1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #include <linux/bpf.h> 5 #include <linux/btf.h> 6 #include <linux/bpf-cgroup.h> 7 #include <linux/cgroup.h> 8 #include <linux/rcupdate.h> 9 #include <linux/random.h> 10 #include <linux/smp.h> 11 #include <linux/topology.h> 12 #include <linux/ktime.h> 13 #include <linux/sched.h> 14 #include <linux/uidgid.h> 15 #include <linux/filter.h> 16 #include <linux/ctype.h> 17 #include <linux/jiffies.h> 18 #include <linux/pid_namespace.h> 19 #include <linux/poison.h> 20 #include <linux/proc_ns.h> 21 #include <linux/sched/task.h> 22 #include <linux/security.h> 23 #include <linux/btf_ids.h> 24 #include <linux/bpf_mem_alloc.h> 25 #include <linux/kasan.h> 26 27 #include "../../lib/kstrtox.h" 28 29 /* If kernel subsystem is allowing eBPF programs to call this function, 30 * inside its own verifier_ops->get_func_proto() callback it should return 31 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments 32 * 33 * Different map implementations will rely on rcu in map methods 34 * lookup/update/delete, therefore eBPF programs must run under rcu lock 35 * if program is allowed to access maps, so check rcu_read_lock_held() or 36 * rcu_read_lock_trace_held() in all three functions. 37 */ 38 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) 39 { 40 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 41 !rcu_read_lock_bh_held()); 42 return (unsigned long) map->ops->map_lookup_elem(map, key); 43 } 44 45 const struct bpf_func_proto bpf_map_lookup_elem_proto = { 46 .func = bpf_map_lookup_elem, 47 .gpl_only = false, 48 .pkt_access = true, 49 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 50 .arg1_type = ARG_CONST_MAP_PTR, 51 .arg2_type = ARG_PTR_TO_MAP_KEY, 52 }; 53 54 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, 55 void *, value, u64, flags) 56 { 57 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 58 !rcu_read_lock_bh_held()); 59 return map->ops->map_update_elem(map, key, value, flags); 60 } 61 62 const struct bpf_func_proto bpf_map_update_elem_proto = { 63 .func = bpf_map_update_elem, 64 .gpl_only = false, 65 .pkt_access = true, 66 .ret_type = RET_INTEGER, 67 .arg1_type = ARG_CONST_MAP_PTR, 68 .arg2_type = ARG_PTR_TO_MAP_KEY, 69 .arg3_type = ARG_PTR_TO_MAP_VALUE, 70 .arg4_type = ARG_ANYTHING, 71 }; 72 73 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) 74 { 75 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 76 !rcu_read_lock_bh_held()); 77 return map->ops->map_delete_elem(map, key); 78 } 79 80 const struct bpf_func_proto bpf_map_delete_elem_proto = { 81 .func = bpf_map_delete_elem, 82 .gpl_only = false, 83 .pkt_access = true, 84 .ret_type = RET_INTEGER, 85 .arg1_type = ARG_CONST_MAP_PTR, 86 .arg2_type = ARG_PTR_TO_MAP_KEY, 87 }; 88 89 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) 90 { 91 return map->ops->map_push_elem(map, value, flags); 92 } 93 94 const struct bpf_func_proto bpf_map_push_elem_proto = { 95 .func = bpf_map_push_elem, 96 .gpl_only = false, 97 .pkt_access = true, 98 .ret_type = RET_INTEGER, 99 .arg1_type = ARG_CONST_MAP_PTR, 100 .arg2_type = ARG_PTR_TO_MAP_VALUE, 101 .arg3_type = ARG_ANYTHING, 102 }; 103 104 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) 105 { 106 return map->ops->map_pop_elem(map, value); 107 } 108 109 const struct bpf_func_proto bpf_map_pop_elem_proto = { 110 .func = bpf_map_pop_elem, 111 .gpl_only = false, 112 .ret_type = RET_INTEGER, 113 .arg1_type = ARG_CONST_MAP_PTR, 114 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 115 }; 116 117 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) 118 { 119 return map->ops->map_peek_elem(map, value); 120 } 121 122 const struct bpf_func_proto bpf_map_peek_elem_proto = { 123 .func = bpf_map_peek_elem, 124 .gpl_only = false, 125 .ret_type = RET_INTEGER, 126 .arg1_type = ARG_CONST_MAP_PTR, 127 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 128 }; 129 130 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) 131 { 132 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 133 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); 134 } 135 136 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { 137 .func = bpf_map_lookup_percpu_elem, 138 .gpl_only = false, 139 .pkt_access = true, 140 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 141 .arg1_type = ARG_CONST_MAP_PTR, 142 .arg2_type = ARG_PTR_TO_MAP_KEY, 143 .arg3_type = ARG_ANYTHING, 144 }; 145 146 const struct bpf_func_proto bpf_get_prandom_u32_proto = { 147 .func = bpf_user_rnd_u32, 148 .gpl_only = false, 149 .ret_type = RET_INTEGER, 150 }; 151 152 BPF_CALL_0(bpf_get_smp_processor_id) 153 { 154 return smp_processor_id(); 155 } 156 157 const struct bpf_func_proto bpf_get_smp_processor_id_proto = { 158 .func = bpf_get_smp_processor_id, 159 .gpl_only = false, 160 .ret_type = RET_INTEGER, 161 }; 162 163 BPF_CALL_0(bpf_get_numa_node_id) 164 { 165 return numa_node_id(); 166 } 167 168 const struct bpf_func_proto bpf_get_numa_node_id_proto = { 169 .func = bpf_get_numa_node_id, 170 .gpl_only = false, 171 .ret_type = RET_INTEGER, 172 }; 173 174 BPF_CALL_0(bpf_ktime_get_ns) 175 { 176 /* NMI safe access to clock monotonic */ 177 return ktime_get_mono_fast_ns(); 178 } 179 180 const struct bpf_func_proto bpf_ktime_get_ns_proto = { 181 .func = bpf_ktime_get_ns, 182 .gpl_only = false, 183 .ret_type = RET_INTEGER, 184 }; 185 186 BPF_CALL_0(bpf_ktime_get_boot_ns) 187 { 188 /* NMI safe access to clock boottime */ 189 return ktime_get_boot_fast_ns(); 190 } 191 192 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { 193 .func = bpf_ktime_get_boot_ns, 194 .gpl_only = false, 195 .ret_type = RET_INTEGER, 196 }; 197 198 BPF_CALL_0(bpf_ktime_get_coarse_ns) 199 { 200 return ktime_get_coarse_ns(); 201 } 202 203 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { 204 .func = bpf_ktime_get_coarse_ns, 205 .gpl_only = false, 206 .ret_type = RET_INTEGER, 207 }; 208 209 BPF_CALL_0(bpf_ktime_get_tai_ns) 210 { 211 /* NMI safe access to clock tai */ 212 return ktime_get_tai_fast_ns(); 213 } 214 215 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = { 216 .func = bpf_ktime_get_tai_ns, 217 .gpl_only = false, 218 .ret_type = RET_INTEGER, 219 }; 220 221 BPF_CALL_0(bpf_get_current_pid_tgid) 222 { 223 struct task_struct *task = current; 224 225 if (unlikely(!task)) 226 return -EINVAL; 227 228 return (u64) task->tgid << 32 | task->pid; 229 } 230 231 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { 232 .func = bpf_get_current_pid_tgid, 233 .gpl_only = false, 234 .ret_type = RET_INTEGER, 235 }; 236 237 BPF_CALL_0(bpf_get_current_uid_gid) 238 { 239 struct task_struct *task = current; 240 kuid_t uid; 241 kgid_t gid; 242 243 if (unlikely(!task)) 244 return -EINVAL; 245 246 current_uid_gid(&uid, &gid); 247 return (u64) from_kgid(&init_user_ns, gid) << 32 | 248 from_kuid(&init_user_ns, uid); 249 } 250 251 const struct bpf_func_proto bpf_get_current_uid_gid_proto = { 252 .func = bpf_get_current_uid_gid, 253 .gpl_only = false, 254 .ret_type = RET_INTEGER, 255 }; 256 257 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) 258 { 259 struct task_struct *task = current; 260 261 if (unlikely(!task)) 262 goto err_clear; 263 264 /* Verifier guarantees that size > 0 */ 265 strscpy_pad(buf, task->comm, size); 266 return 0; 267 err_clear: 268 memset(buf, 0, size); 269 return -EINVAL; 270 } 271 272 const struct bpf_func_proto bpf_get_current_comm_proto = { 273 .func = bpf_get_current_comm, 274 .gpl_only = false, 275 .ret_type = RET_INTEGER, 276 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 277 .arg2_type = ARG_CONST_SIZE, 278 }; 279 280 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) 281 282 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 283 { 284 arch_spinlock_t *l = (void *)lock; 285 union { 286 __u32 val; 287 arch_spinlock_t lock; 288 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; 289 290 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); 291 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); 292 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); 293 preempt_disable(); 294 arch_spin_lock(l); 295 } 296 297 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 298 { 299 arch_spinlock_t *l = (void *)lock; 300 301 arch_spin_unlock(l); 302 preempt_enable(); 303 } 304 305 #else 306 307 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 308 { 309 atomic_t *l = (void *)lock; 310 311 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); 312 do { 313 atomic_cond_read_relaxed(l, !VAL); 314 } while (atomic_xchg(l, 1)); 315 } 316 317 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 318 { 319 atomic_t *l = (void *)lock; 320 321 atomic_set_release(l, 0); 322 } 323 324 #endif 325 326 static DEFINE_PER_CPU(unsigned long, irqsave_flags); 327 328 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) 329 { 330 unsigned long flags; 331 332 local_irq_save(flags); 333 __bpf_spin_lock(lock); 334 __this_cpu_write(irqsave_flags, flags); 335 } 336 337 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) 338 { 339 __bpf_spin_lock_irqsave(lock); 340 return 0; 341 } 342 343 const struct bpf_func_proto bpf_spin_lock_proto = { 344 .func = bpf_spin_lock, 345 .gpl_only = false, 346 .ret_type = RET_VOID, 347 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 348 .arg1_btf_id = BPF_PTR_POISON, 349 }; 350 351 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) 352 { 353 unsigned long flags; 354 355 flags = __this_cpu_read(irqsave_flags); 356 __bpf_spin_unlock(lock); 357 local_irq_restore(flags); 358 } 359 360 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) 361 { 362 __bpf_spin_unlock_irqrestore(lock); 363 return 0; 364 } 365 366 const struct bpf_func_proto bpf_spin_unlock_proto = { 367 .func = bpf_spin_unlock, 368 .gpl_only = false, 369 .ret_type = RET_VOID, 370 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 371 .arg1_btf_id = BPF_PTR_POISON, 372 }; 373 374 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 375 bool lock_src) 376 { 377 struct bpf_spin_lock *lock; 378 379 if (lock_src) 380 lock = src + map->record->spin_lock_off; 381 else 382 lock = dst + map->record->spin_lock_off; 383 preempt_disable(); 384 __bpf_spin_lock_irqsave(lock); 385 copy_map_value(map, dst, src); 386 __bpf_spin_unlock_irqrestore(lock); 387 preempt_enable(); 388 } 389 390 BPF_CALL_0(bpf_jiffies64) 391 { 392 return get_jiffies_64(); 393 } 394 395 const struct bpf_func_proto bpf_jiffies64_proto = { 396 .func = bpf_jiffies64, 397 .gpl_only = false, 398 .ret_type = RET_INTEGER, 399 }; 400 401 #ifdef CONFIG_CGROUPS 402 BPF_CALL_0(bpf_get_current_cgroup_id) 403 { 404 struct cgroup *cgrp; 405 u64 cgrp_id; 406 407 rcu_read_lock(); 408 cgrp = task_dfl_cgroup(current); 409 cgrp_id = cgroup_id(cgrp); 410 rcu_read_unlock(); 411 412 return cgrp_id; 413 } 414 415 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { 416 .func = bpf_get_current_cgroup_id, 417 .gpl_only = false, 418 .ret_type = RET_INTEGER, 419 }; 420 421 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) 422 { 423 struct cgroup *cgrp; 424 struct cgroup *ancestor; 425 u64 cgrp_id; 426 427 rcu_read_lock(); 428 cgrp = task_dfl_cgroup(current); 429 ancestor = cgroup_ancestor(cgrp, ancestor_level); 430 cgrp_id = ancestor ? cgroup_id(ancestor) : 0; 431 rcu_read_unlock(); 432 433 return cgrp_id; 434 } 435 436 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { 437 .func = bpf_get_current_ancestor_cgroup_id, 438 .gpl_only = false, 439 .ret_type = RET_INTEGER, 440 .arg1_type = ARG_ANYTHING, 441 }; 442 #endif /* CONFIG_CGROUPS */ 443 444 #define BPF_STRTOX_BASE_MASK 0x1F 445 446 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, 447 unsigned long long *res, bool *is_negative) 448 { 449 unsigned int base = flags & BPF_STRTOX_BASE_MASK; 450 const char *cur_buf = buf; 451 size_t cur_len = buf_len; 452 unsigned int consumed; 453 size_t val_len; 454 char str[64]; 455 456 if (!buf || !buf_len || !res || !is_negative) 457 return -EINVAL; 458 459 if (base != 0 && base != 8 && base != 10 && base != 16) 460 return -EINVAL; 461 462 if (flags & ~BPF_STRTOX_BASE_MASK) 463 return -EINVAL; 464 465 while (cur_buf < buf + buf_len && isspace(*cur_buf)) 466 ++cur_buf; 467 468 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); 469 if (*is_negative) 470 ++cur_buf; 471 472 consumed = cur_buf - buf; 473 cur_len -= consumed; 474 if (!cur_len) 475 return -EINVAL; 476 477 cur_len = min(cur_len, sizeof(str) - 1); 478 memcpy(str, cur_buf, cur_len); 479 str[cur_len] = '\0'; 480 cur_buf = str; 481 482 cur_buf = _parse_integer_fixup_radix(cur_buf, &base); 483 val_len = _parse_integer(cur_buf, base, res); 484 485 if (val_len & KSTRTOX_OVERFLOW) 486 return -ERANGE; 487 488 if (val_len == 0) 489 return -EINVAL; 490 491 cur_buf += val_len; 492 consumed += cur_buf - str; 493 494 return consumed; 495 } 496 497 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, 498 long long *res) 499 { 500 unsigned long long _res; 501 bool is_negative; 502 int err; 503 504 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 505 if (err < 0) 506 return err; 507 if (is_negative) { 508 if ((long long)-_res > 0) 509 return -ERANGE; 510 *res = -_res; 511 } else { 512 if ((long long)_res < 0) 513 return -ERANGE; 514 *res = _res; 515 } 516 return err; 517 } 518 519 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, 520 long *, res) 521 { 522 long long _res; 523 int err; 524 525 err = __bpf_strtoll(buf, buf_len, flags, &_res); 526 if (err < 0) 527 return err; 528 if (_res != (long)_res) 529 return -ERANGE; 530 *res = _res; 531 return err; 532 } 533 534 const struct bpf_func_proto bpf_strtol_proto = { 535 .func = bpf_strtol, 536 .gpl_only = false, 537 .ret_type = RET_INTEGER, 538 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 539 .arg2_type = ARG_CONST_SIZE, 540 .arg3_type = ARG_ANYTHING, 541 .arg4_type = ARG_PTR_TO_LONG, 542 }; 543 544 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, 545 unsigned long *, res) 546 { 547 unsigned long long _res; 548 bool is_negative; 549 int err; 550 551 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 552 if (err < 0) 553 return err; 554 if (is_negative) 555 return -EINVAL; 556 if (_res != (unsigned long)_res) 557 return -ERANGE; 558 *res = _res; 559 return err; 560 } 561 562 const struct bpf_func_proto bpf_strtoul_proto = { 563 .func = bpf_strtoul, 564 .gpl_only = false, 565 .ret_type = RET_INTEGER, 566 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 567 .arg2_type = ARG_CONST_SIZE, 568 .arg3_type = ARG_ANYTHING, 569 .arg4_type = ARG_PTR_TO_LONG, 570 }; 571 572 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) 573 { 574 return strncmp(s1, s2, s1_sz); 575 } 576 577 static const struct bpf_func_proto bpf_strncmp_proto = { 578 .func = bpf_strncmp, 579 .gpl_only = false, 580 .ret_type = RET_INTEGER, 581 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 582 .arg2_type = ARG_CONST_SIZE, 583 .arg3_type = ARG_PTR_TO_CONST_STR, 584 }; 585 586 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, 587 struct bpf_pidns_info *, nsdata, u32, size) 588 { 589 struct task_struct *task = current; 590 struct pid_namespace *pidns; 591 int err = -EINVAL; 592 593 if (unlikely(size != sizeof(struct bpf_pidns_info))) 594 goto clear; 595 596 if (unlikely((u64)(dev_t)dev != dev)) 597 goto clear; 598 599 if (unlikely(!task)) 600 goto clear; 601 602 pidns = task_active_pid_ns(task); 603 if (unlikely(!pidns)) { 604 err = -ENOENT; 605 goto clear; 606 } 607 608 if (!ns_match(&pidns->ns, (dev_t)dev, ino)) 609 goto clear; 610 611 nsdata->pid = task_pid_nr_ns(task, pidns); 612 nsdata->tgid = task_tgid_nr_ns(task, pidns); 613 return 0; 614 clear: 615 memset((void *)nsdata, 0, (size_t) size); 616 return err; 617 } 618 619 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { 620 .func = bpf_get_ns_current_pid_tgid, 621 .gpl_only = false, 622 .ret_type = RET_INTEGER, 623 .arg1_type = ARG_ANYTHING, 624 .arg2_type = ARG_ANYTHING, 625 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 626 .arg4_type = ARG_CONST_SIZE, 627 }; 628 629 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { 630 .func = bpf_get_raw_cpu_id, 631 .gpl_only = false, 632 .ret_type = RET_INTEGER, 633 }; 634 635 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, 636 u64, flags, void *, data, u64, size) 637 { 638 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 639 return -EINVAL; 640 641 return bpf_event_output(map, flags, data, size, NULL, 0, NULL); 642 } 643 644 const struct bpf_func_proto bpf_event_output_data_proto = { 645 .func = bpf_event_output_data, 646 .gpl_only = true, 647 .ret_type = RET_INTEGER, 648 .arg1_type = ARG_PTR_TO_CTX, 649 .arg2_type = ARG_CONST_MAP_PTR, 650 .arg3_type = ARG_ANYTHING, 651 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 652 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 653 }; 654 655 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, 656 const void __user *, user_ptr) 657 { 658 int ret = copy_from_user(dst, user_ptr, size); 659 660 if (unlikely(ret)) { 661 memset(dst, 0, size); 662 ret = -EFAULT; 663 } 664 665 return ret; 666 } 667 668 const struct bpf_func_proto bpf_copy_from_user_proto = { 669 .func = bpf_copy_from_user, 670 .gpl_only = false, 671 .might_sleep = true, 672 .ret_type = RET_INTEGER, 673 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 674 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 675 .arg3_type = ARG_ANYTHING, 676 }; 677 678 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, 679 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) 680 { 681 int ret; 682 683 /* flags is not used yet */ 684 if (unlikely(flags)) 685 return -EINVAL; 686 687 if (unlikely(!size)) 688 return 0; 689 690 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); 691 if (ret == size) 692 return 0; 693 694 memset(dst, 0, size); 695 /* Return -EFAULT for partial read */ 696 return ret < 0 ? ret : -EFAULT; 697 } 698 699 const struct bpf_func_proto bpf_copy_from_user_task_proto = { 700 .func = bpf_copy_from_user_task, 701 .gpl_only = true, 702 .might_sleep = true, 703 .ret_type = RET_INTEGER, 704 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 705 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 706 .arg3_type = ARG_ANYTHING, 707 .arg4_type = ARG_PTR_TO_BTF_ID, 708 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 709 .arg5_type = ARG_ANYTHING 710 }; 711 712 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) 713 { 714 if (cpu >= nr_cpu_ids) 715 return (unsigned long)NULL; 716 717 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); 718 } 719 720 const struct bpf_func_proto bpf_per_cpu_ptr_proto = { 721 .func = bpf_per_cpu_ptr, 722 .gpl_only = false, 723 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, 724 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 725 .arg2_type = ARG_ANYTHING, 726 }; 727 728 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) 729 { 730 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); 731 } 732 733 const struct bpf_func_proto bpf_this_cpu_ptr_proto = { 734 .func = bpf_this_cpu_ptr, 735 .gpl_only = false, 736 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, 737 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 738 }; 739 740 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 741 size_t bufsz) 742 { 743 void __user *user_ptr = (__force void __user *)unsafe_ptr; 744 745 buf[0] = 0; 746 747 switch (fmt_ptype) { 748 case 's': 749 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 750 if ((unsigned long)unsafe_ptr < TASK_SIZE) 751 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 752 fallthrough; 753 #endif 754 case 'k': 755 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 756 case 'u': 757 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 758 } 759 760 return -EINVAL; 761 } 762 763 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary 764 * arguments representation. 765 */ 766 #define MAX_BPRINTF_BIN_ARGS 512 767 768 /* Support executing three nested bprintf helper calls on a given CPU */ 769 #define MAX_BPRINTF_NEST_LEVEL 3 770 struct bpf_bprintf_buffers { 771 char bin_args[MAX_BPRINTF_BIN_ARGS]; 772 char buf[MAX_BPRINTF_BUF]; 773 }; 774 775 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs); 776 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); 777 778 static int try_get_buffers(struct bpf_bprintf_buffers **bufs) 779 { 780 int nest_level; 781 782 preempt_disable(); 783 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); 784 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { 785 this_cpu_dec(bpf_bprintf_nest_level); 786 preempt_enable(); 787 return -EBUSY; 788 } 789 *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]); 790 791 return 0; 792 } 793 794 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data) 795 { 796 if (!data->bin_args && !data->buf) 797 return; 798 if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0)) 799 return; 800 this_cpu_dec(bpf_bprintf_nest_level); 801 preempt_enable(); 802 } 803 804 /* 805 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers 806 * 807 * Returns a negative value if fmt is an invalid format string or 0 otherwise. 808 * 809 * This can be used in two ways: 810 * - Format string verification only: when data->get_bin_args is false 811 * - Arguments preparation: in addition to the above verification, it writes in 812 * data->bin_args a binary representation of arguments usable by bstr_printf 813 * where pointers from BPF have been sanitized. 814 * 815 * In argument preparation mode, if 0 is returned, safe temporary buffers are 816 * allocated and bpf_bprintf_cleanup should be called to free them after use. 817 */ 818 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 819 u32 num_args, struct bpf_bprintf_data *data) 820 { 821 bool get_buffers = (data->get_bin_args && num_args) || data->get_buf; 822 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; 823 struct bpf_bprintf_buffers *buffers = NULL; 824 size_t sizeof_cur_arg, sizeof_cur_ip; 825 int err, i, num_spec = 0; 826 u64 cur_arg; 827 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; 828 829 fmt_end = strnchr(fmt, fmt_size, 0); 830 if (!fmt_end) 831 return -EINVAL; 832 fmt_size = fmt_end - fmt; 833 834 if (get_buffers && try_get_buffers(&buffers)) 835 return -EBUSY; 836 837 if (data->get_bin_args) { 838 if (num_args) 839 tmp_buf = buffers->bin_args; 840 tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS; 841 data->bin_args = (u32 *)tmp_buf; 842 } 843 844 if (data->get_buf) 845 data->buf = buffers->buf; 846 847 for (i = 0; i < fmt_size; i++) { 848 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 849 err = -EINVAL; 850 goto out; 851 } 852 853 if (fmt[i] != '%') 854 continue; 855 856 if (fmt[i + 1] == '%') { 857 i++; 858 continue; 859 } 860 861 if (num_spec >= num_args) { 862 err = -EINVAL; 863 goto out; 864 } 865 866 /* The string is zero-terminated so if fmt[i] != 0, we can 867 * always access fmt[i + 1], in the worst case it will be a 0 868 */ 869 i++; 870 871 /* skip optional "[0 +-][num]" width formatting field */ 872 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 873 fmt[i] == ' ') 874 i++; 875 if (fmt[i] >= '1' && fmt[i] <= '9') { 876 i++; 877 while (fmt[i] >= '0' && fmt[i] <= '9') 878 i++; 879 } 880 881 if (fmt[i] == 'p') { 882 sizeof_cur_arg = sizeof(long); 883 884 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && 885 fmt[i + 2] == 's') { 886 fmt_ptype = fmt[i + 1]; 887 i += 2; 888 goto fmt_str; 889 } 890 891 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || 892 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || 893 fmt[i + 1] == 'x' || fmt[i + 1] == 's' || 894 fmt[i + 1] == 'S') { 895 /* just kernel pointers */ 896 if (tmp_buf) 897 cur_arg = raw_args[num_spec]; 898 i++; 899 goto nocopy_fmt; 900 } 901 902 if (fmt[i + 1] == 'B') { 903 if (tmp_buf) { 904 err = snprintf(tmp_buf, 905 (tmp_buf_end - tmp_buf), 906 "%pB", 907 (void *)(long)raw_args[num_spec]); 908 tmp_buf += (err + 1); 909 } 910 911 i++; 912 num_spec++; 913 continue; 914 } 915 916 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 917 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || 918 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { 919 err = -EINVAL; 920 goto out; 921 } 922 923 i += 2; 924 if (!tmp_buf) 925 goto nocopy_fmt; 926 927 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; 928 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { 929 err = -ENOSPC; 930 goto out; 931 } 932 933 unsafe_ptr = (char *)(long)raw_args[num_spec]; 934 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, 935 sizeof_cur_ip); 936 if (err < 0) 937 memset(cur_ip, 0, sizeof_cur_ip); 938 939 /* hack: bstr_printf expects IP addresses to be 940 * pre-formatted as strings, ironically, the easiest way 941 * to do that is to call snprintf. 942 */ 943 ip_spec[2] = fmt[i - 1]; 944 ip_spec[3] = fmt[i]; 945 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, 946 ip_spec, &cur_ip); 947 948 tmp_buf += err + 1; 949 num_spec++; 950 951 continue; 952 } else if (fmt[i] == 's') { 953 fmt_ptype = fmt[i]; 954 fmt_str: 955 if (fmt[i + 1] != 0 && 956 !isspace(fmt[i + 1]) && 957 !ispunct(fmt[i + 1])) { 958 err = -EINVAL; 959 goto out; 960 } 961 962 if (!tmp_buf) 963 goto nocopy_fmt; 964 965 if (tmp_buf_end == tmp_buf) { 966 err = -ENOSPC; 967 goto out; 968 } 969 970 unsafe_ptr = (char *)(long)raw_args[num_spec]; 971 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, 972 fmt_ptype, 973 tmp_buf_end - tmp_buf); 974 if (err < 0) { 975 tmp_buf[0] = '\0'; 976 err = 1; 977 } 978 979 tmp_buf += err; 980 num_spec++; 981 982 continue; 983 } else if (fmt[i] == 'c') { 984 if (!tmp_buf) 985 goto nocopy_fmt; 986 987 if (tmp_buf_end == tmp_buf) { 988 err = -ENOSPC; 989 goto out; 990 } 991 992 *tmp_buf = raw_args[num_spec]; 993 tmp_buf++; 994 num_spec++; 995 996 continue; 997 } 998 999 sizeof_cur_arg = sizeof(int); 1000 1001 if (fmt[i] == 'l') { 1002 sizeof_cur_arg = sizeof(long); 1003 i++; 1004 } 1005 if (fmt[i] == 'l') { 1006 sizeof_cur_arg = sizeof(long long); 1007 i++; 1008 } 1009 1010 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && 1011 fmt[i] != 'x' && fmt[i] != 'X') { 1012 err = -EINVAL; 1013 goto out; 1014 } 1015 1016 if (tmp_buf) 1017 cur_arg = raw_args[num_spec]; 1018 nocopy_fmt: 1019 if (tmp_buf) { 1020 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); 1021 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { 1022 err = -ENOSPC; 1023 goto out; 1024 } 1025 1026 if (sizeof_cur_arg == 8) { 1027 *(u32 *)tmp_buf = *(u32 *)&cur_arg; 1028 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); 1029 } else { 1030 *(u32 *)tmp_buf = (u32)(long)cur_arg; 1031 } 1032 tmp_buf += sizeof_cur_arg; 1033 } 1034 num_spec++; 1035 } 1036 1037 err = 0; 1038 out: 1039 if (err) 1040 bpf_bprintf_cleanup(data); 1041 return err; 1042 } 1043 1044 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, 1045 const void *, args, u32, data_len) 1046 { 1047 struct bpf_bprintf_data data = { 1048 .get_bin_args = true, 1049 }; 1050 int err, num_args; 1051 1052 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || 1053 (data_len && !args)) 1054 return -EINVAL; 1055 num_args = data_len / 8; 1056 1057 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we 1058 * can safely give an unbounded size. 1059 */ 1060 err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data); 1061 if (err < 0) 1062 return err; 1063 1064 err = bstr_printf(str, str_size, fmt, data.bin_args); 1065 1066 bpf_bprintf_cleanup(&data); 1067 1068 return err + 1; 1069 } 1070 1071 const struct bpf_func_proto bpf_snprintf_proto = { 1072 .func = bpf_snprintf, 1073 .gpl_only = true, 1074 .ret_type = RET_INTEGER, 1075 .arg1_type = ARG_PTR_TO_MEM_OR_NULL, 1076 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1077 .arg3_type = ARG_PTR_TO_CONST_STR, 1078 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 1079 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1080 }; 1081 1082 struct bpf_async_cb { 1083 struct bpf_map *map; 1084 struct bpf_prog *prog; 1085 void __rcu *callback_fn; 1086 void *value; 1087 struct rcu_head rcu; 1088 u64 flags; 1089 }; 1090 1091 /* BPF map elements can contain 'struct bpf_timer'. 1092 * Such map owns all of its BPF timers. 1093 * 'struct bpf_timer' is allocated as part of map element allocation 1094 * and it's zero initialized. 1095 * That space is used to keep 'struct bpf_async_kern'. 1096 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and 1097 * remembers 'struct bpf_map *' pointer it's part of. 1098 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. 1099 * bpf_timer_start() arms the timer. 1100 * If user space reference to a map goes to zero at this point 1101 * ops->map_release_uref callback is responsible for cancelling the timers, 1102 * freeing their memory, and decrementing prog's refcnts. 1103 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. 1104 * Inner maps can contain bpf timers as well. ops->map_release_uref is 1105 * freeing the timers when inner map is replaced or deleted by user space. 1106 */ 1107 struct bpf_hrtimer { 1108 struct bpf_async_cb cb; 1109 struct hrtimer timer; 1110 }; 1111 1112 struct bpf_work { 1113 struct bpf_async_cb cb; 1114 struct work_struct work; 1115 struct work_struct delete_work; 1116 }; 1117 1118 /* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */ 1119 struct bpf_async_kern { 1120 union { 1121 struct bpf_async_cb *cb; 1122 struct bpf_hrtimer *timer; 1123 struct bpf_work *work; 1124 }; 1125 /* bpf_spin_lock is used here instead of spinlock_t to make 1126 * sure that it always fits into space reserved by struct bpf_timer 1127 * regardless of LOCKDEP and spinlock debug flags. 1128 */ 1129 struct bpf_spin_lock lock; 1130 } __attribute__((aligned(8))); 1131 1132 enum bpf_async_type { 1133 BPF_ASYNC_TYPE_TIMER = 0, 1134 BPF_ASYNC_TYPE_WQ, 1135 }; 1136 1137 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); 1138 1139 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) 1140 { 1141 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); 1142 struct bpf_map *map = t->cb.map; 1143 void *value = t->cb.value; 1144 bpf_callback_t callback_fn; 1145 void *key; 1146 u32 idx; 1147 1148 BTF_TYPE_EMIT(struct bpf_timer); 1149 callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held()); 1150 if (!callback_fn) 1151 goto out; 1152 1153 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and 1154 * cannot be preempted by another bpf_timer_cb() on the same cpu. 1155 * Remember the timer this callback is servicing to prevent 1156 * deadlock if callback_fn() calls bpf_timer_cancel() or 1157 * bpf_map_delete_elem() on the same timer. 1158 */ 1159 this_cpu_write(hrtimer_running, t); 1160 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1161 struct bpf_array *array = container_of(map, struct bpf_array, map); 1162 1163 /* compute the key */ 1164 idx = ((char *)value - array->value) / array->elem_size; 1165 key = &idx; 1166 } else { /* hash or lru */ 1167 key = value - round_up(map->key_size, 8); 1168 } 1169 1170 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1171 /* The verifier checked that return value is zero. */ 1172 1173 this_cpu_write(hrtimer_running, NULL); 1174 out: 1175 return HRTIMER_NORESTART; 1176 } 1177 1178 static void bpf_wq_work(struct work_struct *work) 1179 { 1180 struct bpf_work *w = container_of(work, struct bpf_work, work); 1181 struct bpf_async_cb *cb = &w->cb; 1182 struct bpf_map *map = cb->map; 1183 bpf_callback_t callback_fn; 1184 void *value = cb->value; 1185 void *key; 1186 u32 idx; 1187 1188 BTF_TYPE_EMIT(struct bpf_wq); 1189 1190 callback_fn = READ_ONCE(cb->callback_fn); 1191 if (!callback_fn) 1192 return; 1193 1194 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1195 struct bpf_array *array = container_of(map, struct bpf_array, map); 1196 1197 /* compute the key */ 1198 idx = ((char *)value - array->value) / array->elem_size; 1199 key = &idx; 1200 } else { /* hash or lru */ 1201 key = value - round_up(map->key_size, 8); 1202 } 1203 1204 rcu_read_lock_trace(); 1205 migrate_disable(); 1206 1207 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1208 1209 migrate_enable(); 1210 rcu_read_unlock_trace(); 1211 } 1212 1213 static void bpf_wq_delete_work(struct work_struct *work) 1214 { 1215 struct bpf_work *w = container_of(work, struct bpf_work, delete_work); 1216 1217 cancel_work_sync(&w->work); 1218 1219 kfree_rcu(w, cb.rcu); 1220 } 1221 1222 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags, 1223 enum bpf_async_type type) 1224 { 1225 struct bpf_async_cb *cb; 1226 struct bpf_hrtimer *t; 1227 struct bpf_work *w; 1228 clockid_t clockid; 1229 size_t size; 1230 int ret = 0; 1231 1232 if (in_nmi()) 1233 return -EOPNOTSUPP; 1234 1235 switch (type) { 1236 case BPF_ASYNC_TYPE_TIMER: 1237 size = sizeof(struct bpf_hrtimer); 1238 break; 1239 case BPF_ASYNC_TYPE_WQ: 1240 size = sizeof(struct bpf_work); 1241 break; 1242 default: 1243 return -EINVAL; 1244 } 1245 1246 __bpf_spin_lock_irqsave(&async->lock); 1247 t = async->timer; 1248 if (t) { 1249 ret = -EBUSY; 1250 goto out; 1251 } 1252 1253 /* allocate hrtimer via map_kmalloc to use memcg accounting */ 1254 cb = bpf_map_kmalloc_node(map, size, GFP_ATOMIC, map->numa_node); 1255 if (!cb) { 1256 ret = -ENOMEM; 1257 goto out; 1258 } 1259 1260 switch (type) { 1261 case BPF_ASYNC_TYPE_TIMER: 1262 clockid = flags & (MAX_CLOCKS - 1); 1263 t = (struct bpf_hrtimer *)cb; 1264 1265 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); 1266 t->timer.function = bpf_timer_cb; 1267 cb->value = (void *)async - map->record->timer_off; 1268 break; 1269 case BPF_ASYNC_TYPE_WQ: 1270 w = (struct bpf_work *)cb; 1271 1272 INIT_WORK(&w->work, bpf_wq_work); 1273 INIT_WORK(&w->delete_work, bpf_wq_delete_work); 1274 cb->value = (void *)async - map->record->wq_off; 1275 break; 1276 } 1277 cb->map = map; 1278 cb->prog = NULL; 1279 cb->flags = flags; 1280 rcu_assign_pointer(cb->callback_fn, NULL); 1281 1282 WRITE_ONCE(async->cb, cb); 1283 /* Guarantee the order between async->cb and map->usercnt. So 1284 * when there are concurrent uref release and bpf timer init, either 1285 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL 1286 * timer or atomic64_read() below returns a zero usercnt. 1287 */ 1288 smp_mb(); 1289 if (!atomic64_read(&map->usercnt)) { 1290 /* maps with timers must be either held by user space 1291 * or pinned in bpffs. 1292 */ 1293 WRITE_ONCE(async->cb, NULL); 1294 kfree(cb); 1295 ret = -EPERM; 1296 } 1297 out: 1298 __bpf_spin_unlock_irqrestore(&async->lock); 1299 return ret; 1300 } 1301 1302 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map, 1303 u64, flags) 1304 { 1305 clock_t clockid = flags & (MAX_CLOCKS - 1); 1306 1307 BUILD_BUG_ON(MAX_CLOCKS != 16); 1308 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer)); 1309 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer)); 1310 1311 if (flags >= MAX_CLOCKS || 1312 /* similar to timerfd except _ALARM variants are not supported */ 1313 (clockid != CLOCK_MONOTONIC && 1314 clockid != CLOCK_REALTIME && 1315 clockid != CLOCK_BOOTTIME)) 1316 return -EINVAL; 1317 1318 return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER); 1319 } 1320 1321 static const struct bpf_func_proto bpf_timer_init_proto = { 1322 .func = bpf_timer_init, 1323 .gpl_only = true, 1324 .ret_type = RET_INTEGER, 1325 .arg1_type = ARG_PTR_TO_TIMER, 1326 .arg2_type = ARG_CONST_MAP_PTR, 1327 .arg3_type = ARG_ANYTHING, 1328 }; 1329 1330 static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn, 1331 struct bpf_prog_aux *aux, unsigned int flags, 1332 enum bpf_async_type type) 1333 { 1334 struct bpf_prog *prev, *prog = aux->prog; 1335 struct bpf_async_cb *cb; 1336 int ret = 0; 1337 1338 if (in_nmi()) 1339 return -EOPNOTSUPP; 1340 __bpf_spin_lock_irqsave(&async->lock); 1341 cb = async->cb; 1342 if (!cb) { 1343 ret = -EINVAL; 1344 goto out; 1345 } 1346 if (!atomic64_read(&cb->map->usercnt)) { 1347 /* maps with timers must be either held by user space 1348 * or pinned in bpffs. Otherwise timer might still be 1349 * running even when bpf prog is detached and user space 1350 * is gone, since map_release_uref won't ever be called. 1351 */ 1352 ret = -EPERM; 1353 goto out; 1354 } 1355 prev = cb->prog; 1356 if (prev != prog) { 1357 /* Bump prog refcnt once. Every bpf_timer_set_callback() 1358 * can pick different callback_fn-s within the same prog. 1359 */ 1360 prog = bpf_prog_inc_not_zero(prog); 1361 if (IS_ERR(prog)) { 1362 ret = PTR_ERR(prog); 1363 goto out; 1364 } 1365 if (prev) 1366 /* Drop prev prog refcnt when swapping with new prog */ 1367 bpf_prog_put(prev); 1368 cb->prog = prog; 1369 } 1370 rcu_assign_pointer(cb->callback_fn, callback_fn); 1371 out: 1372 __bpf_spin_unlock_irqrestore(&async->lock); 1373 return ret; 1374 } 1375 1376 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn, 1377 struct bpf_prog_aux *, aux) 1378 { 1379 return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER); 1380 } 1381 1382 static const struct bpf_func_proto bpf_timer_set_callback_proto = { 1383 .func = bpf_timer_set_callback, 1384 .gpl_only = true, 1385 .ret_type = RET_INTEGER, 1386 .arg1_type = ARG_PTR_TO_TIMER, 1387 .arg2_type = ARG_PTR_TO_FUNC, 1388 }; 1389 1390 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags) 1391 { 1392 struct bpf_hrtimer *t; 1393 int ret = 0; 1394 enum hrtimer_mode mode; 1395 1396 if (in_nmi()) 1397 return -EOPNOTSUPP; 1398 if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN)) 1399 return -EINVAL; 1400 __bpf_spin_lock_irqsave(&timer->lock); 1401 t = timer->timer; 1402 if (!t || !t->cb.prog) { 1403 ret = -EINVAL; 1404 goto out; 1405 } 1406 1407 if (flags & BPF_F_TIMER_ABS) 1408 mode = HRTIMER_MODE_ABS_SOFT; 1409 else 1410 mode = HRTIMER_MODE_REL_SOFT; 1411 1412 if (flags & BPF_F_TIMER_CPU_PIN) 1413 mode |= HRTIMER_MODE_PINNED; 1414 1415 hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode); 1416 out: 1417 __bpf_spin_unlock_irqrestore(&timer->lock); 1418 return ret; 1419 } 1420 1421 static const struct bpf_func_proto bpf_timer_start_proto = { 1422 .func = bpf_timer_start, 1423 .gpl_only = true, 1424 .ret_type = RET_INTEGER, 1425 .arg1_type = ARG_PTR_TO_TIMER, 1426 .arg2_type = ARG_ANYTHING, 1427 .arg3_type = ARG_ANYTHING, 1428 }; 1429 1430 static void drop_prog_refcnt(struct bpf_async_cb *async) 1431 { 1432 struct bpf_prog *prog = async->prog; 1433 1434 if (prog) { 1435 bpf_prog_put(prog); 1436 async->prog = NULL; 1437 rcu_assign_pointer(async->callback_fn, NULL); 1438 } 1439 } 1440 1441 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer) 1442 { 1443 struct bpf_hrtimer *t; 1444 int ret = 0; 1445 1446 if (in_nmi()) 1447 return -EOPNOTSUPP; 1448 rcu_read_lock(); 1449 __bpf_spin_lock_irqsave(&timer->lock); 1450 t = timer->timer; 1451 if (!t) { 1452 ret = -EINVAL; 1453 goto out; 1454 } 1455 if (this_cpu_read(hrtimer_running) == t) { 1456 /* If bpf callback_fn is trying to bpf_timer_cancel() 1457 * its own timer the hrtimer_cancel() will deadlock 1458 * since it waits for callback_fn to finish 1459 */ 1460 ret = -EDEADLK; 1461 goto out; 1462 } 1463 drop_prog_refcnt(&t->cb); 1464 out: 1465 __bpf_spin_unlock_irqrestore(&timer->lock); 1466 /* Cancel the timer and wait for associated callback to finish 1467 * if it was running. 1468 */ 1469 ret = ret ?: hrtimer_cancel(&t->timer); 1470 rcu_read_unlock(); 1471 return ret; 1472 } 1473 1474 static const struct bpf_func_proto bpf_timer_cancel_proto = { 1475 .func = bpf_timer_cancel, 1476 .gpl_only = true, 1477 .ret_type = RET_INTEGER, 1478 .arg1_type = ARG_PTR_TO_TIMER, 1479 }; 1480 1481 static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async) 1482 { 1483 struct bpf_async_cb *cb; 1484 1485 /* Performance optimization: read async->cb without lock first. */ 1486 if (!READ_ONCE(async->cb)) 1487 return NULL; 1488 1489 __bpf_spin_lock_irqsave(&async->lock); 1490 /* re-read it under lock */ 1491 cb = async->cb; 1492 if (!cb) 1493 goto out; 1494 drop_prog_refcnt(cb); 1495 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use 1496 * this timer, since it won't be initialized. 1497 */ 1498 WRITE_ONCE(async->cb, NULL); 1499 out: 1500 __bpf_spin_unlock_irqrestore(&async->lock); 1501 return cb; 1502 } 1503 1504 /* This function is called by map_delete/update_elem for individual element and 1505 * by ops->map_release_uref when the user space reference to a map reaches zero. 1506 */ 1507 void bpf_timer_cancel_and_free(void *val) 1508 { 1509 struct bpf_hrtimer *t; 1510 1511 t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val); 1512 1513 if (!t) 1514 return; 1515 /* Cancel the timer and wait for callback to complete if it was running. 1516 * If hrtimer_cancel() can be safely called it's safe to call kfree(t) 1517 * right after for both preallocated and non-preallocated maps. 1518 * The async->cb = NULL was already done and no code path can 1519 * see address 't' anymore. 1520 * 1521 * Check that bpf_map_delete/update_elem() wasn't called from timer 1522 * callback_fn. In such case don't call hrtimer_cancel() (since it will 1523 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just 1524 * return -1). Though callback_fn is still running on this cpu it's 1525 * safe to do kfree(t) because bpf_timer_cb() read everything it needed 1526 * from 't'. The bpf subprog callback_fn won't be able to access 't', 1527 * since async->cb = NULL was already done. The timer will be 1528 * effectively cancelled because bpf_timer_cb() will return 1529 * HRTIMER_NORESTART. 1530 */ 1531 if (this_cpu_read(hrtimer_running) != t) 1532 hrtimer_cancel(&t->timer); 1533 kfree_rcu(t, cb.rcu); 1534 } 1535 1536 /* This function is called by map_delete/update_elem for individual element and 1537 * by ops->map_release_uref when the user space reference to a map reaches zero. 1538 */ 1539 void bpf_wq_cancel_and_free(void *val) 1540 { 1541 struct bpf_work *work; 1542 1543 BTF_TYPE_EMIT(struct bpf_wq); 1544 1545 work = (struct bpf_work *)__bpf_async_cancel_and_free(val); 1546 if (!work) 1547 return; 1548 /* Trigger cancel of the sleepable work, but *do not* wait for 1549 * it to finish if it was running as we might not be in a 1550 * sleepable context. 1551 * kfree will be called once the work has finished. 1552 */ 1553 schedule_work(&work->delete_work); 1554 } 1555 1556 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr) 1557 { 1558 unsigned long *kptr = map_value; 1559 1560 /* This helper may be inlined by verifier. */ 1561 return xchg(kptr, (unsigned long)ptr); 1562 } 1563 1564 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() 1565 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to 1566 * denote type that verifier will determine. 1567 */ 1568 static const struct bpf_func_proto bpf_kptr_xchg_proto = { 1569 .func = bpf_kptr_xchg, 1570 .gpl_only = false, 1571 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 1572 .ret_btf_id = BPF_PTR_POISON, 1573 .arg1_type = ARG_PTR_TO_KPTR, 1574 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, 1575 .arg2_btf_id = BPF_PTR_POISON, 1576 }; 1577 1578 /* Since the upper 8 bits of dynptr->size is reserved, the 1579 * maximum supported size is 2^24 - 1. 1580 */ 1581 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1) 1582 #define DYNPTR_TYPE_SHIFT 28 1583 #define DYNPTR_SIZE_MASK 0xFFFFFF 1584 #define DYNPTR_RDONLY_BIT BIT(31) 1585 1586 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr) 1587 { 1588 return ptr->size & DYNPTR_RDONLY_BIT; 1589 } 1590 1591 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 1592 { 1593 ptr->size |= DYNPTR_RDONLY_BIT; 1594 } 1595 1596 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) 1597 { 1598 ptr->size |= type << DYNPTR_TYPE_SHIFT; 1599 } 1600 1601 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr) 1602 { 1603 return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT; 1604 } 1605 1606 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) 1607 { 1608 return ptr->size & DYNPTR_SIZE_MASK; 1609 } 1610 1611 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size) 1612 { 1613 u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK; 1614 1615 ptr->size = new_size | metadata; 1616 } 1617 1618 int bpf_dynptr_check_size(u32 size) 1619 { 1620 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; 1621 } 1622 1623 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 1624 enum bpf_dynptr_type type, u32 offset, u32 size) 1625 { 1626 ptr->data = data; 1627 ptr->offset = offset; 1628 ptr->size = size; 1629 bpf_dynptr_set_type(ptr, type); 1630 } 1631 1632 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 1633 { 1634 memset(ptr, 0, sizeof(*ptr)); 1635 } 1636 1637 static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len) 1638 { 1639 u32 size = __bpf_dynptr_size(ptr); 1640 1641 if (len > size || offset > size - len) 1642 return -E2BIG; 1643 1644 return 0; 1645 } 1646 1647 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) 1648 { 1649 int err; 1650 1651 BTF_TYPE_EMIT(struct bpf_dynptr); 1652 1653 err = bpf_dynptr_check_size(size); 1654 if (err) 1655 goto error; 1656 1657 /* flags is currently unsupported */ 1658 if (flags) { 1659 err = -EINVAL; 1660 goto error; 1661 } 1662 1663 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); 1664 1665 return 0; 1666 1667 error: 1668 bpf_dynptr_set_null(ptr); 1669 return err; 1670 } 1671 1672 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { 1673 .func = bpf_dynptr_from_mem, 1674 .gpl_only = false, 1675 .ret_type = RET_INTEGER, 1676 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1677 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1678 .arg3_type = ARG_ANYTHING, 1679 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT, 1680 }; 1681 1682 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src, 1683 u32, offset, u64, flags) 1684 { 1685 enum bpf_dynptr_type type; 1686 int err; 1687 1688 if (!src->data || flags) 1689 return -EINVAL; 1690 1691 err = bpf_dynptr_check_off_len(src, offset, len); 1692 if (err) 1693 return err; 1694 1695 type = bpf_dynptr_get_type(src); 1696 1697 switch (type) { 1698 case BPF_DYNPTR_TYPE_LOCAL: 1699 case BPF_DYNPTR_TYPE_RINGBUF: 1700 /* Source and destination may possibly overlap, hence use memmove to 1701 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1702 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1703 */ 1704 memmove(dst, src->data + src->offset + offset, len); 1705 return 0; 1706 case BPF_DYNPTR_TYPE_SKB: 1707 return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len); 1708 case BPF_DYNPTR_TYPE_XDP: 1709 return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len); 1710 default: 1711 WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type); 1712 return -EFAULT; 1713 } 1714 } 1715 1716 static const struct bpf_func_proto bpf_dynptr_read_proto = { 1717 .func = bpf_dynptr_read, 1718 .gpl_only = false, 1719 .ret_type = RET_INTEGER, 1720 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1721 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1722 .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1723 .arg4_type = ARG_ANYTHING, 1724 .arg5_type = ARG_ANYTHING, 1725 }; 1726 1727 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src, 1728 u32, len, u64, flags) 1729 { 1730 enum bpf_dynptr_type type; 1731 int err; 1732 1733 if (!dst->data || __bpf_dynptr_is_rdonly(dst)) 1734 return -EINVAL; 1735 1736 err = bpf_dynptr_check_off_len(dst, offset, len); 1737 if (err) 1738 return err; 1739 1740 type = bpf_dynptr_get_type(dst); 1741 1742 switch (type) { 1743 case BPF_DYNPTR_TYPE_LOCAL: 1744 case BPF_DYNPTR_TYPE_RINGBUF: 1745 if (flags) 1746 return -EINVAL; 1747 /* Source and destination may possibly overlap, hence use memmove to 1748 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1749 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1750 */ 1751 memmove(dst->data + dst->offset + offset, src, len); 1752 return 0; 1753 case BPF_DYNPTR_TYPE_SKB: 1754 return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len, 1755 flags); 1756 case BPF_DYNPTR_TYPE_XDP: 1757 if (flags) 1758 return -EINVAL; 1759 return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len); 1760 default: 1761 WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type); 1762 return -EFAULT; 1763 } 1764 } 1765 1766 static const struct bpf_func_proto bpf_dynptr_write_proto = { 1767 .func = bpf_dynptr_write, 1768 .gpl_only = false, 1769 .ret_type = RET_INTEGER, 1770 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1771 .arg2_type = ARG_ANYTHING, 1772 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1773 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 1774 .arg5_type = ARG_ANYTHING, 1775 }; 1776 1777 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len) 1778 { 1779 enum bpf_dynptr_type type; 1780 int err; 1781 1782 if (!ptr->data) 1783 return 0; 1784 1785 err = bpf_dynptr_check_off_len(ptr, offset, len); 1786 if (err) 1787 return 0; 1788 1789 if (__bpf_dynptr_is_rdonly(ptr)) 1790 return 0; 1791 1792 type = bpf_dynptr_get_type(ptr); 1793 1794 switch (type) { 1795 case BPF_DYNPTR_TYPE_LOCAL: 1796 case BPF_DYNPTR_TYPE_RINGBUF: 1797 return (unsigned long)(ptr->data + ptr->offset + offset); 1798 case BPF_DYNPTR_TYPE_SKB: 1799 case BPF_DYNPTR_TYPE_XDP: 1800 /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */ 1801 return 0; 1802 default: 1803 WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type); 1804 return 0; 1805 } 1806 } 1807 1808 static const struct bpf_func_proto bpf_dynptr_data_proto = { 1809 .func = bpf_dynptr_data, 1810 .gpl_only = false, 1811 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL, 1812 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1813 .arg2_type = ARG_ANYTHING, 1814 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 1815 }; 1816 1817 const struct bpf_func_proto bpf_get_current_task_proto __weak; 1818 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; 1819 const struct bpf_func_proto bpf_probe_read_user_proto __weak; 1820 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; 1821 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; 1822 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; 1823 const struct bpf_func_proto bpf_task_pt_regs_proto __weak; 1824 1825 const struct bpf_func_proto * 1826 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1827 { 1828 switch (func_id) { 1829 case BPF_FUNC_map_lookup_elem: 1830 return &bpf_map_lookup_elem_proto; 1831 case BPF_FUNC_map_update_elem: 1832 return &bpf_map_update_elem_proto; 1833 case BPF_FUNC_map_delete_elem: 1834 return &bpf_map_delete_elem_proto; 1835 case BPF_FUNC_map_push_elem: 1836 return &bpf_map_push_elem_proto; 1837 case BPF_FUNC_map_pop_elem: 1838 return &bpf_map_pop_elem_proto; 1839 case BPF_FUNC_map_peek_elem: 1840 return &bpf_map_peek_elem_proto; 1841 case BPF_FUNC_map_lookup_percpu_elem: 1842 return &bpf_map_lookup_percpu_elem_proto; 1843 case BPF_FUNC_get_prandom_u32: 1844 return &bpf_get_prandom_u32_proto; 1845 case BPF_FUNC_get_smp_processor_id: 1846 return &bpf_get_raw_smp_processor_id_proto; 1847 case BPF_FUNC_get_numa_node_id: 1848 return &bpf_get_numa_node_id_proto; 1849 case BPF_FUNC_tail_call: 1850 return &bpf_tail_call_proto; 1851 case BPF_FUNC_ktime_get_ns: 1852 return &bpf_ktime_get_ns_proto; 1853 case BPF_FUNC_ktime_get_boot_ns: 1854 return &bpf_ktime_get_boot_ns_proto; 1855 case BPF_FUNC_ktime_get_tai_ns: 1856 return &bpf_ktime_get_tai_ns_proto; 1857 case BPF_FUNC_ringbuf_output: 1858 return &bpf_ringbuf_output_proto; 1859 case BPF_FUNC_ringbuf_reserve: 1860 return &bpf_ringbuf_reserve_proto; 1861 case BPF_FUNC_ringbuf_submit: 1862 return &bpf_ringbuf_submit_proto; 1863 case BPF_FUNC_ringbuf_discard: 1864 return &bpf_ringbuf_discard_proto; 1865 case BPF_FUNC_ringbuf_query: 1866 return &bpf_ringbuf_query_proto; 1867 case BPF_FUNC_strncmp: 1868 return &bpf_strncmp_proto; 1869 case BPF_FUNC_strtol: 1870 return &bpf_strtol_proto; 1871 case BPF_FUNC_strtoul: 1872 return &bpf_strtoul_proto; 1873 case BPF_FUNC_get_current_pid_tgid: 1874 return &bpf_get_current_pid_tgid_proto; 1875 case BPF_FUNC_get_ns_current_pid_tgid: 1876 return &bpf_get_ns_current_pid_tgid_proto; 1877 default: 1878 break; 1879 } 1880 1881 if (!bpf_token_capable(prog->aux->token, CAP_BPF)) 1882 return NULL; 1883 1884 switch (func_id) { 1885 case BPF_FUNC_spin_lock: 1886 return &bpf_spin_lock_proto; 1887 case BPF_FUNC_spin_unlock: 1888 return &bpf_spin_unlock_proto; 1889 case BPF_FUNC_jiffies64: 1890 return &bpf_jiffies64_proto; 1891 case BPF_FUNC_per_cpu_ptr: 1892 return &bpf_per_cpu_ptr_proto; 1893 case BPF_FUNC_this_cpu_ptr: 1894 return &bpf_this_cpu_ptr_proto; 1895 case BPF_FUNC_timer_init: 1896 return &bpf_timer_init_proto; 1897 case BPF_FUNC_timer_set_callback: 1898 return &bpf_timer_set_callback_proto; 1899 case BPF_FUNC_timer_start: 1900 return &bpf_timer_start_proto; 1901 case BPF_FUNC_timer_cancel: 1902 return &bpf_timer_cancel_proto; 1903 case BPF_FUNC_kptr_xchg: 1904 return &bpf_kptr_xchg_proto; 1905 case BPF_FUNC_for_each_map_elem: 1906 return &bpf_for_each_map_elem_proto; 1907 case BPF_FUNC_loop: 1908 return &bpf_loop_proto; 1909 case BPF_FUNC_user_ringbuf_drain: 1910 return &bpf_user_ringbuf_drain_proto; 1911 case BPF_FUNC_ringbuf_reserve_dynptr: 1912 return &bpf_ringbuf_reserve_dynptr_proto; 1913 case BPF_FUNC_ringbuf_submit_dynptr: 1914 return &bpf_ringbuf_submit_dynptr_proto; 1915 case BPF_FUNC_ringbuf_discard_dynptr: 1916 return &bpf_ringbuf_discard_dynptr_proto; 1917 case BPF_FUNC_dynptr_from_mem: 1918 return &bpf_dynptr_from_mem_proto; 1919 case BPF_FUNC_dynptr_read: 1920 return &bpf_dynptr_read_proto; 1921 case BPF_FUNC_dynptr_write: 1922 return &bpf_dynptr_write_proto; 1923 case BPF_FUNC_dynptr_data: 1924 return &bpf_dynptr_data_proto; 1925 #ifdef CONFIG_CGROUPS 1926 case BPF_FUNC_cgrp_storage_get: 1927 return &bpf_cgrp_storage_get_proto; 1928 case BPF_FUNC_cgrp_storage_delete: 1929 return &bpf_cgrp_storage_delete_proto; 1930 case BPF_FUNC_get_current_cgroup_id: 1931 return &bpf_get_current_cgroup_id_proto; 1932 case BPF_FUNC_get_current_ancestor_cgroup_id: 1933 return &bpf_get_current_ancestor_cgroup_id_proto; 1934 #endif 1935 default: 1936 break; 1937 } 1938 1939 if (!bpf_token_capable(prog->aux->token, CAP_PERFMON)) 1940 return NULL; 1941 1942 switch (func_id) { 1943 case BPF_FUNC_trace_printk: 1944 return bpf_get_trace_printk_proto(); 1945 case BPF_FUNC_get_current_task: 1946 return &bpf_get_current_task_proto; 1947 case BPF_FUNC_get_current_task_btf: 1948 return &bpf_get_current_task_btf_proto; 1949 case BPF_FUNC_probe_read_user: 1950 return &bpf_probe_read_user_proto; 1951 case BPF_FUNC_probe_read_kernel: 1952 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1953 NULL : &bpf_probe_read_kernel_proto; 1954 case BPF_FUNC_probe_read_user_str: 1955 return &bpf_probe_read_user_str_proto; 1956 case BPF_FUNC_probe_read_kernel_str: 1957 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1958 NULL : &bpf_probe_read_kernel_str_proto; 1959 case BPF_FUNC_snprintf_btf: 1960 return &bpf_snprintf_btf_proto; 1961 case BPF_FUNC_snprintf: 1962 return &bpf_snprintf_proto; 1963 case BPF_FUNC_task_pt_regs: 1964 return &bpf_task_pt_regs_proto; 1965 case BPF_FUNC_trace_vprintk: 1966 return bpf_get_trace_vprintk_proto(); 1967 default: 1968 return NULL; 1969 } 1970 } 1971 1972 void bpf_list_head_free(const struct btf_field *field, void *list_head, 1973 struct bpf_spin_lock *spin_lock) 1974 { 1975 struct list_head *head = list_head, *orig_head = list_head; 1976 1977 BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head)); 1978 BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head)); 1979 1980 /* Do the actual list draining outside the lock to not hold the lock for 1981 * too long, and also prevent deadlocks if tracing programs end up 1982 * executing on entry/exit of functions called inside the critical 1983 * section, and end up doing map ops that call bpf_list_head_free for 1984 * the same map value again. 1985 */ 1986 __bpf_spin_lock_irqsave(spin_lock); 1987 if (!head->next || list_empty(head)) 1988 goto unlock; 1989 head = head->next; 1990 unlock: 1991 INIT_LIST_HEAD(orig_head); 1992 __bpf_spin_unlock_irqrestore(spin_lock); 1993 1994 while (head != orig_head) { 1995 void *obj = head; 1996 1997 obj -= field->graph_root.node_offset; 1998 head = head->next; 1999 /* The contained type can also have resources, including a 2000 * bpf_list_head which needs to be freed. 2001 */ 2002 migrate_disable(); 2003 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); 2004 migrate_enable(); 2005 } 2006 } 2007 2008 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are 2009 * 'rb_node *', so field name of rb_node within containing struct is not 2010 * needed. 2011 * 2012 * Since bpf_rb_tree's node type has a corresponding struct btf_field with 2013 * graph_root.node_offset, it's not necessary to know field name 2014 * or type of node struct 2015 */ 2016 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \ 2017 for (pos = rb_first_postorder(root); \ 2018 pos && ({ n = rb_next_postorder(pos); 1; }); \ 2019 pos = n) 2020 2021 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 2022 struct bpf_spin_lock *spin_lock) 2023 { 2024 struct rb_root_cached orig_root, *root = rb_root; 2025 struct rb_node *pos, *n; 2026 void *obj; 2027 2028 BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root)); 2029 BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root)); 2030 2031 __bpf_spin_lock_irqsave(spin_lock); 2032 orig_root = *root; 2033 *root = RB_ROOT_CACHED; 2034 __bpf_spin_unlock_irqrestore(spin_lock); 2035 2036 bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) { 2037 obj = pos; 2038 obj -= field->graph_root.node_offset; 2039 2040 2041 migrate_disable(); 2042 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); 2043 migrate_enable(); 2044 } 2045 } 2046 2047 __bpf_kfunc_start_defs(); 2048 2049 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign) 2050 { 2051 struct btf_struct_meta *meta = meta__ign; 2052 u64 size = local_type_id__k; 2053 void *p; 2054 2055 p = bpf_mem_alloc(&bpf_global_ma, size); 2056 if (!p) 2057 return NULL; 2058 if (meta) 2059 bpf_obj_init(meta->record, p); 2060 return p; 2061 } 2062 2063 __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign) 2064 { 2065 u64 size = local_type_id__k; 2066 2067 /* The verifier has ensured that meta__ign must be NULL */ 2068 return bpf_mem_alloc(&bpf_global_percpu_ma, size); 2069 } 2070 2071 /* Must be called under migrate_disable(), as required by bpf_mem_free */ 2072 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu) 2073 { 2074 struct bpf_mem_alloc *ma; 2075 2076 if (rec && rec->refcount_off >= 0 && 2077 !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) { 2078 /* Object is refcounted and refcount_dec didn't result in 0 2079 * refcount. Return without freeing the object 2080 */ 2081 return; 2082 } 2083 2084 if (rec) 2085 bpf_obj_free_fields(rec, p); 2086 2087 if (percpu) 2088 ma = &bpf_global_percpu_ma; 2089 else 2090 ma = &bpf_global_ma; 2091 bpf_mem_free_rcu(ma, p); 2092 } 2093 2094 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign) 2095 { 2096 struct btf_struct_meta *meta = meta__ign; 2097 void *p = p__alloc; 2098 2099 __bpf_obj_drop_impl(p, meta ? meta->record : NULL, false); 2100 } 2101 2102 __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign) 2103 { 2104 /* The verifier has ensured that meta__ign must be NULL */ 2105 bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc); 2106 } 2107 2108 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign) 2109 { 2110 struct btf_struct_meta *meta = meta__ign; 2111 struct bpf_refcount *ref; 2112 2113 /* Could just cast directly to refcount_t *, but need some code using 2114 * bpf_refcount type so that it is emitted in vmlinux BTF 2115 */ 2116 ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off); 2117 if (!refcount_inc_not_zero((refcount_t *)ref)) 2118 return NULL; 2119 2120 /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null 2121 * in verifier.c 2122 */ 2123 return (void *)p__refcounted_kptr; 2124 } 2125 2126 static int __bpf_list_add(struct bpf_list_node_kern *node, 2127 struct bpf_list_head *head, 2128 bool tail, struct btf_record *rec, u64 off) 2129 { 2130 struct list_head *n = &node->list_head, *h = (void *)head; 2131 2132 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 2133 * called on its fields, so init here 2134 */ 2135 if (unlikely(!h->next)) 2136 INIT_LIST_HEAD(h); 2137 2138 /* node->owner != NULL implies !list_empty(n), no need to separately 2139 * check the latter 2140 */ 2141 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { 2142 /* Only called from BPF prog, no need to migrate_disable */ 2143 __bpf_obj_drop_impl((void *)n - off, rec, false); 2144 return -EINVAL; 2145 } 2146 2147 tail ? list_add_tail(n, h) : list_add(n, h); 2148 WRITE_ONCE(node->owner, head); 2149 2150 return 0; 2151 } 2152 2153 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head, 2154 struct bpf_list_node *node, 2155 void *meta__ign, u64 off) 2156 { 2157 struct bpf_list_node_kern *n = (void *)node; 2158 struct btf_struct_meta *meta = meta__ign; 2159 2160 return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off); 2161 } 2162 2163 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head, 2164 struct bpf_list_node *node, 2165 void *meta__ign, u64 off) 2166 { 2167 struct bpf_list_node_kern *n = (void *)node; 2168 struct btf_struct_meta *meta = meta__ign; 2169 2170 return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off); 2171 } 2172 2173 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail) 2174 { 2175 struct list_head *n, *h = (void *)head; 2176 struct bpf_list_node_kern *node; 2177 2178 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 2179 * called on its fields, so init here 2180 */ 2181 if (unlikely(!h->next)) 2182 INIT_LIST_HEAD(h); 2183 if (list_empty(h)) 2184 return NULL; 2185 2186 n = tail ? h->prev : h->next; 2187 node = container_of(n, struct bpf_list_node_kern, list_head); 2188 if (WARN_ON_ONCE(READ_ONCE(node->owner) != head)) 2189 return NULL; 2190 2191 list_del_init(n); 2192 WRITE_ONCE(node->owner, NULL); 2193 return (struct bpf_list_node *)n; 2194 } 2195 2196 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) 2197 { 2198 return __bpf_list_del(head, false); 2199 } 2200 2201 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) 2202 { 2203 return __bpf_list_del(head, true); 2204 } 2205 2206 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root, 2207 struct bpf_rb_node *node) 2208 { 2209 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; 2210 struct rb_root_cached *r = (struct rb_root_cached *)root; 2211 struct rb_node *n = &node_internal->rb_node; 2212 2213 /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or 2214 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n) 2215 */ 2216 if (READ_ONCE(node_internal->owner) != root) 2217 return NULL; 2218 2219 rb_erase_cached(n, r); 2220 RB_CLEAR_NODE(n); 2221 WRITE_ONCE(node_internal->owner, NULL); 2222 return (struct bpf_rb_node *)n; 2223 } 2224 2225 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF 2226 * program 2227 */ 2228 static int __bpf_rbtree_add(struct bpf_rb_root *root, 2229 struct bpf_rb_node_kern *node, 2230 void *less, struct btf_record *rec, u64 off) 2231 { 2232 struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node; 2233 struct rb_node *parent = NULL, *n = &node->rb_node; 2234 bpf_callback_t cb = (bpf_callback_t)less; 2235 bool leftmost = true; 2236 2237 /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately 2238 * check the latter 2239 */ 2240 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { 2241 /* Only called from BPF prog, no need to migrate_disable */ 2242 __bpf_obj_drop_impl((void *)n - off, rec, false); 2243 return -EINVAL; 2244 } 2245 2246 while (*link) { 2247 parent = *link; 2248 if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) { 2249 link = &parent->rb_left; 2250 } else { 2251 link = &parent->rb_right; 2252 leftmost = false; 2253 } 2254 } 2255 2256 rb_link_node(n, parent, link); 2257 rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost); 2258 WRITE_ONCE(node->owner, root); 2259 return 0; 2260 } 2261 2262 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 2263 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b), 2264 void *meta__ign, u64 off) 2265 { 2266 struct btf_struct_meta *meta = meta__ign; 2267 struct bpf_rb_node_kern *n = (void *)node; 2268 2269 return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off); 2270 } 2271 2272 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) 2273 { 2274 struct rb_root_cached *r = (struct rb_root_cached *)root; 2275 2276 return (struct bpf_rb_node *)rb_first_cached(r); 2277 } 2278 2279 /** 2280 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this 2281 * kfunc which is not stored in a map as a kptr, must be released by calling 2282 * bpf_task_release(). 2283 * @p: The task on which a reference is being acquired. 2284 */ 2285 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p) 2286 { 2287 if (refcount_inc_not_zero(&p->rcu_users)) 2288 return p; 2289 return NULL; 2290 } 2291 2292 /** 2293 * bpf_task_release - Release the reference acquired on a task. 2294 * @p: The task on which a reference is being released. 2295 */ 2296 __bpf_kfunc void bpf_task_release(struct task_struct *p) 2297 { 2298 put_task_struct_rcu_user(p); 2299 } 2300 2301 __bpf_kfunc void bpf_task_release_dtor(void *p) 2302 { 2303 put_task_struct_rcu_user(p); 2304 } 2305 CFI_NOSEAL(bpf_task_release_dtor); 2306 2307 #ifdef CONFIG_CGROUPS 2308 /** 2309 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by 2310 * this kfunc which is not stored in a map as a kptr, must be released by 2311 * calling bpf_cgroup_release(). 2312 * @cgrp: The cgroup on which a reference is being acquired. 2313 */ 2314 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp) 2315 { 2316 return cgroup_tryget(cgrp) ? cgrp : NULL; 2317 } 2318 2319 /** 2320 * bpf_cgroup_release - Release the reference acquired on a cgroup. 2321 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to 2322 * not be freed until the current grace period has ended, even if its refcount 2323 * drops to 0. 2324 * @cgrp: The cgroup on which a reference is being released. 2325 */ 2326 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp) 2327 { 2328 cgroup_put(cgrp); 2329 } 2330 2331 __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp) 2332 { 2333 cgroup_put(cgrp); 2334 } 2335 CFI_NOSEAL(bpf_cgroup_release_dtor); 2336 2337 /** 2338 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor 2339 * array. A cgroup returned by this kfunc which is not subsequently stored in a 2340 * map, must be released by calling bpf_cgroup_release(). 2341 * @cgrp: The cgroup for which we're performing a lookup. 2342 * @level: The level of ancestor to look up. 2343 */ 2344 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) 2345 { 2346 struct cgroup *ancestor; 2347 2348 if (level > cgrp->level || level < 0) 2349 return NULL; 2350 2351 /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */ 2352 ancestor = cgrp->ancestors[level]; 2353 if (!cgroup_tryget(ancestor)) 2354 return NULL; 2355 return ancestor; 2356 } 2357 2358 /** 2359 * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this 2360 * kfunc which is not subsequently stored in a map, must be released by calling 2361 * bpf_cgroup_release(). 2362 * @cgid: cgroup id. 2363 */ 2364 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid) 2365 { 2366 struct cgroup *cgrp; 2367 2368 cgrp = cgroup_get_from_id(cgid); 2369 if (IS_ERR(cgrp)) 2370 return NULL; 2371 return cgrp; 2372 } 2373 2374 /** 2375 * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test 2376 * task's membership of cgroup ancestry. 2377 * @task: the task to be tested 2378 * @ancestor: possible ancestor of @task's cgroup 2379 * 2380 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor. 2381 * It follows all the same rules as cgroup_is_descendant, and only applies 2382 * to the default hierarchy. 2383 */ 2384 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task, 2385 struct cgroup *ancestor) 2386 { 2387 long ret; 2388 2389 rcu_read_lock(); 2390 ret = task_under_cgroup_hierarchy(task, ancestor); 2391 rcu_read_unlock(); 2392 return ret; 2393 } 2394 2395 /** 2396 * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a 2397 * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its 2398 * hierarchy ID. 2399 * @task: The target task 2400 * @hierarchy_id: The ID of a cgroup1 hierarchy 2401 * 2402 * On success, the cgroup is returen. On failure, NULL is returned. 2403 */ 2404 __bpf_kfunc struct cgroup * 2405 bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id) 2406 { 2407 struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id); 2408 2409 if (IS_ERR(cgrp)) 2410 return NULL; 2411 return cgrp; 2412 } 2413 #endif /* CONFIG_CGROUPS */ 2414 2415 /** 2416 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up 2417 * in the root pid namespace idr. If a task is returned, it must either be 2418 * stored in a map, or released with bpf_task_release(). 2419 * @pid: The pid of the task being looked up. 2420 */ 2421 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid) 2422 { 2423 struct task_struct *p; 2424 2425 rcu_read_lock(); 2426 p = find_task_by_pid_ns(pid, &init_pid_ns); 2427 if (p) 2428 p = bpf_task_acquire(p); 2429 rcu_read_unlock(); 2430 2431 return p; 2432 } 2433 2434 /** 2435 * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data. 2436 * @ptr: The dynptr whose data slice to retrieve 2437 * @offset: Offset into the dynptr 2438 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2439 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2440 * length of the requested slice. This must be a constant. 2441 * 2442 * For non-skb and non-xdp type dynptrs, there is no difference between 2443 * bpf_dynptr_slice and bpf_dynptr_data. 2444 * 2445 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2446 * 2447 * If the intention is to write to the data slice, please use 2448 * bpf_dynptr_slice_rdwr. 2449 * 2450 * The user must check that the returned pointer is not null before using it. 2451 * 2452 * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice 2453 * does not change the underlying packet data pointers, so a call to 2454 * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in 2455 * the bpf program. 2456 * 2457 * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only 2458 * data slice (can be either direct pointer to the data or a pointer to the user 2459 * provided buffer, with its contents containing the data, if unable to obtain 2460 * direct pointer) 2461 */ 2462 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset, 2463 void *buffer__opt, u32 buffer__szk) 2464 { 2465 enum bpf_dynptr_type type; 2466 u32 len = buffer__szk; 2467 int err; 2468 2469 if (!ptr->data) 2470 return NULL; 2471 2472 err = bpf_dynptr_check_off_len(ptr, offset, len); 2473 if (err) 2474 return NULL; 2475 2476 type = bpf_dynptr_get_type(ptr); 2477 2478 switch (type) { 2479 case BPF_DYNPTR_TYPE_LOCAL: 2480 case BPF_DYNPTR_TYPE_RINGBUF: 2481 return ptr->data + ptr->offset + offset; 2482 case BPF_DYNPTR_TYPE_SKB: 2483 if (buffer__opt) 2484 return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt); 2485 else 2486 return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len); 2487 case BPF_DYNPTR_TYPE_XDP: 2488 { 2489 void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len); 2490 if (!IS_ERR_OR_NULL(xdp_ptr)) 2491 return xdp_ptr; 2492 2493 if (!buffer__opt) 2494 return NULL; 2495 bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false); 2496 return buffer__opt; 2497 } 2498 default: 2499 WARN_ONCE(true, "unknown dynptr type %d\n", type); 2500 return NULL; 2501 } 2502 } 2503 2504 /** 2505 * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data. 2506 * @ptr: The dynptr whose data slice to retrieve 2507 * @offset: Offset into the dynptr 2508 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2509 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2510 * length of the requested slice. This must be a constant. 2511 * 2512 * For non-skb and non-xdp type dynptrs, there is no difference between 2513 * bpf_dynptr_slice and bpf_dynptr_data. 2514 * 2515 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2516 * 2517 * The returned pointer is writable and may point to either directly the dynptr 2518 * data at the requested offset or to the buffer if unable to obtain a direct 2519 * data pointer to (example: the requested slice is to the paged area of an skb 2520 * packet). In the case where the returned pointer is to the buffer, the user 2521 * is responsible for persisting writes through calling bpf_dynptr_write(). This 2522 * usually looks something like this pattern: 2523 * 2524 * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer)); 2525 * if (!eth) 2526 * return TC_ACT_SHOT; 2527 * 2528 * // mutate eth header // 2529 * 2530 * if (eth == buffer) 2531 * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0); 2532 * 2533 * Please note that, as in the example above, the user must check that the 2534 * returned pointer is not null before using it. 2535 * 2536 * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr 2537 * does not change the underlying packet data pointers, so a call to 2538 * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in 2539 * the bpf program. 2540 * 2541 * Return: NULL if the call failed (eg invalid dynptr), pointer to a 2542 * data slice (can be either direct pointer to the data or a pointer to the user 2543 * provided buffer, with its contents containing the data, if unable to obtain 2544 * direct pointer) 2545 */ 2546 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 offset, 2547 void *buffer__opt, u32 buffer__szk) 2548 { 2549 if (!ptr->data || __bpf_dynptr_is_rdonly(ptr)) 2550 return NULL; 2551 2552 /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice. 2553 * 2554 * For skb-type dynptrs, it is safe to write into the returned pointer 2555 * if the bpf program allows skb data writes. There are two possibilities 2556 * that may occur when calling bpf_dynptr_slice_rdwr: 2557 * 2558 * 1) The requested slice is in the head of the skb. In this case, the 2559 * returned pointer is directly to skb data, and if the skb is cloned, the 2560 * verifier will have uncloned it (see bpf_unclone_prologue()) already. 2561 * The pointer can be directly written into. 2562 * 2563 * 2) Some portion of the requested slice is in the paged buffer area. 2564 * In this case, the requested data will be copied out into the buffer 2565 * and the returned pointer will be a pointer to the buffer. The skb 2566 * will not be pulled. To persist the write, the user will need to call 2567 * bpf_dynptr_write(), which will pull the skb and commit the write. 2568 * 2569 * Similarly for xdp programs, if the requested slice is not across xdp 2570 * fragments, then a direct pointer will be returned, otherwise the data 2571 * will be copied out into the buffer and the user will need to call 2572 * bpf_dynptr_write() to commit changes. 2573 */ 2574 return bpf_dynptr_slice(ptr, offset, buffer__opt, buffer__szk); 2575 } 2576 2577 __bpf_kfunc int bpf_dynptr_adjust(struct bpf_dynptr_kern *ptr, u32 start, u32 end) 2578 { 2579 u32 size; 2580 2581 if (!ptr->data || start > end) 2582 return -EINVAL; 2583 2584 size = __bpf_dynptr_size(ptr); 2585 2586 if (start > size || end > size) 2587 return -ERANGE; 2588 2589 ptr->offset += start; 2590 bpf_dynptr_set_size(ptr, end - start); 2591 2592 return 0; 2593 } 2594 2595 __bpf_kfunc bool bpf_dynptr_is_null(struct bpf_dynptr_kern *ptr) 2596 { 2597 return !ptr->data; 2598 } 2599 2600 __bpf_kfunc bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr) 2601 { 2602 if (!ptr->data) 2603 return false; 2604 2605 return __bpf_dynptr_is_rdonly(ptr); 2606 } 2607 2608 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) 2609 { 2610 if (!ptr->data) 2611 return -EINVAL; 2612 2613 return __bpf_dynptr_size(ptr); 2614 } 2615 2616 __bpf_kfunc int bpf_dynptr_clone(struct bpf_dynptr_kern *ptr, 2617 struct bpf_dynptr_kern *clone__uninit) 2618 { 2619 if (!ptr->data) { 2620 bpf_dynptr_set_null(clone__uninit); 2621 return -EINVAL; 2622 } 2623 2624 *clone__uninit = *ptr; 2625 2626 return 0; 2627 } 2628 2629 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj) 2630 { 2631 return obj; 2632 } 2633 2634 __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k) 2635 { 2636 return (void *)obj__ign; 2637 } 2638 2639 __bpf_kfunc void bpf_rcu_read_lock(void) 2640 { 2641 rcu_read_lock(); 2642 } 2643 2644 __bpf_kfunc void bpf_rcu_read_unlock(void) 2645 { 2646 rcu_read_unlock(); 2647 } 2648 2649 struct bpf_throw_ctx { 2650 struct bpf_prog_aux *aux; 2651 u64 sp; 2652 u64 bp; 2653 int cnt; 2654 }; 2655 2656 static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp) 2657 { 2658 struct bpf_throw_ctx *ctx = cookie; 2659 struct bpf_prog *prog; 2660 2661 if (!is_bpf_text_address(ip)) 2662 return !ctx->cnt; 2663 prog = bpf_prog_ksym_find(ip); 2664 ctx->cnt++; 2665 if (bpf_is_subprog(prog)) 2666 return true; 2667 ctx->aux = prog->aux; 2668 ctx->sp = sp; 2669 ctx->bp = bp; 2670 return false; 2671 } 2672 2673 __bpf_kfunc void bpf_throw(u64 cookie) 2674 { 2675 struct bpf_throw_ctx ctx = {}; 2676 2677 arch_bpf_stack_walk(bpf_stack_walker, &ctx); 2678 WARN_ON_ONCE(!ctx.aux); 2679 if (ctx.aux) 2680 WARN_ON_ONCE(!ctx.aux->exception_boundary); 2681 WARN_ON_ONCE(!ctx.bp); 2682 WARN_ON_ONCE(!ctx.cnt); 2683 /* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning 2684 * deeper stack depths than ctx.sp as we do not return from bpf_throw, 2685 * which skips compiler generated instrumentation to do the same. 2686 */ 2687 kasan_unpoison_task_stack_below((void *)(long)ctx.sp); 2688 ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0); 2689 WARN(1, "A call to BPF exception callback should never return\n"); 2690 } 2691 2692 __bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags) 2693 { 2694 struct bpf_async_kern *async = (struct bpf_async_kern *)wq; 2695 struct bpf_map *map = p__map; 2696 2697 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq)); 2698 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq)); 2699 2700 if (flags) 2701 return -EINVAL; 2702 2703 return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ); 2704 } 2705 2706 __bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags) 2707 { 2708 struct bpf_async_kern *async = (struct bpf_async_kern *)wq; 2709 struct bpf_work *w; 2710 2711 if (in_nmi()) 2712 return -EOPNOTSUPP; 2713 if (flags) 2714 return -EINVAL; 2715 w = READ_ONCE(async->work); 2716 if (!w || !READ_ONCE(w->cb.prog)) 2717 return -EINVAL; 2718 2719 schedule_work(&w->work); 2720 return 0; 2721 } 2722 2723 __bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq, 2724 int (callback_fn)(void *map, int *key, struct bpf_wq *wq), 2725 unsigned int flags, 2726 void *aux__ign) 2727 { 2728 struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__ign; 2729 struct bpf_async_kern *async = (struct bpf_async_kern *)wq; 2730 2731 if (flags) 2732 return -EINVAL; 2733 2734 return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ); 2735 } 2736 2737 __bpf_kfunc void bpf_preempt_disable(void) 2738 { 2739 preempt_disable(); 2740 } 2741 2742 __bpf_kfunc void bpf_preempt_enable(void) 2743 { 2744 preempt_enable(); 2745 } 2746 2747 struct bpf_iter_bits { 2748 __u64 __opaque[2]; 2749 } __aligned(8); 2750 2751 struct bpf_iter_bits_kern { 2752 union { 2753 unsigned long *bits; 2754 unsigned long bits_copy; 2755 }; 2756 u32 nr_bits; 2757 int bit; 2758 } __aligned(8); 2759 2760 /** 2761 * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area 2762 * @it: The new bpf_iter_bits to be created 2763 * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over 2764 * @nr_words: The size of the specified memory area, measured in 8-byte units. 2765 * Due to the limitation of memalloc, it can't be greater than 512. 2766 * 2767 * This function initializes a new bpf_iter_bits structure for iterating over 2768 * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It 2769 * copies the data of the memory area to the newly created bpf_iter_bits @it for 2770 * subsequent iteration operations. 2771 * 2772 * On success, 0 is returned. On failure, ERR is returned. 2773 */ 2774 __bpf_kfunc int 2775 bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words) 2776 { 2777 struct bpf_iter_bits_kern *kit = (void *)it; 2778 u32 nr_bytes = nr_words * sizeof(u64); 2779 u32 nr_bits = BYTES_TO_BITS(nr_bytes); 2780 int err; 2781 2782 BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits)); 2783 BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) != 2784 __alignof__(struct bpf_iter_bits)); 2785 2786 kit->nr_bits = 0; 2787 kit->bits_copy = 0; 2788 kit->bit = -1; 2789 2790 if (!unsafe_ptr__ign || !nr_words) 2791 return -EINVAL; 2792 2793 /* Optimization for u64 mask */ 2794 if (nr_bits == 64) { 2795 err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign); 2796 if (err) 2797 return -EFAULT; 2798 2799 kit->nr_bits = nr_bits; 2800 return 0; 2801 } 2802 2803 /* Fallback to memalloc */ 2804 kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes); 2805 if (!kit->bits) 2806 return -ENOMEM; 2807 2808 err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign); 2809 if (err) { 2810 bpf_mem_free(&bpf_global_ma, kit->bits); 2811 return err; 2812 } 2813 2814 kit->nr_bits = nr_bits; 2815 return 0; 2816 } 2817 2818 /** 2819 * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits 2820 * @it: The bpf_iter_bits to be checked 2821 * 2822 * This function returns a pointer to a number representing the value of the 2823 * next bit in the bits. 2824 * 2825 * If there are no further bits available, it returns NULL. 2826 */ 2827 __bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it) 2828 { 2829 struct bpf_iter_bits_kern *kit = (void *)it; 2830 u32 nr_bits = kit->nr_bits; 2831 const unsigned long *bits; 2832 int bit; 2833 2834 if (nr_bits == 0) 2835 return NULL; 2836 2837 bits = nr_bits == 64 ? &kit->bits_copy : kit->bits; 2838 bit = find_next_bit(bits, nr_bits, kit->bit + 1); 2839 if (bit >= nr_bits) { 2840 kit->nr_bits = 0; 2841 return NULL; 2842 } 2843 2844 kit->bit = bit; 2845 return &kit->bit; 2846 } 2847 2848 /** 2849 * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits 2850 * @it: The bpf_iter_bits to be destroyed 2851 * 2852 * Destroy the resource associated with the bpf_iter_bits. 2853 */ 2854 __bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it) 2855 { 2856 struct bpf_iter_bits_kern *kit = (void *)it; 2857 2858 if (kit->nr_bits <= 64) 2859 return; 2860 bpf_mem_free(&bpf_global_ma, kit->bits); 2861 } 2862 2863 __bpf_kfunc_end_defs(); 2864 2865 BTF_KFUNCS_START(generic_btf_ids) 2866 #ifdef CONFIG_CRASH_DUMP 2867 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) 2868 #endif 2869 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) 2870 BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) 2871 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE) 2872 BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE) 2873 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU) 2874 BTF_ID_FLAGS(func, bpf_list_push_front_impl) 2875 BTF_ID_FLAGS(func, bpf_list_push_back_impl) 2876 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL) 2877 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL) 2878 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2879 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE) 2880 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL) 2881 BTF_ID_FLAGS(func, bpf_rbtree_add_impl) 2882 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL) 2883 2884 #ifdef CONFIG_CGROUPS 2885 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2886 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE) 2887 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2888 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL) 2889 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU) 2890 BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2891 #endif 2892 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL) 2893 BTF_ID_FLAGS(func, bpf_throw) 2894 BTF_KFUNCS_END(generic_btf_ids) 2895 2896 static const struct btf_kfunc_id_set generic_kfunc_set = { 2897 .owner = THIS_MODULE, 2898 .set = &generic_btf_ids, 2899 }; 2900 2901 2902 BTF_ID_LIST(generic_dtor_ids) 2903 BTF_ID(struct, task_struct) 2904 BTF_ID(func, bpf_task_release_dtor) 2905 #ifdef CONFIG_CGROUPS 2906 BTF_ID(struct, cgroup) 2907 BTF_ID(func, bpf_cgroup_release_dtor) 2908 #endif 2909 2910 BTF_KFUNCS_START(common_btf_ids) 2911 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx) 2912 BTF_ID_FLAGS(func, bpf_rdonly_cast) 2913 BTF_ID_FLAGS(func, bpf_rcu_read_lock) 2914 BTF_ID_FLAGS(func, bpf_rcu_read_unlock) 2915 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL) 2916 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL) 2917 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW) 2918 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL) 2919 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY) 2920 BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU) 2921 BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL) 2922 BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY) 2923 #ifdef CONFIG_CGROUPS 2924 BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS) 2925 BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL) 2926 BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY) 2927 BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) 2928 BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL) 2929 BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY) 2930 #endif 2931 BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) 2932 BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL) 2933 BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY) 2934 BTF_ID_FLAGS(func, bpf_dynptr_adjust) 2935 BTF_ID_FLAGS(func, bpf_dynptr_is_null) 2936 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly) 2937 BTF_ID_FLAGS(func, bpf_dynptr_size) 2938 BTF_ID_FLAGS(func, bpf_dynptr_clone) 2939 BTF_ID_FLAGS(func, bpf_modify_return_test_tp) 2940 BTF_ID_FLAGS(func, bpf_wq_init) 2941 BTF_ID_FLAGS(func, bpf_wq_set_callback_impl) 2942 BTF_ID_FLAGS(func, bpf_wq_start) 2943 BTF_ID_FLAGS(func, bpf_preempt_disable) 2944 BTF_ID_FLAGS(func, bpf_preempt_enable) 2945 BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW) 2946 BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL) 2947 BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY) 2948 BTF_KFUNCS_END(common_btf_ids) 2949 2950 static const struct btf_kfunc_id_set common_kfunc_set = { 2951 .owner = THIS_MODULE, 2952 .set = &common_btf_ids, 2953 }; 2954 2955 static int __init kfunc_init(void) 2956 { 2957 int ret; 2958 const struct btf_id_dtor_kfunc generic_dtors[] = { 2959 { 2960 .btf_id = generic_dtor_ids[0], 2961 .kfunc_btf_id = generic_dtor_ids[1] 2962 }, 2963 #ifdef CONFIG_CGROUPS 2964 { 2965 .btf_id = generic_dtor_ids[2], 2966 .kfunc_btf_id = generic_dtor_ids[3] 2967 }, 2968 #endif 2969 }; 2970 2971 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set); 2972 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set); 2973 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set); 2974 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set); 2975 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set); 2976 ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors, 2977 ARRAY_SIZE(generic_dtors), 2978 THIS_MODULE); 2979 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); 2980 } 2981 2982 late_initcall(kfunc_init); 2983 2984 /* Get a pointer to dynptr data up to len bytes for read only access. If 2985 * the dynptr doesn't have continuous data up to len bytes, return NULL. 2986 */ 2987 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len) 2988 { 2989 return bpf_dynptr_slice(ptr, 0, NULL, len); 2990 } 2991 2992 /* Get a pointer to dynptr data up to len bytes for read write access. If 2993 * the dynptr doesn't have continuous data up to len bytes, or the dynptr 2994 * is read only, return NULL. 2995 */ 2996 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len) 2997 { 2998 if (__bpf_dynptr_is_rdonly(ptr)) 2999 return NULL; 3000 return (void *)__bpf_dynptr_data(ptr, len); 3001 } 3002