xref: /linux/kernel/bpf/helpers.c (revision a76053707dbf0dc020a73b4d90cd952409ef3691)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/rcupdate.h>
6 #include <linux/random.h>
7 #include <linux/smp.h>
8 #include <linux/topology.h>
9 #include <linux/ktime.h>
10 #include <linux/sched.h>
11 #include <linux/uidgid.h>
12 #include <linux/filter.h>
13 #include <linux/ctype.h>
14 #include <linux/jiffies.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/proc_ns.h>
17 #include <linux/security.h>
18 
19 #include "../../lib/kstrtox.h"
20 
21 /* If kernel subsystem is allowing eBPF programs to call this function,
22  * inside its own verifier_ops->get_func_proto() callback it should return
23  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
24  *
25  * Different map implementations will rely on rcu in map methods
26  * lookup/update/delete, therefore eBPF programs must run under rcu lock
27  * if program is allowed to access maps, so check rcu_read_lock_held in
28  * all three functions.
29  */
30 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
31 {
32 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
33 	return (unsigned long) map->ops->map_lookup_elem(map, key);
34 }
35 
36 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
37 	.func		= bpf_map_lookup_elem,
38 	.gpl_only	= false,
39 	.pkt_access	= true,
40 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
41 	.arg1_type	= ARG_CONST_MAP_PTR,
42 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
43 };
44 
45 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
46 	   void *, value, u64, flags)
47 {
48 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
49 	return map->ops->map_update_elem(map, key, value, flags);
50 }
51 
52 const struct bpf_func_proto bpf_map_update_elem_proto = {
53 	.func		= bpf_map_update_elem,
54 	.gpl_only	= false,
55 	.pkt_access	= true,
56 	.ret_type	= RET_INTEGER,
57 	.arg1_type	= ARG_CONST_MAP_PTR,
58 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
59 	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
60 	.arg4_type	= ARG_ANYTHING,
61 };
62 
63 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
64 {
65 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
66 	return map->ops->map_delete_elem(map, key);
67 }
68 
69 const struct bpf_func_proto bpf_map_delete_elem_proto = {
70 	.func		= bpf_map_delete_elem,
71 	.gpl_only	= false,
72 	.pkt_access	= true,
73 	.ret_type	= RET_INTEGER,
74 	.arg1_type	= ARG_CONST_MAP_PTR,
75 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
76 };
77 
78 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
79 {
80 	return map->ops->map_push_elem(map, value, flags);
81 }
82 
83 const struct bpf_func_proto bpf_map_push_elem_proto = {
84 	.func		= bpf_map_push_elem,
85 	.gpl_only	= false,
86 	.pkt_access	= true,
87 	.ret_type	= RET_INTEGER,
88 	.arg1_type	= ARG_CONST_MAP_PTR,
89 	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
90 	.arg3_type	= ARG_ANYTHING,
91 };
92 
93 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
94 {
95 	return map->ops->map_pop_elem(map, value);
96 }
97 
98 const struct bpf_func_proto bpf_map_pop_elem_proto = {
99 	.func		= bpf_map_pop_elem,
100 	.gpl_only	= false,
101 	.ret_type	= RET_INTEGER,
102 	.arg1_type	= ARG_CONST_MAP_PTR,
103 	.arg2_type	= ARG_PTR_TO_UNINIT_MAP_VALUE,
104 };
105 
106 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
107 {
108 	return map->ops->map_peek_elem(map, value);
109 }
110 
111 const struct bpf_func_proto bpf_map_peek_elem_proto = {
112 	.func		= bpf_map_peek_elem,
113 	.gpl_only	= false,
114 	.ret_type	= RET_INTEGER,
115 	.arg1_type	= ARG_CONST_MAP_PTR,
116 	.arg2_type	= ARG_PTR_TO_UNINIT_MAP_VALUE,
117 };
118 
119 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
120 	.func		= bpf_user_rnd_u32,
121 	.gpl_only	= false,
122 	.ret_type	= RET_INTEGER,
123 };
124 
125 BPF_CALL_0(bpf_get_smp_processor_id)
126 {
127 	return smp_processor_id();
128 }
129 
130 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
131 	.func		= bpf_get_smp_processor_id,
132 	.gpl_only	= false,
133 	.ret_type	= RET_INTEGER,
134 };
135 
136 BPF_CALL_0(bpf_get_numa_node_id)
137 {
138 	return numa_node_id();
139 }
140 
141 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
142 	.func		= bpf_get_numa_node_id,
143 	.gpl_only	= false,
144 	.ret_type	= RET_INTEGER,
145 };
146 
147 BPF_CALL_0(bpf_ktime_get_ns)
148 {
149 	/* NMI safe access to clock monotonic */
150 	return ktime_get_mono_fast_ns();
151 }
152 
153 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
154 	.func		= bpf_ktime_get_ns,
155 	.gpl_only	= false,
156 	.ret_type	= RET_INTEGER,
157 };
158 
159 BPF_CALL_0(bpf_ktime_get_boot_ns)
160 {
161 	/* NMI safe access to clock boottime */
162 	return ktime_get_boot_fast_ns();
163 }
164 
165 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
166 	.func		= bpf_ktime_get_boot_ns,
167 	.gpl_only	= false,
168 	.ret_type	= RET_INTEGER,
169 };
170 
171 BPF_CALL_0(bpf_ktime_get_coarse_ns)
172 {
173 	return ktime_get_coarse_ns();
174 }
175 
176 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
177 	.func		= bpf_ktime_get_coarse_ns,
178 	.gpl_only	= false,
179 	.ret_type	= RET_INTEGER,
180 };
181 
182 BPF_CALL_0(bpf_get_current_pid_tgid)
183 {
184 	struct task_struct *task = current;
185 
186 	if (unlikely(!task))
187 		return -EINVAL;
188 
189 	return (u64) task->tgid << 32 | task->pid;
190 }
191 
192 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
193 	.func		= bpf_get_current_pid_tgid,
194 	.gpl_only	= false,
195 	.ret_type	= RET_INTEGER,
196 };
197 
198 BPF_CALL_0(bpf_get_current_uid_gid)
199 {
200 	struct task_struct *task = current;
201 	kuid_t uid;
202 	kgid_t gid;
203 
204 	if (unlikely(!task))
205 		return -EINVAL;
206 
207 	current_uid_gid(&uid, &gid);
208 	return (u64) from_kgid(&init_user_ns, gid) << 32 |
209 		     from_kuid(&init_user_ns, uid);
210 }
211 
212 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
213 	.func		= bpf_get_current_uid_gid,
214 	.gpl_only	= false,
215 	.ret_type	= RET_INTEGER,
216 };
217 
218 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
219 {
220 	struct task_struct *task = current;
221 
222 	if (unlikely(!task))
223 		goto err_clear;
224 
225 	strncpy(buf, task->comm, size);
226 
227 	/* Verifier guarantees that size > 0. For task->comm exceeding
228 	 * size, guarantee that buf is %NUL-terminated. Unconditionally
229 	 * done here to save the size test.
230 	 */
231 	buf[size - 1] = 0;
232 	return 0;
233 err_clear:
234 	memset(buf, 0, size);
235 	return -EINVAL;
236 }
237 
238 const struct bpf_func_proto bpf_get_current_comm_proto = {
239 	.func		= bpf_get_current_comm,
240 	.gpl_only	= false,
241 	.ret_type	= RET_INTEGER,
242 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
243 	.arg2_type	= ARG_CONST_SIZE,
244 };
245 
246 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
247 
248 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
249 {
250 	arch_spinlock_t *l = (void *)lock;
251 	union {
252 		__u32 val;
253 		arch_spinlock_t lock;
254 	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
255 
256 	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
257 	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
258 	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
259 	arch_spin_lock(l);
260 }
261 
262 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
263 {
264 	arch_spinlock_t *l = (void *)lock;
265 
266 	arch_spin_unlock(l);
267 }
268 
269 #else
270 
271 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
272 {
273 	atomic_t *l = (void *)lock;
274 
275 	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
276 	do {
277 		atomic_cond_read_relaxed(l, !VAL);
278 	} while (atomic_xchg(l, 1));
279 }
280 
281 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
282 {
283 	atomic_t *l = (void *)lock;
284 
285 	atomic_set_release(l, 0);
286 }
287 
288 #endif
289 
290 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
291 
292 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
293 {
294 	unsigned long flags;
295 
296 	local_irq_save(flags);
297 	__bpf_spin_lock(lock);
298 	__this_cpu_write(irqsave_flags, flags);
299 }
300 
301 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
302 {
303 	__bpf_spin_lock_irqsave(lock);
304 	return 0;
305 }
306 
307 const struct bpf_func_proto bpf_spin_lock_proto = {
308 	.func		= bpf_spin_lock,
309 	.gpl_only	= false,
310 	.ret_type	= RET_VOID,
311 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
312 };
313 
314 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
315 {
316 	unsigned long flags;
317 
318 	flags = __this_cpu_read(irqsave_flags);
319 	__bpf_spin_unlock(lock);
320 	local_irq_restore(flags);
321 }
322 
323 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
324 {
325 	__bpf_spin_unlock_irqrestore(lock);
326 	return 0;
327 }
328 
329 const struct bpf_func_proto bpf_spin_unlock_proto = {
330 	.func		= bpf_spin_unlock,
331 	.gpl_only	= false,
332 	.ret_type	= RET_VOID,
333 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
334 };
335 
336 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
337 			   bool lock_src)
338 {
339 	struct bpf_spin_lock *lock;
340 
341 	if (lock_src)
342 		lock = src + map->spin_lock_off;
343 	else
344 		lock = dst + map->spin_lock_off;
345 	preempt_disable();
346 	__bpf_spin_lock_irqsave(lock);
347 	copy_map_value(map, dst, src);
348 	__bpf_spin_unlock_irqrestore(lock);
349 	preempt_enable();
350 }
351 
352 BPF_CALL_0(bpf_jiffies64)
353 {
354 	return get_jiffies_64();
355 }
356 
357 const struct bpf_func_proto bpf_jiffies64_proto = {
358 	.func		= bpf_jiffies64,
359 	.gpl_only	= false,
360 	.ret_type	= RET_INTEGER,
361 };
362 
363 #ifdef CONFIG_CGROUPS
364 BPF_CALL_0(bpf_get_current_cgroup_id)
365 {
366 	struct cgroup *cgrp = task_dfl_cgroup(current);
367 
368 	return cgroup_id(cgrp);
369 }
370 
371 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
372 	.func		= bpf_get_current_cgroup_id,
373 	.gpl_only	= false,
374 	.ret_type	= RET_INTEGER,
375 };
376 
377 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
378 {
379 	struct cgroup *cgrp = task_dfl_cgroup(current);
380 	struct cgroup *ancestor;
381 
382 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
383 	if (!ancestor)
384 		return 0;
385 	return cgroup_id(ancestor);
386 }
387 
388 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
389 	.func		= bpf_get_current_ancestor_cgroup_id,
390 	.gpl_only	= false,
391 	.ret_type	= RET_INTEGER,
392 	.arg1_type	= ARG_ANYTHING,
393 };
394 
395 #ifdef CONFIG_CGROUP_BPF
396 DECLARE_PER_CPU(struct bpf_cgroup_storage_info,
397 		bpf_cgroup_storage_info[BPF_CGROUP_STORAGE_NEST_MAX]);
398 
399 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
400 {
401 	/* flags argument is not used now,
402 	 * but provides an ability to extend the API.
403 	 * verifier checks that its value is correct.
404 	 */
405 	enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
406 	struct bpf_cgroup_storage *storage = NULL;
407 	void *ptr;
408 	int i;
409 
410 	for (i = 0; i < BPF_CGROUP_STORAGE_NEST_MAX; i++) {
411 		if (unlikely(this_cpu_read(bpf_cgroup_storage_info[i].task) != current))
412 			continue;
413 
414 		storage = this_cpu_read(bpf_cgroup_storage_info[i].storage[stype]);
415 		break;
416 	}
417 
418 	if (stype == BPF_CGROUP_STORAGE_SHARED)
419 		ptr = &READ_ONCE(storage->buf)->data[0];
420 	else
421 		ptr = this_cpu_ptr(storage->percpu_buf);
422 
423 	return (unsigned long)ptr;
424 }
425 
426 const struct bpf_func_proto bpf_get_local_storage_proto = {
427 	.func		= bpf_get_local_storage,
428 	.gpl_only	= false,
429 	.ret_type	= RET_PTR_TO_MAP_VALUE,
430 	.arg1_type	= ARG_CONST_MAP_PTR,
431 	.arg2_type	= ARG_ANYTHING,
432 };
433 #endif
434 
435 #define BPF_STRTOX_BASE_MASK 0x1F
436 
437 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
438 			  unsigned long long *res, bool *is_negative)
439 {
440 	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
441 	const char *cur_buf = buf;
442 	size_t cur_len = buf_len;
443 	unsigned int consumed;
444 	size_t val_len;
445 	char str[64];
446 
447 	if (!buf || !buf_len || !res || !is_negative)
448 		return -EINVAL;
449 
450 	if (base != 0 && base != 8 && base != 10 && base != 16)
451 		return -EINVAL;
452 
453 	if (flags & ~BPF_STRTOX_BASE_MASK)
454 		return -EINVAL;
455 
456 	while (cur_buf < buf + buf_len && isspace(*cur_buf))
457 		++cur_buf;
458 
459 	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
460 	if (*is_negative)
461 		++cur_buf;
462 
463 	consumed = cur_buf - buf;
464 	cur_len -= consumed;
465 	if (!cur_len)
466 		return -EINVAL;
467 
468 	cur_len = min(cur_len, sizeof(str) - 1);
469 	memcpy(str, cur_buf, cur_len);
470 	str[cur_len] = '\0';
471 	cur_buf = str;
472 
473 	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
474 	val_len = _parse_integer(cur_buf, base, res);
475 
476 	if (val_len & KSTRTOX_OVERFLOW)
477 		return -ERANGE;
478 
479 	if (val_len == 0)
480 		return -EINVAL;
481 
482 	cur_buf += val_len;
483 	consumed += cur_buf - str;
484 
485 	return consumed;
486 }
487 
488 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
489 			 long long *res)
490 {
491 	unsigned long long _res;
492 	bool is_negative;
493 	int err;
494 
495 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
496 	if (err < 0)
497 		return err;
498 	if (is_negative) {
499 		if ((long long)-_res > 0)
500 			return -ERANGE;
501 		*res = -_res;
502 	} else {
503 		if ((long long)_res < 0)
504 			return -ERANGE;
505 		*res = _res;
506 	}
507 	return err;
508 }
509 
510 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
511 	   long *, res)
512 {
513 	long long _res;
514 	int err;
515 
516 	err = __bpf_strtoll(buf, buf_len, flags, &_res);
517 	if (err < 0)
518 		return err;
519 	if (_res != (long)_res)
520 		return -ERANGE;
521 	*res = _res;
522 	return err;
523 }
524 
525 const struct bpf_func_proto bpf_strtol_proto = {
526 	.func		= bpf_strtol,
527 	.gpl_only	= false,
528 	.ret_type	= RET_INTEGER,
529 	.arg1_type	= ARG_PTR_TO_MEM,
530 	.arg2_type	= ARG_CONST_SIZE,
531 	.arg3_type	= ARG_ANYTHING,
532 	.arg4_type	= ARG_PTR_TO_LONG,
533 };
534 
535 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
536 	   unsigned long *, res)
537 {
538 	unsigned long long _res;
539 	bool is_negative;
540 	int err;
541 
542 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
543 	if (err < 0)
544 		return err;
545 	if (is_negative)
546 		return -EINVAL;
547 	if (_res != (unsigned long)_res)
548 		return -ERANGE;
549 	*res = _res;
550 	return err;
551 }
552 
553 const struct bpf_func_proto bpf_strtoul_proto = {
554 	.func		= bpf_strtoul,
555 	.gpl_only	= false,
556 	.ret_type	= RET_INTEGER,
557 	.arg1_type	= ARG_PTR_TO_MEM,
558 	.arg2_type	= ARG_CONST_SIZE,
559 	.arg3_type	= ARG_ANYTHING,
560 	.arg4_type	= ARG_PTR_TO_LONG,
561 };
562 #endif
563 
564 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
565 	   struct bpf_pidns_info *, nsdata, u32, size)
566 {
567 	struct task_struct *task = current;
568 	struct pid_namespace *pidns;
569 	int err = -EINVAL;
570 
571 	if (unlikely(size != sizeof(struct bpf_pidns_info)))
572 		goto clear;
573 
574 	if (unlikely((u64)(dev_t)dev != dev))
575 		goto clear;
576 
577 	if (unlikely(!task))
578 		goto clear;
579 
580 	pidns = task_active_pid_ns(task);
581 	if (unlikely(!pidns)) {
582 		err = -ENOENT;
583 		goto clear;
584 	}
585 
586 	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
587 		goto clear;
588 
589 	nsdata->pid = task_pid_nr_ns(task, pidns);
590 	nsdata->tgid = task_tgid_nr_ns(task, pidns);
591 	return 0;
592 clear:
593 	memset((void *)nsdata, 0, (size_t) size);
594 	return err;
595 }
596 
597 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
598 	.func		= bpf_get_ns_current_pid_tgid,
599 	.gpl_only	= false,
600 	.ret_type	= RET_INTEGER,
601 	.arg1_type	= ARG_ANYTHING,
602 	.arg2_type	= ARG_ANYTHING,
603 	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
604 	.arg4_type      = ARG_CONST_SIZE,
605 };
606 
607 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
608 	.func		= bpf_get_raw_cpu_id,
609 	.gpl_only	= false,
610 	.ret_type	= RET_INTEGER,
611 };
612 
613 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
614 	   u64, flags, void *, data, u64, size)
615 {
616 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
617 		return -EINVAL;
618 
619 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
620 }
621 
622 const struct bpf_func_proto bpf_event_output_data_proto =  {
623 	.func		= bpf_event_output_data,
624 	.gpl_only       = true,
625 	.ret_type       = RET_INTEGER,
626 	.arg1_type      = ARG_PTR_TO_CTX,
627 	.arg2_type      = ARG_CONST_MAP_PTR,
628 	.arg3_type      = ARG_ANYTHING,
629 	.arg4_type      = ARG_PTR_TO_MEM,
630 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
631 };
632 
633 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
634 	   const void __user *, user_ptr)
635 {
636 	int ret = copy_from_user(dst, user_ptr, size);
637 
638 	if (unlikely(ret)) {
639 		memset(dst, 0, size);
640 		ret = -EFAULT;
641 	}
642 
643 	return ret;
644 }
645 
646 const struct bpf_func_proto bpf_copy_from_user_proto = {
647 	.func		= bpf_copy_from_user,
648 	.gpl_only	= false,
649 	.ret_type	= RET_INTEGER,
650 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
651 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
652 	.arg3_type	= ARG_ANYTHING,
653 };
654 
655 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
656 {
657 	if (cpu >= nr_cpu_ids)
658 		return (unsigned long)NULL;
659 
660 	return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
661 }
662 
663 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
664 	.func		= bpf_per_cpu_ptr,
665 	.gpl_only	= false,
666 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL,
667 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
668 	.arg2_type	= ARG_ANYTHING,
669 };
670 
671 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
672 {
673 	return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
674 }
675 
676 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
677 	.func		= bpf_this_cpu_ptr,
678 	.gpl_only	= false,
679 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID,
680 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
681 };
682 
683 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
684 		size_t bufsz)
685 {
686 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
687 
688 	buf[0] = 0;
689 
690 	switch (fmt_ptype) {
691 	case 's':
692 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
693 		if ((unsigned long)unsafe_ptr < TASK_SIZE)
694 			return strncpy_from_user_nofault(buf, user_ptr, bufsz);
695 		fallthrough;
696 #endif
697 	case 'k':
698 		return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
699 	case 'u':
700 		return strncpy_from_user_nofault(buf, user_ptr, bufsz);
701 	}
702 
703 	return -EINVAL;
704 }
705 
706 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
707  * arguments representation.
708  */
709 #define MAX_BPRINTF_BUF_LEN	512
710 
711 /* Support executing three nested bprintf helper calls on a given CPU */
712 #define MAX_BPRINTF_NEST_LEVEL	3
713 struct bpf_bprintf_buffers {
714 	char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN];
715 };
716 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs);
717 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
718 
719 static int try_get_fmt_tmp_buf(char **tmp_buf)
720 {
721 	struct bpf_bprintf_buffers *bufs;
722 	int nest_level;
723 
724 	preempt_disable();
725 	nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
726 	if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
727 		this_cpu_dec(bpf_bprintf_nest_level);
728 		preempt_enable();
729 		return -EBUSY;
730 	}
731 	bufs = this_cpu_ptr(&bpf_bprintf_bufs);
732 	*tmp_buf = bufs->tmp_bufs[nest_level - 1];
733 
734 	return 0;
735 }
736 
737 void bpf_bprintf_cleanup(void)
738 {
739 	if (this_cpu_read(bpf_bprintf_nest_level)) {
740 		this_cpu_dec(bpf_bprintf_nest_level);
741 		preempt_enable();
742 	}
743 }
744 
745 /*
746  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
747  *
748  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
749  *
750  * This can be used in two ways:
751  * - Format string verification only: when bin_args is NULL
752  * - Arguments preparation: in addition to the above verification, it writes in
753  *   bin_args a binary representation of arguments usable by bstr_printf where
754  *   pointers from BPF have been sanitized.
755  *
756  * In argument preparation mode, if 0 is returned, safe temporary buffers are
757  * allocated and bpf_bprintf_cleanup should be called to free them after use.
758  */
759 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
760 			u32 **bin_args, u32 num_args)
761 {
762 	char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
763 	size_t sizeof_cur_arg, sizeof_cur_ip;
764 	int err, i, num_spec = 0;
765 	u64 cur_arg;
766 	char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
767 
768 	fmt_end = strnchr(fmt, fmt_size, 0);
769 	if (!fmt_end)
770 		return -EINVAL;
771 	fmt_size = fmt_end - fmt;
772 
773 	if (bin_args) {
774 		if (num_args && try_get_fmt_tmp_buf(&tmp_buf))
775 			return -EBUSY;
776 
777 		tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN;
778 		*bin_args = (u32 *)tmp_buf;
779 	}
780 
781 	for (i = 0; i < fmt_size; i++) {
782 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
783 			err = -EINVAL;
784 			goto out;
785 		}
786 
787 		if (fmt[i] != '%')
788 			continue;
789 
790 		if (fmt[i + 1] == '%') {
791 			i++;
792 			continue;
793 		}
794 
795 		if (num_spec >= num_args) {
796 			err = -EINVAL;
797 			goto out;
798 		}
799 
800 		/* The string is zero-terminated so if fmt[i] != 0, we can
801 		 * always access fmt[i + 1], in the worst case it will be a 0
802 		 */
803 		i++;
804 
805 		/* skip optional "[0 +-][num]" width formatting field */
806 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
807 		       fmt[i] == ' ')
808 			i++;
809 		if (fmt[i] >= '1' && fmt[i] <= '9') {
810 			i++;
811 			while (fmt[i] >= '0' && fmt[i] <= '9')
812 				i++;
813 		}
814 
815 		if (fmt[i] == 'p') {
816 			sizeof_cur_arg = sizeof(long);
817 
818 			if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
819 			    fmt[i + 2] == 's') {
820 				fmt_ptype = fmt[i + 1];
821 				i += 2;
822 				goto fmt_str;
823 			}
824 
825 			if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
826 			    ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
827 			    fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
828 			    fmt[i + 1] == 'S') {
829 				/* just kernel pointers */
830 				if (tmp_buf)
831 					cur_arg = raw_args[num_spec];
832 				i++;
833 				goto nocopy_fmt;
834 			}
835 
836 			if (fmt[i + 1] == 'B') {
837 				if (tmp_buf)  {
838 					err = snprintf(tmp_buf,
839 						       (tmp_buf_end - tmp_buf),
840 						       "%pB",
841 						       (void *)(long)raw_args[num_spec]);
842 					tmp_buf += (err + 1);
843 				}
844 
845 				i++;
846 				num_spec++;
847 				continue;
848 			}
849 
850 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
851 			if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
852 			    (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
853 				err = -EINVAL;
854 				goto out;
855 			}
856 
857 			i += 2;
858 			if (!tmp_buf)
859 				goto nocopy_fmt;
860 
861 			sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
862 			if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
863 				err = -ENOSPC;
864 				goto out;
865 			}
866 
867 			unsafe_ptr = (char *)(long)raw_args[num_spec];
868 			err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
869 						       sizeof_cur_ip);
870 			if (err < 0)
871 				memset(cur_ip, 0, sizeof_cur_ip);
872 
873 			/* hack: bstr_printf expects IP addresses to be
874 			 * pre-formatted as strings, ironically, the easiest way
875 			 * to do that is to call snprintf.
876 			 */
877 			ip_spec[2] = fmt[i - 1];
878 			ip_spec[3] = fmt[i];
879 			err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
880 				       ip_spec, &cur_ip);
881 
882 			tmp_buf += err + 1;
883 			num_spec++;
884 
885 			continue;
886 		} else if (fmt[i] == 's') {
887 			fmt_ptype = fmt[i];
888 fmt_str:
889 			if (fmt[i + 1] != 0 &&
890 			    !isspace(fmt[i + 1]) &&
891 			    !ispunct(fmt[i + 1])) {
892 				err = -EINVAL;
893 				goto out;
894 			}
895 
896 			if (!tmp_buf)
897 				goto nocopy_fmt;
898 
899 			if (tmp_buf_end == tmp_buf) {
900 				err = -ENOSPC;
901 				goto out;
902 			}
903 
904 			unsafe_ptr = (char *)(long)raw_args[num_spec];
905 			err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
906 						    fmt_ptype,
907 						    tmp_buf_end - tmp_buf);
908 			if (err < 0) {
909 				tmp_buf[0] = '\0';
910 				err = 1;
911 			}
912 
913 			tmp_buf += err;
914 			num_spec++;
915 
916 			continue;
917 		}
918 
919 		sizeof_cur_arg = sizeof(int);
920 
921 		if (fmt[i] == 'l') {
922 			sizeof_cur_arg = sizeof(long);
923 			i++;
924 		}
925 		if (fmt[i] == 'l') {
926 			sizeof_cur_arg = sizeof(long long);
927 			i++;
928 		}
929 
930 		if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
931 		    fmt[i] != 'x' && fmt[i] != 'X') {
932 			err = -EINVAL;
933 			goto out;
934 		}
935 
936 		if (tmp_buf)
937 			cur_arg = raw_args[num_spec];
938 nocopy_fmt:
939 		if (tmp_buf) {
940 			tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
941 			if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
942 				err = -ENOSPC;
943 				goto out;
944 			}
945 
946 			if (sizeof_cur_arg == 8) {
947 				*(u32 *)tmp_buf = *(u32 *)&cur_arg;
948 				*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
949 			} else {
950 				*(u32 *)tmp_buf = (u32)(long)cur_arg;
951 			}
952 			tmp_buf += sizeof_cur_arg;
953 		}
954 		num_spec++;
955 	}
956 
957 	err = 0;
958 out:
959 	if (err)
960 		bpf_bprintf_cleanup();
961 	return err;
962 }
963 
964 #define MAX_SNPRINTF_VARARGS		12
965 
966 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
967 	   const void *, data, u32, data_len)
968 {
969 	int err, num_args;
970 	u32 *bin_args;
971 
972 	if (data_len % 8 || data_len > MAX_SNPRINTF_VARARGS * 8 ||
973 	    (data_len && !data))
974 		return -EINVAL;
975 	num_args = data_len / 8;
976 
977 	/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
978 	 * can safely give an unbounded size.
979 	 */
980 	err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args);
981 	if (err < 0)
982 		return err;
983 
984 	err = bstr_printf(str, str_size, fmt, bin_args);
985 
986 	bpf_bprintf_cleanup();
987 
988 	return err + 1;
989 }
990 
991 const struct bpf_func_proto bpf_snprintf_proto = {
992 	.func		= bpf_snprintf,
993 	.gpl_only	= true,
994 	.ret_type	= RET_INTEGER,
995 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
996 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
997 	.arg3_type	= ARG_PTR_TO_CONST_STR,
998 	.arg4_type	= ARG_PTR_TO_MEM_OR_NULL,
999 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1000 };
1001 
1002 /* BPF map elements can contain 'struct bpf_timer'.
1003  * Such map owns all of its BPF timers.
1004  * 'struct bpf_timer' is allocated as part of map element allocation
1005  * and it's zero initialized.
1006  * That space is used to keep 'struct bpf_timer_kern'.
1007  * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1008  * remembers 'struct bpf_map *' pointer it's part of.
1009  * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1010  * bpf_timer_start() arms the timer.
1011  * If user space reference to a map goes to zero at this point
1012  * ops->map_release_uref callback is responsible for cancelling the timers,
1013  * freeing their memory, and decrementing prog's refcnts.
1014  * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1015  * Inner maps can contain bpf timers as well. ops->map_release_uref is
1016  * freeing the timers when inner map is replaced or deleted by user space.
1017  */
1018 struct bpf_hrtimer {
1019 	struct hrtimer timer;
1020 	struct bpf_map *map;
1021 	struct bpf_prog *prog;
1022 	void __rcu *callback_fn;
1023 	void *value;
1024 };
1025 
1026 /* the actual struct hidden inside uapi struct bpf_timer */
1027 struct bpf_timer_kern {
1028 	struct bpf_hrtimer *timer;
1029 	/* bpf_spin_lock is used here instead of spinlock_t to make
1030 	 * sure that it always fits into space resereved by struct bpf_timer
1031 	 * regardless of LOCKDEP and spinlock debug flags.
1032 	 */
1033 	struct bpf_spin_lock lock;
1034 } __attribute__((aligned(8)));
1035 
1036 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1037 
1038 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1039 {
1040 	struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1041 	struct bpf_map *map = t->map;
1042 	void *value = t->value;
1043 	void *callback_fn;
1044 	void *key;
1045 	u32 idx;
1046 
1047 	callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
1048 	if (!callback_fn)
1049 		goto out;
1050 
1051 	/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1052 	 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1053 	 * Remember the timer this callback is servicing to prevent
1054 	 * deadlock if callback_fn() calls bpf_timer_cancel() or
1055 	 * bpf_map_delete_elem() on the same timer.
1056 	 */
1057 	this_cpu_write(hrtimer_running, t);
1058 	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1059 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1060 
1061 		/* compute the key */
1062 		idx = ((char *)value - array->value) / array->elem_size;
1063 		key = &idx;
1064 	} else { /* hash or lru */
1065 		key = value - round_up(map->key_size, 8);
1066 	}
1067 
1068 	BPF_CAST_CALL(callback_fn)((u64)(long)map, (u64)(long)key,
1069 				   (u64)(long)value, 0, 0);
1070 	/* The verifier checked that return value is zero. */
1071 
1072 	this_cpu_write(hrtimer_running, NULL);
1073 out:
1074 	return HRTIMER_NORESTART;
1075 }
1076 
1077 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
1078 	   u64, flags)
1079 {
1080 	clockid_t clockid = flags & (MAX_CLOCKS - 1);
1081 	struct bpf_hrtimer *t;
1082 	int ret = 0;
1083 
1084 	BUILD_BUG_ON(MAX_CLOCKS != 16);
1085 	BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
1086 	BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
1087 
1088 	if (in_nmi())
1089 		return -EOPNOTSUPP;
1090 
1091 	if (flags >= MAX_CLOCKS ||
1092 	    /* similar to timerfd except _ALARM variants are not supported */
1093 	    (clockid != CLOCK_MONOTONIC &&
1094 	     clockid != CLOCK_REALTIME &&
1095 	     clockid != CLOCK_BOOTTIME))
1096 		return -EINVAL;
1097 	__bpf_spin_lock_irqsave(&timer->lock);
1098 	t = timer->timer;
1099 	if (t) {
1100 		ret = -EBUSY;
1101 		goto out;
1102 	}
1103 	if (!atomic64_read(&map->usercnt)) {
1104 		/* maps with timers must be either held by user space
1105 		 * or pinned in bpffs.
1106 		 */
1107 		ret = -EPERM;
1108 		goto out;
1109 	}
1110 	/* allocate hrtimer via map_kmalloc to use memcg accounting */
1111 	t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
1112 	if (!t) {
1113 		ret = -ENOMEM;
1114 		goto out;
1115 	}
1116 	t->value = (void *)timer - map->timer_off;
1117 	t->map = map;
1118 	t->prog = NULL;
1119 	rcu_assign_pointer(t->callback_fn, NULL);
1120 	hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1121 	t->timer.function = bpf_timer_cb;
1122 	timer->timer = t;
1123 out:
1124 	__bpf_spin_unlock_irqrestore(&timer->lock);
1125 	return ret;
1126 }
1127 
1128 static const struct bpf_func_proto bpf_timer_init_proto = {
1129 	.func		= bpf_timer_init,
1130 	.gpl_only	= true,
1131 	.ret_type	= RET_INTEGER,
1132 	.arg1_type	= ARG_PTR_TO_TIMER,
1133 	.arg2_type	= ARG_CONST_MAP_PTR,
1134 	.arg3_type	= ARG_ANYTHING,
1135 };
1136 
1137 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
1138 	   struct bpf_prog_aux *, aux)
1139 {
1140 	struct bpf_prog *prev, *prog = aux->prog;
1141 	struct bpf_hrtimer *t;
1142 	int ret = 0;
1143 
1144 	if (in_nmi())
1145 		return -EOPNOTSUPP;
1146 	__bpf_spin_lock_irqsave(&timer->lock);
1147 	t = timer->timer;
1148 	if (!t) {
1149 		ret = -EINVAL;
1150 		goto out;
1151 	}
1152 	if (!atomic64_read(&t->map->usercnt)) {
1153 		/* maps with timers must be either held by user space
1154 		 * or pinned in bpffs. Otherwise timer might still be
1155 		 * running even when bpf prog is detached and user space
1156 		 * is gone, since map_release_uref won't ever be called.
1157 		 */
1158 		ret = -EPERM;
1159 		goto out;
1160 	}
1161 	prev = t->prog;
1162 	if (prev != prog) {
1163 		/* Bump prog refcnt once. Every bpf_timer_set_callback()
1164 		 * can pick different callback_fn-s within the same prog.
1165 		 */
1166 		prog = bpf_prog_inc_not_zero(prog);
1167 		if (IS_ERR(prog)) {
1168 			ret = PTR_ERR(prog);
1169 			goto out;
1170 		}
1171 		if (prev)
1172 			/* Drop prev prog refcnt when swapping with new prog */
1173 			bpf_prog_put(prev);
1174 		t->prog = prog;
1175 	}
1176 	rcu_assign_pointer(t->callback_fn, callback_fn);
1177 out:
1178 	__bpf_spin_unlock_irqrestore(&timer->lock);
1179 	return ret;
1180 }
1181 
1182 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1183 	.func		= bpf_timer_set_callback,
1184 	.gpl_only	= true,
1185 	.ret_type	= RET_INTEGER,
1186 	.arg1_type	= ARG_PTR_TO_TIMER,
1187 	.arg2_type	= ARG_PTR_TO_FUNC,
1188 };
1189 
1190 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
1191 {
1192 	struct bpf_hrtimer *t;
1193 	int ret = 0;
1194 
1195 	if (in_nmi())
1196 		return -EOPNOTSUPP;
1197 	if (flags)
1198 		return -EINVAL;
1199 	__bpf_spin_lock_irqsave(&timer->lock);
1200 	t = timer->timer;
1201 	if (!t || !t->prog) {
1202 		ret = -EINVAL;
1203 		goto out;
1204 	}
1205 	hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT);
1206 out:
1207 	__bpf_spin_unlock_irqrestore(&timer->lock);
1208 	return ret;
1209 }
1210 
1211 static const struct bpf_func_proto bpf_timer_start_proto = {
1212 	.func		= bpf_timer_start,
1213 	.gpl_only	= true,
1214 	.ret_type	= RET_INTEGER,
1215 	.arg1_type	= ARG_PTR_TO_TIMER,
1216 	.arg2_type	= ARG_ANYTHING,
1217 	.arg3_type	= ARG_ANYTHING,
1218 };
1219 
1220 static void drop_prog_refcnt(struct bpf_hrtimer *t)
1221 {
1222 	struct bpf_prog *prog = t->prog;
1223 
1224 	if (prog) {
1225 		bpf_prog_put(prog);
1226 		t->prog = NULL;
1227 		rcu_assign_pointer(t->callback_fn, NULL);
1228 	}
1229 }
1230 
1231 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
1232 {
1233 	struct bpf_hrtimer *t;
1234 	int ret = 0;
1235 
1236 	if (in_nmi())
1237 		return -EOPNOTSUPP;
1238 	__bpf_spin_lock_irqsave(&timer->lock);
1239 	t = timer->timer;
1240 	if (!t) {
1241 		ret = -EINVAL;
1242 		goto out;
1243 	}
1244 	if (this_cpu_read(hrtimer_running) == t) {
1245 		/* If bpf callback_fn is trying to bpf_timer_cancel()
1246 		 * its own timer the hrtimer_cancel() will deadlock
1247 		 * since it waits for callback_fn to finish
1248 		 */
1249 		ret = -EDEADLK;
1250 		goto out;
1251 	}
1252 	drop_prog_refcnt(t);
1253 out:
1254 	__bpf_spin_unlock_irqrestore(&timer->lock);
1255 	/* Cancel the timer and wait for associated callback to finish
1256 	 * if it was running.
1257 	 */
1258 	ret = ret ?: hrtimer_cancel(&t->timer);
1259 	return ret;
1260 }
1261 
1262 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1263 	.func		= bpf_timer_cancel,
1264 	.gpl_only	= true,
1265 	.ret_type	= RET_INTEGER,
1266 	.arg1_type	= ARG_PTR_TO_TIMER,
1267 };
1268 
1269 /* This function is called by map_delete/update_elem for individual element and
1270  * by ops->map_release_uref when the user space reference to a map reaches zero.
1271  */
1272 void bpf_timer_cancel_and_free(void *val)
1273 {
1274 	struct bpf_timer_kern *timer = val;
1275 	struct bpf_hrtimer *t;
1276 
1277 	/* Performance optimization: read timer->timer without lock first. */
1278 	if (!READ_ONCE(timer->timer))
1279 		return;
1280 
1281 	__bpf_spin_lock_irqsave(&timer->lock);
1282 	/* re-read it under lock */
1283 	t = timer->timer;
1284 	if (!t)
1285 		goto out;
1286 	drop_prog_refcnt(t);
1287 	/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1288 	 * this timer, since it won't be initialized.
1289 	 */
1290 	timer->timer = NULL;
1291 out:
1292 	__bpf_spin_unlock_irqrestore(&timer->lock);
1293 	if (!t)
1294 		return;
1295 	/* Cancel the timer and wait for callback to complete if it was running.
1296 	 * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1297 	 * right after for both preallocated and non-preallocated maps.
1298 	 * The timer->timer = NULL was already done and no code path can
1299 	 * see address 't' anymore.
1300 	 *
1301 	 * Check that bpf_map_delete/update_elem() wasn't called from timer
1302 	 * callback_fn. In such case don't call hrtimer_cancel() (since it will
1303 	 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1304 	 * return -1). Though callback_fn is still running on this cpu it's
1305 	 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1306 	 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1307 	 * since timer->timer = NULL was already done. The timer will be
1308 	 * effectively cancelled because bpf_timer_cb() will return
1309 	 * HRTIMER_NORESTART.
1310 	 */
1311 	if (this_cpu_read(hrtimer_running) != t)
1312 		hrtimer_cancel(&t->timer);
1313 	kfree(t);
1314 }
1315 
1316 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1317 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1318 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1319 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1320 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1321 
1322 const struct bpf_func_proto *
1323 bpf_base_func_proto(enum bpf_func_id func_id)
1324 {
1325 	switch (func_id) {
1326 	case BPF_FUNC_map_lookup_elem:
1327 		return &bpf_map_lookup_elem_proto;
1328 	case BPF_FUNC_map_update_elem:
1329 		return &bpf_map_update_elem_proto;
1330 	case BPF_FUNC_map_delete_elem:
1331 		return &bpf_map_delete_elem_proto;
1332 	case BPF_FUNC_map_push_elem:
1333 		return &bpf_map_push_elem_proto;
1334 	case BPF_FUNC_map_pop_elem:
1335 		return &bpf_map_pop_elem_proto;
1336 	case BPF_FUNC_map_peek_elem:
1337 		return &bpf_map_peek_elem_proto;
1338 	case BPF_FUNC_get_prandom_u32:
1339 		return &bpf_get_prandom_u32_proto;
1340 	case BPF_FUNC_get_smp_processor_id:
1341 		return &bpf_get_raw_smp_processor_id_proto;
1342 	case BPF_FUNC_get_numa_node_id:
1343 		return &bpf_get_numa_node_id_proto;
1344 	case BPF_FUNC_tail_call:
1345 		return &bpf_tail_call_proto;
1346 	case BPF_FUNC_ktime_get_ns:
1347 		return &bpf_ktime_get_ns_proto;
1348 	case BPF_FUNC_ktime_get_boot_ns:
1349 		return &bpf_ktime_get_boot_ns_proto;
1350 	case BPF_FUNC_ktime_get_coarse_ns:
1351 		return &bpf_ktime_get_coarse_ns_proto;
1352 	case BPF_FUNC_ringbuf_output:
1353 		return &bpf_ringbuf_output_proto;
1354 	case BPF_FUNC_ringbuf_reserve:
1355 		return &bpf_ringbuf_reserve_proto;
1356 	case BPF_FUNC_ringbuf_submit:
1357 		return &bpf_ringbuf_submit_proto;
1358 	case BPF_FUNC_ringbuf_discard:
1359 		return &bpf_ringbuf_discard_proto;
1360 	case BPF_FUNC_ringbuf_query:
1361 		return &bpf_ringbuf_query_proto;
1362 	case BPF_FUNC_for_each_map_elem:
1363 		return &bpf_for_each_map_elem_proto;
1364 	default:
1365 		break;
1366 	}
1367 
1368 	if (!bpf_capable())
1369 		return NULL;
1370 
1371 	switch (func_id) {
1372 	case BPF_FUNC_spin_lock:
1373 		return &bpf_spin_lock_proto;
1374 	case BPF_FUNC_spin_unlock:
1375 		return &bpf_spin_unlock_proto;
1376 	case BPF_FUNC_jiffies64:
1377 		return &bpf_jiffies64_proto;
1378 	case BPF_FUNC_per_cpu_ptr:
1379 		return &bpf_per_cpu_ptr_proto;
1380 	case BPF_FUNC_this_cpu_ptr:
1381 		return &bpf_this_cpu_ptr_proto;
1382 	case BPF_FUNC_timer_init:
1383 		return &bpf_timer_init_proto;
1384 	case BPF_FUNC_timer_set_callback:
1385 		return &bpf_timer_set_callback_proto;
1386 	case BPF_FUNC_timer_start:
1387 		return &bpf_timer_start_proto;
1388 	case BPF_FUNC_timer_cancel:
1389 		return &bpf_timer_cancel_proto;
1390 	default:
1391 		break;
1392 	}
1393 
1394 	if (!perfmon_capable())
1395 		return NULL;
1396 
1397 	switch (func_id) {
1398 	case BPF_FUNC_trace_printk:
1399 		return bpf_get_trace_printk_proto();
1400 	case BPF_FUNC_get_current_task:
1401 		return &bpf_get_current_task_proto;
1402 	case BPF_FUNC_probe_read_user:
1403 		return &bpf_probe_read_user_proto;
1404 	case BPF_FUNC_probe_read_kernel:
1405 		return security_locked_down(LOCKDOWN_BPF_READ) < 0 ?
1406 		       NULL : &bpf_probe_read_kernel_proto;
1407 	case BPF_FUNC_probe_read_user_str:
1408 		return &bpf_probe_read_user_str_proto;
1409 	case BPF_FUNC_probe_read_kernel_str:
1410 		return security_locked_down(LOCKDOWN_BPF_READ) < 0 ?
1411 		       NULL : &bpf_probe_read_kernel_str_proto;
1412 	case BPF_FUNC_snprintf_btf:
1413 		return &bpf_snprintf_btf_proto;
1414 	case BPF_FUNC_snprintf:
1415 		return &bpf_snprintf_proto;
1416 	default:
1417 		return NULL;
1418 	}
1419 }
1420