1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #include <linux/bpf.h> 5 #include <linux/btf.h> 6 #include <linux/bpf-cgroup.h> 7 #include <linux/cgroup.h> 8 #include <linux/rcupdate.h> 9 #include <linux/random.h> 10 #include <linux/smp.h> 11 #include <linux/topology.h> 12 #include <linux/ktime.h> 13 #include <linux/sched.h> 14 #include <linux/uidgid.h> 15 #include <linux/filter.h> 16 #include <linux/ctype.h> 17 #include <linux/jiffies.h> 18 #include <linux/pid_namespace.h> 19 #include <linux/poison.h> 20 #include <linux/proc_ns.h> 21 #include <linux/sched/task.h> 22 #include <linux/security.h> 23 #include <linux/btf_ids.h> 24 #include <linux/bpf_mem_alloc.h> 25 #include <linux/kasan.h> 26 27 #include "../../lib/kstrtox.h" 28 29 /* If kernel subsystem is allowing eBPF programs to call this function, 30 * inside its own verifier_ops->get_func_proto() callback it should return 31 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments 32 * 33 * Different map implementations will rely on rcu in map methods 34 * lookup/update/delete, therefore eBPF programs must run under rcu lock 35 * if program is allowed to access maps, so check rcu_read_lock_held() or 36 * rcu_read_lock_trace_held() in all three functions. 37 */ 38 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) 39 { 40 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 41 !rcu_read_lock_bh_held()); 42 return (unsigned long) map->ops->map_lookup_elem(map, key); 43 } 44 45 const struct bpf_func_proto bpf_map_lookup_elem_proto = { 46 .func = bpf_map_lookup_elem, 47 .gpl_only = false, 48 .pkt_access = true, 49 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 50 .arg1_type = ARG_CONST_MAP_PTR, 51 .arg2_type = ARG_PTR_TO_MAP_KEY, 52 }; 53 54 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, 55 void *, value, u64, flags) 56 { 57 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 58 !rcu_read_lock_bh_held()); 59 return map->ops->map_update_elem(map, key, value, flags); 60 } 61 62 const struct bpf_func_proto bpf_map_update_elem_proto = { 63 .func = bpf_map_update_elem, 64 .gpl_only = false, 65 .pkt_access = true, 66 .ret_type = RET_INTEGER, 67 .arg1_type = ARG_CONST_MAP_PTR, 68 .arg2_type = ARG_PTR_TO_MAP_KEY, 69 .arg3_type = ARG_PTR_TO_MAP_VALUE, 70 .arg4_type = ARG_ANYTHING, 71 }; 72 73 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) 74 { 75 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 76 !rcu_read_lock_bh_held()); 77 return map->ops->map_delete_elem(map, key); 78 } 79 80 const struct bpf_func_proto bpf_map_delete_elem_proto = { 81 .func = bpf_map_delete_elem, 82 .gpl_only = false, 83 .pkt_access = true, 84 .ret_type = RET_INTEGER, 85 .arg1_type = ARG_CONST_MAP_PTR, 86 .arg2_type = ARG_PTR_TO_MAP_KEY, 87 }; 88 89 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) 90 { 91 return map->ops->map_push_elem(map, value, flags); 92 } 93 94 const struct bpf_func_proto bpf_map_push_elem_proto = { 95 .func = bpf_map_push_elem, 96 .gpl_only = false, 97 .pkt_access = true, 98 .ret_type = RET_INTEGER, 99 .arg1_type = ARG_CONST_MAP_PTR, 100 .arg2_type = ARG_PTR_TO_MAP_VALUE, 101 .arg3_type = ARG_ANYTHING, 102 }; 103 104 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) 105 { 106 return map->ops->map_pop_elem(map, value); 107 } 108 109 const struct bpf_func_proto bpf_map_pop_elem_proto = { 110 .func = bpf_map_pop_elem, 111 .gpl_only = false, 112 .ret_type = RET_INTEGER, 113 .arg1_type = ARG_CONST_MAP_PTR, 114 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE, 115 }; 116 117 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) 118 { 119 return map->ops->map_peek_elem(map, value); 120 } 121 122 const struct bpf_func_proto bpf_map_peek_elem_proto = { 123 .func = bpf_map_peek_elem, 124 .gpl_only = false, 125 .ret_type = RET_INTEGER, 126 .arg1_type = ARG_CONST_MAP_PTR, 127 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE, 128 }; 129 130 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) 131 { 132 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 133 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); 134 } 135 136 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { 137 .func = bpf_map_lookup_percpu_elem, 138 .gpl_only = false, 139 .pkt_access = true, 140 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 141 .arg1_type = ARG_CONST_MAP_PTR, 142 .arg2_type = ARG_PTR_TO_MAP_KEY, 143 .arg3_type = ARG_ANYTHING, 144 }; 145 146 const struct bpf_func_proto bpf_get_prandom_u32_proto = { 147 .func = bpf_user_rnd_u32, 148 .gpl_only = false, 149 .ret_type = RET_INTEGER, 150 }; 151 152 BPF_CALL_0(bpf_get_smp_processor_id) 153 { 154 return smp_processor_id(); 155 } 156 157 const struct bpf_func_proto bpf_get_smp_processor_id_proto = { 158 .func = bpf_get_smp_processor_id, 159 .gpl_only = false, 160 .ret_type = RET_INTEGER, 161 .allow_fastcall = true, 162 }; 163 164 BPF_CALL_0(bpf_get_numa_node_id) 165 { 166 return numa_node_id(); 167 } 168 169 const struct bpf_func_proto bpf_get_numa_node_id_proto = { 170 .func = bpf_get_numa_node_id, 171 .gpl_only = false, 172 .ret_type = RET_INTEGER, 173 }; 174 175 BPF_CALL_0(bpf_ktime_get_ns) 176 { 177 /* NMI safe access to clock monotonic */ 178 return ktime_get_mono_fast_ns(); 179 } 180 181 const struct bpf_func_proto bpf_ktime_get_ns_proto = { 182 .func = bpf_ktime_get_ns, 183 .gpl_only = false, 184 .ret_type = RET_INTEGER, 185 }; 186 187 BPF_CALL_0(bpf_ktime_get_boot_ns) 188 { 189 /* NMI safe access to clock boottime */ 190 return ktime_get_boot_fast_ns(); 191 } 192 193 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { 194 .func = bpf_ktime_get_boot_ns, 195 .gpl_only = false, 196 .ret_type = RET_INTEGER, 197 }; 198 199 BPF_CALL_0(bpf_ktime_get_coarse_ns) 200 { 201 return ktime_get_coarse_ns(); 202 } 203 204 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { 205 .func = bpf_ktime_get_coarse_ns, 206 .gpl_only = false, 207 .ret_type = RET_INTEGER, 208 }; 209 210 BPF_CALL_0(bpf_ktime_get_tai_ns) 211 { 212 /* NMI safe access to clock tai */ 213 return ktime_get_tai_fast_ns(); 214 } 215 216 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = { 217 .func = bpf_ktime_get_tai_ns, 218 .gpl_only = false, 219 .ret_type = RET_INTEGER, 220 }; 221 222 BPF_CALL_0(bpf_get_current_pid_tgid) 223 { 224 struct task_struct *task = current; 225 226 if (unlikely(!task)) 227 return -EINVAL; 228 229 return (u64) task->tgid << 32 | task->pid; 230 } 231 232 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { 233 .func = bpf_get_current_pid_tgid, 234 .gpl_only = false, 235 .ret_type = RET_INTEGER, 236 }; 237 238 BPF_CALL_0(bpf_get_current_uid_gid) 239 { 240 struct task_struct *task = current; 241 kuid_t uid; 242 kgid_t gid; 243 244 if (unlikely(!task)) 245 return -EINVAL; 246 247 current_uid_gid(&uid, &gid); 248 return (u64) from_kgid(&init_user_ns, gid) << 32 | 249 from_kuid(&init_user_ns, uid); 250 } 251 252 const struct bpf_func_proto bpf_get_current_uid_gid_proto = { 253 .func = bpf_get_current_uid_gid, 254 .gpl_only = false, 255 .ret_type = RET_INTEGER, 256 }; 257 258 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) 259 { 260 struct task_struct *task = current; 261 262 if (unlikely(!task)) 263 goto err_clear; 264 265 /* Verifier guarantees that size > 0 */ 266 strscpy_pad(buf, task->comm, size); 267 return 0; 268 err_clear: 269 memset(buf, 0, size); 270 return -EINVAL; 271 } 272 273 const struct bpf_func_proto bpf_get_current_comm_proto = { 274 .func = bpf_get_current_comm, 275 .gpl_only = false, 276 .ret_type = RET_INTEGER, 277 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 278 .arg2_type = ARG_CONST_SIZE, 279 }; 280 281 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) 282 283 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 284 { 285 arch_spinlock_t *l = (void *)lock; 286 union { 287 __u32 val; 288 arch_spinlock_t lock; 289 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; 290 291 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); 292 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); 293 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); 294 preempt_disable(); 295 arch_spin_lock(l); 296 } 297 298 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 299 { 300 arch_spinlock_t *l = (void *)lock; 301 302 arch_spin_unlock(l); 303 preempt_enable(); 304 } 305 306 #else 307 308 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 309 { 310 atomic_t *l = (void *)lock; 311 312 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); 313 do { 314 atomic_cond_read_relaxed(l, !VAL); 315 } while (atomic_xchg(l, 1)); 316 } 317 318 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 319 { 320 atomic_t *l = (void *)lock; 321 322 atomic_set_release(l, 0); 323 } 324 325 #endif 326 327 static DEFINE_PER_CPU(unsigned long, irqsave_flags); 328 329 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) 330 { 331 unsigned long flags; 332 333 local_irq_save(flags); 334 __bpf_spin_lock(lock); 335 __this_cpu_write(irqsave_flags, flags); 336 } 337 338 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) 339 { 340 __bpf_spin_lock_irqsave(lock); 341 return 0; 342 } 343 344 const struct bpf_func_proto bpf_spin_lock_proto = { 345 .func = bpf_spin_lock, 346 .gpl_only = false, 347 .ret_type = RET_VOID, 348 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 349 .arg1_btf_id = BPF_PTR_POISON, 350 }; 351 352 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) 353 { 354 unsigned long flags; 355 356 flags = __this_cpu_read(irqsave_flags); 357 __bpf_spin_unlock(lock); 358 local_irq_restore(flags); 359 } 360 361 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) 362 { 363 __bpf_spin_unlock_irqrestore(lock); 364 return 0; 365 } 366 367 const struct bpf_func_proto bpf_spin_unlock_proto = { 368 .func = bpf_spin_unlock, 369 .gpl_only = false, 370 .ret_type = RET_VOID, 371 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 372 .arg1_btf_id = BPF_PTR_POISON, 373 }; 374 375 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 376 bool lock_src) 377 { 378 struct bpf_spin_lock *lock; 379 380 if (lock_src) 381 lock = src + map->record->spin_lock_off; 382 else 383 lock = dst + map->record->spin_lock_off; 384 preempt_disable(); 385 __bpf_spin_lock_irqsave(lock); 386 copy_map_value(map, dst, src); 387 __bpf_spin_unlock_irqrestore(lock); 388 preempt_enable(); 389 } 390 391 BPF_CALL_0(bpf_jiffies64) 392 { 393 return get_jiffies_64(); 394 } 395 396 const struct bpf_func_proto bpf_jiffies64_proto = { 397 .func = bpf_jiffies64, 398 .gpl_only = false, 399 .ret_type = RET_INTEGER, 400 }; 401 402 #ifdef CONFIG_CGROUPS 403 BPF_CALL_0(bpf_get_current_cgroup_id) 404 { 405 struct cgroup *cgrp; 406 u64 cgrp_id; 407 408 rcu_read_lock(); 409 cgrp = task_dfl_cgroup(current); 410 cgrp_id = cgroup_id(cgrp); 411 rcu_read_unlock(); 412 413 return cgrp_id; 414 } 415 416 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { 417 .func = bpf_get_current_cgroup_id, 418 .gpl_only = false, 419 .ret_type = RET_INTEGER, 420 }; 421 422 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) 423 { 424 struct cgroup *cgrp; 425 struct cgroup *ancestor; 426 u64 cgrp_id; 427 428 rcu_read_lock(); 429 cgrp = task_dfl_cgroup(current); 430 ancestor = cgroup_ancestor(cgrp, ancestor_level); 431 cgrp_id = ancestor ? cgroup_id(ancestor) : 0; 432 rcu_read_unlock(); 433 434 return cgrp_id; 435 } 436 437 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { 438 .func = bpf_get_current_ancestor_cgroup_id, 439 .gpl_only = false, 440 .ret_type = RET_INTEGER, 441 .arg1_type = ARG_ANYTHING, 442 }; 443 #endif /* CONFIG_CGROUPS */ 444 445 #define BPF_STRTOX_BASE_MASK 0x1F 446 447 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, 448 unsigned long long *res, bool *is_negative) 449 { 450 unsigned int base = flags & BPF_STRTOX_BASE_MASK; 451 const char *cur_buf = buf; 452 size_t cur_len = buf_len; 453 unsigned int consumed; 454 size_t val_len; 455 char str[64]; 456 457 if (!buf || !buf_len || !res || !is_negative) 458 return -EINVAL; 459 460 if (base != 0 && base != 8 && base != 10 && base != 16) 461 return -EINVAL; 462 463 if (flags & ~BPF_STRTOX_BASE_MASK) 464 return -EINVAL; 465 466 while (cur_buf < buf + buf_len && isspace(*cur_buf)) 467 ++cur_buf; 468 469 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); 470 if (*is_negative) 471 ++cur_buf; 472 473 consumed = cur_buf - buf; 474 cur_len -= consumed; 475 if (!cur_len) 476 return -EINVAL; 477 478 cur_len = min(cur_len, sizeof(str) - 1); 479 memcpy(str, cur_buf, cur_len); 480 str[cur_len] = '\0'; 481 cur_buf = str; 482 483 cur_buf = _parse_integer_fixup_radix(cur_buf, &base); 484 val_len = _parse_integer(cur_buf, base, res); 485 486 if (val_len & KSTRTOX_OVERFLOW) 487 return -ERANGE; 488 489 if (val_len == 0) 490 return -EINVAL; 491 492 cur_buf += val_len; 493 consumed += cur_buf - str; 494 495 return consumed; 496 } 497 498 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, 499 long long *res) 500 { 501 unsigned long long _res; 502 bool is_negative; 503 int err; 504 505 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 506 if (err < 0) 507 return err; 508 if (is_negative) { 509 if ((long long)-_res > 0) 510 return -ERANGE; 511 *res = -_res; 512 } else { 513 if ((long long)_res < 0) 514 return -ERANGE; 515 *res = _res; 516 } 517 return err; 518 } 519 520 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, 521 s64 *, res) 522 { 523 long long _res; 524 int err; 525 526 *res = 0; 527 err = __bpf_strtoll(buf, buf_len, flags, &_res); 528 if (err < 0) 529 return err; 530 *res = _res; 531 return err; 532 } 533 534 const struct bpf_func_proto bpf_strtol_proto = { 535 .func = bpf_strtol, 536 .gpl_only = false, 537 .ret_type = RET_INTEGER, 538 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 539 .arg2_type = ARG_CONST_SIZE, 540 .arg3_type = ARG_ANYTHING, 541 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED, 542 .arg4_size = sizeof(s64), 543 }; 544 545 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, 546 u64 *, res) 547 { 548 unsigned long long _res; 549 bool is_negative; 550 int err; 551 552 *res = 0; 553 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 554 if (err < 0) 555 return err; 556 if (is_negative) 557 return -EINVAL; 558 *res = _res; 559 return err; 560 } 561 562 const struct bpf_func_proto bpf_strtoul_proto = { 563 .func = bpf_strtoul, 564 .gpl_only = false, 565 .ret_type = RET_INTEGER, 566 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 567 .arg2_type = ARG_CONST_SIZE, 568 .arg3_type = ARG_ANYTHING, 569 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED, 570 .arg4_size = sizeof(u64), 571 }; 572 573 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) 574 { 575 return strncmp(s1, s2, s1_sz); 576 } 577 578 static const struct bpf_func_proto bpf_strncmp_proto = { 579 .func = bpf_strncmp, 580 .gpl_only = false, 581 .ret_type = RET_INTEGER, 582 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 583 .arg2_type = ARG_CONST_SIZE, 584 .arg3_type = ARG_PTR_TO_CONST_STR, 585 }; 586 587 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, 588 struct bpf_pidns_info *, nsdata, u32, size) 589 { 590 struct task_struct *task = current; 591 struct pid_namespace *pidns; 592 int err = -EINVAL; 593 594 if (unlikely(size != sizeof(struct bpf_pidns_info))) 595 goto clear; 596 597 if (unlikely((u64)(dev_t)dev != dev)) 598 goto clear; 599 600 if (unlikely(!task)) 601 goto clear; 602 603 pidns = task_active_pid_ns(task); 604 if (unlikely(!pidns)) { 605 err = -ENOENT; 606 goto clear; 607 } 608 609 if (!ns_match(&pidns->ns, (dev_t)dev, ino)) 610 goto clear; 611 612 nsdata->pid = task_pid_nr_ns(task, pidns); 613 nsdata->tgid = task_tgid_nr_ns(task, pidns); 614 return 0; 615 clear: 616 memset((void *)nsdata, 0, (size_t) size); 617 return err; 618 } 619 620 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { 621 .func = bpf_get_ns_current_pid_tgid, 622 .gpl_only = false, 623 .ret_type = RET_INTEGER, 624 .arg1_type = ARG_ANYTHING, 625 .arg2_type = ARG_ANYTHING, 626 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 627 .arg4_type = ARG_CONST_SIZE, 628 }; 629 630 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { 631 .func = bpf_get_raw_cpu_id, 632 .gpl_only = false, 633 .ret_type = RET_INTEGER, 634 }; 635 636 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, 637 u64, flags, void *, data, u64, size) 638 { 639 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 640 return -EINVAL; 641 642 return bpf_event_output(map, flags, data, size, NULL, 0, NULL); 643 } 644 645 const struct bpf_func_proto bpf_event_output_data_proto = { 646 .func = bpf_event_output_data, 647 .gpl_only = true, 648 .ret_type = RET_INTEGER, 649 .arg1_type = ARG_PTR_TO_CTX, 650 .arg2_type = ARG_CONST_MAP_PTR, 651 .arg3_type = ARG_ANYTHING, 652 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 653 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 654 }; 655 656 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, 657 const void __user *, user_ptr) 658 { 659 int ret = copy_from_user(dst, user_ptr, size); 660 661 if (unlikely(ret)) { 662 memset(dst, 0, size); 663 ret = -EFAULT; 664 } 665 666 return ret; 667 } 668 669 const struct bpf_func_proto bpf_copy_from_user_proto = { 670 .func = bpf_copy_from_user, 671 .gpl_only = false, 672 .might_sleep = true, 673 .ret_type = RET_INTEGER, 674 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 675 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 676 .arg3_type = ARG_ANYTHING, 677 }; 678 679 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, 680 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) 681 { 682 int ret; 683 684 /* flags is not used yet */ 685 if (unlikely(flags)) 686 return -EINVAL; 687 688 if (unlikely(!size)) 689 return 0; 690 691 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); 692 if (ret == size) 693 return 0; 694 695 memset(dst, 0, size); 696 /* Return -EFAULT for partial read */ 697 return ret < 0 ? ret : -EFAULT; 698 } 699 700 const struct bpf_func_proto bpf_copy_from_user_task_proto = { 701 .func = bpf_copy_from_user_task, 702 .gpl_only = true, 703 .might_sleep = true, 704 .ret_type = RET_INTEGER, 705 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 706 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 707 .arg3_type = ARG_ANYTHING, 708 .arg4_type = ARG_PTR_TO_BTF_ID, 709 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 710 .arg5_type = ARG_ANYTHING 711 }; 712 713 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) 714 { 715 if (cpu >= nr_cpu_ids) 716 return (unsigned long)NULL; 717 718 return (unsigned long)per_cpu_ptr((const void __percpu *)(const uintptr_t)ptr, cpu); 719 } 720 721 const struct bpf_func_proto bpf_per_cpu_ptr_proto = { 722 .func = bpf_per_cpu_ptr, 723 .gpl_only = false, 724 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, 725 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 726 .arg2_type = ARG_ANYTHING, 727 }; 728 729 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) 730 { 731 return (unsigned long)this_cpu_ptr((const void __percpu *)(const uintptr_t)percpu_ptr); 732 } 733 734 const struct bpf_func_proto bpf_this_cpu_ptr_proto = { 735 .func = bpf_this_cpu_ptr, 736 .gpl_only = false, 737 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, 738 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 739 }; 740 741 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 742 size_t bufsz) 743 { 744 void __user *user_ptr = (__force void __user *)unsafe_ptr; 745 746 buf[0] = 0; 747 748 switch (fmt_ptype) { 749 case 's': 750 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 751 if ((unsigned long)unsafe_ptr < TASK_SIZE) 752 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 753 fallthrough; 754 #endif 755 case 'k': 756 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 757 case 'u': 758 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 759 } 760 761 return -EINVAL; 762 } 763 764 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary 765 * arguments representation. 766 */ 767 #define MAX_BPRINTF_BIN_ARGS 512 768 769 /* Support executing three nested bprintf helper calls on a given CPU */ 770 #define MAX_BPRINTF_NEST_LEVEL 3 771 struct bpf_bprintf_buffers { 772 char bin_args[MAX_BPRINTF_BIN_ARGS]; 773 char buf[MAX_BPRINTF_BUF]; 774 }; 775 776 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs); 777 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); 778 779 static int try_get_buffers(struct bpf_bprintf_buffers **bufs) 780 { 781 int nest_level; 782 783 preempt_disable(); 784 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); 785 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { 786 this_cpu_dec(bpf_bprintf_nest_level); 787 preempt_enable(); 788 return -EBUSY; 789 } 790 *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]); 791 792 return 0; 793 } 794 795 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data) 796 { 797 if (!data->bin_args && !data->buf) 798 return; 799 if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0)) 800 return; 801 this_cpu_dec(bpf_bprintf_nest_level); 802 preempt_enable(); 803 } 804 805 /* 806 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers 807 * 808 * Returns a negative value if fmt is an invalid format string or 0 otherwise. 809 * 810 * This can be used in two ways: 811 * - Format string verification only: when data->get_bin_args is false 812 * - Arguments preparation: in addition to the above verification, it writes in 813 * data->bin_args a binary representation of arguments usable by bstr_printf 814 * where pointers from BPF have been sanitized. 815 * 816 * In argument preparation mode, if 0 is returned, safe temporary buffers are 817 * allocated and bpf_bprintf_cleanup should be called to free them after use. 818 */ 819 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 820 u32 num_args, struct bpf_bprintf_data *data) 821 { 822 bool get_buffers = (data->get_bin_args && num_args) || data->get_buf; 823 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; 824 struct bpf_bprintf_buffers *buffers = NULL; 825 size_t sizeof_cur_arg, sizeof_cur_ip; 826 int err, i, num_spec = 0; 827 u64 cur_arg; 828 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; 829 830 fmt_end = strnchr(fmt, fmt_size, 0); 831 if (!fmt_end) 832 return -EINVAL; 833 fmt_size = fmt_end - fmt; 834 835 if (get_buffers && try_get_buffers(&buffers)) 836 return -EBUSY; 837 838 if (data->get_bin_args) { 839 if (num_args) 840 tmp_buf = buffers->bin_args; 841 tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS; 842 data->bin_args = (u32 *)tmp_buf; 843 } 844 845 if (data->get_buf) 846 data->buf = buffers->buf; 847 848 for (i = 0; i < fmt_size; i++) { 849 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 850 err = -EINVAL; 851 goto out; 852 } 853 854 if (fmt[i] != '%') 855 continue; 856 857 if (fmt[i + 1] == '%') { 858 i++; 859 continue; 860 } 861 862 if (num_spec >= num_args) { 863 err = -EINVAL; 864 goto out; 865 } 866 867 /* The string is zero-terminated so if fmt[i] != 0, we can 868 * always access fmt[i + 1], in the worst case it will be a 0 869 */ 870 i++; 871 872 /* skip optional "[0 +-][num]" width formatting field */ 873 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 874 fmt[i] == ' ') 875 i++; 876 if (fmt[i] >= '1' && fmt[i] <= '9') { 877 i++; 878 while (fmt[i] >= '0' && fmt[i] <= '9') 879 i++; 880 } 881 882 if (fmt[i] == 'p') { 883 sizeof_cur_arg = sizeof(long); 884 885 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && 886 fmt[i + 2] == 's') { 887 fmt_ptype = fmt[i + 1]; 888 i += 2; 889 goto fmt_str; 890 } 891 892 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || 893 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || 894 fmt[i + 1] == 'x' || fmt[i + 1] == 's' || 895 fmt[i + 1] == 'S') { 896 /* just kernel pointers */ 897 if (tmp_buf) 898 cur_arg = raw_args[num_spec]; 899 i++; 900 goto nocopy_fmt; 901 } 902 903 if (fmt[i + 1] == 'B') { 904 if (tmp_buf) { 905 err = snprintf(tmp_buf, 906 (tmp_buf_end - tmp_buf), 907 "%pB", 908 (void *)(long)raw_args[num_spec]); 909 tmp_buf += (err + 1); 910 } 911 912 i++; 913 num_spec++; 914 continue; 915 } 916 917 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 918 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || 919 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { 920 err = -EINVAL; 921 goto out; 922 } 923 924 i += 2; 925 if (!tmp_buf) 926 goto nocopy_fmt; 927 928 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; 929 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { 930 err = -ENOSPC; 931 goto out; 932 } 933 934 unsafe_ptr = (char *)(long)raw_args[num_spec]; 935 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, 936 sizeof_cur_ip); 937 if (err < 0) 938 memset(cur_ip, 0, sizeof_cur_ip); 939 940 /* hack: bstr_printf expects IP addresses to be 941 * pre-formatted as strings, ironically, the easiest way 942 * to do that is to call snprintf. 943 */ 944 ip_spec[2] = fmt[i - 1]; 945 ip_spec[3] = fmt[i]; 946 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, 947 ip_spec, &cur_ip); 948 949 tmp_buf += err + 1; 950 num_spec++; 951 952 continue; 953 } else if (fmt[i] == 's') { 954 fmt_ptype = fmt[i]; 955 fmt_str: 956 if (fmt[i + 1] != 0 && 957 !isspace(fmt[i + 1]) && 958 !ispunct(fmt[i + 1])) { 959 err = -EINVAL; 960 goto out; 961 } 962 963 if (!tmp_buf) 964 goto nocopy_fmt; 965 966 if (tmp_buf_end == tmp_buf) { 967 err = -ENOSPC; 968 goto out; 969 } 970 971 unsafe_ptr = (char *)(long)raw_args[num_spec]; 972 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, 973 fmt_ptype, 974 tmp_buf_end - tmp_buf); 975 if (err < 0) { 976 tmp_buf[0] = '\0'; 977 err = 1; 978 } 979 980 tmp_buf += err; 981 num_spec++; 982 983 continue; 984 } else if (fmt[i] == 'c') { 985 if (!tmp_buf) 986 goto nocopy_fmt; 987 988 if (tmp_buf_end == tmp_buf) { 989 err = -ENOSPC; 990 goto out; 991 } 992 993 *tmp_buf = raw_args[num_spec]; 994 tmp_buf++; 995 num_spec++; 996 997 continue; 998 } 999 1000 sizeof_cur_arg = sizeof(int); 1001 1002 if (fmt[i] == 'l') { 1003 sizeof_cur_arg = sizeof(long); 1004 i++; 1005 } 1006 if (fmt[i] == 'l') { 1007 sizeof_cur_arg = sizeof(long long); 1008 i++; 1009 } 1010 1011 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && 1012 fmt[i] != 'x' && fmt[i] != 'X') { 1013 err = -EINVAL; 1014 goto out; 1015 } 1016 1017 if (tmp_buf) 1018 cur_arg = raw_args[num_spec]; 1019 nocopy_fmt: 1020 if (tmp_buf) { 1021 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); 1022 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { 1023 err = -ENOSPC; 1024 goto out; 1025 } 1026 1027 if (sizeof_cur_arg == 8) { 1028 *(u32 *)tmp_buf = *(u32 *)&cur_arg; 1029 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); 1030 } else { 1031 *(u32 *)tmp_buf = (u32)(long)cur_arg; 1032 } 1033 tmp_buf += sizeof_cur_arg; 1034 } 1035 num_spec++; 1036 } 1037 1038 err = 0; 1039 out: 1040 if (err) 1041 bpf_bprintf_cleanup(data); 1042 return err; 1043 } 1044 1045 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, 1046 const void *, args, u32, data_len) 1047 { 1048 struct bpf_bprintf_data data = { 1049 .get_bin_args = true, 1050 }; 1051 int err, num_args; 1052 1053 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || 1054 (data_len && !args)) 1055 return -EINVAL; 1056 num_args = data_len / 8; 1057 1058 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we 1059 * can safely give an unbounded size. 1060 */ 1061 err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data); 1062 if (err < 0) 1063 return err; 1064 1065 err = bstr_printf(str, str_size, fmt, data.bin_args); 1066 1067 bpf_bprintf_cleanup(&data); 1068 1069 return err + 1; 1070 } 1071 1072 const struct bpf_func_proto bpf_snprintf_proto = { 1073 .func = bpf_snprintf, 1074 .gpl_only = true, 1075 .ret_type = RET_INTEGER, 1076 .arg1_type = ARG_PTR_TO_MEM_OR_NULL, 1077 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1078 .arg3_type = ARG_PTR_TO_CONST_STR, 1079 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 1080 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1081 }; 1082 1083 struct bpf_async_cb { 1084 struct bpf_map *map; 1085 struct bpf_prog *prog; 1086 void __rcu *callback_fn; 1087 void *value; 1088 union { 1089 struct rcu_head rcu; 1090 struct work_struct delete_work; 1091 }; 1092 u64 flags; 1093 }; 1094 1095 /* BPF map elements can contain 'struct bpf_timer'. 1096 * Such map owns all of its BPF timers. 1097 * 'struct bpf_timer' is allocated as part of map element allocation 1098 * and it's zero initialized. 1099 * That space is used to keep 'struct bpf_async_kern'. 1100 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and 1101 * remembers 'struct bpf_map *' pointer it's part of. 1102 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. 1103 * bpf_timer_start() arms the timer. 1104 * If user space reference to a map goes to zero at this point 1105 * ops->map_release_uref callback is responsible for cancelling the timers, 1106 * freeing their memory, and decrementing prog's refcnts. 1107 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. 1108 * Inner maps can contain bpf timers as well. ops->map_release_uref is 1109 * freeing the timers when inner map is replaced or deleted by user space. 1110 */ 1111 struct bpf_hrtimer { 1112 struct bpf_async_cb cb; 1113 struct hrtimer timer; 1114 atomic_t cancelling; 1115 }; 1116 1117 struct bpf_work { 1118 struct bpf_async_cb cb; 1119 struct work_struct work; 1120 struct work_struct delete_work; 1121 }; 1122 1123 /* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */ 1124 struct bpf_async_kern { 1125 union { 1126 struct bpf_async_cb *cb; 1127 struct bpf_hrtimer *timer; 1128 struct bpf_work *work; 1129 }; 1130 /* bpf_spin_lock is used here instead of spinlock_t to make 1131 * sure that it always fits into space reserved by struct bpf_timer 1132 * regardless of LOCKDEP and spinlock debug flags. 1133 */ 1134 struct bpf_spin_lock lock; 1135 } __attribute__((aligned(8))); 1136 1137 enum bpf_async_type { 1138 BPF_ASYNC_TYPE_TIMER = 0, 1139 BPF_ASYNC_TYPE_WQ, 1140 }; 1141 1142 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); 1143 1144 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) 1145 { 1146 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); 1147 struct bpf_map *map = t->cb.map; 1148 void *value = t->cb.value; 1149 bpf_callback_t callback_fn; 1150 void *key; 1151 u32 idx; 1152 1153 BTF_TYPE_EMIT(struct bpf_timer); 1154 callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held()); 1155 if (!callback_fn) 1156 goto out; 1157 1158 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and 1159 * cannot be preempted by another bpf_timer_cb() on the same cpu. 1160 * Remember the timer this callback is servicing to prevent 1161 * deadlock if callback_fn() calls bpf_timer_cancel() or 1162 * bpf_map_delete_elem() on the same timer. 1163 */ 1164 this_cpu_write(hrtimer_running, t); 1165 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1166 struct bpf_array *array = container_of(map, struct bpf_array, map); 1167 1168 /* compute the key */ 1169 idx = ((char *)value - array->value) / array->elem_size; 1170 key = &idx; 1171 } else { /* hash or lru */ 1172 key = value - round_up(map->key_size, 8); 1173 } 1174 1175 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1176 /* The verifier checked that return value is zero. */ 1177 1178 this_cpu_write(hrtimer_running, NULL); 1179 out: 1180 return HRTIMER_NORESTART; 1181 } 1182 1183 static void bpf_wq_work(struct work_struct *work) 1184 { 1185 struct bpf_work *w = container_of(work, struct bpf_work, work); 1186 struct bpf_async_cb *cb = &w->cb; 1187 struct bpf_map *map = cb->map; 1188 bpf_callback_t callback_fn; 1189 void *value = cb->value; 1190 void *key; 1191 u32 idx; 1192 1193 BTF_TYPE_EMIT(struct bpf_wq); 1194 1195 callback_fn = READ_ONCE(cb->callback_fn); 1196 if (!callback_fn) 1197 return; 1198 1199 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1200 struct bpf_array *array = container_of(map, struct bpf_array, map); 1201 1202 /* compute the key */ 1203 idx = ((char *)value - array->value) / array->elem_size; 1204 key = &idx; 1205 } else { /* hash or lru */ 1206 key = value - round_up(map->key_size, 8); 1207 } 1208 1209 rcu_read_lock_trace(); 1210 migrate_disable(); 1211 1212 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1213 1214 migrate_enable(); 1215 rcu_read_unlock_trace(); 1216 } 1217 1218 static void bpf_wq_delete_work(struct work_struct *work) 1219 { 1220 struct bpf_work *w = container_of(work, struct bpf_work, delete_work); 1221 1222 cancel_work_sync(&w->work); 1223 1224 kfree_rcu(w, cb.rcu); 1225 } 1226 1227 static void bpf_timer_delete_work(struct work_struct *work) 1228 { 1229 struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work); 1230 1231 /* Cancel the timer and wait for callback to complete if it was running. 1232 * If hrtimer_cancel() can be safely called it's safe to call 1233 * kfree_rcu(t) right after for both preallocated and non-preallocated 1234 * maps. The async->cb = NULL was already done and no code path can see 1235 * address 't' anymore. Timer if armed for existing bpf_hrtimer before 1236 * bpf_timer_cancel_and_free will have been cancelled. 1237 */ 1238 hrtimer_cancel(&t->timer); 1239 kfree_rcu(t, cb.rcu); 1240 } 1241 1242 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags, 1243 enum bpf_async_type type) 1244 { 1245 struct bpf_async_cb *cb; 1246 struct bpf_hrtimer *t; 1247 struct bpf_work *w; 1248 clockid_t clockid; 1249 size_t size; 1250 int ret = 0; 1251 1252 if (in_nmi()) 1253 return -EOPNOTSUPP; 1254 1255 switch (type) { 1256 case BPF_ASYNC_TYPE_TIMER: 1257 size = sizeof(struct bpf_hrtimer); 1258 break; 1259 case BPF_ASYNC_TYPE_WQ: 1260 size = sizeof(struct bpf_work); 1261 break; 1262 default: 1263 return -EINVAL; 1264 } 1265 1266 __bpf_spin_lock_irqsave(&async->lock); 1267 t = async->timer; 1268 if (t) { 1269 ret = -EBUSY; 1270 goto out; 1271 } 1272 1273 /* allocate hrtimer via map_kmalloc to use memcg accounting */ 1274 cb = bpf_map_kmalloc_node(map, size, GFP_ATOMIC, map->numa_node); 1275 if (!cb) { 1276 ret = -ENOMEM; 1277 goto out; 1278 } 1279 1280 switch (type) { 1281 case BPF_ASYNC_TYPE_TIMER: 1282 clockid = flags & (MAX_CLOCKS - 1); 1283 t = (struct bpf_hrtimer *)cb; 1284 1285 atomic_set(&t->cancelling, 0); 1286 INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work); 1287 hrtimer_setup(&t->timer, bpf_timer_cb, clockid, HRTIMER_MODE_REL_SOFT); 1288 cb->value = (void *)async - map->record->timer_off; 1289 break; 1290 case BPF_ASYNC_TYPE_WQ: 1291 w = (struct bpf_work *)cb; 1292 1293 INIT_WORK(&w->work, bpf_wq_work); 1294 INIT_WORK(&w->delete_work, bpf_wq_delete_work); 1295 cb->value = (void *)async - map->record->wq_off; 1296 break; 1297 } 1298 cb->map = map; 1299 cb->prog = NULL; 1300 cb->flags = flags; 1301 rcu_assign_pointer(cb->callback_fn, NULL); 1302 1303 WRITE_ONCE(async->cb, cb); 1304 /* Guarantee the order between async->cb and map->usercnt. So 1305 * when there are concurrent uref release and bpf timer init, either 1306 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL 1307 * timer or atomic64_read() below returns a zero usercnt. 1308 */ 1309 smp_mb(); 1310 if (!atomic64_read(&map->usercnt)) { 1311 /* maps with timers must be either held by user space 1312 * or pinned in bpffs. 1313 */ 1314 WRITE_ONCE(async->cb, NULL); 1315 kfree(cb); 1316 ret = -EPERM; 1317 } 1318 out: 1319 __bpf_spin_unlock_irqrestore(&async->lock); 1320 return ret; 1321 } 1322 1323 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map, 1324 u64, flags) 1325 { 1326 clock_t clockid = flags & (MAX_CLOCKS - 1); 1327 1328 BUILD_BUG_ON(MAX_CLOCKS != 16); 1329 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer)); 1330 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer)); 1331 1332 if (flags >= MAX_CLOCKS || 1333 /* similar to timerfd except _ALARM variants are not supported */ 1334 (clockid != CLOCK_MONOTONIC && 1335 clockid != CLOCK_REALTIME && 1336 clockid != CLOCK_BOOTTIME)) 1337 return -EINVAL; 1338 1339 return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER); 1340 } 1341 1342 static const struct bpf_func_proto bpf_timer_init_proto = { 1343 .func = bpf_timer_init, 1344 .gpl_only = true, 1345 .ret_type = RET_INTEGER, 1346 .arg1_type = ARG_PTR_TO_TIMER, 1347 .arg2_type = ARG_CONST_MAP_PTR, 1348 .arg3_type = ARG_ANYTHING, 1349 }; 1350 1351 static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn, 1352 struct bpf_prog_aux *aux, unsigned int flags, 1353 enum bpf_async_type type) 1354 { 1355 struct bpf_prog *prev, *prog = aux->prog; 1356 struct bpf_async_cb *cb; 1357 int ret = 0; 1358 1359 if (in_nmi()) 1360 return -EOPNOTSUPP; 1361 __bpf_spin_lock_irqsave(&async->lock); 1362 cb = async->cb; 1363 if (!cb) { 1364 ret = -EINVAL; 1365 goto out; 1366 } 1367 if (!atomic64_read(&cb->map->usercnt)) { 1368 /* maps with timers must be either held by user space 1369 * or pinned in bpffs. Otherwise timer might still be 1370 * running even when bpf prog is detached and user space 1371 * is gone, since map_release_uref won't ever be called. 1372 */ 1373 ret = -EPERM; 1374 goto out; 1375 } 1376 prev = cb->prog; 1377 if (prev != prog) { 1378 /* Bump prog refcnt once. Every bpf_timer_set_callback() 1379 * can pick different callback_fn-s within the same prog. 1380 */ 1381 prog = bpf_prog_inc_not_zero(prog); 1382 if (IS_ERR(prog)) { 1383 ret = PTR_ERR(prog); 1384 goto out; 1385 } 1386 if (prev) 1387 /* Drop prev prog refcnt when swapping with new prog */ 1388 bpf_prog_put(prev); 1389 cb->prog = prog; 1390 } 1391 rcu_assign_pointer(cb->callback_fn, callback_fn); 1392 out: 1393 __bpf_spin_unlock_irqrestore(&async->lock); 1394 return ret; 1395 } 1396 1397 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn, 1398 struct bpf_prog_aux *, aux) 1399 { 1400 return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER); 1401 } 1402 1403 static const struct bpf_func_proto bpf_timer_set_callback_proto = { 1404 .func = bpf_timer_set_callback, 1405 .gpl_only = true, 1406 .ret_type = RET_INTEGER, 1407 .arg1_type = ARG_PTR_TO_TIMER, 1408 .arg2_type = ARG_PTR_TO_FUNC, 1409 }; 1410 1411 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags) 1412 { 1413 struct bpf_hrtimer *t; 1414 int ret = 0; 1415 enum hrtimer_mode mode; 1416 1417 if (in_nmi()) 1418 return -EOPNOTSUPP; 1419 if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN)) 1420 return -EINVAL; 1421 __bpf_spin_lock_irqsave(&timer->lock); 1422 t = timer->timer; 1423 if (!t || !t->cb.prog) { 1424 ret = -EINVAL; 1425 goto out; 1426 } 1427 1428 if (flags & BPF_F_TIMER_ABS) 1429 mode = HRTIMER_MODE_ABS_SOFT; 1430 else 1431 mode = HRTIMER_MODE_REL_SOFT; 1432 1433 if (flags & BPF_F_TIMER_CPU_PIN) 1434 mode |= HRTIMER_MODE_PINNED; 1435 1436 hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode); 1437 out: 1438 __bpf_spin_unlock_irqrestore(&timer->lock); 1439 return ret; 1440 } 1441 1442 static const struct bpf_func_proto bpf_timer_start_proto = { 1443 .func = bpf_timer_start, 1444 .gpl_only = true, 1445 .ret_type = RET_INTEGER, 1446 .arg1_type = ARG_PTR_TO_TIMER, 1447 .arg2_type = ARG_ANYTHING, 1448 .arg3_type = ARG_ANYTHING, 1449 }; 1450 1451 static void drop_prog_refcnt(struct bpf_async_cb *async) 1452 { 1453 struct bpf_prog *prog = async->prog; 1454 1455 if (prog) { 1456 bpf_prog_put(prog); 1457 async->prog = NULL; 1458 rcu_assign_pointer(async->callback_fn, NULL); 1459 } 1460 } 1461 1462 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer) 1463 { 1464 struct bpf_hrtimer *t, *cur_t; 1465 bool inc = false; 1466 int ret = 0; 1467 1468 if (in_nmi()) 1469 return -EOPNOTSUPP; 1470 rcu_read_lock(); 1471 __bpf_spin_lock_irqsave(&timer->lock); 1472 t = timer->timer; 1473 if (!t) { 1474 ret = -EINVAL; 1475 goto out; 1476 } 1477 1478 cur_t = this_cpu_read(hrtimer_running); 1479 if (cur_t == t) { 1480 /* If bpf callback_fn is trying to bpf_timer_cancel() 1481 * its own timer the hrtimer_cancel() will deadlock 1482 * since it waits for callback_fn to finish. 1483 */ 1484 ret = -EDEADLK; 1485 goto out; 1486 } 1487 1488 /* Only account in-flight cancellations when invoked from a timer 1489 * callback, since we want to avoid waiting only if other _callbacks_ 1490 * are waiting on us, to avoid introducing lockups. Non-callback paths 1491 * are ok, since nobody would synchronously wait for their completion. 1492 */ 1493 if (!cur_t) 1494 goto drop; 1495 atomic_inc(&t->cancelling); 1496 /* Need full barrier after relaxed atomic_inc */ 1497 smp_mb__after_atomic(); 1498 inc = true; 1499 if (atomic_read(&cur_t->cancelling)) { 1500 /* We're cancelling timer t, while some other timer callback is 1501 * attempting to cancel us. In such a case, it might be possible 1502 * that timer t belongs to the other callback, or some other 1503 * callback waiting upon it (creating transitive dependencies 1504 * upon us), and we will enter a deadlock if we continue 1505 * cancelling and waiting for it synchronously, since it might 1506 * do the same. Bail! 1507 */ 1508 ret = -EDEADLK; 1509 goto out; 1510 } 1511 drop: 1512 drop_prog_refcnt(&t->cb); 1513 out: 1514 __bpf_spin_unlock_irqrestore(&timer->lock); 1515 /* Cancel the timer and wait for associated callback to finish 1516 * if it was running. 1517 */ 1518 ret = ret ?: hrtimer_cancel(&t->timer); 1519 if (inc) 1520 atomic_dec(&t->cancelling); 1521 rcu_read_unlock(); 1522 return ret; 1523 } 1524 1525 static const struct bpf_func_proto bpf_timer_cancel_proto = { 1526 .func = bpf_timer_cancel, 1527 .gpl_only = true, 1528 .ret_type = RET_INTEGER, 1529 .arg1_type = ARG_PTR_TO_TIMER, 1530 }; 1531 1532 static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async) 1533 { 1534 struct bpf_async_cb *cb; 1535 1536 /* Performance optimization: read async->cb without lock first. */ 1537 if (!READ_ONCE(async->cb)) 1538 return NULL; 1539 1540 __bpf_spin_lock_irqsave(&async->lock); 1541 /* re-read it under lock */ 1542 cb = async->cb; 1543 if (!cb) 1544 goto out; 1545 drop_prog_refcnt(cb); 1546 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use 1547 * this timer, since it won't be initialized. 1548 */ 1549 WRITE_ONCE(async->cb, NULL); 1550 out: 1551 __bpf_spin_unlock_irqrestore(&async->lock); 1552 return cb; 1553 } 1554 1555 /* This function is called by map_delete/update_elem for individual element and 1556 * by ops->map_release_uref when the user space reference to a map reaches zero. 1557 */ 1558 void bpf_timer_cancel_and_free(void *val) 1559 { 1560 struct bpf_hrtimer *t; 1561 1562 t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val); 1563 1564 if (!t) 1565 return; 1566 /* We check that bpf_map_delete/update_elem() was called from timer 1567 * callback_fn. In such case we don't call hrtimer_cancel() (since it 1568 * will deadlock) and don't call hrtimer_try_to_cancel() (since it will 1569 * just return -1). Though callback_fn is still running on this cpu it's 1570 * safe to do kfree(t) because bpf_timer_cb() read everything it needed 1571 * from 't'. The bpf subprog callback_fn won't be able to access 't', 1572 * since async->cb = NULL was already done. The timer will be 1573 * effectively cancelled because bpf_timer_cb() will return 1574 * HRTIMER_NORESTART. 1575 * 1576 * However, it is possible the timer callback_fn calling us armed the 1577 * timer _before_ calling us, such that failing to cancel it here will 1578 * cause it to possibly use struct hrtimer after freeing bpf_hrtimer. 1579 * Therefore, we _need_ to cancel any outstanding timers before we do 1580 * kfree_rcu, even though no more timers can be armed. 1581 * 1582 * Moreover, we need to schedule work even if timer does not belong to 1583 * the calling callback_fn, as on two different CPUs, we can end up in a 1584 * situation where both sides run in parallel, try to cancel one 1585 * another, and we end up waiting on both sides in hrtimer_cancel 1586 * without making forward progress, since timer1 depends on time2 1587 * callback to finish, and vice versa. 1588 * 1589 * CPU 1 (timer1_cb) CPU 2 (timer2_cb) 1590 * bpf_timer_cancel_and_free(timer2) bpf_timer_cancel_and_free(timer1) 1591 * 1592 * To avoid these issues, punt to workqueue context when we are in a 1593 * timer callback. 1594 */ 1595 if (this_cpu_read(hrtimer_running)) { 1596 queue_work(system_unbound_wq, &t->cb.delete_work); 1597 return; 1598 } 1599 1600 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 1601 /* If the timer is running on other CPU, also use a kworker to 1602 * wait for the completion of the timer instead of trying to 1603 * acquire a sleepable lock in hrtimer_cancel() to wait for its 1604 * completion. 1605 */ 1606 if (hrtimer_try_to_cancel(&t->timer) >= 0) 1607 kfree_rcu(t, cb.rcu); 1608 else 1609 queue_work(system_unbound_wq, &t->cb.delete_work); 1610 } else { 1611 bpf_timer_delete_work(&t->cb.delete_work); 1612 } 1613 } 1614 1615 /* This function is called by map_delete/update_elem for individual element and 1616 * by ops->map_release_uref when the user space reference to a map reaches zero. 1617 */ 1618 void bpf_wq_cancel_and_free(void *val) 1619 { 1620 struct bpf_work *work; 1621 1622 BTF_TYPE_EMIT(struct bpf_wq); 1623 1624 work = (struct bpf_work *)__bpf_async_cancel_and_free(val); 1625 if (!work) 1626 return; 1627 /* Trigger cancel of the sleepable work, but *do not* wait for 1628 * it to finish if it was running as we might not be in a 1629 * sleepable context. 1630 * kfree will be called once the work has finished. 1631 */ 1632 schedule_work(&work->delete_work); 1633 } 1634 1635 BPF_CALL_2(bpf_kptr_xchg, void *, dst, void *, ptr) 1636 { 1637 unsigned long *kptr = dst; 1638 1639 /* This helper may be inlined by verifier. */ 1640 return xchg(kptr, (unsigned long)ptr); 1641 } 1642 1643 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() 1644 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to 1645 * denote type that verifier will determine. 1646 */ 1647 static const struct bpf_func_proto bpf_kptr_xchg_proto = { 1648 .func = bpf_kptr_xchg, 1649 .gpl_only = false, 1650 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 1651 .ret_btf_id = BPF_PTR_POISON, 1652 .arg1_type = ARG_KPTR_XCHG_DEST, 1653 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, 1654 .arg2_btf_id = BPF_PTR_POISON, 1655 }; 1656 1657 /* Since the upper 8 bits of dynptr->size is reserved, the 1658 * maximum supported size is 2^24 - 1. 1659 */ 1660 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1) 1661 #define DYNPTR_TYPE_SHIFT 28 1662 #define DYNPTR_SIZE_MASK 0xFFFFFF 1663 #define DYNPTR_RDONLY_BIT BIT(31) 1664 1665 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr) 1666 { 1667 return ptr->size & DYNPTR_RDONLY_BIT; 1668 } 1669 1670 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 1671 { 1672 ptr->size |= DYNPTR_RDONLY_BIT; 1673 } 1674 1675 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) 1676 { 1677 ptr->size |= type << DYNPTR_TYPE_SHIFT; 1678 } 1679 1680 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr) 1681 { 1682 return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT; 1683 } 1684 1685 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) 1686 { 1687 return ptr->size & DYNPTR_SIZE_MASK; 1688 } 1689 1690 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size) 1691 { 1692 u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK; 1693 1694 ptr->size = new_size | metadata; 1695 } 1696 1697 int bpf_dynptr_check_size(u32 size) 1698 { 1699 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; 1700 } 1701 1702 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 1703 enum bpf_dynptr_type type, u32 offset, u32 size) 1704 { 1705 ptr->data = data; 1706 ptr->offset = offset; 1707 ptr->size = size; 1708 bpf_dynptr_set_type(ptr, type); 1709 } 1710 1711 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 1712 { 1713 memset(ptr, 0, sizeof(*ptr)); 1714 } 1715 1716 static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len) 1717 { 1718 u32 size = __bpf_dynptr_size(ptr); 1719 1720 if (len > size || offset > size - len) 1721 return -E2BIG; 1722 1723 return 0; 1724 } 1725 1726 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) 1727 { 1728 int err; 1729 1730 BTF_TYPE_EMIT(struct bpf_dynptr); 1731 1732 err = bpf_dynptr_check_size(size); 1733 if (err) 1734 goto error; 1735 1736 /* flags is currently unsupported */ 1737 if (flags) { 1738 err = -EINVAL; 1739 goto error; 1740 } 1741 1742 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); 1743 1744 return 0; 1745 1746 error: 1747 bpf_dynptr_set_null(ptr); 1748 return err; 1749 } 1750 1751 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { 1752 .func = bpf_dynptr_from_mem, 1753 .gpl_only = false, 1754 .ret_type = RET_INTEGER, 1755 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1756 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1757 .arg3_type = ARG_ANYTHING, 1758 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE, 1759 }; 1760 1761 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src, 1762 u32, offset, u64, flags) 1763 { 1764 enum bpf_dynptr_type type; 1765 int err; 1766 1767 if (!src->data || flags) 1768 return -EINVAL; 1769 1770 err = bpf_dynptr_check_off_len(src, offset, len); 1771 if (err) 1772 return err; 1773 1774 type = bpf_dynptr_get_type(src); 1775 1776 switch (type) { 1777 case BPF_DYNPTR_TYPE_LOCAL: 1778 case BPF_DYNPTR_TYPE_RINGBUF: 1779 /* Source and destination may possibly overlap, hence use memmove to 1780 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1781 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1782 */ 1783 memmove(dst, src->data + src->offset + offset, len); 1784 return 0; 1785 case BPF_DYNPTR_TYPE_SKB: 1786 return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len); 1787 case BPF_DYNPTR_TYPE_XDP: 1788 return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len); 1789 default: 1790 WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type); 1791 return -EFAULT; 1792 } 1793 } 1794 1795 static const struct bpf_func_proto bpf_dynptr_read_proto = { 1796 .func = bpf_dynptr_read, 1797 .gpl_only = false, 1798 .ret_type = RET_INTEGER, 1799 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1800 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1801 .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1802 .arg4_type = ARG_ANYTHING, 1803 .arg5_type = ARG_ANYTHING, 1804 }; 1805 1806 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src, 1807 u32, len, u64, flags) 1808 { 1809 enum bpf_dynptr_type type; 1810 int err; 1811 1812 if (!dst->data || __bpf_dynptr_is_rdonly(dst)) 1813 return -EINVAL; 1814 1815 err = bpf_dynptr_check_off_len(dst, offset, len); 1816 if (err) 1817 return err; 1818 1819 type = bpf_dynptr_get_type(dst); 1820 1821 switch (type) { 1822 case BPF_DYNPTR_TYPE_LOCAL: 1823 case BPF_DYNPTR_TYPE_RINGBUF: 1824 if (flags) 1825 return -EINVAL; 1826 /* Source and destination may possibly overlap, hence use memmove to 1827 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1828 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1829 */ 1830 memmove(dst->data + dst->offset + offset, src, len); 1831 return 0; 1832 case BPF_DYNPTR_TYPE_SKB: 1833 return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len, 1834 flags); 1835 case BPF_DYNPTR_TYPE_XDP: 1836 if (flags) 1837 return -EINVAL; 1838 return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len); 1839 default: 1840 WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type); 1841 return -EFAULT; 1842 } 1843 } 1844 1845 static const struct bpf_func_proto bpf_dynptr_write_proto = { 1846 .func = bpf_dynptr_write, 1847 .gpl_only = false, 1848 .ret_type = RET_INTEGER, 1849 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1850 .arg2_type = ARG_ANYTHING, 1851 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1852 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 1853 .arg5_type = ARG_ANYTHING, 1854 }; 1855 1856 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len) 1857 { 1858 enum bpf_dynptr_type type; 1859 int err; 1860 1861 if (!ptr->data) 1862 return 0; 1863 1864 err = bpf_dynptr_check_off_len(ptr, offset, len); 1865 if (err) 1866 return 0; 1867 1868 if (__bpf_dynptr_is_rdonly(ptr)) 1869 return 0; 1870 1871 type = bpf_dynptr_get_type(ptr); 1872 1873 switch (type) { 1874 case BPF_DYNPTR_TYPE_LOCAL: 1875 case BPF_DYNPTR_TYPE_RINGBUF: 1876 return (unsigned long)(ptr->data + ptr->offset + offset); 1877 case BPF_DYNPTR_TYPE_SKB: 1878 case BPF_DYNPTR_TYPE_XDP: 1879 /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */ 1880 return 0; 1881 default: 1882 WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type); 1883 return 0; 1884 } 1885 } 1886 1887 static const struct bpf_func_proto bpf_dynptr_data_proto = { 1888 .func = bpf_dynptr_data, 1889 .gpl_only = false, 1890 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL, 1891 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1892 .arg2_type = ARG_ANYTHING, 1893 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 1894 }; 1895 1896 const struct bpf_func_proto bpf_get_current_task_proto __weak; 1897 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; 1898 const struct bpf_func_proto bpf_probe_read_user_proto __weak; 1899 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; 1900 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; 1901 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; 1902 const struct bpf_func_proto bpf_task_pt_regs_proto __weak; 1903 1904 const struct bpf_func_proto * 1905 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1906 { 1907 switch (func_id) { 1908 case BPF_FUNC_map_lookup_elem: 1909 return &bpf_map_lookup_elem_proto; 1910 case BPF_FUNC_map_update_elem: 1911 return &bpf_map_update_elem_proto; 1912 case BPF_FUNC_map_delete_elem: 1913 return &bpf_map_delete_elem_proto; 1914 case BPF_FUNC_map_push_elem: 1915 return &bpf_map_push_elem_proto; 1916 case BPF_FUNC_map_pop_elem: 1917 return &bpf_map_pop_elem_proto; 1918 case BPF_FUNC_map_peek_elem: 1919 return &bpf_map_peek_elem_proto; 1920 case BPF_FUNC_map_lookup_percpu_elem: 1921 return &bpf_map_lookup_percpu_elem_proto; 1922 case BPF_FUNC_get_prandom_u32: 1923 return &bpf_get_prandom_u32_proto; 1924 case BPF_FUNC_get_smp_processor_id: 1925 return &bpf_get_raw_smp_processor_id_proto; 1926 case BPF_FUNC_get_numa_node_id: 1927 return &bpf_get_numa_node_id_proto; 1928 case BPF_FUNC_tail_call: 1929 return &bpf_tail_call_proto; 1930 case BPF_FUNC_ktime_get_ns: 1931 return &bpf_ktime_get_ns_proto; 1932 case BPF_FUNC_ktime_get_boot_ns: 1933 return &bpf_ktime_get_boot_ns_proto; 1934 case BPF_FUNC_ktime_get_tai_ns: 1935 return &bpf_ktime_get_tai_ns_proto; 1936 case BPF_FUNC_ringbuf_output: 1937 return &bpf_ringbuf_output_proto; 1938 case BPF_FUNC_ringbuf_reserve: 1939 return &bpf_ringbuf_reserve_proto; 1940 case BPF_FUNC_ringbuf_submit: 1941 return &bpf_ringbuf_submit_proto; 1942 case BPF_FUNC_ringbuf_discard: 1943 return &bpf_ringbuf_discard_proto; 1944 case BPF_FUNC_ringbuf_query: 1945 return &bpf_ringbuf_query_proto; 1946 case BPF_FUNC_strncmp: 1947 return &bpf_strncmp_proto; 1948 case BPF_FUNC_strtol: 1949 return &bpf_strtol_proto; 1950 case BPF_FUNC_strtoul: 1951 return &bpf_strtoul_proto; 1952 case BPF_FUNC_get_current_pid_tgid: 1953 return &bpf_get_current_pid_tgid_proto; 1954 case BPF_FUNC_get_ns_current_pid_tgid: 1955 return &bpf_get_ns_current_pid_tgid_proto; 1956 default: 1957 break; 1958 } 1959 1960 if (!bpf_token_capable(prog->aux->token, CAP_BPF)) 1961 return NULL; 1962 1963 switch (func_id) { 1964 case BPF_FUNC_spin_lock: 1965 return &bpf_spin_lock_proto; 1966 case BPF_FUNC_spin_unlock: 1967 return &bpf_spin_unlock_proto; 1968 case BPF_FUNC_jiffies64: 1969 return &bpf_jiffies64_proto; 1970 case BPF_FUNC_per_cpu_ptr: 1971 return &bpf_per_cpu_ptr_proto; 1972 case BPF_FUNC_this_cpu_ptr: 1973 return &bpf_this_cpu_ptr_proto; 1974 case BPF_FUNC_timer_init: 1975 return &bpf_timer_init_proto; 1976 case BPF_FUNC_timer_set_callback: 1977 return &bpf_timer_set_callback_proto; 1978 case BPF_FUNC_timer_start: 1979 return &bpf_timer_start_proto; 1980 case BPF_FUNC_timer_cancel: 1981 return &bpf_timer_cancel_proto; 1982 case BPF_FUNC_kptr_xchg: 1983 return &bpf_kptr_xchg_proto; 1984 case BPF_FUNC_for_each_map_elem: 1985 return &bpf_for_each_map_elem_proto; 1986 case BPF_FUNC_loop: 1987 return &bpf_loop_proto; 1988 case BPF_FUNC_user_ringbuf_drain: 1989 return &bpf_user_ringbuf_drain_proto; 1990 case BPF_FUNC_ringbuf_reserve_dynptr: 1991 return &bpf_ringbuf_reserve_dynptr_proto; 1992 case BPF_FUNC_ringbuf_submit_dynptr: 1993 return &bpf_ringbuf_submit_dynptr_proto; 1994 case BPF_FUNC_ringbuf_discard_dynptr: 1995 return &bpf_ringbuf_discard_dynptr_proto; 1996 case BPF_FUNC_dynptr_from_mem: 1997 return &bpf_dynptr_from_mem_proto; 1998 case BPF_FUNC_dynptr_read: 1999 return &bpf_dynptr_read_proto; 2000 case BPF_FUNC_dynptr_write: 2001 return &bpf_dynptr_write_proto; 2002 case BPF_FUNC_dynptr_data: 2003 return &bpf_dynptr_data_proto; 2004 #ifdef CONFIG_CGROUPS 2005 case BPF_FUNC_cgrp_storage_get: 2006 return &bpf_cgrp_storage_get_proto; 2007 case BPF_FUNC_cgrp_storage_delete: 2008 return &bpf_cgrp_storage_delete_proto; 2009 case BPF_FUNC_get_current_cgroup_id: 2010 return &bpf_get_current_cgroup_id_proto; 2011 case BPF_FUNC_get_current_ancestor_cgroup_id: 2012 return &bpf_get_current_ancestor_cgroup_id_proto; 2013 #endif 2014 default: 2015 break; 2016 } 2017 2018 if (!bpf_token_capable(prog->aux->token, CAP_PERFMON)) 2019 return NULL; 2020 2021 switch (func_id) { 2022 case BPF_FUNC_trace_printk: 2023 return bpf_get_trace_printk_proto(); 2024 case BPF_FUNC_get_current_task: 2025 return &bpf_get_current_task_proto; 2026 case BPF_FUNC_get_current_task_btf: 2027 return &bpf_get_current_task_btf_proto; 2028 case BPF_FUNC_probe_read_user: 2029 return &bpf_probe_read_user_proto; 2030 case BPF_FUNC_probe_read_kernel: 2031 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 2032 NULL : &bpf_probe_read_kernel_proto; 2033 case BPF_FUNC_probe_read_user_str: 2034 return &bpf_probe_read_user_str_proto; 2035 case BPF_FUNC_probe_read_kernel_str: 2036 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 2037 NULL : &bpf_probe_read_kernel_str_proto; 2038 case BPF_FUNC_snprintf_btf: 2039 return &bpf_snprintf_btf_proto; 2040 case BPF_FUNC_snprintf: 2041 return &bpf_snprintf_proto; 2042 case BPF_FUNC_task_pt_regs: 2043 return &bpf_task_pt_regs_proto; 2044 case BPF_FUNC_trace_vprintk: 2045 return bpf_get_trace_vprintk_proto(); 2046 default: 2047 return NULL; 2048 } 2049 } 2050 EXPORT_SYMBOL_GPL(bpf_base_func_proto); 2051 2052 void bpf_list_head_free(const struct btf_field *field, void *list_head, 2053 struct bpf_spin_lock *spin_lock) 2054 { 2055 struct list_head *head = list_head, *orig_head = list_head; 2056 2057 BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head)); 2058 BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head)); 2059 2060 /* Do the actual list draining outside the lock to not hold the lock for 2061 * too long, and also prevent deadlocks if tracing programs end up 2062 * executing on entry/exit of functions called inside the critical 2063 * section, and end up doing map ops that call bpf_list_head_free for 2064 * the same map value again. 2065 */ 2066 __bpf_spin_lock_irqsave(spin_lock); 2067 if (!head->next || list_empty(head)) 2068 goto unlock; 2069 head = head->next; 2070 unlock: 2071 INIT_LIST_HEAD(orig_head); 2072 __bpf_spin_unlock_irqrestore(spin_lock); 2073 2074 while (head != orig_head) { 2075 void *obj = head; 2076 2077 obj -= field->graph_root.node_offset; 2078 head = head->next; 2079 /* The contained type can also have resources, including a 2080 * bpf_list_head which needs to be freed. 2081 */ 2082 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); 2083 } 2084 } 2085 2086 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are 2087 * 'rb_node *', so field name of rb_node within containing struct is not 2088 * needed. 2089 * 2090 * Since bpf_rb_tree's node type has a corresponding struct btf_field with 2091 * graph_root.node_offset, it's not necessary to know field name 2092 * or type of node struct 2093 */ 2094 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \ 2095 for (pos = rb_first_postorder(root); \ 2096 pos && ({ n = rb_next_postorder(pos); 1; }); \ 2097 pos = n) 2098 2099 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 2100 struct bpf_spin_lock *spin_lock) 2101 { 2102 struct rb_root_cached orig_root, *root = rb_root; 2103 struct rb_node *pos, *n; 2104 void *obj; 2105 2106 BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root)); 2107 BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root)); 2108 2109 __bpf_spin_lock_irqsave(spin_lock); 2110 orig_root = *root; 2111 *root = RB_ROOT_CACHED; 2112 __bpf_spin_unlock_irqrestore(spin_lock); 2113 2114 bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) { 2115 obj = pos; 2116 obj -= field->graph_root.node_offset; 2117 2118 2119 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); 2120 } 2121 } 2122 2123 __bpf_kfunc_start_defs(); 2124 2125 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign) 2126 { 2127 struct btf_struct_meta *meta = meta__ign; 2128 u64 size = local_type_id__k; 2129 void *p; 2130 2131 p = bpf_mem_alloc(&bpf_global_ma, size); 2132 if (!p) 2133 return NULL; 2134 if (meta) 2135 bpf_obj_init(meta->record, p); 2136 return p; 2137 } 2138 2139 __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign) 2140 { 2141 u64 size = local_type_id__k; 2142 2143 /* The verifier has ensured that meta__ign must be NULL */ 2144 return bpf_mem_alloc(&bpf_global_percpu_ma, size); 2145 } 2146 2147 /* Must be called under migrate_disable(), as required by bpf_mem_free */ 2148 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu) 2149 { 2150 struct bpf_mem_alloc *ma; 2151 2152 if (rec && rec->refcount_off >= 0 && 2153 !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) { 2154 /* Object is refcounted and refcount_dec didn't result in 0 2155 * refcount. Return without freeing the object 2156 */ 2157 return; 2158 } 2159 2160 if (rec) 2161 bpf_obj_free_fields(rec, p); 2162 2163 if (percpu) 2164 ma = &bpf_global_percpu_ma; 2165 else 2166 ma = &bpf_global_ma; 2167 bpf_mem_free_rcu(ma, p); 2168 } 2169 2170 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign) 2171 { 2172 struct btf_struct_meta *meta = meta__ign; 2173 void *p = p__alloc; 2174 2175 __bpf_obj_drop_impl(p, meta ? meta->record : NULL, false); 2176 } 2177 2178 __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign) 2179 { 2180 /* The verifier has ensured that meta__ign must be NULL */ 2181 bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc); 2182 } 2183 2184 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign) 2185 { 2186 struct btf_struct_meta *meta = meta__ign; 2187 struct bpf_refcount *ref; 2188 2189 /* Could just cast directly to refcount_t *, but need some code using 2190 * bpf_refcount type so that it is emitted in vmlinux BTF 2191 */ 2192 ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off); 2193 if (!refcount_inc_not_zero((refcount_t *)ref)) 2194 return NULL; 2195 2196 /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null 2197 * in verifier.c 2198 */ 2199 return (void *)p__refcounted_kptr; 2200 } 2201 2202 static int __bpf_list_add(struct bpf_list_node_kern *node, 2203 struct bpf_list_head *head, 2204 bool tail, struct btf_record *rec, u64 off) 2205 { 2206 struct list_head *n = &node->list_head, *h = (void *)head; 2207 2208 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 2209 * called on its fields, so init here 2210 */ 2211 if (unlikely(!h->next)) 2212 INIT_LIST_HEAD(h); 2213 2214 /* node->owner != NULL implies !list_empty(n), no need to separately 2215 * check the latter 2216 */ 2217 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { 2218 /* Only called from BPF prog, no need to migrate_disable */ 2219 __bpf_obj_drop_impl((void *)n - off, rec, false); 2220 return -EINVAL; 2221 } 2222 2223 tail ? list_add_tail(n, h) : list_add(n, h); 2224 WRITE_ONCE(node->owner, head); 2225 2226 return 0; 2227 } 2228 2229 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head, 2230 struct bpf_list_node *node, 2231 void *meta__ign, u64 off) 2232 { 2233 struct bpf_list_node_kern *n = (void *)node; 2234 struct btf_struct_meta *meta = meta__ign; 2235 2236 return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off); 2237 } 2238 2239 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head, 2240 struct bpf_list_node *node, 2241 void *meta__ign, u64 off) 2242 { 2243 struct bpf_list_node_kern *n = (void *)node; 2244 struct btf_struct_meta *meta = meta__ign; 2245 2246 return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off); 2247 } 2248 2249 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail) 2250 { 2251 struct list_head *n, *h = (void *)head; 2252 struct bpf_list_node_kern *node; 2253 2254 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 2255 * called on its fields, so init here 2256 */ 2257 if (unlikely(!h->next)) 2258 INIT_LIST_HEAD(h); 2259 if (list_empty(h)) 2260 return NULL; 2261 2262 n = tail ? h->prev : h->next; 2263 node = container_of(n, struct bpf_list_node_kern, list_head); 2264 if (WARN_ON_ONCE(READ_ONCE(node->owner) != head)) 2265 return NULL; 2266 2267 list_del_init(n); 2268 WRITE_ONCE(node->owner, NULL); 2269 return (struct bpf_list_node *)n; 2270 } 2271 2272 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) 2273 { 2274 return __bpf_list_del(head, false); 2275 } 2276 2277 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) 2278 { 2279 return __bpf_list_del(head, true); 2280 } 2281 2282 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root, 2283 struct bpf_rb_node *node) 2284 { 2285 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; 2286 struct rb_root_cached *r = (struct rb_root_cached *)root; 2287 struct rb_node *n = &node_internal->rb_node; 2288 2289 /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or 2290 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n) 2291 */ 2292 if (READ_ONCE(node_internal->owner) != root) 2293 return NULL; 2294 2295 rb_erase_cached(n, r); 2296 RB_CLEAR_NODE(n); 2297 WRITE_ONCE(node_internal->owner, NULL); 2298 return (struct bpf_rb_node *)n; 2299 } 2300 2301 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF 2302 * program 2303 */ 2304 static int __bpf_rbtree_add(struct bpf_rb_root *root, 2305 struct bpf_rb_node_kern *node, 2306 void *less, struct btf_record *rec, u64 off) 2307 { 2308 struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node; 2309 struct rb_node *parent = NULL, *n = &node->rb_node; 2310 bpf_callback_t cb = (bpf_callback_t)less; 2311 bool leftmost = true; 2312 2313 /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately 2314 * check the latter 2315 */ 2316 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { 2317 /* Only called from BPF prog, no need to migrate_disable */ 2318 __bpf_obj_drop_impl((void *)n - off, rec, false); 2319 return -EINVAL; 2320 } 2321 2322 while (*link) { 2323 parent = *link; 2324 if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) { 2325 link = &parent->rb_left; 2326 } else { 2327 link = &parent->rb_right; 2328 leftmost = false; 2329 } 2330 } 2331 2332 rb_link_node(n, parent, link); 2333 rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost); 2334 WRITE_ONCE(node->owner, root); 2335 return 0; 2336 } 2337 2338 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 2339 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b), 2340 void *meta__ign, u64 off) 2341 { 2342 struct btf_struct_meta *meta = meta__ign; 2343 struct bpf_rb_node_kern *n = (void *)node; 2344 2345 return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off); 2346 } 2347 2348 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) 2349 { 2350 struct rb_root_cached *r = (struct rb_root_cached *)root; 2351 2352 return (struct bpf_rb_node *)rb_first_cached(r); 2353 } 2354 2355 /** 2356 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this 2357 * kfunc which is not stored in a map as a kptr, must be released by calling 2358 * bpf_task_release(). 2359 * @p: The task on which a reference is being acquired. 2360 */ 2361 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p) 2362 { 2363 if (refcount_inc_not_zero(&p->rcu_users)) 2364 return p; 2365 return NULL; 2366 } 2367 2368 /** 2369 * bpf_task_release - Release the reference acquired on a task. 2370 * @p: The task on which a reference is being released. 2371 */ 2372 __bpf_kfunc void bpf_task_release(struct task_struct *p) 2373 { 2374 put_task_struct_rcu_user(p); 2375 } 2376 2377 __bpf_kfunc void bpf_task_release_dtor(void *p) 2378 { 2379 put_task_struct_rcu_user(p); 2380 } 2381 CFI_NOSEAL(bpf_task_release_dtor); 2382 2383 #ifdef CONFIG_CGROUPS 2384 /** 2385 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by 2386 * this kfunc which is not stored in a map as a kptr, must be released by 2387 * calling bpf_cgroup_release(). 2388 * @cgrp: The cgroup on which a reference is being acquired. 2389 */ 2390 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp) 2391 { 2392 return cgroup_tryget(cgrp) ? cgrp : NULL; 2393 } 2394 2395 /** 2396 * bpf_cgroup_release - Release the reference acquired on a cgroup. 2397 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to 2398 * not be freed until the current grace period has ended, even if its refcount 2399 * drops to 0. 2400 * @cgrp: The cgroup on which a reference is being released. 2401 */ 2402 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp) 2403 { 2404 cgroup_put(cgrp); 2405 } 2406 2407 __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp) 2408 { 2409 cgroup_put(cgrp); 2410 } 2411 CFI_NOSEAL(bpf_cgroup_release_dtor); 2412 2413 /** 2414 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor 2415 * array. A cgroup returned by this kfunc which is not subsequently stored in a 2416 * map, must be released by calling bpf_cgroup_release(). 2417 * @cgrp: The cgroup for which we're performing a lookup. 2418 * @level: The level of ancestor to look up. 2419 */ 2420 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) 2421 { 2422 struct cgroup *ancestor; 2423 2424 if (level > cgrp->level || level < 0) 2425 return NULL; 2426 2427 /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */ 2428 ancestor = cgrp->ancestors[level]; 2429 if (!cgroup_tryget(ancestor)) 2430 return NULL; 2431 return ancestor; 2432 } 2433 2434 /** 2435 * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this 2436 * kfunc which is not subsequently stored in a map, must be released by calling 2437 * bpf_cgroup_release(). 2438 * @cgid: cgroup id. 2439 */ 2440 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid) 2441 { 2442 struct cgroup *cgrp; 2443 2444 cgrp = cgroup_get_from_id(cgid); 2445 if (IS_ERR(cgrp)) 2446 return NULL; 2447 return cgrp; 2448 } 2449 2450 /** 2451 * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test 2452 * task's membership of cgroup ancestry. 2453 * @task: the task to be tested 2454 * @ancestor: possible ancestor of @task's cgroup 2455 * 2456 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor. 2457 * It follows all the same rules as cgroup_is_descendant, and only applies 2458 * to the default hierarchy. 2459 */ 2460 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task, 2461 struct cgroup *ancestor) 2462 { 2463 long ret; 2464 2465 rcu_read_lock(); 2466 ret = task_under_cgroup_hierarchy(task, ancestor); 2467 rcu_read_unlock(); 2468 return ret; 2469 } 2470 2471 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 2472 { 2473 struct bpf_array *array = container_of(map, struct bpf_array, map); 2474 struct cgroup *cgrp; 2475 2476 if (unlikely(idx >= array->map.max_entries)) 2477 return -E2BIG; 2478 2479 cgrp = READ_ONCE(array->ptrs[idx]); 2480 if (unlikely(!cgrp)) 2481 return -EAGAIN; 2482 2483 return task_under_cgroup_hierarchy(current, cgrp); 2484 } 2485 2486 const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 2487 .func = bpf_current_task_under_cgroup, 2488 .gpl_only = false, 2489 .ret_type = RET_INTEGER, 2490 .arg1_type = ARG_CONST_MAP_PTR, 2491 .arg2_type = ARG_ANYTHING, 2492 }; 2493 2494 /** 2495 * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a 2496 * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its 2497 * hierarchy ID. 2498 * @task: The target task 2499 * @hierarchy_id: The ID of a cgroup1 hierarchy 2500 * 2501 * On success, the cgroup is returen. On failure, NULL is returned. 2502 */ 2503 __bpf_kfunc struct cgroup * 2504 bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id) 2505 { 2506 struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id); 2507 2508 if (IS_ERR(cgrp)) 2509 return NULL; 2510 return cgrp; 2511 } 2512 #endif /* CONFIG_CGROUPS */ 2513 2514 /** 2515 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up 2516 * in the root pid namespace idr. If a task is returned, it must either be 2517 * stored in a map, or released with bpf_task_release(). 2518 * @pid: The pid of the task being looked up. 2519 */ 2520 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid) 2521 { 2522 struct task_struct *p; 2523 2524 rcu_read_lock(); 2525 p = find_task_by_pid_ns(pid, &init_pid_ns); 2526 if (p) 2527 p = bpf_task_acquire(p); 2528 rcu_read_unlock(); 2529 2530 return p; 2531 } 2532 2533 /** 2534 * bpf_task_from_vpid - Find a struct task_struct from its vpid by looking it up 2535 * in the pid namespace of the current task. If a task is returned, it must 2536 * either be stored in a map, or released with bpf_task_release(). 2537 * @vpid: The vpid of the task being looked up. 2538 */ 2539 __bpf_kfunc struct task_struct *bpf_task_from_vpid(s32 vpid) 2540 { 2541 struct task_struct *p; 2542 2543 rcu_read_lock(); 2544 p = find_task_by_vpid(vpid); 2545 if (p) 2546 p = bpf_task_acquire(p); 2547 rcu_read_unlock(); 2548 2549 return p; 2550 } 2551 2552 /** 2553 * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data. 2554 * @p: The dynptr whose data slice to retrieve 2555 * @offset: Offset into the dynptr 2556 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2557 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2558 * length of the requested slice. This must be a constant. 2559 * 2560 * For non-skb and non-xdp type dynptrs, there is no difference between 2561 * bpf_dynptr_slice and bpf_dynptr_data. 2562 * 2563 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2564 * 2565 * If the intention is to write to the data slice, please use 2566 * bpf_dynptr_slice_rdwr. 2567 * 2568 * The user must check that the returned pointer is not null before using it. 2569 * 2570 * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice 2571 * does not change the underlying packet data pointers, so a call to 2572 * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in 2573 * the bpf program. 2574 * 2575 * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only 2576 * data slice (can be either direct pointer to the data or a pointer to the user 2577 * provided buffer, with its contents containing the data, if unable to obtain 2578 * direct pointer) 2579 */ 2580 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u32 offset, 2581 void *buffer__opt, u32 buffer__szk) 2582 { 2583 const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2584 enum bpf_dynptr_type type; 2585 u32 len = buffer__szk; 2586 int err; 2587 2588 if (!ptr->data) 2589 return NULL; 2590 2591 err = bpf_dynptr_check_off_len(ptr, offset, len); 2592 if (err) 2593 return NULL; 2594 2595 type = bpf_dynptr_get_type(ptr); 2596 2597 switch (type) { 2598 case BPF_DYNPTR_TYPE_LOCAL: 2599 case BPF_DYNPTR_TYPE_RINGBUF: 2600 return ptr->data + ptr->offset + offset; 2601 case BPF_DYNPTR_TYPE_SKB: 2602 if (buffer__opt) 2603 return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt); 2604 else 2605 return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len); 2606 case BPF_DYNPTR_TYPE_XDP: 2607 { 2608 void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len); 2609 if (!IS_ERR_OR_NULL(xdp_ptr)) 2610 return xdp_ptr; 2611 2612 if (!buffer__opt) 2613 return NULL; 2614 bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false); 2615 return buffer__opt; 2616 } 2617 default: 2618 WARN_ONCE(true, "unknown dynptr type %d\n", type); 2619 return NULL; 2620 } 2621 } 2622 2623 /** 2624 * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data. 2625 * @p: The dynptr whose data slice to retrieve 2626 * @offset: Offset into the dynptr 2627 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2628 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2629 * length of the requested slice. This must be a constant. 2630 * 2631 * For non-skb and non-xdp type dynptrs, there is no difference between 2632 * bpf_dynptr_slice and bpf_dynptr_data. 2633 * 2634 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2635 * 2636 * The returned pointer is writable and may point to either directly the dynptr 2637 * data at the requested offset or to the buffer if unable to obtain a direct 2638 * data pointer to (example: the requested slice is to the paged area of an skb 2639 * packet). In the case where the returned pointer is to the buffer, the user 2640 * is responsible for persisting writes through calling bpf_dynptr_write(). This 2641 * usually looks something like this pattern: 2642 * 2643 * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer)); 2644 * if (!eth) 2645 * return TC_ACT_SHOT; 2646 * 2647 * // mutate eth header // 2648 * 2649 * if (eth == buffer) 2650 * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0); 2651 * 2652 * Please note that, as in the example above, the user must check that the 2653 * returned pointer is not null before using it. 2654 * 2655 * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr 2656 * does not change the underlying packet data pointers, so a call to 2657 * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in 2658 * the bpf program. 2659 * 2660 * Return: NULL if the call failed (eg invalid dynptr), pointer to a 2661 * data slice (can be either direct pointer to the data or a pointer to the user 2662 * provided buffer, with its contents containing the data, if unable to obtain 2663 * direct pointer) 2664 */ 2665 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u32 offset, 2666 void *buffer__opt, u32 buffer__szk) 2667 { 2668 const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2669 2670 if (!ptr->data || __bpf_dynptr_is_rdonly(ptr)) 2671 return NULL; 2672 2673 /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice. 2674 * 2675 * For skb-type dynptrs, it is safe to write into the returned pointer 2676 * if the bpf program allows skb data writes. There are two possibilities 2677 * that may occur when calling bpf_dynptr_slice_rdwr: 2678 * 2679 * 1) The requested slice is in the head of the skb. In this case, the 2680 * returned pointer is directly to skb data, and if the skb is cloned, the 2681 * verifier will have uncloned it (see bpf_unclone_prologue()) already. 2682 * The pointer can be directly written into. 2683 * 2684 * 2) Some portion of the requested slice is in the paged buffer area. 2685 * In this case, the requested data will be copied out into the buffer 2686 * and the returned pointer will be a pointer to the buffer. The skb 2687 * will not be pulled. To persist the write, the user will need to call 2688 * bpf_dynptr_write(), which will pull the skb and commit the write. 2689 * 2690 * Similarly for xdp programs, if the requested slice is not across xdp 2691 * fragments, then a direct pointer will be returned, otherwise the data 2692 * will be copied out into the buffer and the user will need to call 2693 * bpf_dynptr_write() to commit changes. 2694 */ 2695 return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk); 2696 } 2697 2698 __bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u32 start, u32 end) 2699 { 2700 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2701 u32 size; 2702 2703 if (!ptr->data || start > end) 2704 return -EINVAL; 2705 2706 size = __bpf_dynptr_size(ptr); 2707 2708 if (start > size || end > size) 2709 return -ERANGE; 2710 2711 ptr->offset += start; 2712 bpf_dynptr_set_size(ptr, end - start); 2713 2714 return 0; 2715 } 2716 2717 __bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p) 2718 { 2719 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2720 2721 return !ptr->data; 2722 } 2723 2724 __bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p) 2725 { 2726 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2727 2728 if (!ptr->data) 2729 return false; 2730 2731 return __bpf_dynptr_is_rdonly(ptr); 2732 } 2733 2734 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr *p) 2735 { 2736 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2737 2738 if (!ptr->data) 2739 return -EINVAL; 2740 2741 return __bpf_dynptr_size(ptr); 2742 } 2743 2744 __bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p, 2745 struct bpf_dynptr *clone__uninit) 2746 { 2747 struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit; 2748 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2749 2750 if (!ptr->data) { 2751 bpf_dynptr_set_null(clone); 2752 return -EINVAL; 2753 } 2754 2755 *clone = *ptr; 2756 2757 return 0; 2758 } 2759 2760 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj) 2761 { 2762 return obj; 2763 } 2764 2765 __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k) 2766 { 2767 return (void *)obj__ign; 2768 } 2769 2770 __bpf_kfunc void bpf_rcu_read_lock(void) 2771 { 2772 rcu_read_lock(); 2773 } 2774 2775 __bpf_kfunc void bpf_rcu_read_unlock(void) 2776 { 2777 rcu_read_unlock(); 2778 } 2779 2780 struct bpf_throw_ctx { 2781 struct bpf_prog_aux *aux; 2782 u64 sp; 2783 u64 bp; 2784 int cnt; 2785 }; 2786 2787 static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp) 2788 { 2789 struct bpf_throw_ctx *ctx = cookie; 2790 struct bpf_prog *prog; 2791 2792 if (!is_bpf_text_address(ip)) 2793 return !ctx->cnt; 2794 prog = bpf_prog_ksym_find(ip); 2795 ctx->cnt++; 2796 if (bpf_is_subprog(prog)) 2797 return true; 2798 ctx->aux = prog->aux; 2799 ctx->sp = sp; 2800 ctx->bp = bp; 2801 return false; 2802 } 2803 2804 __bpf_kfunc void bpf_throw(u64 cookie) 2805 { 2806 struct bpf_throw_ctx ctx = {}; 2807 2808 arch_bpf_stack_walk(bpf_stack_walker, &ctx); 2809 WARN_ON_ONCE(!ctx.aux); 2810 if (ctx.aux) 2811 WARN_ON_ONCE(!ctx.aux->exception_boundary); 2812 WARN_ON_ONCE(!ctx.bp); 2813 WARN_ON_ONCE(!ctx.cnt); 2814 /* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning 2815 * deeper stack depths than ctx.sp as we do not return from bpf_throw, 2816 * which skips compiler generated instrumentation to do the same. 2817 */ 2818 kasan_unpoison_task_stack_below((void *)(long)ctx.sp); 2819 ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0); 2820 WARN(1, "A call to BPF exception callback should never return\n"); 2821 } 2822 2823 __bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags) 2824 { 2825 struct bpf_async_kern *async = (struct bpf_async_kern *)wq; 2826 struct bpf_map *map = p__map; 2827 2828 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq)); 2829 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq)); 2830 2831 if (flags) 2832 return -EINVAL; 2833 2834 return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ); 2835 } 2836 2837 __bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags) 2838 { 2839 struct bpf_async_kern *async = (struct bpf_async_kern *)wq; 2840 struct bpf_work *w; 2841 2842 if (in_nmi()) 2843 return -EOPNOTSUPP; 2844 if (flags) 2845 return -EINVAL; 2846 w = READ_ONCE(async->work); 2847 if (!w || !READ_ONCE(w->cb.prog)) 2848 return -EINVAL; 2849 2850 schedule_work(&w->work); 2851 return 0; 2852 } 2853 2854 __bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq, 2855 int (callback_fn)(void *map, int *key, void *value), 2856 unsigned int flags, 2857 void *aux__ign) 2858 { 2859 struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__ign; 2860 struct bpf_async_kern *async = (struct bpf_async_kern *)wq; 2861 2862 if (flags) 2863 return -EINVAL; 2864 2865 return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ); 2866 } 2867 2868 __bpf_kfunc void bpf_preempt_disable(void) 2869 { 2870 preempt_disable(); 2871 } 2872 2873 __bpf_kfunc void bpf_preempt_enable(void) 2874 { 2875 preempt_enable(); 2876 } 2877 2878 struct bpf_iter_bits { 2879 __u64 __opaque[2]; 2880 } __aligned(8); 2881 2882 #define BITS_ITER_NR_WORDS_MAX 511 2883 2884 struct bpf_iter_bits_kern { 2885 union { 2886 __u64 *bits; 2887 __u64 bits_copy; 2888 }; 2889 int nr_bits; 2890 int bit; 2891 } __aligned(8); 2892 2893 /* On 64-bit hosts, unsigned long and u64 have the same size, so passing 2894 * a u64 pointer and an unsigned long pointer to find_next_bit() will 2895 * return the same result, as both point to the same 8-byte area. 2896 * 2897 * For 32-bit little-endian hosts, using a u64 pointer or unsigned long 2898 * pointer also makes no difference. This is because the first iterated 2899 * unsigned long is composed of bits 0-31 of the u64 and the second unsigned 2900 * long is composed of bits 32-63 of the u64. 2901 * 2902 * However, for 32-bit big-endian hosts, this is not the case. The first 2903 * iterated unsigned long will be bits 32-63 of the u64, so swap these two 2904 * ulong values within the u64. 2905 */ 2906 static void swap_ulong_in_u64(u64 *bits, unsigned int nr) 2907 { 2908 #if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN) 2909 unsigned int i; 2910 2911 for (i = 0; i < nr; i++) 2912 bits[i] = (bits[i] >> 32) | ((u64)(u32)bits[i] << 32); 2913 #endif 2914 } 2915 2916 /** 2917 * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area 2918 * @it: The new bpf_iter_bits to be created 2919 * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over 2920 * @nr_words: The size of the specified memory area, measured in 8-byte units. 2921 * The maximum value of @nr_words is @BITS_ITER_NR_WORDS_MAX. This limit may be 2922 * further reduced by the BPF memory allocator implementation. 2923 * 2924 * This function initializes a new bpf_iter_bits structure for iterating over 2925 * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It 2926 * copies the data of the memory area to the newly created bpf_iter_bits @it for 2927 * subsequent iteration operations. 2928 * 2929 * On success, 0 is returned. On failure, ERR is returned. 2930 */ 2931 __bpf_kfunc int 2932 bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words) 2933 { 2934 struct bpf_iter_bits_kern *kit = (void *)it; 2935 u32 nr_bytes = nr_words * sizeof(u64); 2936 u32 nr_bits = BYTES_TO_BITS(nr_bytes); 2937 int err; 2938 2939 BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits)); 2940 BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) != 2941 __alignof__(struct bpf_iter_bits)); 2942 2943 kit->nr_bits = 0; 2944 kit->bits_copy = 0; 2945 kit->bit = -1; 2946 2947 if (!unsafe_ptr__ign || !nr_words) 2948 return -EINVAL; 2949 if (nr_words > BITS_ITER_NR_WORDS_MAX) 2950 return -E2BIG; 2951 2952 /* Optimization for u64 mask */ 2953 if (nr_bits == 64) { 2954 err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign); 2955 if (err) 2956 return -EFAULT; 2957 2958 swap_ulong_in_u64(&kit->bits_copy, nr_words); 2959 2960 kit->nr_bits = nr_bits; 2961 return 0; 2962 } 2963 2964 if (bpf_mem_alloc_check_size(false, nr_bytes)) 2965 return -E2BIG; 2966 2967 /* Fallback to memalloc */ 2968 kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes); 2969 if (!kit->bits) 2970 return -ENOMEM; 2971 2972 err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign); 2973 if (err) { 2974 bpf_mem_free(&bpf_global_ma, kit->bits); 2975 return err; 2976 } 2977 2978 swap_ulong_in_u64(kit->bits, nr_words); 2979 2980 kit->nr_bits = nr_bits; 2981 return 0; 2982 } 2983 2984 /** 2985 * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits 2986 * @it: The bpf_iter_bits to be checked 2987 * 2988 * This function returns a pointer to a number representing the value of the 2989 * next bit in the bits. 2990 * 2991 * If there are no further bits available, it returns NULL. 2992 */ 2993 __bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it) 2994 { 2995 struct bpf_iter_bits_kern *kit = (void *)it; 2996 int bit = kit->bit, nr_bits = kit->nr_bits; 2997 const void *bits; 2998 2999 if (!nr_bits || bit >= nr_bits) 3000 return NULL; 3001 3002 bits = nr_bits == 64 ? &kit->bits_copy : kit->bits; 3003 bit = find_next_bit(bits, nr_bits, bit + 1); 3004 if (bit >= nr_bits) { 3005 kit->bit = bit; 3006 return NULL; 3007 } 3008 3009 kit->bit = bit; 3010 return &kit->bit; 3011 } 3012 3013 /** 3014 * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits 3015 * @it: The bpf_iter_bits to be destroyed 3016 * 3017 * Destroy the resource associated with the bpf_iter_bits. 3018 */ 3019 __bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it) 3020 { 3021 struct bpf_iter_bits_kern *kit = (void *)it; 3022 3023 if (kit->nr_bits <= 64) 3024 return; 3025 bpf_mem_free(&bpf_global_ma, kit->bits); 3026 } 3027 3028 /** 3029 * bpf_copy_from_user_str() - Copy a string from an unsafe user address 3030 * @dst: Destination address, in kernel space. This buffer must be 3031 * at least @dst__sz bytes long. 3032 * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL. 3033 * @unsafe_ptr__ign: Source address, in user space. 3034 * @flags: The only supported flag is BPF_F_PAD_ZEROS 3035 * 3036 * Copies a NUL-terminated string from userspace to BPF space. If user string is 3037 * too long this will still ensure zero termination in the dst buffer unless 3038 * buffer size is 0. 3039 * 3040 * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst to 0 on success and 3041 * memset all of @dst on failure. 3042 */ 3043 __bpf_kfunc int bpf_copy_from_user_str(void *dst, u32 dst__sz, const void __user *unsafe_ptr__ign, u64 flags) 3044 { 3045 int ret; 3046 3047 if (unlikely(flags & ~BPF_F_PAD_ZEROS)) 3048 return -EINVAL; 3049 3050 if (unlikely(!dst__sz)) 3051 return 0; 3052 3053 ret = strncpy_from_user(dst, unsafe_ptr__ign, dst__sz - 1); 3054 if (ret < 0) { 3055 if (flags & BPF_F_PAD_ZEROS) 3056 memset((char *)dst, 0, dst__sz); 3057 3058 return ret; 3059 } 3060 3061 if (flags & BPF_F_PAD_ZEROS) 3062 memset((char *)dst + ret, 0, dst__sz - ret); 3063 else 3064 ((char *)dst)[ret] = '\0'; 3065 3066 return ret + 1; 3067 } 3068 3069 /* Keep unsinged long in prototype so that kfunc is usable when emitted to 3070 * vmlinux.h in BPF programs directly, but note that while in BPF prog, the 3071 * unsigned long always points to 8-byte region on stack, the kernel may only 3072 * read and write the 4-bytes on 32-bit. 3073 */ 3074 __bpf_kfunc void bpf_local_irq_save(unsigned long *flags__irq_flag) 3075 { 3076 local_irq_save(*flags__irq_flag); 3077 } 3078 3079 __bpf_kfunc void bpf_local_irq_restore(unsigned long *flags__irq_flag) 3080 { 3081 local_irq_restore(*flags__irq_flag); 3082 } 3083 3084 __bpf_kfunc_end_defs(); 3085 3086 BTF_KFUNCS_START(generic_btf_ids) 3087 #ifdef CONFIG_CRASH_DUMP 3088 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) 3089 #endif 3090 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) 3091 BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) 3092 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE) 3093 BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE) 3094 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU) 3095 BTF_ID_FLAGS(func, bpf_list_push_front_impl) 3096 BTF_ID_FLAGS(func, bpf_list_push_back_impl) 3097 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL) 3098 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL) 3099 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 3100 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE) 3101 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL) 3102 BTF_ID_FLAGS(func, bpf_rbtree_add_impl) 3103 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL) 3104 3105 #ifdef CONFIG_CGROUPS 3106 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 3107 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE) 3108 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 3109 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL) 3110 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU) 3111 BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 3112 #endif 3113 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL) 3114 BTF_ID_FLAGS(func, bpf_task_from_vpid, KF_ACQUIRE | KF_RET_NULL) 3115 BTF_ID_FLAGS(func, bpf_throw) 3116 #ifdef CONFIG_BPF_EVENTS 3117 BTF_ID_FLAGS(func, bpf_send_signal_task, KF_TRUSTED_ARGS) 3118 #endif 3119 BTF_KFUNCS_END(generic_btf_ids) 3120 3121 static const struct btf_kfunc_id_set generic_kfunc_set = { 3122 .owner = THIS_MODULE, 3123 .set = &generic_btf_ids, 3124 }; 3125 3126 3127 BTF_ID_LIST(generic_dtor_ids) 3128 BTF_ID(struct, task_struct) 3129 BTF_ID(func, bpf_task_release_dtor) 3130 #ifdef CONFIG_CGROUPS 3131 BTF_ID(struct, cgroup) 3132 BTF_ID(func, bpf_cgroup_release_dtor) 3133 #endif 3134 3135 BTF_KFUNCS_START(common_btf_ids) 3136 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx, KF_FASTCALL) 3137 BTF_ID_FLAGS(func, bpf_rdonly_cast, KF_FASTCALL) 3138 BTF_ID_FLAGS(func, bpf_rcu_read_lock) 3139 BTF_ID_FLAGS(func, bpf_rcu_read_unlock) 3140 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL) 3141 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL) 3142 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW) 3143 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL) 3144 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY) 3145 BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU) 3146 BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL) 3147 BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY) 3148 #ifdef CONFIG_CGROUPS 3149 BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS) 3150 BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL) 3151 BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY) 3152 BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) 3153 BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL) 3154 BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY) 3155 #endif 3156 BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) 3157 BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL) 3158 BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY) 3159 BTF_ID_FLAGS(func, bpf_dynptr_adjust) 3160 BTF_ID_FLAGS(func, bpf_dynptr_is_null) 3161 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly) 3162 BTF_ID_FLAGS(func, bpf_dynptr_size) 3163 BTF_ID_FLAGS(func, bpf_dynptr_clone) 3164 #ifdef CONFIG_NET 3165 BTF_ID_FLAGS(func, bpf_modify_return_test_tp) 3166 #endif 3167 BTF_ID_FLAGS(func, bpf_wq_init) 3168 BTF_ID_FLAGS(func, bpf_wq_set_callback_impl) 3169 BTF_ID_FLAGS(func, bpf_wq_start) 3170 BTF_ID_FLAGS(func, bpf_preempt_disable) 3171 BTF_ID_FLAGS(func, bpf_preempt_enable) 3172 BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW) 3173 BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL) 3174 BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY) 3175 BTF_ID_FLAGS(func, bpf_copy_from_user_str, KF_SLEEPABLE) 3176 BTF_ID_FLAGS(func, bpf_get_kmem_cache) 3177 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_new, KF_ITER_NEW | KF_SLEEPABLE) 3178 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE) 3179 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_destroy, KF_ITER_DESTROY | KF_SLEEPABLE) 3180 BTF_ID_FLAGS(func, bpf_local_irq_save) 3181 BTF_ID_FLAGS(func, bpf_local_irq_restore) 3182 BTF_KFUNCS_END(common_btf_ids) 3183 3184 static const struct btf_kfunc_id_set common_kfunc_set = { 3185 .owner = THIS_MODULE, 3186 .set = &common_btf_ids, 3187 }; 3188 3189 static int __init kfunc_init(void) 3190 { 3191 int ret; 3192 const struct btf_id_dtor_kfunc generic_dtors[] = { 3193 { 3194 .btf_id = generic_dtor_ids[0], 3195 .kfunc_btf_id = generic_dtor_ids[1] 3196 }, 3197 #ifdef CONFIG_CGROUPS 3198 { 3199 .btf_id = generic_dtor_ids[2], 3200 .kfunc_btf_id = generic_dtor_ids[3] 3201 }, 3202 #endif 3203 }; 3204 3205 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set); 3206 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set); 3207 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set); 3208 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set); 3209 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set); 3210 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &generic_kfunc_set); 3211 ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors, 3212 ARRAY_SIZE(generic_dtors), 3213 THIS_MODULE); 3214 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); 3215 } 3216 3217 late_initcall(kfunc_init); 3218 3219 /* Get a pointer to dynptr data up to len bytes for read only access. If 3220 * the dynptr doesn't have continuous data up to len bytes, return NULL. 3221 */ 3222 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len) 3223 { 3224 const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr; 3225 3226 return bpf_dynptr_slice(p, 0, NULL, len); 3227 } 3228 3229 /* Get a pointer to dynptr data up to len bytes for read write access. If 3230 * the dynptr doesn't have continuous data up to len bytes, or the dynptr 3231 * is read only, return NULL. 3232 */ 3233 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len) 3234 { 3235 if (__bpf_dynptr_is_rdonly(ptr)) 3236 return NULL; 3237 return (void *)__bpf_dynptr_data(ptr, len); 3238 } 3239