xref: /linux/kernel/bpf/memalloc.c (revision 7a4ffec9fd54ea27395e24dff726dbf58e2fe06b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
3 #include <linux/mm.h>
4 #include <linux/llist.h>
5 #include <linux/bpf.h>
6 #include <linux/irq_work.h>
7 #include <linux/bpf_mem_alloc.h>
8 #include <linux/memcontrol.h>
9 #include <asm/local.h>
10 
11 /* Any context (including NMI) BPF specific memory allocator.
12  *
13  * Tracing BPF programs can attach to kprobe and fentry. Hence they
14  * run in unknown context where calling plain kmalloc() might not be safe.
15  *
16  * Front-end kmalloc() with per-cpu per-bucket cache of free elements.
17  * Refill this cache asynchronously from irq_work.
18  *
19  * CPU_0 buckets
20  * 16 32 64 96 128 196 256 512 1024 2048 4096
21  * ...
22  * CPU_N buckets
23  * 16 32 64 96 128 196 256 512 1024 2048 4096
24  *
25  * The buckets are prefilled at the start.
26  * BPF programs always run with migration disabled.
27  * It's safe to allocate from cache of the current cpu with irqs disabled.
28  * Free-ing is always done into bucket of the current cpu as well.
29  * irq_work trims extra free elements from buckets with kfree
30  * and refills them with kmalloc, so global kmalloc logic takes care
31  * of freeing objects allocated by one cpu and freed on another.
32  *
33  * Every allocated objected is padded with extra 8 bytes that contains
34  * struct llist_node.
35  */
36 #define LLIST_NODE_SZ sizeof(struct llist_node)
37 
38 /* similar to kmalloc, but sizeof == 8 bucket is gone */
39 static u8 size_index[24] __ro_after_init = {
40 	3,	/* 8 */
41 	3,	/* 16 */
42 	4,	/* 24 */
43 	4,	/* 32 */
44 	5,	/* 40 */
45 	5,	/* 48 */
46 	5,	/* 56 */
47 	5,	/* 64 */
48 	1,	/* 72 */
49 	1,	/* 80 */
50 	1,	/* 88 */
51 	1,	/* 96 */
52 	6,	/* 104 */
53 	6,	/* 112 */
54 	6,	/* 120 */
55 	6,	/* 128 */
56 	2,	/* 136 */
57 	2,	/* 144 */
58 	2,	/* 152 */
59 	2,	/* 160 */
60 	2,	/* 168 */
61 	2,	/* 176 */
62 	2,	/* 184 */
63 	2	/* 192 */
64 };
65 
66 static int bpf_mem_cache_idx(size_t size)
67 {
68 	if (!size || size > 4096)
69 		return -1;
70 
71 	if (size <= 192)
72 		return size_index[(size - 1) / 8] - 1;
73 
74 	return fls(size - 1) - 2;
75 }
76 
77 #define NUM_CACHES 11
78 
79 struct bpf_mem_cache {
80 	/* per-cpu list of free objects of size 'unit_size'.
81 	 * All accesses are done with interrupts disabled and 'active' counter
82 	 * protection with __llist_add() and __llist_del_first().
83 	 */
84 	struct llist_head free_llist;
85 	local_t active;
86 
87 	/* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill
88 	 * are sequenced by per-cpu 'active' counter. But unit_free() cannot
89 	 * fail. When 'active' is busy the unit_free() will add an object to
90 	 * free_llist_extra.
91 	 */
92 	struct llist_head free_llist_extra;
93 
94 	struct irq_work refill_work;
95 	struct obj_cgroup *objcg;
96 	int unit_size;
97 	/* count of objects in free_llist */
98 	int free_cnt;
99 	int low_watermark, high_watermark, batch;
100 	int percpu_size;
101 	bool draining;
102 	struct bpf_mem_cache *tgt;
103 
104 	/* list of objects to be freed after RCU GP */
105 	struct llist_head free_by_rcu;
106 	struct llist_node *free_by_rcu_tail;
107 	struct llist_head waiting_for_gp;
108 	struct llist_node *waiting_for_gp_tail;
109 	struct rcu_head rcu;
110 	atomic_t call_rcu_in_progress;
111 	struct llist_head free_llist_extra_rcu;
112 
113 	/* list of objects to be freed after RCU tasks trace GP */
114 	struct llist_head free_by_rcu_ttrace;
115 	struct llist_head waiting_for_gp_ttrace;
116 	struct rcu_head rcu_ttrace;
117 	atomic_t call_rcu_ttrace_in_progress;
118 };
119 
120 struct bpf_mem_caches {
121 	struct bpf_mem_cache cache[NUM_CACHES];
122 };
123 
124 static const u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};
125 
126 static struct llist_node notrace *__llist_del_first(struct llist_head *head)
127 {
128 	struct llist_node *entry, *next;
129 
130 	entry = head->first;
131 	if (!entry)
132 		return NULL;
133 	next = entry->next;
134 	head->first = next;
135 	return entry;
136 }
137 
138 static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags)
139 {
140 	if (c->percpu_size) {
141 		void __percpu **obj = kmalloc_node(c->percpu_size, flags, node);
142 		void __percpu *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags);
143 
144 		if (!obj || !pptr) {
145 			free_percpu(pptr);
146 			kfree(obj);
147 			return NULL;
148 		}
149 		obj[1] = pptr;
150 		return obj;
151 	}
152 
153 	return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node);
154 }
155 
156 static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c)
157 {
158 #ifdef CONFIG_MEMCG
159 	if (c->objcg)
160 		return get_mem_cgroup_from_objcg(c->objcg);
161 	return root_mem_cgroup;
162 #else
163 	return NULL;
164 #endif
165 }
166 
167 static void inc_active(struct bpf_mem_cache *c, unsigned long *flags)
168 {
169 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
170 		/* In RT irq_work runs in per-cpu kthread, so disable
171 		 * interrupts to avoid preemption and interrupts and
172 		 * reduce the chance of bpf prog executing on this cpu
173 		 * when active counter is busy.
174 		 */
175 		local_irq_save(*flags);
176 	/* alloc_bulk runs from irq_work which will not preempt a bpf
177 	 * program that does unit_alloc/unit_free since IRQs are
178 	 * disabled there. There is no race to increment 'active'
179 	 * counter. It protects free_llist from corruption in case NMI
180 	 * bpf prog preempted this loop.
181 	 */
182 	WARN_ON_ONCE(local_inc_return(&c->active) != 1);
183 }
184 
185 static void dec_active(struct bpf_mem_cache *c, unsigned long *flags)
186 {
187 	local_dec(&c->active);
188 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
189 		local_irq_restore(*flags);
190 }
191 
192 static void add_obj_to_free_list(struct bpf_mem_cache *c, void *obj)
193 {
194 	unsigned long flags;
195 
196 	inc_active(c, &flags);
197 	__llist_add(obj, &c->free_llist);
198 	c->free_cnt++;
199 	dec_active(c, &flags);
200 }
201 
202 /* Mostly runs from irq_work except __init phase. */
203 static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node, bool atomic)
204 {
205 	struct mem_cgroup *memcg = NULL, *old_memcg;
206 	gfp_t gfp;
207 	void *obj;
208 	int i;
209 
210 	gfp = __GFP_NOWARN | __GFP_ACCOUNT;
211 	gfp |= atomic ? GFP_NOWAIT : GFP_KERNEL;
212 
213 	for (i = 0; i < cnt; i++) {
214 		/*
215 		 * For every 'c' llist_del_first(&c->free_by_rcu_ttrace); is
216 		 * done only by one CPU == current CPU. Other CPUs might
217 		 * llist_add() and llist_del_all() in parallel.
218 		 */
219 		obj = llist_del_first(&c->free_by_rcu_ttrace);
220 		if (!obj)
221 			break;
222 		add_obj_to_free_list(c, obj);
223 	}
224 	if (i >= cnt)
225 		return;
226 
227 	for (; i < cnt; i++) {
228 		obj = llist_del_first(&c->waiting_for_gp_ttrace);
229 		if (!obj)
230 			break;
231 		add_obj_to_free_list(c, obj);
232 	}
233 	if (i >= cnt)
234 		return;
235 
236 	memcg = get_memcg(c);
237 	old_memcg = set_active_memcg(memcg);
238 	for (; i < cnt; i++) {
239 		/* Allocate, but don't deplete atomic reserves that typical
240 		 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc
241 		 * will allocate from the current numa node which is what we
242 		 * want here.
243 		 */
244 		obj = __alloc(c, node, gfp);
245 		if (!obj)
246 			break;
247 		add_obj_to_free_list(c, obj);
248 	}
249 	set_active_memcg(old_memcg);
250 	mem_cgroup_put(memcg);
251 }
252 
253 static void free_one(void *obj, bool percpu)
254 {
255 	if (percpu)
256 		free_percpu(((void __percpu **)obj)[1]);
257 
258 	kfree(obj);
259 }
260 
261 static int free_all(struct llist_node *llnode, bool percpu)
262 {
263 	struct llist_node *pos, *t;
264 	int cnt = 0;
265 
266 	llist_for_each_safe(pos, t, llnode) {
267 		free_one(pos, percpu);
268 		cnt++;
269 	}
270 	return cnt;
271 }
272 
273 static void __free_rcu(struct rcu_head *head)
274 {
275 	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu_ttrace);
276 
277 	free_all(llist_del_all(&c->waiting_for_gp_ttrace), !!c->percpu_size);
278 	atomic_set(&c->call_rcu_ttrace_in_progress, 0);
279 }
280 
281 static void __free_rcu_tasks_trace(struct rcu_head *head)
282 {
283 	/* If RCU Tasks Trace grace period implies RCU grace period,
284 	 * there is no need to invoke call_rcu().
285 	 */
286 	if (rcu_trace_implies_rcu_gp())
287 		__free_rcu(head);
288 	else
289 		call_rcu(head, __free_rcu);
290 }
291 
292 static void enque_to_free(struct bpf_mem_cache *c, void *obj)
293 {
294 	struct llist_node *llnode = obj;
295 
296 	/* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work.
297 	 * Nothing races to add to free_by_rcu_ttrace list.
298 	 */
299 	llist_add(llnode, &c->free_by_rcu_ttrace);
300 }
301 
302 static void do_call_rcu_ttrace(struct bpf_mem_cache *c)
303 {
304 	struct llist_node *llnode, *t;
305 
306 	if (atomic_xchg(&c->call_rcu_ttrace_in_progress, 1)) {
307 		if (unlikely(READ_ONCE(c->draining))) {
308 			llnode = llist_del_all(&c->free_by_rcu_ttrace);
309 			free_all(llnode, !!c->percpu_size);
310 		}
311 		return;
312 	}
313 
314 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
315 	llist_for_each_safe(llnode, t, llist_del_all(&c->free_by_rcu_ttrace))
316 		llist_add(llnode, &c->waiting_for_gp_ttrace);
317 
318 	if (unlikely(READ_ONCE(c->draining))) {
319 		__free_rcu(&c->rcu_ttrace);
320 		return;
321 	}
322 
323 	/* Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
324 	 * If RCU Tasks Trace grace period implies RCU grace period, free
325 	 * these elements directly, else use call_rcu() to wait for normal
326 	 * progs to finish and finally do free_one() on each element.
327 	 */
328 	call_rcu_tasks_trace(&c->rcu_ttrace, __free_rcu_tasks_trace);
329 }
330 
331 static void free_bulk(struct bpf_mem_cache *c)
332 {
333 	struct bpf_mem_cache *tgt = c->tgt;
334 	struct llist_node *llnode, *t;
335 	unsigned long flags;
336 	int cnt;
337 
338 	WARN_ON_ONCE(tgt->unit_size != c->unit_size);
339 	WARN_ON_ONCE(tgt->percpu_size != c->percpu_size);
340 
341 	do {
342 		inc_active(c, &flags);
343 		llnode = __llist_del_first(&c->free_llist);
344 		if (llnode)
345 			cnt = --c->free_cnt;
346 		else
347 			cnt = 0;
348 		dec_active(c, &flags);
349 		if (llnode)
350 			enque_to_free(tgt, llnode);
351 	} while (cnt > (c->high_watermark + c->low_watermark) / 2);
352 
353 	/* and drain free_llist_extra */
354 	llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra))
355 		enque_to_free(tgt, llnode);
356 	do_call_rcu_ttrace(tgt);
357 }
358 
359 static void __free_by_rcu(struct rcu_head *head)
360 {
361 	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu);
362 	struct bpf_mem_cache *tgt = c->tgt;
363 	struct llist_node *llnode;
364 
365 	WARN_ON_ONCE(tgt->unit_size != c->unit_size);
366 	WARN_ON_ONCE(tgt->percpu_size != c->percpu_size);
367 
368 	llnode = llist_del_all(&c->waiting_for_gp);
369 	if (!llnode)
370 		goto out;
371 
372 	llist_add_batch(llnode, c->waiting_for_gp_tail, &tgt->free_by_rcu_ttrace);
373 
374 	/* Objects went through regular RCU GP. Send them to RCU tasks trace */
375 	do_call_rcu_ttrace(tgt);
376 out:
377 	atomic_set(&c->call_rcu_in_progress, 0);
378 }
379 
380 static void check_free_by_rcu(struct bpf_mem_cache *c)
381 {
382 	struct llist_node *llnode, *t;
383 	unsigned long flags;
384 
385 	/* drain free_llist_extra_rcu */
386 	if (unlikely(!llist_empty(&c->free_llist_extra_rcu))) {
387 		inc_active(c, &flags);
388 		llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra_rcu))
389 			if (__llist_add(llnode, &c->free_by_rcu))
390 				c->free_by_rcu_tail = llnode;
391 		dec_active(c, &flags);
392 	}
393 
394 	if (llist_empty(&c->free_by_rcu))
395 		return;
396 
397 	if (atomic_xchg(&c->call_rcu_in_progress, 1)) {
398 		/*
399 		 * Instead of kmalloc-ing new rcu_head and triggering 10k
400 		 * call_rcu() to hit rcutree.qhimark and force RCU to notice
401 		 * the overload just ask RCU to hurry up. There could be many
402 		 * objects in free_by_rcu list.
403 		 * This hint reduces memory consumption for an artificial
404 		 * benchmark from 2 Gbyte to 150 Mbyte.
405 		 */
406 		rcu_request_urgent_qs_task(current);
407 		return;
408 	}
409 
410 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
411 
412 	inc_active(c, &flags);
413 	WRITE_ONCE(c->waiting_for_gp.first, __llist_del_all(&c->free_by_rcu));
414 	c->waiting_for_gp_tail = c->free_by_rcu_tail;
415 	dec_active(c, &flags);
416 
417 	if (unlikely(READ_ONCE(c->draining))) {
418 		free_all(llist_del_all(&c->waiting_for_gp), !!c->percpu_size);
419 		atomic_set(&c->call_rcu_in_progress, 0);
420 	} else {
421 		call_rcu_hurry(&c->rcu, __free_by_rcu);
422 	}
423 }
424 
425 static void bpf_mem_refill(struct irq_work *work)
426 {
427 	struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work);
428 	int cnt;
429 
430 	/* Racy access to free_cnt. It doesn't need to be 100% accurate */
431 	cnt = c->free_cnt;
432 	if (cnt < c->low_watermark)
433 		/* irq_work runs on this cpu and kmalloc will allocate
434 		 * from the current numa node which is what we want here.
435 		 */
436 		alloc_bulk(c, c->batch, NUMA_NO_NODE, true);
437 	else if (cnt > c->high_watermark)
438 		free_bulk(c);
439 
440 	check_free_by_rcu(c);
441 }
442 
443 static void notrace irq_work_raise(struct bpf_mem_cache *c)
444 {
445 	irq_work_queue(&c->refill_work);
446 }
447 
448 /* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket
449  * the freelist cache will be elem_size * 64 (or less) on each cpu.
450  *
451  * For bpf programs that don't have statically known allocation sizes and
452  * assuming (low_mark + high_mark) / 2 as an average number of elements per
453  * bucket and all buckets are used the total amount of memory in freelists
454  * on each cpu will be:
455  * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096
456  * == ~ 116 Kbyte using below heuristic.
457  * Initialized, but unused bpf allocator (not bpf map specific one) will
458  * consume ~ 11 Kbyte per cpu.
459  * Typical case will be between 11K and 116K closer to 11K.
460  * bpf progs can and should share bpf_mem_cache when possible.
461  *
462  * Percpu allocation is typically rare. To avoid potential unnecessary large
463  * memory consumption, set low_mark = 1 and high_mark = 3, resulting in c->batch = 1.
464  */
465 static void init_refill_work(struct bpf_mem_cache *c)
466 {
467 	init_irq_work(&c->refill_work, bpf_mem_refill);
468 	if (c->percpu_size) {
469 		c->low_watermark = 1;
470 		c->high_watermark = 3;
471 	} else if (c->unit_size <= 256) {
472 		c->low_watermark = 32;
473 		c->high_watermark = 96;
474 	} else {
475 		/* When page_size == 4k, order-0 cache will have low_mark == 2
476 		 * and high_mark == 6 with batch alloc of 3 individual pages at
477 		 * a time.
478 		 * 8k allocs and above low == 1, high == 3, batch == 1.
479 		 */
480 		c->low_watermark = max(32 * 256 / c->unit_size, 1);
481 		c->high_watermark = max(96 * 256 / c->unit_size, 3);
482 	}
483 	c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1);
484 }
485 
486 static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu)
487 {
488 	int cnt = 1;
489 
490 	/* To avoid consuming memory, for non-percpu allocation, assume that
491 	 * 1st run of bpf prog won't be doing more than 4 map_update_elem from
492 	 * irq disabled region if unit size is less than or equal to 256.
493 	 * For all other cases, let us just do one allocation.
494 	 */
495 	if (!c->percpu_size && c->unit_size <= 256)
496 		cnt = 4;
497 	alloc_bulk(c, cnt, cpu_to_node(cpu), false);
498 }
499 
500 /* When size != 0 bpf_mem_cache for each cpu.
501  * This is typical bpf hash map use case when all elements have equal size.
502  *
503  * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on
504  * kmalloc/kfree. Max allocation size is 4096 in this case.
505  * This is bpf_dynptr and bpf_kptr use case.
506  */
507 int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu)
508 {
509 	struct bpf_mem_caches *cc; struct bpf_mem_caches __percpu *pcc;
510 	struct bpf_mem_cache *c; struct bpf_mem_cache __percpu *pc;
511 	struct obj_cgroup *objcg = NULL;
512 	int cpu, i, unit_size, percpu_size = 0;
513 
514 	if (percpu && size == 0)
515 		return -EINVAL;
516 
517 	/* room for llist_node and per-cpu pointer */
518 	if (percpu)
519 		percpu_size = LLIST_NODE_SZ + sizeof(void *);
520 	ma->percpu = percpu;
521 
522 	if (size) {
523 		pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL);
524 		if (!pc)
525 			return -ENOMEM;
526 
527 		if (!percpu)
528 			size += LLIST_NODE_SZ; /* room for llist_node */
529 		unit_size = size;
530 
531 #ifdef CONFIG_MEMCG
532 		if (memcg_bpf_enabled())
533 			objcg = get_obj_cgroup_from_current();
534 #endif
535 		ma->objcg = objcg;
536 
537 		for_each_possible_cpu(cpu) {
538 			c = per_cpu_ptr(pc, cpu);
539 			c->unit_size = unit_size;
540 			c->objcg = objcg;
541 			c->percpu_size = percpu_size;
542 			c->tgt = c;
543 			init_refill_work(c);
544 			prefill_mem_cache(c, cpu);
545 		}
546 		ma->cache = pc;
547 		return 0;
548 	}
549 
550 	pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL);
551 	if (!pcc)
552 		return -ENOMEM;
553 #ifdef CONFIG_MEMCG
554 	objcg = get_obj_cgroup_from_current();
555 #endif
556 	ma->objcg = objcg;
557 	for_each_possible_cpu(cpu) {
558 		cc = per_cpu_ptr(pcc, cpu);
559 		for (i = 0; i < NUM_CACHES; i++) {
560 			c = &cc->cache[i];
561 			c->unit_size = sizes[i];
562 			c->objcg = objcg;
563 			c->percpu_size = percpu_size;
564 			c->tgt = c;
565 
566 			init_refill_work(c);
567 			prefill_mem_cache(c, cpu);
568 		}
569 	}
570 
571 	ma->caches = pcc;
572 	return 0;
573 }
574 
575 int bpf_mem_alloc_percpu_init(struct bpf_mem_alloc *ma, struct obj_cgroup *objcg)
576 {
577 	struct bpf_mem_caches __percpu *pcc;
578 
579 	pcc = __alloc_percpu_gfp(sizeof(struct bpf_mem_caches), 8, GFP_KERNEL);
580 	if (!pcc)
581 		return -ENOMEM;
582 
583 	ma->caches = pcc;
584 	ma->objcg = objcg;
585 	ma->percpu = true;
586 	return 0;
587 }
588 
589 int bpf_mem_alloc_percpu_unit_init(struct bpf_mem_alloc *ma, int size)
590 {
591 	struct bpf_mem_caches *cc; struct bpf_mem_caches __percpu *pcc;
592 	int cpu, i, unit_size, percpu_size;
593 	struct obj_cgroup *objcg;
594 	struct bpf_mem_cache *c;
595 
596 	i = bpf_mem_cache_idx(size);
597 	if (i < 0)
598 		return -EINVAL;
599 
600 	/* room for llist_node and per-cpu pointer */
601 	percpu_size = LLIST_NODE_SZ + sizeof(void *);
602 
603 	unit_size = sizes[i];
604 	objcg = ma->objcg;
605 	pcc = ma->caches;
606 
607 	for_each_possible_cpu(cpu) {
608 		cc = per_cpu_ptr(pcc, cpu);
609 		c = &cc->cache[i];
610 		if (c->unit_size)
611 			break;
612 
613 		c->unit_size = unit_size;
614 		c->objcg = objcg;
615 		c->percpu_size = percpu_size;
616 		c->tgt = c;
617 
618 		init_refill_work(c);
619 		prefill_mem_cache(c, cpu);
620 	}
621 
622 	return 0;
623 }
624 
625 static void drain_mem_cache(struct bpf_mem_cache *c)
626 {
627 	bool percpu = !!c->percpu_size;
628 
629 	/* No progs are using this bpf_mem_cache, but htab_map_free() called
630 	 * bpf_mem_cache_free() for all remaining elements and they can be in
631 	 * free_by_rcu_ttrace or in waiting_for_gp_ttrace lists, so drain those lists now.
632 	 *
633 	 * Except for waiting_for_gp_ttrace list, there are no concurrent operations
634 	 * on these lists, so it is safe to use __llist_del_all().
635 	 */
636 	free_all(llist_del_all(&c->free_by_rcu_ttrace), percpu);
637 	free_all(llist_del_all(&c->waiting_for_gp_ttrace), percpu);
638 	free_all(__llist_del_all(&c->free_llist), percpu);
639 	free_all(__llist_del_all(&c->free_llist_extra), percpu);
640 	free_all(__llist_del_all(&c->free_by_rcu), percpu);
641 	free_all(__llist_del_all(&c->free_llist_extra_rcu), percpu);
642 	free_all(llist_del_all(&c->waiting_for_gp), percpu);
643 }
644 
645 static void check_mem_cache(struct bpf_mem_cache *c)
646 {
647 	WARN_ON_ONCE(!llist_empty(&c->free_by_rcu_ttrace));
648 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
649 	WARN_ON_ONCE(!llist_empty(&c->free_llist));
650 	WARN_ON_ONCE(!llist_empty(&c->free_llist_extra));
651 	WARN_ON_ONCE(!llist_empty(&c->free_by_rcu));
652 	WARN_ON_ONCE(!llist_empty(&c->free_llist_extra_rcu));
653 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
654 }
655 
656 static void check_leaked_objs(struct bpf_mem_alloc *ma)
657 {
658 	struct bpf_mem_caches *cc;
659 	struct bpf_mem_cache *c;
660 	int cpu, i;
661 
662 	if (ma->cache) {
663 		for_each_possible_cpu(cpu) {
664 			c = per_cpu_ptr(ma->cache, cpu);
665 			check_mem_cache(c);
666 		}
667 	}
668 	if (ma->caches) {
669 		for_each_possible_cpu(cpu) {
670 			cc = per_cpu_ptr(ma->caches, cpu);
671 			for (i = 0; i < NUM_CACHES; i++) {
672 				c = &cc->cache[i];
673 				check_mem_cache(c);
674 			}
675 		}
676 	}
677 }
678 
679 static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma)
680 {
681 	check_leaked_objs(ma);
682 	free_percpu(ma->cache);
683 	free_percpu(ma->caches);
684 	ma->cache = NULL;
685 	ma->caches = NULL;
686 }
687 
688 static void free_mem_alloc(struct bpf_mem_alloc *ma)
689 {
690 	/* waiting_for_gp[_ttrace] lists were drained, but RCU callbacks
691 	 * might still execute. Wait for them.
692 	 *
693 	 * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(),
694 	 * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used
695 	 * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(),
696 	 * so if call_rcu(head, __free_rcu) is skipped due to
697 	 * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by
698 	 * using rcu_trace_implies_rcu_gp() as well.
699 	 */
700 	rcu_barrier(); /* wait for __free_by_rcu */
701 	rcu_barrier_tasks_trace(); /* wait for __free_rcu */
702 	if (!rcu_trace_implies_rcu_gp())
703 		rcu_barrier();
704 	free_mem_alloc_no_barrier(ma);
705 }
706 
707 static void free_mem_alloc_deferred(struct work_struct *work)
708 {
709 	struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work);
710 
711 	free_mem_alloc(ma);
712 	kfree(ma);
713 }
714 
715 static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress)
716 {
717 	struct bpf_mem_alloc *copy;
718 
719 	if (!rcu_in_progress) {
720 		/* Fast path. No callbacks are pending, hence no need to do
721 		 * rcu_barrier-s.
722 		 */
723 		free_mem_alloc_no_barrier(ma);
724 		return;
725 	}
726 
727 	copy = kmemdup(ma, sizeof(*ma), GFP_KERNEL);
728 	if (!copy) {
729 		/* Slow path with inline barrier-s */
730 		free_mem_alloc(ma);
731 		return;
732 	}
733 
734 	/* Defer barriers into worker to let the rest of map memory to be freed */
735 	memset(ma, 0, sizeof(*ma));
736 	INIT_WORK(&copy->work, free_mem_alloc_deferred);
737 	queue_work(system_unbound_wq, &copy->work);
738 }
739 
740 void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma)
741 {
742 	struct bpf_mem_caches *cc;
743 	struct bpf_mem_cache *c;
744 	int cpu, i, rcu_in_progress;
745 
746 	if (ma->cache) {
747 		rcu_in_progress = 0;
748 		for_each_possible_cpu(cpu) {
749 			c = per_cpu_ptr(ma->cache, cpu);
750 			WRITE_ONCE(c->draining, true);
751 			irq_work_sync(&c->refill_work);
752 			drain_mem_cache(c);
753 			rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
754 			rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
755 		}
756 		obj_cgroup_put(ma->objcg);
757 		destroy_mem_alloc(ma, rcu_in_progress);
758 	}
759 	if (ma->caches) {
760 		rcu_in_progress = 0;
761 		for_each_possible_cpu(cpu) {
762 			cc = per_cpu_ptr(ma->caches, cpu);
763 			for (i = 0; i < NUM_CACHES; i++) {
764 				c = &cc->cache[i];
765 				WRITE_ONCE(c->draining, true);
766 				irq_work_sync(&c->refill_work);
767 				drain_mem_cache(c);
768 				rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
769 				rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
770 			}
771 		}
772 		obj_cgroup_put(ma->objcg);
773 		destroy_mem_alloc(ma, rcu_in_progress);
774 	}
775 }
776 
777 /* notrace is necessary here and in other functions to make sure
778  * bpf programs cannot attach to them and cause llist corruptions.
779  */
780 static void notrace *unit_alloc(struct bpf_mem_cache *c)
781 {
782 	struct llist_node *llnode = NULL;
783 	unsigned long flags;
784 	int cnt = 0;
785 
786 	/* Disable irqs to prevent the following race for majority of prog types:
787 	 * prog_A
788 	 *   bpf_mem_alloc
789 	 *      preemption or irq -> prog_B
790 	 *        bpf_mem_alloc
791 	 *
792 	 * but prog_B could be a perf_event NMI prog.
793 	 * Use per-cpu 'active' counter to order free_list access between
794 	 * unit_alloc/unit_free/bpf_mem_refill.
795 	 */
796 	local_irq_save(flags);
797 	if (local_inc_return(&c->active) == 1) {
798 		llnode = __llist_del_first(&c->free_llist);
799 		if (llnode) {
800 			cnt = --c->free_cnt;
801 			*(struct bpf_mem_cache **)llnode = c;
802 		}
803 	}
804 	local_dec(&c->active);
805 
806 	WARN_ON(cnt < 0);
807 
808 	if (cnt < c->low_watermark)
809 		irq_work_raise(c);
810 	/* Enable IRQ after the enqueue of irq work completes, so irq work
811 	 * will run after IRQ is enabled and free_llist may be refilled by
812 	 * irq work before other task preempts current task.
813 	 */
814 	local_irq_restore(flags);
815 
816 	return llnode;
817 }
818 
819 /* Though 'ptr' object could have been allocated on a different cpu
820  * add it to the free_llist of the current cpu.
821  * Let kfree() logic deal with it when it's later called from irq_work.
822  */
823 static void notrace unit_free(struct bpf_mem_cache *c, void *ptr)
824 {
825 	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
826 	unsigned long flags;
827 	int cnt = 0;
828 
829 	BUILD_BUG_ON(LLIST_NODE_SZ > 8);
830 
831 	/*
832 	 * Remember bpf_mem_cache that allocated this object.
833 	 * The hint is not accurate.
834 	 */
835 	c->tgt = *(struct bpf_mem_cache **)llnode;
836 
837 	local_irq_save(flags);
838 	if (local_inc_return(&c->active) == 1) {
839 		__llist_add(llnode, &c->free_llist);
840 		cnt = ++c->free_cnt;
841 	} else {
842 		/* unit_free() cannot fail. Therefore add an object to atomic
843 		 * llist. free_bulk() will drain it. Though free_llist_extra is
844 		 * a per-cpu list we have to use atomic llist_add here, since
845 		 * it also can be interrupted by bpf nmi prog that does another
846 		 * unit_free() into the same free_llist_extra.
847 		 */
848 		llist_add(llnode, &c->free_llist_extra);
849 	}
850 	local_dec(&c->active);
851 
852 	if (cnt > c->high_watermark)
853 		/* free few objects from current cpu into global kmalloc pool */
854 		irq_work_raise(c);
855 	/* Enable IRQ after irq_work_raise() completes, otherwise when current
856 	 * task is preempted by task which does unit_alloc(), unit_alloc() may
857 	 * return NULL unexpectedly because irq work is already pending but can
858 	 * not been triggered and free_llist can not be refilled timely.
859 	 */
860 	local_irq_restore(flags);
861 }
862 
863 static void notrace unit_free_rcu(struct bpf_mem_cache *c, void *ptr)
864 {
865 	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
866 	unsigned long flags;
867 
868 	c->tgt = *(struct bpf_mem_cache **)llnode;
869 
870 	local_irq_save(flags);
871 	if (local_inc_return(&c->active) == 1) {
872 		if (__llist_add(llnode, &c->free_by_rcu))
873 			c->free_by_rcu_tail = llnode;
874 	} else {
875 		llist_add(llnode, &c->free_llist_extra_rcu);
876 	}
877 	local_dec(&c->active);
878 
879 	if (!atomic_read(&c->call_rcu_in_progress))
880 		irq_work_raise(c);
881 	local_irq_restore(flags);
882 }
883 
884 /* Called from BPF program or from sys_bpf syscall.
885  * In both cases migration is disabled.
886  */
887 void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size)
888 {
889 	int idx;
890 	void *ret;
891 
892 	if (!size)
893 		return NULL;
894 
895 	if (!ma->percpu)
896 		size += LLIST_NODE_SZ;
897 	idx = bpf_mem_cache_idx(size);
898 	if (idx < 0)
899 		return NULL;
900 
901 	ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx);
902 	return !ret ? NULL : ret + LLIST_NODE_SZ;
903 }
904 
905 void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr)
906 {
907 	struct bpf_mem_cache *c;
908 	int idx;
909 
910 	if (!ptr)
911 		return;
912 
913 	c = *(void **)(ptr - LLIST_NODE_SZ);
914 	idx = bpf_mem_cache_idx(c->unit_size);
915 	if (WARN_ON_ONCE(idx < 0))
916 		return;
917 
918 	unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr);
919 }
920 
921 void notrace bpf_mem_free_rcu(struct bpf_mem_alloc *ma, void *ptr)
922 {
923 	struct bpf_mem_cache *c;
924 	int idx;
925 
926 	if (!ptr)
927 		return;
928 
929 	c = *(void **)(ptr - LLIST_NODE_SZ);
930 	idx = bpf_mem_cache_idx(c->unit_size);
931 	if (WARN_ON_ONCE(idx < 0))
932 		return;
933 
934 	unit_free_rcu(this_cpu_ptr(ma->caches)->cache + idx, ptr);
935 }
936 
937 void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma)
938 {
939 	void *ret;
940 
941 	ret = unit_alloc(this_cpu_ptr(ma->cache));
942 	return !ret ? NULL : ret + LLIST_NODE_SZ;
943 }
944 
945 void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr)
946 {
947 	if (!ptr)
948 		return;
949 
950 	unit_free(this_cpu_ptr(ma->cache), ptr);
951 }
952 
953 void notrace bpf_mem_cache_free_rcu(struct bpf_mem_alloc *ma, void *ptr)
954 {
955 	if (!ptr)
956 		return;
957 
958 	unit_free_rcu(this_cpu_ptr(ma->cache), ptr);
959 }
960 
961 /* Directly does a kfree() without putting 'ptr' back to the free_llist
962  * for reuse and without waiting for a rcu_tasks_trace gp.
963  * The caller must first go through the rcu_tasks_trace gp for 'ptr'
964  * before calling bpf_mem_cache_raw_free().
965  * It could be used when the rcu_tasks_trace callback does not have
966  * a hold on the original bpf_mem_alloc object that allocated the
967  * 'ptr'. This should only be used in the uncommon code path.
968  * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled
969  * and may affect performance.
970  */
971 void bpf_mem_cache_raw_free(void *ptr)
972 {
973 	if (!ptr)
974 		return;
975 
976 	kfree(ptr - LLIST_NODE_SZ);
977 }
978 
979 /* When flags == GFP_KERNEL, it signals that the caller will not cause
980  * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use
981  * kmalloc if the free_llist is empty.
982  */
983 void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags)
984 {
985 	struct bpf_mem_cache *c;
986 	void *ret;
987 
988 	c = this_cpu_ptr(ma->cache);
989 
990 	ret = unit_alloc(c);
991 	if (!ret && flags == GFP_KERNEL) {
992 		struct mem_cgroup *memcg, *old_memcg;
993 
994 		memcg = get_memcg(c);
995 		old_memcg = set_active_memcg(memcg);
996 		ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT);
997 		if (ret)
998 			*(struct bpf_mem_cache **)ret = c;
999 		set_active_memcg(old_memcg);
1000 		mem_cgroup_put(memcg);
1001 	}
1002 
1003 	return !ret ? NULL : ret + LLIST_NODE_SZ;
1004 }
1005