1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */ 3 #include <linux/mm.h> 4 #include <linux/llist.h> 5 #include <linux/bpf.h> 6 #include <linux/irq_work.h> 7 #include <linux/bpf_mem_alloc.h> 8 #include <linux/memcontrol.h> 9 #include <asm/local.h> 10 11 /* Any context (including NMI) BPF specific memory allocator. 12 * 13 * Tracing BPF programs can attach to kprobe and fentry. Hence they 14 * run in unknown context where calling plain kmalloc() might not be safe. 15 * 16 * Front-end kmalloc() with per-cpu per-bucket cache of free elements. 17 * Refill this cache asynchronously from irq_work. 18 * 19 * CPU_0 buckets 20 * 16 32 64 96 128 196 256 512 1024 2048 4096 21 * ... 22 * CPU_N buckets 23 * 16 32 64 96 128 196 256 512 1024 2048 4096 24 * 25 * The buckets are prefilled at the start. 26 * BPF programs always run with migration disabled. 27 * It's safe to allocate from cache of the current cpu with irqs disabled. 28 * Free-ing is always done into bucket of the current cpu as well. 29 * irq_work trims extra free elements from buckets with kfree 30 * and refills them with kmalloc, so global kmalloc logic takes care 31 * of freeing objects allocated by one cpu and freed on another. 32 * 33 * Every allocated objected is padded with extra 8 bytes that contains 34 * struct llist_node. 35 */ 36 #define LLIST_NODE_SZ sizeof(struct llist_node) 37 38 /* similar to kmalloc, but sizeof == 8 bucket is gone */ 39 static u8 size_index[24] __ro_after_init = { 40 3, /* 8 */ 41 3, /* 16 */ 42 4, /* 24 */ 43 4, /* 32 */ 44 5, /* 40 */ 45 5, /* 48 */ 46 5, /* 56 */ 47 5, /* 64 */ 48 1, /* 72 */ 49 1, /* 80 */ 50 1, /* 88 */ 51 1, /* 96 */ 52 6, /* 104 */ 53 6, /* 112 */ 54 6, /* 120 */ 55 6, /* 128 */ 56 2, /* 136 */ 57 2, /* 144 */ 58 2, /* 152 */ 59 2, /* 160 */ 60 2, /* 168 */ 61 2, /* 176 */ 62 2, /* 184 */ 63 2 /* 192 */ 64 }; 65 66 static int bpf_mem_cache_idx(size_t size) 67 { 68 if (!size || size > 4096) 69 return -1; 70 71 if (size <= 192) 72 return size_index[(size - 1) / 8] - 1; 73 74 return fls(size - 1) - 2; 75 } 76 77 #define NUM_CACHES 11 78 79 struct bpf_mem_cache { 80 /* per-cpu list of free objects of size 'unit_size'. 81 * All accesses are done with interrupts disabled and 'active' counter 82 * protection with __llist_add() and __llist_del_first(). 83 */ 84 struct llist_head free_llist; 85 local_t active; 86 87 /* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill 88 * are sequenced by per-cpu 'active' counter. But unit_free() cannot 89 * fail. When 'active' is busy the unit_free() will add an object to 90 * free_llist_extra. 91 */ 92 struct llist_head free_llist_extra; 93 94 struct irq_work refill_work; 95 struct obj_cgroup *objcg; 96 int unit_size; 97 /* count of objects in free_llist */ 98 int free_cnt; 99 int low_watermark, high_watermark, batch; 100 int percpu_size; 101 bool draining; 102 struct bpf_mem_cache *tgt; 103 104 /* list of objects to be freed after RCU GP */ 105 struct llist_head free_by_rcu; 106 struct llist_node *free_by_rcu_tail; 107 struct llist_head waiting_for_gp; 108 struct llist_node *waiting_for_gp_tail; 109 struct rcu_head rcu; 110 atomic_t call_rcu_in_progress; 111 struct llist_head free_llist_extra_rcu; 112 113 /* list of objects to be freed after RCU tasks trace GP */ 114 struct llist_head free_by_rcu_ttrace; 115 struct llist_head waiting_for_gp_ttrace; 116 struct rcu_head rcu_ttrace; 117 atomic_t call_rcu_ttrace_in_progress; 118 }; 119 120 struct bpf_mem_caches { 121 struct bpf_mem_cache cache[NUM_CACHES]; 122 }; 123 124 static struct llist_node notrace *__llist_del_first(struct llist_head *head) 125 { 126 struct llist_node *entry, *next; 127 128 entry = head->first; 129 if (!entry) 130 return NULL; 131 next = entry->next; 132 head->first = next; 133 return entry; 134 } 135 136 static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags) 137 { 138 if (c->percpu_size) { 139 void **obj = kmalloc_node(c->percpu_size, flags, node); 140 void *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags); 141 142 if (!obj || !pptr) { 143 free_percpu(pptr); 144 kfree(obj); 145 return NULL; 146 } 147 obj[1] = pptr; 148 return obj; 149 } 150 151 return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node); 152 } 153 154 static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c) 155 { 156 #ifdef CONFIG_MEMCG_KMEM 157 if (c->objcg) 158 return get_mem_cgroup_from_objcg(c->objcg); 159 #endif 160 161 #ifdef CONFIG_MEMCG 162 return root_mem_cgroup; 163 #else 164 return NULL; 165 #endif 166 } 167 168 static void inc_active(struct bpf_mem_cache *c, unsigned long *flags) 169 { 170 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 171 /* In RT irq_work runs in per-cpu kthread, so disable 172 * interrupts to avoid preemption and interrupts and 173 * reduce the chance of bpf prog executing on this cpu 174 * when active counter is busy. 175 */ 176 local_irq_save(*flags); 177 /* alloc_bulk runs from irq_work which will not preempt a bpf 178 * program that does unit_alloc/unit_free since IRQs are 179 * disabled there. There is no race to increment 'active' 180 * counter. It protects free_llist from corruption in case NMI 181 * bpf prog preempted this loop. 182 */ 183 WARN_ON_ONCE(local_inc_return(&c->active) != 1); 184 } 185 186 static void dec_active(struct bpf_mem_cache *c, unsigned long *flags) 187 { 188 local_dec(&c->active); 189 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 190 local_irq_restore(*flags); 191 } 192 193 static void add_obj_to_free_list(struct bpf_mem_cache *c, void *obj) 194 { 195 unsigned long flags; 196 197 inc_active(c, &flags); 198 __llist_add(obj, &c->free_llist); 199 c->free_cnt++; 200 dec_active(c, &flags); 201 } 202 203 /* Mostly runs from irq_work except __init phase. */ 204 static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node, bool atomic) 205 { 206 struct mem_cgroup *memcg = NULL, *old_memcg; 207 gfp_t gfp; 208 void *obj; 209 int i; 210 211 gfp = __GFP_NOWARN | __GFP_ACCOUNT; 212 gfp |= atomic ? GFP_NOWAIT : GFP_KERNEL; 213 214 for (i = 0; i < cnt; i++) { 215 /* 216 * For every 'c' llist_del_first(&c->free_by_rcu_ttrace); is 217 * done only by one CPU == current CPU. Other CPUs might 218 * llist_add() and llist_del_all() in parallel. 219 */ 220 obj = llist_del_first(&c->free_by_rcu_ttrace); 221 if (!obj) 222 break; 223 add_obj_to_free_list(c, obj); 224 } 225 if (i >= cnt) 226 return; 227 228 for (; i < cnt; i++) { 229 obj = llist_del_first(&c->waiting_for_gp_ttrace); 230 if (!obj) 231 break; 232 add_obj_to_free_list(c, obj); 233 } 234 if (i >= cnt) 235 return; 236 237 memcg = get_memcg(c); 238 old_memcg = set_active_memcg(memcg); 239 for (; i < cnt; i++) { 240 /* Allocate, but don't deplete atomic reserves that typical 241 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc 242 * will allocate from the current numa node which is what we 243 * want here. 244 */ 245 obj = __alloc(c, node, gfp); 246 if (!obj) 247 break; 248 add_obj_to_free_list(c, obj); 249 } 250 set_active_memcg(old_memcg); 251 mem_cgroup_put(memcg); 252 } 253 254 static void free_one(void *obj, bool percpu) 255 { 256 if (percpu) { 257 free_percpu(((void **)obj)[1]); 258 kfree(obj); 259 return; 260 } 261 262 kfree(obj); 263 } 264 265 static int free_all(struct llist_node *llnode, bool percpu) 266 { 267 struct llist_node *pos, *t; 268 int cnt = 0; 269 270 llist_for_each_safe(pos, t, llnode) { 271 free_one(pos, percpu); 272 cnt++; 273 } 274 return cnt; 275 } 276 277 static void __free_rcu(struct rcu_head *head) 278 { 279 struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu_ttrace); 280 281 free_all(llist_del_all(&c->waiting_for_gp_ttrace), !!c->percpu_size); 282 atomic_set(&c->call_rcu_ttrace_in_progress, 0); 283 } 284 285 static void __free_rcu_tasks_trace(struct rcu_head *head) 286 { 287 /* If RCU Tasks Trace grace period implies RCU grace period, 288 * there is no need to invoke call_rcu(). 289 */ 290 if (rcu_trace_implies_rcu_gp()) 291 __free_rcu(head); 292 else 293 call_rcu(head, __free_rcu); 294 } 295 296 static void enque_to_free(struct bpf_mem_cache *c, void *obj) 297 { 298 struct llist_node *llnode = obj; 299 300 /* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work. 301 * Nothing races to add to free_by_rcu_ttrace list. 302 */ 303 llist_add(llnode, &c->free_by_rcu_ttrace); 304 } 305 306 static void do_call_rcu_ttrace(struct bpf_mem_cache *c) 307 { 308 struct llist_node *llnode, *t; 309 310 if (atomic_xchg(&c->call_rcu_ttrace_in_progress, 1)) { 311 if (unlikely(READ_ONCE(c->draining))) { 312 llnode = llist_del_all(&c->free_by_rcu_ttrace); 313 free_all(llnode, !!c->percpu_size); 314 } 315 return; 316 } 317 318 WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace)); 319 llist_for_each_safe(llnode, t, llist_del_all(&c->free_by_rcu_ttrace)) 320 llist_add(llnode, &c->waiting_for_gp_ttrace); 321 322 if (unlikely(READ_ONCE(c->draining))) { 323 __free_rcu(&c->rcu_ttrace); 324 return; 325 } 326 327 /* Use call_rcu_tasks_trace() to wait for sleepable progs to finish. 328 * If RCU Tasks Trace grace period implies RCU grace period, free 329 * these elements directly, else use call_rcu() to wait for normal 330 * progs to finish and finally do free_one() on each element. 331 */ 332 call_rcu_tasks_trace(&c->rcu_ttrace, __free_rcu_tasks_trace); 333 } 334 335 static void free_bulk(struct bpf_mem_cache *c) 336 { 337 struct bpf_mem_cache *tgt = c->tgt; 338 struct llist_node *llnode, *t; 339 unsigned long flags; 340 int cnt; 341 342 WARN_ON_ONCE(tgt->unit_size != c->unit_size); 343 WARN_ON_ONCE(tgt->percpu_size != c->percpu_size); 344 345 do { 346 inc_active(c, &flags); 347 llnode = __llist_del_first(&c->free_llist); 348 if (llnode) 349 cnt = --c->free_cnt; 350 else 351 cnt = 0; 352 dec_active(c, &flags); 353 if (llnode) 354 enque_to_free(tgt, llnode); 355 } while (cnt > (c->high_watermark + c->low_watermark) / 2); 356 357 /* and drain free_llist_extra */ 358 llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra)) 359 enque_to_free(tgt, llnode); 360 do_call_rcu_ttrace(tgt); 361 } 362 363 static void __free_by_rcu(struct rcu_head *head) 364 { 365 struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu); 366 struct bpf_mem_cache *tgt = c->tgt; 367 struct llist_node *llnode; 368 369 WARN_ON_ONCE(tgt->unit_size != c->unit_size); 370 WARN_ON_ONCE(tgt->percpu_size != c->percpu_size); 371 372 llnode = llist_del_all(&c->waiting_for_gp); 373 if (!llnode) 374 goto out; 375 376 llist_add_batch(llnode, c->waiting_for_gp_tail, &tgt->free_by_rcu_ttrace); 377 378 /* Objects went through regular RCU GP. Send them to RCU tasks trace */ 379 do_call_rcu_ttrace(tgt); 380 out: 381 atomic_set(&c->call_rcu_in_progress, 0); 382 } 383 384 static void check_free_by_rcu(struct bpf_mem_cache *c) 385 { 386 struct llist_node *llnode, *t; 387 unsigned long flags; 388 389 /* drain free_llist_extra_rcu */ 390 if (unlikely(!llist_empty(&c->free_llist_extra_rcu))) { 391 inc_active(c, &flags); 392 llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra_rcu)) 393 if (__llist_add(llnode, &c->free_by_rcu)) 394 c->free_by_rcu_tail = llnode; 395 dec_active(c, &flags); 396 } 397 398 if (llist_empty(&c->free_by_rcu)) 399 return; 400 401 if (atomic_xchg(&c->call_rcu_in_progress, 1)) { 402 /* 403 * Instead of kmalloc-ing new rcu_head and triggering 10k 404 * call_rcu() to hit rcutree.qhimark and force RCU to notice 405 * the overload just ask RCU to hurry up. There could be many 406 * objects in free_by_rcu list. 407 * This hint reduces memory consumption for an artificial 408 * benchmark from 2 Gbyte to 150 Mbyte. 409 */ 410 rcu_request_urgent_qs_task(current); 411 return; 412 } 413 414 WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp)); 415 416 inc_active(c, &flags); 417 WRITE_ONCE(c->waiting_for_gp.first, __llist_del_all(&c->free_by_rcu)); 418 c->waiting_for_gp_tail = c->free_by_rcu_tail; 419 dec_active(c, &flags); 420 421 if (unlikely(READ_ONCE(c->draining))) { 422 free_all(llist_del_all(&c->waiting_for_gp), !!c->percpu_size); 423 atomic_set(&c->call_rcu_in_progress, 0); 424 } else { 425 call_rcu_hurry(&c->rcu, __free_by_rcu); 426 } 427 } 428 429 static void bpf_mem_refill(struct irq_work *work) 430 { 431 struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work); 432 int cnt; 433 434 /* Racy access to free_cnt. It doesn't need to be 100% accurate */ 435 cnt = c->free_cnt; 436 if (cnt < c->low_watermark) 437 /* irq_work runs on this cpu and kmalloc will allocate 438 * from the current numa node which is what we want here. 439 */ 440 alloc_bulk(c, c->batch, NUMA_NO_NODE, true); 441 else if (cnt > c->high_watermark) 442 free_bulk(c); 443 444 check_free_by_rcu(c); 445 } 446 447 static void notrace irq_work_raise(struct bpf_mem_cache *c) 448 { 449 irq_work_queue(&c->refill_work); 450 } 451 452 /* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket 453 * the freelist cache will be elem_size * 64 (or less) on each cpu. 454 * 455 * For bpf programs that don't have statically known allocation sizes and 456 * assuming (low_mark + high_mark) / 2 as an average number of elements per 457 * bucket and all buckets are used the total amount of memory in freelists 458 * on each cpu will be: 459 * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096 460 * == ~ 116 Kbyte using below heuristic. 461 * Initialized, but unused bpf allocator (not bpf map specific one) will 462 * consume ~ 11 Kbyte per cpu. 463 * Typical case will be between 11K and 116K closer to 11K. 464 * bpf progs can and should share bpf_mem_cache when possible. 465 */ 466 static void init_refill_work(struct bpf_mem_cache *c) 467 { 468 init_irq_work(&c->refill_work, bpf_mem_refill); 469 if (c->unit_size <= 256) { 470 c->low_watermark = 32; 471 c->high_watermark = 96; 472 } else { 473 /* When page_size == 4k, order-0 cache will have low_mark == 2 474 * and high_mark == 6 with batch alloc of 3 individual pages at 475 * a time. 476 * 8k allocs and above low == 1, high == 3, batch == 1. 477 */ 478 c->low_watermark = max(32 * 256 / c->unit_size, 1); 479 c->high_watermark = max(96 * 256 / c->unit_size, 3); 480 } 481 c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1); 482 } 483 484 static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu) 485 { 486 /* To avoid consuming memory assume that 1st run of bpf 487 * prog won't be doing more than 4 map_update_elem from 488 * irq disabled region 489 */ 490 alloc_bulk(c, c->unit_size <= 256 ? 4 : 1, cpu_to_node(cpu), false); 491 } 492 493 static int check_obj_size(struct bpf_mem_cache *c, unsigned int idx) 494 { 495 struct llist_node *first; 496 unsigned int obj_size; 497 498 first = c->free_llist.first; 499 if (!first) 500 return 0; 501 502 if (c->percpu_size) 503 obj_size = pcpu_alloc_size(((void **)first)[1]); 504 else 505 obj_size = ksize(first); 506 if (obj_size != c->unit_size) { 507 WARN_ONCE(1, "bpf_mem_cache[%u]: percpu %d, unexpected object size %u, expect %u\n", 508 idx, c->percpu_size, obj_size, c->unit_size); 509 return -EINVAL; 510 } 511 return 0; 512 } 513 514 /* When size != 0 bpf_mem_cache for each cpu. 515 * This is typical bpf hash map use case when all elements have equal size. 516 * 517 * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on 518 * kmalloc/kfree. Max allocation size is 4096 in this case. 519 * This is bpf_dynptr and bpf_kptr use case. 520 */ 521 int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu) 522 { 523 static u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}; 524 int cpu, i, err, unit_size, percpu_size = 0; 525 struct bpf_mem_caches *cc, __percpu *pcc; 526 struct bpf_mem_cache *c, __percpu *pc; 527 struct obj_cgroup *objcg = NULL; 528 529 /* room for llist_node and per-cpu pointer */ 530 if (percpu) 531 percpu_size = LLIST_NODE_SZ + sizeof(void *); 532 ma->percpu = percpu; 533 534 if (size) { 535 pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL); 536 if (!pc) 537 return -ENOMEM; 538 539 if (!percpu) 540 size += LLIST_NODE_SZ; /* room for llist_node */ 541 unit_size = size; 542 543 #ifdef CONFIG_MEMCG_KMEM 544 if (memcg_bpf_enabled()) 545 objcg = get_obj_cgroup_from_current(); 546 #endif 547 for_each_possible_cpu(cpu) { 548 c = per_cpu_ptr(pc, cpu); 549 c->unit_size = unit_size; 550 c->objcg = objcg; 551 c->percpu_size = percpu_size; 552 c->tgt = c; 553 init_refill_work(c); 554 prefill_mem_cache(c, cpu); 555 } 556 ma->cache = pc; 557 return 0; 558 } 559 560 pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL); 561 if (!pcc) 562 return -ENOMEM; 563 err = 0; 564 #ifdef CONFIG_MEMCG_KMEM 565 objcg = get_obj_cgroup_from_current(); 566 #endif 567 for_each_possible_cpu(cpu) { 568 cc = per_cpu_ptr(pcc, cpu); 569 for (i = 0; i < NUM_CACHES; i++) { 570 c = &cc->cache[i]; 571 c->unit_size = sizes[i]; 572 c->objcg = objcg; 573 c->percpu_size = percpu_size; 574 c->tgt = c; 575 576 init_refill_work(c); 577 /* Another bpf_mem_cache will be used when allocating 578 * c->unit_size in bpf_mem_alloc(), so doesn't prefill 579 * for the bpf_mem_cache because these free objects will 580 * never be used. 581 */ 582 if (i != bpf_mem_cache_idx(c->unit_size)) 583 continue; 584 prefill_mem_cache(c, cpu); 585 err = check_obj_size(c, i); 586 if (err) 587 goto out; 588 } 589 } 590 591 out: 592 ma->caches = pcc; 593 /* refill_work is either zeroed or initialized, so it is safe to 594 * call irq_work_sync(). 595 */ 596 if (err) 597 bpf_mem_alloc_destroy(ma); 598 return err; 599 } 600 601 static void drain_mem_cache(struct bpf_mem_cache *c) 602 { 603 bool percpu = !!c->percpu_size; 604 605 /* No progs are using this bpf_mem_cache, but htab_map_free() called 606 * bpf_mem_cache_free() for all remaining elements and they can be in 607 * free_by_rcu_ttrace or in waiting_for_gp_ttrace lists, so drain those lists now. 608 * 609 * Except for waiting_for_gp_ttrace list, there are no concurrent operations 610 * on these lists, so it is safe to use __llist_del_all(). 611 */ 612 free_all(llist_del_all(&c->free_by_rcu_ttrace), percpu); 613 free_all(llist_del_all(&c->waiting_for_gp_ttrace), percpu); 614 free_all(__llist_del_all(&c->free_llist), percpu); 615 free_all(__llist_del_all(&c->free_llist_extra), percpu); 616 free_all(__llist_del_all(&c->free_by_rcu), percpu); 617 free_all(__llist_del_all(&c->free_llist_extra_rcu), percpu); 618 free_all(llist_del_all(&c->waiting_for_gp), percpu); 619 } 620 621 static void check_mem_cache(struct bpf_mem_cache *c) 622 { 623 WARN_ON_ONCE(!llist_empty(&c->free_by_rcu_ttrace)); 624 WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace)); 625 WARN_ON_ONCE(!llist_empty(&c->free_llist)); 626 WARN_ON_ONCE(!llist_empty(&c->free_llist_extra)); 627 WARN_ON_ONCE(!llist_empty(&c->free_by_rcu)); 628 WARN_ON_ONCE(!llist_empty(&c->free_llist_extra_rcu)); 629 WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp)); 630 } 631 632 static void check_leaked_objs(struct bpf_mem_alloc *ma) 633 { 634 struct bpf_mem_caches *cc; 635 struct bpf_mem_cache *c; 636 int cpu, i; 637 638 if (ma->cache) { 639 for_each_possible_cpu(cpu) { 640 c = per_cpu_ptr(ma->cache, cpu); 641 check_mem_cache(c); 642 } 643 } 644 if (ma->caches) { 645 for_each_possible_cpu(cpu) { 646 cc = per_cpu_ptr(ma->caches, cpu); 647 for (i = 0; i < NUM_CACHES; i++) { 648 c = &cc->cache[i]; 649 check_mem_cache(c); 650 } 651 } 652 } 653 } 654 655 static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma) 656 { 657 check_leaked_objs(ma); 658 free_percpu(ma->cache); 659 free_percpu(ma->caches); 660 ma->cache = NULL; 661 ma->caches = NULL; 662 } 663 664 static void free_mem_alloc(struct bpf_mem_alloc *ma) 665 { 666 /* waiting_for_gp[_ttrace] lists were drained, but RCU callbacks 667 * might still execute. Wait for them. 668 * 669 * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(), 670 * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used 671 * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(), 672 * so if call_rcu(head, __free_rcu) is skipped due to 673 * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by 674 * using rcu_trace_implies_rcu_gp() as well. 675 */ 676 rcu_barrier(); /* wait for __free_by_rcu */ 677 rcu_barrier_tasks_trace(); /* wait for __free_rcu */ 678 if (!rcu_trace_implies_rcu_gp()) 679 rcu_barrier(); 680 free_mem_alloc_no_barrier(ma); 681 } 682 683 static void free_mem_alloc_deferred(struct work_struct *work) 684 { 685 struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work); 686 687 free_mem_alloc(ma); 688 kfree(ma); 689 } 690 691 static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress) 692 { 693 struct bpf_mem_alloc *copy; 694 695 if (!rcu_in_progress) { 696 /* Fast path. No callbacks are pending, hence no need to do 697 * rcu_barrier-s. 698 */ 699 free_mem_alloc_no_barrier(ma); 700 return; 701 } 702 703 copy = kmemdup(ma, sizeof(*ma), GFP_KERNEL); 704 if (!copy) { 705 /* Slow path with inline barrier-s */ 706 free_mem_alloc(ma); 707 return; 708 } 709 710 /* Defer barriers into worker to let the rest of map memory to be freed */ 711 memset(ma, 0, sizeof(*ma)); 712 INIT_WORK(©->work, free_mem_alloc_deferred); 713 queue_work(system_unbound_wq, ©->work); 714 } 715 716 void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma) 717 { 718 struct bpf_mem_caches *cc; 719 struct bpf_mem_cache *c; 720 int cpu, i, rcu_in_progress; 721 722 if (ma->cache) { 723 rcu_in_progress = 0; 724 for_each_possible_cpu(cpu) { 725 c = per_cpu_ptr(ma->cache, cpu); 726 WRITE_ONCE(c->draining, true); 727 irq_work_sync(&c->refill_work); 728 drain_mem_cache(c); 729 rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress); 730 rcu_in_progress += atomic_read(&c->call_rcu_in_progress); 731 } 732 /* objcg is the same across cpus */ 733 if (c->objcg) 734 obj_cgroup_put(c->objcg); 735 destroy_mem_alloc(ma, rcu_in_progress); 736 } 737 if (ma->caches) { 738 rcu_in_progress = 0; 739 for_each_possible_cpu(cpu) { 740 cc = per_cpu_ptr(ma->caches, cpu); 741 for (i = 0; i < NUM_CACHES; i++) { 742 c = &cc->cache[i]; 743 WRITE_ONCE(c->draining, true); 744 irq_work_sync(&c->refill_work); 745 drain_mem_cache(c); 746 rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress); 747 rcu_in_progress += atomic_read(&c->call_rcu_in_progress); 748 } 749 } 750 if (c->objcg) 751 obj_cgroup_put(c->objcg); 752 destroy_mem_alloc(ma, rcu_in_progress); 753 } 754 } 755 756 /* notrace is necessary here and in other functions to make sure 757 * bpf programs cannot attach to them and cause llist corruptions. 758 */ 759 static void notrace *unit_alloc(struct bpf_mem_cache *c) 760 { 761 struct llist_node *llnode = NULL; 762 unsigned long flags; 763 int cnt = 0; 764 765 /* Disable irqs to prevent the following race for majority of prog types: 766 * prog_A 767 * bpf_mem_alloc 768 * preemption or irq -> prog_B 769 * bpf_mem_alloc 770 * 771 * but prog_B could be a perf_event NMI prog. 772 * Use per-cpu 'active' counter to order free_list access between 773 * unit_alloc/unit_free/bpf_mem_refill. 774 */ 775 local_irq_save(flags); 776 if (local_inc_return(&c->active) == 1) { 777 llnode = __llist_del_first(&c->free_llist); 778 if (llnode) { 779 cnt = --c->free_cnt; 780 *(struct bpf_mem_cache **)llnode = c; 781 } 782 } 783 local_dec(&c->active); 784 785 WARN_ON(cnt < 0); 786 787 if (cnt < c->low_watermark) 788 irq_work_raise(c); 789 /* Enable IRQ after the enqueue of irq work completes, so irq work 790 * will run after IRQ is enabled and free_llist may be refilled by 791 * irq work before other task preempts current task. 792 */ 793 local_irq_restore(flags); 794 795 return llnode; 796 } 797 798 /* Though 'ptr' object could have been allocated on a different cpu 799 * add it to the free_llist of the current cpu. 800 * Let kfree() logic deal with it when it's later called from irq_work. 801 */ 802 static void notrace unit_free(struct bpf_mem_cache *c, void *ptr) 803 { 804 struct llist_node *llnode = ptr - LLIST_NODE_SZ; 805 unsigned long flags; 806 int cnt = 0; 807 808 BUILD_BUG_ON(LLIST_NODE_SZ > 8); 809 810 /* 811 * Remember bpf_mem_cache that allocated this object. 812 * The hint is not accurate. 813 */ 814 c->tgt = *(struct bpf_mem_cache **)llnode; 815 816 local_irq_save(flags); 817 if (local_inc_return(&c->active) == 1) { 818 __llist_add(llnode, &c->free_llist); 819 cnt = ++c->free_cnt; 820 } else { 821 /* unit_free() cannot fail. Therefore add an object to atomic 822 * llist. free_bulk() will drain it. Though free_llist_extra is 823 * a per-cpu list we have to use atomic llist_add here, since 824 * it also can be interrupted by bpf nmi prog that does another 825 * unit_free() into the same free_llist_extra. 826 */ 827 llist_add(llnode, &c->free_llist_extra); 828 } 829 local_dec(&c->active); 830 831 if (cnt > c->high_watermark) 832 /* free few objects from current cpu into global kmalloc pool */ 833 irq_work_raise(c); 834 /* Enable IRQ after irq_work_raise() completes, otherwise when current 835 * task is preempted by task which does unit_alloc(), unit_alloc() may 836 * return NULL unexpectedly because irq work is already pending but can 837 * not been triggered and free_llist can not be refilled timely. 838 */ 839 local_irq_restore(flags); 840 } 841 842 static void notrace unit_free_rcu(struct bpf_mem_cache *c, void *ptr) 843 { 844 struct llist_node *llnode = ptr - LLIST_NODE_SZ; 845 unsigned long flags; 846 847 c->tgt = *(struct bpf_mem_cache **)llnode; 848 849 local_irq_save(flags); 850 if (local_inc_return(&c->active) == 1) { 851 if (__llist_add(llnode, &c->free_by_rcu)) 852 c->free_by_rcu_tail = llnode; 853 } else { 854 llist_add(llnode, &c->free_llist_extra_rcu); 855 } 856 local_dec(&c->active); 857 858 if (!atomic_read(&c->call_rcu_in_progress)) 859 irq_work_raise(c); 860 local_irq_restore(flags); 861 } 862 863 /* Called from BPF program or from sys_bpf syscall. 864 * In both cases migration is disabled. 865 */ 866 void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size) 867 { 868 int idx; 869 void *ret; 870 871 if (!size) 872 return ZERO_SIZE_PTR; 873 874 idx = bpf_mem_cache_idx(size + LLIST_NODE_SZ); 875 if (idx < 0) 876 return NULL; 877 878 ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx); 879 return !ret ? NULL : ret + LLIST_NODE_SZ; 880 } 881 882 static notrace int bpf_mem_free_idx(void *ptr, bool percpu) 883 { 884 size_t size; 885 886 if (percpu) 887 size = pcpu_alloc_size(*((void **)ptr)); 888 else 889 size = ksize(ptr - LLIST_NODE_SZ); 890 return bpf_mem_cache_idx(size); 891 } 892 893 void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr) 894 { 895 int idx; 896 897 if (!ptr) 898 return; 899 900 idx = bpf_mem_free_idx(ptr, ma->percpu); 901 if (idx < 0) 902 return; 903 904 unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr); 905 } 906 907 void notrace bpf_mem_free_rcu(struct bpf_mem_alloc *ma, void *ptr) 908 { 909 int idx; 910 911 if (!ptr) 912 return; 913 914 idx = bpf_mem_free_idx(ptr, ma->percpu); 915 if (idx < 0) 916 return; 917 918 unit_free_rcu(this_cpu_ptr(ma->caches)->cache + idx, ptr); 919 } 920 921 void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma) 922 { 923 void *ret; 924 925 ret = unit_alloc(this_cpu_ptr(ma->cache)); 926 return !ret ? NULL : ret + LLIST_NODE_SZ; 927 } 928 929 void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr) 930 { 931 if (!ptr) 932 return; 933 934 unit_free(this_cpu_ptr(ma->cache), ptr); 935 } 936 937 void notrace bpf_mem_cache_free_rcu(struct bpf_mem_alloc *ma, void *ptr) 938 { 939 if (!ptr) 940 return; 941 942 unit_free_rcu(this_cpu_ptr(ma->cache), ptr); 943 } 944 945 /* Directly does a kfree() without putting 'ptr' back to the free_llist 946 * for reuse and without waiting for a rcu_tasks_trace gp. 947 * The caller must first go through the rcu_tasks_trace gp for 'ptr' 948 * before calling bpf_mem_cache_raw_free(). 949 * It could be used when the rcu_tasks_trace callback does not have 950 * a hold on the original bpf_mem_alloc object that allocated the 951 * 'ptr'. This should only be used in the uncommon code path. 952 * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled 953 * and may affect performance. 954 */ 955 void bpf_mem_cache_raw_free(void *ptr) 956 { 957 if (!ptr) 958 return; 959 960 kfree(ptr - LLIST_NODE_SZ); 961 } 962 963 /* When flags == GFP_KERNEL, it signals that the caller will not cause 964 * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use 965 * kmalloc if the free_llist is empty. 966 */ 967 void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags) 968 { 969 struct bpf_mem_cache *c; 970 void *ret; 971 972 c = this_cpu_ptr(ma->cache); 973 974 ret = unit_alloc(c); 975 if (!ret && flags == GFP_KERNEL) { 976 struct mem_cgroup *memcg, *old_memcg; 977 978 memcg = get_memcg(c); 979 old_memcg = set_active_memcg(memcg); 980 ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT); 981 set_active_memcg(old_memcg); 982 mem_cgroup_put(memcg); 983 } 984 985 return !ret ? NULL : ret + LLIST_NODE_SZ; 986 } 987 988 /* The alignment of dynamic per-cpu area is 8, so c->unit_size and the 989 * actual size of dynamic per-cpu area will always be matched and there is 990 * no need to adjust size_index for per-cpu allocation. However for the 991 * simplicity of the implementation, use an unified size_index for both 992 * kmalloc and per-cpu allocation. 993 */ 994 static __init int bpf_mem_cache_adjust_size(void) 995 { 996 unsigned int size; 997 998 /* Adjusting the indexes in size_index() according to the object_size 999 * of underlying slab cache, so bpf_mem_alloc() will select a 1000 * bpf_mem_cache with unit_size equal to the object_size of 1001 * the underlying slab cache. 1002 * 1003 * The maximal value of KMALLOC_MIN_SIZE and __kmalloc_minalign() is 1004 * 256-bytes, so only do adjustment for [8-bytes, 192-bytes]. 1005 */ 1006 for (size = 192; size >= 8; size -= 8) { 1007 unsigned int kmalloc_size, index; 1008 1009 kmalloc_size = kmalloc_size_roundup(size); 1010 if (kmalloc_size == size) 1011 continue; 1012 1013 if (kmalloc_size <= 192) 1014 index = size_index[(kmalloc_size - 1) / 8]; 1015 else 1016 index = fls(kmalloc_size - 1) - 1; 1017 /* Only overwrite if necessary */ 1018 if (size_index[(size - 1) / 8] != index) 1019 size_index[(size - 1) / 8] = index; 1020 } 1021 1022 return 0; 1023 } 1024 subsys_initcall(bpf_mem_cache_adjust_size); 1025