1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */ 3 #include <linux/mm.h> 4 #include <linux/llist.h> 5 #include <linux/bpf.h> 6 #include <linux/irq_work.h> 7 #include <linux/bpf_mem_alloc.h> 8 #include <linux/memcontrol.h> 9 #include <asm/local.h> 10 11 /* Any context (including NMI) BPF specific memory allocator. 12 * 13 * Tracing BPF programs can attach to kprobe and fentry. Hence they 14 * run in unknown context where calling plain kmalloc() might not be safe. 15 * 16 * Front-end kmalloc() with per-cpu per-bucket cache of free elements. 17 * Refill this cache asynchronously from irq_work. 18 * 19 * CPU_0 buckets 20 * 16 32 64 96 128 196 256 512 1024 2048 4096 21 * ... 22 * CPU_N buckets 23 * 16 32 64 96 128 196 256 512 1024 2048 4096 24 * 25 * The buckets are prefilled at the start. 26 * BPF programs always run with migration disabled. 27 * It's safe to allocate from cache of the current cpu with irqs disabled. 28 * Free-ing is always done into bucket of the current cpu as well. 29 * irq_work trims extra free elements from buckets with kfree 30 * and refills them with kmalloc, so global kmalloc logic takes care 31 * of freeing objects allocated by one cpu and freed on another. 32 * 33 * Every allocated objected is padded with extra 8 bytes that contains 34 * struct llist_node. 35 */ 36 #define LLIST_NODE_SZ sizeof(struct llist_node) 37 38 /* similar to kmalloc, but sizeof == 8 bucket is gone */ 39 static u8 size_index[24] __ro_after_init = { 40 3, /* 8 */ 41 3, /* 16 */ 42 4, /* 24 */ 43 4, /* 32 */ 44 5, /* 40 */ 45 5, /* 48 */ 46 5, /* 56 */ 47 5, /* 64 */ 48 1, /* 72 */ 49 1, /* 80 */ 50 1, /* 88 */ 51 1, /* 96 */ 52 6, /* 104 */ 53 6, /* 112 */ 54 6, /* 120 */ 55 6, /* 128 */ 56 2, /* 136 */ 57 2, /* 144 */ 58 2, /* 152 */ 59 2, /* 160 */ 60 2, /* 168 */ 61 2, /* 176 */ 62 2, /* 184 */ 63 2 /* 192 */ 64 }; 65 66 static int bpf_mem_cache_idx(size_t size) 67 { 68 if (!size || size > 4096) 69 return -1; 70 71 if (size <= 192) 72 return size_index[(size - 1) / 8] - 1; 73 74 return fls(size - 1) - 2; 75 } 76 77 #define NUM_CACHES 11 78 79 struct bpf_mem_cache { 80 /* per-cpu list of free objects of size 'unit_size'. 81 * All accesses are done with interrupts disabled and 'active' counter 82 * protection with __llist_add() and __llist_del_first(). 83 */ 84 struct llist_head free_llist; 85 local_t active; 86 87 /* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill 88 * are sequenced by per-cpu 'active' counter. But unit_free() cannot 89 * fail. When 'active' is busy the unit_free() will add an object to 90 * free_llist_extra. 91 */ 92 struct llist_head free_llist_extra; 93 94 struct irq_work refill_work; 95 struct obj_cgroup *objcg; 96 int unit_size; 97 /* count of objects in free_llist */ 98 int free_cnt; 99 int low_watermark, high_watermark, batch; 100 int percpu_size; 101 102 struct rcu_head rcu; 103 struct llist_head free_by_rcu; 104 struct llist_head waiting_for_gp; 105 atomic_t call_rcu_in_progress; 106 }; 107 108 struct bpf_mem_caches { 109 struct bpf_mem_cache cache[NUM_CACHES]; 110 }; 111 112 static struct llist_node notrace *__llist_del_first(struct llist_head *head) 113 { 114 struct llist_node *entry, *next; 115 116 entry = head->first; 117 if (!entry) 118 return NULL; 119 next = entry->next; 120 head->first = next; 121 return entry; 122 } 123 124 static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags) 125 { 126 if (c->percpu_size) { 127 void **obj = kmalloc_node(c->percpu_size, flags, node); 128 void *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags); 129 130 if (!obj || !pptr) { 131 free_percpu(pptr); 132 kfree(obj); 133 return NULL; 134 } 135 obj[1] = pptr; 136 return obj; 137 } 138 139 return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node); 140 } 141 142 static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c) 143 { 144 #ifdef CONFIG_MEMCG_KMEM 145 if (c->objcg) 146 return get_mem_cgroup_from_objcg(c->objcg); 147 #endif 148 149 #ifdef CONFIG_MEMCG 150 return root_mem_cgroup; 151 #else 152 return NULL; 153 #endif 154 } 155 156 /* Mostly runs from irq_work except __init phase. */ 157 static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node) 158 { 159 struct mem_cgroup *memcg = NULL, *old_memcg; 160 unsigned long flags; 161 void *obj; 162 int i; 163 164 memcg = get_memcg(c); 165 old_memcg = set_active_memcg(memcg); 166 for (i = 0; i < cnt; i++) { 167 /* 168 * free_by_rcu is only manipulated by irq work refill_work(). 169 * IRQ works on the same CPU are called sequentially, so it is 170 * safe to use __llist_del_first() here. If alloc_bulk() is 171 * invoked by the initial prefill, there will be no running 172 * refill_work(), so __llist_del_first() is fine as well. 173 * 174 * In most cases, objects on free_by_rcu are from the same CPU. 175 * If some objects come from other CPUs, it doesn't incur any 176 * harm because NUMA_NO_NODE means the preference for current 177 * numa node and it is not a guarantee. 178 */ 179 obj = __llist_del_first(&c->free_by_rcu); 180 if (!obj) { 181 /* Allocate, but don't deplete atomic reserves that typical 182 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc 183 * will allocate from the current numa node which is what we 184 * want here. 185 */ 186 obj = __alloc(c, node, GFP_NOWAIT | __GFP_NOWARN | __GFP_ACCOUNT); 187 if (!obj) 188 break; 189 } 190 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 191 /* In RT irq_work runs in per-cpu kthread, so disable 192 * interrupts to avoid preemption and interrupts and 193 * reduce the chance of bpf prog executing on this cpu 194 * when active counter is busy. 195 */ 196 local_irq_save(flags); 197 /* alloc_bulk runs from irq_work which will not preempt a bpf 198 * program that does unit_alloc/unit_free since IRQs are 199 * disabled there. There is no race to increment 'active' 200 * counter. It protects free_llist from corruption in case NMI 201 * bpf prog preempted this loop. 202 */ 203 WARN_ON_ONCE(local_inc_return(&c->active) != 1); 204 __llist_add(obj, &c->free_llist); 205 c->free_cnt++; 206 local_dec(&c->active); 207 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 208 local_irq_restore(flags); 209 } 210 set_active_memcg(old_memcg); 211 mem_cgroup_put(memcg); 212 } 213 214 static void free_one(void *obj, bool percpu) 215 { 216 if (percpu) { 217 free_percpu(((void **)obj)[1]); 218 kfree(obj); 219 return; 220 } 221 222 kfree(obj); 223 } 224 225 static void free_all(struct llist_node *llnode, bool percpu) 226 { 227 struct llist_node *pos, *t; 228 229 llist_for_each_safe(pos, t, llnode) 230 free_one(pos, percpu); 231 } 232 233 static void __free_rcu(struct rcu_head *head) 234 { 235 struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu); 236 237 free_all(llist_del_all(&c->waiting_for_gp), !!c->percpu_size); 238 atomic_set(&c->call_rcu_in_progress, 0); 239 } 240 241 static void __free_rcu_tasks_trace(struct rcu_head *head) 242 { 243 /* If RCU Tasks Trace grace period implies RCU grace period, 244 * there is no need to invoke call_rcu(). 245 */ 246 if (rcu_trace_implies_rcu_gp()) 247 __free_rcu(head); 248 else 249 call_rcu(head, __free_rcu); 250 } 251 252 static void enque_to_free(struct bpf_mem_cache *c, void *obj) 253 { 254 struct llist_node *llnode = obj; 255 256 /* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work. 257 * Nothing races to add to free_by_rcu list. 258 */ 259 __llist_add(llnode, &c->free_by_rcu); 260 } 261 262 static void do_call_rcu(struct bpf_mem_cache *c) 263 { 264 struct llist_node *llnode, *t; 265 266 if (atomic_xchg(&c->call_rcu_in_progress, 1)) 267 return; 268 269 WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp)); 270 llist_for_each_safe(llnode, t, __llist_del_all(&c->free_by_rcu)) 271 /* There is no concurrent __llist_add(waiting_for_gp) access. 272 * It doesn't race with llist_del_all either. 273 * But there could be two concurrent llist_del_all(waiting_for_gp): 274 * from __free_rcu() and from drain_mem_cache(). 275 */ 276 __llist_add(llnode, &c->waiting_for_gp); 277 /* Use call_rcu_tasks_trace() to wait for sleepable progs to finish. 278 * If RCU Tasks Trace grace period implies RCU grace period, free 279 * these elements directly, else use call_rcu() to wait for normal 280 * progs to finish and finally do free_one() on each element. 281 */ 282 call_rcu_tasks_trace(&c->rcu, __free_rcu_tasks_trace); 283 } 284 285 static void free_bulk(struct bpf_mem_cache *c) 286 { 287 struct llist_node *llnode, *t; 288 unsigned long flags; 289 int cnt; 290 291 do { 292 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 293 local_irq_save(flags); 294 WARN_ON_ONCE(local_inc_return(&c->active) != 1); 295 llnode = __llist_del_first(&c->free_llist); 296 if (llnode) 297 cnt = --c->free_cnt; 298 else 299 cnt = 0; 300 local_dec(&c->active); 301 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 302 local_irq_restore(flags); 303 if (llnode) 304 enque_to_free(c, llnode); 305 } while (cnt > (c->high_watermark + c->low_watermark) / 2); 306 307 /* and drain free_llist_extra */ 308 llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra)) 309 enque_to_free(c, llnode); 310 do_call_rcu(c); 311 } 312 313 static void bpf_mem_refill(struct irq_work *work) 314 { 315 struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work); 316 int cnt; 317 318 /* Racy access to free_cnt. It doesn't need to be 100% accurate */ 319 cnt = c->free_cnt; 320 if (cnt < c->low_watermark) 321 /* irq_work runs on this cpu and kmalloc will allocate 322 * from the current numa node which is what we want here. 323 */ 324 alloc_bulk(c, c->batch, NUMA_NO_NODE); 325 else if (cnt > c->high_watermark) 326 free_bulk(c); 327 } 328 329 static void notrace irq_work_raise(struct bpf_mem_cache *c) 330 { 331 irq_work_queue(&c->refill_work); 332 } 333 334 /* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket 335 * the freelist cache will be elem_size * 64 (or less) on each cpu. 336 * 337 * For bpf programs that don't have statically known allocation sizes and 338 * assuming (low_mark + high_mark) / 2 as an average number of elements per 339 * bucket and all buckets are used the total amount of memory in freelists 340 * on each cpu will be: 341 * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096 342 * == ~ 116 Kbyte using below heuristic. 343 * Initialized, but unused bpf allocator (not bpf map specific one) will 344 * consume ~ 11 Kbyte per cpu. 345 * Typical case will be between 11K and 116K closer to 11K. 346 * bpf progs can and should share bpf_mem_cache when possible. 347 */ 348 349 static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu) 350 { 351 init_irq_work(&c->refill_work, bpf_mem_refill); 352 if (c->unit_size <= 256) { 353 c->low_watermark = 32; 354 c->high_watermark = 96; 355 } else { 356 /* When page_size == 4k, order-0 cache will have low_mark == 2 357 * and high_mark == 6 with batch alloc of 3 individual pages at 358 * a time. 359 * 8k allocs and above low == 1, high == 3, batch == 1. 360 */ 361 c->low_watermark = max(32 * 256 / c->unit_size, 1); 362 c->high_watermark = max(96 * 256 / c->unit_size, 3); 363 } 364 c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1); 365 366 /* To avoid consuming memory assume that 1st run of bpf 367 * prog won't be doing more than 4 map_update_elem from 368 * irq disabled region 369 */ 370 alloc_bulk(c, c->unit_size <= 256 ? 4 : 1, cpu_to_node(cpu)); 371 } 372 373 /* When size != 0 bpf_mem_cache for each cpu. 374 * This is typical bpf hash map use case when all elements have equal size. 375 * 376 * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on 377 * kmalloc/kfree. Max allocation size is 4096 in this case. 378 * This is bpf_dynptr and bpf_kptr use case. 379 */ 380 int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu) 381 { 382 static u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}; 383 struct bpf_mem_caches *cc, __percpu *pcc; 384 struct bpf_mem_cache *c, __percpu *pc; 385 struct obj_cgroup *objcg = NULL; 386 int cpu, i, unit_size, percpu_size = 0; 387 388 if (size) { 389 pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL); 390 if (!pc) 391 return -ENOMEM; 392 393 if (percpu) 394 /* room for llist_node and per-cpu pointer */ 395 percpu_size = LLIST_NODE_SZ + sizeof(void *); 396 else 397 size += LLIST_NODE_SZ; /* room for llist_node */ 398 unit_size = size; 399 400 #ifdef CONFIG_MEMCG_KMEM 401 if (memcg_bpf_enabled()) 402 objcg = get_obj_cgroup_from_current(); 403 #endif 404 for_each_possible_cpu(cpu) { 405 c = per_cpu_ptr(pc, cpu); 406 c->unit_size = unit_size; 407 c->objcg = objcg; 408 c->percpu_size = percpu_size; 409 prefill_mem_cache(c, cpu); 410 } 411 ma->cache = pc; 412 return 0; 413 } 414 415 /* size == 0 && percpu is an invalid combination */ 416 if (WARN_ON_ONCE(percpu)) 417 return -EINVAL; 418 419 pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL); 420 if (!pcc) 421 return -ENOMEM; 422 #ifdef CONFIG_MEMCG_KMEM 423 objcg = get_obj_cgroup_from_current(); 424 #endif 425 for_each_possible_cpu(cpu) { 426 cc = per_cpu_ptr(pcc, cpu); 427 for (i = 0; i < NUM_CACHES; i++) { 428 c = &cc->cache[i]; 429 c->unit_size = sizes[i]; 430 c->objcg = objcg; 431 prefill_mem_cache(c, cpu); 432 } 433 } 434 ma->caches = pcc; 435 return 0; 436 } 437 438 static void drain_mem_cache(struct bpf_mem_cache *c) 439 { 440 bool percpu = !!c->percpu_size; 441 442 /* No progs are using this bpf_mem_cache, but htab_map_free() called 443 * bpf_mem_cache_free() for all remaining elements and they can be in 444 * free_by_rcu or in waiting_for_gp lists, so drain those lists now. 445 * 446 * Except for waiting_for_gp list, there are no concurrent operations 447 * on these lists, so it is safe to use __llist_del_all(). 448 */ 449 free_all(__llist_del_all(&c->free_by_rcu), percpu); 450 free_all(llist_del_all(&c->waiting_for_gp), percpu); 451 free_all(__llist_del_all(&c->free_llist), percpu); 452 free_all(__llist_del_all(&c->free_llist_extra), percpu); 453 } 454 455 static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma) 456 { 457 free_percpu(ma->cache); 458 free_percpu(ma->caches); 459 ma->cache = NULL; 460 ma->caches = NULL; 461 } 462 463 static void free_mem_alloc(struct bpf_mem_alloc *ma) 464 { 465 /* waiting_for_gp lists was drained, but __free_rcu might 466 * still execute. Wait for it now before we freeing percpu caches. 467 * 468 * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(), 469 * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used 470 * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(), 471 * so if call_rcu(head, __free_rcu) is skipped due to 472 * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by 473 * using rcu_trace_implies_rcu_gp() as well. 474 */ 475 rcu_barrier_tasks_trace(); 476 if (!rcu_trace_implies_rcu_gp()) 477 rcu_barrier(); 478 free_mem_alloc_no_barrier(ma); 479 } 480 481 static void free_mem_alloc_deferred(struct work_struct *work) 482 { 483 struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work); 484 485 free_mem_alloc(ma); 486 kfree(ma); 487 } 488 489 static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress) 490 { 491 struct bpf_mem_alloc *copy; 492 493 if (!rcu_in_progress) { 494 /* Fast path. No callbacks are pending, hence no need to do 495 * rcu_barrier-s. 496 */ 497 free_mem_alloc_no_barrier(ma); 498 return; 499 } 500 501 copy = kmalloc(sizeof(*ma), GFP_KERNEL); 502 if (!copy) { 503 /* Slow path with inline barrier-s */ 504 free_mem_alloc(ma); 505 return; 506 } 507 508 /* Defer barriers into worker to let the rest of map memory to be freed */ 509 copy->cache = ma->cache; 510 ma->cache = NULL; 511 copy->caches = ma->caches; 512 ma->caches = NULL; 513 INIT_WORK(©->work, free_mem_alloc_deferred); 514 queue_work(system_unbound_wq, ©->work); 515 } 516 517 void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma) 518 { 519 struct bpf_mem_caches *cc; 520 struct bpf_mem_cache *c; 521 int cpu, i, rcu_in_progress; 522 523 if (ma->cache) { 524 rcu_in_progress = 0; 525 for_each_possible_cpu(cpu) { 526 c = per_cpu_ptr(ma->cache, cpu); 527 /* 528 * refill_work may be unfinished for PREEMPT_RT kernel 529 * in which irq work is invoked in a per-CPU RT thread. 530 * It is also possible for kernel with 531 * arch_irq_work_has_interrupt() being false and irq 532 * work is invoked in timer interrupt. So waiting for 533 * the completion of irq work to ease the handling of 534 * concurrency. 535 */ 536 irq_work_sync(&c->refill_work); 537 drain_mem_cache(c); 538 rcu_in_progress += atomic_read(&c->call_rcu_in_progress); 539 } 540 /* objcg is the same across cpus */ 541 if (c->objcg) 542 obj_cgroup_put(c->objcg); 543 destroy_mem_alloc(ma, rcu_in_progress); 544 } 545 if (ma->caches) { 546 rcu_in_progress = 0; 547 for_each_possible_cpu(cpu) { 548 cc = per_cpu_ptr(ma->caches, cpu); 549 for (i = 0; i < NUM_CACHES; i++) { 550 c = &cc->cache[i]; 551 irq_work_sync(&c->refill_work); 552 drain_mem_cache(c); 553 rcu_in_progress += atomic_read(&c->call_rcu_in_progress); 554 } 555 } 556 if (c->objcg) 557 obj_cgroup_put(c->objcg); 558 destroy_mem_alloc(ma, rcu_in_progress); 559 } 560 } 561 562 /* notrace is necessary here and in other functions to make sure 563 * bpf programs cannot attach to them and cause llist corruptions. 564 */ 565 static void notrace *unit_alloc(struct bpf_mem_cache *c) 566 { 567 struct llist_node *llnode = NULL; 568 unsigned long flags; 569 int cnt = 0; 570 571 /* Disable irqs to prevent the following race for majority of prog types: 572 * prog_A 573 * bpf_mem_alloc 574 * preemption or irq -> prog_B 575 * bpf_mem_alloc 576 * 577 * but prog_B could be a perf_event NMI prog. 578 * Use per-cpu 'active' counter to order free_list access between 579 * unit_alloc/unit_free/bpf_mem_refill. 580 */ 581 local_irq_save(flags); 582 if (local_inc_return(&c->active) == 1) { 583 llnode = __llist_del_first(&c->free_llist); 584 if (llnode) 585 cnt = --c->free_cnt; 586 } 587 local_dec(&c->active); 588 local_irq_restore(flags); 589 590 WARN_ON(cnt < 0); 591 592 if (cnt < c->low_watermark) 593 irq_work_raise(c); 594 return llnode; 595 } 596 597 /* Though 'ptr' object could have been allocated on a different cpu 598 * add it to the free_llist of the current cpu. 599 * Let kfree() logic deal with it when it's later called from irq_work. 600 */ 601 static void notrace unit_free(struct bpf_mem_cache *c, void *ptr) 602 { 603 struct llist_node *llnode = ptr - LLIST_NODE_SZ; 604 unsigned long flags; 605 int cnt = 0; 606 607 BUILD_BUG_ON(LLIST_NODE_SZ > 8); 608 609 local_irq_save(flags); 610 if (local_inc_return(&c->active) == 1) { 611 __llist_add(llnode, &c->free_llist); 612 cnt = ++c->free_cnt; 613 } else { 614 /* unit_free() cannot fail. Therefore add an object to atomic 615 * llist. free_bulk() will drain it. Though free_llist_extra is 616 * a per-cpu list we have to use atomic llist_add here, since 617 * it also can be interrupted by bpf nmi prog that does another 618 * unit_free() into the same free_llist_extra. 619 */ 620 llist_add(llnode, &c->free_llist_extra); 621 } 622 local_dec(&c->active); 623 local_irq_restore(flags); 624 625 if (cnt > c->high_watermark) 626 /* free few objects from current cpu into global kmalloc pool */ 627 irq_work_raise(c); 628 } 629 630 /* Called from BPF program or from sys_bpf syscall. 631 * In both cases migration is disabled. 632 */ 633 void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size) 634 { 635 int idx; 636 void *ret; 637 638 if (!size) 639 return ZERO_SIZE_PTR; 640 641 idx = bpf_mem_cache_idx(size + LLIST_NODE_SZ); 642 if (idx < 0) 643 return NULL; 644 645 ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx); 646 return !ret ? NULL : ret + LLIST_NODE_SZ; 647 } 648 649 void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr) 650 { 651 int idx; 652 653 if (!ptr) 654 return; 655 656 idx = bpf_mem_cache_idx(ksize(ptr - LLIST_NODE_SZ)); 657 if (idx < 0) 658 return; 659 660 unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr); 661 } 662 663 void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma) 664 { 665 void *ret; 666 667 ret = unit_alloc(this_cpu_ptr(ma->cache)); 668 return !ret ? NULL : ret + LLIST_NODE_SZ; 669 } 670 671 void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr) 672 { 673 if (!ptr) 674 return; 675 676 unit_free(this_cpu_ptr(ma->cache), ptr); 677 } 678 679 /* Directly does a kfree() without putting 'ptr' back to the free_llist 680 * for reuse and without waiting for a rcu_tasks_trace gp. 681 * The caller must first go through the rcu_tasks_trace gp for 'ptr' 682 * before calling bpf_mem_cache_raw_free(). 683 * It could be used when the rcu_tasks_trace callback does not have 684 * a hold on the original bpf_mem_alloc object that allocated the 685 * 'ptr'. This should only be used in the uncommon code path. 686 * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled 687 * and may affect performance. 688 */ 689 void bpf_mem_cache_raw_free(void *ptr) 690 { 691 if (!ptr) 692 return; 693 694 kfree(ptr - LLIST_NODE_SZ); 695 } 696 697 /* When flags == GFP_KERNEL, it signals that the caller will not cause 698 * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use 699 * kmalloc if the free_llist is empty. 700 */ 701 void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags) 702 { 703 struct bpf_mem_cache *c; 704 void *ret; 705 706 c = this_cpu_ptr(ma->cache); 707 708 ret = unit_alloc(c); 709 if (!ret && flags == GFP_KERNEL) { 710 struct mem_cgroup *memcg, *old_memcg; 711 712 memcg = get_memcg(c); 713 old_memcg = set_active_memcg(memcg); 714 ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT); 715 set_active_memcg(old_memcg); 716 mem_cgroup_put(memcg); 717 } 718 719 return !ret ? NULL : ret + LLIST_NODE_SZ; 720 } 721