1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */ 3 #include <linux/mm.h> 4 #include <linux/llist.h> 5 #include <linux/bpf.h> 6 #include <linux/irq_work.h> 7 #include <linux/bpf_mem_alloc.h> 8 #include <linux/memcontrol.h> 9 #include <asm/local.h> 10 11 /* Any context (including NMI) BPF specific memory allocator. 12 * 13 * Tracing BPF programs can attach to kprobe and fentry. Hence they 14 * run in unknown context where calling plain kmalloc() might not be safe. 15 * 16 * Front-end kmalloc() with per-cpu per-bucket cache of free elements. 17 * Refill this cache asynchronously from irq_work. 18 * 19 * CPU_0 buckets 20 * 16 32 64 96 128 196 256 512 1024 2048 4096 21 * ... 22 * CPU_N buckets 23 * 16 32 64 96 128 196 256 512 1024 2048 4096 24 * 25 * The buckets are prefilled at the start. 26 * BPF programs always run with migration disabled. 27 * It's safe to allocate from cache of the current cpu with irqs disabled. 28 * Free-ing is always done into bucket of the current cpu as well. 29 * irq_work trims extra free elements from buckets with kfree 30 * and refills them with kmalloc, so global kmalloc logic takes care 31 * of freeing objects allocated by one cpu and freed on another. 32 * 33 * Every allocated objected is padded with extra 8 bytes that contains 34 * struct llist_node. 35 */ 36 #define LLIST_NODE_SZ sizeof(struct llist_node) 37 38 /* similar to kmalloc, but sizeof == 8 bucket is gone */ 39 static u8 size_index[24] __ro_after_init = { 40 3, /* 8 */ 41 3, /* 16 */ 42 4, /* 24 */ 43 4, /* 32 */ 44 5, /* 40 */ 45 5, /* 48 */ 46 5, /* 56 */ 47 5, /* 64 */ 48 1, /* 72 */ 49 1, /* 80 */ 50 1, /* 88 */ 51 1, /* 96 */ 52 6, /* 104 */ 53 6, /* 112 */ 54 6, /* 120 */ 55 6, /* 128 */ 56 2, /* 136 */ 57 2, /* 144 */ 58 2, /* 152 */ 59 2, /* 160 */ 60 2, /* 168 */ 61 2, /* 176 */ 62 2, /* 184 */ 63 2 /* 192 */ 64 }; 65 66 static int bpf_mem_cache_idx(size_t size) 67 { 68 if (!size || size > 4096) 69 return -1; 70 71 if (size <= 192) 72 return size_index[(size - 1) / 8] - 1; 73 74 return fls(size - 1) - 2; 75 } 76 77 #define NUM_CACHES 11 78 79 struct bpf_mem_cache { 80 /* per-cpu list of free objects of size 'unit_size'. 81 * All accesses are done with interrupts disabled and 'active' counter 82 * protection with __llist_add() and __llist_del_first(). 83 */ 84 struct llist_head free_llist; 85 local_t active; 86 87 /* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill 88 * are sequenced by per-cpu 'active' counter. But unit_free() cannot 89 * fail. When 'active' is busy the unit_free() will add an object to 90 * free_llist_extra. 91 */ 92 struct llist_head free_llist_extra; 93 94 struct irq_work refill_work; 95 struct obj_cgroup *objcg; 96 int unit_size; 97 /* count of objects in free_llist */ 98 int free_cnt; 99 int low_watermark, high_watermark, batch; 100 int percpu_size; 101 bool draining; 102 struct bpf_mem_cache *tgt; 103 104 /* list of objects to be freed after RCU GP */ 105 struct llist_head free_by_rcu; 106 struct llist_node *free_by_rcu_tail; 107 struct llist_head waiting_for_gp; 108 struct llist_node *waiting_for_gp_tail; 109 struct rcu_head rcu; 110 atomic_t call_rcu_in_progress; 111 struct llist_head free_llist_extra_rcu; 112 113 /* list of objects to be freed after RCU tasks trace GP */ 114 struct llist_head free_by_rcu_ttrace; 115 struct llist_head waiting_for_gp_ttrace; 116 struct rcu_head rcu_ttrace; 117 atomic_t call_rcu_ttrace_in_progress; 118 }; 119 120 struct bpf_mem_caches { 121 struct bpf_mem_cache cache[NUM_CACHES]; 122 }; 123 124 static struct llist_node notrace *__llist_del_first(struct llist_head *head) 125 { 126 struct llist_node *entry, *next; 127 128 entry = head->first; 129 if (!entry) 130 return NULL; 131 next = entry->next; 132 head->first = next; 133 return entry; 134 } 135 136 static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags) 137 { 138 if (c->percpu_size) { 139 void **obj = kmalloc_node(c->percpu_size, flags, node); 140 void *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags); 141 142 if (!obj || !pptr) { 143 free_percpu(pptr); 144 kfree(obj); 145 return NULL; 146 } 147 obj[1] = pptr; 148 return obj; 149 } 150 151 return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node); 152 } 153 154 static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c) 155 { 156 #ifdef CONFIG_MEMCG_KMEM 157 if (c->objcg) 158 return get_mem_cgroup_from_objcg(c->objcg); 159 #endif 160 161 #ifdef CONFIG_MEMCG 162 return root_mem_cgroup; 163 #else 164 return NULL; 165 #endif 166 } 167 168 static void inc_active(struct bpf_mem_cache *c, unsigned long *flags) 169 { 170 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 171 /* In RT irq_work runs in per-cpu kthread, so disable 172 * interrupts to avoid preemption and interrupts and 173 * reduce the chance of bpf prog executing on this cpu 174 * when active counter is busy. 175 */ 176 local_irq_save(*flags); 177 /* alloc_bulk runs from irq_work which will not preempt a bpf 178 * program that does unit_alloc/unit_free since IRQs are 179 * disabled there. There is no race to increment 'active' 180 * counter. It protects free_llist from corruption in case NMI 181 * bpf prog preempted this loop. 182 */ 183 WARN_ON_ONCE(local_inc_return(&c->active) != 1); 184 } 185 186 static void dec_active(struct bpf_mem_cache *c, unsigned long *flags) 187 { 188 local_dec(&c->active); 189 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 190 local_irq_restore(*flags); 191 } 192 193 static void add_obj_to_free_list(struct bpf_mem_cache *c, void *obj) 194 { 195 unsigned long flags; 196 197 inc_active(c, &flags); 198 __llist_add(obj, &c->free_llist); 199 c->free_cnt++; 200 dec_active(c, &flags); 201 } 202 203 /* Mostly runs from irq_work except __init phase. */ 204 static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node, bool atomic) 205 { 206 struct mem_cgroup *memcg = NULL, *old_memcg; 207 gfp_t gfp; 208 void *obj; 209 int i; 210 211 gfp = __GFP_NOWARN | __GFP_ACCOUNT; 212 gfp |= atomic ? GFP_NOWAIT : GFP_KERNEL; 213 214 for (i = 0; i < cnt; i++) { 215 /* 216 * For every 'c' llist_del_first(&c->free_by_rcu_ttrace); is 217 * done only by one CPU == current CPU. Other CPUs might 218 * llist_add() and llist_del_all() in parallel. 219 */ 220 obj = llist_del_first(&c->free_by_rcu_ttrace); 221 if (!obj) 222 break; 223 add_obj_to_free_list(c, obj); 224 } 225 if (i >= cnt) 226 return; 227 228 for (; i < cnt; i++) { 229 obj = llist_del_first(&c->waiting_for_gp_ttrace); 230 if (!obj) 231 break; 232 add_obj_to_free_list(c, obj); 233 } 234 if (i >= cnt) 235 return; 236 237 memcg = get_memcg(c); 238 old_memcg = set_active_memcg(memcg); 239 for (; i < cnt; i++) { 240 /* Allocate, but don't deplete atomic reserves that typical 241 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc 242 * will allocate from the current numa node which is what we 243 * want here. 244 */ 245 obj = __alloc(c, node, gfp); 246 if (!obj) 247 break; 248 add_obj_to_free_list(c, obj); 249 } 250 set_active_memcg(old_memcg); 251 mem_cgroup_put(memcg); 252 } 253 254 static void free_one(void *obj, bool percpu) 255 { 256 if (percpu) { 257 free_percpu(((void **)obj)[1]); 258 kfree(obj); 259 return; 260 } 261 262 kfree(obj); 263 } 264 265 static int free_all(struct llist_node *llnode, bool percpu) 266 { 267 struct llist_node *pos, *t; 268 int cnt = 0; 269 270 llist_for_each_safe(pos, t, llnode) { 271 free_one(pos, percpu); 272 cnt++; 273 } 274 return cnt; 275 } 276 277 static void __free_rcu(struct rcu_head *head) 278 { 279 struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu_ttrace); 280 281 free_all(llist_del_all(&c->waiting_for_gp_ttrace), !!c->percpu_size); 282 atomic_set(&c->call_rcu_ttrace_in_progress, 0); 283 } 284 285 static void __free_rcu_tasks_trace(struct rcu_head *head) 286 { 287 /* If RCU Tasks Trace grace period implies RCU grace period, 288 * there is no need to invoke call_rcu(). 289 */ 290 if (rcu_trace_implies_rcu_gp()) 291 __free_rcu(head); 292 else 293 call_rcu(head, __free_rcu); 294 } 295 296 static void enque_to_free(struct bpf_mem_cache *c, void *obj) 297 { 298 struct llist_node *llnode = obj; 299 300 /* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work. 301 * Nothing races to add to free_by_rcu_ttrace list. 302 */ 303 llist_add(llnode, &c->free_by_rcu_ttrace); 304 } 305 306 static void do_call_rcu_ttrace(struct bpf_mem_cache *c) 307 { 308 struct llist_node *llnode, *t; 309 310 if (atomic_xchg(&c->call_rcu_ttrace_in_progress, 1)) { 311 if (unlikely(READ_ONCE(c->draining))) { 312 llnode = llist_del_all(&c->free_by_rcu_ttrace); 313 free_all(llnode, !!c->percpu_size); 314 } 315 return; 316 } 317 318 WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace)); 319 llist_for_each_safe(llnode, t, llist_del_all(&c->free_by_rcu_ttrace)) 320 llist_add(llnode, &c->waiting_for_gp_ttrace); 321 322 if (unlikely(READ_ONCE(c->draining))) { 323 __free_rcu(&c->rcu_ttrace); 324 return; 325 } 326 327 /* Use call_rcu_tasks_trace() to wait for sleepable progs to finish. 328 * If RCU Tasks Trace grace period implies RCU grace period, free 329 * these elements directly, else use call_rcu() to wait for normal 330 * progs to finish and finally do free_one() on each element. 331 */ 332 call_rcu_tasks_trace(&c->rcu_ttrace, __free_rcu_tasks_trace); 333 } 334 335 static void free_bulk(struct bpf_mem_cache *c) 336 { 337 struct bpf_mem_cache *tgt = c->tgt; 338 struct llist_node *llnode, *t; 339 unsigned long flags; 340 int cnt; 341 342 WARN_ON_ONCE(tgt->unit_size != c->unit_size); 343 WARN_ON_ONCE(tgt->percpu_size != c->percpu_size); 344 345 do { 346 inc_active(c, &flags); 347 llnode = __llist_del_first(&c->free_llist); 348 if (llnode) 349 cnt = --c->free_cnt; 350 else 351 cnt = 0; 352 dec_active(c, &flags); 353 if (llnode) 354 enque_to_free(tgt, llnode); 355 } while (cnt > (c->high_watermark + c->low_watermark) / 2); 356 357 /* and drain free_llist_extra */ 358 llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra)) 359 enque_to_free(tgt, llnode); 360 do_call_rcu_ttrace(tgt); 361 } 362 363 static void __free_by_rcu(struct rcu_head *head) 364 { 365 struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu); 366 struct bpf_mem_cache *tgt = c->tgt; 367 struct llist_node *llnode; 368 369 WARN_ON_ONCE(tgt->unit_size != c->unit_size); 370 WARN_ON_ONCE(tgt->percpu_size != c->percpu_size); 371 372 llnode = llist_del_all(&c->waiting_for_gp); 373 if (!llnode) 374 goto out; 375 376 llist_add_batch(llnode, c->waiting_for_gp_tail, &tgt->free_by_rcu_ttrace); 377 378 /* Objects went through regular RCU GP. Send them to RCU tasks trace */ 379 do_call_rcu_ttrace(tgt); 380 out: 381 atomic_set(&c->call_rcu_in_progress, 0); 382 } 383 384 static void check_free_by_rcu(struct bpf_mem_cache *c) 385 { 386 struct llist_node *llnode, *t; 387 unsigned long flags; 388 389 /* drain free_llist_extra_rcu */ 390 if (unlikely(!llist_empty(&c->free_llist_extra_rcu))) { 391 inc_active(c, &flags); 392 llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra_rcu)) 393 if (__llist_add(llnode, &c->free_by_rcu)) 394 c->free_by_rcu_tail = llnode; 395 dec_active(c, &flags); 396 } 397 398 if (llist_empty(&c->free_by_rcu)) 399 return; 400 401 if (atomic_xchg(&c->call_rcu_in_progress, 1)) { 402 /* 403 * Instead of kmalloc-ing new rcu_head and triggering 10k 404 * call_rcu() to hit rcutree.qhimark and force RCU to notice 405 * the overload just ask RCU to hurry up. There could be many 406 * objects in free_by_rcu list. 407 * This hint reduces memory consumption for an artificial 408 * benchmark from 2 Gbyte to 150 Mbyte. 409 */ 410 rcu_request_urgent_qs_task(current); 411 return; 412 } 413 414 WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp)); 415 416 inc_active(c, &flags); 417 WRITE_ONCE(c->waiting_for_gp.first, __llist_del_all(&c->free_by_rcu)); 418 c->waiting_for_gp_tail = c->free_by_rcu_tail; 419 dec_active(c, &flags); 420 421 if (unlikely(READ_ONCE(c->draining))) { 422 free_all(llist_del_all(&c->waiting_for_gp), !!c->percpu_size); 423 atomic_set(&c->call_rcu_in_progress, 0); 424 } else { 425 call_rcu_hurry(&c->rcu, __free_by_rcu); 426 } 427 } 428 429 static void bpf_mem_refill(struct irq_work *work) 430 { 431 struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work); 432 int cnt; 433 434 /* Racy access to free_cnt. It doesn't need to be 100% accurate */ 435 cnt = c->free_cnt; 436 if (cnt < c->low_watermark) 437 /* irq_work runs on this cpu and kmalloc will allocate 438 * from the current numa node which is what we want here. 439 */ 440 alloc_bulk(c, c->batch, NUMA_NO_NODE, true); 441 else if (cnt > c->high_watermark) 442 free_bulk(c); 443 444 check_free_by_rcu(c); 445 } 446 447 static void notrace irq_work_raise(struct bpf_mem_cache *c) 448 { 449 irq_work_queue(&c->refill_work); 450 } 451 452 /* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket 453 * the freelist cache will be elem_size * 64 (or less) on each cpu. 454 * 455 * For bpf programs that don't have statically known allocation sizes and 456 * assuming (low_mark + high_mark) / 2 as an average number of elements per 457 * bucket and all buckets are used the total amount of memory in freelists 458 * on each cpu will be: 459 * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096 460 * == ~ 116 Kbyte using below heuristic. 461 * Initialized, but unused bpf allocator (not bpf map specific one) will 462 * consume ~ 11 Kbyte per cpu. 463 * Typical case will be between 11K and 116K closer to 11K. 464 * bpf progs can and should share bpf_mem_cache when possible. 465 */ 466 static void init_refill_work(struct bpf_mem_cache *c) 467 { 468 init_irq_work(&c->refill_work, bpf_mem_refill); 469 if (c->unit_size <= 256) { 470 c->low_watermark = 32; 471 c->high_watermark = 96; 472 } else { 473 /* When page_size == 4k, order-0 cache will have low_mark == 2 474 * and high_mark == 6 with batch alloc of 3 individual pages at 475 * a time. 476 * 8k allocs and above low == 1, high == 3, batch == 1. 477 */ 478 c->low_watermark = max(32 * 256 / c->unit_size, 1); 479 c->high_watermark = max(96 * 256 / c->unit_size, 3); 480 } 481 c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1); 482 } 483 484 static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu) 485 { 486 /* To avoid consuming memory assume that 1st run of bpf 487 * prog won't be doing more than 4 map_update_elem from 488 * irq disabled region 489 */ 490 alloc_bulk(c, c->unit_size <= 256 ? 4 : 1, cpu_to_node(cpu), false); 491 } 492 493 /* When size != 0 bpf_mem_cache for each cpu. 494 * This is typical bpf hash map use case when all elements have equal size. 495 * 496 * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on 497 * kmalloc/kfree. Max allocation size is 4096 in this case. 498 * This is bpf_dynptr and bpf_kptr use case. 499 */ 500 int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu) 501 { 502 static u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}; 503 struct bpf_mem_caches *cc, __percpu *pcc; 504 struct bpf_mem_cache *c, __percpu *pc; 505 struct obj_cgroup *objcg = NULL; 506 int cpu, i, unit_size, percpu_size = 0; 507 508 /* room for llist_node and per-cpu pointer */ 509 if (percpu) 510 percpu_size = LLIST_NODE_SZ + sizeof(void *); 511 ma->percpu = percpu; 512 513 if (size) { 514 pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL); 515 if (!pc) 516 return -ENOMEM; 517 518 if (!percpu) 519 size += LLIST_NODE_SZ; /* room for llist_node */ 520 unit_size = size; 521 522 #ifdef CONFIG_MEMCG_KMEM 523 if (memcg_bpf_enabled()) 524 objcg = get_obj_cgroup_from_current(); 525 #endif 526 for_each_possible_cpu(cpu) { 527 c = per_cpu_ptr(pc, cpu); 528 c->unit_size = unit_size; 529 c->objcg = objcg; 530 c->percpu_size = percpu_size; 531 c->tgt = c; 532 init_refill_work(c); 533 prefill_mem_cache(c, cpu); 534 } 535 ma->cache = pc; 536 return 0; 537 } 538 539 pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL); 540 if (!pcc) 541 return -ENOMEM; 542 #ifdef CONFIG_MEMCG_KMEM 543 objcg = get_obj_cgroup_from_current(); 544 #endif 545 for_each_possible_cpu(cpu) { 546 cc = per_cpu_ptr(pcc, cpu); 547 for (i = 0; i < NUM_CACHES; i++) { 548 c = &cc->cache[i]; 549 c->unit_size = sizes[i]; 550 c->objcg = objcg; 551 c->percpu_size = percpu_size; 552 c->tgt = c; 553 554 init_refill_work(c); 555 prefill_mem_cache(c, cpu); 556 } 557 } 558 559 ma->caches = pcc; 560 return 0; 561 } 562 563 static void drain_mem_cache(struct bpf_mem_cache *c) 564 { 565 bool percpu = !!c->percpu_size; 566 567 /* No progs are using this bpf_mem_cache, but htab_map_free() called 568 * bpf_mem_cache_free() for all remaining elements and they can be in 569 * free_by_rcu_ttrace or in waiting_for_gp_ttrace lists, so drain those lists now. 570 * 571 * Except for waiting_for_gp_ttrace list, there are no concurrent operations 572 * on these lists, so it is safe to use __llist_del_all(). 573 */ 574 free_all(llist_del_all(&c->free_by_rcu_ttrace), percpu); 575 free_all(llist_del_all(&c->waiting_for_gp_ttrace), percpu); 576 free_all(__llist_del_all(&c->free_llist), percpu); 577 free_all(__llist_del_all(&c->free_llist_extra), percpu); 578 free_all(__llist_del_all(&c->free_by_rcu), percpu); 579 free_all(__llist_del_all(&c->free_llist_extra_rcu), percpu); 580 free_all(llist_del_all(&c->waiting_for_gp), percpu); 581 } 582 583 static void check_mem_cache(struct bpf_mem_cache *c) 584 { 585 WARN_ON_ONCE(!llist_empty(&c->free_by_rcu_ttrace)); 586 WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace)); 587 WARN_ON_ONCE(!llist_empty(&c->free_llist)); 588 WARN_ON_ONCE(!llist_empty(&c->free_llist_extra)); 589 WARN_ON_ONCE(!llist_empty(&c->free_by_rcu)); 590 WARN_ON_ONCE(!llist_empty(&c->free_llist_extra_rcu)); 591 WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp)); 592 } 593 594 static void check_leaked_objs(struct bpf_mem_alloc *ma) 595 { 596 struct bpf_mem_caches *cc; 597 struct bpf_mem_cache *c; 598 int cpu, i; 599 600 if (ma->cache) { 601 for_each_possible_cpu(cpu) { 602 c = per_cpu_ptr(ma->cache, cpu); 603 check_mem_cache(c); 604 } 605 } 606 if (ma->caches) { 607 for_each_possible_cpu(cpu) { 608 cc = per_cpu_ptr(ma->caches, cpu); 609 for (i = 0; i < NUM_CACHES; i++) { 610 c = &cc->cache[i]; 611 check_mem_cache(c); 612 } 613 } 614 } 615 } 616 617 static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma) 618 { 619 check_leaked_objs(ma); 620 free_percpu(ma->cache); 621 free_percpu(ma->caches); 622 ma->cache = NULL; 623 ma->caches = NULL; 624 } 625 626 static void free_mem_alloc(struct bpf_mem_alloc *ma) 627 { 628 /* waiting_for_gp[_ttrace] lists were drained, but RCU callbacks 629 * might still execute. Wait for them. 630 * 631 * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(), 632 * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used 633 * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(), 634 * so if call_rcu(head, __free_rcu) is skipped due to 635 * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by 636 * using rcu_trace_implies_rcu_gp() as well. 637 */ 638 rcu_barrier(); /* wait for __free_by_rcu */ 639 rcu_barrier_tasks_trace(); /* wait for __free_rcu */ 640 if (!rcu_trace_implies_rcu_gp()) 641 rcu_barrier(); 642 free_mem_alloc_no_barrier(ma); 643 } 644 645 static void free_mem_alloc_deferred(struct work_struct *work) 646 { 647 struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work); 648 649 free_mem_alloc(ma); 650 kfree(ma); 651 } 652 653 static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress) 654 { 655 struct bpf_mem_alloc *copy; 656 657 if (!rcu_in_progress) { 658 /* Fast path. No callbacks are pending, hence no need to do 659 * rcu_barrier-s. 660 */ 661 free_mem_alloc_no_barrier(ma); 662 return; 663 } 664 665 copy = kmemdup(ma, sizeof(*ma), GFP_KERNEL); 666 if (!copy) { 667 /* Slow path with inline barrier-s */ 668 free_mem_alloc(ma); 669 return; 670 } 671 672 /* Defer barriers into worker to let the rest of map memory to be freed */ 673 memset(ma, 0, sizeof(*ma)); 674 INIT_WORK(©->work, free_mem_alloc_deferred); 675 queue_work(system_unbound_wq, ©->work); 676 } 677 678 void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma) 679 { 680 struct bpf_mem_caches *cc; 681 struct bpf_mem_cache *c; 682 int cpu, i, rcu_in_progress; 683 684 if (ma->cache) { 685 rcu_in_progress = 0; 686 for_each_possible_cpu(cpu) { 687 c = per_cpu_ptr(ma->cache, cpu); 688 WRITE_ONCE(c->draining, true); 689 irq_work_sync(&c->refill_work); 690 drain_mem_cache(c); 691 rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress); 692 rcu_in_progress += atomic_read(&c->call_rcu_in_progress); 693 } 694 /* objcg is the same across cpus */ 695 if (c->objcg) 696 obj_cgroup_put(c->objcg); 697 destroy_mem_alloc(ma, rcu_in_progress); 698 } 699 if (ma->caches) { 700 rcu_in_progress = 0; 701 for_each_possible_cpu(cpu) { 702 cc = per_cpu_ptr(ma->caches, cpu); 703 for (i = 0; i < NUM_CACHES; i++) { 704 c = &cc->cache[i]; 705 WRITE_ONCE(c->draining, true); 706 irq_work_sync(&c->refill_work); 707 drain_mem_cache(c); 708 rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress); 709 rcu_in_progress += atomic_read(&c->call_rcu_in_progress); 710 } 711 } 712 if (c->objcg) 713 obj_cgroup_put(c->objcg); 714 destroy_mem_alloc(ma, rcu_in_progress); 715 } 716 } 717 718 /* notrace is necessary here and in other functions to make sure 719 * bpf programs cannot attach to them and cause llist corruptions. 720 */ 721 static void notrace *unit_alloc(struct bpf_mem_cache *c) 722 { 723 struct llist_node *llnode = NULL; 724 unsigned long flags; 725 int cnt = 0; 726 727 /* Disable irqs to prevent the following race for majority of prog types: 728 * prog_A 729 * bpf_mem_alloc 730 * preemption or irq -> prog_B 731 * bpf_mem_alloc 732 * 733 * but prog_B could be a perf_event NMI prog. 734 * Use per-cpu 'active' counter to order free_list access between 735 * unit_alloc/unit_free/bpf_mem_refill. 736 */ 737 local_irq_save(flags); 738 if (local_inc_return(&c->active) == 1) { 739 llnode = __llist_del_first(&c->free_llist); 740 if (llnode) { 741 cnt = --c->free_cnt; 742 *(struct bpf_mem_cache **)llnode = c; 743 } 744 } 745 local_dec(&c->active); 746 747 WARN_ON(cnt < 0); 748 749 if (cnt < c->low_watermark) 750 irq_work_raise(c); 751 /* Enable IRQ after the enqueue of irq work completes, so irq work 752 * will run after IRQ is enabled and free_llist may be refilled by 753 * irq work before other task preempts current task. 754 */ 755 local_irq_restore(flags); 756 757 return llnode; 758 } 759 760 /* Though 'ptr' object could have been allocated on a different cpu 761 * add it to the free_llist of the current cpu. 762 * Let kfree() logic deal with it when it's later called from irq_work. 763 */ 764 static void notrace unit_free(struct bpf_mem_cache *c, void *ptr) 765 { 766 struct llist_node *llnode = ptr - LLIST_NODE_SZ; 767 unsigned long flags; 768 int cnt = 0; 769 770 BUILD_BUG_ON(LLIST_NODE_SZ > 8); 771 772 /* 773 * Remember bpf_mem_cache that allocated this object. 774 * The hint is not accurate. 775 */ 776 c->tgt = *(struct bpf_mem_cache **)llnode; 777 778 local_irq_save(flags); 779 if (local_inc_return(&c->active) == 1) { 780 __llist_add(llnode, &c->free_llist); 781 cnt = ++c->free_cnt; 782 } else { 783 /* unit_free() cannot fail. Therefore add an object to atomic 784 * llist. free_bulk() will drain it. Though free_llist_extra is 785 * a per-cpu list we have to use atomic llist_add here, since 786 * it also can be interrupted by bpf nmi prog that does another 787 * unit_free() into the same free_llist_extra. 788 */ 789 llist_add(llnode, &c->free_llist_extra); 790 } 791 local_dec(&c->active); 792 793 if (cnt > c->high_watermark) 794 /* free few objects from current cpu into global kmalloc pool */ 795 irq_work_raise(c); 796 /* Enable IRQ after irq_work_raise() completes, otherwise when current 797 * task is preempted by task which does unit_alloc(), unit_alloc() may 798 * return NULL unexpectedly because irq work is already pending but can 799 * not been triggered and free_llist can not be refilled timely. 800 */ 801 local_irq_restore(flags); 802 } 803 804 static void notrace unit_free_rcu(struct bpf_mem_cache *c, void *ptr) 805 { 806 struct llist_node *llnode = ptr - LLIST_NODE_SZ; 807 unsigned long flags; 808 809 c->tgt = *(struct bpf_mem_cache **)llnode; 810 811 local_irq_save(flags); 812 if (local_inc_return(&c->active) == 1) { 813 if (__llist_add(llnode, &c->free_by_rcu)) 814 c->free_by_rcu_tail = llnode; 815 } else { 816 llist_add(llnode, &c->free_llist_extra_rcu); 817 } 818 local_dec(&c->active); 819 820 if (!atomic_read(&c->call_rcu_in_progress)) 821 irq_work_raise(c); 822 local_irq_restore(flags); 823 } 824 825 /* Called from BPF program or from sys_bpf syscall. 826 * In both cases migration is disabled. 827 */ 828 void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size) 829 { 830 int idx; 831 void *ret; 832 833 if (!size) 834 return NULL; 835 836 idx = bpf_mem_cache_idx(size + LLIST_NODE_SZ); 837 if (idx < 0) 838 return NULL; 839 840 ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx); 841 return !ret ? NULL : ret + LLIST_NODE_SZ; 842 } 843 844 void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr) 845 { 846 struct bpf_mem_cache *c; 847 int idx; 848 849 if (!ptr) 850 return; 851 852 c = *(void **)(ptr - LLIST_NODE_SZ); 853 idx = bpf_mem_cache_idx(c->unit_size); 854 if (WARN_ON_ONCE(idx < 0)) 855 return; 856 857 unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr); 858 } 859 860 void notrace bpf_mem_free_rcu(struct bpf_mem_alloc *ma, void *ptr) 861 { 862 struct bpf_mem_cache *c; 863 int idx; 864 865 if (!ptr) 866 return; 867 868 c = *(void **)(ptr - LLIST_NODE_SZ); 869 idx = bpf_mem_cache_idx(c->unit_size); 870 if (WARN_ON_ONCE(idx < 0)) 871 return; 872 873 unit_free_rcu(this_cpu_ptr(ma->caches)->cache + idx, ptr); 874 } 875 876 void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma) 877 { 878 void *ret; 879 880 ret = unit_alloc(this_cpu_ptr(ma->cache)); 881 return !ret ? NULL : ret + LLIST_NODE_SZ; 882 } 883 884 void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr) 885 { 886 if (!ptr) 887 return; 888 889 unit_free(this_cpu_ptr(ma->cache), ptr); 890 } 891 892 void notrace bpf_mem_cache_free_rcu(struct bpf_mem_alloc *ma, void *ptr) 893 { 894 if (!ptr) 895 return; 896 897 unit_free_rcu(this_cpu_ptr(ma->cache), ptr); 898 } 899 900 /* Directly does a kfree() without putting 'ptr' back to the free_llist 901 * for reuse and without waiting for a rcu_tasks_trace gp. 902 * The caller must first go through the rcu_tasks_trace gp for 'ptr' 903 * before calling bpf_mem_cache_raw_free(). 904 * It could be used when the rcu_tasks_trace callback does not have 905 * a hold on the original bpf_mem_alloc object that allocated the 906 * 'ptr'. This should only be used in the uncommon code path. 907 * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled 908 * and may affect performance. 909 */ 910 void bpf_mem_cache_raw_free(void *ptr) 911 { 912 if (!ptr) 913 return; 914 915 kfree(ptr - LLIST_NODE_SZ); 916 } 917 918 /* When flags == GFP_KERNEL, it signals that the caller will not cause 919 * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use 920 * kmalloc if the free_llist is empty. 921 */ 922 void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags) 923 { 924 struct bpf_mem_cache *c; 925 void *ret; 926 927 c = this_cpu_ptr(ma->cache); 928 929 ret = unit_alloc(c); 930 if (!ret && flags == GFP_KERNEL) { 931 struct mem_cgroup *memcg, *old_memcg; 932 933 memcg = get_memcg(c); 934 old_memcg = set_active_memcg(memcg); 935 ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT); 936 if (ret) 937 *(struct bpf_mem_cache **)ret = c; 938 set_active_memcg(old_memcg); 939 mem_cgroup_put(memcg); 940 } 941 942 return !ret ? NULL : ret + LLIST_NODE_SZ; 943 } 944