1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */ 3 #include <linux/mm.h> 4 #include <linux/llist.h> 5 #include <linux/bpf.h> 6 #include <linux/irq_work.h> 7 #include <linux/bpf_mem_alloc.h> 8 #include <linux/memcontrol.h> 9 #include <asm/local.h> 10 11 /* Any context (including NMI) BPF specific memory allocator. 12 * 13 * Tracing BPF programs can attach to kprobe and fentry. Hence they 14 * run in unknown context where calling plain kmalloc() might not be safe. 15 * 16 * Front-end kmalloc() with per-cpu per-bucket cache of free elements. 17 * Refill this cache asynchronously from irq_work. 18 * 19 * CPU_0 buckets 20 * 16 32 64 96 128 196 256 512 1024 2048 4096 21 * ... 22 * CPU_N buckets 23 * 16 32 64 96 128 196 256 512 1024 2048 4096 24 * 25 * The buckets are prefilled at the start. 26 * BPF programs always run with migration disabled. 27 * It's safe to allocate from cache of the current cpu with irqs disabled. 28 * Free-ing is always done into bucket of the current cpu as well. 29 * irq_work trims extra free elements from buckets with kfree 30 * and refills them with kmalloc, so global kmalloc logic takes care 31 * of freeing objects allocated by one cpu and freed on another. 32 * 33 * Every allocated objected is padded with extra 8 bytes that contains 34 * struct llist_node. 35 */ 36 #define LLIST_NODE_SZ sizeof(struct llist_node) 37 38 /* similar to kmalloc, but sizeof == 8 bucket is gone */ 39 static u8 size_index[24] __ro_after_init = { 40 3, /* 8 */ 41 3, /* 16 */ 42 4, /* 24 */ 43 4, /* 32 */ 44 5, /* 40 */ 45 5, /* 48 */ 46 5, /* 56 */ 47 5, /* 64 */ 48 1, /* 72 */ 49 1, /* 80 */ 50 1, /* 88 */ 51 1, /* 96 */ 52 6, /* 104 */ 53 6, /* 112 */ 54 6, /* 120 */ 55 6, /* 128 */ 56 2, /* 136 */ 57 2, /* 144 */ 58 2, /* 152 */ 59 2, /* 160 */ 60 2, /* 168 */ 61 2, /* 176 */ 62 2, /* 184 */ 63 2 /* 192 */ 64 }; 65 66 static int bpf_mem_cache_idx(size_t size) 67 { 68 if (!size || size > 4096) 69 return -1; 70 71 if (size <= 192) 72 return size_index[(size - 1) / 8] - 1; 73 74 return fls(size - 1) - 1; 75 } 76 77 #define NUM_CACHES 11 78 79 struct bpf_mem_cache { 80 /* per-cpu list of free objects of size 'unit_size'. 81 * All accesses are done with interrupts disabled and 'active' counter 82 * protection with __llist_add() and __llist_del_first(). 83 */ 84 struct llist_head free_llist; 85 local_t active; 86 87 /* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill 88 * are sequenced by per-cpu 'active' counter. But unit_free() cannot 89 * fail. When 'active' is busy the unit_free() will add an object to 90 * free_llist_extra. 91 */ 92 struct llist_head free_llist_extra; 93 94 struct irq_work refill_work; 95 struct obj_cgroup *objcg; 96 int unit_size; 97 /* count of objects in free_llist */ 98 int free_cnt; 99 int low_watermark, high_watermark, batch; 100 int percpu_size; 101 102 struct rcu_head rcu; 103 struct llist_head free_by_rcu; 104 struct llist_head waiting_for_gp; 105 atomic_t call_rcu_in_progress; 106 }; 107 108 struct bpf_mem_caches { 109 struct bpf_mem_cache cache[NUM_CACHES]; 110 }; 111 112 static struct llist_node notrace *__llist_del_first(struct llist_head *head) 113 { 114 struct llist_node *entry, *next; 115 116 entry = head->first; 117 if (!entry) 118 return NULL; 119 next = entry->next; 120 head->first = next; 121 return entry; 122 } 123 124 static void *__alloc(struct bpf_mem_cache *c, int node) 125 { 126 /* Allocate, but don't deplete atomic reserves that typical 127 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc 128 * will allocate from the current numa node which is what we 129 * want here. 130 */ 131 gfp_t flags = GFP_NOWAIT | __GFP_NOWARN | __GFP_ACCOUNT; 132 133 if (c->percpu_size) { 134 void **obj = kmalloc_node(c->percpu_size, flags, node); 135 void *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags); 136 137 if (!obj || !pptr) { 138 free_percpu(pptr); 139 kfree(obj); 140 return NULL; 141 } 142 obj[1] = pptr; 143 return obj; 144 } 145 146 return kmalloc_node(c->unit_size, flags, node); 147 } 148 149 static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c) 150 { 151 #ifdef CONFIG_MEMCG_KMEM 152 if (c->objcg) 153 return get_mem_cgroup_from_objcg(c->objcg); 154 #endif 155 156 #ifdef CONFIG_MEMCG 157 return root_mem_cgroup; 158 #else 159 return NULL; 160 #endif 161 } 162 163 /* Mostly runs from irq_work except __init phase. */ 164 static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node) 165 { 166 struct mem_cgroup *memcg = NULL, *old_memcg; 167 unsigned long flags; 168 void *obj; 169 int i; 170 171 memcg = get_memcg(c); 172 old_memcg = set_active_memcg(memcg); 173 for (i = 0; i < cnt; i++) { 174 obj = __alloc(c, node); 175 if (!obj) 176 break; 177 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 178 /* In RT irq_work runs in per-cpu kthread, so disable 179 * interrupts to avoid preemption and interrupts and 180 * reduce the chance of bpf prog executing on this cpu 181 * when active counter is busy. 182 */ 183 local_irq_save(flags); 184 /* alloc_bulk runs from irq_work which will not preempt a bpf 185 * program that does unit_alloc/unit_free since IRQs are 186 * disabled there. There is no race to increment 'active' 187 * counter. It protects free_llist from corruption in case NMI 188 * bpf prog preempted this loop. 189 */ 190 WARN_ON_ONCE(local_inc_return(&c->active) != 1); 191 __llist_add(obj, &c->free_llist); 192 c->free_cnt++; 193 local_dec(&c->active); 194 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 195 local_irq_restore(flags); 196 } 197 set_active_memcg(old_memcg); 198 mem_cgroup_put(memcg); 199 } 200 201 static void free_one(struct bpf_mem_cache *c, void *obj) 202 { 203 if (c->percpu_size) { 204 free_percpu(((void **)obj)[1]); 205 kfree(obj); 206 return; 207 } 208 209 kfree(obj); 210 } 211 212 static void __free_rcu(struct rcu_head *head) 213 { 214 struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu); 215 struct llist_node *llnode = llist_del_all(&c->waiting_for_gp); 216 struct llist_node *pos, *t; 217 218 llist_for_each_safe(pos, t, llnode) 219 free_one(c, pos); 220 atomic_set(&c->call_rcu_in_progress, 0); 221 } 222 223 static void __free_rcu_tasks_trace(struct rcu_head *head) 224 { 225 struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu); 226 227 call_rcu(&c->rcu, __free_rcu); 228 } 229 230 static void enque_to_free(struct bpf_mem_cache *c, void *obj) 231 { 232 struct llist_node *llnode = obj; 233 234 /* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work. 235 * Nothing races to add to free_by_rcu list. 236 */ 237 __llist_add(llnode, &c->free_by_rcu); 238 } 239 240 static void do_call_rcu(struct bpf_mem_cache *c) 241 { 242 struct llist_node *llnode, *t; 243 244 if (atomic_xchg(&c->call_rcu_in_progress, 1)) 245 return; 246 247 WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp)); 248 llist_for_each_safe(llnode, t, __llist_del_all(&c->free_by_rcu)) 249 /* There is no concurrent __llist_add(waiting_for_gp) access. 250 * It doesn't race with llist_del_all either. 251 * But there could be two concurrent llist_del_all(waiting_for_gp): 252 * from __free_rcu() and from drain_mem_cache(). 253 */ 254 __llist_add(llnode, &c->waiting_for_gp); 255 /* Use call_rcu_tasks_trace() to wait for sleepable progs to finish. 256 * Then use call_rcu() to wait for normal progs to finish 257 * and finally do free_one() on each element. 258 */ 259 call_rcu_tasks_trace(&c->rcu, __free_rcu_tasks_trace); 260 } 261 262 static void free_bulk(struct bpf_mem_cache *c) 263 { 264 struct llist_node *llnode, *t; 265 unsigned long flags; 266 int cnt; 267 268 do { 269 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 270 local_irq_save(flags); 271 WARN_ON_ONCE(local_inc_return(&c->active) != 1); 272 llnode = __llist_del_first(&c->free_llist); 273 if (llnode) 274 cnt = --c->free_cnt; 275 else 276 cnt = 0; 277 local_dec(&c->active); 278 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 279 local_irq_restore(flags); 280 enque_to_free(c, llnode); 281 } while (cnt > (c->high_watermark + c->low_watermark) / 2); 282 283 /* and drain free_llist_extra */ 284 llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra)) 285 enque_to_free(c, llnode); 286 do_call_rcu(c); 287 } 288 289 static void bpf_mem_refill(struct irq_work *work) 290 { 291 struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work); 292 int cnt; 293 294 /* Racy access to free_cnt. It doesn't need to be 100% accurate */ 295 cnt = c->free_cnt; 296 if (cnt < c->low_watermark) 297 /* irq_work runs on this cpu and kmalloc will allocate 298 * from the current numa node which is what we want here. 299 */ 300 alloc_bulk(c, c->batch, NUMA_NO_NODE); 301 else if (cnt > c->high_watermark) 302 free_bulk(c); 303 } 304 305 static void notrace irq_work_raise(struct bpf_mem_cache *c) 306 { 307 irq_work_queue(&c->refill_work); 308 } 309 310 /* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket 311 * the freelist cache will be elem_size * 64 (or less) on each cpu. 312 * 313 * For bpf programs that don't have statically known allocation sizes and 314 * assuming (low_mark + high_mark) / 2 as an average number of elements per 315 * bucket and all buckets are used the total amount of memory in freelists 316 * on each cpu will be: 317 * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096 318 * == ~ 116 Kbyte using below heuristic. 319 * Initialized, but unused bpf allocator (not bpf map specific one) will 320 * consume ~ 11 Kbyte per cpu. 321 * Typical case will be between 11K and 116K closer to 11K. 322 * bpf progs can and should share bpf_mem_cache when possible. 323 */ 324 325 static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu) 326 { 327 init_irq_work(&c->refill_work, bpf_mem_refill); 328 if (c->unit_size <= 256) { 329 c->low_watermark = 32; 330 c->high_watermark = 96; 331 } else { 332 /* When page_size == 4k, order-0 cache will have low_mark == 2 333 * and high_mark == 6 with batch alloc of 3 individual pages at 334 * a time. 335 * 8k allocs and above low == 1, high == 3, batch == 1. 336 */ 337 c->low_watermark = max(32 * 256 / c->unit_size, 1); 338 c->high_watermark = max(96 * 256 / c->unit_size, 3); 339 } 340 c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1); 341 342 /* To avoid consuming memory assume that 1st run of bpf 343 * prog won't be doing more than 4 map_update_elem from 344 * irq disabled region 345 */ 346 alloc_bulk(c, c->unit_size <= 256 ? 4 : 1, cpu_to_node(cpu)); 347 } 348 349 /* When size != 0 bpf_mem_cache for each cpu. 350 * This is typical bpf hash map use case when all elements have equal size. 351 * 352 * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on 353 * kmalloc/kfree. Max allocation size is 4096 in this case. 354 * This is bpf_dynptr and bpf_kptr use case. 355 */ 356 int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu) 357 { 358 static u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}; 359 struct bpf_mem_caches *cc, __percpu *pcc; 360 struct bpf_mem_cache *c, __percpu *pc; 361 struct obj_cgroup *objcg = NULL; 362 int cpu, i, unit_size, percpu_size = 0; 363 364 if (size) { 365 pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL); 366 if (!pc) 367 return -ENOMEM; 368 369 if (percpu) 370 /* room for llist_node and per-cpu pointer */ 371 percpu_size = LLIST_NODE_SZ + sizeof(void *); 372 else 373 size += LLIST_NODE_SZ; /* room for llist_node */ 374 unit_size = size; 375 376 #ifdef CONFIG_MEMCG_KMEM 377 objcg = get_obj_cgroup_from_current(); 378 #endif 379 for_each_possible_cpu(cpu) { 380 c = per_cpu_ptr(pc, cpu); 381 c->unit_size = unit_size; 382 c->objcg = objcg; 383 c->percpu_size = percpu_size; 384 prefill_mem_cache(c, cpu); 385 } 386 ma->cache = pc; 387 return 0; 388 } 389 390 /* size == 0 && percpu is an invalid combination */ 391 if (WARN_ON_ONCE(percpu)) 392 return -EINVAL; 393 394 pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL); 395 if (!pcc) 396 return -ENOMEM; 397 #ifdef CONFIG_MEMCG_KMEM 398 objcg = get_obj_cgroup_from_current(); 399 #endif 400 for_each_possible_cpu(cpu) { 401 cc = per_cpu_ptr(pcc, cpu); 402 for (i = 0; i < NUM_CACHES; i++) { 403 c = &cc->cache[i]; 404 c->unit_size = sizes[i]; 405 c->objcg = objcg; 406 prefill_mem_cache(c, cpu); 407 } 408 } 409 ma->caches = pcc; 410 return 0; 411 } 412 413 static void drain_mem_cache(struct bpf_mem_cache *c) 414 { 415 struct llist_node *llnode, *t; 416 417 /* No progs are using this bpf_mem_cache, but htab_map_free() called 418 * bpf_mem_cache_free() for all remaining elements and they can be in 419 * free_by_rcu or in waiting_for_gp lists, so drain those lists now. 420 */ 421 llist_for_each_safe(llnode, t, __llist_del_all(&c->free_by_rcu)) 422 free_one(c, llnode); 423 llist_for_each_safe(llnode, t, llist_del_all(&c->waiting_for_gp)) 424 free_one(c, llnode); 425 llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist)) 426 free_one(c, llnode); 427 llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra)) 428 free_one(c, llnode); 429 } 430 431 static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma) 432 { 433 free_percpu(ma->cache); 434 free_percpu(ma->caches); 435 ma->cache = NULL; 436 ma->caches = NULL; 437 } 438 439 static void free_mem_alloc(struct bpf_mem_alloc *ma) 440 { 441 /* waiting_for_gp lists was drained, but __free_rcu might 442 * still execute. Wait for it now before we freeing percpu caches. 443 */ 444 rcu_barrier_tasks_trace(); 445 rcu_barrier(); 446 free_mem_alloc_no_barrier(ma); 447 } 448 449 static void free_mem_alloc_deferred(struct work_struct *work) 450 { 451 struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work); 452 453 free_mem_alloc(ma); 454 kfree(ma); 455 } 456 457 static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress) 458 { 459 struct bpf_mem_alloc *copy; 460 461 if (!rcu_in_progress) { 462 /* Fast path. No callbacks are pending, hence no need to do 463 * rcu_barrier-s. 464 */ 465 free_mem_alloc_no_barrier(ma); 466 return; 467 } 468 469 copy = kmalloc(sizeof(*ma), GFP_KERNEL); 470 if (!copy) { 471 /* Slow path with inline barrier-s */ 472 free_mem_alloc(ma); 473 return; 474 } 475 476 /* Defer barriers into worker to let the rest of map memory to be freed */ 477 copy->cache = ma->cache; 478 ma->cache = NULL; 479 copy->caches = ma->caches; 480 ma->caches = NULL; 481 INIT_WORK(©->work, free_mem_alloc_deferred); 482 queue_work(system_unbound_wq, ©->work); 483 } 484 485 void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma) 486 { 487 struct bpf_mem_caches *cc; 488 struct bpf_mem_cache *c; 489 int cpu, i, rcu_in_progress; 490 491 if (ma->cache) { 492 rcu_in_progress = 0; 493 for_each_possible_cpu(cpu) { 494 c = per_cpu_ptr(ma->cache, cpu); 495 drain_mem_cache(c); 496 rcu_in_progress += atomic_read(&c->call_rcu_in_progress); 497 } 498 /* objcg is the same across cpus */ 499 if (c->objcg) 500 obj_cgroup_put(c->objcg); 501 destroy_mem_alloc(ma, rcu_in_progress); 502 } 503 if (ma->caches) { 504 rcu_in_progress = 0; 505 for_each_possible_cpu(cpu) { 506 cc = per_cpu_ptr(ma->caches, cpu); 507 for (i = 0; i < NUM_CACHES; i++) { 508 c = &cc->cache[i]; 509 drain_mem_cache(c); 510 rcu_in_progress += atomic_read(&c->call_rcu_in_progress); 511 } 512 } 513 if (c->objcg) 514 obj_cgroup_put(c->objcg); 515 destroy_mem_alloc(ma, rcu_in_progress); 516 } 517 } 518 519 /* notrace is necessary here and in other functions to make sure 520 * bpf programs cannot attach to them and cause llist corruptions. 521 */ 522 static void notrace *unit_alloc(struct bpf_mem_cache *c) 523 { 524 struct llist_node *llnode = NULL; 525 unsigned long flags; 526 int cnt = 0; 527 528 /* Disable irqs to prevent the following race for majority of prog types: 529 * prog_A 530 * bpf_mem_alloc 531 * preemption or irq -> prog_B 532 * bpf_mem_alloc 533 * 534 * but prog_B could be a perf_event NMI prog. 535 * Use per-cpu 'active' counter to order free_list access between 536 * unit_alloc/unit_free/bpf_mem_refill. 537 */ 538 local_irq_save(flags); 539 if (local_inc_return(&c->active) == 1) { 540 llnode = __llist_del_first(&c->free_llist); 541 if (llnode) 542 cnt = --c->free_cnt; 543 } 544 local_dec(&c->active); 545 local_irq_restore(flags); 546 547 WARN_ON(cnt < 0); 548 549 if (cnt < c->low_watermark) 550 irq_work_raise(c); 551 return llnode; 552 } 553 554 /* Though 'ptr' object could have been allocated on a different cpu 555 * add it to the free_llist of the current cpu. 556 * Let kfree() logic deal with it when it's later called from irq_work. 557 */ 558 static void notrace unit_free(struct bpf_mem_cache *c, void *ptr) 559 { 560 struct llist_node *llnode = ptr - LLIST_NODE_SZ; 561 unsigned long flags; 562 int cnt = 0; 563 564 BUILD_BUG_ON(LLIST_NODE_SZ > 8); 565 566 local_irq_save(flags); 567 if (local_inc_return(&c->active) == 1) { 568 __llist_add(llnode, &c->free_llist); 569 cnt = ++c->free_cnt; 570 } else { 571 /* unit_free() cannot fail. Therefore add an object to atomic 572 * llist. free_bulk() will drain it. Though free_llist_extra is 573 * a per-cpu list we have to use atomic llist_add here, since 574 * it also can be interrupted by bpf nmi prog that does another 575 * unit_free() into the same free_llist_extra. 576 */ 577 llist_add(llnode, &c->free_llist_extra); 578 } 579 local_dec(&c->active); 580 local_irq_restore(flags); 581 582 if (cnt > c->high_watermark) 583 /* free few objects from current cpu into global kmalloc pool */ 584 irq_work_raise(c); 585 } 586 587 /* Called from BPF program or from sys_bpf syscall. 588 * In both cases migration is disabled. 589 */ 590 void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size) 591 { 592 int idx; 593 void *ret; 594 595 if (!size) 596 return ZERO_SIZE_PTR; 597 598 idx = bpf_mem_cache_idx(size + LLIST_NODE_SZ); 599 if (idx < 0) 600 return NULL; 601 602 ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx); 603 return !ret ? NULL : ret + LLIST_NODE_SZ; 604 } 605 606 void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr) 607 { 608 int idx; 609 610 if (!ptr) 611 return; 612 613 idx = bpf_mem_cache_idx(__ksize(ptr - LLIST_NODE_SZ)); 614 if (idx < 0) 615 return; 616 617 unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr); 618 } 619 620 void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma) 621 { 622 void *ret; 623 624 ret = unit_alloc(this_cpu_ptr(ma->cache)); 625 return !ret ? NULL : ret + LLIST_NODE_SZ; 626 } 627 628 void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr) 629 { 630 if (!ptr) 631 return; 632 633 unit_free(this_cpu_ptr(ma->cache), ptr); 634 } 635