xref: /linux/kernel/bpf/memalloc.c (revision df9b455633aee0bad3e5c3dc9fc1c860b13c96d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
3 #include <linux/mm.h>
4 #include <linux/llist.h>
5 #include <linux/bpf.h>
6 #include <linux/irq_work.h>
7 #include <linux/bpf_mem_alloc.h>
8 #include <linux/memcontrol.h>
9 #include <asm/local.h>
10 
11 /* Any context (including NMI) BPF specific memory allocator.
12  *
13  * Tracing BPF programs can attach to kprobe and fentry. Hence they
14  * run in unknown context where calling plain kmalloc() might not be safe.
15  *
16  * Front-end kmalloc() with per-cpu per-bucket cache of free elements.
17  * Refill this cache asynchronously from irq_work.
18  *
19  * CPU_0 buckets
20  * 16 32 64 96 128 196 256 512 1024 2048 4096
21  * ...
22  * CPU_N buckets
23  * 16 32 64 96 128 196 256 512 1024 2048 4096
24  *
25  * The buckets are prefilled at the start.
26  * BPF programs always run with migration disabled.
27  * It's safe to allocate from cache of the current cpu with irqs disabled.
28  * Free-ing is always done into bucket of the current cpu as well.
29  * irq_work trims extra free elements from buckets with kfree
30  * and refills them with kmalloc, so global kmalloc logic takes care
31  * of freeing objects allocated by one cpu and freed on another.
32  *
33  * Every allocated objected is padded with extra 8 bytes that contains
34  * struct llist_node.
35  */
36 #define LLIST_NODE_SZ sizeof(struct llist_node)
37 
38 /* similar to kmalloc, but sizeof == 8 bucket is gone */
39 static u8 size_index[24] __ro_after_init = {
40 	3,	/* 8 */
41 	3,	/* 16 */
42 	4,	/* 24 */
43 	4,	/* 32 */
44 	5,	/* 40 */
45 	5,	/* 48 */
46 	5,	/* 56 */
47 	5,	/* 64 */
48 	1,	/* 72 */
49 	1,	/* 80 */
50 	1,	/* 88 */
51 	1,	/* 96 */
52 	6,	/* 104 */
53 	6,	/* 112 */
54 	6,	/* 120 */
55 	6,	/* 128 */
56 	2,	/* 136 */
57 	2,	/* 144 */
58 	2,	/* 152 */
59 	2,	/* 160 */
60 	2,	/* 168 */
61 	2,	/* 176 */
62 	2,	/* 184 */
63 	2	/* 192 */
64 };
65 
66 static int bpf_mem_cache_idx(size_t size)
67 {
68 	if (!size || size > 4096)
69 		return -1;
70 
71 	if (size <= 192)
72 		return size_index[(size - 1) / 8] - 1;
73 
74 	return fls(size - 1) - 2;
75 }
76 
77 #define NUM_CACHES 11
78 
79 struct bpf_mem_cache {
80 	/* per-cpu list of free objects of size 'unit_size'.
81 	 * All accesses are done with interrupts disabled and 'active' counter
82 	 * protection with __llist_add() and __llist_del_first().
83 	 */
84 	struct llist_head free_llist;
85 	local_t active;
86 
87 	/* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill
88 	 * are sequenced by per-cpu 'active' counter. But unit_free() cannot
89 	 * fail. When 'active' is busy the unit_free() will add an object to
90 	 * free_llist_extra.
91 	 */
92 	struct llist_head free_llist_extra;
93 
94 	struct irq_work refill_work;
95 	struct obj_cgroup *objcg;
96 	int unit_size;
97 	/* count of objects in free_llist */
98 	int free_cnt;
99 	int low_watermark, high_watermark, batch;
100 	int percpu_size;
101 	bool draining;
102 	struct bpf_mem_cache *tgt;
103 
104 	/* list of objects to be freed after RCU GP */
105 	struct llist_head free_by_rcu;
106 	struct llist_node *free_by_rcu_tail;
107 	struct llist_head waiting_for_gp;
108 	struct llist_node *waiting_for_gp_tail;
109 	struct rcu_head rcu;
110 	atomic_t call_rcu_in_progress;
111 	struct llist_head free_llist_extra_rcu;
112 
113 	/* list of objects to be freed after RCU tasks trace GP */
114 	struct llist_head free_by_rcu_ttrace;
115 	struct llist_head waiting_for_gp_ttrace;
116 	struct rcu_head rcu_ttrace;
117 	atomic_t call_rcu_ttrace_in_progress;
118 };
119 
120 struct bpf_mem_caches {
121 	struct bpf_mem_cache cache[NUM_CACHES];
122 };
123 
124 static const u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};
125 
126 static struct llist_node notrace *__llist_del_first(struct llist_head *head)
127 {
128 	struct llist_node *entry, *next;
129 
130 	entry = head->first;
131 	if (!entry)
132 		return NULL;
133 	next = entry->next;
134 	head->first = next;
135 	return entry;
136 }
137 
138 static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags)
139 {
140 	if (c->percpu_size) {
141 		void __percpu **obj = kmalloc_node(c->percpu_size, flags, node);
142 		void __percpu *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags);
143 
144 		if (!obj || !pptr) {
145 			free_percpu(pptr);
146 			kfree(obj);
147 			return NULL;
148 		}
149 		obj[1] = pptr;
150 		return obj;
151 	}
152 
153 	return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node);
154 }
155 
156 static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c)
157 {
158 #ifdef CONFIG_MEMCG
159 	if (c->objcg)
160 		return get_mem_cgroup_from_objcg(c->objcg);
161 	return root_mem_cgroup;
162 #else
163 	return NULL;
164 #endif
165 }
166 
167 static void inc_active(struct bpf_mem_cache *c, unsigned long *flags)
168 {
169 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
170 		/* In RT irq_work runs in per-cpu kthread, so disable
171 		 * interrupts to avoid preemption and interrupts and
172 		 * reduce the chance of bpf prog executing on this cpu
173 		 * when active counter is busy.
174 		 */
175 		local_irq_save(*flags);
176 	/* alloc_bulk runs from irq_work which will not preempt a bpf
177 	 * program that does unit_alloc/unit_free since IRQs are
178 	 * disabled there. There is no race to increment 'active'
179 	 * counter. It protects free_llist from corruption in case NMI
180 	 * bpf prog preempted this loop.
181 	 */
182 	WARN_ON_ONCE(local_inc_return(&c->active) != 1);
183 }
184 
185 static void dec_active(struct bpf_mem_cache *c, unsigned long *flags)
186 {
187 	local_dec(&c->active);
188 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
189 		local_irq_restore(*flags);
190 }
191 
192 static void add_obj_to_free_list(struct bpf_mem_cache *c, void *obj)
193 {
194 	unsigned long flags;
195 
196 	inc_active(c, &flags);
197 	__llist_add(obj, &c->free_llist);
198 	c->free_cnt++;
199 	dec_active(c, &flags);
200 }
201 
202 /* Mostly runs from irq_work except __init phase. */
203 static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node, bool atomic)
204 {
205 	struct mem_cgroup *memcg = NULL, *old_memcg;
206 	gfp_t gfp;
207 	void *obj;
208 	int i;
209 
210 	gfp = __GFP_NOWARN | __GFP_ACCOUNT;
211 	gfp |= atomic ? GFP_NOWAIT : GFP_KERNEL;
212 
213 	for (i = 0; i < cnt; i++) {
214 		/*
215 		 * For every 'c' llist_del_first(&c->free_by_rcu_ttrace); is
216 		 * done only by one CPU == current CPU. Other CPUs might
217 		 * llist_add() and llist_del_all() in parallel.
218 		 */
219 		obj = llist_del_first(&c->free_by_rcu_ttrace);
220 		if (!obj)
221 			break;
222 		add_obj_to_free_list(c, obj);
223 	}
224 	if (i >= cnt)
225 		return;
226 
227 	for (; i < cnt; i++) {
228 		obj = llist_del_first(&c->waiting_for_gp_ttrace);
229 		if (!obj)
230 			break;
231 		add_obj_to_free_list(c, obj);
232 	}
233 	if (i >= cnt)
234 		return;
235 
236 	memcg = get_memcg(c);
237 	old_memcg = set_active_memcg(memcg);
238 	for (; i < cnt; i++) {
239 		/* Allocate, but don't deplete atomic reserves that typical
240 		 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc
241 		 * will allocate from the current numa node which is what we
242 		 * want here.
243 		 */
244 		obj = __alloc(c, node, gfp);
245 		if (!obj)
246 			break;
247 		add_obj_to_free_list(c, obj);
248 	}
249 	set_active_memcg(old_memcg);
250 	mem_cgroup_put(memcg);
251 }
252 
253 static void free_one(void *obj, bool percpu)
254 {
255 	if (percpu) {
256 		free_percpu(((void __percpu **)obj)[1]);
257 		kfree(obj);
258 		return;
259 	}
260 
261 	kfree(obj);
262 }
263 
264 static int free_all(struct llist_node *llnode, bool percpu)
265 {
266 	struct llist_node *pos, *t;
267 	int cnt = 0;
268 
269 	llist_for_each_safe(pos, t, llnode) {
270 		free_one(pos, percpu);
271 		cnt++;
272 	}
273 	return cnt;
274 }
275 
276 static void __free_rcu(struct rcu_head *head)
277 {
278 	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu_ttrace);
279 
280 	free_all(llist_del_all(&c->waiting_for_gp_ttrace), !!c->percpu_size);
281 	atomic_set(&c->call_rcu_ttrace_in_progress, 0);
282 }
283 
284 static void __free_rcu_tasks_trace(struct rcu_head *head)
285 {
286 	/* If RCU Tasks Trace grace period implies RCU grace period,
287 	 * there is no need to invoke call_rcu().
288 	 */
289 	if (rcu_trace_implies_rcu_gp())
290 		__free_rcu(head);
291 	else
292 		call_rcu(head, __free_rcu);
293 }
294 
295 static void enque_to_free(struct bpf_mem_cache *c, void *obj)
296 {
297 	struct llist_node *llnode = obj;
298 
299 	/* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work.
300 	 * Nothing races to add to free_by_rcu_ttrace list.
301 	 */
302 	llist_add(llnode, &c->free_by_rcu_ttrace);
303 }
304 
305 static void do_call_rcu_ttrace(struct bpf_mem_cache *c)
306 {
307 	struct llist_node *llnode, *t;
308 
309 	if (atomic_xchg(&c->call_rcu_ttrace_in_progress, 1)) {
310 		if (unlikely(READ_ONCE(c->draining))) {
311 			llnode = llist_del_all(&c->free_by_rcu_ttrace);
312 			free_all(llnode, !!c->percpu_size);
313 		}
314 		return;
315 	}
316 
317 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
318 	llist_for_each_safe(llnode, t, llist_del_all(&c->free_by_rcu_ttrace))
319 		llist_add(llnode, &c->waiting_for_gp_ttrace);
320 
321 	if (unlikely(READ_ONCE(c->draining))) {
322 		__free_rcu(&c->rcu_ttrace);
323 		return;
324 	}
325 
326 	/* Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
327 	 * If RCU Tasks Trace grace period implies RCU grace period, free
328 	 * these elements directly, else use call_rcu() to wait for normal
329 	 * progs to finish and finally do free_one() on each element.
330 	 */
331 	call_rcu_tasks_trace(&c->rcu_ttrace, __free_rcu_tasks_trace);
332 }
333 
334 static void free_bulk(struct bpf_mem_cache *c)
335 {
336 	struct bpf_mem_cache *tgt = c->tgt;
337 	struct llist_node *llnode, *t;
338 	unsigned long flags;
339 	int cnt;
340 
341 	WARN_ON_ONCE(tgt->unit_size != c->unit_size);
342 	WARN_ON_ONCE(tgt->percpu_size != c->percpu_size);
343 
344 	do {
345 		inc_active(c, &flags);
346 		llnode = __llist_del_first(&c->free_llist);
347 		if (llnode)
348 			cnt = --c->free_cnt;
349 		else
350 			cnt = 0;
351 		dec_active(c, &flags);
352 		if (llnode)
353 			enque_to_free(tgt, llnode);
354 	} while (cnt > (c->high_watermark + c->low_watermark) / 2);
355 
356 	/* and drain free_llist_extra */
357 	llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra))
358 		enque_to_free(tgt, llnode);
359 	do_call_rcu_ttrace(tgt);
360 }
361 
362 static void __free_by_rcu(struct rcu_head *head)
363 {
364 	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu);
365 	struct bpf_mem_cache *tgt = c->tgt;
366 	struct llist_node *llnode;
367 
368 	WARN_ON_ONCE(tgt->unit_size != c->unit_size);
369 	WARN_ON_ONCE(tgt->percpu_size != c->percpu_size);
370 
371 	llnode = llist_del_all(&c->waiting_for_gp);
372 	if (!llnode)
373 		goto out;
374 
375 	llist_add_batch(llnode, c->waiting_for_gp_tail, &tgt->free_by_rcu_ttrace);
376 
377 	/* Objects went through regular RCU GP. Send them to RCU tasks trace */
378 	do_call_rcu_ttrace(tgt);
379 out:
380 	atomic_set(&c->call_rcu_in_progress, 0);
381 }
382 
383 static void check_free_by_rcu(struct bpf_mem_cache *c)
384 {
385 	struct llist_node *llnode, *t;
386 	unsigned long flags;
387 
388 	/* drain free_llist_extra_rcu */
389 	if (unlikely(!llist_empty(&c->free_llist_extra_rcu))) {
390 		inc_active(c, &flags);
391 		llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra_rcu))
392 			if (__llist_add(llnode, &c->free_by_rcu))
393 				c->free_by_rcu_tail = llnode;
394 		dec_active(c, &flags);
395 	}
396 
397 	if (llist_empty(&c->free_by_rcu))
398 		return;
399 
400 	if (atomic_xchg(&c->call_rcu_in_progress, 1)) {
401 		/*
402 		 * Instead of kmalloc-ing new rcu_head and triggering 10k
403 		 * call_rcu() to hit rcutree.qhimark and force RCU to notice
404 		 * the overload just ask RCU to hurry up. There could be many
405 		 * objects in free_by_rcu list.
406 		 * This hint reduces memory consumption for an artificial
407 		 * benchmark from 2 Gbyte to 150 Mbyte.
408 		 */
409 		rcu_request_urgent_qs_task(current);
410 		return;
411 	}
412 
413 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
414 
415 	inc_active(c, &flags);
416 	WRITE_ONCE(c->waiting_for_gp.first, __llist_del_all(&c->free_by_rcu));
417 	c->waiting_for_gp_tail = c->free_by_rcu_tail;
418 	dec_active(c, &flags);
419 
420 	if (unlikely(READ_ONCE(c->draining))) {
421 		free_all(llist_del_all(&c->waiting_for_gp), !!c->percpu_size);
422 		atomic_set(&c->call_rcu_in_progress, 0);
423 	} else {
424 		call_rcu_hurry(&c->rcu, __free_by_rcu);
425 	}
426 }
427 
428 static void bpf_mem_refill(struct irq_work *work)
429 {
430 	struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work);
431 	int cnt;
432 
433 	/* Racy access to free_cnt. It doesn't need to be 100% accurate */
434 	cnt = c->free_cnt;
435 	if (cnt < c->low_watermark)
436 		/* irq_work runs on this cpu and kmalloc will allocate
437 		 * from the current numa node which is what we want here.
438 		 */
439 		alloc_bulk(c, c->batch, NUMA_NO_NODE, true);
440 	else if (cnt > c->high_watermark)
441 		free_bulk(c);
442 
443 	check_free_by_rcu(c);
444 }
445 
446 static void notrace irq_work_raise(struct bpf_mem_cache *c)
447 {
448 	irq_work_queue(&c->refill_work);
449 }
450 
451 /* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket
452  * the freelist cache will be elem_size * 64 (or less) on each cpu.
453  *
454  * For bpf programs that don't have statically known allocation sizes and
455  * assuming (low_mark + high_mark) / 2 as an average number of elements per
456  * bucket and all buckets are used the total amount of memory in freelists
457  * on each cpu will be:
458  * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096
459  * == ~ 116 Kbyte using below heuristic.
460  * Initialized, but unused bpf allocator (not bpf map specific one) will
461  * consume ~ 11 Kbyte per cpu.
462  * Typical case will be between 11K and 116K closer to 11K.
463  * bpf progs can and should share bpf_mem_cache when possible.
464  *
465  * Percpu allocation is typically rare. To avoid potential unnecessary large
466  * memory consumption, set low_mark = 1 and high_mark = 3, resulting in c->batch = 1.
467  */
468 static void init_refill_work(struct bpf_mem_cache *c)
469 {
470 	init_irq_work(&c->refill_work, bpf_mem_refill);
471 	if (c->percpu_size) {
472 		c->low_watermark = 1;
473 		c->high_watermark = 3;
474 	} else if (c->unit_size <= 256) {
475 		c->low_watermark = 32;
476 		c->high_watermark = 96;
477 	} else {
478 		/* When page_size == 4k, order-0 cache will have low_mark == 2
479 		 * and high_mark == 6 with batch alloc of 3 individual pages at
480 		 * a time.
481 		 * 8k allocs and above low == 1, high == 3, batch == 1.
482 		 */
483 		c->low_watermark = max(32 * 256 / c->unit_size, 1);
484 		c->high_watermark = max(96 * 256 / c->unit_size, 3);
485 	}
486 	c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1);
487 }
488 
489 static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu)
490 {
491 	int cnt = 1;
492 
493 	/* To avoid consuming memory, for non-percpu allocation, assume that
494 	 * 1st run of bpf prog won't be doing more than 4 map_update_elem from
495 	 * irq disabled region if unit size is less than or equal to 256.
496 	 * For all other cases, let us just do one allocation.
497 	 */
498 	if (!c->percpu_size && c->unit_size <= 256)
499 		cnt = 4;
500 	alloc_bulk(c, cnt, cpu_to_node(cpu), false);
501 }
502 
503 /* When size != 0 bpf_mem_cache for each cpu.
504  * This is typical bpf hash map use case when all elements have equal size.
505  *
506  * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on
507  * kmalloc/kfree. Max allocation size is 4096 in this case.
508  * This is bpf_dynptr and bpf_kptr use case.
509  */
510 int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu)
511 {
512 	struct bpf_mem_caches *cc; struct bpf_mem_caches __percpu *pcc;
513 	struct bpf_mem_cache *c; struct bpf_mem_cache __percpu *pc;
514 	struct obj_cgroup *objcg = NULL;
515 	int cpu, i, unit_size, percpu_size = 0;
516 
517 	if (percpu && size == 0)
518 		return -EINVAL;
519 
520 	/* room for llist_node and per-cpu pointer */
521 	if (percpu)
522 		percpu_size = LLIST_NODE_SZ + sizeof(void *);
523 	ma->percpu = percpu;
524 
525 	if (size) {
526 		pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL);
527 		if (!pc)
528 			return -ENOMEM;
529 
530 		if (!percpu)
531 			size += LLIST_NODE_SZ; /* room for llist_node */
532 		unit_size = size;
533 
534 #ifdef CONFIG_MEMCG
535 		if (memcg_bpf_enabled())
536 			objcg = get_obj_cgroup_from_current();
537 #endif
538 		ma->objcg = objcg;
539 
540 		for_each_possible_cpu(cpu) {
541 			c = per_cpu_ptr(pc, cpu);
542 			c->unit_size = unit_size;
543 			c->objcg = objcg;
544 			c->percpu_size = percpu_size;
545 			c->tgt = c;
546 			init_refill_work(c);
547 			prefill_mem_cache(c, cpu);
548 		}
549 		ma->cache = pc;
550 		return 0;
551 	}
552 
553 	pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL);
554 	if (!pcc)
555 		return -ENOMEM;
556 #ifdef CONFIG_MEMCG
557 	objcg = get_obj_cgroup_from_current();
558 #endif
559 	ma->objcg = objcg;
560 	for_each_possible_cpu(cpu) {
561 		cc = per_cpu_ptr(pcc, cpu);
562 		for (i = 0; i < NUM_CACHES; i++) {
563 			c = &cc->cache[i];
564 			c->unit_size = sizes[i];
565 			c->objcg = objcg;
566 			c->percpu_size = percpu_size;
567 			c->tgt = c;
568 
569 			init_refill_work(c);
570 			prefill_mem_cache(c, cpu);
571 		}
572 	}
573 
574 	ma->caches = pcc;
575 	return 0;
576 }
577 
578 int bpf_mem_alloc_percpu_init(struct bpf_mem_alloc *ma, struct obj_cgroup *objcg)
579 {
580 	struct bpf_mem_caches __percpu *pcc;
581 
582 	pcc = __alloc_percpu_gfp(sizeof(struct bpf_mem_caches), 8, GFP_KERNEL);
583 	if (!pcc)
584 		return -ENOMEM;
585 
586 	ma->caches = pcc;
587 	ma->objcg = objcg;
588 	ma->percpu = true;
589 	return 0;
590 }
591 
592 int bpf_mem_alloc_percpu_unit_init(struct bpf_mem_alloc *ma, int size)
593 {
594 	struct bpf_mem_caches *cc; struct bpf_mem_caches __percpu *pcc;
595 	int cpu, i, unit_size, percpu_size;
596 	struct obj_cgroup *objcg;
597 	struct bpf_mem_cache *c;
598 
599 	i = bpf_mem_cache_idx(size);
600 	if (i < 0)
601 		return -EINVAL;
602 
603 	/* room for llist_node and per-cpu pointer */
604 	percpu_size = LLIST_NODE_SZ + sizeof(void *);
605 
606 	unit_size = sizes[i];
607 	objcg = ma->objcg;
608 	pcc = ma->caches;
609 
610 	for_each_possible_cpu(cpu) {
611 		cc = per_cpu_ptr(pcc, cpu);
612 		c = &cc->cache[i];
613 		if (c->unit_size)
614 			break;
615 
616 		c->unit_size = unit_size;
617 		c->objcg = objcg;
618 		c->percpu_size = percpu_size;
619 		c->tgt = c;
620 
621 		init_refill_work(c);
622 		prefill_mem_cache(c, cpu);
623 	}
624 
625 	return 0;
626 }
627 
628 static void drain_mem_cache(struct bpf_mem_cache *c)
629 {
630 	bool percpu = !!c->percpu_size;
631 
632 	/* No progs are using this bpf_mem_cache, but htab_map_free() called
633 	 * bpf_mem_cache_free() for all remaining elements and they can be in
634 	 * free_by_rcu_ttrace or in waiting_for_gp_ttrace lists, so drain those lists now.
635 	 *
636 	 * Except for waiting_for_gp_ttrace list, there are no concurrent operations
637 	 * on these lists, so it is safe to use __llist_del_all().
638 	 */
639 	free_all(llist_del_all(&c->free_by_rcu_ttrace), percpu);
640 	free_all(llist_del_all(&c->waiting_for_gp_ttrace), percpu);
641 	free_all(__llist_del_all(&c->free_llist), percpu);
642 	free_all(__llist_del_all(&c->free_llist_extra), percpu);
643 	free_all(__llist_del_all(&c->free_by_rcu), percpu);
644 	free_all(__llist_del_all(&c->free_llist_extra_rcu), percpu);
645 	free_all(llist_del_all(&c->waiting_for_gp), percpu);
646 }
647 
648 static void check_mem_cache(struct bpf_mem_cache *c)
649 {
650 	WARN_ON_ONCE(!llist_empty(&c->free_by_rcu_ttrace));
651 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
652 	WARN_ON_ONCE(!llist_empty(&c->free_llist));
653 	WARN_ON_ONCE(!llist_empty(&c->free_llist_extra));
654 	WARN_ON_ONCE(!llist_empty(&c->free_by_rcu));
655 	WARN_ON_ONCE(!llist_empty(&c->free_llist_extra_rcu));
656 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
657 }
658 
659 static void check_leaked_objs(struct bpf_mem_alloc *ma)
660 {
661 	struct bpf_mem_caches *cc;
662 	struct bpf_mem_cache *c;
663 	int cpu, i;
664 
665 	if (ma->cache) {
666 		for_each_possible_cpu(cpu) {
667 			c = per_cpu_ptr(ma->cache, cpu);
668 			check_mem_cache(c);
669 		}
670 	}
671 	if (ma->caches) {
672 		for_each_possible_cpu(cpu) {
673 			cc = per_cpu_ptr(ma->caches, cpu);
674 			for (i = 0; i < NUM_CACHES; i++) {
675 				c = &cc->cache[i];
676 				check_mem_cache(c);
677 			}
678 		}
679 	}
680 }
681 
682 static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma)
683 {
684 	check_leaked_objs(ma);
685 	free_percpu(ma->cache);
686 	free_percpu(ma->caches);
687 	ma->cache = NULL;
688 	ma->caches = NULL;
689 }
690 
691 static void free_mem_alloc(struct bpf_mem_alloc *ma)
692 {
693 	/* waiting_for_gp[_ttrace] lists were drained, but RCU callbacks
694 	 * might still execute. Wait for them.
695 	 *
696 	 * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(),
697 	 * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used
698 	 * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(),
699 	 * so if call_rcu(head, __free_rcu) is skipped due to
700 	 * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by
701 	 * using rcu_trace_implies_rcu_gp() as well.
702 	 */
703 	rcu_barrier(); /* wait for __free_by_rcu */
704 	rcu_barrier_tasks_trace(); /* wait for __free_rcu */
705 	if (!rcu_trace_implies_rcu_gp())
706 		rcu_barrier();
707 	free_mem_alloc_no_barrier(ma);
708 }
709 
710 static void free_mem_alloc_deferred(struct work_struct *work)
711 {
712 	struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work);
713 
714 	free_mem_alloc(ma);
715 	kfree(ma);
716 }
717 
718 static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress)
719 {
720 	struct bpf_mem_alloc *copy;
721 
722 	if (!rcu_in_progress) {
723 		/* Fast path. No callbacks are pending, hence no need to do
724 		 * rcu_barrier-s.
725 		 */
726 		free_mem_alloc_no_barrier(ma);
727 		return;
728 	}
729 
730 	copy = kmemdup(ma, sizeof(*ma), GFP_KERNEL);
731 	if (!copy) {
732 		/* Slow path with inline barrier-s */
733 		free_mem_alloc(ma);
734 		return;
735 	}
736 
737 	/* Defer barriers into worker to let the rest of map memory to be freed */
738 	memset(ma, 0, sizeof(*ma));
739 	INIT_WORK(&copy->work, free_mem_alloc_deferred);
740 	queue_work(system_unbound_wq, &copy->work);
741 }
742 
743 void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma)
744 {
745 	struct bpf_mem_caches *cc;
746 	struct bpf_mem_cache *c;
747 	int cpu, i, rcu_in_progress;
748 
749 	if (ma->cache) {
750 		rcu_in_progress = 0;
751 		for_each_possible_cpu(cpu) {
752 			c = per_cpu_ptr(ma->cache, cpu);
753 			WRITE_ONCE(c->draining, true);
754 			irq_work_sync(&c->refill_work);
755 			drain_mem_cache(c);
756 			rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
757 			rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
758 		}
759 		obj_cgroup_put(ma->objcg);
760 		destroy_mem_alloc(ma, rcu_in_progress);
761 	}
762 	if (ma->caches) {
763 		rcu_in_progress = 0;
764 		for_each_possible_cpu(cpu) {
765 			cc = per_cpu_ptr(ma->caches, cpu);
766 			for (i = 0; i < NUM_CACHES; i++) {
767 				c = &cc->cache[i];
768 				WRITE_ONCE(c->draining, true);
769 				irq_work_sync(&c->refill_work);
770 				drain_mem_cache(c);
771 				rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
772 				rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
773 			}
774 		}
775 		obj_cgroup_put(ma->objcg);
776 		destroy_mem_alloc(ma, rcu_in_progress);
777 	}
778 }
779 
780 /* notrace is necessary here and in other functions to make sure
781  * bpf programs cannot attach to them and cause llist corruptions.
782  */
783 static void notrace *unit_alloc(struct bpf_mem_cache *c)
784 {
785 	struct llist_node *llnode = NULL;
786 	unsigned long flags;
787 	int cnt = 0;
788 
789 	/* Disable irqs to prevent the following race for majority of prog types:
790 	 * prog_A
791 	 *   bpf_mem_alloc
792 	 *      preemption or irq -> prog_B
793 	 *        bpf_mem_alloc
794 	 *
795 	 * but prog_B could be a perf_event NMI prog.
796 	 * Use per-cpu 'active' counter to order free_list access between
797 	 * unit_alloc/unit_free/bpf_mem_refill.
798 	 */
799 	local_irq_save(flags);
800 	if (local_inc_return(&c->active) == 1) {
801 		llnode = __llist_del_first(&c->free_llist);
802 		if (llnode) {
803 			cnt = --c->free_cnt;
804 			*(struct bpf_mem_cache **)llnode = c;
805 		}
806 	}
807 	local_dec(&c->active);
808 
809 	WARN_ON(cnt < 0);
810 
811 	if (cnt < c->low_watermark)
812 		irq_work_raise(c);
813 	/* Enable IRQ after the enqueue of irq work completes, so irq work
814 	 * will run after IRQ is enabled and free_llist may be refilled by
815 	 * irq work before other task preempts current task.
816 	 */
817 	local_irq_restore(flags);
818 
819 	return llnode;
820 }
821 
822 /* Though 'ptr' object could have been allocated on a different cpu
823  * add it to the free_llist of the current cpu.
824  * Let kfree() logic deal with it when it's later called from irq_work.
825  */
826 static void notrace unit_free(struct bpf_mem_cache *c, void *ptr)
827 {
828 	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
829 	unsigned long flags;
830 	int cnt = 0;
831 
832 	BUILD_BUG_ON(LLIST_NODE_SZ > 8);
833 
834 	/*
835 	 * Remember bpf_mem_cache that allocated this object.
836 	 * The hint is not accurate.
837 	 */
838 	c->tgt = *(struct bpf_mem_cache **)llnode;
839 
840 	local_irq_save(flags);
841 	if (local_inc_return(&c->active) == 1) {
842 		__llist_add(llnode, &c->free_llist);
843 		cnt = ++c->free_cnt;
844 	} else {
845 		/* unit_free() cannot fail. Therefore add an object to atomic
846 		 * llist. free_bulk() will drain it. Though free_llist_extra is
847 		 * a per-cpu list we have to use atomic llist_add here, since
848 		 * it also can be interrupted by bpf nmi prog that does another
849 		 * unit_free() into the same free_llist_extra.
850 		 */
851 		llist_add(llnode, &c->free_llist_extra);
852 	}
853 	local_dec(&c->active);
854 
855 	if (cnt > c->high_watermark)
856 		/* free few objects from current cpu into global kmalloc pool */
857 		irq_work_raise(c);
858 	/* Enable IRQ after irq_work_raise() completes, otherwise when current
859 	 * task is preempted by task which does unit_alloc(), unit_alloc() may
860 	 * return NULL unexpectedly because irq work is already pending but can
861 	 * not been triggered and free_llist can not be refilled timely.
862 	 */
863 	local_irq_restore(flags);
864 }
865 
866 static void notrace unit_free_rcu(struct bpf_mem_cache *c, void *ptr)
867 {
868 	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
869 	unsigned long flags;
870 
871 	c->tgt = *(struct bpf_mem_cache **)llnode;
872 
873 	local_irq_save(flags);
874 	if (local_inc_return(&c->active) == 1) {
875 		if (__llist_add(llnode, &c->free_by_rcu))
876 			c->free_by_rcu_tail = llnode;
877 	} else {
878 		llist_add(llnode, &c->free_llist_extra_rcu);
879 	}
880 	local_dec(&c->active);
881 
882 	if (!atomic_read(&c->call_rcu_in_progress))
883 		irq_work_raise(c);
884 	local_irq_restore(flags);
885 }
886 
887 /* Called from BPF program or from sys_bpf syscall.
888  * In both cases migration is disabled.
889  */
890 void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size)
891 {
892 	int idx;
893 	void *ret;
894 
895 	if (!size)
896 		return NULL;
897 
898 	if (!ma->percpu)
899 		size += LLIST_NODE_SZ;
900 	idx = bpf_mem_cache_idx(size);
901 	if (idx < 0)
902 		return NULL;
903 
904 	ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx);
905 	return !ret ? NULL : ret + LLIST_NODE_SZ;
906 }
907 
908 void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr)
909 {
910 	struct bpf_mem_cache *c;
911 	int idx;
912 
913 	if (!ptr)
914 		return;
915 
916 	c = *(void **)(ptr - LLIST_NODE_SZ);
917 	idx = bpf_mem_cache_idx(c->unit_size);
918 	if (WARN_ON_ONCE(idx < 0))
919 		return;
920 
921 	unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr);
922 }
923 
924 void notrace bpf_mem_free_rcu(struct bpf_mem_alloc *ma, void *ptr)
925 {
926 	struct bpf_mem_cache *c;
927 	int idx;
928 
929 	if (!ptr)
930 		return;
931 
932 	c = *(void **)(ptr - LLIST_NODE_SZ);
933 	idx = bpf_mem_cache_idx(c->unit_size);
934 	if (WARN_ON_ONCE(idx < 0))
935 		return;
936 
937 	unit_free_rcu(this_cpu_ptr(ma->caches)->cache + idx, ptr);
938 }
939 
940 void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma)
941 {
942 	void *ret;
943 
944 	ret = unit_alloc(this_cpu_ptr(ma->cache));
945 	return !ret ? NULL : ret + LLIST_NODE_SZ;
946 }
947 
948 void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr)
949 {
950 	if (!ptr)
951 		return;
952 
953 	unit_free(this_cpu_ptr(ma->cache), ptr);
954 }
955 
956 void notrace bpf_mem_cache_free_rcu(struct bpf_mem_alloc *ma, void *ptr)
957 {
958 	if (!ptr)
959 		return;
960 
961 	unit_free_rcu(this_cpu_ptr(ma->cache), ptr);
962 }
963 
964 /* Directly does a kfree() without putting 'ptr' back to the free_llist
965  * for reuse and without waiting for a rcu_tasks_trace gp.
966  * The caller must first go through the rcu_tasks_trace gp for 'ptr'
967  * before calling bpf_mem_cache_raw_free().
968  * It could be used when the rcu_tasks_trace callback does not have
969  * a hold on the original bpf_mem_alloc object that allocated the
970  * 'ptr'. This should only be used in the uncommon code path.
971  * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled
972  * and may affect performance.
973  */
974 void bpf_mem_cache_raw_free(void *ptr)
975 {
976 	if (!ptr)
977 		return;
978 
979 	kfree(ptr - LLIST_NODE_SZ);
980 }
981 
982 /* When flags == GFP_KERNEL, it signals that the caller will not cause
983  * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use
984  * kmalloc if the free_llist is empty.
985  */
986 void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags)
987 {
988 	struct bpf_mem_cache *c;
989 	void *ret;
990 
991 	c = this_cpu_ptr(ma->cache);
992 
993 	ret = unit_alloc(c);
994 	if (!ret && flags == GFP_KERNEL) {
995 		struct mem_cgroup *memcg, *old_memcg;
996 
997 		memcg = get_memcg(c);
998 		old_memcg = set_active_memcg(memcg);
999 		ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT);
1000 		if (ret)
1001 			*(struct bpf_mem_cache **)ret = c;
1002 		set_active_memcg(old_memcg);
1003 		mem_cgroup_put(memcg);
1004 	}
1005 
1006 	return !ret ? NULL : ret + LLIST_NODE_SZ;
1007 }
1008