xref: /linux/kernel/bpf/helpers.c (revision f4738f56d1dc62aaba69b33702a5ab098f1b8c63)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/cgroup.h>
8 #include <linux/rcupdate.h>
9 #include <linux/random.h>
10 #include <linux/smp.h>
11 #include <linux/topology.h>
12 #include <linux/ktime.h>
13 #include <linux/sched.h>
14 #include <linux/uidgid.h>
15 #include <linux/filter.h>
16 #include <linux/ctype.h>
17 #include <linux/jiffies.h>
18 #include <linux/pid_namespace.h>
19 #include <linux/poison.h>
20 #include <linux/proc_ns.h>
21 #include <linux/sched/task.h>
22 #include <linux/security.h>
23 #include <linux/btf_ids.h>
24 #include <linux/bpf_mem_alloc.h>
25 
26 #include "../../lib/kstrtox.h"
27 
28 /* If kernel subsystem is allowing eBPF programs to call this function,
29  * inside its own verifier_ops->get_func_proto() callback it should return
30  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
31  *
32  * Different map implementations will rely on rcu in map methods
33  * lookup/update/delete, therefore eBPF programs must run under rcu lock
34  * if program is allowed to access maps, so check rcu_read_lock_held in
35  * all three functions.
36  */
37 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
38 {
39 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
40 	return (unsigned long) map->ops->map_lookup_elem(map, key);
41 }
42 
43 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
44 	.func		= bpf_map_lookup_elem,
45 	.gpl_only	= false,
46 	.pkt_access	= true,
47 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
48 	.arg1_type	= ARG_CONST_MAP_PTR,
49 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
50 };
51 
52 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
53 	   void *, value, u64, flags)
54 {
55 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
56 	return map->ops->map_update_elem(map, key, value, flags);
57 }
58 
59 const struct bpf_func_proto bpf_map_update_elem_proto = {
60 	.func		= bpf_map_update_elem,
61 	.gpl_only	= false,
62 	.pkt_access	= true,
63 	.ret_type	= RET_INTEGER,
64 	.arg1_type	= ARG_CONST_MAP_PTR,
65 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
66 	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
67 	.arg4_type	= ARG_ANYTHING,
68 };
69 
70 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
71 {
72 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
73 	return map->ops->map_delete_elem(map, key);
74 }
75 
76 const struct bpf_func_proto bpf_map_delete_elem_proto = {
77 	.func		= bpf_map_delete_elem,
78 	.gpl_only	= false,
79 	.pkt_access	= true,
80 	.ret_type	= RET_INTEGER,
81 	.arg1_type	= ARG_CONST_MAP_PTR,
82 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
83 };
84 
85 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
86 {
87 	return map->ops->map_push_elem(map, value, flags);
88 }
89 
90 const struct bpf_func_proto bpf_map_push_elem_proto = {
91 	.func		= bpf_map_push_elem,
92 	.gpl_only	= false,
93 	.pkt_access	= true,
94 	.ret_type	= RET_INTEGER,
95 	.arg1_type	= ARG_CONST_MAP_PTR,
96 	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
97 	.arg3_type	= ARG_ANYTHING,
98 };
99 
100 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
101 {
102 	return map->ops->map_pop_elem(map, value);
103 }
104 
105 const struct bpf_func_proto bpf_map_pop_elem_proto = {
106 	.func		= bpf_map_pop_elem,
107 	.gpl_only	= false,
108 	.ret_type	= RET_INTEGER,
109 	.arg1_type	= ARG_CONST_MAP_PTR,
110 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
111 };
112 
113 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
114 {
115 	return map->ops->map_peek_elem(map, value);
116 }
117 
118 const struct bpf_func_proto bpf_map_peek_elem_proto = {
119 	.func		= bpf_map_peek_elem,
120 	.gpl_only	= false,
121 	.ret_type	= RET_INTEGER,
122 	.arg1_type	= ARG_CONST_MAP_PTR,
123 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
124 };
125 
126 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
127 {
128 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
129 	return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
130 }
131 
132 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
133 	.func		= bpf_map_lookup_percpu_elem,
134 	.gpl_only	= false,
135 	.pkt_access	= true,
136 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
137 	.arg1_type	= ARG_CONST_MAP_PTR,
138 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
139 	.arg3_type	= ARG_ANYTHING,
140 };
141 
142 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
143 	.func		= bpf_user_rnd_u32,
144 	.gpl_only	= false,
145 	.ret_type	= RET_INTEGER,
146 };
147 
148 BPF_CALL_0(bpf_get_smp_processor_id)
149 {
150 	return smp_processor_id();
151 }
152 
153 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
154 	.func		= bpf_get_smp_processor_id,
155 	.gpl_only	= false,
156 	.ret_type	= RET_INTEGER,
157 };
158 
159 BPF_CALL_0(bpf_get_numa_node_id)
160 {
161 	return numa_node_id();
162 }
163 
164 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
165 	.func		= bpf_get_numa_node_id,
166 	.gpl_only	= false,
167 	.ret_type	= RET_INTEGER,
168 };
169 
170 BPF_CALL_0(bpf_ktime_get_ns)
171 {
172 	/* NMI safe access to clock monotonic */
173 	return ktime_get_mono_fast_ns();
174 }
175 
176 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
177 	.func		= bpf_ktime_get_ns,
178 	.gpl_only	= false,
179 	.ret_type	= RET_INTEGER,
180 };
181 
182 BPF_CALL_0(bpf_ktime_get_boot_ns)
183 {
184 	/* NMI safe access to clock boottime */
185 	return ktime_get_boot_fast_ns();
186 }
187 
188 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
189 	.func		= bpf_ktime_get_boot_ns,
190 	.gpl_only	= false,
191 	.ret_type	= RET_INTEGER,
192 };
193 
194 BPF_CALL_0(bpf_ktime_get_coarse_ns)
195 {
196 	return ktime_get_coarse_ns();
197 }
198 
199 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
200 	.func		= bpf_ktime_get_coarse_ns,
201 	.gpl_only	= false,
202 	.ret_type	= RET_INTEGER,
203 };
204 
205 BPF_CALL_0(bpf_ktime_get_tai_ns)
206 {
207 	/* NMI safe access to clock tai */
208 	return ktime_get_tai_fast_ns();
209 }
210 
211 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
212 	.func		= bpf_ktime_get_tai_ns,
213 	.gpl_only	= false,
214 	.ret_type	= RET_INTEGER,
215 };
216 
217 BPF_CALL_0(bpf_get_current_pid_tgid)
218 {
219 	struct task_struct *task = current;
220 
221 	if (unlikely(!task))
222 		return -EINVAL;
223 
224 	return (u64) task->tgid << 32 | task->pid;
225 }
226 
227 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
228 	.func		= bpf_get_current_pid_tgid,
229 	.gpl_only	= false,
230 	.ret_type	= RET_INTEGER,
231 };
232 
233 BPF_CALL_0(bpf_get_current_uid_gid)
234 {
235 	struct task_struct *task = current;
236 	kuid_t uid;
237 	kgid_t gid;
238 
239 	if (unlikely(!task))
240 		return -EINVAL;
241 
242 	current_uid_gid(&uid, &gid);
243 	return (u64) from_kgid(&init_user_ns, gid) << 32 |
244 		     from_kuid(&init_user_ns, uid);
245 }
246 
247 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
248 	.func		= bpf_get_current_uid_gid,
249 	.gpl_only	= false,
250 	.ret_type	= RET_INTEGER,
251 };
252 
253 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
254 {
255 	struct task_struct *task = current;
256 
257 	if (unlikely(!task))
258 		goto err_clear;
259 
260 	/* Verifier guarantees that size > 0 */
261 	strscpy_pad(buf, task->comm, size);
262 	return 0;
263 err_clear:
264 	memset(buf, 0, size);
265 	return -EINVAL;
266 }
267 
268 const struct bpf_func_proto bpf_get_current_comm_proto = {
269 	.func		= bpf_get_current_comm,
270 	.gpl_only	= false,
271 	.ret_type	= RET_INTEGER,
272 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
273 	.arg2_type	= ARG_CONST_SIZE,
274 };
275 
276 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
277 
278 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
279 {
280 	arch_spinlock_t *l = (void *)lock;
281 	union {
282 		__u32 val;
283 		arch_spinlock_t lock;
284 	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
285 
286 	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
287 	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
288 	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
289 	preempt_disable();
290 	arch_spin_lock(l);
291 }
292 
293 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
294 {
295 	arch_spinlock_t *l = (void *)lock;
296 
297 	arch_spin_unlock(l);
298 	preempt_enable();
299 }
300 
301 #else
302 
303 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
304 {
305 	atomic_t *l = (void *)lock;
306 
307 	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
308 	do {
309 		atomic_cond_read_relaxed(l, !VAL);
310 	} while (atomic_xchg(l, 1));
311 }
312 
313 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
314 {
315 	atomic_t *l = (void *)lock;
316 
317 	atomic_set_release(l, 0);
318 }
319 
320 #endif
321 
322 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
323 
324 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
325 {
326 	unsigned long flags;
327 
328 	local_irq_save(flags);
329 	__bpf_spin_lock(lock);
330 	__this_cpu_write(irqsave_flags, flags);
331 }
332 
333 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
334 {
335 	__bpf_spin_lock_irqsave(lock);
336 	return 0;
337 }
338 
339 const struct bpf_func_proto bpf_spin_lock_proto = {
340 	.func		= bpf_spin_lock,
341 	.gpl_only	= false,
342 	.ret_type	= RET_VOID,
343 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
344 	.arg1_btf_id    = BPF_PTR_POISON,
345 };
346 
347 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
348 {
349 	unsigned long flags;
350 
351 	flags = __this_cpu_read(irqsave_flags);
352 	__bpf_spin_unlock(lock);
353 	local_irq_restore(flags);
354 }
355 
356 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
357 {
358 	__bpf_spin_unlock_irqrestore(lock);
359 	return 0;
360 }
361 
362 const struct bpf_func_proto bpf_spin_unlock_proto = {
363 	.func		= bpf_spin_unlock,
364 	.gpl_only	= false,
365 	.ret_type	= RET_VOID,
366 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
367 	.arg1_btf_id    = BPF_PTR_POISON,
368 };
369 
370 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
371 			   bool lock_src)
372 {
373 	struct bpf_spin_lock *lock;
374 
375 	if (lock_src)
376 		lock = src + map->record->spin_lock_off;
377 	else
378 		lock = dst + map->record->spin_lock_off;
379 	preempt_disable();
380 	__bpf_spin_lock_irqsave(lock);
381 	copy_map_value(map, dst, src);
382 	__bpf_spin_unlock_irqrestore(lock);
383 	preempt_enable();
384 }
385 
386 BPF_CALL_0(bpf_jiffies64)
387 {
388 	return get_jiffies_64();
389 }
390 
391 const struct bpf_func_proto bpf_jiffies64_proto = {
392 	.func		= bpf_jiffies64,
393 	.gpl_only	= false,
394 	.ret_type	= RET_INTEGER,
395 };
396 
397 #ifdef CONFIG_CGROUPS
398 BPF_CALL_0(bpf_get_current_cgroup_id)
399 {
400 	struct cgroup *cgrp;
401 	u64 cgrp_id;
402 
403 	rcu_read_lock();
404 	cgrp = task_dfl_cgroup(current);
405 	cgrp_id = cgroup_id(cgrp);
406 	rcu_read_unlock();
407 
408 	return cgrp_id;
409 }
410 
411 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
412 	.func		= bpf_get_current_cgroup_id,
413 	.gpl_only	= false,
414 	.ret_type	= RET_INTEGER,
415 };
416 
417 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
418 {
419 	struct cgroup *cgrp;
420 	struct cgroup *ancestor;
421 	u64 cgrp_id;
422 
423 	rcu_read_lock();
424 	cgrp = task_dfl_cgroup(current);
425 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
426 	cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
427 	rcu_read_unlock();
428 
429 	return cgrp_id;
430 }
431 
432 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
433 	.func		= bpf_get_current_ancestor_cgroup_id,
434 	.gpl_only	= false,
435 	.ret_type	= RET_INTEGER,
436 	.arg1_type	= ARG_ANYTHING,
437 };
438 #endif /* CONFIG_CGROUPS */
439 
440 #define BPF_STRTOX_BASE_MASK 0x1F
441 
442 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
443 			  unsigned long long *res, bool *is_negative)
444 {
445 	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
446 	const char *cur_buf = buf;
447 	size_t cur_len = buf_len;
448 	unsigned int consumed;
449 	size_t val_len;
450 	char str[64];
451 
452 	if (!buf || !buf_len || !res || !is_negative)
453 		return -EINVAL;
454 
455 	if (base != 0 && base != 8 && base != 10 && base != 16)
456 		return -EINVAL;
457 
458 	if (flags & ~BPF_STRTOX_BASE_MASK)
459 		return -EINVAL;
460 
461 	while (cur_buf < buf + buf_len && isspace(*cur_buf))
462 		++cur_buf;
463 
464 	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
465 	if (*is_negative)
466 		++cur_buf;
467 
468 	consumed = cur_buf - buf;
469 	cur_len -= consumed;
470 	if (!cur_len)
471 		return -EINVAL;
472 
473 	cur_len = min(cur_len, sizeof(str) - 1);
474 	memcpy(str, cur_buf, cur_len);
475 	str[cur_len] = '\0';
476 	cur_buf = str;
477 
478 	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
479 	val_len = _parse_integer(cur_buf, base, res);
480 
481 	if (val_len & KSTRTOX_OVERFLOW)
482 		return -ERANGE;
483 
484 	if (val_len == 0)
485 		return -EINVAL;
486 
487 	cur_buf += val_len;
488 	consumed += cur_buf - str;
489 
490 	return consumed;
491 }
492 
493 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
494 			 long long *res)
495 {
496 	unsigned long long _res;
497 	bool is_negative;
498 	int err;
499 
500 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
501 	if (err < 0)
502 		return err;
503 	if (is_negative) {
504 		if ((long long)-_res > 0)
505 			return -ERANGE;
506 		*res = -_res;
507 	} else {
508 		if ((long long)_res < 0)
509 			return -ERANGE;
510 		*res = _res;
511 	}
512 	return err;
513 }
514 
515 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
516 	   long *, res)
517 {
518 	long long _res;
519 	int err;
520 
521 	err = __bpf_strtoll(buf, buf_len, flags, &_res);
522 	if (err < 0)
523 		return err;
524 	if (_res != (long)_res)
525 		return -ERANGE;
526 	*res = _res;
527 	return err;
528 }
529 
530 const struct bpf_func_proto bpf_strtol_proto = {
531 	.func		= bpf_strtol,
532 	.gpl_only	= false,
533 	.ret_type	= RET_INTEGER,
534 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
535 	.arg2_type	= ARG_CONST_SIZE,
536 	.arg3_type	= ARG_ANYTHING,
537 	.arg4_type	= ARG_PTR_TO_LONG,
538 };
539 
540 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
541 	   unsigned long *, res)
542 {
543 	unsigned long long _res;
544 	bool is_negative;
545 	int err;
546 
547 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
548 	if (err < 0)
549 		return err;
550 	if (is_negative)
551 		return -EINVAL;
552 	if (_res != (unsigned long)_res)
553 		return -ERANGE;
554 	*res = _res;
555 	return err;
556 }
557 
558 const struct bpf_func_proto bpf_strtoul_proto = {
559 	.func		= bpf_strtoul,
560 	.gpl_only	= false,
561 	.ret_type	= RET_INTEGER,
562 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
563 	.arg2_type	= ARG_CONST_SIZE,
564 	.arg3_type	= ARG_ANYTHING,
565 	.arg4_type	= ARG_PTR_TO_LONG,
566 };
567 
568 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
569 {
570 	return strncmp(s1, s2, s1_sz);
571 }
572 
573 static const struct bpf_func_proto bpf_strncmp_proto = {
574 	.func		= bpf_strncmp,
575 	.gpl_only	= false,
576 	.ret_type	= RET_INTEGER,
577 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
578 	.arg2_type	= ARG_CONST_SIZE,
579 	.arg3_type	= ARG_PTR_TO_CONST_STR,
580 };
581 
582 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
583 	   struct bpf_pidns_info *, nsdata, u32, size)
584 {
585 	struct task_struct *task = current;
586 	struct pid_namespace *pidns;
587 	int err = -EINVAL;
588 
589 	if (unlikely(size != sizeof(struct bpf_pidns_info)))
590 		goto clear;
591 
592 	if (unlikely((u64)(dev_t)dev != dev))
593 		goto clear;
594 
595 	if (unlikely(!task))
596 		goto clear;
597 
598 	pidns = task_active_pid_ns(task);
599 	if (unlikely(!pidns)) {
600 		err = -ENOENT;
601 		goto clear;
602 	}
603 
604 	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
605 		goto clear;
606 
607 	nsdata->pid = task_pid_nr_ns(task, pidns);
608 	nsdata->tgid = task_tgid_nr_ns(task, pidns);
609 	return 0;
610 clear:
611 	memset((void *)nsdata, 0, (size_t) size);
612 	return err;
613 }
614 
615 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
616 	.func		= bpf_get_ns_current_pid_tgid,
617 	.gpl_only	= false,
618 	.ret_type	= RET_INTEGER,
619 	.arg1_type	= ARG_ANYTHING,
620 	.arg2_type	= ARG_ANYTHING,
621 	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
622 	.arg4_type      = ARG_CONST_SIZE,
623 };
624 
625 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
626 	.func		= bpf_get_raw_cpu_id,
627 	.gpl_only	= false,
628 	.ret_type	= RET_INTEGER,
629 };
630 
631 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
632 	   u64, flags, void *, data, u64, size)
633 {
634 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
635 		return -EINVAL;
636 
637 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
638 }
639 
640 const struct bpf_func_proto bpf_event_output_data_proto =  {
641 	.func		= bpf_event_output_data,
642 	.gpl_only       = true,
643 	.ret_type       = RET_INTEGER,
644 	.arg1_type      = ARG_PTR_TO_CTX,
645 	.arg2_type      = ARG_CONST_MAP_PTR,
646 	.arg3_type      = ARG_ANYTHING,
647 	.arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
648 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
649 };
650 
651 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
652 	   const void __user *, user_ptr)
653 {
654 	int ret = copy_from_user(dst, user_ptr, size);
655 
656 	if (unlikely(ret)) {
657 		memset(dst, 0, size);
658 		ret = -EFAULT;
659 	}
660 
661 	return ret;
662 }
663 
664 const struct bpf_func_proto bpf_copy_from_user_proto = {
665 	.func		= bpf_copy_from_user,
666 	.gpl_only	= false,
667 	.might_sleep	= true,
668 	.ret_type	= RET_INTEGER,
669 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
670 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
671 	.arg3_type	= ARG_ANYTHING,
672 };
673 
674 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
675 	   const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
676 {
677 	int ret;
678 
679 	/* flags is not used yet */
680 	if (unlikely(flags))
681 		return -EINVAL;
682 
683 	if (unlikely(!size))
684 		return 0;
685 
686 	ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
687 	if (ret == size)
688 		return 0;
689 
690 	memset(dst, 0, size);
691 	/* Return -EFAULT for partial read */
692 	return ret < 0 ? ret : -EFAULT;
693 }
694 
695 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
696 	.func		= bpf_copy_from_user_task,
697 	.gpl_only	= true,
698 	.might_sleep	= true,
699 	.ret_type	= RET_INTEGER,
700 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
701 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
702 	.arg3_type	= ARG_ANYTHING,
703 	.arg4_type	= ARG_PTR_TO_BTF_ID,
704 	.arg4_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
705 	.arg5_type	= ARG_ANYTHING
706 };
707 
708 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
709 {
710 	if (cpu >= nr_cpu_ids)
711 		return (unsigned long)NULL;
712 
713 	return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
714 }
715 
716 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
717 	.func		= bpf_per_cpu_ptr,
718 	.gpl_only	= false,
719 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
720 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
721 	.arg2_type	= ARG_ANYTHING,
722 };
723 
724 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
725 {
726 	return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
727 }
728 
729 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
730 	.func		= bpf_this_cpu_ptr,
731 	.gpl_only	= false,
732 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
733 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
734 };
735 
736 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
737 		size_t bufsz)
738 {
739 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
740 
741 	buf[0] = 0;
742 
743 	switch (fmt_ptype) {
744 	case 's':
745 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
746 		if ((unsigned long)unsafe_ptr < TASK_SIZE)
747 			return strncpy_from_user_nofault(buf, user_ptr, bufsz);
748 		fallthrough;
749 #endif
750 	case 'k':
751 		return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
752 	case 'u':
753 		return strncpy_from_user_nofault(buf, user_ptr, bufsz);
754 	}
755 
756 	return -EINVAL;
757 }
758 
759 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
760  * arguments representation.
761  */
762 #define MAX_BPRINTF_BIN_ARGS	512
763 
764 /* Support executing three nested bprintf helper calls on a given CPU */
765 #define MAX_BPRINTF_NEST_LEVEL	3
766 struct bpf_bprintf_buffers {
767 	char bin_args[MAX_BPRINTF_BIN_ARGS];
768 	char buf[MAX_BPRINTF_BUF];
769 };
770 
771 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
772 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
773 
774 static int try_get_buffers(struct bpf_bprintf_buffers **bufs)
775 {
776 	int nest_level;
777 
778 	preempt_disable();
779 	nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
780 	if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
781 		this_cpu_dec(bpf_bprintf_nest_level);
782 		preempt_enable();
783 		return -EBUSY;
784 	}
785 	*bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
786 
787 	return 0;
788 }
789 
790 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
791 {
792 	if (!data->bin_args && !data->buf)
793 		return;
794 	if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
795 		return;
796 	this_cpu_dec(bpf_bprintf_nest_level);
797 	preempt_enable();
798 }
799 
800 /*
801  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
802  *
803  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
804  *
805  * This can be used in two ways:
806  * - Format string verification only: when data->get_bin_args is false
807  * - Arguments preparation: in addition to the above verification, it writes in
808  *   data->bin_args a binary representation of arguments usable by bstr_printf
809  *   where pointers from BPF have been sanitized.
810  *
811  * In argument preparation mode, if 0 is returned, safe temporary buffers are
812  * allocated and bpf_bprintf_cleanup should be called to free them after use.
813  */
814 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
815 			u32 num_args, struct bpf_bprintf_data *data)
816 {
817 	bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
818 	char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
819 	struct bpf_bprintf_buffers *buffers = NULL;
820 	size_t sizeof_cur_arg, sizeof_cur_ip;
821 	int err, i, num_spec = 0;
822 	u64 cur_arg;
823 	char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
824 
825 	fmt_end = strnchr(fmt, fmt_size, 0);
826 	if (!fmt_end)
827 		return -EINVAL;
828 	fmt_size = fmt_end - fmt;
829 
830 	if (get_buffers && try_get_buffers(&buffers))
831 		return -EBUSY;
832 
833 	if (data->get_bin_args) {
834 		if (num_args)
835 			tmp_buf = buffers->bin_args;
836 		tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
837 		data->bin_args = (u32 *)tmp_buf;
838 	}
839 
840 	if (data->get_buf)
841 		data->buf = buffers->buf;
842 
843 	for (i = 0; i < fmt_size; i++) {
844 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
845 			err = -EINVAL;
846 			goto out;
847 		}
848 
849 		if (fmt[i] != '%')
850 			continue;
851 
852 		if (fmt[i + 1] == '%') {
853 			i++;
854 			continue;
855 		}
856 
857 		if (num_spec >= num_args) {
858 			err = -EINVAL;
859 			goto out;
860 		}
861 
862 		/* The string is zero-terminated so if fmt[i] != 0, we can
863 		 * always access fmt[i + 1], in the worst case it will be a 0
864 		 */
865 		i++;
866 
867 		/* skip optional "[0 +-][num]" width formatting field */
868 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
869 		       fmt[i] == ' ')
870 			i++;
871 		if (fmt[i] >= '1' && fmt[i] <= '9') {
872 			i++;
873 			while (fmt[i] >= '0' && fmt[i] <= '9')
874 				i++;
875 		}
876 
877 		if (fmt[i] == 'p') {
878 			sizeof_cur_arg = sizeof(long);
879 
880 			if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
881 			    fmt[i + 2] == 's') {
882 				fmt_ptype = fmt[i + 1];
883 				i += 2;
884 				goto fmt_str;
885 			}
886 
887 			if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
888 			    ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
889 			    fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
890 			    fmt[i + 1] == 'S') {
891 				/* just kernel pointers */
892 				if (tmp_buf)
893 					cur_arg = raw_args[num_spec];
894 				i++;
895 				goto nocopy_fmt;
896 			}
897 
898 			if (fmt[i + 1] == 'B') {
899 				if (tmp_buf)  {
900 					err = snprintf(tmp_buf,
901 						       (tmp_buf_end - tmp_buf),
902 						       "%pB",
903 						       (void *)(long)raw_args[num_spec]);
904 					tmp_buf += (err + 1);
905 				}
906 
907 				i++;
908 				num_spec++;
909 				continue;
910 			}
911 
912 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
913 			if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
914 			    (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
915 				err = -EINVAL;
916 				goto out;
917 			}
918 
919 			i += 2;
920 			if (!tmp_buf)
921 				goto nocopy_fmt;
922 
923 			sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
924 			if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
925 				err = -ENOSPC;
926 				goto out;
927 			}
928 
929 			unsafe_ptr = (char *)(long)raw_args[num_spec];
930 			err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
931 						       sizeof_cur_ip);
932 			if (err < 0)
933 				memset(cur_ip, 0, sizeof_cur_ip);
934 
935 			/* hack: bstr_printf expects IP addresses to be
936 			 * pre-formatted as strings, ironically, the easiest way
937 			 * to do that is to call snprintf.
938 			 */
939 			ip_spec[2] = fmt[i - 1];
940 			ip_spec[3] = fmt[i];
941 			err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
942 				       ip_spec, &cur_ip);
943 
944 			tmp_buf += err + 1;
945 			num_spec++;
946 
947 			continue;
948 		} else if (fmt[i] == 's') {
949 			fmt_ptype = fmt[i];
950 fmt_str:
951 			if (fmt[i + 1] != 0 &&
952 			    !isspace(fmt[i + 1]) &&
953 			    !ispunct(fmt[i + 1])) {
954 				err = -EINVAL;
955 				goto out;
956 			}
957 
958 			if (!tmp_buf)
959 				goto nocopy_fmt;
960 
961 			if (tmp_buf_end == tmp_buf) {
962 				err = -ENOSPC;
963 				goto out;
964 			}
965 
966 			unsafe_ptr = (char *)(long)raw_args[num_spec];
967 			err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
968 						    fmt_ptype,
969 						    tmp_buf_end - tmp_buf);
970 			if (err < 0) {
971 				tmp_buf[0] = '\0';
972 				err = 1;
973 			}
974 
975 			tmp_buf += err;
976 			num_spec++;
977 
978 			continue;
979 		} else if (fmt[i] == 'c') {
980 			if (!tmp_buf)
981 				goto nocopy_fmt;
982 
983 			if (tmp_buf_end == tmp_buf) {
984 				err = -ENOSPC;
985 				goto out;
986 			}
987 
988 			*tmp_buf = raw_args[num_spec];
989 			tmp_buf++;
990 			num_spec++;
991 
992 			continue;
993 		}
994 
995 		sizeof_cur_arg = sizeof(int);
996 
997 		if (fmt[i] == 'l') {
998 			sizeof_cur_arg = sizeof(long);
999 			i++;
1000 		}
1001 		if (fmt[i] == 'l') {
1002 			sizeof_cur_arg = sizeof(long long);
1003 			i++;
1004 		}
1005 
1006 		if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1007 		    fmt[i] != 'x' && fmt[i] != 'X') {
1008 			err = -EINVAL;
1009 			goto out;
1010 		}
1011 
1012 		if (tmp_buf)
1013 			cur_arg = raw_args[num_spec];
1014 nocopy_fmt:
1015 		if (tmp_buf) {
1016 			tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1017 			if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1018 				err = -ENOSPC;
1019 				goto out;
1020 			}
1021 
1022 			if (sizeof_cur_arg == 8) {
1023 				*(u32 *)tmp_buf = *(u32 *)&cur_arg;
1024 				*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1025 			} else {
1026 				*(u32 *)tmp_buf = (u32)(long)cur_arg;
1027 			}
1028 			tmp_buf += sizeof_cur_arg;
1029 		}
1030 		num_spec++;
1031 	}
1032 
1033 	err = 0;
1034 out:
1035 	if (err)
1036 		bpf_bprintf_cleanup(data);
1037 	return err;
1038 }
1039 
1040 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1041 	   const void *, args, u32, data_len)
1042 {
1043 	struct bpf_bprintf_data data = {
1044 		.get_bin_args	= true,
1045 	};
1046 	int err, num_args;
1047 
1048 	if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1049 	    (data_len && !args))
1050 		return -EINVAL;
1051 	num_args = data_len / 8;
1052 
1053 	/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1054 	 * can safely give an unbounded size.
1055 	 */
1056 	err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1057 	if (err < 0)
1058 		return err;
1059 
1060 	err = bstr_printf(str, str_size, fmt, data.bin_args);
1061 
1062 	bpf_bprintf_cleanup(&data);
1063 
1064 	return err + 1;
1065 }
1066 
1067 const struct bpf_func_proto bpf_snprintf_proto = {
1068 	.func		= bpf_snprintf,
1069 	.gpl_only	= true,
1070 	.ret_type	= RET_INTEGER,
1071 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1072 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1073 	.arg3_type	= ARG_PTR_TO_CONST_STR,
1074 	.arg4_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1075 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1076 };
1077 
1078 /* BPF map elements can contain 'struct bpf_timer'.
1079  * Such map owns all of its BPF timers.
1080  * 'struct bpf_timer' is allocated as part of map element allocation
1081  * and it's zero initialized.
1082  * That space is used to keep 'struct bpf_timer_kern'.
1083  * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1084  * remembers 'struct bpf_map *' pointer it's part of.
1085  * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1086  * bpf_timer_start() arms the timer.
1087  * If user space reference to a map goes to zero at this point
1088  * ops->map_release_uref callback is responsible for cancelling the timers,
1089  * freeing their memory, and decrementing prog's refcnts.
1090  * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1091  * Inner maps can contain bpf timers as well. ops->map_release_uref is
1092  * freeing the timers when inner map is replaced or deleted by user space.
1093  */
1094 struct bpf_hrtimer {
1095 	struct hrtimer timer;
1096 	struct bpf_map *map;
1097 	struct bpf_prog *prog;
1098 	void __rcu *callback_fn;
1099 	void *value;
1100 };
1101 
1102 /* the actual struct hidden inside uapi struct bpf_timer */
1103 struct bpf_timer_kern {
1104 	struct bpf_hrtimer *timer;
1105 	/* bpf_spin_lock is used here instead of spinlock_t to make
1106 	 * sure that it always fits into space reserved by struct bpf_timer
1107 	 * regardless of LOCKDEP and spinlock debug flags.
1108 	 */
1109 	struct bpf_spin_lock lock;
1110 } __attribute__((aligned(8)));
1111 
1112 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1113 
1114 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1115 {
1116 	struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1117 	struct bpf_map *map = t->map;
1118 	void *value = t->value;
1119 	bpf_callback_t callback_fn;
1120 	void *key;
1121 	u32 idx;
1122 
1123 	BTF_TYPE_EMIT(struct bpf_timer);
1124 	callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
1125 	if (!callback_fn)
1126 		goto out;
1127 
1128 	/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1129 	 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1130 	 * Remember the timer this callback is servicing to prevent
1131 	 * deadlock if callback_fn() calls bpf_timer_cancel() or
1132 	 * bpf_map_delete_elem() on the same timer.
1133 	 */
1134 	this_cpu_write(hrtimer_running, t);
1135 	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1136 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1137 
1138 		/* compute the key */
1139 		idx = ((char *)value - array->value) / array->elem_size;
1140 		key = &idx;
1141 	} else { /* hash or lru */
1142 		key = value - round_up(map->key_size, 8);
1143 	}
1144 
1145 	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1146 	/* The verifier checked that return value is zero. */
1147 
1148 	this_cpu_write(hrtimer_running, NULL);
1149 out:
1150 	return HRTIMER_NORESTART;
1151 }
1152 
1153 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
1154 	   u64, flags)
1155 {
1156 	clockid_t clockid = flags & (MAX_CLOCKS - 1);
1157 	struct bpf_hrtimer *t;
1158 	int ret = 0;
1159 
1160 	BUILD_BUG_ON(MAX_CLOCKS != 16);
1161 	BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
1162 	BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
1163 
1164 	if (in_nmi())
1165 		return -EOPNOTSUPP;
1166 
1167 	if (flags >= MAX_CLOCKS ||
1168 	    /* similar to timerfd except _ALARM variants are not supported */
1169 	    (clockid != CLOCK_MONOTONIC &&
1170 	     clockid != CLOCK_REALTIME &&
1171 	     clockid != CLOCK_BOOTTIME))
1172 		return -EINVAL;
1173 	__bpf_spin_lock_irqsave(&timer->lock);
1174 	t = timer->timer;
1175 	if (t) {
1176 		ret = -EBUSY;
1177 		goto out;
1178 	}
1179 	if (!atomic64_read(&map->usercnt)) {
1180 		/* maps with timers must be either held by user space
1181 		 * or pinned in bpffs.
1182 		 */
1183 		ret = -EPERM;
1184 		goto out;
1185 	}
1186 	/* allocate hrtimer via map_kmalloc to use memcg accounting */
1187 	t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
1188 	if (!t) {
1189 		ret = -ENOMEM;
1190 		goto out;
1191 	}
1192 	t->value = (void *)timer - map->record->timer_off;
1193 	t->map = map;
1194 	t->prog = NULL;
1195 	rcu_assign_pointer(t->callback_fn, NULL);
1196 	hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1197 	t->timer.function = bpf_timer_cb;
1198 	timer->timer = t;
1199 out:
1200 	__bpf_spin_unlock_irqrestore(&timer->lock);
1201 	return ret;
1202 }
1203 
1204 static const struct bpf_func_proto bpf_timer_init_proto = {
1205 	.func		= bpf_timer_init,
1206 	.gpl_only	= true,
1207 	.ret_type	= RET_INTEGER,
1208 	.arg1_type	= ARG_PTR_TO_TIMER,
1209 	.arg2_type	= ARG_CONST_MAP_PTR,
1210 	.arg3_type	= ARG_ANYTHING,
1211 };
1212 
1213 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
1214 	   struct bpf_prog_aux *, aux)
1215 {
1216 	struct bpf_prog *prev, *prog = aux->prog;
1217 	struct bpf_hrtimer *t;
1218 	int ret = 0;
1219 
1220 	if (in_nmi())
1221 		return -EOPNOTSUPP;
1222 	__bpf_spin_lock_irqsave(&timer->lock);
1223 	t = timer->timer;
1224 	if (!t) {
1225 		ret = -EINVAL;
1226 		goto out;
1227 	}
1228 	if (!atomic64_read(&t->map->usercnt)) {
1229 		/* maps with timers must be either held by user space
1230 		 * or pinned in bpffs. Otherwise timer might still be
1231 		 * running even when bpf prog is detached and user space
1232 		 * is gone, since map_release_uref won't ever be called.
1233 		 */
1234 		ret = -EPERM;
1235 		goto out;
1236 	}
1237 	prev = t->prog;
1238 	if (prev != prog) {
1239 		/* Bump prog refcnt once. Every bpf_timer_set_callback()
1240 		 * can pick different callback_fn-s within the same prog.
1241 		 */
1242 		prog = bpf_prog_inc_not_zero(prog);
1243 		if (IS_ERR(prog)) {
1244 			ret = PTR_ERR(prog);
1245 			goto out;
1246 		}
1247 		if (prev)
1248 			/* Drop prev prog refcnt when swapping with new prog */
1249 			bpf_prog_put(prev);
1250 		t->prog = prog;
1251 	}
1252 	rcu_assign_pointer(t->callback_fn, callback_fn);
1253 out:
1254 	__bpf_spin_unlock_irqrestore(&timer->lock);
1255 	return ret;
1256 }
1257 
1258 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1259 	.func		= bpf_timer_set_callback,
1260 	.gpl_only	= true,
1261 	.ret_type	= RET_INTEGER,
1262 	.arg1_type	= ARG_PTR_TO_TIMER,
1263 	.arg2_type	= ARG_PTR_TO_FUNC,
1264 };
1265 
1266 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
1267 {
1268 	struct bpf_hrtimer *t;
1269 	int ret = 0;
1270 	enum hrtimer_mode mode;
1271 
1272 	if (in_nmi())
1273 		return -EOPNOTSUPP;
1274 	if (flags > BPF_F_TIMER_ABS)
1275 		return -EINVAL;
1276 	__bpf_spin_lock_irqsave(&timer->lock);
1277 	t = timer->timer;
1278 	if (!t || !t->prog) {
1279 		ret = -EINVAL;
1280 		goto out;
1281 	}
1282 
1283 	if (flags & BPF_F_TIMER_ABS)
1284 		mode = HRTIMER_MODE_ABS_SOFT;
1285 	else
1286 		mode = HRTIMER_MODE_REL_SOFT;
1287 
1288 	hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
1289 out:
1290 	__bpf_spin_unlock_irqrestore(&timer->lock);
1291 	return ret;
1292 }
1293 
1294 static const struct bpf_func_proto bpf_timer_start_proto = {
1295 	.func		= bpf_timer_start,
1296 	.gpl_only	= true,
1297 	.ret_type	= RET_INTEGER,
1298 	.arg1_type	= ARG_PTR_TO_TIMER,
1299 	.arg2_type	= ARG_ANYTHING,
1300 	.arg3_type	= ARG_ANYTHING,
1301 };
1302 
1303 static void drop_prog_refcnt(struct bpf_hrtimer *t)
1304 {
1305 	struct bpf_prog *prog = t->prog;
1306 
1307 	if (prog) {
1308 		bpf_prog_put(prog);
1309 		t->prog = NULL;
1310 		rcu_assign_pointer(t->callback_fn, NULL);
1311 	}
1312 }
1313 
1314 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
1315 {
1316 	struct bpf_hrtimer *t;
1317 	int ret = 0;
1318 
1319 	if (in_nmi())
1320 		return -EOPNOTSUPP;
1321 	__bpf_spin_lock_irqsave(&timer->lock);
1322 	t = timer->timer;
1323 	if (!t) {
1324 		ret = -EINVAL;
1325 		goto out;
1326 	}
1327 	if (this_cpu_read(hrtimer_running) == t) {
1328 		/* If bpf callback_fn is trying to bpf_timer_cancel()
1329 		 * its own timer the hrtimer_cancel() will deadlock
1330 		 * since it waits for callback_fn to finish
1331 		 */
1332 		ret = -EDEADLK;
1333 		goto out;
1334 	}
1335 	drop_prog_refcnt(t);
1336 out:
1337 	__bpf_spin_unlock_irqrestore(&timer->lock);
1338 	/* Cancel the timer and wait for associated callback to finish
1339 	 * if it was running.
1340 	 */
1341 	ret = ret ?: hrtimer_cancel(&t->timer);
1342 	return ret;
1343 }
1344 
1345 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1346 	.func		= bpf_timer_cancel,
1347 	.gpl_only	= true,
1348 	.ret_type	= RET_INTEGER,
1349 	.arg1_type	= ARG_PTR_TO_TIMER,
1350 };
1351 
1352 /* This function is called by map_delete/update_elem for individual element and
1353  * by ops->map_release_uref when the user space reference to a map reaches zero.
1354  */
1355 void bpf_timer_cancel_and_free(void *val)
1356 {
1357 	struct bpf_timer_kern *timer = val;
1358 	struct bpf_hrtimer *t;
1359 
1360 	/* Performance optimization: read timer->timer without lock first. */
1361 	if (!READ_ONCE(timer->timer))
1362 		return;
1363 
1364 	__bpf_spin_lock_irqsave(&timer->lock);
1365 	/* re-read it under lock */
1366 	t = timer->timer;
1367 	if (!t)
1368 		goto out;
1369 	drop_prog_refcnt(t);
1370 	/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1371 	 * this timer, since it won't be initialized.
1372 	 */
1373 	timer->timer = NULL;
1374 out:
1375 	__bpf_spin_unlock_irqrestore(&timer->lock);
1376 	if (!t)
1377 		return;
1378 	/* Cancel the timer and wait for callback to complete if it was running.
1379 	 * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1380 	 * right after for both preallocated and non-preallocated maps.
1381 	 * The timer->timer = NULL was already done and no code path can
1382 	 * see address 't' anymore.
1383 	 *
1384 	 * Check that bpf_map_delete/update_elem() wasn't called from timer
1385 	 * callback_fn. In such case don't call hrtimer_cancel() (since it will
1386 	 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1387 	 * return -1). Though callback_fn is still running on this cpu it's
1388 	 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1389 	 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1390 	 * since timer->timer = NULL was already done. The timer will be
1391 	 * effectively cancelled because bpf_timer_cb() will return
1392 	 * HRTIMER_NORESTART.
1393 	 */
1394 	if (this_cpu_read(hrtimer_running) != t)
1395 		hrtimer_cancel(&t->timer);
1396 	kfree(t);
1397 }
1398 
1399 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
1400 {
1401 	unsigned long *kptr = map_value;
1402 
1403 	return xchg(kptr, (unsigned long)ptr);
1404 }
1405 
1406 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1407  * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1408  * denote type that verifier will determine.
1409  */
1410 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1411 	.func         = bpf_kptr_xchg,
1412 	.gpl_only     = false,
1413 	.ret_type     = RET_PTR_TO_BTF_ID_OR_NULL,
1414 	.ret_btf_id   = BPF_PTR_POISON,
1415 	.arg1_type    = ARG_PTR_TO_KPTR,
1416 	.arg2_type    = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1417 	.arg2_btf_id  = BPF_PTR_POISON,
1418 };
1419 
1420 /* Since the upper 8 bits of dynptr->size is reserved, the
1421  * maximum supported size is 2^24 - 1.
1422  */
1423 #define DYNPTR_MAX_SIZE	((1UL << 24) - 1)
1424 #define DYNPTR_TYPE_SHIFT	28
1425 #define DYNPTR_SIZE_MASK	0xFFFFFF
1426 #define DYNPTR_RDONLY_BIT	BIT(31)
1427 
1428 static bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1429 {
1430 	return ptr->size & DYNPTR_RDONLY_BIT;
1431 }
1432 
1433 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1434 {
1435 	ptr->size |= DYNPTR_RDONLY_BIT;
1436 }
1437 
1438 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1439 {
1440 	ptr->size |= type << DYNPTR_TYPE_SHIFT;
1441 }
1442 
1443 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1444 {
1445 	return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1446 }
1447 
1448 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1449 {
1450 	return ptr->size & DYNPTR_SIZE_MASK;
1451 }
1452 
1453 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size)
1454 {
1455 	u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1456 
1457 	ptr->size = new_size | metadata;
1458 }
1459 
1460 int bpf_dynptr_check_size(u32 size)
1461 {
1462 	return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1463 }
1464 
1465 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1466 		     enum bpf_dynptr_type type, u32 offset, u32 size)
1467 {
1468 	ptr->data = data;
1469 	ptr->offset = offset;
1470 	ptr->size = size;
1471 	bpf_dynptr_set_type(ptr, type);
1472 }
1473 
1474 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1475 {
1476 	memset(ptr, 0, sizeof(*ptr));
1477 }
1478 
1479 static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1480 {
1481 	u32 size = __bpf_dynptr_size(ptr);
1482 
1483 	if (len > size || offset > size - len)
1484 		return -E2BIG;
1485 
1486 	return 0;
1487 }
1488 
1489 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1490 {
1491 	int err;
1492 
1493 	BTF_TYPE_EMIT(struct bpf_dynptr);
1494 
1495 	err = bpf_dynptr_check_size(size);
1496 	if (err)
1497 		goto error;
1498 
1499 	/* flags is currently unsupported */
1500 	if (flags) {
1501 		err = -EINVAL;
1502 		goto error;
1503 	}
1504 
1505 	bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1506 
1507 	return 0;
1508 
1509 error:
1510 	bpf_dynptr_set_null(ptr);
1511 	return err;
1512 }
1513 
1514 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1515 	.func		= bpf_dynptr_from_mem,
1516 	.gpl_only	= false,
1517 	.ret_type	= RET_INTEGER,
1518 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1519 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1520 	.arg3_type	= ARG_ANYTHING,
1521 	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT,
1522 };
1523 
1524 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
1525 	   u32, offset, u64, flags)
1526 {
1527 	enum bpf_dynptr_type type;
1528 	int err;
1529 
1530 	if (!src->data || flags)
1531 		return -EINVAL;
1532 
1533 	err = bpf_dynptr_check_off_len(src, offset, len);
1534 	if (err)
1535 		return err;
1536 
1537 	type = bpf_dynptr_get_type(src);
1538 
1539 	switch (type) {
1540 	case BPF_DYNPTR_TYPE_LOCAL:
1541 	case BPF_DYNPTR_TYPE_RINGBUF:
1542 		/* Source and destination may possibly overlap, hence use memmove to
1543 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1544 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1545 		 */
1546 		memmove(dst, src->data + src->offset + offset, len);
1547 		return 0;
1548 	case BPF_DYNPTR_TYPE_SKB:
1549 		return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1550 	case BPF_DYNPTR_TYPE_XDP:
1551 		return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1552 	default:
1553 		WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1554 		return -EFAULT;
1555 	}
1556 }
1557 
1558 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1559 	.func		= bpf_dynptr_read,
1560 	.gpl_only	= false,
1561 	.ret_type	= RET_INTEGER,
1562 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1563 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1564 	.arg3_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1565 	.arg4_type	= ARG_ANYTHING,
1566 	.arg5_type	= ARG_ANYTHING,
1567 };
1568 
1569 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1570 	   u32, len, u64, flags)
1571 {
1572 	enum bpf_dynptr_type type;
1573 	int err;
1574 
1575 	if (!dst->data || __bpf_dynptr_is_rdonly(dst))
1576 		return -EINVAL;
1577 
1578 	err = bpf_dynptr_check_off_len(dst, offset, len);
1579 	if (err)
1580 		return err;
1581 
1582 	type = bpf_dynptr_get_type(dst);
1583 
1584 	switch (type) {
1585 	case BPF_DYNPTR_TYPE_LOCAL:
1586 	case BPF_DYNPTR_TYPE_RINGBUF:
1587 		if (flags)
1588 			return -EINVAL;
1589 		/* Source and destination may possibly overlap, hence use memmove to
1590 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1591 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1592 		 */
1593 		memmove(dst->data + dst->offset + offset, src, len);
1594 		return 0;
1595 	case BPF_DYNPTR_TYPE_SKB:
1596 		return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1597 					     flags);
1598 	case BPF_DYNPTR_TYPE_XDP:
1599 		if (flags)
1600 			return -EINVAL;
1601 		return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1602 	default:
1603 		WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1604 		return -EFAULT;
1605 	}
1606 }
1607 
1608 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1609 	.func		= bpf_dynptr_write,
1610 	.gpl_only	= false,
1611 	.ret_type	= RET_INTEGER,
1612 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1613 	.arg2_type	= ARG_ANYTHING,
1614 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1615 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1616 	.arg5_type	= ARG_ANYTHING,
1617 };
1618 
1619 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1620 {
1621 	enum bpf_dynptr_type type;
1622 	int err;
1623 
1624 	if (!ptr->data)
1625 		return 0;
1626 
1627 	err = bpf_dynptr_check_off_len(ptr, offset, len);
1628 	if (err)
1629 		return 0;
1630 
1631 	if (__bpf_dynptr_is_rdonly(ptr))
1632 		return 0;
1633 
1634 	type = bpf_dynptr_get_type(ptr);
1635 
1636 	switch (type) {
1637 	case BPF_DYNPTR_TYPE_LOCAL:
1638 	case BPF_DYNPTR_TYPE_RINGBUF:
1639 		return (unsigned long)(ptr->data + ptr->offset + offset);
1640 	case BPF_DYNPTR_TYPE_SKB:
1641 	case BPF_DYNPTR_TYPE_XDP:
1642 		/* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1643 		return 0;
1644 	default:
1645 		WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1646 		return 0;
1647 	}
1648 }
1649 
1650 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1651 	.func		= bpf_dynptr_data,
1652 	.gpl_only	= false,
1653 	.ret_type	= RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1654 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1655 	.arg2_type	= ARG_ANYTHING,
1656 	.arg3_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
1657 };
1658 
1659 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1660 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1661 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1662 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1663 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1664 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1665 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1666 
1667 const struct bpf_func_proto *
1668 bpf_base_func_proto(enum bpf_func_id func_id)
1669 {
1670 	switch (func_id) {
1671 	case BPF_FUNC_map_lookup_elem:
1672 		return &bpf_map_lookup_elem_proto;
1673 	case BPF_FUNC_map_update_elem:
1674 		return &bpf_map_update_elem_proto;
1675 	case BPF_FUNC_map_delete_elem:
1676 		return &bpf_map_delete_elem_proto;
1677 	case BPF_FUNC_map_push_elem:
1678 		return &bpf_map_push_elem_proto;
1679 	case BPF_FUNC_map_pop_elem:
1680 		return &bpf_map_pop_elem_proto;
1681 	case BPF_FUNC_map_peek_elem:
1682 		return &bpf_map_peek_elem_proto;
1683 	case BPF_FUNC_map_lookup_percpu_elem:
1684 		return &bpf_map_lookup_percpu_elem_proto;
1685 	case BPF_FUNC_get_prandom_u32:
1686 		return &bpf_get_prandom_u32_proto;
1687 	case BPF_FUNC_get_smp_processor_id:
1688 		return &bpf_get_raw_smp_processor_id_proto;
1689 	case BPF_FUNC_get_numa_node_id:
1690 		return &bpf_get_numa_node_id_proto;
1691 	case BPF_FUNC_tail_call:
1692 		return &bpf_tail_call_proto;
1693 	case BPF_FUNC_ktime_get_ns:
1694 		return &bpf_ktime_get_ns_proto;
1695 	case BPF_FUNC_ktime_get_boot_ns:
1696 		return &bpf_ktime_get_boot_ns_proto;
1697 	case BPF_FUNC_ktime_get_tai_ns:
1698 		return &bpf_ktime_get_tai_ns_proto;
1699 	case BPF_FUNC_ringbuf_output:
1700 		return &bpf_ringbuf_output_proto;
1701 	case BPF_FUNC_ringbuf_reserve:
1702 		return &bpf_ringbuf_reserve_proto;
1703 	case BPF_FUNC_ringbuf_submit:
1704 		return &bpf_ringbuf_submit_proto;
1705 	case BPF_FUNC_ringbuf_discard:
1706 		return &bpf_ringbuf_discard_proto;
1707 	case BPF_FUNC_ringbuf_query:
1708 		return &bpf_ringbuf_query_proto;
1709 	case BPF_FUNC_strncmp:
1710 		return &bpf_strncmp_proto;
1711 	case BPF_FUNC_strtol:
1712 		return &bpf_strtol_proto;
1713 	case BPF_FUNC_strtoul:
1714 		return &bpf_strtoul_proto;
1715 	default:
1716 		break;
1717 	}
1718 
1719 	if (!bpf_capable())
1720 		return NULL;
1721 
1722 	switch (func_id) {
1723 	case BPF_FUNC_spin_lock:
1724 		return &bpf_spin_lock_proto;
1725 	case BPF_FUNC_spin_unlock:
1726 		return &bpf_spin_unlock_proto;
1727 	case BPF_FUNC_jiffies64:
1728 		return &bpf_jiffies64_proto;
1729 	case BPF_FUNC_per_cpu_ptr:
1730 		return &bpf_per_cpu_ptr_proto;
1731 	case BPF_FUNC_this_cpu_ptr:
1732 		return &bpf_this_cpu_ptr_proto;
1733 	case BPF_FUNC_timer_init:
1734 		return &bpf_timer_init_proto;
1735 	case BPF_FUNC_timer_set_callback:
1736 		return &bpf_timer_set_callback_proto;
1737 	case BPF_FUNC_timer_start:
1738 		return &bpf_timer_start_proto;
1739 	case BPF_FUNC_timer_cancel:
1740 		return &bpf_timer_cancel_proto;
1741 	case BPF_FUNC_kptr_xchg:
1742 		return &bpf_kptr_xchg_proto;
1743 	case BPF_FUNC_for_each_map_elem:
1744 		return &bpf_for_each_map_elem_proto;
1745 	case BPF_FUNC_loop:
1746 		return &bpf_loop_proto;
1747 	case BPF_FUNC_user_ringbuf_drain:
1748 		return &bpf_user_ringbuf_drain_proto;
1749 	case BPF_FUNC_ringbuf_reserve_dynptr:
1750 		return &bpf_ringbuf_reserve_dynptr_proto;
1751 	case BPF_FUNC_ringbuf_submit_dynptr:
1752 		return &bpf_ringbuf_submit_dynptr_proto;
1753 	case BPF_FUNC_ringbuf_discard_dynptr:
1754 		return &bpf_ringbuf_discard_dynptr_proto;
1755 	case BPF_FUNC_dynptr_from_mem:
1756 		return &bpf_dynptr_from_mem_proto;
1757 	case BPF_FUNC_dynptr_read:
1758 		return &bpf_dynptr_read_proto;
1759 	case BPF_FUNC_dynptr_write:
1760 		return &bpf_dynptr_write_proto;
1761 	case BPF_FUNC_dynptr_data:
1762 		return &bpf_dynptr_data_proto;
1763 #ifdef CONFIG_CGROUPS
1764 	case BPF_FUNC_cgrp_storage_get:
1765 		return &bpf_cgrp_storage_get_proto;
1766 	case BPF_FUNC_cgrp_storage_delete:
1767 		return &bpf_cgrp_storage_delete_proto;
1768 	case BPF_FUNC_get_current_cgroup_id:
1769 		return &bpf_get_current_cgroup_id_proto;
1770 	case BPF_FUNC_get_current_ancestor_cgroup_id:
1771 		return &bpf_get_current_ancestor_cgroup_id_proto;
1772 #endif
1773 	default:
1774 		break;
1775 	}
1776 
1777 	if (!perfmon_capable())
1778 		return NULL;
1779 
1780 	switch (func_id) {
1781 	case BPF_FUNC_trace_printk:
1782 		return bpf_get_trace_printk_proto();
1783 	case BPF_FUNC_get_current_task:
1784 		return &bpf_get_current_task_proto;
1785 	case BPF_FUNC_get_current_task_btf:
1786 		return &bpf_get_current_task_btf_proto;
1787 	case BPF_FUNC_probe_read_user:
1788 		return &bpf_probe_read_user_proto;
1789 	case BPF_FUNC_probe_read_kernel:
1790 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1791 		       NULL : &bpf_probe_read_kernel_proto;
1792 	case BPF_FUNC_probe_read_user_str:
1793 		return &bpf_probe_read_user_str_proto;
1794 	case BPF_FUNC_probe_read_kernel_str:
1795 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1796 		       NULL : &bpf_probe_read_kernel_str_proto;
1797 	case BPF_FUNC_snprintf_btf:
1798 		return &bpf_snprintf_btf_proto;
1799 	case BPF_FUNC_snprintf:
1800 		return &bpf_snprintf_proto;
1801 	case BPF_FUNC_task_pt_regs:
1802 		return &bpf_task_pt_regs_proto;
1803 	case BPF_FUNC_trace_vprintk:
1804 		return bpf_get_trace_vprintk_proto();
1805 	default:
1806 		return NULL;
1807 	}
1808 }
1809 
1810 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec);
1811 
1812 void bpf_list_head_free(const struct btf_field *field, void *list_head,
1813 			struct bpf_spin_lock *spin_lock)
1814 {
1815 	struct list_head *head = list_head, *orig_head = list_head;
1816 
1817 	BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
1818 	BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
1819 
1820 	/* Do the actual list draining outside the lock to not hold the lock for
1821 	 * too long, and also prevent deadlocks if tracing programs end up
1822 	 * executing on entry/exit of functions called inside the critical
1823 	 * section, and end up doing map ops that call bpf_list_head_free for
1824 	 * the same map value again.
1825 	 */
1826 	__bpf_spin_lock_irqsave(spin_lock);
1827 	if (!head->next || list_empty(head))
1828 		goto unlock;
1829 	head = head->next;
1830 unlock:
1831 	INIT_LIST_HEAD(orig_head);
1832 	__bpf_spin_unlock_irqrestore(spin_lock);
1833 
1834 	while (head != orig_head) {
1835 		void *obj = head;
1836 
1837 		obj -= field->graph_root.node_offset;
1838 		head = head->next;
1839 		/* The contained type can also have resources, including a
1840 		 * bpf_list_head which needs to be freed.
1841 		 */
1842 		migrate_disable();
1843 		__bpf_obj_drop_impl(obj, field->graph_root.value_rec);
1844 		migrate_enable();
1845 	}
1846 }
1847 
1848 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
1849  * 'rb_node *', so field name of rb_node within containing struct is not
1850  * needed.
1851  *
1852  * Since bpf_rb_tree's node type has a corresponding struct btf_field with
1853  * graph_root.node_offset, it's not necessary to know field name
1854  * or type of node struct
1855  */
1856 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
1857 	for (pos = rb_first_postorder(root); \
1858 	    pos && ({ n = rb_next_postorder(pos); 1; }); \
1859 	    pos = n)
1860 
1861 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
1862 		      struct bpf_spin_lock *spin_lock)
1863 {
1864 	struct rb_root_cached orig_root, *root = rb_root;
1865 	struct rb_node *pos, *n;
1866 	void *obj;
1867 
1868 	BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
1869 	BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
1870 
1871 	__bpf_spin_lock_irqsave(spin_lock);
1872 	orig_root = *root;
1873 	*root = RB_ROOT_CACHED;
1874 	__bpf_spin_unlock_irqrestore(spin_lock);
1875 
1876 	bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
1877 		obj = pos;
1878 		obj -= field->graph_root.node_offset;
1879 
1880 
1881 		migrate_disable();
1882 		__bpf_obj_drop_impl(obj, field->graph_root.value_rec);
1883 		migrate_enable();
1884 	}
1885 }
1886 
1887 __diag_push();
1888 __diag_ignore_all("-Wmissing-prototypes",
1889 		  "Global functions as their definitions will be in vmlinux BTF");
1890 
1891 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
1892 {
1893 	struct btf_struct_meta *meta = meta__ign;
1894 	u64 size = local_type_id__k;
1895 	void *p;
1896 
1897 	p = bpf_mem_alloc(&bpf_global_ma, size);
1898 	if (!p)
1899 		return NULL;
1900 	if (meta)
1901 		bpf_obj_init(meta->record, p);
1902 	return p;
1903 }
1904 
1905 /* Must be called under migrate_disable(), as required by bpf_mem_free */
1906 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec)
1907 {
1908 	if (rec && rec->refcount_off >= 0 &&
1909 	    !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
1910 		/* Object is refcounted and refcount_dec didn't result in 0
1911 		 * refcount. Return without freeing the object
1912 		 */
1913 		return;
1914 	}
1915 
1916 	if (rec)
1917 		bpf_obj_free_fields(rec, p);
1918 
1919 	if (rec && rec->refcount_off >= 0)
1920 		bpf_mem_free_rcu(&bpf_global_ma, p);
1921 	else
1922 		bpf_mem_free(&bpf_global_ma, p);
1923 }
1924 
1925 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
1926 {
1927 	struct btf_struct_meta *meta = meta__ign;
1928 	void *p = p__alloc;
1929 
1930 	__bpf_obj_drop_impl(p, meta ? meta->record : NULL);
1931 }
1932 
1933 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
1934 {
1935 	struct btf_struct_meta *meta = meta__ign;
1936 	struct bpf_refcount *ref;
1937 
1938 	/* Could just cast directly to refcount_t *, but need some code using
1939 	 * bpf_refcount type so that it is emitted in vmlinux BTF
1940 	 */
1941 	ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
1942 	if (!refcount_inc_not_zero((refcount_t *)ref))
1943 		return NULL;
1944 
1945 	/* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
1946 	 * in verifier.c
1947 	 */
1948 	return (void *)p__refcounted_kptr;
1949 }
1950 
1951 static int __bpf_list_add(struct bpf_list_node_kern *node,
1952 			  struct bpf_list_head *head,
1953 			  bool tail, struct btf_record *rec, u64 off)
1954 {
1955 	struct list_head *n = &node->list_head, *h = (void *)head;
1956 
1957 	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
1958 	 * called on its fields, so init here
1959 	 */
1960 	if (unlikely(!h->next))
1961 		INIT_LIST_HEAD(h);
1962 
1963 	/* node->owner != NULL implies !list_empty(n), no need to separately
1964 	 * check the latter
1965 	 */
1966 	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
1967 		/* Only called from BPF prog, no need to migrate_disable */
1968 		__bpf_obj_drop_impl((void *)n - off, rec);
1969 		return -EINVAL;
1970 	}
1971 
1972 	tail ? list_add_tail(n, h) : list_add(n, h);
1973 	WRITE_ONCE(node->owner, head);
1974 
1975 	return 0;
1976 }
1977 
1978 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
1979 					 struct bpf_list_node *node,
1980 					 void *meta__ign, u64 off)
1981 {
1982 	struct bpf_list_node_kern *n = (void *)node;
1983 	struct btf_struct_meta *meta = meta__ign;
1984 
1985 	return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
1986 }
1987 
1988 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
1989 					struct bpf_list_node *node,
1990 					void *meta__ign, u64 off)
1991 {
1992 	struct bpf_list_node_kern *n = (void *)node;
1993 	struct btf_struct_meta *meta = meta__ign;
1994 
1995 	return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
1996 }
1997 
1998 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
1999 {
2000 	struct list_head *n, *h = (void *)head;
2001 	struct bpf_list_node_kern *node;
2002 
2003 	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2004 	 * called on its fields, so init here
2005 	 */
2006 	if (unlikely(!h->next))
2007 		INIT_LIST_HEAD(h);
2008 	if (list_empty(h))
2009 		return NULL;
2010 
2011 	n = tail ? h->prev : h->next;
2012 	node = container_of(n, struct bpf_list_node_kern, list_head);
2013 	if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2014 		return NULL;
2015 
2016 	list_del_init(n);
2017 	WRITE_ONCE(node->owner, NULL);
2018 	return (struct bpf_list_node *)n;
2019 }
2020 
2021 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2022 {
2023 	return __bpf_list_del(head, false);
2024 }
2025 
2026 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2027 {
2028 	return __bpf_list_del(head, true);
2029 }
2030 
2031 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2032 						  struct bpf_rb_node *node)
2033 {
2034 	struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2035 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2036 	struct rb_node *n = &node_internal->rb_node;
2037 
2038 	/* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2039 	 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2040 	 */
2041 	if (READ_ONCE(node_internal->owner) != root)
2042 		return NULL;
2043 
2044 	rb_erase_cached(n, r);
2045 	RB_CLEAR_NODE(n);
2046 	WRITE_ONCE(node_internal->owner, NULL);
2047 	return (struct bpf_rb_node *)n;
2048 }
2049 
2050 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2051  * program
2052  */
2053 static int __bpf_rbtree_add(struct bpf_rb_root *root,
2054 			    struct bpf_rb_node_kern *node,
2055 			    void *less, struct btf_record *rec, u64 off)
2056 {
2057 	struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2058 	struct rb_node *parent = NULL, *n = &node->rb_node;
2059 	bpf_callback_t cb = (bpf_callback_t)less;
2060 	bool leftmost = true;
2061 
2062 	/* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2063 	 * check the latter
2064 	 */
2065 	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2066 		/* Only called from BPF prog, no need to migrate_disable */
2067 		__bpf_obj_drop_impl((void *)n - off, rec);
2068 		return -EINVAL;
2069 	}
2070 
2071 	while (*link) {
2072 		parent = *link;
2073 		if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2074 			link = &parent->rb_left;
2075 		} else {
2076 			link = &parent->rb_right;
2077 			leftmost = false;
2078 		}
2079 	}
2080 
2081 	rb_link_node(n, parent, link);
2082 	rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
2083 	WRITE_ONCE(node->owner, root);
2084 	return 0;
2085 }
2086 
2087 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2088 				    bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2089 				    void *meta__ign, u64 off)
2090 {
2091 	struct btf_struct_meta *meta = meta__ign;
2092 	struct bpf_rb_node_kern *n = (void *)node;
2093 
2094 	return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
2095 }
2096 
2097 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2098 {
2099 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2100 
2101 	return (struct bpf_rb_node *)rb_first_cached(r);
2102 }
2103 
2104 /**
2105  * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2106  * kfunc which is not stored in a map as a kptr, must be released by calling
2107  * bpf_task_release().
2108  * @p: The task on which a reference is being acquired.
2109  */
2110 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2111 {
2112 	if (refcount_inc_not_zero(&p->rcu_users))
2113 		return p;
2114 	return NULL;
2115 }
2116 
2117 /**
2118  * bpf_task_release - Release the reference acquired on a task.
2119  * @p: The task on which a reference is being released.
2120  */
2121 __bpf_kfunc void bpf_task_release(struct task_struct *p)
2122 {
2123 	put_task_struct_rcu_user(p);
2124 }
2125 
2126 #ifdef CONFIG_CGROUPS
2127 /**
2128  * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2129  * this kfunc which is not stored in a map as a kptr, must be released by
2130  * calling bpf_cgroup_release().
2131  * @cgrp: The cgroup on which a reference is being acquired.
2132  */
2133 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2134 {
2135 	return cgroup_tryget(cgrp) ? cgrp : NULL;
2136 }
2137 
2138 /**
2139  * bpf_cgroup_release - Release the reference acquired on a cgroup.
2140  * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2141  * not be freed until the current grace period has ended, even if its refcount
2142  * drops to 0.
2143  * @cgrp: The cgroup on which a reference is being released.
2144  */
2145 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2146 {
2147 	cgroup_put(cgrp);
2148 }
2149 
2150 /**
2151  * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2152  * array. A cgroup returned by this kfunc which is not subsequently stored in a
2153  * map, must be released by calling bpf_cgroup_release().
2154  * @cgrp: The cgroup for which we're performing a lookup.
2155  * @level: The level of ancestor to look up.
2156  */
2157 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2158 {
2159 	struct cgroup *ancestor;
2160 
2161 	if (level > cgrp->level || level < 0)
2162 		return NULL;
2163 
2164 	/* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2165 	ancestor = cgrp->ancestors[level];
2166 	if (!cgroup_tryget(ancestor))
2167 		return NULL;
2168 	return ancestor;
2169 }
2170 
2171 /**
2172  * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2173  * kfunc which is not subsequently stored in a map, must be released by calling
2174  * bpf_cgroup_release().
2175  * @cgid: cgroup id.
2176  */
2177 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2178 {
2179 	struct cgroup *cgrp;
2180 
2181 	cgrp = cgroup_get_from_id(cgid);
2182 	if (IS_ERR(cgrp))
2183 		return NULL;
2184 	return cgrp;
2185 }
2186 
2187 /**
2188  * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2189  * task's membership of cgroup ancestry.
2190  * @task: the task to be tested
2191  * @ancestor: possible ancestor of @task's cgroup
2192  *
2193  * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2194  * It follows all the same rules as cgroup_is_descendant, and only applies
2195  * to the default hierarchy.
2196  */
2197 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2198 				       struct cgroup *ancestor)
2199 {
2200 	return task_under_cgroup_hierarchy(task, ancestor);
2201 }
2202 #endif /* CONFIG_CGROUPS */
2203 
2204 /**
2205  * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2206  * in the root pid namespace idr. If a task is returned, it must either be
2207  * stored in a map, or released with bpf_task_release().
2208  * @pid: The pid of the task being looked up.
2209  */
2210 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2211 {
2212 	struct task_struct *p;
2213 
2214 	rcu_read_lock();
2215 	p = find_task_by_pid_ns(pid, &init_pid_ns);
2216 	if (p)
2217 		p = bpf_task_acquire(p);
2218 	rcu_read_unlock();
2219 
2220 	return p;
2221 }
2222 
2223 /**
2224  * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2225  * @ptr: The dynptr whose data slice to retrieve
2226  * @offset: Offset into the dynptr
2227  * @buffer__opt: User-provided buffer to copy contents into.  May be NULL
2228  * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2229  *               length of the requested slice. This must be a constant.
2230  *
2231  * For non-skb and non-xdp type dynptrs, there is no difference between
2232  * bpf_dynptr_slice and bpf_dynptr_data.
2233  *
2234  *  If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2235  *
2236  * If the intention is to write to the data slice, please use
2237  * bpf_dynptr_slice_rdwr.
2238  *
2239  * The user must check that the returned pointer is not null before using it.
2240  *
2241  * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2242  * does not change the underlying packet data pointers, so a call to
2243  * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2244  * the bpf program.
2245  *
2246  * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2247  * data slice (can be either direct pointer to the data or a pointer to the user
2248  * provided buffer, with its contents containing the data, if unable to obtain
2249  * direct pointer)
2250  */
2251 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset,
2252 				   void *buffer__opt, u32 buffer__szk)
2253 {
2254 	enum bpf_dynptr_type type;
2255 	u32 len = buffer__szk;
2256 	int err;
2257 
2258 	if (!ptr->data)
2259 		return NULL;
2260 
2261 	err = bpf_dynptr_check_off_len(ptr, offset, len);
2262 	if (err)
2263 		return NULL;
2264 
2265 	type = bpf_dynptr_get_type(ptr);
2266 
2267 	switch (type) {
2268 	case BPF_DYNPTR_TYPE_LOCAL:
2269 	case BPF_DYNPTR_TYPE_RINGBUF:
2270 		return ptr->data + ptr->offset + offset;
2271 	case BPF_DYNPTR_TYPE_SKB:
2272 		if (buffer__opt)
2273 			return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
2274 		else
2275 			return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
2276 	case BPF_DYNPTR_TYPE_XDP:
2277 	{
2278 		void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2279 		if (!IS_ERR_OR_NULL(xdp_ptr))
2280 			return xdp_ptr;
2281 
2282 		if (!buffer__opt)
2283 			return NULL;
2284 		bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
2285 		return buffer__opt;
2286 	}
2287 	default:
2288 		WARN_ONCE(true, "unknown dynptr type %d\n", type);
2289 		return NULL;
2290 	}
2291 }
2292 
2293 /**
2294  * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2295  * @ptr: The dynptr whose data slice to retrieve
2296  * @offset: Offset into the dynptr
2297  * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2298  * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2299  *               length of the requested slice. This must be a constant.
2300  *
2301  * For non-skb and non-xdp type dynptrs, there is no difference between
2302  * bpf_dynptr_slice and bpf_dynptr_data.
2303  *
2304  * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2305  *
2306  * The returned pointer is writable and may point to either directly the dynptr
2307  * data at the requested offset or to the buffer if unable to obtain a direct
2308  * data pointer to (example: the requested slice is to the paged area of an skb
2309  * packet). In the case where the returned pointer is to the buffer, the user
2310  * is responsible for persisting writes through calling bpf_dynptr_write(). This
2311  * usually looks something like this pattern:
2312  *
2313  * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2314  * if (!eth)
2315  *	return TC_ACT_SHOT;
2316  *
2317  * // mutate eth header //
2318  *
2319  * if (eth == buffer)
2320  *	bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2321  *
2322  * Please note that, as in the example above, the user must check that the
2323  * returned pointer is not null before using it.
2324  *
2325  * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2326  * does not change the underlying packet data pointers, so a call to
2327  * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2328  * the bpf program.
2329  *
2330  * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2331  * data slice (can be either direct pointer to the data or a pointer to the user
2332  * provided buffer, with its contents containing the data, if unable to obtain
2333  * direct pointer)
2334  */
2335 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 offset,
2336 					void *buffer__opt, u32 buffer__szk)
2337 {
2338 	if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2339 		return NULL;
2340 
2341 	/* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2342 	 *
2343 	 * For skb-type dynptrs, it is safe to write into the returned pointer
2344 	 * if the bpf program allows skb data writes. There are two possiblities
2345 	 * that may occur when calling bpf_dynptr_slice_rdwr:
2346 	 *
2347 	 * 1) The requested slice is in the head of the skb. In this case, the
2348 	 * returned pointer is directly to skb data, and if the skb is cloned, the
2349 	 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2350 	 * The pointer can be directly written into.
2351 	 *
2352 	 * 2) Some portion of the requested slice is in the paged buffer area.
2353 	 * In this case, the requested data will be copied out into the buffer
2354 	 * and the returned pointer will be a pointer to the buffer. The skb
2355 	 * will not be pulled. To persist the write, the user will need to call
2356 	 * bpf_dynptr_write(), which will pull the skb and commit the write.
2357 	 *
2358 	 * Similarly for xdp programs, if the requested slice is not across xdp
2359 	 * fragments, then a direct pointer will be returned, otherwise the data
2360 	 * will be copied out into the buffer and the user will need to call
2361 	 * bpf_dynptr_write() to commit changes.
2362 	 */
2363 	return bpf_dynptr_slice(ptr, offset, buffer__opt, buffer__szk);
2364 }
2365 
2366 __bpf_kfunc int bpf_dynptr_adjust(struct bpf_dynptr_kern *ptr, u32 start, u32 end)
2367 {
2368 	u32 size;
2369 
2370 	if (!ptr->data || start > end)
2371 		return -EINVAL;
2372 
2373 	size = __bpf_dynptr_size(ptr);
2374 
2375 	if (start > size || end > size)
2376 		return -ERANGE;
2377 
2378 	ptr->offset += start;
2379 	bpf_dynptr_set_size(ptr, end - start);
2380 
2381 	return 0;
2382 }
2383 
2384 __bpf_kfunc bool bpf_dynptr_is_null(struct bpf_dynptr_kern *ptr)
2385 {
2386 	return !ptr->data;
2387 }
2388 
2389 __bpf_kfunc bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr)
2390 {
2391 	if (!ptr->data)
2392 		return false;
2393 
2394 	return __bpf_dynptr_is_rdonly(ptr);
2395 }
2396 
2397 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
2398 {
2399 	if (!ptr->data)
2400 		return -EINVAL;
2401 
2402 	return __bpf_dynptr_size(ptr);
2403 }
2404 
2405 __bpf_kfunc int bpf_dynptr_clone(struct bpf_dynptr_kern *ptr,
2406 				 struct bpf_dynptr_kern *clone__uninit)
2407 {
2408 	if (!ptr->data) {
2409 		bpf_dynptr_set_null(clone__uninit);
2410 		return -EINVAL;
2411 	}
2412 
2413 	*clone__uninit = *ptr;
2414 
2415 	return 0;
2416 }
2417 
2418 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
2419 {
2420 	return obj;
2421 }
2422 
2423 __bpf_kfunc void *bpf_rdonly_cast(void *obj__ign, u32 btf_id__k)
2424 {
2425 	return obj__ign;
2426 }
2427 
2428 __bpf_kfunc void bpf_rcu_read_lock(void)
2429 {
2430 	rcu_read_lock();
2431 }
2432 
2433 __bpf_kfunc void bpf_rcu_read_unlock(void)
2434 {
2435 	rcu_read_unlock();
2436 }
2437 
2438 __diag_pop();
2439 
2440 BTF_SET8_START(generic_btf_ids)
2441 #ifdef CONFIG_KEXEC_CORE
2442 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
2443 #endif
2444 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
2445 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
2446 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL)
2447 BTF_ID_FLAGS(func, bpf_list_push_front_impl)
2448 BTF_ID_FLAGS(func, bpf_list_push_back_impl)
2449 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
2450 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
2451 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2452 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
2453 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
2454 BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
2455 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
2456 
2457 #ifdef CONFIG_CGROUPS
2458 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2459 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
2460 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2461 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
2462 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
2463 #endif
2464 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
2465 BTF_SET8_END(generic_btf_ids)
2466 
2467 static const struct btf_kfunc_id_set generic_kfunc_set = {
2468 	.owner = THIS_MODULE,
2469 	.set   = &generic_btf_ids,
2470 };
2471 
2472 
2473 BTF_ID_LIST(generic_dtor_ids)
2474 BTF_ID(struct, task_struct)
2475 BTF_ID(func, bpf_task_release)
2476 #ifdef CONFIG_CGROUPS
2477 BTF_ID(struct, cgroup)
2478 BTF_ID(func, bpf_cgroup_release)
2479 #endif
2480 
2481 BTF_SET8_START(common_btf_ids)
2482 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx)
2483 BTF_ID_FLAGS(func, bpf_rdonly_cast)
2484 BTF_ID_FLAGS(func, bpf_rcu_read_lock)
2485 BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
2486 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
2487 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
2488 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
2489 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
2490 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
2491 BTF_ID_FLAGS(func, bpf_dynptr_adjust)
2492 BTF_ID_FLAGS(func, bpf_dynptr_is_null)
2493 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
2494 BTF_ID_FLAGS(func, bpf_dynptr_size)
2495 BTF_ID_FLAGS(func, bpf_dynptr_clone)
2496 BTF_SET8_END(common_btf_ids)
2497 
2498 static const struct btf_kfunc_id_set common_kfunc_set = {
2499 	.owner = THIS_MODULE,
2500 	.set   = &common_btf_ids,
2501 };
2502 
2503 static int __init kfunc_init(void)
2504 {
2505 	int ret;
2506 	const struct btf_id_dtor_kfunc generic_dtors[] = {
2507 		{
2508 			.btf_id       = generic_dtor_ids[0],
2509 			.kfunc_btf_id = generic_dtor_ids[1]
2510 		},
2511 #ifdef CONFIG_CGROUPS
2512 		{
2513 			.btf_id       = generic_dtor_ids[2],
2514 			.kfunc_btf_id = generic_dtor_ids[3]
2515 		},
2516 #endif
2517 	};
2518 
2519 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
2520 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
2521 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
2522 	ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
2523 						  ARRAY_SIZE(generic_dtors),
2524 						  THIS_MODULE);
2525 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
2526 }
2527 
2528 late_initcall(kfunc_init);
2529