xref: /linux/kernel/bpf/memalloc.c (revision 881f1bb5e25c8982ed963b2d319fc0fc732e55db)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
3 #include <linux/mm.h>
4 #include <linux/llist.h>
5 #include <linux/bpf.h>
6 #include <linux/irq_work.h>
7 #include <linux/bpf_mem_alloc.h>
8 #include <linux/memcontrol.h>
9 #include <asm/local.h>
10 
11 /* Any context (including NMI) BPF specific memory allocator.
12  *
13  * Tracing BPF programs can attach to kprobe and fentry. Hence they
14  * run in unknown context where calling plain kmalloc() might not be safe.
15  *
16  * Front-end kmalloc() with per-cpu per-bucket cache of free elements.
17  * Refill this cache asynchronously from irq_work.
18  *
19  * CPU_0 buckets
20  * 16 32 64 96 128 196 256 512 1024 2048 4096
21  * ...
22  * CPU_N buckets
23  * 16 32 64 96 128 196 256 512 1024 2048 4096
24  *
25  * The buckets are prefilled at the start.
26  * BPF programs always run with migration disabled.
27  * It's safe to allocate from cache of the current cpu with irqs disabled.
28  * Free-ing is always done into bucket of the current cpu as well.
29  * irq_work trims extra free elements from buckets with kfree
30  * and refills them with kmalloc, so global kmalloc logic takes care
31  * of freeing objects allocated by one cpu and freed on another.
32  *
33  * Every allocated objected is padded with extra 8 bytes that contains
34  * struct llist_node.
35  */
36 #define LLIST_NODE_SZ sizeof(struct llist_node)
37 
38 /* similar to kmalloc, but sizeof == 8 bucket is gone */
39 static u8 size_index[24] __ro_after_init = {
40 	3,	/* 8 */
41 	3,	/* 16 */
42 	4,	/* 24 */
43 	4,	/* 32 */
44 	5,	/* 40 */
45 	5,	/* 48 */
46 	5,	/* 56 */
47 	5,	/* 64 */
48 	1,	/* 72 */
49 	1,	/* 80 */
50 	1,	/* 88 */
51 	1,	/* 96 */
52 	6,	/* 104 */
53 	6,	/* 112 */
54 	6,	/* 120 */
55 	6,	/* 128 */
56 	2,	/* 136 */
57 	2,	/* 144 */
58 	2,	/* 152 */
59 	2,	/* 160 */
60 	2,	/* 168 */
61 	2,	/* 176 */
62 	2,	/* 184 */
63 	2	/* 192 */
64 };
65 
66 static int bpf_mem_cache_idx(size_t size)
67 {
68 	if (!size || size > 4096)
69 		return -1;
70 
71 	if (size <= 192)
72 		return size_index[(size - 1) / 8] - 1;
73 
74 	return fls(size - 1) - 2;
75 }
76 
77 #define NUM_CACHES 11
78 
79 struct bpf_mem_cache {
80 	/* per-cpu list of free objects of size 'unit_size'.
81 	 * All accesses are done with interrupts disabled and 'active' counter
82 	 * protection with __llist_add() and __llist_del_first().
83 	 */
84 	struct llist_head free_llist;
85 	local_t active;
86 
87 	/* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill
88 	 * are sequenced by per-cpu 'active' counter. But unit_free() cannot
89 	 * fail. When 'active' is busy the unit_free() will add an object to
90 	 * free_llist_extra.
91 	 */
92 	struct llist_head free_llist_extra;
93 
94 	struct irq_work refill_work;
95 	struct obj_cgroup *objcg;
96 	int unit_size;
97 	/* count of objects in free_llist */
98 	int free_cnt;
99 	int low_watermark, high_watermark, batch;
100 	int percpu_size;
101 	bool draining;
102 	struct bpf_mem_cache *tgt;
103 
104 	/* list of objects to be freed after RCU GP */
105 	struct llist_head free_by_rcu;
106 	struct llist_node *free_by_rcu_tail;
107 	struct llist_head waiting_for_gp;
108 	struct llist_node *waiting_for_gp_tail;
109 	struct rcu_head rcu;
110 	atomic_t call_rcu_in_progress;
111 	struct llist_head free_llist_extra_rcu;
112 
113 	/* list of objects to be freed after RCU tasks trace GP */
114 	struct llist_head free_by_rcu_ttrace;
115 	struct llist_head waiting_for_gp_ttrace;
116 	struct rcu_head rcu_ttrace;
117 	atomic_t call_rcu_ttrace_in_progress;
118 };
119 
120 struct bpf_mem_caches {
121 	struct bpf_mem_cache cache[NUM_CACHES];
122 };
123 
124 static const u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};
125 
126 static struct llist_node notrace *__llist_del_first(struct llist_head *head)
127 {
128 	struct llist_node *entry, *next;
129 
130 	entry = head->first;
131 	if (!entry)
132 		return NULL;
133 	next = entry->next;
134 	head->first = next;
135 	return entry;
136 }
137 
138 static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags)
139 {
140 	if (c->percpu_size) {
141 		void **obj = kmalloc_node(c->percpu_size, flags, node);
142 		void *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags);
143 
144 		if (!obj || !pptr) {
145 			free_percpu(pptr);
146 			kfree(obj);
147 			return NULL;
148 		}
149 		obj[1] = pptr;
150 		return obj;
151 	}
152 
153 	return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node);
154 }
155 
156 static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c)
157 {
158 #ifdef CONFIG_MEMCG_KMEM
159 	if (c->objcg)
160 		return get_mem_cgroup_from_objcg(c->objcg);
161 #endif
162 
163 #ifdef CONFIG_MEMCG
164 	return root_mem_cgroup;
165 #else
166 	return NULL;
167 #endif
168 }
169 
170 static void inc_active(struct bpf_mem_cache *c, unsigned long *flags)
171 {
172 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
173 		/* In RT irq_work runs in per-cpu kthread, so disable
174 		 * interrupts to avoid preemption and interrupts and
175 		 * reduce the chance of bpf prog executing on this cpu
176 		 * when active counter is busy.
177 		 */
178 		local_irq_save(*flags);
179 	/* alloc_bulk runs from irq_work which will not preempt a bpf
180 	 * program that does unit_alloc/unit_free since IRQs are
181 	 * disabled there. There is no race to increment 'active'
182 	 * counter. It protects free_llist from corruption in case NMI
183 	 * bpf prog preempted this loop.
184 	 */
185 	WARN_ON_ONCE(local_inc_return(&c->active) != 1);
186 }
187 
188 static void dec_active(struct bpf_mem_cache *c, unsigned long *flags)
189 {
190 	local_dec(&c->active);
191 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
192 		local_irq_restore(*flags);
193 }
194 
195 static void add_obj_to_free_list(struct bpf_mem_cache *c, void *obj)
196 {
197 	unsigned long flags;
198 
199 	inc_active(c, &flags);
200 	__llist_add(obj, &c->free_llist);
201 	c->free_cnt++;
202 	dec_active(c, &flags);
203 }
204 
205 /* Mostly runs from irq_work except __init phase. */
206 static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node, bool atomic)
207 {
208 	struct mem_cgroup *memcg = NULL, *old_memcg;
209 	gfp_t gfp;
210 	void *obj;
211 	int i;
212 
213 	gfp = __GFP_NOWARN | __GFP_ACCOUNT;
214 	gfp |= atomic ? GFP_NOWAIT : GFP_KERNEL;
215 
216 	for (i = 0; i < cnt; i++) {
217 		/*
218 		 * For every 'c' llist_del_first(&c->free_by_rcu_ttrace); is
219 		 * done only by one CPU == current CPU. Other CPUs might
220 		 * llist_add() and llist_del_all() in parallel.
221 		 */
222 		obj = llist_del_first(&c->free_by_rcu_ttrace);
223 		if (!obj)
224 			break;
225 		add_obj_to_free_list(c, obj);
226 	}
227 	if (i >= cnt)
228 		return;
229 
230 	for (; i < cnt; i++) {
231 		obj = llist_del_first(&c->waiting_for_gp_ttrace);
232 		if (!obj)
233 			break;
234 		add_obj_to_free_list(c, obj);
235 	}
236 	if (i >= cnt)
237 		return;
238 
239 	memcg = get_memcg(c);
240 	old_memcg = set_active_memcg(memcg);
241 	for (; i < cnt; i++) {
242 		/* Allocate, but don't deplete atomic reserves that typical
243 		 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc
244 		 * will allocate from the current numa node which is what we
245 		 * want here.
246 		 */
247 		obj = __alloc(c, node, gfp);
248 		if (!obj)
249 			break;
250 		add_obj_to_free_list(c, obj);
251 	}
252 	set_active_memcg(old_memcg);
253 	mem_cgroup_put(memcg);
254 }
255 
256 static void free_one(void *obj, bool percpu)
257 {
258 	if (percpu) {
259 		free_percpu(((void **)obj)[1]);
260 		kfree(obj);
261 		return;
262 	}
263 
264 	kfree(obj);
265 }
266 
267 static int free_all(struct llist_node *llnode, bool percpu)
268 {
269 	struct llist_node *pos, *t;
270 	int cnt = 0;
271 
272 	llist_for_each_safe(pos, t, llnode) {
273 		free_one(pos, percpu);
274 		cnt++;
275 	}
276 	return cnt;
277 }
278 
279 static void __free_rcu(struct rcu_head *head)
280 {
281 	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu_ttrace);
282 
283 	free_all(llist_del_all(&c->waiting_for_gp_ttrace), !!c->percpu_size);
284 	atomic_set(&c->call_rcu_ttrace_in_progress, 0);
285 }
286 
287 static void __free_rcu_tasks_trace(struct rcu_head *head)
288 {
289 	/* If RCU Tasks Trace grace period implies RCU grace period,
290 	 * there is no need to invoke call_rcu().
291 	 */
292 	if (rcu_trace_implies_rcu_gp())
293 		__free_rcu(head);
294 	else
295 		call_rcu(head, __free_rcu);
296 }
297 
298 static void enque_to_free(struct bpf_mem_cache *c, void *obj)
299 {
300 	struct llist_node *llnode = obj;
301 
302 	/* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work.
303 	 * Nothing races to add to free_by_rcu_ttrace list.
304 	 */
305 	llist_add(llnode, &c->free_by_rcu_ttrace);
306 }
307 
308 static void do_call_rcu_ttrace(struct bpf_mem_cache *c)
309 {
310 	struct llist_node *llnode, *t;
311 
312 	if (atomic_xchg(&c->call_rcu_ttrace_in_progress, 1)) {
313 		if (unlikely(READ_ONCE(c->draining))) {
314 			llnode = llist_del_all(&c->free_by_rcu_ttrace);
315 			free_all(llnode, !!c->percpu_size);
316 		}
317 		return;
318 	}
319 
320 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
321 	llist_for_each_safe(llnode, t, llist_del_all(&c->free_by_rcu_ttrace))
322 		llist_add(llnode, &c->waiting_for_gp_ttrace);
323 
324 	if (unlikely(READ_ONCE(c->draining))) {
325 		__free_rcu(&c->rcu_ttrace);
326 		return;
327 	}
328 
329 	/* Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
330 	 * If RCU Tasks Trace grace period implies RCU grace period, free
331 	 * these elements directly, else use call_rcu() to wait for normal
332 	 * progs to finish and finally do free_one() on each element.
333 	 */
334 	call_rcu_tasks_trace(&c->rcu_ttrace, __free_rcu_tasks_trace);
335 }
336 
337 static void free_bulk(struct bpf_mem_cache *c)
338 {
339 	struct bpf_mem_cache *tgt = c->tgt;
340 	struct llist_node *llnode, *t;
341 	unsigned long flags;
342 	int cnt;
343 
344 	WARN_ON_ONCE(tgt->unit_size != c->unit_size);
345 	WARN_ON_ONCE(tgt->percpu_size != c->percpu_size);
346 
347 	do {
348 		inc_active(c, &flags);
349 		llnode = __llist_del_first(&c->free_llist);
350 		if (llnode)
351 			cnt = --c->free_cnt;
352 		else
353 			cnt = 0;
354 		dec_active(c, &flags);
355 		if (llnode)
356 			enque_to_free(tgt, llnode);
357 	} while (cnt > (c->high_watermark + c->low_watermark) / 2);
358 
359 	/* and drain free_llist_extra */
360 	llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra))
361 		enque_to_free(tgt, llnode);
362 	do_call_rcu_ttrace(tgt);
363 }
364 
365 static void __free_by_rcu(struct rcu_head *head)
366 {
367 	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu);
368 	struct bpf_mem_cache *tgt = c->tgt;
369 	struct llist_node *llnode;
370 
371 	WARN_ON_ONCE(tgt->unit_size != c->unit_size);
372 	WARN_ON_ONCE(tgt->percpu_size != c->percpu_size);
373 
374 	llnode = llist_del_all(&c->waiting_for_gp);
375 	if (!llnode)
376 		goto out;
377 
378 	llist_add_batch(llnode, c->waiting_for_gp_tail, &tgt->free_by_rcu_ttrace);
379 
380 	/* Objects went through regular RCU GP. Send them to RCU tasks trace */
381 	do_call_rcu_ttrace(tgt);
382 out:
383 	atomic_set(&c->call_rcu_in_progress, 0);
384 }
385 
386 static void check_free_by_rcu(struct bpf_mem_cache *c)
387 {
388 	struct llist_node *llnode, *t;
389 	unsigned long flags;
390 
391 	/* drain free_llist_extra_rcu */
392 	if (unlikely(!llist_empty(&c->free_llist_extra_rcu))) {
393 		inc_active(c, &flags);
394 		llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra_rcu))
395 			if (__llist_add(llnode, &c->free_by_rcu))
396 				c->free_by_rcu_tail = llnode;
397 		dec_active(c, &flags);
398 	}
399 
400 	if (llist_empty(&c->free_by_rcu))
401 		return;
402 
403 	if (atomic_xchg(&c->call_rcu_in_progress, 1)) {
404 		/*
405 		 * Instead of kmalloc-ing new rcu_head and triggering 10k
406 		 * call_rcu() to hit rcutree.qhimark and force RCU to notice
407 		 * the overload just ask RCU to hurry up. There could be many
408 		 * objects in free_by_rcu list.
409 		 * This hint reduces memory consumption for an artificial
410 		 * benchmark from 2 Gbyte to 150 Mbyte.
411 		 */
412 		rcu_request_urgent_qs_task(current);
413 		return;
414 	}
415 
416 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
417 
418 	inc_active(c, &flags);
419 	WRITE_ONCE(c->waiting_for_gp.first, __llist_del_all(&c->free_by_rcu));
420 	c->waiting_for_gp_tail = c->free_by_rcu_tail;
421 	dec_active(c, &flags);
422 
423 	if (unlikely(READ_ONCE(c->draining))) {
424 		free_all(llist_del_all(&c->waiting_for_gp), !!c->percpu_size);
425 		atomic_set(&c->call_rcu_in_progress, 0);
426 	} else {
427 		call_rcu_hurry(&c->rcu, __free_by_rcu);
428 	}
429 }
430 
431 static void bpf_mem_refill(struct irq_work *work)
432 {
433 	struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work);
434 	int cnt;
435 
436 	/* Racy access to free_cnt. It doesn't need to be 100% accurate */
437 	cnt = c->free_cnt;
438 	if (cnt < c->low_watermark)
439 		/* irq_work runs on this cpu and kmalloc will allocate
440 		 * from the current numa node which is what we want here.
441 		 */
442 		alloc_bulk(c, c->batch, NUMA_NO_NODE, true);
443 	else if (cnt > c->high_watermark)
444 		free_bulk(c);
445 
446 	check_free_by_rcu(c);
447 }
448 
449 static void notrace irq_work_raise(struct bpf_mem_cache *c)
450 {
451 	irq_work_queue(&c->refill_work);
452 }
453 
454 /* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket
455  * the freelist cache will be elem_size * 64 (or less) on each cpu.
456  *
457  * For bpf programs that don't have statically known allocation sizes and
458  * assuming (low_mark + high_mark) / 2 as an average number of elements per
459  * bucket and all buckets are used the total amount of memory in freelists
460  * on each cpu will be:
461  * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096
462  * == ~ 116 Kbyte using below heuristic.
463  * Initialized, but unused bpf allocator (not bpf map specific one) will
464  * consume ~ 11 Kbyte per cpu.
465  * Typical case will be between 11K and 116K closer to 11K.
466  * bpf progs can and should share bpf_mem_cache when possible.
467  *
468  * Percpu allocation is typically rare. To avoid potential unnecessary large
469  * memory consumption, set low_mark = 1 and high_mark = 3, resulting in c->batch = 1.
470  */
471 static void init_refill_work(struct bpf_mem_cache *c)
472 {
473 	init_irq_work(&c->refill_work, bpf_mem_refill);
474 	if (c->percpu_size) {
475 		c->low_watermark = 1;
476 		c->high_watermark = 3;
477 	} else if (c->unit_size <= 256) {
478 		c->low_watermark = 32;
479 		c->high_watermark = 96;
480 	} else {
481 		/* When page_size == 4k, order-0 cache will have low_mark == 2
482 		 * and high_mark == 6 with batch alloc of 3 individual pages at
483 		 * a time.
484 		 * 8k allocs and above low == 1, high == 3, batch == 1.
485 		 */
486 		c->low_watermark = max(32 * 256 / c->unit_size, 1);
487 		c->high_watermark = max(96 * 256 / c->unit_size, 3);
488 	}
489 	c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1);
490 }
491 
492 static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu)
493 {
494 	int cnt = 1;
495 
496 	/* To avoid consuming memory, for non-percpu allocation, assume that
497 	 * 1st run of bpf prog won't be doing more than 4 map_update_elem from
498 	 * irq disabled region if unit size is less than or equal to 256.
499 	 * For all other cases, let us just do one allocation.
500 	 */
501 	if (!c->percpu_size && c->unit_size <= 256)
502 		cnt = 4;
503 	alloc_bulk(c, cnt, cpu_to_node(cpu), false);
504 }
505 
506 /* When size != 0 bpf_mem_cache for each cpu.
507  * This is typical bpf hash map use case when all elements have equal size.
508  *
509  * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on
510  * kmalloc/kfree. Max allocation size is 4096 in this case.
511  * This is bpf_dynptr and bpf_kptr use case.
512  */
513 int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu)
514 {
515 	struct bpf_mem_caches *cc, __percpu *pcc;
516 	struct bpf_mem_cache *c, __percpu *pc;
517 	struct obj_cgroup *objcg = NULL;
518 	int cpu, i, unit_size, percpu_size = 0;
519 
520 	if (percpu && size == 0)
521 		return -EINVAL;
522 
523 	/* room for llist_node and per-cpu pointer */
524 	if (percpu)
525 		percpu_size = LLIST_NODE_SZ + sizeof(void *);
526 	ma->percpu = percpu;
527 
528 	if (size) {
529 		pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL);
530 		if (!pc)
531 			return -ENOMEM;
532 
533 		if (!percpu)
534 			size += LLIST_NODE_SZ; /* room for llist_node */
535 		unit_size = size;
536 
537 #ifdef CONFIG_MEMCG_KMEM
538 		if (memcg_bpf_enabled())
539 			objcg = get_obj_cgroup_from_current();
540 #endif
541 		ma->objcg = objcg;
542 
543 		for_each_possible_cpu(cpu) {
544 			c = per_cpu_ptr(pc, cpu);
545 			c->unit_size = unit_size;
546 			c->objcg = objcg;
547 			c->percpu_size = percpu_size;
548 			c->tgt = c;
549 			init_refill_work(c);
550 			prefill_mem_cache(c, cpu);
551 		}
552 		ma->cache = pc;
553 		return 0;
554 	}
555 
556 	pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL);
557 	if (!pcc)
558 		return -ENOMEM;
559 #ifdef CONFIG_MEMCG_KMEM
560 	objcg = get_obj_cgroup_from_current();
561 #endif
562 	ma->objcg = objcg;
563 	for_each_possible_cpu(cpu) {
564 		cc = per_cpu_ptr(pcc, cpu);
565 		for (i = 0; i < NUM_CACHES; i++) {
566 			c = &cc->cache[i];
567 			c->unit_size = sizes[i];
568 			c->objcg = objcg;
569 			c->percpu_size = percpu_size;
570 			c->tgt = c;
571 
572 			init_refill_work(c);
573 			prefill_mem_cache(c, cpu);
574 		}
575 	}
576 
577 	ma->caches = pcc;
578 	return 0;
579 }
580 
581 int bpf_mem_alloc_percpu_init(struct bpf_mem_alloc *ma, struct obj_cgroup *objcg)
582 {
583 	struct bpf_mem_caches __percpu *pcc;
584 
585 	pcc = __alloc_percpu_gfp(sizeof(struct bpf_mem_caches), 8, GFP_KERNEL);
586 	if (!pcc)
587 		return -ENOMEM;
588 
589 	ma->caches = pcc;
590 	ma->objcg = objcg;
591 	ma->percpu = true;
592 	return 0;
593 }
594 
595 int bpf_mem_alloc_percpu_unit_init(struct bpf_mem_alloc *ma, int size)
596 {
597 	struct bpf_mem_caches *cc, __percpu *pcc;
598 	int cpu, i, unit_size, percpu_size;
599 	struct obj_cgroup *objcg;
600 	struct bpf_mem_cache *c;
601 
602 	i = bpf_mem_cache_idx(size);
603 	if (i < 0)
604 		return -EINVAL;
605 
606 	/* room for llist_node and per-cpu pointer */
607 	percpu_size = LLIST_NODE_SZ + sizeof(void *);
608 
609 	unit_size = sizes[i];
610 	objcg = ma->objcg;
611 	pcc = ma->caches;
612 
613 	for_each_possible_cpu(cpu) {
614 		cc = per_cpu_ptr(pcc, cpu);
615 		c = &cc->cache[i];
616 		if (c->unit_size)
617 			break;
618 
619 		c->unit_size = unit_size;
620 		c->objcg = objcg;
621 		c->percpu_size = percpu_size;
622 		c->tgt = c;
623 
624 		init_refill_work(c);
625 		prefill_mem_cache(c, cpu);
626 	}
627 
628 	return 0;
629 }
630 
631 static void drain_mem_cache(struct bpf_mem_cache *c)
632 {
633 	bool percpu = !!c->percpu_size;
634 
635 	/* No progs are using this bpf_mem_cache, but htab_map_free() called
636 	 * bpf_mem_cache_free() for all remaining elements and they can be in
637 	 * free_by_rcu_ttrace or in waiting_for_gp_ttrace lists, so drain those lists now.
638 	 *
639 	 * Except for waiting_for_gp_ttrace list, there are no concurrent operations
640 	 * on these lists, so it is safe to use __llist_del_all().
641 	 */
642 	free_all(llist_del_all(&c->free_by_rcu_ttrace), percpu);
643 	free_all(llist_del_all(&c->waiting_for_gp_ttrace), percpu);
644 	free_all(__llist_del_all(&c->free_llist), percpu);
645 	free_all(__llist_del_all(&c->free_llist_extra), percpu);
646 	free_all(__llist_del_all(&c->free_by_rcu), percpu);
647 	free_all(__llist_del_all(&c->free_llist_extra_rcu), percpu);
648 	free_all(llist_del_all(&c->waiting_for_gp), percpu);
649 }
650 
651 static void check_mem_cache(struct bpf_mem_cache *c)
652 {
653 	WARN_ON_ONCE(!llist_empty(&c->free_by_rcu_ttrace));
654 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
655 	WARN_ON_ONCE(!llist_empty(&c->free_llist));
656 	WARN_ON_ONCE(!llist_empty(&c->free_llist_extra));
657 	WARN_ON_ONCE(!llist_empty(&c->free_by_rcu));
658 	WARN_ON_ONCE(!llist_empty(&c->free_llist_extra_rcu));
659 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
660 }
661 
662 static void check_leaked_objs(struct bpf_mem_alloc *ma)
663 {
664 	struct bpf_mem_caches *cc;
665 	struct bpf_mem_cache *c;
666 	int cpu, i;
667 
668 	if (ma->cache) {
669 		for_each_possible_cpu(cpu) {
670 			c = per_cpu_ptr(ma->cache, cpu);
671 			check_mem_cache(c);
672 		}
673 	}
674 	if (ma->caches) {
675 		for_each_possible_cpu(cpu) {
676 			cc = per_cpu_ptr(ma->caches, cpu);
677 			for (i = 0; i < NUM_CACHES; i++) {
678 				c = &cc->cache[i];
679 				check_mem_cache(c);
680 			}
681 		}
682 	}
683 }
684 
685 static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma)
686 {
687 	check_leaked_objs(ma);
688 	free_percpu(ma->cache);
689 	free_percpu(ma->caches);
690 	ma->cache = NULL;
691 	ma->caches = NULL;
692 }
693 
694 static void free_mem_alloc(struct bpf_mem_alloc *ma)
695 {
696 	/* waiting_for_gp[_ttrace] lists were drained, but RCU callbacks
697 	 * might still execute. Wait for them.
698 	 *
699 	 * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(),
700 	 * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used
701 	 * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(),
702 	 * so if call_rcu(head, __free_rcu) is skipped due to
703 	 * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by
704 	 * using rcu_trace_implies_rcu_gp() as well.
705 	 */
706 	rcu_barrier(); /* wait for __free_by_rcu */
707 	rcu_barrier_tasks_trace(); /* wait for __free_rcu */
708 	if (!rcu_trace_implies_rcu_gp())
709 		rcu_barrier();
710 	free_mem_alloc_no_barrier(ma);
711 }
712 
713 static void free_mem_alloc_deferred(struct work_struct *work)
714 {
715 	struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work);
716 
717 	free_mem_alloc(ma);
718 	kfree(ma);
719 }
720 
721 static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress)
722 {
723 	struct bpf_mem_alloc *copy;
724 
725 	if (!rcu_in_progress) {
726 		/* Fast path. No callbacks are pending, hence no need to do
727 		 * rcu_barrier-s.
728 		 */
729 		free_mem_alloc_no_barrier(ma);
730 		return;
731 	}
732 
733 	copy = kmemdup(ma, sizeof(*ma), GFP_KERNEL);
734 	if (!copy) {
735 		/* Slow path with inline barrier-s */
736 		free_mem_alloc(ma);
737 		return;
738 	}
739 
740 	/* Defer barriers into worker to let the rest of map memory to be freed */
741 	memset(ma, 0, sizeof(*ma));
742 	INIT_WORK(&copy->work, free_mem_alloc_deferred);
743 	queue_work(system_unbound_wq, &copy->work);
744 }
745 
746 void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma)
747 {
748 	struct bpf_mem_caches *cc;
749 	struct bpf_mem_cache *c;
750 	int cpu, i, rcu_in_progress;
751 
752 	if (ma->cache) {
753 		rcu_in_progress = 0;
754 		for_each_possible_cpu(cpu) {
755 			c = per_cpu_ptr(ma->cache, cpu);
756 			WRITE_ONCE(c->draining, true);
757 			irq_work_sync(&c->refill_work);
758 			drain_mem_cache(c);
759 			rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
760 			rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
761 		}
762 		obj_cgroup_put(ma->objcg);
763 		destroy_mem_alloc(ma, rcu_in_progress);
764 	}
765 	if (ma->caches) {
766 		rcu_in_progress = 0;
767 		for_each_possible_cpu(cpu) {
768 			cc = per_cpu_ptr(ma->caches, cpu);
769 			for (i = 0; i < NUM_CACHES; i++) {
770 				c = &cc->cache[i];
771 				WRITE_ONCE(c->draining, true);
772 				irq_work_sync(&c->refill_work);
773 				drain_mem_cache(c);
774 				rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
775 				rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
776 			}
777 		}
778 		obj_cgroup_put(ma->objcg);
779 		destroy_mem_alloc(ma, rcu_in_progress);
780 	}
781 }
782 
783 /* notrace is necessary here and in other functions to make sure
784  * bpf programs cannot attach to them and cause llist corruptions.
785  */
786 static void notrace *unit_alloc(struct bpf_mem_cache *c)
787 {
788 	struct llist_node *llnode = NULL;
789 	unsigned long flags;
790 	int cnt = 0;
791 
792 	/* Disable irqs to prevent the following race for majority of prog types:
793 	 * prog_A
794 	 *   bpf_mem_alloc
795 	 *      preemption or irq -> prog_B
796 	 *        bpf_mem_alloc
797 	 *
798 	 * but prog_B could be a perf_event NMI prog.
799 	 * Use per-cpu 'active' counter to order free_list access between
800 	 * unit_alloc/unit_free/bpf_mem_refill.
801 	 */
802 	local_irq_save(flags);
803 	if (local_inc_return(&c->active) == 1) {
804 		llnode = __llist_del_first(&c->free_llist);
805 		if (llnode) {
806 			cnt = --c->free_cnt;
807 			*(struct bpf_mem_cache **)llnode = c;
808 		}
809 	}
810 	local_dec(&c->active);
811 
812 	WARN_ON(cnt < 0);
813 
814 	if (cnt < c->low_watermark)
815 		irq_work_raise(c);
816 	/* Enable IRQ after the enqueue of irq work completes, so irq work
817 	 * will run after IRQ is enabled and free_llist may be refilled by
818 	 * irq work before other task preempts current task.
819 	 */
820 	local_irq_restore(flags);
821 
822 	return llnode;
823 }
824 
825 /* Though 'ptr' object could have been allocated on a different cpu
826  * add it to the free_llist of the current cpu.
827  * Let kfree() logic deal with it when it's later called from irq_work.
828  */
829 static void notrace unit_free(struct bpf_mem_cache *c, void *ptr)
830 {
831 	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
832 	unsigned long flags;
833 	int cnt = 0;
834 
835 	BUILD_BUG_ON(LLIST_NODE_SZ > 8);
836 
837 	/*
838 	 * Remember bpf_mem_cache that allocated this object.
839 	 * The hint is not accurate.
840 	 */
841 	c->tgt = *(struct bpf_mem_cache **)llnode;
842 
843 	local_irq_save(flags);
844 	if (local_inc_return(&c->active) == 1) {
845 		__llist_add(llnode, &c->free_llist);
846 		cnt = ++c->free_cnt;
847 	} else {
848 		/* unit_free() cannot fail. Therefore add an object to atomic
849 		 * llist. free_bulk() will drain it. Though free_llist_extra is
850 		 * a per-cpu list we have to use atomic llist_add here, since
851 		 * it also can be interrupted by bpf nmi prog that does another
852 		 * unit_free() into the same free_llist_extra.
853 		 */
854 		llist_add(llnode, &c->free_llist_extra);
855 	}
856 	local_dec(&c->active);
857 
858 	if (cnt > c->high_watermark)
859 		/* free few objects from current cpu into global kmalloc pool */
860 		irq_work_raise(c);
861 	/* Enable IRQ after irq_work_raise() completes, otherwise when current
862 	 * task is preempted by task which does unit_alloc(), unit_alloc() may
863 	 * return NULL unexpectedly because irq work is already pending but can
864 	 * not been triggered and free_llist can not be refilled timely.
865 	 */
866 	local_irq_restore(flags);
867 }
868 
869 static void notrace unit_free_rcu(struct bpf_mem_cache *c, void *ptr)
870 {
871 	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
872 	unsigned long flags;
873 
874 	c->tgt = *(struct bpf_mem_cache **)llnode;
875 
876 	local_irq_save(flags);
877 	if (local_inc_return(&c->active) == 1) {
878 		if (__llist_add(llnode, &c->free_by_rcu))
879 			c->free_by_rcu_tail = llnode;
880 	} else {
881 		llist_add(llnode, &c->free_llist_extra_rcu);
882 	}
883 	local_dec(&c->active);
884 
885 	if (!atomic_read(&c->call_rcu_in_progress))
886 		irq_work_raise(c);
887 	local_irq_restore(flags);
888 }
889 
890 /* Called from BPF program or from sys_bpf syscall.
891  * In both cases migration is disabled.
892  */
893 void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size)
894 {
895 	int idx;
896 	void *ret;
897 
898 	if (!size)
899 		return NULL;
900 
901 	if (!ma->percpu)
902 		size += LLIST_NODE_SZ;
903 	idx = bpf_mem_cache_idx(size);
904 	if (idx < 0)
905 		return NULL;
906 
907 	ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx);
908 	return !ret ? NULL : ret + LLIST_NODE_SZ;
909 }
910 
911 void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr)
912 {
913 	struct bpf_mem_cache *c;
914 	int idx;
915 
916 	if (!ptr)
917 		return;
918 
919 	c = *(void **)(ptr - LLIST_NODE_SZ);
920 	idx = bpf_mem_cache_idx(c->unit_size);
921 	if (WARN_ON_ONCE(idx < 0))
922 		return;
923 
924 	unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr);
925 }
926 
927 void notrace bpf_mem_free_rcu(struct bpf_mem_alloc *ma, void *ptr)
928 {
929 	struct bpf_mem_cache *c;
930 	int idx;
931 
932 	if (!ptr)
933 		return;
934 
935 	c = *(void **)(ptr - LLIST_NODE_SZ);
936 	idx = bpf_mem_cache_idx(c->unit_size);
937 	if (WARN_ON_ONCE(idx < 0))
938 		return;
939 
940 	unit_free_rcu(this_cpu_ptr(ma->caches)->cache + idx, ptr);
941 }
942 
943 void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma)
944 {
945 	void *ret;
946 
947 	ret = unit_alloc(this_cpu_ptr(ma->cache));
948 	return !ret ? NULL : ret + LLIST_NODE_SZ;
949 }
950 
951 void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr)
952 {
953 	if (!ptr)
954 		return;
955 
956 	unit_free(this_cpu_ptr(ma->cache), ptr);
957 }
958 
959 void notrace bpf_mem_cache_free_rcu(struct bpf_mem_alloc *ma, void *ptr)
960 {
961 	if (!ptr)
962 		return;
963 
964 	unit_free_rcu(this_cpu_ptr(ma->cache), ptr);
965 }
966 
967 /* Directly does a kfree() without putting 'ptr' back to the free_llist
968  * for reuse and without waiting for a rcu_tasks_trace gp.
969  * The caller must first go through the rcu_tasks_trace gp for 'ptr'
970  * before calling bpf_mem_cache_raw_free().
971  * It could be used when the rcu_tasks_trace callback does not have
972  * a hold on the original bpf_mem_alloc object that allocated the
973  * 'ptr'. This should only be used in the uncommon code path.
974  * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled
975  * and may affect performance.
976  */
977 void bpf_mem_cache_raw_free(void *ptr)
978 {
979 	if (!ptr)
980 		return;
981 
982 	kfree(ptr - LLIST_NODE_SZ);
983 }
984 
985 /* When flags == GFP_KERNEL, it signals that the caller will not cause
986  * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use
987  * kmalloc if the free_llist is empty.
988  */
989 void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags)
990 {
991 	struct bpf_mem_cache *c;
992 	void *ret;
993 
994 	c = this_cpu_ptr(ma->cache);
995 
996 	ret = unit_alloc(c);
997 	if (!ret && flags == GFP_KERNEL) {
998 		struct mem_cgroup *memcg, *old_memcg;
999 
1000 		memcg = get_memcg(c);
1001 		old_memcg = set_active_memcg(memcg);
1002 		ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT);
1003 		if (ret)
1004 			*(struct bpf_mem_cache **)ret = c;
1005 		set_active_memcg(old_memcg);
1006 		mem_cgroup_put(memcg);
1007 	}
1008 
1009 	return !ret ? NULL : ret + LLIST_NODE_SZ;
1010 }
1011