1 #include <linux/bpf.h> 2 #include <linux/btf.h> 3 #include <linux/err.h> 4 #include <linux/irq_work.h> 5 #include <linux/slab.h> 6 #include <linux/filter.h> 7 #include <linux/mm.h> 8 #include <linux/vmalloc.h> 9 #include <linux/wait.h> 10 #include <linux/poll.h> 11 #include <linux/kmemleak.h> 12 #include <uapi/linux/btf.h> 13 #include <linux/btf_ids.h> 14 #include <asm/rqspinlock.h> 15 16 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE) 17 18 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */ 19 #define RINGBUF_PGOFF \ 20 (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT) 21 /* consumer page and producer page */ 22 #define RINGBUF_POS_PAGES 2 23 #define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES) 24 25 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4) 26 27 struct bpf_ringbuf { 28 wait_queue_head_t waitq; 29 struct irq_work work; 30 u64 mask; 31 struct page **pages; 32 int nr_pages; 33 rqspinlock_t spinlock ____cacheline_aligned_in_smp; 34 /* For user-space producer ring buffers, an atomic_t busy bit is used 35 * to synchronize access to the ring buffers in the kernel, rather than 36 * the spinlock that is used for kernel-producer ring buffers. This is 37 * done because the ring buffer must hold a lock across a BPF program's 38 * callback: 39 * 40 * __bpf_user_ringbuf_peek() // lock acquired 41 * -> program callback_fn() 42 * -> __bpf_user_ringbuf_sample_release() // lock released 43 * 44 * It is unsafe and incorrect to hold an IRQ spinlock across what could 45 * be a long execution window, so we instead simply disallow concurrent 46 * access to the ring buffer by kernel consumers, and return -EBUSY from 47 * __bpf_user_ringbuf_peek() if the busy bit is held by another task. 48 */ 49 atomic_t busy ____cacheline_aligned_in_smp; 50 /* Consumer and producer counters are put into separate pages to 51 * allow each position to be mapped with different permissions. 52 * This prevents a user-space application from modifying the 53 * position and ruining in-kernel tracking. The permissions of the 54 * pages depend on who is producing samples: user-space or the 55 * kernel. Note that the pending counter is placed in the same 56 * page as the producer, so that it shares the same cache line. 57 * 58 * Kernel-producer 59 * --------------- 60 * The producer position and data pages are mapped as r/o in 61 * userspace. For this approach, bits in the header of samples are 62 * used to signal to user-space, and to other producers, whether a 63 * sample is currently being written. 64 * 65 * User-space producer 66 * ------------------- 67 * Only the page containing the consumer position is mapped r/o in 68 * user-space. User-space producers also use bits of the header to 69 * communicate to the kernel, but the kernel must carefully check and 70 * validate each sample to ensure that they're correctly formatted, and 71 * fully contained within the ring buffer. 72 */ 73 unsigned long consumer_pos __aligned(PAGE_SIZE); 74 unsigned long producer_pos __aligned(PAGE_SIZE); 75 unsigned long pending_pos; 76 char data[] __aligned(PAGE_SIZE); 77 }; 78 79 struct bpf_ringbuf_map { 80 struct bpf_map map; 81 struct bpf_ringbuf *rb; 82 }; 83 84 /* 8-byte ring buffer record header structure */ 85 struct bpf_ringbuf_hdr { 86 u32 len; 87 u32 pg_off; 88 }; 89 90 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node) 91 { 92 const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL | 93 __GFP_NOWARN | __GFP_ZERO; 94 int nr_meta_pages = RINGBUF_NR_META_PAGES; 95 int nr_data_pages = data_sz >> PAGE_SHIFT; 96 int nr_pages = nr_meta_pages + nr_data_pages; 97 struct page **pages, *page; 98 struct bpf_ringbuf *rb; 99 size_t array_size; 100 int i; 101 102 /* Each data page is mapped twice to allow "virtual" 103 * continuous read of samples wrapping around the end of ring 104 * buffer area: 105 * ------------------------------------------------------ 106 * | meta pages | real data pages | same data pages | 107 * ------------------------------------------------------ 108 * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 | 109 * ------------------------------------------------------ 110 * | | TA DA | TA DA | 111 * ------------------------------------------------------ 112 * ^^^^^^^ 113 * | 114 * Here, no need to worry about special handling of wrapped-around 115 * data due to double-mapped data pages. This works both in kernel and 116 * when mmap()'ed in user-space, simplifying both kernel and 117 * user-space implementations significantly. 118 */ 119 array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages); 120 pages = bpf_map_area_alloc(array_size, numa_node); 121 if (!pages) 122 return NULL; 123 124 for (i = 0; i < nr_pages; i++) { 125 page = alloc_pages_node(numa_node, flags, 0); 126 if (!page) { 127 nr_pages = i; 128 goto err_free_pages; 129 } 130 pages[i] = page; 131 if (i >= nr_meta_pages) 132 pages[nr_data_pages + i] = page; 133 } 134 135 rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages, 136 VM_MAP | VM_USERMAP, PAGE_KERNEL); 137 if (rb) { 138 kmemleak_not_leak(pages); 139 rb->pages = pages; 140 rb->nr_pages = nr_pages; 141 return rb; 142 } 143 144 err_free_pages: 145 for (i = 0; i < nr_pages; i++) 146 __free_page(pages[i]); 147 bpf_map_area_free(pages); 148 return NULL; 149 } 150 151 static void bpf_ringbuf_notify(struct irq_work *work) 152 { 153 struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work); 154 155 wake_up_all(&rb->waitq); 156 } 157 158 /* Maximum size of ring buffer area is limited by 32-bit page offset within 159 * record header, counted in pages. Reserve 8 bits for extensibility, and 160 * take into account few extra pages for consumer/producer pages and 161 * non-mmap()'able parts, the current maximum size would be: 162 * 163 * (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE) 164 * 165 * This gives 64GB limit, which seems plenty for single ring buffer. Now 166 * considering that the maximum value of data_sz is (4GB - 1), there 167 * will be no overflow, so just note the size limit in the comments. 168 */ 169 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node) 170 { 171 struct bpf_ringbuf *rb; 172 173 rb = bpf_ringbuf_area_alloc(data_sz, numa_node); 174 if (!rb) 175 return NULL; 176 177 raw_res_spin_lock_init(&rb->spinlock); 178 atomic_set(&rb->busy, 0); 179 init_waitqueue_head(&rb->waitq); 180 init_irq_work(&rb->work, bpf_ringbuf_notify); 181 182 rb->mask = data_sz - 1; 183 rb->consumer_pos = 0; 184 rb->producer_pos = 0; 185 rb->pending_pos = 0; 186 187 return rb; 188 } 189 190 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr) 191 { 192 struct bpf_ringbuf_map *rb_map; 193 194 if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK) 195 return ERR_PTR(-EINVAL); 196 197 if (attr->key_size || attr->value_size || 198 !is_power_of_2(attr->max_entries) || 199 !PAGE_ALIGNED(attr->max_entries)) 200 return ERR_PTR(-EINVAL); 201 202 rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE); 203 if (!rb_map) 204 return ERR_PTR(-ENOMEM); 205 206 bpf_map_init_from_attr(&rb_map->map, attr); 207 208 rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node); 209 if (!rb_map->rb) { 210 bpf_map_area_free(rb_map); 211 return ERR_PTR(-ENOMEM); 212 } 213 214 return &rb_map->map; 215 } 216 217 static void bpf_ringbuf_free(struct bpf_ringbuf *rb) 218 { 219 irq_work_sync(&rb->work); 220 221 /* copy pages pointer and nr_pages to local variable, as we are going 222 * to unmap rb itself with vunmap() below 223 */ 224 struct page **pages = rb->pages; 225 int i, nr_pages = rb->nr_pages; 226 227 vunmap(rb); 228 for (i = 0; i < nr_pages; i++) 229 __free_page(pages[i]); 230 bpf_map_area_free(pages); 231 } 232 233 static void ringbuf_map_free(struct bpf_map *map) 234 { 235 struct bpf_ringbuf_map *rb_map; 236 237 rb_map = container_of(map, struct bpf_ringbuf_map, map); 238 bpf_ringbuf_free(rb_map->rb); 239 bpf_map_area_free(rb_map); 240 } 241 242 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key) 243 { 244 return ERR_PTR(-ENOTSUPP); 245 } 246 247 static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value, 248 u64 flags) 249 { 250 return -ENOTSUPP; 251 } 252 253 static long ringbuf_map_delete_elem(struct bpf_map *map, void *key) 254 { 255 return -ENOTSUPP; 256 } 257 258 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key, 259 void *next_key) 260 { 261 return -ENOTSUPP; 262 } 263 264 static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma) 265 { 266 struct bpf_ringbuf_map *rb_map; 267 268 rb_map = container_of(map, struct bpf_ringbuf_map, map); 269 270 if (vma->vm_flags & VM_WRITE) { 271 /* allow writable mapping for the consumer_pos only */ 272 if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE) 273 return -EPERM; 274 } 275 /* remap_vmalloc_range() checks size and offset constraints */ 276 return remap_vmalloc_range(vma, rb_map->rb, 277 vma->vm_pgoff + RINGBUF_PGOFF); 278 } 279 280 static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma) 281 { 282 struct bpf_ringbuf_map *rb_map; 283 284 rb_map = container_of(map, struct bpf_ringbuf_map, map); 285 286 if (vma->vm_flags & VM_WRITE) { 287 if (vma->vm_pgoff == 0) 288 /* Disallow writable mappings to the consumer pointer, 289 * and allow writable mappings to both the producer 290 * position, and the ring buffer data itself. 291 */ 292 return -EPERM; 293 } 294 /* remap_vmalloc_range() checks size and offset constraints */ 295 return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF); 296 } 297 298 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb) 299 { 300 unsigned long cons_pos, prod_pos; 301 302 cons_pos = smp_load_acquire(&rb->consumer_pos); 303 prod_pos = smp_load_acquire(&rb->producer_pos); 304 return prod_pos - cons_pos; 305 } 306 307 static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb) 308 { 309 return rb->mask + 1; 310 } 311 312 static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp, 313 struct poll_table_struct *pts) 314 { 315 struct bpf_ringbuf_map *rb_map; 316 317 rb_map = container_of(map, struct bpf_ringbuf_map, map); 318 poll_wait(filp, &rb_map->rb->waitq, pts); 319 320 if (ringbuf_avail_data_sz(rb_map->rb)) 321 return EPOLLIN | EPOLLRDNORM; 322 return 0; 323 } 324 325 static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp, 326 struct poll_table_struct *pts) 327 { 328 struct bpf_ringbuf_map *rb_map; 329 330 rb_map = container_of(map, struct bpf_ringbuf_map, map); 331 poll_wait(filp, &rb_map->rb->waitq, pts); 332 333 if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb)) 334 return EPOLLOUT | EPOLLWRNORM; 335 return 0; 336 } 337 338 static u64 ringbuf_map_mem_usage(const struct bpf_map *map) 339 { 340 struct bpf_ringbuf *rb; 341 int nr_data_pages; 342 int nr_meta_pages; 343 u64 usage = sizeof(struct bpf_ringbuf_map); 344 345 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 346 usage += (u64)rb->nr_pages << PAGE_SHIFT; 347 nr_meta_pages = RINGBUF_NR_META_PAGES; 348 nr_data_pages = map->max_entries >> PAGE_SHIFT; 349 usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *); 350 return usage; 351 } 352 353 BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map) 354 const struct bpf_map_ops ringbuf_map_ops = { 355 .map_meta_equal = bpf_map_meta_equal, 356 .map_alloc = ringbuf_map_alloc, 357 .map_free = ringbuf_map_free, 358 .map_mmap = ringbuf_map_mmap_kern, 359 .map_poll = ringbuf_map_poll_kern, 360 .map_lookup_elem = ringbuf_map_lookup_elem, 361 .map_update_elem = ringbuf_map_update_elem, 362 .map_delete_elem = ringbuf_map_delete_elem, 363 .map_get_next_key = ringbuf_map_get_next_key, 364 .map_mem_usage = ringbuf_map_mem_usage, 365 .map_btf_id = &ringbuf_map_btf_ids[0], 366 }; 367 368 BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map) 369 const struct bpf_map_ops user_ringbuf_map_ops = { 370 .map_meta_equal = bpf_map_meta_equal, 371 .map_alloc = ringbuf_map_alloc, 372 .map_free = ringbuf_map_free, 373 .map_mmap = ringbuf_map_mmap_user, 374 .map_poll = ringbuf_map_poll_user, 375 .map_lookup_elem = ringbuf_map_lookup_elem, 376 .map_update_elem = ringbuf_map_update_elem, 377 .map_delete_elem = ringbuf_map_delete_elem, 378 .map_get_next_key = ringbuf_map_get_next_key, 379 .map_mem_usage = ringbuf_map_mem_usage, 380 .map_btf_id = &user_ringbuf_map_btf_ids[0], 381 }; 382 383 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself, 384 * calculate offset from record metadata to ring buffer in pages, rounded 385 * down. This page offset is stored as part of record metadata and allows to 386 * restore struct bpf_ringbuf * from record pointer. This page offset is 387 * stored at offset 4 of record metadata header. 388 */ 389 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb, 390 struct bpf_ringbuf_hdr *hdr) 391 { 392 return ((void *)hdr - (void *)rb) >> PAGE_SHIFT; 393 } 394 395 /* Given pointer to ring buffer record header, restore pointer to struct 396 * bpf_ringbuf itself by using page offset stored at offset 4 397 */ 398 static struct bpf_ringbuf * 399 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr) 400 { 401 unsigned long addr = (unsigned long)(void *)hdr; 402 unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT; 403 404 return (void*)((addr & PAGE_MASK) - off); 405 } 406 407 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size) 408 { 409 unsigned long cons_pos, prod_pos, new_prod_pos, pend_pos, flags; 410 struct bpf_ringbuf_hdr *hdr; 411 u32 len, pg_off, tmp_size, hdr_len; 412 413 if (unlikely(size > RINGBUF_MAX_RECORD_SZ)) 414 return NULL; 415 416 len = round_up(size + BPF_RINGBUF_HDR_SZ, 8); 417 if (len > ringbuf_total_data_sz(rb)) 418 return NULL; 419 420 cons_pos = smp_load_acquire(&rb->consumer_pos); 421 422 if (raw_res_spin_lock_irqsave(&rb->spinlock, flags)) 423 return NULL; 424 425 pend_pos = rb->pending_pos; 426 prod_pos = rb->producer_pos; 427 new_prod_pos = prod_pos + len; 428 429 while (pend_pos < prod_pos) { 430 hdr = (void *)rb->data + (pend_pos & rb->mask); 431 hdr_len = READ_ONCE(hdr->len); 432 if (hdr_len & BPF_RINGBUF_BUSY_BIT) 433 break; 434 tmp_size = hdr_len & ~BPF_RINGBUF_DISCARD_BIT; 435 tmp_size = round_up(tmp_size + BPF_RINGBUF_HDR_SZ, 8); 436 pend_pos += tmp_size; 437 } 438 rb->pending_pos = pend_pos; 439 440 /* check for out of ringbuf space: 441 * - by ensuring producer position doesn't advance more than 442 * (ringbuf_size - 1) ahead 443 * - by ensuring oldest not yet committed record until newest 444 * record does not span more than (ringbuf_size - 1) 445 */ 446 if (new_prod_pos - cons_pos > rb->mask || 447 new_prod_pos - pend_pos > rb->mask) { 448 raw_res_spin_unlock_irqrestore(&rb->spinlock, flags); 449 return NULL; 450 } 451 452 hdr = (void *)rb->data + (prod_pos & rb->mask); 453 pg_off = bpf_ringbuf_rec_pg_off(rb, hdr); 454 hdr->len = size | BPF_RINGBUF_BUSY_BIT; 455 hdr->pg_off = pg_off; 456 457 /* pairs with consumer's smp_load_acquire() */ 458 smp_store_release(&rb->producer_pos, new_prod_pos); 459 460 raw_res_spin_unlock_irqrestore(&rb->spinlock, flags); 461 462 return (void *)hdr + BPF_RINGBUF_HDR_SZ; 463 } 464 465 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags) 466 { 467 struct bpf_ringbuf_map *rb_map; 468 469 if (unlikely(flags)) 470 return 0; 471 472 rb_map = container_of(map, struct bpf_ringbuf_map, map); 473 return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size); 474 } 475 476 const struct bpf_func_proto bpf_ringbuf_reserve_proto = { 477 .func = bpf_ringbuf_reserve, 478 .ret_type = RET_PTR_TO_RINGBUF_MEM_OR_NULL, 479 .arg1_type = ARG_CONST_MAP_PTR, 480 .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 481 .arg3_type = ARG_ANYTHING, 482 }; 483 484 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard) 485 { 486 unsigned long rec_pos, cons_pos; 487 struct bpf_ringbuf_hdr *hdr; 488 struct bpf_ringbuf *rb; 489 u32 new_len; 490 491 hdr = sample - BPF_RINGBUF_HDR_SZ; 492 rb = bpf_ringbuf_restore_from_rec(hdr); 493 new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT; 494 if (discard) 495 new_len |= BPF_RINGBUF_DISCARD_BIT; 496 497 /* update record header with correct final size prefix */ 498 xchg(&hdr->len, new_len); 499 500 /* if consumer caught up and is waiting for our record, notify about 501 * new data availability 502 */ 503 rec_pos = (void *)hdr - (void *)rb->data; 504 cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask; 505 506 if (flags & BPF_RB_FORCE_WAKEUP) 507 irq_work_queue(&rb->work); 508 else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP)) 509 irq_work_queue(&rb->work); 510 } 511 512 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags) 513 { 514 bpf_ringbuf_commit(sample, flags, false /* discard */); 515 return 0; 516 } 517 518 const struct bpf_func_proto bpf_ringbuf_submit_proto = { 519 .func = bpf_ringbuf_submit, 520 .ret_type = RET_VOID, 521 .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, 522 .arg2_type = ARG_ANYTHING, 523 }; 524 525 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags) 526 { 527 bpf_ringbuf_commit(sample, flags, true /* discard */); 528 return 0; 529 } 530 531 const struct bpf_func_proto bpf_ringbuf_discard_proto = { 532 .func = bpf_ringbuf_discard, 533 .ret_type = RET_VOID, 534 .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, 535 .arg2_type = ARG_ANYTHING, 536 }; 537 538 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size, 539 u64, flags) 540 { 541 struct bpf_ringbuf_map *rb_map; 542 void *rec; 543 544 if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP))) 545 return -EINVAL; 546 547 rb_map = container_of(map, struct bpf_ringbuf_map, map); 548 rec = __bpf_ringbuf_reserve(rb_map->rb, size); 549 if (!rec) 550 return -EAGAIN; 551 552 memcpy(rec, data, size); 553 bpf_ringbuf_commit(rec, flags, false /* discard */); 554 return 0; 555 } 556 557 const struct bpf_func_proto bpf_ringbuf_output_proto = { 558 .func = bpf_ringbuf_output, 559 .ret_type = RET_INTEGER, 560 .arg1_type = ARG_CONST_MAP_PTR, 561 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 562 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 563 .arg4_type = ARG_ANYTHING, 564 }; 565 566 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags) 567 { 568 struct bpf_ringbuf *rb; 569 570 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 571 572 switch (flags) { 573 case BPF_RB_AVAIL_DATA: 574 return ringbuf_avail_data_sz(rb); 575 case BPF_RB_RING_SIZE: 576 return ringbuf_total_data_sz(rb); 577 case BPF_RB_CONS_POS: 578 return smp_load_acquire(&rb->consumer_pos); 579 case BPF_RB_PROD_POS: 580 return smp_load_acquire(&rb->producer_pos); 581 default: 582 return 0; 583 } 584 } 585 586 const struct bpf_func_proto bpf_ringbuf_query_proto = { 587 .func = bpf_ringbuf_query, 588 .ret_type = RET_INTEGER, 589 .arg1_type = ARG_CONST_MAP_PTR, 590 .arg2_type = ARG_ANYTHING, 591 }; 592 593 BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags, 594 struct bpf_dynptr_kern *, ptr) 595 { 596 struct bpf_ringbuf_map *rb_map; 597 void *sample; 598 int err; 599 600 if (unlikely(flags)) { 601 bpf_dynptr_set_null(ptr); 602 return -EINVAL; 603 } 604 605 err = bpf_dynptr_check_size(size); 606 if (err) { 607 bpf_dynptr_set_null(ptr); 608 return err; 609 } 610 611 rb_map = container_of(map, struct bpf_ringbuf_map, map); 612 613 sample = __bpf_ringbuf_reserve(rb_map->rb, size); 614 if (!sample) { 615 bpf_dynptr_set_null(ptr); 616 return -EINVAL; 617 } 618 619 bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size); 620 621 return 0; 622 } 623 624 const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = { 625 .func = bpf_ringbuf_reserve_dynptr, 626 .ret_type = RET_INTEGER, 627 .arg1_type = ARG_CONST_MAP_PTR, 628 .arg2_type = ARG_ANYTHING, 629 .arg3_type = ARG_ANYTHING, 630 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT | MEM_WRITE, 631 }; 632 633 BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) 634 { 635 if (!ptr->data) 636 return 0; 637 638 bpf_ringbuf_commit(ptr->data, flags, false /* discard */); 639 640 bpf_dynptr_set_null(ptr); 641 642 return 0; 643 } 644 645 const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = { 646 .func = bpf_ringbuf_submit_dynptr, 647 .ret_type = RET_VOID, 648 .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, 649 .arg2_type = ARG_ANYTHING, 650 }; 651 652 BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) 653 { 654 if (!ptr->data) 655 return 0; 656 657 bpf_ringbuf_commit(ptr->data, flags, true /* discard */); 658 659 bpf_dynptr_set_null(ptr); 660 661 return 0; 662 } 663 664 const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = { 665 .func = bpf_ringbuf_discard_dynptr, 666 .ret_type = RET_VOID, 667 .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, 668 .arg2_type = ARG_ANYTHING, 669 }; 670 671 static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size) 672 { 673 int err; 674 u32 hdr_len, sample_len, total_len, flags, *hdr; 675 u64 cons_pos, prod_pos; 676 677 /* Synchronizes with smp_store_release() in user-space producer. */ 678 prod_pos = smp_load_acquire(&rb->producer_pos); 679 if (prod_pos % 8) 680 return -EINVAL; 681 682 /* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */ 683 cons_pos = smp_load_acquire(&rb->consumer_pos); 684 if (cons_pos >= prod_pos) 685 return -ENODATA; 686 687 hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask)); 688 /* Synchronizes with smp_store_release() in user-space producer. */ 689 hdr_len = smp_load_acquire(hdr); 690 flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT); 691 sample_len = hdr_len & ~flags; 692 total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8); 693 694 /* The sample must fit within the region advertised by the producer position. */ 695 if (total_len > prod_pos - cons_pos) 696 return -EINVAL; 697 698 /* The sample must fit within the data region of the ring buffer. */ 699 if (total_len > ringbuf_total_data_sz(rb)) 700 return -E2BIG; 701 702 /* The sample must fit into a struct bpf_dynptr. */ 703 err = bpf_dynptr_check_size(sample_len); 704 if (err) 705 return -E2BIG; 706 707 if (flags & BPF_RINGBUF_DISCARD_BIT) { 708 /* If the discard bit is set, the sample should be skipped. 709 * 710 * Update the consumer pos, and return -EAGAIN so the caller 711 * knows to skip this sample and try to read the next one. 712 */ 713 smp_store_release(&rb->consumer_pos, cons_pos + total_len); 714 return -EAGAIN; 715 } 716 717 if (flags & BPF_RINGBUF_BUSY_BIT) 718 return -ENODATA; 719 720 *sample = (void *)((uintptr_t)rb->data + 721 (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask)); 722 *size = sample_len; 723 return 0; 724 } 725 726 static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags) 727 { 728 u64 consumer_pos; 729 u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8); 730 731 /* Using smp_load_acquire() is unnecessary here, as the busy-bit 732 * prevents another task from writing to consumer_pos after it was read 733 * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek(). 734 */ 735 consumer_pos = rb->consumer_pos; 736 /* Synchronizes with smp_load_acquire() in user-space producer. */ 737 smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size); 738 } 739 740 BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map, 741 void *, callback_fn, void *, callback_ctx, u64, flags) 742 { 743 struct bpf_ringbuf *rb; 744 long samples, discarded_samples = 0, ret = 0; 745 bpf_callback_t callback = (bpf_callback_t)callback_fn; 746 u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP; 747 int busy = 0; 748 749 if (unlikely(flags & ~wakeup_flags)) 750 return -EINVAL; 751 752 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 753 754 /* If another consumer is already consuming a sample, wait for them to finish. */ 755 if (!atomic_try_cmpxchg(&rb->busy, &busy, 1)) 756 return -EBUSY; 757 758 for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) { 759 int err; 760 u32 size; 761 void *sample; 762 struct bpf_dynptr_kern dynptr; 763 764 err = __bpf_user_ringbuf_peek(rb, &sample, &size); 765 if (err) { 766 if (err == -ENODATA) { 767 break; 768 } else if (err == -EAGAIN) { 769 discarded_samples++; 770 continue; 771 } else { 772 ret = err; 773 goto schedule_work_return; 774 } 775 } 776 777 bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size); 778 ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0); 779 __bpf_user_ringbuf_sample_release(rb, size, flags); 780 } 781 ret = samples - discarded_samples; 782 783 schedule_work_return: 784 /* Prevent the clearing of the busy-bit from being reordered before the 785 * storing of any rb consumer or producer positions. 786 */ 787 atomic_set_release(&rb->busy, 0); 788 789 if (flags & BPF_RB_FORCE_WAKEUP) 790 irq_work_queue(&rb->work); 791 else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0) 792 irq_work_queue(&rb->work); 793 return ret; 794 } 795 796 const struct bpf_func_proto bpf_user_ringbuf_drain_proto = { 797 .func = bpf_user_ringbuf_drain, 798 .ret_type = RET_INTEGER, 799 .arg1_type = ARG_CONST_MAP_PTR, 800 .arg2_type = ARG_PTR_TO_FUNC, 801 .arg3_type = ARG_PTR_TO_STACK_OR_NULL, 802 .arg4_type = ARG_ANYTHING, 803 }; 804