xref: /linux/kernel/bpf/memalloc.c (revision 0526b56cbc3c489642bd6a5fe4b718dea7ef0ee8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
3 #include <linux/mm.h>
4 #include <linux/llist.h>
5 #include <linux/bpf.h>
6 #include <linux/irq_work.h>
7 #include <linux/bpf_mem_alloc.h>
8 #include <linux/memcontrol.h>
9 #include <asm/local.h>
10 
11 /* Any context (including NMI) BPF specific memory allocator.
12  *
13  * Tracing BPF programs can attach to kprobe and fentry. Hence they
14  * run in unknown context where calling plain kmalloc() might not be safe.
15  *
16  * Front-end kmalloc() with per-cpu per-bucket cache of free elements.
17  * Refill this cache asynchronously from irq_work.
18  *
19  * CPU_0 buckets
20  * 16 32 64 96 128 196 256 512 1024 2048 4096
21  * ...
22  * CPU_N buckets
23  * 16 32 64 96 128 196 256 512 1024 2048 4096
24  *
25  * The buckets are prefilled at the start.
26  * BPF programs always run with migration disabled.
27  * It's safe to allocate from cache of the current cpu with irqs disabled.
28  * Free-ing is always done into bucket of the current cpu as well.
29  * irq_work trims extra free elements from buckets with kfree
30  * and refills them with kmalloc, so global kmalloc logic takes care
31  * of freeing objects allocated by one cpu and freed on another.
32  *
33  * Every allocated objected is padded with extra 8 bytes that contains
34  * struct llist_node.
35  */
36 #define LLIST_NODE_SZ sizeof(struct llist_node)
37 
38 /* similar to kmalloc, but sizeof == 8 bucket is gone */
39 static u8 size_index[24] __ro_after_init = {
40 	3,	/* 8 */
41 	3,	/* 16 */
42 	4,	/* 24 */
43 	4,	/* 32 */
44 	5,	/* 40 */
45 	5,	/* 48 */
46 	5,	/* 56 */
47 	5,	/* 64 */
48 	1,	/* 72 */
49 	1,	/* 80 */
50 	1,	/* 88 */
51 	1,	/* 96 */
52 	6,	/* 104 */
53 	6,	/* 112 */
54 	6,	/* 120 */
55 	6,	/* 128 */
56 	2,	/* 136 */
57 	2,	/* 144 */
58 	2,	/* 152 */
59 	2,	/* 160 */
60 	2,	/* 168 */
61 	2,	/* 176 */
62 	2,	/* 184 */
63 	2	/* 192 */
64 };
65 
66 static int bpf_mem_cache_idx(size_t size)
67 {
68 	if (!size || size > 4096)
69 		return -1;
70 
71 	if (size <= 192)
72 		return size_index[(size - 1) / 8] - 1;
73 
74 	return fls(size - 1) - 2;
75 }
76 
77 #define NUM_CACHES 11
78 
79 struct bpf_mem_cache {
80 	/* per-cpu list of free objects of size 'unit_size'.
81 	 * All accesses are done with interrupts disabled and 'active' counter
82 	 * protection with __llist_add() and __llist_del_first().
83 	 */
84 	struct llist_head free_llist;
85 	local_t active;
86 
87 	/* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill
88 	 * are sequenced by per-cpu 'active' counter. But unit_free() cannot
89 	 * fail. When 'active' is busy the unit_free() will add an object to
90 	 * free_llist_extra.
91 	 */
92 	struct llist_head free_llist_extra;
93 
94 	struct irq_work refill_work;
95 	struct obj_cgroup *objcg;
96 	int unit_size;
97 	/* count of objects in free_llist */
98 	int free_cnt;
99 	int low_watermark, high_watermark, batch;
100 	int percpu_size;
101 
102 	struct rcu_head rcu;
103 	struct llist_head free_by_rcu;
104 	struct llist_head waiting_for_gp;
105 	atomic_t call_rcu_in_progress;
106 };
107 
108 struct bpf_mem_caches {
109 	struct bpf_mem_cache cache[NUM_CACHES];
110 };
111 
112 static struct llist_node notrace *__llist_del_first(struct llist_head *head)
113 {
114 	struct llist_node *entry, *next;
115 
116 	entry = head->first;
117 	if (!entry)
118 		return NULL;
119 	next = entry->next;
120 	head->first = next;
121 	return entry;
122 }
123 
124 static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags)
125 {
126 	if (c->percpu_size) {
127 		void **obj = kmalloc_node(c->percpu_size, flags, node);
128 		void *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags);
129 
130 		if (!obj || !pptr) {
131 			free_percpu(pptr);
132 			kfree(obj);
133 			return NULL;
134 		}
135 		obj[1] = pptr;
136 		return obj;
137 	}
138 
139 	return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node);
140 }
141 
142 static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c)
143 {
144 #ifdef CONFIG_MEMCG_KMEM
145 	if (c->objcg)
146 		return get_mem_cgroup_from_objcg(c->objcg);
147 #endif
148 
149 #ifdef CONFIG_MEMCG
150 	return root_mem_cgroup;
151 #else
152 	return NULL;
153 #endif
154 }
155 
156 /* Mostly runs from irq_work except __init phase. */
157 static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node)
158 {
159 	struct mem_cgroup *memcg = NULL, *old_memcg;
160 	unsigned long flags;
161 	void *obj;
162 	int i;
163 
164 	memcg = get_memcg(c);
165 	old_memcg = set_active_memcg(memcg);
166 	for (i = 0; i < cnt; i++) {
167 		/*
168 		 * free_by_rcu is only manipulated by irq work refill_work().
169 		 * IRQ works on the same CPU are called sequentially, so it is
170 		 * safe to use __llist_del_first() here. If alloc_bulk() is
171 		 * invoked by the initial prefill, there will be no running
172 		 * refill_work(), so __llist_del_first() is fine as well.
173 		 *
174 		 * In most cases, objects on free_by_rcu are from the same CPU.
175 		 * If some objects come from other CPUs, it doesn't incur any
176 		 * harm because NUMA_NO_NODE means the preference for current
177 		 * numa node and it is not a guarantee.
178 		 */
179 		obj = __llist_del_first(&c->free_by_rcu);
180 		if (!obj) {
181 			/* Allocate, but don't deplete atomic reserves that typical
182 			 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc
183 			 * will allocate from the current numa node which is what we
184 			 * want here.
185 			 */
186 			obj = __alloc(c, node, GFP_NOWAIT | __GFP_NOWARN | __GFP_ACCOUNT);
187 			if (!obj)
188 				break;
189 		}
190 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
191 			/* In RT irq_work runs in per-cpu kthread, so disable
192 			 * interrupts to avoid preemption and interrupts and
193 			 * reduce the chance of bpf prog executing on this cpu
194 			 * when active counter is busy.
195 			 */
196 			local_irq_save(flags);
197 		/* alloc_bulk runs from irq_work which will not preempt a bpf
198 		 * program that does unit_alloc/unit_free since IRQs are
199 		 * disabled there. There is no race to increment 'active'
200 		 * counter. It protects free_llist from corruption in case NMI
201 		 * bpf prog preempted this loop.
202 		 */
203 		WARN_ON_ONCE(local_inc_return(&c->active) != 1);
204 		__llist_add(obj, &c->free_llist);
205 		c->free_cnt++;
206 		local_dec(&c->active);
207 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
208 			local_irq_restore(flags);
209 	}
210 	set_active_memcg(old_memcg);
211 	mem_cgroup_put(memcg);
212 }
213 
214 static void free_one(struct bpf_mem_cache *c, void *obj)
215 {
216 	if (c->percpu_size) {
217 		free_percpu(((void **)obj)[1]);
218 		kfree(obj);
219 		return;
220 	}
221 
222 	kfree(obj);
223 }
224 
225 static void __free_rcu(struct rcu_head *head)
226 {
227 	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu);
228 	struct llist_node *llnode = llist_del_all(&c->waiting_for_gp);
229 	struct llist_node *pos, *t;
230 
231 	llist_for_each_safe(pos, t, llnode)
232 		free_one(c, pos);
233 	atomic_set(&c->call_rcu_in_progress, 0);
234 }
235 
236 static void __free_rcu_tasks_trace(struct rcu_head *head)
237 {
238 	/* If RCU Tasks Trace grace period implies RCU grace period,
239 	 * there is no need to invoke call_rcu().
240 	 */
241 	if (rcu_trace_implies_rcu_gp())
242 		__free_rcu(head);
243 	else
244 		call_rcu(head, __free_rcu);
245 }
246 
247 static void enque_to_free(struct bpf_mem_cache *c, void *obj)
248 {
249 	struct llist_node *llnode = obj;
250 
251 	/* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work.
252 	 * Nothing races to add to free_by_rcu list.
253 	 */
254 	__llist_add(llnode, &c->free_by_rcu);
255 }
256 
257 static void do_call_rcu(struct bpf_mem_cache *c)
258 {
259 	struct llist_node *llnode, *t;
260 
261 	if (atomic_xchg(&c->call_rcu_in_progress, 1))
262 		return;
263 
264 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
265 	llist_for_each_safe(llnode, t, __llist_del_all(&c->free_by_rcu))
266 		/* There is no concurrent __llist_add(waiting_for_gp) access.
267 		 * It doesn't race with llist_del_all either.
268 		 * But there could be two concurrent llist_del_all(waiting_for_gp):
269 		 * from __free_rcu() and from drain_mem_cache().
270 		 */
271 		__llist_add(llnode, &c->waiting_for_gp);
272 	/* Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
273 	 * If RCU Tasks Trace grace period implies RCU grace period, free
274 	 * these elements directly, else use call_rcu() to wait for normal
275 	 * progs to finish and finally do free_one() on each element.
276 	 */
277 	call_rcu_tasks_trace(&c->rcu, __free_rcu_tasks_trace);
278 }
279 
280 static void free_bulk(struct bpf_mem_cache *c)
281 {
282 	struct llist_node *llnode, *t;
283 	unsigned long flags;
284 	int cnt;
285 
286 	do {
287 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
288 			local_irq_save(flags);
289 		WARN_ON_ONCE(local_inc_return(&c->active) != 1);
290 		llnode = __llist_del_first(&c->free_llist);
291 		if (llnode)
292 			cnt = --c->free_cnt;
293 		else
294 			cnt = 0;
295 		local_dec(&c->active);
296 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
297 			local_irq_restore(flags);
298 		if (llnode)
299 			enque_to_free(c, llnode);
300 	} while (cnt > (c->high_watermark + c->low_watermark) / 2);
301 
302 	/* and drain free_llist_extra */
303 	llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra))
304 		enque_to_free(c, llnode);
305 	do_call_rcu(c);
306 }
307 
308 static void bpf_mem_refill(struct irq_work *work)
309 {
310 	struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work);
311 	int cnt;
312 
313 	/* Racy access to free_cnt. It doesn't need to be 100% accurate */
314 	cnt = c->free_cnt;
315 	if (cnt < c->low_watermark)
316 		/* irq_work runs on this cpu and kmalloc will allocate
317 		 * from the current numa node which is what we want here.
318 		 */
319 		alloc_bulk(c, c->batch, NUMA_NO_NODE);
320 	else if (cnt > c->high_watermark)
321 		free_bulk(c);
322 }
323 
324 static void notrace irq_work_raise(struct bpf_mem_cache *c)
325 {
326 	irq_work_queue(&c->refill_work);
327 }
328 
329 /* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket
330  * the freelist cache will be elem_size * 64 (or less) on each cpu.
331  *
332  * For bpf programs that don't have statically known allocation sizes and
333  * assuming (low_mark + high_mark) / 2 as an average number of elements per
334  * bucket and all buckets are used the total amount of memory in freelists
335  * on each cpu will be:
336  * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096
337  * == ~ 116 Kbyte using below heuristic.
338  * Initialized, but unused bpf allocator (not bpf map specific one) will
339  * consume ~ 11 Kbyte per cpu.
340  * Typical case will be between 11K and 116K closer to 11K.
341  * bpf progs can and should share bpf_mem_cache when possible.
342  */
343 
344 static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu)
345 {
346 	init_irq_work(&c->refill_work, bpf_mem_refill);
347 	if (c->unit_size <= 256) {
348 		c->low_watermark = 32;
349 		c->high_watermark = 96;
350 	} else {
351 		/* When page_size == 4k, order-0 cache will have low_mark == 2
352 		 * and high_mark == 6 with batch alloc of 3 individual pages at
353 		 * a time.
354 		 * 8k allocs and above low == 1, high == 3, batch == 1.
355 		 */
356 		c->low_watermark = max(32 * 256 / c->unit_size, 1);
357 		c->high_watermark = max(96 * 256 / c->unit_size, 3);
358 	}
359 	c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1);
360 
361 	/* To avoid consuming memory assume that 1st run of bpf
362 	 * prog won't be doing more than 4 map_update_elem from
363 	 * irq disabled region
364 	 */
365 	alloc_bulk(c, c->unit_size <= 256 ? 4 : 1, cpu_to_node(cpu));
366 }
367 
368 /* When size != 0 bpf_mem_cache for each cpu.
369  * This is typical bpf hash map use case when all elements have equal size.
370  *
371  * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on
372  * kmalloc/kfree. Max allocation size is 4096 in this case.
373  * This is bpf_dynptr and bpf_kptr use case.
374  */
375 int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu)
376 {
377 	static u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};
378 	struct bpf_mem_caches *cc, __percpu *pcc;
379 	struct bpf_mem_cache *c, __percpu *pc;
380 	struct obj_cgroup *objcg = NULL;
381 	int cpu, i, unit_size, percpu_size = 0;
382 
383 	if (size) {
384 		pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL);
385 		if (!pc)
386 			return -ENOMEM;
387 
388 		if (percpu)
389 			/* room for llist_node and per-cpu pointer */
390 			percpu_size = LLIST_NODE_SZ + sizeof(void *);
391 		else
392 			size += LLIST_NODE_SZ; /* room for llist_node */
393 		unit_size = size;
394 
395 #ifdef CONFIG_MEMCG_KMEM
396 		if (memcg_bpf_enabled())
397 			objcg = get_obj_cgroup_from_current();
398 #endif
399 		for_each_possible_cpu(cpu) {
400 			c = per_cpu_ptr(pc, cpu);
401 			c->unit_size = unit_size;
402 			c->objcg = objcg;
403 			c->percpu_size = percpu_size;
404 			prefill_mem_cache(c, cpu);
405 		}
406 		ma->cache = pc;
407 		return 0;
408 	}
409 
410 	/* size == 0 && percpu is an invalid combination */
411 	if (WARN_ON_ONCE(percpu))
412 		return -EINVAL;
413 
414 	pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL);
415 	if (!pcc)
416 		return -ENOMEM;
417 #ifdef CONFIG_MEMCG_KMEM
418 	objcg = get_obj_cgroup_from_current();
419 #endif
420 	for_each_possible_cpu(cpu) {
421 		cc = per_cpu_ptr(pcc, cpu);
422 		for (i = 0; i < NUM_CACHES; i++) {
423 			c = &cc->cache[i];
424 			c->unit_size = sizes[i];
425 			c->objcg = objcg;
426 			prefill_mem_cache(c, cpu);
427 		}
428 	}
429 	ma->caches = pcc;
430 	return 0;
431 }
432 
433 static void drain_mem_cache(struct bpf_mem_cache *c)
434 {
435 	struct llist_node *llnode, *t;
436 
437 	/* No progs are using this bpf_mem_cache, but htab_map_free() called
438 	 * bpf_mem_cache_free() for all remaining elements and they can be in
439 	 * free_by_rcu or in waiting_for_gp lists, so drain those lists now.
440 	 *
441 	 * Except for waiting_for_gp list, there are no concurrent operations
442 	 * on these lists, so it is safe to use __llist_del_all().
443 	 */
444 	llist_for_each_safe(llnode, t, __llist_del_all(&c->free_by_rcu))
445 		free_one(c, llnode);
446 	llist_for_each_safe(llnode, t, llist_del_all(&c->waiting_for_gp))
447 		free_one(c, llnode);
448 	llist_for_each_safe(llnode, t, __llist_del_all(&c->free_llist))
449 		free_one(c, llnode);
450 	llist_for_each_safe(llnode, t, __llist_del_all(&c->free_llist_extra))
451 		free_one(c, llnode);
452 }
453 
454 static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma)
455 {
456 	free_percpu(ma->cache);
457 	free_percpu(ma->caches);
458 	ma->cache = NULL;
459 	ma->caches = NULL;
460 }
461 
462 static void free_mem_alloc(struct bpf_mem_alloc *ma)
463 {
464 	/* waiting_for_gp lists was drained, but __free_rcu might
465 	 * still execute. Wait for it now before we freeing percpu caches.
466 	 *
467 	 * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(),
468 	 * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used
469 	 * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(),
470 	 * so if call_rcu(head, __free_rcu) is skipped due to
471 	 * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by
472 	 * using rcu_trace_implies_rcu_gp() as well.
473 	 */
474 	rcu_barrier_tasks_trace();
475 	if (!rcu_trace_implies_rcu_gp())
476 		rcu_barrier();
477 	free_mem_alloc_no_barrier(ma);
478 }
479 
480 static void free_mem_alloc_deferred(struct work_struct *work)
481 {
482 	struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work);
483 
484 	free_mem_alloc(ma);
485 	kfree(ma);
486 }
487 
488 static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress)
489 {
490 	struct bpf_mem_alloc *copy;
491 
492 	if (!rcu_in_progress) {
493 		/* Fast path. No callbacks are pending, hence no need to do
494 		 * rcu_barrier-s.
495 		 */
496 		free_mem_alloc_no_barrier(ma);
497 		return;
498 	}
499 
500 	copy = kmalloc(sizeof(*ma), GFP_KERNEL);
501 	if (!copy) {
502 		/* Slow path with inline barrier-s */
503 		free_mem_alloc(ma);
504 		return;
505 	}
506 
507 	/* Defer barriers into worker to let the rest of map memory to be freed */
508 	copy->cache = ma->cache;
509 	ma->cache = NULL;
510 	copy->caches = ma->caches;
511 	ma->caches = NULL;
512 	INIT_WORK(&copy->work, free_mem_alloc_deferred);
513 	queue_work(system_unbound_wq, &copy->work);
514 }
515 
516 void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma)
517 {
518 	struct bpf_mem_caches *cc;
519 	struct bpf_mem_cache *c;
520 	int cpu, i, rcu_in_progress;
521 
522 	if (ma->cache) {
523 		rcu_in_progress = 0;
524 		for_each_possible_cpu(cpu) {
525 			c = per_cpu_ptr(ma->cache, cpu);
526 			/*
527 			 * refill_work may be unfinished for PREEMPT_RT kernel
528 			 * in which irq work is invoked in a per-CPU RT thread.
529 			 * It is also possible for kernel with
530 			 * arch_irq_work_has_interrupt() being false and irq
531 			 * work is invoked in timer interrupt. So waiting for
532 			 * the completion of irq work to ease the handling of
533 			 * concurrency.
534 			 */
535 			irq_work_sync(&c->refill_work);
536 			drain_mem_cache(c);
537 			rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
538 		}
539 		/* objcg is the same across cpus */
540 		if (c->objcg)
541 			obj_cgroup_put(c->objcg);
542 		destroy_mem_alloc(ma, rcu_in_progress);
543 	}
544 	if (ma->caches) {
545 		rcu_in_progress = 0;
546 		for_each_possible_cpu(cpu) {
547 			cc = per_cpu_ptr(ma->caches, cpu);
548 			for (i = 0; i < NUM_CACHES; i++) {
549 				c = &cc->cache[i];
550 				irq_work_sync(&c->refill_work);
551 				drain_mem_cache(c);
552 				rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
553 			}
554 		}
555 		if (c->objcg)
556 			obj_cgroup_put(c->objcg);
557 		destroy_mem_alloc(ma, rcu_in_progress);
558 	}
559 }
560 
561 /* notrace is necessary here and in other functions to make sure
562  * bpf programs cannot attach to them and cause llist corruptions.
563  */
564 static void notrace *unit_alloc(struct bpf_mem_cache *c)
565 {
566 	struct llist_node *llnode = NULL;
567 	unsigned long flags;
568 	int cnt = 0;
569 
570 	/* Disable irqs to prevent the following race for majority of prog types:
571 	 * prog_A
572 	 *   bpf_mem_alloc
573 	 *      preemption or irq -> prog_B
574 	 *        bpf_mem_alloc
575 	 *
576 	 * but prog_B could be a perf_event NMI prog.
577 	 * Use per-cpu 'active' counter to order free_list access between
578 	 * unit_alloc/unit_free/bpf_mem_refill.
579 	 */
580 	local_irq_save(flags);
581 	if (local_inc_return(&c->active) == 1) {
582 		llnode = __llist_del_first(&c->free_llist);
583 		if (llnode)
584 			cnt = --c->free_cnt;
585 	}
586 	local_dec(&c->active);
587 	local_irq_restore(flags);
588 
589 	WARN_ON(cnt < 0);
590 
591 	if (cnt < c->low_watermark)
592 		irq_work_raise(c);
593 	return llnode;
594 }
595 
596 /* Though 'ptr' object could have been allocated on a different cpu
597  * add it to the free_llist of the current cpu.
598  * Let kfree() logic deal with it when it's later called from irq_work.
599  */
600 static void notrace unit_free(struct bpf_mem_cache *c, void *ptr)
601 {
602 	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
603 	unsigned long flags;
604 	int cnt = 0;
605 
606 	BUILD_BUG_ON(LLIST_NODE_SZ > 8);
607 
608 	local_irq_save(flags);
609 	if (local_inc_return(&c->active) == 1) {
610 		__llist_add(llnode, &c->free_llist);
611 		cnt = ++c->free_cnt;
612 	} else {
613 		/* unit_free() cannot fail. Therefore add an object to atomic
614 		 * llist. free_bulk() will drain it. Though free_llist_extra is
615 		 * a per-cpu list we have to use atomic llist_add here, since
616 		 * it also can be interrupted by bpf nmi prog that does another
617 		 * unit_free() into the same free_llist_extra.
618 		 */
619 		llist_add(llnode, &c->free_llist_extra);
620 	}
621 	local_dec(&c->active);
622 	local_irq_restore(flags);
623 
624 	if (cnt > c->high_watermark)
625 		/* free few objects from current cpu into global kmalloc pool */
626 		irq_work_raise(c);
627 }
628 
629 /* Called from BPF program or from sys_bpf syscall.
630  * In both cases migration is disabled.
631  */
632 void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size)
633 {
634 	int idx;
635 	void *ret;
636 
637 	if (!size)
638 		return ZERO_SIZE_PTR;
639 
640 	idx = bpf_mem_cache_idx(size + LLIST_NODE_SZ);
641 	if (idx < 0)
642 		return NULL;
643 
644 	ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx);
645 	return !ret ? NULL : ret + LLIST_NODE_SZ;
646 }
647 
648 void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr)
649 {
650 	int idx;
651 
652 	if (!ptr)
653 		return;
654 
655 	idx = bpf_mem_cache_idx(ksize(ptr - LLIST_NODE_SZ));
656 	if (idx < 0)
657 		return;
658 
659 	unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr);
660 }
661 
662 void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma)
663 {
664 	void *ret;
665 
666 	ret = unit_alloc(this_cpu_ptr(ma->cache));
667 	return !ret ? NULL : ret + LLIST_NODE_SZ;
668 }
669 
670 void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr)
671 {
672 	if (!ptr)
673 		return;
674 
675 	unit_free(this_cpu_ptr(ma->cache), ptr);
676 }
677 
678 /* Directly does a kfree() without putting 'ptr' back to the free_llist
679  * for reuse and without waiting for a rcu_tasks_trace gp.
680  * The caller must first go through the rcu_tasks_trace gp for 'ptr'
681  * before calling bpf_mem_cache_raw_free().
682  * It could be used when the rcu_tasks_trace callback does not have
683  * a hold on the original bpf_mem_alloc object that allocated the
684  * 'ptr'. This should only be used in the uncommon code path.
685  * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled
686  * and may affect performance.
687  */
688 void bpf_mem_cache_raw_free(void *ptr)
689 {
690 	if (!ptr)
691 		return;
692 
693 	kfree(ptr - LLIST_NODE_SZ);
694 }
695 
696 /* When flags == GFP_KERNEL, it signals that the caller will not cause
697  * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use
698  * kmalloc if the free_llist is empty.
699  */
700 void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags)
701 {
702 	struct bpf_mem_cache *c;
703 	void *ret;
704 
705 	c = this_cpu_ptr(ma->cache);
706 
707 	ret = unit_alloc(c);
708 	if (!ret && flags == GFP_KERNEL) {
709 		struct mem_cgroup *memcg, *old_memcg;
710 
711 		memcg = get_memcg(c);
712 		old_memcg = set_active_memcg(memcg);
713 		ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT);
714 		set_active_memcg(old_memcg);
715 		mem_cgroup_put(memcg);
716 	}
717 
718 	return !ret ? NULL : ret + LLIST_NODE_SZ;
719 }
720