xref: /linux/kernel/bpf/helpers.c (revision c501bf55c88b834adefda870c7c092ec9052a437)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/cgroup.h>
8 #include <linux/rcupdate.h>
9 #include <linux/random.h>
10 #include <linux/smp.h>
11 #include <linux/topology.h>
12 #include <linux/ktime.h>
13 #include <linux/sched.h>
14 #include <linux/uidgid.h>
15 #include <linux/filter.h>
16 #include <linux/ctype.h>
17 #include <linux/jiffies.h>
18 #include <linux/pid_namespace.h>
19 #include <linux/poison.h>
20 #include <linux/proc_ns.h>
21 #include <linux/security.h>
22 #include <linux/btf_ids.h>
23 #include <linux/bpf_mem_alloc.h>
24 
25 #include "../../lib/kstrtox.h"
26 
27 /* If kernel subsystem is allowing eBPF programs to call this function,
28  * inside its own verifier_ops->get_func_proto() callback it should return
29  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
30  *
31  * Different map implementations will rely on rcu in map methods
32  * lookup/update/delete, therefore eBPF programs must run under rcu lock
33  * if program is allowed to access maps, so check rcu_read_lock_held in
34  * all three functions.
35  */
36 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
37 {
38 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
39 	return (unsigned long) map->ops->map_lookup_elem(map, key);
40 }
41 
42 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
43 	.func		= bpf_map_lookup_elem,
44 	.gpl_only	= false,
45 	.pkt_access	= true,
46 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
47 	.arg1_type	= ARG_CONST_MAP_PTR,
48 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
49 };
50 
51 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
52 	   void *, value, u64, flags)
53 {
54 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
55 	return map->ops->map_update_elem(map, key, value, flags);
56 }
57 
58 const struct bpf_func_proto bpf_map_update_elem_proto = {
59 	.func		= bpf_map_update_elem,
60 	.gpl_only	= false,
61 	.pkt_access	= true,
62 	.ret_type	= RET_INTEGER,
63 	.arg1_type	= ARG_CONST_MAP_PTR,
64 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
65 	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
66 	.arg4_type	= ARG_ANYTHING,
67 };
68 
69 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
70 {
71 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
72 	return map->ops->map_delete_elem(map, key);
73 }
74 
75 const struct bpf_func_proto bpf_map_delete_elem_proto = {
76 	.func		= bpf_map_delete_elem,
77 	.gpl_only	= false,
78 	.pkt_access	= true,
79 	.ret_type	= RET_INTEGER,
80 	.arg1_type	= ARG_CONST_MAP_PTR,
81 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
82 };
83 
84 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
85 {
86 	return map->ops->map_push_elem(map, value, flags);
87 }
88 
89 const struct bpf_func_proto bpf_map_push_elem_proto = {
90 	.func		= bpf_map_push_elem,
91 	.gpl_only	= false,
92 	.pkt_access	= true,
93 	.ret_type	= RET_INTEGER,
94 	.arg1_type	= ARG_CONST_MAP_PTR,
95 	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
96 	.arg3_type	= ARG_ANYTHING,
97 };
98 
99 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
100 {
101 	return map->ops->map_pop_elem(map, value);
102 }
103 
104 const struct bpf_func_proto bpf_map_pop_elem_proto = {
105 	.func		= bpf_map_pop_elem,
106 	.gpl_only	= false,
107 	.ret_type	= RET_INTEGER,
108 	.arg1_type	= ARG_CONST_MAP_PTR,
109 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
110 };
111 
112 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
113 {
114 	return map->ops->map_peek_elem(map, value);
115 }
116 
117 const struct bpf_func_proto bpf_map_peek_elem_proto = {
118 	.func		= bpf_map_peek_elem,
119 	.gpl_only	= false,
120 	.ret_type	= RET_INTEGER,
121 	.arg1_type	= ARG_CONST_MAP_PTR,
122 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
123 };
124 
125 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
126 {
127 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
128 	return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
129 }
130 
131 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
132 	.func		= bpf_map_lookup_percpu_elem,
133 	.gpl_only	= false,
134 	.pkt_access	= true,
135 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
136 	.arg1_type	= ARG_CONST_MAP_PTR,
137 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
138 	.arg3_type	= ARG_ANYTHING,
139 };
140 
141 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
142 	.func		= bpf_user_rnd_u32,
143 	.gpl_only	= false,
144 	.ret_type	= RET_INTEGER,
145 };
146 
147 BPF_CALL_0(bpf_get_smp_processor_id)
148 {
149 	return smp_processor_id();
150 }
151 
152 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
153 	.func		= bpf_get_smp_processor_id,
154 	.gpl_only	= false,
155 	.ret_type	= RET_INTEGER,
156 };
157 
158 BPF_CALL_0(bpf_get_numa_node_id)
159 {
160 	return numa_node_id();
161 }
162 
163 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
164 	.func		= bpf_get_numa_node_id,
165 	.gpl_only	= false,
166 	.ret_type	= RET_INTEGER,
167 };
168 
169 BPF_CALL_0(bpf_ktime_get_ns)
170 {
171 	/* NMI safe access to clock monotonic */
172 	return ktime_get_mono_fast_ns();
173 }
174 
175 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
176 	.func		= bpf_ktime_get_ns,
177 	.gpl_only	= false,
178 	.ret_type	= RET_INTEGER,
179 };
180 
181 BPF_CALL_0(bpf_ktime_get_boot_ns)
182 {
183 	/* NMI safe access to clock boottime */
184 	return ktime_get_boot_fast_ns();
185 }
186 
187 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
188 	.func		= bpf_ktime_get_boot_ns,
189 	.gpl_only	= false,
190 	.ret_type	= RET_INTEGER,
191 };
192 
193 BPF_CALL_0(bpf_ktime_get_coarse_ns)
194 {
195 	return ktime_get_coarse_ns();
196 }
197 
198 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
199 	.func		= bpf_ktime_get_coarse_ns,
200 	.gpl_only	= false,
201 	.ret_type	= RET_INTEGER,
202 };
203 
204 BPF_CALL_0(bpf_ktime_get_tai_ns)
205 {
206 	/* NMI safe access to clock tai */
207 	return ktime_get_tai_fast_ns();
208 }
209 
210 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
211 	.func		= bpf_ktime_get_tai_ns,
212 	.gpl_only	= false,
213 	.ret_type	= RET_INTEGER,
214 };
215 
216 BPF_CALL_0(bpf_get_current_pid_tgid)
217 {
218 	struct task_struct *task = current;
219 
220 	if (unlikely(!task))
221 		return -EINVAL;
222 
223 	return (u64) task->tgid << 32 | task->pid;
224 }
225 
226 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
227 	.func		= bpf_get_current_pid_tgid,
228 	.gpl_only	= false,
229 	.ret_type	= RET_INTEGER,
230 };
231 
232 BPF_CALL_0(bpf_get_current_uid_gid)
233 {
234 	struct task_struct *task = current;
235 	kuid_t uid;
236 	kgid_t gid;
237 
238 	if (unlikely(!task))
239 		return -EINVAL;
240 
241 	current_uid_gid(&uid, &gid);
242 	return (u64) from_kgid(&init_user_ns, gid) << 32 |
243 		     from_kuid(&init_user_ns, uid);
244 }
245 
246 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
247 	.func		= bpf_get_current_uid_gid,
248 	.gpl_only	= false,
249 	.ret_type	= RET_INTEGER,
250 };
251 
252 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
253 {
254 	struct task_struct *task = current;
255 
256 	if (unlikely(!task))
257 		goto err_clear;
258 
259 	/* Verifier guarantees that size > 0 */
260 	strscpy(buf, task->comm, size);
261 	return 0;
262 err_clear:
263 	memset(buf, 0, size);
264 	return -EINVAL;
265 }
266 
267 const struct bpf_func_proto bpf_get_current_comm_proto = {
268 	.func		= bpf_get_current_comm,
269 	.gpl_only	= false,
270 	.ret_type	= RET_INTEGER,
271 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
272 	.arg2_type	= ARG_CONST_SIZE,
273 };
274 
275 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
276 
277 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
278 {
279 	arch_spinlock_t *l = (void *)lock;
280 	union {
281 		__u32 val;
282 		arch_spinlock_t lock;
283 	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
284 
285 	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
286 	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
287 	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
288 	arch_spin_lock(l);
289 }
290 
291 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
292 {
293 	arch_spinlock_t *l = (void *)lock;
294 
295 	arch_spin_unlock(l);
296 }
297 
298 #else
299 
300 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
301 {
302 	atomic_t *l = (void *)lock;
303 
304 	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
305 	do {
306 		atomic_cond_read_relaxed(l, !VAL);
307 	} while (atomic_xchg(l, 1));
308 }
309 
310 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
311 {
312 	atomic_t *l = (void *)lock;
313 
314 	atomic_set_release(l, 0);
315 }
316 
317 #endif
318 
319 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
320 
321 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
322 {
323 	unsigned long flags;
324 
325 	local_irq_save(flags);
326 	__bpf_spin_lock(lock);
327 	__this_cpu_write(irqsave_flags, flags);
328 }
329 
330 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
331 {
332 	__bpf_spin_lock_irqsave(lock);
333 	return 0;
334 }
335 
336 const struct bpf_func_proto bpf_spin_lock_proto = {
337 	.func		= bpf_spin_lock,
338 	.gpl_only	= false,
339 	.ret_type	= RET_VOID,
340 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
341 	.arg1_btf_id    = BPF_PTR_POISON,
342 };
343 
344 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
345 {
346 	unsigned long flags;
347 
348 	flags = __this_cpu_read(irqsave_flags);
349 	__bpf_spin_unlock(lock);
350 	local_irq_restore(flags);
351 }
352 
353 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
354 {
355 	__bpf_spin_unlock_irqrestore(lock);
356 	return 0;
357 }
358 
359 const struct bpf_func_proto bpf_spin_unlock_proto = {
360 	.func		= bpf_spin_unlock,
361 	.gpl_only	= false,
362 	.ret_type	= RET_VOID,
363 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
364 	.arg1_btf_id    = BPF_PTR_POISON,
365 };
366 
367 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
368 			   bool lock_src)
369 {
370 	struct bpf_spin_lock *lock;
371 
372 	if (lock_src)
373 		lock = src + map->record->spin_lock_off;
374 	else
375 		lock = dst + map->record->spin_lock_off;
376 	preempt_disable();
377 	__bpf_spin_lock_irqsave(lock);
378 	copy_map_value(map, dst, src);
379 	__bpf_spin_unlock_irqrestore(lock);
380 	preempt_enable();
381 }
382 
383 BPF_CALL_0(bpf_jiffies64)
384 {
385 	return get_jiffies_64();
386 }
387 
388 const struct bpf_func_proto bpf_jiffies64_proto = {
389 	.func		= bpf_jiffies64,
390 	.gpl_only	= false,
391 	.ret_type	= RET_INTEGER,
392 };
393 
394 #ifdef CONFIG_CGROUPS
395 BPF_CALL_0(bpf_get_current_cgroup_id)
396 {
397 	struct cgroup *cgrp;
398 	u64 cgrp_id;
399 
400 	rcu_read_lock();
401 	cgrp = task_dfl_cgroup(current);
402 	cgrp_id = cgroup_id(cgrp);
403 	rcu_read_unlock();
404 
405 	return cgrp_id;
406 }
407 
408 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
409 	.func		= bpf_get_current_cgroup_id,
410 	.gpl_only	= false,
411 	.ret_type	= RET_INTEGER,
412 };
413 
414 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
415 {
416 	struct cgroup *cgrp;
417 	struct cgroup *ancestor;
418 	u64 cgrp_id;
419 
420 	rcu_read_lock();
421 	cgrp = task_dfl_cgroup(current);
422 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
423 	cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
424 	rcu_read_unlock();
425 
426 	return cgrp_id;
427 }
428 
429 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
430 	.func		= bpf_get_current_ancestor_cgroup_id,
431 	.gpl_only	= false,
432 	.ret_type	= RET_INTEGER,
433 	.arg1_type	= ARG_ANYTHING,
434 };
435 #endif /* CONFIG_CGROUPS */
436 
437 #define BPF_STRTOX_BASE_MASK 0x1F
438 
439 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
440 			  unsigned long long *res, bool *is_negative)
441 {
442 	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
443 	const char *cur_buf = buf;
444 	size_t cur_len = buf_len;
445 	unsigned int consumed;
446 	size_t val_len;
447 	char str[64];
448 
449 	if (!buf || !buf_len || !res || !is_negative)
450 		return -EINVAL;
451 
452 	if (base != 0 && base != 8 && base != 10 && base != 16)
453 		return -EINVAL;
454 
455 	if (flags & ~BPF_STRTOX_BASE_MASK)
456 		return -EINVAL;
457 
458 	while (cur_buf < buf + buf_len && isspace(*cur_buf))
459 		++cur_buf;
460 
461 	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
462 	if (*is_negative)
463 		++cur_buf;
464 
465 	consumed = cur_buf - buf;
466 	cur_len -= consumed;
467 	if (!cur_len)
468 		return -EINVAL;
469 
470 	cur_len = min(cur_len, sizeof(str) - 1);
471 	memcpy(str, cur_buf, cur_len);
472 	str[cur_len] = '\0';
473 	cur_buf = str;
474 
475 	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
476 	val_len = _parse_integer(cur_buf, base, res);
477 
478 	if (val_len & KSTRTOX_OVERFLOW)
479 		return -ERANGE;
480 
481 	if (val_len == 0)
482 		return -EINVAL;
483 
484 	cur_buf += val_len;
485 	consumed += cur_buf - str;
486 
487 	return consumed;
488 }
489 
490 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
491 			 long long *res)
492 {
493 	unsigned long long _res;
494 	bool is_negative;
495 	int err;
496 
497 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
498 	if (err < 0)
499 		return err;
500 	if (is_negative) {
501 		if ((long long)-_res > 0)
502 			return -ERANGE;
503 		*res = -_res;
504 	} else {
505 		if ((long long)_res < 0)
506 			return -ERANGE;
507 		*res = _res;
508 	}
509 	return err;
510 }
511 
512 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
513 	   long *, res)
514 {
515 	long long _res;
516 	int err;
517 
518 	err = __bpf_strtoll(buf, buf_len, flags, &_res);
519 	if (err < 0)
520 		return err;
521 	if (_res != (long)_res)
522 		return -ERANGE;
523 	*res = _res;
524 	return err;
525 }
526 
527 const struct bpf_func_proto bpf_strtol_proto = {
528 	.func		= bpf_strtol,
529 	.gpl_only	= false,
530 	.ret_type	= RET_INTEGER,
531 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
532 	.arg2_type	= ARG_CONST_SIZE,
533 	.arg3_type	= ARG_ANYTHING,
534 	.arg4_type	= ARG_PTR_TO_LONG,
535 };
536 
537 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
538 	   unsigned long *, res)
539 {
540 	unsigned long long _res;
541 	bool is_negative;
542 	int err;
543 
544 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
545 	if (err < 0)
546 		return err;
547 	if (is_negative)
548 		return -EINVAL;
549 	if (_res != (unsigned long)_res)
550 		return -ERANGE;
551 	*res = _res;
552 	return err;
553 }
554 
555 const struct bpf_func_proto bpf_strtoul_proto = {
556 	.func		= bpf_strtoul,
557 	.gpl_only	= false,
558 	.ret_type	= RET_INTEGER,
559 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
560 	.arg2_type	= ARG_CONST_SIZE,
561 	.arg3_type	= ARG_ANYTHING,
562 	.arg4_type	= ARG_PTR_TO_LONG,
563 };
564 
565 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
566 {
567 	return strncmp(s1, s2, s1_sz);
568 }
569 
570 static const struct bpf_func_proto bpf_strncmp_proto = {
571 	.func		= bpf_strncmp,
572 	.gpl_only	= false,
573 	.ret_type	= RET_INTEGER,
574 	.arg1_type	= ARG_PTR_TO_MEM,
575 	.arg2_type	= ARG_CONST_SIZE,
576 	.arg3_type	= ARG_PTR_TO_CONST_STR,
577 };
578 
579 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
580 	   struct bpf_pidns_info *, nsdata, u32, size)
581 {
582 	struct task_struct *task = current;
583 	struct pid_namespace *pidns;
584 	int err = -EINVAL;
585 
586 	if (unlikely(size != sizeof(struct bpf_pidns_info)))
587 		goto clear;
588 
589 	if (unlikely((u64)(dev_t)dev != dev))
590 		goto clear;
591 
592 	if (unlikely(!task))
593 		goto clear;
594 
595 	pidns = task_active_pid_ns(task);
596 	if (unlikely(!pidns)) {
597 		err = -ENOENT;
598 		goto clear;
599 	}
600 
601 	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
602 		goto clear;
603 
604 	nsdata->pid = task_pid_nr_ns(task, pidns);
605 	nsdata->tgid = task_tgid_nr_ns(task, pidns);
606 	return 0;
607 clear:
608 	memset((void *)nsdata, 0, (size_t) size);
609 	return err;
610 }
611 
612 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
613 	.func		= bpf_get_ns_current_pid_tgid,
614 	.gpl_only	= false,
615 	.ret_type	= RET_INTEGER,
616 	.arg1_type	= ARG_ANYTHING,
617 	.arg2_type	= ARG_ANYTHING,
618 	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
619 	.arg4_type      = ARG_CONST_SIZE,
620 };
621 
622 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
623 	.func		= bpf_get_raw_cpu_id,
624 	.gpl_only	= false,
625 	.ret_type	= RET_INTEGER,
626 };
627 
628 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
629 	   u64, flags, void *, data, u64, size)
630 {
631 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
632 		return -EINVAL;
633 
634 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
635 }
636 
637 const struct bpf_func_proto bpf_event_output_data_proto =  {
638 	.func		= bpf_event_output_data,
639 	.gpl_only       = true,
640 	.ret_type       = RET_INTEGER,
641 	.arg1_type      = ARG_PTR_TO_CTX,
642 	.arg2_type      = ARG_CONST_MAP_PTR,
643 	.arg3_type      = ARG_ANYTHING,
644 	.arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
645 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
646 };
647 
648 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
649 	   const void __user *, user_ptr)
650 {
651 	int ret = copy_from_user(dst, user_ptr, size);
652 
653 	if (unlikely(ret)) {
654 		memset(dst, 0, size);
655 		ret = -EFAULT;
656 	}
657 
658 	return ret;
659 }
660 
661 const struct bpf_func_proto bpf_copy_from_user_proto = {
662 	.func		= bpf_copy_from_user,
663 	.gpl_only	= false,
664 	.might_sleep	= true,
665 	.ret_type	= RET_INTEGER,
666 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
667 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
668 	.arg3_type	= ARG_ANYTHING,
669 };
670 
671 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
672 	   const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
673 {
674 	int ret;
675 
676 	/* flags is not used yet */
677 	if (unlikely(flags))
678 		return -EINVAL;
679 
680 	if (unlikely(!size))
681 		return 0;
682 
683 	ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
684 	if (ret == size)
685 		return 0;
686 
687 	memset(dst, 0, size);
688 	/* Return -EFAULT for partial read */
689 	return ret < 0 ? ret : -EFAULT;
690 }
691 
692 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
693 	.func		= bpf_copy_from_user_task,
694 	.gpl_only	= true,
695 	.might_sleep	= true,
696 	.ret_type	= RET_INTEGER,
697 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
698 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
699 	.arg3_type	= ARG_ANYTHING,
700 	.arg4_type	= ARG_PTR_TO_BTF_ID,
701 	.arg4_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
702 	.arg5_type	= ARG_ANYTHING
703 };
704 
705 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
706 {
707 	if (cpu >= nr_cpu_ids)
708 		return (unsigned long)NULL;
709 
710 	return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
711 }
712 
713 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
714 	.func		= bpf_per_cpu_ptr,
715 	.gpl_only	= false,
716 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
717 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
718 	.arg2_type	= ARG_ANYTHING,
719 };
720 
721 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
722 {
723 	return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
724 }
725 
726 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
727 	.func		= bpf_this_cpu_ptr,
728 	.gpl_only	= false,
729 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
730 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
731 };
732 
733 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
734 		size_t bufsz)
735 {
736 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
737 
738 	buf[0] = 0;
739 
740 	switch (fmt_ptype) {
741 	case 's':
742 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
743 		if ((unsigned long)unsafe_ptr < TASK_SIZE)
744 			return strncpy_from_user_nofault(buf, user_ptr, bufsz);
745 		fallthrough;
746 #endif
747 	case 'k':
748 		return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
749 	case 'u':
750 		return strncpy_from_user_nofault(buf, user_ptr, bufsz);
751 	}
752 
753 	return -EINVAL;
754 }
755 
756 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
757  * arguments representation.
758  */
759 #define MAX_BPRINTF_BIN_ARGS	512
760 
761 /* Support executing three nested bprintf helper calls on a given CPU */
762 #define MAX_BPRINTF_NEST_LEVEL	3
763 struct bpf_bprintf_buffers {
764 	char bin_args[MAX_BPRINTF_BIN_ARGS];
765 	char buf[MAX_BPRINTF_BUF];
766 };
767 
768 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
769 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
770 
771 static int try_get_buffers(struct bpf_bprintf_buffers **bufs)
772 {
773 	int nest_level;
774 
775 	preempt_disable();
776 	nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
777 	if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
778 		this_cpu_dec(bpf_bprintf_nest_level);
779 		preempt_enable();
780 		return -EBUSY;
781 	}
782 	*bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
783 
784 	return 0;
785 }
786 
787 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
788 {
789 	if (!data->bin_args && !data->buf)
790 		return;
791 	if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
792 		return;
793 	this_cpu_dec(bpf_bprintf_nest_level);
794 	preempt_enable();
795 }
796 
797 /*
798  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
799  *
800  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
801  *
802  * This can be used in two ways:
803  * - Format string verification only: when data->get_bin_args is false
804  * - Arguments preparation: in addition to the above verification, it writes in
805  *   data->bin_args a binary representation of arguments usable by bstr_printf
806  *   where pointers from BPF have been sanitized.
807  *
808  * In argument preparation mode, if 0 is returned, safe temporary buffers are
809  * allocated and bpf_bprintf_cleanup should be called to free them after use.
810  */
811 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
812 			u32 num_args, struct bpf_bprintf_data *data)
813 {
814 	bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
815 	char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
816 	struct bpf_bprintf_buffers *buffers = NULL;
817 	size_t sizeof_cur_arg, sizeof_cur_ip;
818 	int err, i, num_spec = 0;
819 	u64 cur_arg;
820 	char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
821 
822 	fmt_end = strnchr(fmt, fmt_size, 0);
823 	if (!fmt_end)
824 		return -EINVAL;
825 	fmt_size = fmt_end - fmt;
826 
827 	if (get_buffers && try_get_buffers(&buffers))
828 		return -EBUSY;
829 
830 	if (data->get_bin_args) {
831 		if (num_args)
832 			tmp_buf = buffers->bin_args;
833 		tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
834 		data->bin_args = (u32 *)tmp_buf;
835 	}
836 
837 	if (data->get_buf)
838 		data->buf = buffers->buf;
839 
840 	for (i = 0; i < fmt_size; i++) {
841 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
842 			err = -EINVAL;
843 			goto out;
844 		}
845 
846 		if (fmt[i] != '%')
847 			continue;
848 
849 		if (fmt[i + 1] == '%') {
850 			i++;
851 			continue;
852 		}
853 
854 		if (num_spec >= num_args) {
855 			err = -EINVAL;
856 			goto out;
857 		}
858 
859 		/* The string is zero-terminated so if fmt[i] != 0, we can
860 		 * always access fmt[i + 1], in the worst case it will be a 0
861 		 */
862 		i++;
863 
864 		/* skip optional "[0 +-][num]" width formatting field */
865 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
866 		       fmt[i] == ' ')
867 			i++;
868 		if (fmt[i] >= '1' && fmt[i] <= '9') {
869 			i++;
870 			while (fmt[i] >= '0' && fmt[i] <= '9')
871 				i++;
872 		}
873 
874 		if (fmt[i] == 'p') {
875 			sizeof_cur_arg = sizeof(long);
876 
877 			if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
878 			    fmt[i + 2] == 's') {
879 				fmt_ptype = fmt[i + 1];
880 				i += 2;
881 				goto fmt_str;
882 			}
883 
884 			if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
885 			    ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
886 			    fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
887 			    fmt[i + 1] == 'S') {
888 				/* just kernel pointers */
889 				if (tmp_buf)
890 					cur_arg = raw_args[num_spec];
891 				i++;
892 				goto nocopy_fmt;
893 			}
894 
895 			if (fmt[i + 1] == 'B') {
896 				if (tmp_buf)  {
897 					err = snprintf(tmp_buf,
898 						       (tmp_buf_end - tmp_buf),
899 						       "%pB",
900 						       (void *)(long)raw_args[num_spec]);
901 					tmp_buf += (err + 1);
902 				}
903 
904 				i++;
905 				num_spec++;
906 				continue;
907 			}
908 
909 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
910 			if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
911 			    (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
912 				err = -EINVAL;
913 				goto out;
914 			}
915 
916 			i += 2;
917 			if (!tmp_buf)
918 				goto nocopy_fmt;
919 
920 			sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
921 			if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
922 				err = -ENOSPC;
923 				goto out;
924 			}
925 
926 			unsafe_ptr = (char *)(long)raw_args[num_spec];
927 			err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
928 						       sizeof_cur_ip);
929 			if (err < 0)
930 				memset(cur_ip, 0, sizeof_cur_ip);
931 
932 			/* hack: bstr_printf expects IP addresses to be
933 			 * pre-formatted as strings, ironically, the easiest way
934 			 * to do that is to call snprintf.
935 			 */
936 			ip_spec[2] = fmt[i - 1];
937 			ip_spec[3] = fmt[i];
938 			err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
939 				       ip_spec, &cur_ip);
940 
941 			tmp_buf += err + 1;
942 			num_spec++;
943 
944 			continue;
945 		} else if (fmt[i] == 's') {
946 			fmt_ptype = fmt[i];
947 fmt_str:
948 			if (fmt[i + 1] != 0 &&
949 			    !isspace(fmt[i + 1]) &&
950 			    !ispunct(fmt[i + 1])) {
951 				err = -EINVAL;
952 				goto out;
953 			}
954 
955 			if (!tmp_buf)
956 				goto nocopy_fmt;
957 
958 			if (tmp_buf_end == tmp_buf) {
959 				err = -ENOSPC;
960 				goto out;
961 			}
962 
963 			unsafe_ptr = (char *)(long)raw_args[num_spec];
964 			err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
965 						    fmt_ptype,
966 						    tmp_buf_end - tmp_buf);
967 			if (err < 0) {
968 				tmp_buf[0] = '\0';
969 				err = 1;
970 			}
971 
972 			tmp_buf += err;
973 			num_spec++;
974 
975 			continue;
976 		} else if (fmt[i] == 'c') {
977 			if (!tmp_buf)
978 				goto nocopy_fmt;
979 
980 			if (tmp_buf_end == tmp_buf) {
981 				err = -ENOSPC;
982 				goto out;
983 			}
984 
985 			*tmp_buf = raw_args[num_spec];
986 			tmp_buf++;
987 			num_spec++;
988 
989 			continue;
990 		}
991 
992 		sizeof_cur_arg = sizeof(int);
993 
994 		if (fmt[i] == 'l') {
995 			sizeof_cur_arg = sizeof(long);
996 			i++;
997 		}
998 		if (fmt[i] == 'l') {
999 			sizeof_cur_arg = sizeof(long long);
1000 			i++;
1001 		}
1002 
1003 		if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1004 		    fmt[i] != 'x' && fmt[i] != 'X') {
1005 			err = -EINVAL;
1006 			goto out;
1007 		}
1008 
1009 		if (tmp_buf)
1010 			cur_arg = raw_args[num_spec];
1011 nocopy_fmt:
1012 		if (tmp_buf) {
1013 			tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1014 			if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1015 				err = -ENOSPC;
1016 				goto out;
1017 			}
1018 
1019 			if (sizeof_cur_arg == 8) {
1020 				*(u32 *)tmp_buf = *(u32 *)&cur_arg;
1021 				*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1022 			} else {
1023 				*(u32 *)tmp_buf = (u32)(long)cur_arg;
1024 			}
1025 			tmp_buf += sizeof_cur_arg;
1026 		}
1027 		num_spec++;
1028 	}
1029 
1030 	err = 0;
1031 out:
1032 	if (err)
1033 		bpf_bprintf_cleanup(data);
1034 	return err;
1035 }
1036 
1037 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1038 	   const void *, args, u32, data_len)
1039 {
1040 	struct bpf_bprintf_data data = {
1041 		.get_bin_args	= true,
1042 	};
1043 	int err, num_args;
1044 
1045 	if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1046 	    (data_len && !args))
1047 		return -EINVAL;
1048 	num_args = data_len / 8;
1049 
1050 	/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1051 	 * can safely give an unbounded size.
1052 	 */
1053 	err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1054 	if (err < 0)
1055 		return err;
1056 
1057 	err = bstr_printf(str, str_size, fmt, data.bin_args);
1058 
1059 	bpf_bprintf_cleanup(&data);
1060 
1061 	return err + 1;
1062 }
1063 
1064 const struct bpf_func_proto bpf_snprintf_proto = {
1065 	.func		= bpf_snprintf,
1066 	.gpl_only	= true,
1067 	.ret_type	= RET_INTEGER,
1068 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1069 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1070 	.arg3_type	= ARG_PTR_TO_CONST_STR,
1071 	.arg4_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1072 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1073 };
1074 
1075 /* BPF map elements can contain 'struct bpf_timer'.
1076  * Such map owns all of its BPF timers.
1077  * 'struct bpf_timer' is allocated as part of map element allocation
1078  * and it's zero initialized.
1079  * That space is used to keep 'struct bpf_timer_kern'.
1080  * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1081  * remembers 'struct bpf_map *' pointer it's part of.
1082  * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1083  * bpf_timer_start() arms the timer.
1084  * If user space reference to a map goes to zero at this point
1085  * ops->map_release_uref callback is responsible for cancelling the timers,
1086  * freeing their memory, and decrementing prog's refcnts.
1087  * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1088  * Inner maps can contain bpf timers as well. ops->map_release_uref is
1089  * freeing the timers when inner map is replaced or deleted by user space.
1090  */
1091 struct bpf_hrtimer {
1092 	struct hrtimer timer;
1093 	struct bpf_map *map;
1094 	struct bpf_prog *prog;
1095 	void __rcu *callback_fn;
1096 	void *value;
1097 };
1098 
1099 /* the actual struct hidden inside uapi struct bpf_timer */
1100 struct bpf_timer_kern {
1101 	struct bpf_hrtimer *timer;
1102 	/* bpf_spin_lock is used here instead of spinlock_t to make
1103 	 * sure that it always fits into space reserved by struct bpf_timer
1104 	 * regardless of LOCKDEP and spinlock debug flags.
1105 	 */
1106 	struct bpf_spin_lock lock;
1107 } __attribute__((aligned(8)));
1108 
1109 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1110 
1111 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1112 {
1113 	struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1114 	struct bpf_map *map = t->map;
1115 	void *value = t->value;
1116 	bpf_callback_t callback_fn;
1117 	void *key;
1118 	u32 idx;
1119 
1120 	BTF_TYPE_EMIT(struct bpf_timer);
1121 	callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
1122 	if (!callback_fn)
1123 		goto out;
1124 
1125 	/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1126 	 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1127 	 * Remember the timer this callback is servicing to prevent
1128 	 * deadlock if callback_fn() calls bpf_timer_cancel() or
1129 	 * bpf_map_delete_elem() on the same timer.
1130 	 */
1131 	this_cpu_write(hrtimer_running, t);
1132 	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1133 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1134 
1135 		/* compute the key */
1136 		idx = ((char *)value - array->value) / array->elem_size;
1137 		key = &idx;
1138 	} else { /* hash or lru */
1139 		key = value - round_up(map->key_size, 8);
1140 	}
1141 
1142 	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1143 	/* The verifier checked that return value is zero. */
1144 
1145 	this_cpu_write(hrtimer_running, NULL);
1146 out:
1147 	return HRTIMER_NORESTART;
1148 }
1149 
1150 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
1151 	   u64, flags)
1152 {
1153 	clockid_t clockid = flags & (MAX_CLOCKS - 1);
1154 	struct bpf_hrtimer *t;
1155 	int ret = 0;
1156 
1157 	BUILD_BUG_ON(MAX_CLOCKS != 16);
1158 	BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
1159 	BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
1160 
1161 	if (in_nmi())
1162 		return -EOPNOTSUPP;
1163 
1164 	if (flags >= MAX_CLOCKS ||
1165 	    /* similar to timerfd except _ALARM variants are not supported */
1166 	    (clockid != CLOCK_MONOTONIC &&
1167 	     clockid != CLOCK_REALTIME &&
1168 	     clockid != CLOCK_BOOTTIME))
1169 		return -EINVAL;
1170 	__bpf_spin_lock_irqsave(&timer->lock);
1171 	t = timer->timer;
1172 	if (t) {
1173 		ret = -EBUSY;
1174 		goto out;
1175 	}
1176 	if (!atomic64_read(&map->usercnt)) {
1177 		/* maps with timers must be either held by user space
1178 		 * or pinned in bpffs.
1179 		 */
1180 		ret = -EPERM;
1181 		goto out;
1182 	}
1183 	/* allocate hrtimer via map_kmalloc to use memcg accounting */
1184 	t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
1185 	if (!t) {
1186 		ret = -ENOMEM;
1187 		goto out;
1188 	}
1189 	t->value = (void *)timer - map->record->timer_off;
1190 	t->map = map;
1191 	t->prog = NULL;
1192 	rcu_assign_pointer(t->callback_fn, NULL);
1193 	hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1194 	t->timer.function = bpf_timer_cb;
1195 	timer->timer = t;
1196 out:
1197 	__bpf_spin_unlock_irqrestore(&timer->lock);
1198 	return ret;
1199 }
1200 
1201 static const struct bpf_func_proto bpf_timer_init_proto = {
1202 	.func		= bpf_timer_init,
1203 	.gpl_only	= true,
1204 	.ret_type	= RET_INTEGER,
1205 	.arg1_type	= ARG_PTR_TO_TIMER,
1206 	.arg2_type	= ARG_CONST_MAP_PTR,
1207 	.arg3_type	= ARG_ANYTHING,
1208 };
1209 
1210 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
1211 	   struct bpf_prog_aux *, aux)
1212 {
1213 	struct bpf_prog *prev, *prog = aux->prog;
1214 	struct bpf_hrtimer *t;
1215 	int ret = 0;
1216 
1217 	if (in_nmi())
1218 		return -EOPNOTSUPP;
1219 	__bpf_spin_lock_irqsave(&timer->lock);
1220 	t = timer->timer;
1221 	if (!t) {
1222 		ret = -EINVAL;
1223 		goto out;
1224 	}
1225 	if (!atomic64_read(&t->map->usercnt)) {
1226 		/* maps with timers must be either held by user space
1227 		 * or pinned in bpffs. Otherwise timer might still be
1228 		 * running even when bpf prog is detached and user space
1229 		 * is gone, since map_release_uref won't ever be called.
1230 		 */
1231 		ret = -EPERM;
1232 		goto out;
1233 	}
1234 	prev = t->prog;
1235 	if (prev != prog) {
1236 		/* Bump prog refcnt once. Every bpf_timer_set_callback()
1237 		 * can pick different callback_fn-s within the same prog.
1238 		 */
1239 		prog = bpf_prog_inc_not_zero(prog);
1240 		if (IS_ERR(prog)) {
1241 			ret = PTR_ERR(prog);
1242 			goto out;
1243 		}
1244 		if (prev)
1245 			/* Drop prev prog refcnt when swapping with new prog */
1246 			bpf_prog_put(prev);
1247 		t->prog = prog;
1248 	}
1249 	rcu_assign_pointer(t->callback_fn, callback_fn);
1250 out:
1251 	__bpf_spin_unlock_irqrestore(&timer->lock);
1252 	return ret;
1253 }
1254 
1255 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1256 	.func		= bpf_timer_set_callback,
1257 	.gpl_only	= true,
1258 	.ret_type	= RET_INTEGER,
1259 	.arg1_type	= ARG_PTR_TO_TIMER,
1260 	.arg2_type	= ARG_PTR_TO_FUNC,
1261 };
1262 
1263 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
1264 {
1265 	struct bpf_hrtimer *t;
1266 	int ret = 0;
1267 
1268 	if (in_nmi())
1269 		return -EOPNOTSUPP;
1270 	if (flags)
1271 		return -EINVAL;
1272 	__bpf_spin_lock_irqsave(&timer->lock);
1273 	t = timer->timer;
1274 	if (!t || !t->prog) {
1275 		ret = -EINVAL;
1276 		goto out;
1277 	}
1278 	hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT);
1279 out:
1280 	__bpf_spin_unlock_irqrestore(&timer->lock);
1281 	return ret;
1282 }
1283 
1284 static const struct bpf_func_proto bpf_timer_start_proto = {
1285 	.func		= bpf_timer_start,
1286 	.gpl_only	= true,
1287 	.ret_type	= RET_INTEGER,
1288 	.arg1_type	= ARG_PTR_TO_TIMER,
1289 	.arg2_type	= ARG_ANYTHING,
1290 	.arg3_type	= ARG_ANYTHING,
1291 };
1292 
1293 static void drop_prog_refcnt(struct bpf_hrtimer *t)
1294 {
1295 	struct bpf_prog *prog = t->prog;
1296 
1297 	if (prog) {
1298 		bpf_prog_put(prog);
1299 		t->prog = NULL;
1300 		rcu_assign_pointer(t->callback_fn, NULL);
1301 	}
1302 }
1303 
1304 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
1305 {
1306 	struct bpf_hrtimer *t;
1307 	int ret = 0;
1308 
1309 	if (in_nmi())
1310 		return -EOPNOTSUPP;
1311 	__bpf_spin_lock_irqsave(&timer->lock);
1312 	t = timer->timer;
1313 	if (!t) {
1314 		ret = -EINVAL;
1315 		goto out;
1316 	}
1317 	if (this_cpu_read(hrtimer_running) == t) {
1318 		/* If bpf callback_fn is trying to bpf_timer_cancel()
1319 		 * its own timer the hrtimer_cancel() will deadlock
1320 		 * since it waits for callback_fn to finish
1321 		 */
1322 		ret = -EDEADLK;
1323 		goto out;
1324 	}
1325 	drop_prog_refcnt(t);
1326 out:
1327 	__bpf_spin_unlock_irqrestore(&timer->lock);
1328 	/* Cancel the timer and wait for associated callback to finish
1329 	 * if it was running.
1330 	 */
1331 	ret = ret ?: hrtimer_cancel(&t->timer);
1332 	return ret;
1333 }
1334 
1335 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1336 	.func		= bpf_timer_cancel,
1337 	.gpl_only	= true,
1338 	.ret_type	= RET_INTEGER,
1339 	.arg1_type	= ARG_PTR_TO_TIMER,
1340 };
1341 
1342 /* This function is called by map_delete/update_elem for individual element and
1343  * by ops->map_release_uref when the user space reference to a map reaches zero.
1344  */
1345 void bpf_timer_cancel_and_free(void *val)
1346 {
1347 	struct bpf_timer_kern *timer = val;
1348 	struct bpf_hrtimer *t;
1349 
1350 	/* Performance optimization: read timer->timer without lock first. */
1351 	if (!READ_ONCE(timer->timer))
1352 		return;
1353 
1354 	__bpf_spin_lock_irqsave(&timer->lock);
1355 	/* re-read it under lock */
1356 	t = timer->timer;
1357 	if (!t)
1358 		goto out;
1359 	drop_prog_refcnt(t);
1360 	/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1361 	 * this timer, since it won't be initialized.
1362 	 */
1363 	timer->timer = NULL;
1364 out:
1365 	__bpf_spin_unlock_irqrestore(&timer->lock);
1366 	if (!t)
1367 		return;
1368 	/* Cancel the timer and wait for callback to complete if it was running.
1369 	 * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1370 	 * right after for both preallocated and non-preallocated maps.
1371 	 * The timer->timer = NULL was already done and no code path can
1372 	 * see address 't' anymore.
1373 	 *
1374 	 * Check that bpf_map_delete/update_elem() wasn't called from timer
1375 	 * callback_fn. In such case don't call hrtimer_cancel() (since it will
1376 	 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1377 	 * return -1). Though callback_fn is still running on this cpu it's
1378 	 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1379 	 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1380 	 * since timer->timer = NULL was already done. The timer will be
1381 	 * effectively cancelled because bpf_timer_cb() will return
1382 	 * HRTIMER_NORESTART.
1383 	 */
1384 	if (this_cpu_read(hrtimer_running) != t)
1385 		hrtimer_cancel(&t->timer);
1386 	kfree(t);
1387 }
1388 
1389 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
1390 {
1391 	unsigned long *kptr = map_value;
1392 
1393 	return xchg(kptr, (unsigned long)ptr);
1394 }
1395 
1396 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1397  * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1398  * denote type that verifier will determine.
1399  */
1400 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1401 	.func         = bpf_kptr_xchg,
1402 	.gpl_only     = false,
1403 	.ret_type     = RET_PTR_TO_BTF_ID_OR_NULL,
1404 	.ret_btf_id   = BPF_PTR_POISON,
1405 	.arg1_type    = ARG_PTR_TO_KPTR,
1406 	.arg2_type    = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1407 	.arg2_btf_id  = BPF_PTR_POISON,
1408 };
1409 
1410 /* Since the upper 8 bits of dynptr->size is reserved, the
1411  * maximum supported size is 2^24 - 1.
1412  */
1413 #define DYNPTR_MAX_SIZE	((1UL << 24) - 1)
1414 #define DYNPTR_TYPE_SHIFT	28
1415 #define DYNPTR_SIZE_MASK	0xFFFFFF
1416 #define DYNPTR_RDONLY_BIT	BIT(31)
1417 
1418 static bool bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1419 {
1420 	return ptr->size & DYNPTR_RDONLY_BIT;
1421 }
1422 
1423 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1424 {
1425 	ptr->size |= DYNPTR_RDONLY_BIT;
1426 }
1427 
1428 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1429 {
1430 	ptr->size |= type << DYNPTR_TYPE_SHIFT;
1431 }
1432 
1433 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1434 {
1435 	return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1436 }
1437 
1438 u32 bpf_dynptr_get_size(const struct bpf_dynptr_kern *ptr)
1439 {
1440 	return ptr->size & DYNPTR_SIZE_MASK;
1441 }
1442 
1443 int bpf_dynptr_check_size(u32 size)
1444 {
1445 	return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1446 }
1447 
1448 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1449 		     enum bpf_dynptr_type type, u32 offset, u32 size)
1450 {
1451 	ptr->data = data;
1452 	ptr->offset = offset;
1453 	ptr->size = size;
1454 	bpf_dynptr_set_type(ptr, type);
1455 }
1456 
1457 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1458 {
1459 	memset(ptr, 0, sizeof(*ptr));
1460 }
1461 
1462 static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1463 {
1464 	u32 size = bpf_dynptr_get_size(ptr);
1465 
1466 	if (len > size || offset > size - len)
1467 		return -E2BIG;
1468 
1469 	return 0;
1470 }
1471 
1472 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1473 {
1474 	int err;
1475 
1476 	BTF_TYPE_EMIT(struct bpf_dynptr);
1477 
1478 	err = bpf_dynptr_check_size(size);
1479 	if (err)
1480 		goto error;
1481 
1482 	/* flags is currently unsupported */
1483 	if (flags) {
1484 		err = -EINVAL;
1485 		goto error;
1486 	}
1487 
1488 	bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1489 
1490 	return 0;
1491 
1492 error:
1493 	bpf_dynptr_set_null(ptr);
1494 	return err;
1495 }
1496 
1497 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1498 	.func		= bpf_dynptr_from_mem,
1499 	.gpl_only	= false,
1500 	.ret_type	= RET_INTEGER,
1501 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1502 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1503 	.arg3_type	= ARG_ANYTHING,
1504 	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT,
1505 };
1506 
1507 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
1508 	   u32, offset, u64, flags)
1509 {
1510 	enum bpf_dynptr_type type;
1511 	int err;
1512 
1513 	if (!src->data || flags)
1514 		return -EINVAL;
1515 
1516 	err = bpf_dynptr_check_off_len(src, offset, len);
1517 	if (err)
1518 		return err;
1519 
1520 	type = bpf_dynptr_get_type(src);
1521 
1522 	switch (type) {
1523 	case BPF_DYNPTR_TYPE_LOCAL:
1524 	case BPF_DYNPTR_TYPE_RINGBUF:
1525 		/* Source and destination may possibly overlap, hence use memmove to
1526 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1527 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1528 		 */
1529 		memmove(dst, src->data + src->offset + offset, len);
1530 		return 0;
1531 	case BPF_DYNPTR_TYPE_SKB:
1532 		return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1533 	case BPF_DYNPTR_TYPE_XDP:
1534 		return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1535 	default:
1536 		WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1537 		return -EFAULT;
1538 	}
1539 }
1540 
1541 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1542 	.func		= bpf_dynptr_read,
1543 	.gpl_only	= false,
1544 	.ret_type	= RET_INTEGER,
1545 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1546 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1547 	.arg3_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1548 	.arg4_type	= ARG_ANYTHING,
1549 	.arg5_type	= ARG_ANYTHING,
1550 };
1551 
1552 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1553 	   u32, len, u64, flags)
1554 {
1555 	enum bpf_dynptr_type type;
1556 	int err;
1557 
1558 	if (!dst->data || bpf_dynptr_is_rdonly(dst))
1559 		return -EINVAL;
1560 
1561 	err = bpf_dynptr_check_off_len(dst, offset, len);
1562 	if (err)
1563 		return err;
1564 
1565 	type = bpf_dynptr_get_type(dst);
1566 
1567 	switch (type) {
1568 	case BPF_DYNPTR_TYPE_LOCAL:
1569 	case BPF_DYNPTR_TYPE_RINGBUF:
1570 		if (flags)
1571 			return -EINVAL;
1572 		/* Source and destination may possibly overlap, hence use memmove to
1573 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1574 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1575 		 */
1576 		memmove(dst->data + dst->offset + offset, src, len);
1577 		return 0;
1578 	case BPF_DYNPTR_TYPE_SKB:
1579 		return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1580 					     flags);
1581 	case BPF_DYNPTR_TYPE_XDP:
1582 		if (flags)
1583 			return -EINVAL;
1584 		return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1585 	default:
1586 		WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1587 		return -EFAULT;
1588 	}
1589 }
1590 
1591 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1592 	.func		= bpf_dynptr_write,
1593 	.gpl_only	= false,
1594 	.ret_type	= RET_INTEGER,
1595 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1596 	.arg2_type	= ARG_ANYTHING,
1597 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1598 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1599 	.arg5_type	= ARG_ANYTHING,
1600 };
1601 
1602 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1603 {
1604 	enum bpf_dynptr_type type;
1605 	int err;
1606 
1607 	if (!ptr->data)
1608 		return 0;
1609 
1610 	err = bpf_dynptr_check_off_len(ptr, offset, len);
1611 	if (err)
1612 		return 0;
1613 
1614 	if (bpf_dynptr_is_rdonly(ptr))
1615 		return 0;
1616 
1617 	type = bpf_dynptr_get_type(ptr);
1618 
1619 	switch (type) {
1620 	case BPF_DYNPTR_TYPE_LOCAL:
1621 	case BPF_DYNPTR_TYPE_RINGBUF:
1622 		return (unsigned long)(ptr->data + ptr->offset + offset);
1623 	case BPF_DYNPTR_TYPE_SKB:
1624 	case BPF_DYNPTR_TYPE_XDP:
1625 		/* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1626 		return 0;
1627 	default:
1628 		WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1629 		return 0;
1630 	}
1631 }
1632 
1633 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1634 	.func		= bpf_dynptr_data,
1635 	.gpl_only	= false,
1636 	.ret_type	= RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1637 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1638 	.arg2_type	= ARG_ANYTHING,
1639 	.arg3_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
1640 };
1641 
1642 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1643 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1644 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1645 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1646 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1647 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1648 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1649 
1650 const struct bpf_func_proto *
1651 bpf_base_func_proto(enum bpf_func_id func_id)
1652 {
1653 	switch (func_id) {
1654 	case BPF_FUNC_map_lookup_elem:
1655 		return &bpf_map_lookup_elem_proto;
1656 	case BPF_FUNC_map_update_elem:
1657 		return &bpf_map_update_elem_proto;
1658 	case BPF_FUNC_map_delete_elem:
1659 		return &bpf_map_delete_elem_proto;
1660 	case BPF_FUNC_map_push_elem:
1661 		return &bpf_map_push_elem_proto;
1662 	case BPF_FUNC_map_pop_elem:
1663 		return &bpf_map_pop_elem_proto;
1664 	case BPF_FUNC_map_peek_elem:
1665 		return &bpf_map_peek_elem_proto;
1666 	case BPF_FUNC_map_lookup_percpu_elem:
1667 		return &bpf_map_lookup_percpu_elem_proto;
1668 	case BPF_FUNC_get_prandom_u32:
1669 		return &bpf_get_prandom_u32_proto;
1670 	case BPF_FUNC_get_smp_processor_id:
1671 		return &bpf_get_raw_smp_processor_id_proto;
1672 	case BPF_FUNC_get_numa_node_id:
1673 		return &bpf_get_numa_node_id_proto;
1674 	case BPF_FUNC_tail_call:
1675 		return &bpf_tail_call_proto;
1676 	case BPF_FUNC_ktime_get_ns:
1677 		return &bpf_ktime_get_ns_proto;
1678 	case BPF_FUNC_ktime_get_boot_ns:
1679 		return &bpf_ktime_get_boot_ns_proto;
1680 	case BPF_FUNC_ktime_get_tai_ns:
1681 		return &bpf_ktime_get_tai_ns_proto;
1682 	case BPF_FUNC_ringbuf_output:
1683 		return &bpf_ringbuf_output_proto;
1684 	case BPF_FUNC_ringbuf_reserve:
1685 		return &bpf_ringbuf_reserve_proto;
1686 	case BPF_FUNC_ringbuf_submit:
1687 		return &bpf_ringbuf_submit_proto;
1688 	case BPF_FUNC_ringbuf_discard:
1689 		return &bpf_ringbuf_discard_proto;
1690 	case BPF_FUNC_ringbuf_query:
1691 		return &bpf_ringbuf_query_proto;
1692 	case BPF_FUNC_strncmp:
1693 		return &bpf_strncmp_proto;
1694 	case BPF_FUNC_strtol:
1695 		return &bpf_strtol_proto;
1696 	case BPF_FUNC_strtoul:
1697 		return &bpf_strtoul_proto;
1698 	default:
1699 		break;
1700 	}
1701 
1702 	if (!bpf_capable())
1703 		return NULL;
1704 
1705 	switch (func_id) {
1706 	case BPF_FUNC_spin_lock:
1707 		return &bpf_spin_lock_proto;
1708 	case BPF_FUNC_spin_unlock:
1709 		return &bpf_spin_unlock_proto;
1710 	case BPF_FUNC_jiffies64:
1711 		return &bpf_jiffies64_proto;
1712 	case BPF_FUNC_per_cpu_ptr:
1713 		return &bpf_per_cpu_ptr_proto;
1714 	case BPF_FUNC_this_cpu_ptr:
1715 		return &bpf_this_cpu_ptr_proto;
1716 	case BPF_FUNC_timer_init:
1717 		return &bpf_timer_init_proto;
1718 	case BPF_FUNC_timer_set_callback:
1719 		return &bpf_timer_set_callback_proto;
1720 	case BPF_FUNC_timer_start:
1721 		return &bpf_timer_start_proto;
1722 	case BPF_FUNC_timer_cancel:
1723 		return &bpf_timer_cancel_proto;
1724 	case BPF_FUNC_kptr_xchg:
1725 		return &bpf_kptr_xchg_proto;
1726 	case BPF_FUNC_for_each_map_elem:
1727 		return &bpf_for_each_map_elem_proto;
1728 	case BPF_FUNC_loop:
1729 		return &bpf_loop_proto;
1730 	case BPF_FUNC_user_ringbuf_drain:
1731 		return &bpf_user_ringbuf_drain_proto;
1732 	case BPF_FUNC_ringbuf_reserve_dynptr:
1733 		return &bpf_ringbuf_reserve_dynptr_proto;
1734 	case BPF_FUNC_ringbuf_submit_dynptr:
1735 		return &bpf_ringbuf_submit_dynptr_proto;
1736 	case BPF_FUNC_ringbuf_discard_dynptr:
1737 		return &bpf_ringbuf_discard_dynptr_proto;
1738 	case BPF_FUNC_dynptr_from_mem:
1739 		return &bpf_dynptr_from_mem_proto;
1740 	case BPF_FUNC_dynptr_read:
1741 		return &bpf_dynptr_read_proto;
1742 	case BPF_FUNC_dynptr_write:
1743 		return &bpf_dynptr_write_proto;
1744 	case BPF_FUNC_dynptr_data:
1745 		return &bpf_dynptr_data_proto;
1746 #ifdef CONFIG_CGROUPS
1747 	case BPF_FUNC_cgrp_storage_get:
1748 		return &bpf_cgrp_storage_get_proto;
1749 	case BPF_FUNC_cgrp_storage_delete:
1750 		return &bpf_cgrp_storage_delete_proto;
1751 	case BPF_FUNC_get_current_cgroup_id:
1752 		return &bpf_get_current_cgroup_id_proto;
1753 	case BPF_FUNC_get_current_ancestor_cgroup_id:
1754 		return &bpf_get_current_ancestor_cgroup_id_proto;
1755 #endif
1756 	default:
1757 		break;
1758 	}
1759 
1760 	if (!perfmon_capable())
1761 		return NULL;
1762 
1763 	switch (func_id) {
1764 	case BPF_FUNC_trace_printk:
1765 		return bpf_get_trace_printk_proto();
1766 	case BPF_FUNC_get_current_task:
1767 		return &bpf_get_current_task_proto;
1768 	case BPF_FUNC_get_current_task_btf:
1769 		return &bpf_get_current_task_btf_proto;
1770 	case BPF_FUNC_probe_read_user:
1771 		return &bpf_probe_read_user_proto;
1772 	case BPF_FUNC_probe_read_kernel:
1773 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1774 		       NULL : &bpf_probe_read_kernel_proto;
1775 	case BPF_FUNC_probe_read_user_str:
1776 		return &bpf_probe_read_user_str_proto;
1777 	case BPF_FUNC_probe_read_kernel_str:
1778 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1779 		       NULL : &bpf_probe_read_kernel_str_proto;
1780 	case BPF_FUNC_snprintf_btf:
1781 		return &bpf_snprintf_btf_proto;
1782 	case BPF_FUNC_snprintf:
1783 		return &bpf_snprintf_proto;
1784 	case BPF_FUNC_task_pt_regs:
1785 		return &bpf_task_pt_regs_proto;
1786 	case BPF_FUNC_trace_vprintk:
1787 		return bpf_get_trace_vprintk_proto();
1788 	default:
1789 		return NULL;
1790 	}
1791 }
1792 
1793 void bpf_list_head_free(const struct btf_field *field, void *list_head,
1794 			struct bpf_spin_lock *spin_lock)
1795 {
1796 	struct list_head *head = list_head, *orig_head = list_head;
1797 
1798 	BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
1799 	BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
1800 
1801 	/* Do the actual list draining outside the lock to not hold the lock for
1802 	 * too long, and also prevent deadlocks if tracing programs end up
1803 	 * executing on entry/exit of functions called inside the critical
1804 	 * section, and end up doing map ops that call bpf_list_head_free for
1805 	 * the same map value again.
1806 	 */
1807 	__bpf_spin_lock_irqsave(spin_lock);
1808 	if (!head->next || list_empty(head))
1809 		goto unlock;
1810 	head = head->next;
1811 unlock:
1812 	INIT_LIST_HEAD(orig_head);
1813 	__bpf_spin_unlock_irqrestore(spin_lock);
1814 
1815 	while (head != orig_head) {
1816 		void *obj = head;
1817 
1818 		obj -= field->graph_root.node_offset;
1819 		head = head->next;
1820 		/* The contained type can also have resources, including a
1821 		 * bpf_list_head which needs to be freed.
1822 		 */
1823 		bpf_obj_free_fields(field->graph_root.value_rec, obj);
1824 		/* bpf_mem_free requires migrate_disable(), since we can be
1825 		 * called from map free path as well apart from BPF program (as
1826 		 * part of map ops doing bpf_obj_free_fields).
1827 		 */
1828 		migrate_disable();
1829 		bpf_mem_free(&bpf_global_ma, obj);
1830 		migrate_enable();
1831 	}
1832 }
1833 
1834 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
1835  * 'rb_node *', so field name of rb_node within containing struct is not
1836  * needed.
1837  *
1838  * Since bpf_rb_tree's node type has a corresponding struct btf_field with
1839  * graph_root.node_offset, it's not necessary to know field name
1840  * or type of node struct
1841  */
1842 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
1843 	for (pos = rb_first_postorder(root); \
1844 	    pos && ({ n = rb_next_postorder(pos); 1; }); \
1845 	    pos = n)
1846 
1847 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
1848 		      struct bpf_spin_lock *spin_lock)
1849 {
1850 	struct rb_root_cached orig_root, *root = rb_root;
1851 	struct rb_node *pos, *n;
1852 	void *obj;
1853 
1854 	BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
1855 	BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
1856 
1857 	__bpf_spin_lock_irqsave(spin_lock);
1858 	orig_root = *root;
1859 	*root = RB_ROOT_CACHED;
1860 	__bpf_spin_unlock_irqrestore(spin_lock);
1861 
1862 	bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
1863 		obj = pos;
1864 		obj -= field->graph_root.node_offset;
1865 
1866 		bpf_obj_free_fields(field->graph_root.value_rec, obj);
1867 
1868 		migrate_disable();
1869 		bpf_mem_free(&bpf_global_ma, obj);
1870 		migrate_enable();
1871 	}
1872 }
1873 
1874 __diag_push();
1875 __diag_ignore_all("-Wmissing-prototypes",
1876 		  "Global functions as their definitions will be in vmlinux BTF");
1877 
1878 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
1879 {
1880 	struct btf_struct_meta *meta = meta__ign;
1881 	u64 size = local_type_id__k;
1882 	void *p;
1883 
1884 	p = bpf_mem_alloc(&bpf_global_ma, size);
1885 	if (!p)
1886 		return NULL;
1887 	if (meta)
1888 		bpf_obj_init(meta->field_offs, p);
1889 	return p;
1890 }
1891 
1892 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
1893 {
1894 	struct btf_struct_meta *meta = meta__ign;
1895 	void *p = p__alloc;
1896 
1897 	if (meta)
1898 		bpf_obj_free_fields(meta->record, p);
1899 	bpf_mem_free(&bpf_global_ma, p);
1900 }
1901 
1902 static void __bpf_list_add(struct bpf_list_node *node, struct bpf_list_head *head, bool tail)
1903 {
1904 	struct list_head *n = (void *)node, *h = (void *)head;
1905 
1906 	if (unlikely(!h->next))
1907 		INIT_LIST_HEAD(h);
1908 	if (unlikely(!n->next))
1909 		INIT_LIST_HEAD(n);
1910 	tail ? list_add_tail(n, h) : list_add(n, h);
1911 }
1912 
1913 __bpf_kfunc void bpf_list_push_front(struct bpf_list_head *head, struct bpf_list_node *node)
1914 {
1915 	return __bpf_list_add(node, head, false);
1916 }
1917 
1918 __bpf_kfunc void bpf_list_push_back(struct bpf_list_head *head, struct bpf_list_node *node)
1919 {
1920 	return __bpf_list_add(node, head, true);
1921 }
1922 
1923 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
1924 {
1925 	struct list_head *n, *h = (void *)head;
1926 
1927 	if (unlikely(!h->next))
1928 		INIT_LIST_HEAD(h);
1929 	if (list_empty(h))
1930 		return NULL;
1931 	n = tail ? h->prev : h->next;
1932 	list_del_init(n);
1933 	return (struct bpf_list_node *)n;
1934 }
1935 
1936 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
1937 {
1938 	return __bpf_list_del(head, false);
1939 }
1940 
1941 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
1942 {
1943 	return __bpf_list_del(head, true);
1944 }
1945 
1946 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
1947 						  struct bpf_rb_node *node)
1948 {
1949 	struct rb_root_cached *r = (struct rb_root_cached *)root;
1950 	struct rb_node *n = (struct rb_node *)node;
1951 
1952 	rb_erase_cached(n, r);
1953 	RB_CLEAR_NODE(n);
1954 	return (struct bpf_rb_node *)n;
1955 }
1956 
1957 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
1958  * program
1959  */
1960 static void __bpf_rbtree_add(struct bpf_rb_root *root, struct bpf_rb_node *node,
1961 			     void *less)
1962 {
1963 	struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
1964 	bpf_callback_t cb = (bpf_callback_t)less;
1965 	struct rb_node *parent = NULL;
1966 	bool leftmost = true;
1967 
1968 	while (*link) {
1969 		parent = *link;
1970 		if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
1971 			link = &parent->rb_left;
1972 		} else {
1973 			link = &parent->rb_right;
1974 			leftmost = false;
1975 		}
1976 	}
1977 
1978 	rb_link_node((struct rb_node *)node, parent, link);
1979 	rb_insert_color_cached((struct rb_node *)node,
1980 			       (struct rb_root_cached *)root, leftmost);
1981 }
1982 
1983 __bpf_kfunc void bpf_rbtree_add(struct bpf_rb_root *root, struct bpf_rb_node *node,
1984 				bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b))
1985 {
1986 	__bpf_rbtree_add(root, node, (void *)less);
1987 }
1988 
1989 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
1990 {
1991 	struct rb_root_cached *r = (struct rb_root_cached *)root;
1992 
1993 	return (struct bpf_rb_node *)rb_first_cached(r);
1994 }
1995 
1996 /**
1997  * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
1998  * kfunc which is not stored in a map as a kptr, must be released by calling
1999  * bpf_task_release().
2000  * @p: The task on which a reference is being acquired.
2001  */
2002 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2003 {
2004 	return get_task_struct(p);
2005 }
2006 
2007 /**
2008  * bpf_task_acquire_not_zero - Acquire a reference to a rcu task object. A task
2009  * acquired by this kfunc which is not stored in a map as a kptr, must be
2010  * released by calling bpf_task_release().
2011  * @p: The task on which a reference is being acquired.
2012  */
2013 __bpf_kfunc struct task_struct *bpf_task_acquire_not_zero(struct task_struct *p)
2014 {
2015 	/* For the time being this function returns NULL, as it's not currently
2016 	 * possible to safely acquire a reference to a task with RCU protection
2017 	 * using get_task_struct() and put_task_struct(). This is due to the
2018 	 * slightly odd mechanics of p->rcu_users, and how task RCU protection
2019 	 * works.
2020 	 *
2021 	 * A struct task_struct is refcounted by two different refcount_t
2022 	 * fields:
2023 	 *
2024 	 * 1. p->usage:     The "true" refcount field which tracks a task's
2025 	 *		    lifetime. The task is freed as soon as this
2026 	 *		    refcount drops to 0.
2027 	 *
2028 	 * 2. p->rcu_users: An "RCU users" refcount field which is statically
2029 	 *		    initialized to 2, and is co-located in a union with
2030 	 *		    a struct rcu_head field (p->rcu). p->rcu_users
2031 	 *		    essentially encapsulates a single p->usage
2032 	 *		    refcount, and when p->rcu_users goes to 0, an RCU
2033 	 *		    callback is scheduled on the struct rcu_head which
2034 	 *		    decrements the p->usage refcount.
2035 	 *
2036 	 * There are two important implications to this task refcounting logic
2037 	 * described above. The first is that
2038 	 * refcount_inc_not_zero(&p->rcu_users) cannot be used anywhere, as
2039 	 * after the refcount goes to 0, the RCU callback being scheduled will
2040 	 * cause the memory backing the refcount to again be nonzero due to the
2041 	 * fields sharing a union. The other is that we can't rely on RCU to
2042 	 * guarantee that a task is valid in a BPF program. This is because a
2043 	 * task could have already transitioned to being in the TASK_DEAD
2044 	 * state, had its rcu_users refcount go to 0, and its rcu callback
2045 	 * invoked in which it drops its single p->usage reference. At this
2046 	 * point the task will be freed as soon as the last p->usage reference
2047 	 * goes to 0, without waiting for another RCU gp to elapse. The only
2048 	 * way that a BPF program can guarantee that a task is valid is in this
2049 	 * scenario is to hold a p->usage refcount itself.
2050 	 *
2051 	 * Until we're able to resolve this issue, either by pulling
2052 	 * p->rcu_users and p->rcu out of the union, or by getting rid of
2053 	 * p->usage and just using p->rcu_users for refcounting, we'll just
2054 	 * return NULL here.
2055 	 */
2056 	return NULL;
2057 }
2058 
2059 /**
2060  * bpf_task_kptr_get - Acquire a reference on a struct task_struct kptr. A task
2061  * kptr acquired by this kfunc which is not subsequently stored in a map, must
2062  * be released by calling bpf_task_release().
2063  * @pp: A pointer to a task kptr on which a reference is being acquired.
2064  */
2065 __bpf_kfunc struct task_struct *bpf_task_kptr_get(struct task_struct **pp)
2066 {
2067 	/* We must return NULL here until we have clarity on how to properly
2068 	 * leverage RCU for ensuring a task's lifetime. See the comment above
2069 	 * in bpf_task_acquire_not_zero() for more details.
2070 	 */
2071 	return NULL;
2072 }
2073 
2074 /**
2075  * bpf_task_release - Release the reference acquired on a task.
2076  * @p: The task on which a reference is being released.
2077  */
2078 __bpf_kfunc void bpf_task_release(struct task_struct *p)
2079 {
2080 	if (!p)
2081 		return;
2082 
2083 	put_task_struct(p);
2084 }
2085 
2086 #ifdef CONFIG_CGROUPS
2087 /**
2088  * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2089  * this kfunc which is not stored in a map as a kptr, must be released by
2090  * calling bpf_cgroup_release().
2091  * @cgrp: The cgroup on which a reference is being acquired.
2092  */
2093 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2094 {
2095 	cgroup_get(cgrp);
2096 	return cgrp;
2097 }
2098 
2099 /**
2100  * bpf_cgroup_kptr_get - Acquire a reference on a struct cgroup kptr. A cgroup
2101  * kptr acquired by this kfunc which is not subsequently stored in a map, must
2102  * be released by calling bpf_cgroup_release().
2103  * @cgrpp: A pointer to a cgroup kptr on which a reference is being acquired.
2104  */
2105 __bpf_kfunc struct cgroup *bpf_cgroup_kptr_get(struct cgroup **cgrpp)
2106 {
2107 	struct cgroup *cgrp;
2108 
2109 	rcu_read_lock();
2110 	/* Another context could remove the cgroup from the map and release it
2111 	 * at any time, including after we've done the lookup above. This is
2112 	 * safe because we're in an RCU read region, so the cgroup is
2113 	 * guaranteed to remain valid until at least the rcu_read_unlock()
2114 	 * below.
2115 	 */
2116 	cgrp = READ_ONCE(*cgrpp);
2117 
2118 	if (cgrp && !cgroup_tryget(cgrp))
2119 		/* If the cgroup had been removed from the map and freed as
2120 		 * described above, cgroup_tryget() will return false. The
2121 		 * cgroup will be freed at some point after the current RCU gp
2122 		 * has ended, so just return NULL to the user.
2123 		 */
2124 		cgrp = NULL;
2125 	rcu_read_unlock();
2126 
2127 	return cgrp;
2128 }
2129 
2130 /**
2131  * bpf_cgroup_release - Release the reference acquired on a cgroup.
2132  * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2133  * not be freed until the current grace period has ended, even if its refcount
2134  * drops to 0.
2135  * @cgrp: The cgroup on which a reference is being released.
2136  */
2137 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2138 {
2139 	if (!cgrp)
2140 		return;
2141 
2142 	cgroup_put(cgrp);
2143 }
2144 
2145 /**
2146  * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2147  * array. A cgroup returned by this kfunc which is not subsequently stored in a
2148  * map, must be released by calling bpf_cgroup_release().
2149  * @cgrp: The cgroup for which we're performing a lookup.
2150  * @level: The level of ancestor to look up.
2151  */
2152 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2153 {
2154 	struct cgroup *ancestor;
2155 
2156 	if (level > cgrp->level || level < 0)
2157 		return NULL;
2158 
2159 	ancestor = cgrp->ancestors[level];
2160 	cgroup_get(ancestor);
2161 	return ancestor;
2162 }
2163 
2164 /**
2165  * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2166  * kfunc which is not subsequently stored in a map, must be released by calling
2167  * bpf_cgroup_release().
2168  * @cgid: cgroup id.
2169  */
2170 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2171 {
2172 	struct cgroup *cgrp;
2173 
2174 	cgrp = cgroup_get_from_id(cgid);
2175 	if (IS_ERR(cgrp))
2176 		return NULL;
2177 	return cgrp;
2178 }
2179 #endif /* CONFIG_CGROUPS */
2180 
2181 /**
2182  * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2183  * in the root pid namespace idr. If a task is returned, it must either be
2184  * stored in a map, or released with bpf_task_release().
2185  * @pid: The pid of the task being looked up.
2186  */
2187 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2188 {
2189 	struct task_struct *p;
2190 
2191 	rcu_read_lock();
2192 	p = find_task_by_pid_ns(pid, &init_pid_ns);
2193 	if (p)
2194 		bpf_task_acquire(p);
2195 	rcu_read_unlock();
2196 
2197 	return p;
2198 }
2199 
2200 /**
2201  * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2202  * @ptr: The dynptr whose data slice to retrieve
2203  * @offset: Offset into the dynptr
2204  * @buffer: User-provided buffer to copy contents into
2205  * @buffer__szk: Size (in bytes) of the buffer. This is the length of the
2206  *		 requested slice. This must be a constant.
2207  *
2208  * For non-skb and non-xdp type dynptrs, there is no difference between
2209  * bpf_dynptr_slice and bpf_dynptr_data.
2210  *
2211  * If the intention is to write to the data slice, please use
2212  * bpf_dynptr_slice_rdwr.
2213  *
2214  * The user must check that the returned pointer is not null before using it.
2215  *
2216  * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2217  * does not change the underlying packet data pointers, so a call to
2218  * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2219  * the bpf program.
2220  *
2221  * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2222  * data slice (can be either direct pointer to the data or a pointer to the user
2223  * provided buffer, with its contents containing the data, if unable to obtain
2224  * direct pointer)
2225  */
2226 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset,
2227 				   void *buffer, u32 buffer__szk)
2228 {
2229 	enum bpf_dynptr_type type;
2230 	u32 len = buffer__szk;
2231 	int err;
2232 
2233 	if (!ptr->data)
2234 		return NULL;
2235 
2236 	err = bpf_dynptr_check_off_len(ptr, offset, len);
2237 	if (err)
2238 		return NULL;
2239 
2240 	type = bpf_dynptr_get_type(ptr);
2241 
2242 	switch (type) {
2243 	case BPF_DYNPTR_TYPE_LOCAL:
2244 	case BPF_DYNPTR_TYPE_RINGBUF:
2245 		return ptr->data + ptr->offset + offset;
2246 	case BPF_DYNPTR_TYPE_SKB:
2247 		return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer);
2248 	case BPF_DYNPTR_TYPE_XDP:
2249 	{
2250 		void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2251 		if (xdp_ptr)
2252 			return xdp_ptr;
2253 
2254 		bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer, len, false);
2255 		return buffer;
2256 	}
2257 	default:
2258 		WARN_ONCE(true, "unknown dynptr type %d\n", type);
2259 		return NULL;
2260 	}
2261 }
2262 
2263 /**
2264  * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2265  * @ptr: The dynptr whose data slice to retrieve
2266  * @offset: Offset into the dynptr
2267  * @buffer: User-provided buffer to copy contents into
2268  * @buffer__szk: Size (in bytes) of the buffer. This is the length of the
2269  *		 requested slice. This must be a constant.
2270  *
2271  * For non-skb and non-xdp type dynptrs, there is no difference between
2272  * bpf_dynptr_slice and bpf_dynptr_data.
2273  *
2274  * The returned pointer is writable and may point to either directly the dynptr
2275  * data at the requested offset or to the buffer if unable to obtain a direct
2276  * data pointer to (example: the requested slice is to the paged area of an skb
2277  * packet). In the case where the returned pointer is to the buffer, the user
2278  * is responsible for persisting writes through calling bpf_dynptr_write(). This
2279  * usually looks something like this pattern:
2280  *
2281  * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2282  * if (!eth)
2283  *	return TC_ACT_SHOT;
2284  *
2285  * // mutate eth header //
2286  *
2287  * if (eth == buffer)
2288  *	bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2289  *
2290  * Please note that, as in the example above, the user must check that the
2291  * returned pointer is not null before using it.
2292  *
2293  * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2294  * does not change the underlying packet data pointers, so a call to
2295  * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2296  * the bpf program.
2297  *
2298  * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2299  * data slice (can be either direct pointer to the data or a pointer to the user
2300  * provided buffer, with its contents containing the data, if unable to obtain
2301  * direct pointer)
2302  */
2303 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 offset,
2304 					void *buffer, u32 buffer__szk)
2305 {
2306 	if (!ptr->data || bpf_dynptr_is_rdonly(ptr))
2307 		return NULL;
2308 
2309 	/* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2310 	 *
2311 	 * For skb-type dynptrs, it is safe to write into the returned pointer
2312 	 * if the bpf program allows skb data writes. There are two possiblities
2313 	 * that may occur when calling bpf_dynptr_slice_rdwr:
2314 	 *
2315 	 * 1) The requested slice is in the head of the skb. In this case, the
2316 	 * returned pointer is directly to skb data, and if the skb is cloned, the
2317 	 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2318 	 * The pointer can be directly written into.
2319 	 *
2320 	 * 2) Some portion of the requested slice is in the paged buffer area.
2321 	 * In this case, the requested data will be copied out into the buffer
2322 	 * and the returned pointer will be a pointer to the buffer. The skb
2323 	 * will not be pulled. To persist the write, the user will need to call
2324 	 * bpf_dynptr_write(), which will pull the skb and commit the write.
2325 	 *
2326 	 * Similarly for xdp programs, if the requested slice is not across xdp
2327 	 * fragments, then a direct pointer will be returned, otherwise the data
2328 	 * will be copied out into the buffer and the user will need to call
2329 	 * bpf_dynptr_write() to commit changes.
2330 	 */
2331 	return bpf_dynptr_slice(ptr, offset, buffer, buffer__szk);
2332 }
2333 
2334 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
2335 {
2336 	return obj;
2337 }
2338 
2339 __bpf_kfunc void *bpf_rdonly_cast(void *obj__ign, u32 btf_id__k)
2340 {
2341 	return obj__ign;
2342 }
2343 
2344 __bpf_kfunc void bpf_rcu_read_lock(void)
2345 {
2346 	rcu_read_lock();
2347 }
2348 
2349 __bpf_kfunc void bpf_rcu_read_unlock(void)
2350 {
2351 	rcu_read_unlock();
2352 }
2353 
2354 __diag_pop();
2355 
2356 BTF_SET8_START(generic_btf_ids)
2357 #ifdef CONFIG_KEXEC_CORE
2358 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
2359 #endif
2360 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
2361 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
2362 BTF_ID_FLAGS(func, bpf_list_push_front)
2363 BTF_ID_FLAGS(func, bpf_list_push_back)
2364 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
2365 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
2366 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_TRUSTED_ARGS)
2367 BTF_ID_FLAGS(func, bpf_task_acquire_not_zero, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2368 BTF_ID_FLAGS(func, bpf_task_kptr_get, KF_ACQUIRE | KF_KPTR_GET | KF_RET_NULL)
2369 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
2370 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE)
2371 BTF_ID_FLAGS(func, bpf_rbtree_add)
2372 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
2373 
2374 #ifdef CONFIG_CGROUPS
2375 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_TRUSTED_ARGS)
2376 BTF_ID_FLAGS(func, bpf_cgroup_kptr_get, KF_ACQUIRE | KF_KPTR_GET | KF_RET_NULL)
2377 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
2378 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_TRUSTED_ARGS | KF_RET_NULL)
2379 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
2380 #endif
2381 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
2382 BTF_SET8_END(generic_btf_ids)
2383 
2384 static const struct btf_kfunc_id_set generic_kfunc_set = {
2385 	.owner = THIS_MODULE,
2386 	.set   = &generic_btf_ids,
2387 };
2388 
2389 
2390 BTF_ID_LIST(generic_dtor_ids)
2391 BTF_ID(struct, task_struct)
2392 BTF_ID(func, bpf_task_release)
2393 #ifdef CONFIG_CGROUPS
2394 BTF_ID(struct, cgroup)
2395 BTF_ID(func, bpf_cgroup_release)
2396 #endif
2397 
2398 BTF_SET8_START(common_btf_ids)
2399 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx)
2400 BTF_ID_FLAGS(func, bpf_rdonly_cast)
2401 BTF_ID_FLAGS(func, bpf_rcu_read_lock)
2402 BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
2403 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
2404 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
2405 BTF_SET8_END(common_btf_ids)
2406 
2407 static const struct btf_kfunc_id_set common_kfunc_set = {
2408 	.owner = THIS_MODULE,
2409 	.set   = &common_btf_ids,
2410 };
2411 
2412 static int __init kfunc_init(void)
2413 {
2414 	int ret;
2415 	const struct btf_id_dtor_kfunc generic_dtors[] = {
2416 		{
2417 			.btf_id       = generic_dtor_ids[0],
2418 			.kfunc_btf_id = generic_dtor_ids[1]
2419 		},
2420 #ifdef CONFIG_CGROUPS
2421 		{
2422 			.btf_id       = generic_dtor_ids[2],
2423 			.kfunc_btf_id = generic_dtor_ids[3]
2424 		},
2425 #endif
2426 	};
2427 
2428 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
2429 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
2430 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
2431 	ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
2432 						  ARRAY_SIZE(generic_dtors),
2433 						  THIS_MODULE);
2434 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
2435 }
2436 
2437 late_initcall(kfunc_init);
2438