xref: /linux/kernel/bpf/memalloc.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
3 #include <linux/mm.h>
4 #include <linux/llist.h>
5 #include <linux/bpf.h>
6 #include <linux/irq_work.h>
7 #include <linux/bpf_mem_alloc.h>
8 #include <linux/memcontrol.h>
9 #include <asm/local.h>
10 
11 /* Any context (including NMI) BPF specific memory allocator.
12  *
13  * Tracing BPF programs can attach to kprobe and fentry. Hence they
14  * run in unknown context where calling plain kmalloc() might not be safe.
15  *
16  * Front-end kmalloc() with per-cpu per-bucket cache of free elements.
17  * Refill this cache asynchronously from irq_work.
18  *
19  * CPU_0 buckets
20  * 16 32 64 96 128 196 256 512 1024 2048 4096
21  * ...
22  * CPU_N buckets
23  * 16 32 64 96 128 196 256 512 1024 2048 4096
24  *
25  * The buckets are prefilled at the start.
26  * BPF programs always run with migration disabled.
27  * It's safe to allocate from cache of the current cpu with irqs disabled.
28  * Free-ing is always done into bucket of the current cpu as well.
29  * irq_work trims extra free elements from buckets with kfree
30  * and refills them with kmalloc, so global kmalloc logic takes care
31  * of freeing objects allocated by one cpu and freed on another.
32  *
33  * Every allocated objected is padded with extra 8 bytes that contains
34  * struct llist_node.
35  */
36 #define LLIST_NODE_SZ sizeof(struct llist_node)
37 
38 #define BPF_MEM_ALLOC_SIZE_MAX 4096
39 
40 /* similar to kmalloc, but sizeof == 8 bucket is gone */
41 static u8 size_index[24] __ro_after_init = {
42 	3,	/* 8 */
43 	3,	/* 16 */
44 	4,	/* 24 */
45 	4,	/* 32 */
46 	5,	/* 40 */
47 	5,	/* 48 */
48 	5,	/* 56 */
49 	5,	/* 64 */
50 	1,	/* 72 */
51 	1,	/* 80 */
52 	1,	/* 88 */
53 	1,	/* 96 */
54 	6,	/* 104 */
55 	6,	/* 112 */
56 	6,	/* 120 */
57 	6,	/* 128 */
58 	2,	/* 136 */
59 	2,	/* 144 */
60 	2,	/* 152 */
61 	2,	/* 160 */
62 	2,	/* 168 */
63 	2,	/* 176 */
64 	2,	/* 184 */
65 	2	/* 192 */
66 };
67 
68 static int bpf_mem_cache_idx(size_t size)
69 {
70 	if (!size || size > BPF_MEM_ALLOC_SIZE_MAX)
71 		return -1;
72 
73 	if (size <= 192)
74 		return size_index[(size - 1) / 8] - 1;
75 
76 	return fls(size - 1) - 2;
77 }
78 
79 #define NUM_CACHES 11
80 
81 struct bpf_mem_cache {
82 	/* per-cpu list of free objects of size 'unit_size'.
83 	 * All accesses are done with interrupts disabled and 'active' counter
84 	 * protection with __llist_add() and __llist_del_first().
85 	 */
86 	struct llist_head free_llist;
87 	local_t active;
88 
89 	/* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill
90 	 * are sequenced by per-cpu 'active' counter. But unit_free() cannot
91 	 * fail. When 'active' is busy the unit_free() will add an object to
92 	 * free_llist_extra.
93 	 */
94 	struct llist_head free_llist_extra;
95 
96 	struct irq_work refill_work;
97 	struct obj_cgroup *objcg;
98 	int unit_size;
99 	/* count of objects in free_llist */
100 	int free_cnt;
101 	int low_watermark, high_watermark, batch;
102 	int percpu_size;
103 	bool draining;
104 	struct bpf_mem_cache *tgt;
105 
106 	/* list of objects to be freed after RCU GP */
107 	struct llist_head free_by_rcu;
108 	struct llist_node *free_by_rcu_tail;
109 	struct llist_head waiting_for_gp;
110 	struct llist_node *waiting_for_gp_tail;
111 	struct rcu_head rcu;
112 	atomic_t call_rcu_in_progress;
113 	struct llist_head free_llist_extra_rcu;
114 
115 	/* list of objects to be freed after RCU tasks trace GP */
116 	struct llist_head free_by_rcu_ttrace;
117 	struct llist_head waiting_for_gp_ttrace;
118 	struct rcu_head rcu_ttrace;
119 	atomic_t call_rcu_ttrace_in_progress;
120 };
121 
122 struct bpf_mem_caches {
123 	struct bpf_mem_cache cache[NUM_CACHES];
124 };
125 
126 static const u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};
127 
128 static struct llist_node notrace *__llist_del_first(struct llist_head *head)
129 {
130 	struct llist_node *entry, *next;
131 
132 	entry = head->first;
133 	if (!entry)
134 		return NULL;
135 	next = entry->next;
136 	head->first = next;
137 	return entry;
138 }
139 
140 static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags)
141 {
142 	if (c->percpu_size) {
143 		void __percpu **obj = kmalloc_node(c->percpu_size, flags, node);
144 		void __percpu *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags);
145 
146 		if (!obj || !pptr) {
147 			free_percpu(pptr);
148 			kfree(obj);
149 			return NULL;
150 		}
151 		obj[1] = pptr;
152 		return obj;
153 	}
154 
155 	return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node);
156 }
157 
158 static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c)
159 {
160 #ifdef CONFIG_MEMCG
161 	if (c->objcg)
162 		return get_mem_cgroup_from_objcg(c->objcg);
163 	return root_mem_cgroup;
164 #else
165 	return NULL;
166 #endif
167 }
168 
169 static void inc_active(struct bpf_mem_cache *c, unsigned long *flags)
170 {
171 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
172 		/* In RT irq_work runs in per-cpu kthread, so disable
173 		 * interrupts to avoid preemption and interrupts and
174 		 * reduce the chance of bpf prog executing on this cpu
175 		 * when active counter is busy.
176 		 */
177 		local_irq_save(*flags);
178 	/* alloc_bulk runs from irq_work which will not preempt a bpf
179 	 * program that does unit_alloc/unit_free since IRQs are
180 	 * disabled there. There is no race to increment 'active'
181 	 * counter. It protects free_llist from corruption in case NMI
182 	 * bpf prog preempted this loop.
183 	 */
184 	WARN_ON_ONCE(local_inc_return(&c->active) != 1);
185 }
186 
187 static void dec_active(struct bpf_mem_cache *c, unsigned long *flags)
188 {
189 	local_dec(&c->active);
190 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
191 		local_irq_restore(*flags);
192 }
193 
194 static void add_obj_to_free_list(struct bpf_mem_cache *c, void *obj)
195 {
196 	unsigned long flags;
197 
198 	inc_active(c, &flags);
199 	__llist_add(obj, &c->free_llist);
200 	c->free_cnt++;
201 	dec_active(c, &flags);
202 }
203 
204 /* Mostly runs from irq_work except __init phase. */
205 static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node, bool atomic)
206 {
207 	struct mem_cgroup *memcg = NULL, *old_memcg;
208 	gfp_t gfp;
209 	void *obj;
210 	int i;
211 
212 	gfp = __GFP_NOWARN | __GFP_ACCOUNT;
213 	gfp |= atomic ? GFP_NOWAIT : GFP_KERNEL;
214 
215 	for (i = 0; i < cnt; i++) {
216 		/*
217 		 * For every 'c' llist_del_first(&c->free_by_rcu_ttrace); is
218 		 * done only by one CPU == current CPU. Other CPUs might
219 		 * llist_add() and llist_del_all() in parallel.
220 		 */
221 		obj = llist_del_first(&c->free_by_rcu_ttrace);
222 		if (!obj)
223 			break;
224 		add_obj_to_free_list(c, obj);
225 	}
226 	if (i >= cnt)
227 		return;
228 
229 	for (; i < cnt; i++) {
230 		obj = llist_del_first(&c->waiting_for_gp_ttrace);
231 		if (!obj)
232 			break;
233 		add_obj_to_free_list(c, obj);
234 	}
235 	if (i >= cnt)
236 		return;
237 
238 	memcg = get_memcg(c);
239 	old_memcg = set_active_memcg(memcg);
240 	for (; i < cnt; i++) {
241 		/* Allocate, but don't deplete atomic reserves that typical
242 		 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc
243 		 * will allocate from the current numa node which is what we
244 		 * want here.
245 		 */
246 		obj = __alloc(c, node, gfp);
247 		if (!obj)
248 			break;
249 		add_obj_to_free_list(c, obj);
250 	}
251 	set_active_memcg(old_memcg);
252 	mem_cgroup_put(memcg);
253 }
254 
255 static void free_one(void *obj, bool percpu)
256 {
257 	if (percpu) {
258 		free_percpu(((void __percpu **)obj)[1]);
259 		kfree(obj);
260 		return;
261 	}
262 
263 	kfree(obj);
264 }
265 
266 static int free_all(struct llist_node *llnode, bool percpu)
267 {
268 	struct llist_node *pos, *t;
269 	int cnt = 0;
270 
271 	llist_for_each_safe(pos, t, llnode) {
272 		free_one(pos, percpu);
273 		cnt++;
274 	}
275 	return cnt;
276 }
277 
278 static void __free_rcu(struct rcu_head *head)
279 {
280 	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu_ttrace);
281 
282 	free_all(llist_del_all(&c->waiting_for_gp_ttrace), !!c->percpu_size);
283 	atomic_set(&c->call_rcu_ttrace_in_progress, 0);
284 }
285 
286 static void __free_rcu_tasks_trace(struct rcu_head *head)
287 {
288 	/* If RCU Tasks Trace grace period implies RCU grace period,
289 	 * there is no need to invoke call_rcu().
290 	 */
291 	if (rcu_trace_implies_rcu_gp())
292 		__free_rcu(head);
293 	else
294 		call_rcu(head, __free_rcu);
295 }
296 
297 static void enque_to_free(struct bpf_mem_cache *c, void *obj)
298 {
299 	struct llist_node *llnode = obj;
300 
301 	/* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work.
302 	 * Nothing races to add to free_by_rcu_ttrace list.
303 	 */
304 	llist_add(llnode, &c->free_by_rcu_ttrace);
305 }
306 
307 static void do_call_rcu_ttrace(struct bpf_mem_cache *c)
308 {
309 	struct llist_node *llnode, *t;
310 
311 	if (atomic_xchg(&c->call_rcu_ttrace_in_progress, 1)) {
312 		if (unlikely(READ_ONCE(c->draining))) {
313 			llnode = llist_del_all(&c->free_by_rcu_ttrace);
314 			free_all(llnode, !!c->percpu_size);
315 		}
316 		return;
317 	}
318 
319 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
320 	llist_for_each_safe(llnode, t, llist_del_all(&c->free_by_rcu_ttrace))
321 		llist_add(llnode, &c->waiting_for_gp_ttrace);
322 
323 	if (unlikely(READ_ONCE(c->draining))) {
324 		__free_rcu(&c->rcu_ttrace);
325 		return;
326 	}
327 
328 	/* Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
329 	 * If RCU Tasks Trace grace period implies RCU grace period, free
330 	 * these elements directly, else use call_rcu() to wait for normal
331 	 * progs to finish and finally do free_one() on each element.
332 	 */
333 	call_rcu_tasks_trace(&c->rcu_ttrace, __free_rcu_tasks_trace);
334 }
335 
336 static void free_bulk(struct bpf_mem_cache *c)
337 {
338 	struct bpf_mem_cache *tgt = c->tgt;
339 	struct llist_node *llnode, *t;
340 	unsigned long flags;
341 	int cnt;
342 
343 	WARN_ON_ONCE(tgt->unit_size != c->unit_size);
344 	WARN_ON_ONCE(tgt->percpu_size != c->percpu_size);
345 
346 	do {
347 		inc_active(c, &flags);
348 		llnode = __llist_del_first(&c->free_llist);
349 		if (llnode)
350 			cnt = --c->free_cnt;
351 		else
352 			cnt = 0;
353 		dec_active(c, &flags);
354 		if (llnode)
355 			enque_to_free(tgt, llnode);
356 	} while (cnt > (c->high_watermark + c->low_watermark) / 2);
357 
358 	/* and drain free_llist_extra */
359 	llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra))
360 		enque_to_free(tgt, llnode);
361 	do_call_rcu_ttrace(tgt);
362 }
363 
364 static void __free_by_rcu(struct rcu_head *head)
365 {
366 	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu);
367 	struct bpf_mem_cache *tgt = c->tgt;
368 	struct llist_node *llnode;
369 
370 	WARN_ON_ONCE(tgt->unit_size != c->unit_size);
371 	WARN_ON_ONCE(tgt->percpu_size != c->percpu_size);
372 
373 	llnode = llist_del_all(&c->waiting_for_gp);
374 	if (!llnode)
375 		goto out;
376 
377 	llist_add_batch(llnode, c->waiting_for_gp_tail, &tgt->free_by_rcu_ttrace);
378 
379 	/* Objects went through regular RCU GP. Send them to RCU tasks trace */
380 	do_call_rcu_ttrace(tgt);
381 out:
382 	atomic_set(&c->call_rcu_in_progress, 0);
383 }
384 
385 static void check_free_by_rcu(struct bpf_mem_cache *c)
386 {
387 	struct llist_node *llnode, *t;
388 	unsigned long flags;
389 
390 	/* drain free_llist_extra_rcu */
391 	if (unlikely(!llist_empty(&c->free_llist_extra_rcu))) {
392 		inc_active(c, &flags);
393 		llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra_rcu))
394 			if (__llist_add(llnode, &c->free_by_rcu))
395 				c->free_by_rcu_tail = llnode;
396 		dec_active(c, &flags);
397 	}
398 
399 	if (llist_empty(&c->free_by_rcu))
400 		return;
401 
402 	if (atomic_xchg(&c->call_rcu_in_progress, 1)) {
403 		/*
404 		 * Instead of kmalloc-ing new rcu_head and triggering 10k
405 		 * call_rcu() to hit rcutree.qhimark and force RCU to notice
406 		 * the overload just ask RCU to hurry up. There could be many
407 		 * objects in free_by_rcu list.
408 		 * This hint reduces memory consumption for an artificial
409 		 * benchmark from 2 Gbyte to 150 Mbyte.
410 		 */
411 		rcu_request_urgent_qs_task(current);
412 		return;
413 	}
414 
415 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
416 
417 	inc_active(c, &flags);
418 	WRITE_ONCE(c->waiting_for_gp.first, __llist_del_all(&c->free_by_rcu));
419 	c->waiting_for_gp_tail = c->free_by_rcu_tail;
420 	dec_active(c, &flags);
421 
422 	if (unlikely(READ_ONCE(c->draining))) {
423 		free_all(llist_del_all(&c->waiting_for_gp), !!c->percpu_size);
424 		atomic_set(&c->call_rcu_in_progress, 0);
425 	} else {
426 		call_rcu_hurry(&c->rcu, __free_by_rcu);
427 	}
428 }
429 
430 static void bpf_mem_refill(struct irq_work *work)
431 {
432 	struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work);
433 	int cnt;
434 
435 	/* Racy access to free_cnt. It doesn't need to be 100% accurate */
436 	cnt = c->free_cnt;
437 	if (cnt < c->low_watermark)
438 		/* irq_work runs on this cpu and kmalloc will allocate
439 		 * from the current numa node which is what we want here.
440 		 */
441 		alloc_bulk(c, c->batch, NUMA_NO_NODE, true);
442 	else if (cnt > c->high_watermark)
443 		free_bulk(c);
444 
445 	check_free_by_rcu(c);
446 }
447 
448 static void notrace irq_work_raise(struct bpf_mem_cache *c)
449 {
450 	irq_work_queue(&c->refill_work);
451 }
452 
453 /* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket
454  * the freelist cache will be elem_size * 64 (or less) on each cpu.
455  *
456  * For bpf programs that don't have statically known allocation sizes and
457  * assuming (low_mark + high_mark) / 2 as an average number of elements per
458  * bucket and all buckets are used the total amount of memory in freelists
459  * on each cpu will be:
460  * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096
461  * == ~ 116 Kbyte using below heuristic.
462  * Initialized, but unused bpf allocator (not bpf map specific one) will
463  * consume ~ 11 Kbyte per cpu.
464  * Typical case will be between 11K and 116K closer to 11K.
465  * bpf progs can and should share bpf_mem_cache when possible.
466  *
467  * Percpu allocation is typically rare. To avoid potential unnecessary large
468  * memory consumption, set low_mark = 1 and high_mark = 3, resulting in c->batch = 1.
469  */
470 static void init_refill_work(struct bpf_mem_cache *c)
471 {
472 	init_irq_work(&c->refill_work, bpf_mem_refill);
473 	if (c->percpu_size) {
474 		c->low_watermark = 1;
475 		c->high_watermark = 3;
476 	} else if (c->unit_size <= 256) {
477 		c->low_watermark = 32;
478 		c->high_watermark = 96;
479 	} else {
480 		/* When page_size == 4k, order-0 cache will have low_mark == 2
481 		 * and high_mark == 6 with batch alloc of 3 individual pages at
482 		 * a time.
483 		 * 8k allocs and above low == 1, high == 3, batch == 1.
484 		 */
485 		c->low_watermark = max(32 * 256 / c->unit_size, 1);
486 		c->high_watermark = max(96 * 256 / c->unit_size, 3);
487 	}
488 	c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1);
489 }
490 
491 static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu)
492 {
493 	int cnt = 1;
494 
495 	/* To avoid consuming memory, for non-percpu allocation, assume that
496 	 * 1st run of bpf prog won't be doing more than 4 map_update_elem from
497 	 * irq disabled region if unit size is less than or equal to 256.
498 	 * For all other cases, let us just do one allocation.
499 	 */
500 	if (!c->percpu_size && c->unit_size <= 256)
501 		cnt = 4;
502 	alloc_bulk(c, cnt, cpu_to_node(cpu), false);
503 }
504 
505 /* When size != 0 bpf_mem_cache for each cpu.
506  * This is typical bpf hash map use case when all elements have equal size.
507  *
508  * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on
509  * kmalloc/kfree. Max allocation size is 4096 in this case.
510  * This is bpf_dynptr and bpf_kptr use case.
511  */
512 int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu)
513 {
514 	struct bpf_mem_caches *cc; struct bpf_mem_caches __percpu *pcc;
515 	struct bpf_mem_cache *c; struct bpf_mem_cache __percpu *pc;
516 	struct obj_cgroup *objcg = NULL;
517 	int cpu, i, unit_size, percpu_size = 0;
518 
519 	if (percpu && size == 0)
520 		return -EINVAL;
521 
522 	/* room for llist_node and per-cpu pointer */
523 	if (percpu)
524 		percpu_size = LLIST_NODE_SZ + sizeof(void *);
525 	ma->percpu = percpu;
526 
527 	if (size) {
528 		pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL);
529 		if (!pc)
530 			return -ENOMEM;
531 
532 		if (!percpu)
533 			size += LLIST_NODE_SZ; /* room for llist_node */
534 		unit_size = size;
535 
536 #ifdef CONFIG_MEMCG
537 		if (memcg_bpf_enabled())
538 			objcg = get_obj_cgroup_from_current();
539 #endif
540 		ma->objcg = objcg;
541 
542 		for_each_possible_cpu(cpu) {
543 			c = per_cpu_ptr(pc, cpu);
544 			c->unit_size = unit_size;
545 			c->objcg = objcg;
546 			c->percpu_size = percpu_size;
547 			c->tgt = c;
548 			init_refill_work(c);
549 			prefill_mem_cache(c, cpu);
550 		}
551 		ma->cache = pc;
552 		return 0;
553 	}
554 
555 	pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL);
556 	if (!pcc)
557 		return -ENOMEM;
558 #ifdef CONFIG_MEMCG
559 	objcg = get_obj_cgroup_from_current();
560 #endif
561 	ma->objcg = objcg;
562 	for_each_possible_cpu(cpu) {
563 		cc = per_cpu_ptr(pcc, cpu);
564 		for (i = 0; i < NUM_CACHES; i++) {
565 			c = &cc->cache[i];
566 			c->unit_size = sizes[i];
567 			c->objcg = objcg;
568 			c->percpu_size = percpu_size;
569 			c->tgt = c;
570 
571 			init_refill_work(c);
572 			prefill_mem_cache(c, cpu);
573 		}
574 	}
575 
576 	ma->caches = pcc;
577 	return 0;
578 }
579 
580 int bpf_mem_alloc_percpu_init(struct bpf_mem_alloc *ma, struct obj_cgroup *objcg)
581 {
582 	struct bpf_mem_caches __percpu *pcc;
583 
584 	pcc = __alloc_percpu_gfp(sizeof(struct bpf_mem_caches), 8, GFP_KERNEL);
585 	if (!pcc)
586 		return -ENOMEM;
587 
588 	ma->caches = pcc;
589 	ma->objcg = objcg;
590 	ma->percpu = true;
591 	return 0;
592 }
593 
594 int bpf_mem_alloc_percpu_unit_init(struct bpf_mem_alloc *ma, int size)
595 {
596 	struct bpf_mem_caches *cc; struct bpf_mem_caches __percpu *pcc;
597 	int cpu, i, unit_size, percpu_size;
598 	struct obj_cgroup *objcg;
599 	struct bpf_mem_cache *c;
600 
601 	i = bpf_mem_cache_idx(size);
602 	if (i < 0)
603 		return -EINVAL;
604 
605 	/* room for llist_node and per-cpu pointer */
606 	percpu_size = LLIST_NODE_SZ + sizeof(void *);
607 
608 	unit_size = sizes[i];
609 	objcg = ma->objcg;
610 	pcc = ma->caches;
611 
612 	for_each_possible_cpu(cpu) {
613 		cc = per_cpu_ptr(pcc, cpu);
614 		c = &cc->cache[i];
615 		if (c->unit_size)
616 			break;
617 
618 		c->unit_size = unit_size;
619 		c->objcg = objcg;
620 		c->percpu_size = percpu_size;
621 		c->tgt = c;
622 
623 		init_refill_work(c);
624 		prefill_mem_cache(c, cpu);
625 	}
626 
627 	return 0;
628 }
629 
630 static void drain_mem_cache(struct bpf_mem_cache *c)
631 {
632 	bool percpu = !!c->percpu_size;
633 
634 	/* No progs are using this bpf_mem_cache, but htab_map_free() called
635 	 * bpf_mem_cache_free() for all remaining elements and they can be in
636 	 * free_by_rcu_ttrace or in waiting_for_gp_ttrace lists, so drain those lists now.
637 	 *
638 	 * Except for waiting_for_gp_ttrace list, there are no concurrent operations
639 	 * on these lists, so it is safe to use __llist_del_all().
640 	 */
641 	free_all(llist_del_all(&c->free_by_rcu_ttrace), percpu);
642 	free_all(llist_del_all(&c->waiting_for_gp_ttrace), percpu);
643 	free_all(__llist_del_all(&c->free_llist), percpu);
644 	free_all(__llist_del_all(&c->free_llist_extra), percpu);
645 	free_all(__llist_del_all(&c->free_by_rcu), percpu);
646 	free_all(__llist_del_all(&c->free_llist_extra_rcu), percpu);
647 	free_all(llist_del_all(&c->waiting_for_gp), percpu);
648 }
649 
650 static void check_mem_cache(struct bpf_mem_cache *c)
651 {
652 	WARN_ON_ONCE(!llist_empty(&c->free_by_rcu_ttrace));
653 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
654 	WARN_ON_ONCE(!llist_empty(&c->free_llist));
655 	WARN_ON_ONCE(!llist_empty(&c->free_llist_extra));
656 	WARN_ON_ONCE(!llist_empty(&c->free_by_rcu));
657 	WARN_ON_ONCE(!llist_empty(&c->free_llist_extra_rcu));
658 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
659 }
660 
661 static void check_leaked_objs(struct bpf_mem_alloc *ma)
662 {
663 	struct bpf_mem_caches *cc;
664 	struct bpf_mem_cache *c;
665 	int cpu, i;
666 
667 	if (ma->cache) {
668 		for_each_possible_cpu(cpu) {
669 			c = per_cpu_ptr(ma->cache, cpu);
670 			check_mem_cache(c);
671 		}
672 	}
673 	if (ma->caches) {
674 		for_each_possible_cpu(cpu) {
675 			cc = per_cpu_ptr(ma->caches, cpu);
676 			for (i = 0; i < NUM_CACHES; i++) {
677 				c = &cc->cache[i];
678 				check_mem_cache(c);
679 			}
680 		}
681 	}
682 }
683 
684 static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma)
685 {
686 	check_leaked_objs(ma);
687 	free_percpu(ma->cache);
688 	free_percpu(ma->caches);
689 	ma->cache = NULL;
690 	ma->caches = NULL;
691 }
692 
693 static void free_mem_alloc(struct bpf_mem_alloc *ma)
694 {
695 	/* waiting_for_gp[_ttrace] lists were drained, but RCU callbacks
696 	 * might still execute. Wait for them.
697 	 *
698 	 * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(),
699 	 * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used
700 	 * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(),
701 	 * so if call_rcu(head, __free_rcu) is skipped due to
702 	 * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by
703 	 * using rcu_trace_implies_rcu_gp() as well.
704 	 */
705 	rcu_barrier(); /* wait for __free_by_rcu */
706 	rcu_barrier_tasks_trace(); /* wait for __free_rcu */
707 	if (!rcu_trace_implies_rcu_gp())
708 		rcu_barrier();
709 	free_mem_alloc_no_barrier(ma);
710 }
711 
712 static void free_mem_alloc_deferred(struct work_struct *work)
713 {
714 	struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work);
715 
716 	free_mem_alloc(ma);
717 	kfree(ma);
718 }
719 
720 static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress)
721 {
722 	struct bpf_mem_alloc *copy;
723 
724 	if (!rcu_in_progress) {
725 		/* Fast path. No callbacks are pending, hence no need to do
726 		 * rcu_barrier-s.
727 		 */
728 		free_mem_alloc_no_barrier(ma);
729 		return;
730 	}
731 
732 	copy = kmemdup(ma, sizeof(*ma), GFP_KERNEL);
733 	if (!copy) {
734 		/* Slow path with inline barrier-s */
735 		free_mem_alloc(ma);
736 		return;
737 	}
738 
739 	/* Defer barriers into worker to let the rest of map memory to be freed */
740 	memset(ma, 0, sizeof(*ma));
741 	INIT_WORK(&copy->work, free_mem_alloc_deferred);
742 	queue_work(system_unbound_wq, &copy->work);
743 }
744 
745 void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma)
746 {
747 	struct bpf_mem_caches *cc;
748 	struct bpf_mem_cache *c;
749 	int cpu, i, rcu_in_progress;
750 
751 	if (ma->cache) {
752 		rcu_in_progress = 0;
753 		for_each_possible_cpu(cpu) {
754 			c = per_cpu_ptr(ma->cache, cpu);
755 			WRITE_ONCE(c->draining, true);
756 			irq_work_sync(&c->refill_work);
757 			drain_mem_cache(c);
758 			rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
759 			rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
760 		}
761 		obj_cgroup_put(ma->objcg);
762 		destroy_mem_alloc(ma, rcu_in_progress);
763 	}
764 	if (ma->caches) {
765 		rcu_in_progress = 0;
766 		for_each_possible_cpu(cpu) {
767 			cc = per_cpu_ptr(ma->caches, cpu);
768 			for (i = 0; i < NUM_CACHES; i++) {
769 				c = &cc->cache[i];
770 				WRITE_ONCE(c->draining, true);
771 				irq_work_sync(&c->refill_work);
772 				drain_mem_cache(c);
773 				rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
774 				rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
775 			}
776 		}
777 		obj_cgroup_put(ma->objcg);
778 		destroy_mem_alloc(ma, rcu_in_progress);
779 	}
780 }
781 
782 /* notrace is necessary here and in other functions to make sure
783  * bpf programs cannot attach to them and cause llist corruptions.
784  */
785 static void notrace *unit_alloc(struct bpf_mem_cache *c)
786 {
787 	struct llist_node *llnode = NULL;
788 	unsigned long flags;
789 	int cnt = 0;
790 
791 	/* Disable irqs to prevent the following race for majority of prog types:
792 	 * prog_A
793 	 *   bpf_mem_alloc
794 	 *      preemption or irq -> prog_B
795 	 *        bpf_mem_alloc
796 	 *
797 	 * but prog_B could be a perf_event NMI prog.
798 	 * Use per-cpu 'active' counter to order free_list access between
799 	 * unit_alloc/unit_free/bpf_mem_refill.
800 	 */
801 	local_irq_save(flags);
802 	if (local_inc_return(&c->active) == 1) {
803 		llnode = __llist_del_first(&c->free_llist);
804 		if (llnode) {
805 			cnt = --c->free_cnt;
806 			*(struct bpf_mem_cache **)llnode = c;
807 		}
808 	}
809 	local_dec(&c->active);
810 
811 	WARN_ON(cnt < 0);
812 
813 	if (cnt < c->low_watermark)
814 		irq_work_raise(c);
815 	/* Enable IRQ after the enqueue of irq work completes, so irq work
816 	 * will run after IRQ is enabled and free_llist may be refilled by
817 	 * irq work before other task preempts current task.
818 	 */
819 	local_irq_restore(flags);
820 
821 	return llnode;
822 }
823 
824 /* Though 'ptr' object could have been allocated on a different cpu
825  * add it to the free_llist of the current cpu.
826  * Let kfree() logic deal with it when it's later called from irq_work.
827  */
828 static void notrace unit_free(struct bpf_mem_cache *c, void *ptr)
829 {
830 	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
831 	unsigned long flags;
832 	int cnt = 0;
833 
834 	BUILD_BUG_ON(LLIST_NODE_SZ > 8);
835 
836 	/*
837 	 * Remember bpf_mem_cache that allocated this object.
838 	 * The hint is not accurate.
839 	 */
840 	c->tgt = *(struct bpf_mem_cache **)llnode;
841 
842 	local_irq_save(flags);
843 	if (local_inc_return(&c->active) == 1) {
844 		__llist_add(llnode, &c->free_llist);
845 		cnt = ++c->free_cnt;
846 	} else {
847 		/* unit_free() cannot fail. Therefore add an object to atomic
848 		 * llist. free_bulk() will drain it. Though free_llist_extra is
849 		 * a per-cpu list we have to use atomic llist_add here, since
850 		 * it also can be interrupted by bpf nmi prog that does another
851 		 * unit_free() into the same free_llist_extra.
852 		 */
853 		llist_add(llnode, &c->free_llist_extra);
854 	}
855 	local_dec(&c->active);
856 
857 	if (cnt > c->high_watermark)
858 		/* free few objects from current cpu into global kmalloc pool */
859 		irq_work_raise(c);
860 	/* Enable IRQ after irq_work_raise() completes, otherwise when current
861 	 * task is preempted by task which does unit_alloc(), unit_alloc() may
862 	 * return NULL unexpectedly because irq work is already pending but can
863 	 * not been triggered and free_llist can not be refilled timely.
864 	 */
865 	local_irq_restore(flags);
866 }
867 
868 static void notrace unit_free_rcu(struct bpf_mem_cache *c, void *ptr)
869 {
870 	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
871 	unsigned long flags;
872 
873 	c->tgt = *(struct bpf_mem_cache **)llnode;
874 
875 	local_irq_save(flags);
876 	if (local_inc_return(&c->active) == 1) {
877 		if (__llist_add(llnode, &c->free_by_rcu))
878 			c->free_by_rcu_tail = llnode;
879 	} else {
880 		llist_add(llnode, &c->free_llist_extra_rcu);
881 	}
882 	local_dec(&c->active);
883 
884 	if (!atomic_read(&c->call_rcu_in_progress))
885 		irq_work_raise(c);
886 	local_irq_restore(flags);
887 }
888 
889 /* Called from BPF program or from sys_bpf syscall.
890  * In both cases migration is disabled.
891  */
892 void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size)
893 {
894 	int idx;
895 	void *ret;
896 
897 	if (!size)
898 		return NULL;
899 
900 	if (!ma->percpu)
901 		size += LLIST_NODE_SZ;
902 	idx = bpf_mem_cache_idx(size);
903 	if (idx < 0)
904 		return NULL;
905 
906 	ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx);
907 	return !ret ? NULL : ret + LLIST_NODE_SZ;
908 }
909 
910 void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr)
911 {
912 	struct bpf_mem_cache *c;
913 	int idx;
914 
915 	if (!ptr)
916 		return;
917 
918 	c = *(void **)(ptr - LLIST_NODE_SZ);
919 	idx = bpf_mem_cache_idx(c->unit_size);
920 	if (WARN_ON_ONCE(idx < 0))
921 		return;
922 
923 	unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr);
924 }
925 
926 void notrace bpf_mem_free_rcu(struct bpf_mem_alloc *ma, void *ptr)
927 {
928 	struct bpf_mem_cache *c;
929 	int idx;
930 
931 	if (!ptr)
932 		return;
933 
934 	c = *(void **)(ptr - LLIST_NODE_SZ);
935 	idx = bpf_mem_cache_idx(c->unit_size);
936 	if (WARN_ON_ONCE(idx < 0))
937 		return;
938 
939 	unit_free_rcu(this_cpu_ptr(ma->caches)->cache + idx, ptr);
940 }
941 
942 void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma)
943 {
944 	void *ret;
945 
946 	ret = unit_alloc(this_cpu_ptr(ma->cache));
947 	return !ret ? NULL : ret + LLIST_NODE_SZ;
948 }
949 
950 void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr)
951 {
952 	if (!ptr)
953 		return;
954 
955 	unit_free(this_cpu_ptr(ma->cache), ptr);
956 }
957 
958 void notrace bpf_mem_cache_free_rcu(struct bpf_mem_alloc *ma, void *ptr)
959 {
960 	if (!ptr)
961 		return;
962 
963 	unit_free_rcu(this_cpu_ptr(ma->cache), ptr);
964 }
965 
966 /* Directly does a kfree() without putting 'ptr' back to the free_llist
967  * for reuse and without waiting for a rcu_tasks_trace gp.
968  * The caller must first go through the rcu_tasks_trace gp for 'ptr'
969  * before calling bpf_mem_cache_raw_free().
970  * It could be used when the rcu_tasks_trace callback does not have
971  * a hold on the original bpf_mem_alloc object that allocated the
972  * 'ptr'. This should only be used in the uncommon code path.
973  * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled
974  * and may affect performance.
975  */
976 void bpf_mem_cache_raw_free(void *ptr)
977 {
978 	if (!ptr)
979 		return;
980 
981 	kfree(ptr - LLIST_NODE_SZ);
982 }
983 
984 /* When flags == GFP_KERNEL, it signals that the caller will not cause
985  * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use
986  * kmalloc if the free_llist is empty.
987  */
988 void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags)
989 {
990 	struct bpf_mem_cache *c;
991 	void *ret;
992 
993 	c = this_cpu_ptr(ma->cache);
994 
995 	ret = unit_alloc(c);
996 	if (!ret && flags == GFP_KERNEL) {
997 		struct mem_cgroup *memcg, *old_memcg;
998 
999 		memcg = get_memcg(c);
1000 		old_memcg = set_active_memcg(memcg);
1001 		ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT);
1002 		if (ret)
1003 			*(struct bpf_mem_cache **)ret = c;
1004 		set_active_memcg(old_memcg);
1005 		mem_cgroup_put(memcg);
1006 	}
1007 
1008 	return !ret ? NULL : ret + LLIST_NODE_SZ;
1009 }
1010 
1011 int bpf_mem_alloc_check_size(bool percpu, size_t size)
1012 {
1013 	/* The size of percpu allocation doesn't have LLIST_NODE_SZ overhead */
1014 	if ((percpu && size > BPF_MEM_ALLOC_SIZE_MAX) ||
1015 	    (!percpu && size > BPF_MEM_ALLOC_SIZE_MAX - LLIST_NODE_SZ))
1016 		return -E2BIG;
1017 
1018 	return 0;
1019 }
1020