, struct file *filp, 285 struct poll_table_struct *pts) 286 { 287 struct bpf_ringbuf_map *rb_map; 288 289 rb_map = container_of(map, struct bpf_ringbuf_map, map); 290 poll_wait(filp, &rb_map->rb->waitq, pts); 291 292 if (ringbuf_avail_data_sz(rb_map->rb)) 293 return EPOLLIN | EPOLLRDNORM; 294 return 0; 295 } 296 297 const struct bpf_map_ops ringbuf_map_ops = { 298 .map_alloc = ringbuf_map_alloc, 299 .map_free = ringbuf_map_free, 300 .map_mmap = ringbuf_map_mmap, 301 .map_poll = ringbuf_map_poll, 302 .map_lookup_elem = ringbuf_map_lookup_elem, 303 .map_update_elem = ringbuf_map_update_elem, 304 .map_delete_elem = ringbuf_map_delete_elem, 305 .map_get_next_key = ringbuf_map_get_next_key, 306 }; 307 308 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself, 309 * calculate offset from record metadata to ring buffer in pages, rounded 310 * down. This page offset is stored as part of record metadata and allows to 311 * restore struct bpf_ringbuf * from record pointer. This page offset is 312 * stored at offset 4 of record metadata header. 313 */ 314 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb, 315 struct bpf_ringbuf_hdr *hdr) 316 { 317 return ((void *)hdr - (void *)rb) >> PAGE_SHIFT; 318 } 319 320 /* Given pointer to ring buffer record header, restore pointer to struct 321 * bpf_ringbuf itself by using page offset stored at offset 4 322 */ 323 static struct bpf_ringbuf * 324 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr) 325 { 326 unsigned long addr = (unsigned long)(void *)hdr; 327 unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT; 328 329 return (void*)((addr & PAGE_MASK) - off); 330 } 331 332 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size) 333 { 334 unsigned long cons_pos, prod_pos, new_prod_pos, flags; 335 u32 len, pg_off; 336 struct bpf_ringbuf_hdr *hdr; 337 338 if (unlikely(size > RINGBUF_MAX_RECORD_SZ)) 339 return NULL; 340 341 len = round_up(size + BPF_RINGBUF_HDR_SZ, 8); 342 cons_pos = smp_load_acquire(&rb->consumer_pos); 343 344 if (in_nmi()) { 345 if (!spin_trylock_irqsave(&rb->spinlock, flags)) 346 return NULL; 347 } else { 348 spin_lock_irqsave(&rb->spinlock, flags); 349 } 350 351 prod_pos = rb->producer_pos; 352 new_prod_pos = prod_pos + len; 353 354 /* check for out of ringbuf space by ensuring producer position 355 * doesn't advance more than (ringbuf_size - 1) ahead 356 */ 357 if (new_prod_pos - cons_pos > rb->mask) { 358 spin_unlock_irqrestore(&rb->spinlock, flags); 359 return NULL; 360 } 361 362 hdr = (void *)rb->data + (prod_pos & rb->mask); 363 pg_off = bpf_ringbuf_rec_pg_off(rb, hdr); 364 hdr->len = size | BPF_RINGBUF_BUSY_BIT; 365 hdr->pg_off = pg_off; 366 367 /* pairs with consumer's smp_load_acquire() */ 368 smp_store_release(&rb->producer_pos, new_prod_pos); 369 370 spin_unlock_irqrestore(&rb->spinlock, flags); 371 372 return (void *)hdr + BPF_RINGBUF_HDR_SZ; 373 } 374 375 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags) 376 { 377 struct bpf_ringbuf_map *rb_map; 378 379 if (unlikely(flags)) 380 return 0; 381 382 rb_map = container_of(map, struct bpf_ringbuf_map, map); 383 return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size); 384 } 385 386 const struct bpf_func_proto bpf_ringbuf_reserve_proto = { 387 .func = bpf_ringbuf_reserve, 388 .ret_type = RET_PTR_TO_ALLOC_MEM_OR_NULL, 389 .arg1_type = ARG_CONST_MAP_PTR, 390 .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 391 .arg3_type = ARG_ANYTHING, 392 }; 393 394 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard) 395 { 396 unsigned long rec_pos, cons_pos; 397 struct bpf_ringbuf_hdr *hdr; 398 struct bpf_ringbuf *rb; 399 u32 new_len; 400 401 hdr = sample - BPF_RINGBUF_HDR_SZ; 402 rb = bpf_ringbuf_restore_from_rec(hdr); 403 new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT; 404 if (discard) 405 new_len |= BPF_RINGBUF_DISCARD_BIT; 406 407 /* update record header with correct final size prefix */ 408 xchg(&hdr->len, new_len); 409 410 /* if consumer caught up and is waiting for our record, notify about 411 * new data availability 412 */ 413 rec_pos = (void *)hdr - (void *)rb->data; 414 cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask; 415 416 if (flags & BPF_RB_FORCE_WAKEUP) 417 irq_work_queue(&rb->work); 418 else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP)) 419 irq_work_queue(&rb->work); 420 } 421 422 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags) 423 { 424 bpf_ringbuf_commit(sample, flags, false /* discard */); 425 return 0; 426 } 427 428 const struct bpf_func_proto bpf_ringbuf_submit_proto = { 429 .func = bpf_ringbuf_submit, 430 .ret_type = RET_VOID, 431 .arg1_type = ARG_PTR_TO_ALLOC_MEM, 432 .arg2_type = ARG_ANYTHING, 433 }; 434 435 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags) 436 { 437 bpf_ringbuf_commit(sample, flags, true /* discard */); 438 return 0; 439 } 440 441 const struct bpf_func_proto bpf_ringbuf_discard_proto = { 442 .func = bpf_ringbuf_discard, 443 .ret_type = RET_VOID, 444 .arg1_type = ARG_PTR_TO_ALLOC_MEM, 445 .arg2_type = ARG_ANYTHING, 446 }; 447 448 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size, 449 u64, flags) 450 { 451 struct bpf_ringbuf_map *rb_map; 452 void *rec; 453 454 if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP))) 455 return -EINVAL; 456 457 rb_map = container_of(map, struct bpf_ringbuf_map, map); 458 rec = __bpf_ringbuf_reserve(rb_map->rb, size); 459 if (!rec) 460 return -EAGAIN; 461 462 memcpy(rec, data, size); 463 bpf_ringbuf_commit(rec, flags, false /* discard */); 464 return 0; 465 } 466 467 const struct bpf_func_proto bpf_ringbuf_output_proto = { 468 .func = bpf_ringbuf_output, 469 .ret_type = RET_INTEGER, 470 .arg1_type = ARG_CONST_MAP_PTR, 471 .arg2_type = ARG_PTR_TO_MEM, 472 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 473 .arg4_type = ARG_ANYTHING, 474 }; 475 476 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags) 477 { 478 struct bpf_ringbuf *rb; 479 480 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 481 482 switch (flags) { 483 case BPF_RB_AVAIL_DATA: 484 return ringbuf_avail_data_sz(rb); 485 case BPF_RB_RING_SIZE: 486 return rb->mask + 1; 487 case BPF_RB_CONS_POS: 488 return smp_load_acquire(&rb->consumer_pos); 489 case BPF_RB_PROD_POS: 490 return smp_load_acquire(&rb->producer_pos); 491 default: 492 return 0; 493 } 494 } 495 496 const struct bpf_func_proto bpf_ringbuf_query_proto = { 497 .func = bpf_ringbuf_query, 498 .ret_type = RET_INTEGER, 499 .arg1_type = ARG_CONST_MAP_PTR, 500 .arg2_type = ARG_ANYTHING, 501 }; 502