xref: /linux/kernel/bpf/helpers.c (revision 9e6d33937b42ca4867af3b341e5d09abca4a2746)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/cgroup.h>
8 #include <linux/rcupdate.h>
9 #include <linux/random.h>
10 #include <linux/smp.h>
11 #include <linux/topology.h>
12 #include <linux/ktime.h>
13 #include <linux/sched.h>
14 #include <linux/uidgid.h>
15 #include <linux/filter.h>
16 #include <linux/ctype.h>
17 #include <linux/jiffies.h>
18 #include <linux/pid_namespace.h>
19 #include <linux/poison.h>
20 #include <linux/proc_ns.h>
21 #include <linux/sched/task.h>
22 #include <linux/security.h>
23 #include <linux/btf_ids.h>
24 #include <linux/bpf_mem_alloc.h>
25 #include <linux/kasan.h>
26 
27 #include "../../lib/kstrtox.h"
28 
29 /* If kernel subsystem is allowing eBPF programs to call this function,
30  * inside its own verifier_ops->get_func_proto() callback it should return
31  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
32  *
33  * Different map implementations will rely on rcu in map methods
34  * lookup/update/delete, therefore eBPF programs must run under rcu lock
35  * if program is allowed to access maps, so check rcu_read_lock_held() or
36  * rcu_read_lock_trace_held() in all three functions.
37  */
38 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
39 {
40 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
41 		     !rcu_read_lock_bh_held());
42 	return (unsigned long) map->ops->map_lookup_elem(map, key);
43 }
44 
45 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
46 	.func		= bpf_map_lookup_elem,
47 	.gpl_only	= false,
48 	.pkt_access	= true,
49 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
50 	.arg1_type	= ARG_CONST_MAP_PTR,
51 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
52 };
53 
54 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
55 	   void *, value, u64, flags)
56 {
57 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
58 		     !rcu_read_lock_bh_held());
59 	return map->ops->map_update_elem(map, key, value, flags);
60 }
61 
62 const struct bpf_func_proto bpf_map_update_elem_proto = {
63 	.func		= bpf_map_update_elem,
64 	.gpl_only	= false,
65 	.pkt_access	= true,
66 	.ret_type	= RET_INTEGER,
67 	.arg1_type	= ARG_CONST_MAP_PTR,
68 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
69 	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
70 	.arg4_type	= ARG_ANYTHING,
71 };
72 
73 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
74 {
75 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
76 		     !rcu_read_lock_bh_held());
77 	return map->ops->map_delete_elem(map, key);
78 }
79 
80 const struct bpf_func_proto bpf_map_delete_elem_proto = {
81 	.func		= bpf_map_delete_elem,
82 	.gpl_only	= false,
83 	.pkt_access	= true,
84 	.ret_type	= RET_INTEGER,
85 	.arg1_type	= ARG_CONST_MAP_PTR,
86 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
87 };
88 
89 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
90 {
91 	return map->ops->map_push_elem(map, value, flags);
92 }
93 
94 const struct bpf_func_proto bpf_map_push_elem_proto = {
95 	.func		= bpf_map_push_elem,
96 	.gpl_only	= false,
97 	.pkt_access	= true,
98 	.ret_type	= RET_INTEGER,
99 	.arg1_type	= ARG_CONST_MAP_PTR,
100 	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
101 	.arg3_type	= ARG_ANYTHING,
102 };
103 
104 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
105 {
106 	return map->ops->map_pop_elem(map, value);
107 }
108 
109 const struct bpf_func_proto bpf_map_pop_elem_proto = {
110 	.func		= bpf_map_pop_elem,
111 	.gpl_only	= false,
112 	.ret_type	= RET_INTEGER,
113 	.arg1_type	= ARG_CONST_MAP_PTR,
114 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
115 };
116 
117 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
118 {
119 	return map->ops->map_peek_elem(map, value);
120 }
121 
122 const struct bpf_func_proto bpf_map_peek_elem_proto = {
123 	.func		= bpf_map_peek_elem,
124 	.gpl_only	= false,
125 	.ret_type	= RET_INTEGER,
126 	.arg1_type	= ARG_CONST_MAP_PTR,
127 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
128 };
129 
130 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
131 {
132 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
133 	return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
134 }
135 
136 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
137 	.func		= bpf_map_lookup_percpu_elem,
138 	.gpl_only	= false,
139 	.pkt_access	= true,
140 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
141 	.arg1_type	= ARG_CONST_MAP_PTR,
142 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
143 	.arg3_type	= ARG_ANYTHING,
144 };
145 
146 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
147 	.func		= bpf_user_rnd_u32,
148 	.gpl_only	= false,
149 	.ret_type	= RET_INTEGER,
150 };
151 
152 BPF_CALL_0(bpf_get_smp_processor_id)
153 {
154 	return smp_processor_id();
155 }
156 
157 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
158 	.func		= bpf_get_smp_processor_id,
159 	.gpl_only	= false,
160 	.ret_type	= RET_INTEGER,
161 };
162 
163 BPF_CALL_0(bpf_get_numa_node_id)
164 {
165 	return numa_node_id();
166 }
167 
168 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
169 	.func		= bpf_get_numa_node_id,
170 	.gpl_only	= false,
171 	.ret_type	= RET_INTEGER,
172 };
173 
174 BPF_CALL_0(bpf_ktime_get_ns)
175 {
176 	/* NMI safe access to clock monotonic */
177 	return ktime_get_mono_fast_ns();
178 }
179 
180 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
181 	.func		= bpf_ktime_get_ns,
182 	.gpl_only	= false,
183 	.ret_type	= RET_INTEGER,
184 };
185 
186 BPF_CALL_0(bpf_ktime_get_boot_ns)
187 {
188 	/* NMI safe access to clock boottime */
189 	return ktime_get_boot_fast_ns();
190 }
191 
192 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
193 	.func		= bpf_ktime_get_boot_ns,
194 	.gpl_only	= false,
195 	.ret_type	= RET_INTEGER,
196 };
197 
198 BPF_CALL_0(bpf_ktime_get_coarse_ns)
199 {
200 	return ktime_get_coarse_ns();
201 }
202 
203 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
204 	.func		= bpf_ktime_get_coarse_ns,
205 	.gpl_only	= false,
206 	.ret_type	= RET_INTEGER,
207 };
208 
209 BPF_CALL_0(bpf_ktime_get_tai_ns)
210 {
211 	/* NMI safe access to clock tai */
212 	return ktime_get_tai_fast_ns();
213 }
214 
215 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
216 	.func		= bpf_ktime_get_tai_ns,
217 	.gpl_only	= false,
218 	.ret_type	= RET_INTEGER,
219 };
220 
221 BPF_CALL_0(bpf_get_current_pid_tgid)
222 {
223 	struct task_struct *task = current;
224 
225 	if (unlikely(!task))
226 		return -EINVAL;
227 
228 	return (u64) task->tgid << 32 | task->pid;
229 }
230 
231 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
232 	.func		= bpf_get_current_pid_tgid,
233 	.gpl_only	= false,
234 	.ret_type	= RET_INTEGER,
235 };
236 
237 BPF_CALL_0(bpf_get_current_uid_gid)
238 {
239 	struct task_struct *task = current;
240 	kuid_t uid;
241 	kgid_t gid;
242 
243 	if (unlikely(!task))
244 		return -EINVAL;
245 
246 	current_uid_gid(&uid, &gid);
247 	return (u64) from_kgid(&init_user_ns, gid) << 32 |
248 		     from_kuid(&init_user_ns, uid);
249 }
250 
251 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
252 	.func		= bpf_get_current_uid_gid,
253 	.gpl_only	= false,
254 	.ret_type	= RET_INTEGER,
255 };
256 
257 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
258 {
259 	struct task_struct *task = current;
260 
261 	if (unlikely(!task))
262 		goto err_clear;
263 
264 	/* Verifier guarantees that size > 0 */
265 	strscpy_pad(buf, task->comm, size);
266 	return 0;
267 err_clear:
268 	memset(buf, 0, size);
269 	return -EINVAL;
270 }
271 
272 const struct bpf_func_proto bpf_get_current_comm_proto = {
273 	.func		= bpf_get_current_comm,
274 	.gpl_only	= false,
275 	.ret_type	= RET_INTEGER,
276 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
277 	.arg2_type	= ARG_CONST_SIZE,
278 };
279 
280 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
281 
282 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
283 {
284 	arch_spinlock_t *l = (void *)lock;
285 	union {
286 		__u32 val;
287 		arch_spinlock_t lock;
288 	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
289 
290 	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
291 	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
292 	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
293 	preempt_disable();
294 	arch_spin_lock(l);
295 }
296 
297 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
298 {
299 	arch_spinlock_t *l = (void *)lock;
300 
301 	arch_spin_unlock(l);
302 	preempt_enable();
303 }
304 
305 #else
306 
307 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
308 {
309 	atomic_t *l = (void *)lock;
310 
311 	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
312 	do {
313 		atomic_cond_read_relaxed(l, !VAL);
314 	} while (atomic_xchg(l, 1));
315 }
316 
317 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
318 {
319 	atomic_t *l = (void *)lock;
320 
321 	atomic_set_release(l, 0);
322 }
323 
324 #endif
325 
326 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
327 
328 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
329 {
330 	unsigned long flags;
331 
332 	local_irq_save(flags);
333 	__bpf_spin_lock(lock);
334 	__this_cpu_write(irqsave_flags, flags);
335 }
336 
337 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
338 {
339 	__bpf_spin_lock_irqsave(lock);
340 	return 0;
341 }
342 
343 const struct bpf_func_proto bpf_spin_lock_proto = {
344 	.func		= bpf_spin_lock,
345 	.gpl_only	= false,
346 	.ret_type	= RET_VOID,
347 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
348 	.arg1_btf_id    = BPF_PTR_POISON,
349 };
350 
351 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
352 {
353 	unsigned long flags;
354 
355 	flags = __this_cpu_read(irqsave_flags);
356 	__bpf_spin_unlock(lock);
357 	local_irq_restore(flags);
358 }
359 
360 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
361 {
362 	__bpf_spin_unlock_irqrestore(lock);
363 	return 0;
364 }
365 
366 const struct bpf_func_proto bpf_spin_unlock_proto = {
367 	.func		= bpf_spin_unlock,
368 	.gpl_only	= false,
369 	.ret_type	= RET_VOID,
370 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
371 	.arg1_btf_id    = BPF_PTR_POISON,
372 };
373 
374 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
375 			   bool lock_src)
376 {
377 	struct bpf_spin_lock *lock;
378 
379 	if (lock_src)
380 		lock = src + map->record->spin_lock_off;
381 	else
382 		lock = dst + map->record->spin_lock_off;
383 	preempt_disable();
384 	__bpf_spin_lock_irqsave(lock);
385 	copy_map_value(map, dst, src);
386 	__bpf_spin_unlock_irqrestore(lock);
387 	preempt_enable();
388 }
389 
390 BPF_CALL_0(bpf_jiffies64)
391 {
392 	return get_jiffies_64();
393 }
394 
395 const struct bpf_func_proto bpf_jiffies64_proto = {
396 	.func		= bpf_jiffies64,
397 	.gpl_only	= false,
398 	.ret_type	= RET_INTEGER,
399 };
400 
401 #ifdef CONFIG_CGROUPS
402 BPF_CALL_0(bpf_get_current_cgroup_id)
403 {
404 	struct cgroup *cgrp;
405 	u64 cgrp_id;
406 
407 	rcu_read_lock();
408 	cgrp = task_dfl_cgroup(current);
409 	cgrp_id = cgroup_id(cgrp);
410 	rcu_read_unlock();
411 
412 	return cgrp_id;
413 }
414 
415 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
416 	.func		= bpf_get_current_cgroup_id,
417 	.gpl_only	= false,
418 	.ret_type	= RET_INTEGER,
419 };
420 
421 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
422 {
423 	struct cgroup *cgrp;
424 	struct cgroup *ancestor;
425 	u64 cgrp_id;
426 
427 	rcu_read_lock();
428 	cgrp = task_dfl_cgroup(current);
429 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
430 	cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
431 	rcu_read_unlock();
432 
433 	return cgrp_id;
434 }
435 
436 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
437 	.func		= bpf_get_current_ancestor_cgroup_id,
438 	.gpl_only	= false,
439 	.ret_type	= RET_INTEGER,
440 	.arg1_type	= ARG_ANYTHING,
441 };
442 #endif /* CONFIG_CGROUPS */
443 
444 #define BPF_STRTOX_BASE_MASK 0x1F
445 
446 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
447 			  unsigned long long *res, bool *is_negative)
448 {
449 	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
450 	const char *cur_buf = buf;
451 	size_t cur_len = buf_len;
452 	unsigned int consumed;
453 	size_t val_len;
454 	char str[64];
455 
456 	if (!buf || !buf_len || !res || !is_negative)
457 		return -EINVAL;
458 
459 	if (base != 0 && base != 8 && base != 10 && base != 16)
460 		return -EINVAL;
461 
462 	if (flags & ~BPF_STRTOX_BASE_MASK)
463 		return -EINVAL;
464 
465 	while (cur_buf < buf + buf_len && isspace(*cur_buf))
466 		++cur_buf;
467 
468 	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
469 	if (*is_negative)
470 		++cur_buf;
471 
472 	consumed = cur_buf - buf;
473 	cur_len -= consumed;
474 	if (!cur_len)
475 		return -EINVAL;
476 
477 	cur_len = min(cur_len, sizeof(str) - 1);
478 	memcpy(str, cur_buf, cur_len);
479 	str[cur_len] = '\0';
480 	cur_buf = str;
481 
482 	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
483 	val_len = _parse_integer(cur_buf, base, res);
484 
485 	if (val_len & KSTRTOX_OVERFLOW)
486 		return -ERANGE;
487 
488 	if (val_len == 0)
489 		return -EINVAL;
490 
491 	cur_buf += val_len;
492 	consumed += cur_buf - str;
493 
494 	return consumed;
495 }
496 
497 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
498 			 long long *res)
499 {
500 	unsigned long long _res;
501 	bool is_negative;
502 	int err;
503 
504 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
505 	if (err < 0)
506 		return err;
507 	if (is_negative) {
508 		if ((long long)-_res > 0)
509 			return -ERANGE;
510 		*res = -_res;
511 	} else {
512 		if ((long long)_res < 0)
513 			return -ERANGE;
514 		*res = _res;
515 	}
516 	return err;
517 }
518 
519 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
520 	   long *, res)
521 {
522 	long long _res;
523 	int err;
524 
525 	err = __bpf_strtoll(buf, buf_len, flags, &_res);
526 	if (err < 0)
527 		return err;
528 	if (_res != (long)_res)
529 		return -ERANGE;
530 	*res = _res;
531 	return err;
532 }
533 
534 const struct bpf_func_proto bpf_strtol_proto = {
535 	.func		= bpf_strtol,
536 	.gpl_only	= false,
537 	.ret_type	= RET_INTEGER,
538 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
539 	.arg2_type	= ARG_CONST_SIZE,
540 	.arg3_type	= ARG_ANYTHING,
541 	.arg4_type	= ARG_PTR_TO_LONG,
542 };
543 
544 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
545 	   unsigned long *, res)
546 {
547 	unsigned long long _res;
548 	bool is_negative;
549 	int err;
550 
551 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
552 	if (err < 0)
553 		return err;
554 	if (is_negative)
555 		return -EINVAL;
556 	if (_res != (unsigned long)_res)
557 		return -ERANGE;
558 	*res = _res;
559 	return err;
560 }
561 
562 const struct bpf_func_proto bpf_strtoul_proto = {
563 	.func		= bpf_strtoul,
564 	.gpl_only	= false,
565 	.ret_type	= RET_INTEGER,
566 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
567 	.arg2_type	= ARG_CONST_SIZE,
568 	.arg3_type	= ARG_ANYTHING,
569 	.arg4_type	= ARG_PTR_TO_LONG,
570 };
571 
572 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
573 {
574 	return strncmp(s1, s2, s1_sz);
575 }
576 
577 static const struct bpf_func_proto bpf_strncmp_proto = {
578 	.func		= bpf_strncmp,
579 	.gpl_only	= false,
580 	.ret_type	= RET_INTEGER,
581 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
582 	.arg2_type	= ARG_CONST_SIZE,
583 	.arg3_type	= ARG_PTR_TO_CONST_STR,
584 };
585 
586 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
587 	   struct bpf_pidns_info *, nsdata, u32, size)
588 {
589 	struct task_struct *task = current;
590 	struct pid_namespace *pidns;
591 	int err = -EINVAL;
592 
593 	if (unlikely(size != sizeof(struct bpf_pidns_info)))
594 		goto clear;
595 
596 	if (unlikely((u64)(dev_t)dev != dev))
597 		goto clear;
598 
599 	if (unlikely(!task))
600 		goto clear;
601 
602 	pidns = task_active_pid_ns(task);
603 	if (unlikely(!pidns)) {
604 		err = -ENOENT;
605 		goto clear;
606 	}
607 
608 	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
609 		goto clear;
610 
611 	nsdata->pid = task_pid_nr_ns(task, pidns);
612 	nsdata->tgid = task_tgid_nr_ns(task, pidns);
613 	return 0;
614 clear:
615 	memset((void *)nsdata, 0, (size_t) size);
616 	return err;
617 }
618 
619 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
620 	.func		= bpf_get_ns_current_pid_tgid,
621 	.gpl_only	= false,
622 	.ret_type	= RET_INTEGER,
623 	.arg1_type	= ARG_ANYTHING,
624 	.arg2_type	= ARG_ANYTHING,
625 	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
626 	.arg4_type      = ARG_CONST_SIZE,
627 };
628 
629 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
630 	.func		= bpf_get_raw_cpu_id,
631 	.gpl_only	= false,
632 	.ret_type	= RET_INTEGER,
633 };
634 
635 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
636 	   u64, flags, void *, data, u64, size)
637 {
638 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
639 		return -EINVAL;
640 
641 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
642 }
643 
644 const struct bpf_func_proto bpf_event_output_data_proto =  {
645 	.func		= bpf_event_output_data,
646 	.gpl_only       = true,
647 	.ret_type       = RET_INTEGER,
648 	.arg1_type      = ARG_PTR_TO_CTX,
649 	.arg2_type      = ARG_CONST_MAP_PTR,
650 	.arg3_type      = ARG_ANYTHING,
651 	.arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
652 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
653 };
654 
655 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
656 	   const void __user *, user_ptr)
657 {
658 	int ret = copy_from_user(dst, user_ptr, size);
659 
660 	if (unlikely(ret)) {
661 		memset(dst, 0, size);
662 		ret = -EFAULT;
663 	}
664 
665 	return ret;
666 }
667 
668 const struct bpf_func_proto bpf_copy_from_user_proto = {
669 	.func		= bpf_copy_from_user,
670 	.gpl_only	= false,
671 	.might_sleep	= true,
672 	.ret_type	= RET_INTEGER,
673 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
674 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
675 	.arg3_type	= ARG_ANYTHING,
676 };
677 
678 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
679 	   const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
680 {
681 	int ret;
682 
683 	/* flags is not used yet */
684 	if (unlikely(flags))
685 		return -EINVAL;
686 
687 	if (unlikely(!size))
688 		return 0;
689 
690 	ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
691 	if (ret == size)
692 		return 0;
693 
694 	memset(dst, 0, size);
695 	/* Return -EFAULT for partial read */
696 	return ret < 0 ? ret : -EFAULT;
697 }
698 
699 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
700 	.func		= bpf_copy_from_user_task,
701 	.gpl_only	= true,
702 	.might_sleep	= true,
703 	.ret_type	= RET_INTEGER,
704 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
705 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
706 	.arg3_type	= ARG_ANYTHING,
707 	.arg4_type	= ARG_PTR_TO_BTF_ID,
708 	.arg4_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
709 	.arg5_type	= ARG_ANYTHING
710 };
711 
712 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
713 {
714 	if (cpu >= nr_cpu_ids)
715 		return (unsigned long)NULL;
716 
717 	return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
718 }
719 
720 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
721 	.func		= bpf_per_cpu_ptr,
722 	.gpl_only	= false,
723 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
724 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
725 	.arg2_type	= ARG_ANYTHING,
726 };
727 
728 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
729 {
730 	return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
731 }
732 
733 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
734 	.func		= bpf_this_cpu_ptr,
735 	.gpl_only	= false,
736 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
737 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
738 };
739 
740 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
741 		size_t bufsz)
742 {
743 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
744 
745 	buf[0] = 0;
746 
747 	switch (fmt_ptype) {
748 	case 's':
749 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
750 		if ((unsigned long)unsafe_ptr < TASK_SIZE)
751 			return strncpy_from_user_nofault(buf, user_ptr, bufsz);
752 		fallthrough;
753 #endif
754 	case 'k':
755 		return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
756 	case 'u':
757 		return strncpy_from_user_nofault(buf, user_ptr, bufsz);
758 	}
759 
760 	return -EINVAL;
761 }
762 
763 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
764  * arguments representation.
765  */
766 #define MAX_BPRINTF_BIN_ARGS	512
767 
768 /* Support executing three nested bprintf helper calls on a given CPU */
769 #define MAX_BPRINTF_NEST_LEVEL	3
770 struct bpf_bprintf_buffers {
771 	char bin_args[MAX_BPRINTF_BIN_ARGS];
772 	char buf[MAX_BPRINTF_BUF];
773 };
774 
775 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
776 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
777 
778 static int try_get_buffers(struct bpf_bprintf_buffers **bufs)
779 {
780 	int nest_level;
781 
782 	preempt_disable();
783 	nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
784 	if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
785 		this_cpu_dec(bpf_bprintf_nest_level);
786 		preempt_enable();
787 		return -EBUSY;
788 	}
789 	*bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
790 
791 	return 0;
792 }
793 
794 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
795 {
796 	if (!data->bin_args && !data->buf)
797 		return;
798 	if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
799 		return;
800 	this_cpu_dec(bpf_bprintf_nest_level);
801 	preempt_enable();
802 }
803 
804 /*
805  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
806  *
807  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
808  *
809  * This can be used in two ways:
810  * - Format string verification only: when data->get_bin_args is false
811  * - Arguments preparation: in addition to the above verification, it writes in
812  *   data->bin_args a binary representation of arguments usable by bstr_printf
813  *   where pointers from BPF have been sanitized.
814  *
815  * In argument preparation mode, if 0 is returned, safe temporary buffers are
816  * allocated and bpf_bprintf_cleanup should be called to free them after use.
817  */
818 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
819 			u32 num_args, struct bpf_bprintf_data *data)
820 {
821 	bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
822 	char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
823 	struct bpf_bprintf_buffers *buffers = NULL;
824 	size_t sizeof_cur_arg, sizeof_cur_ip;
825 	int err, i, num_spec = 0;
826 	u64 cur_arg;
827 	char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
828 
829 	fmt_end = strnchr(fmt, fmt_size, 0);
830 	if (!fmt_end)
831 		return -EINVAL;
832 	fmt_size = fmt_end - fmt;
833 
834 	if (get_buffers && try_get_buffers(&buffers))
835 		return -EBUSY;
836 
837 	if (data->get_bin_args) {
838 		if (num_args)
839 			tmp_buf = buffers->bin_args;
840 		tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
841 		data->bin_args = (u32 *)tmp_buf;
842 	}
843 
844 	if (data->get_buf)
845 		data->buf = buffers->buf;
846 
847 	for (i = 0; i < fmt_size; i++) {
848 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
849 			err = -EINVAL;
850 			goto out;
851 		}
852 
853 		if (fmt[i] != '%')
854 			continue;
855 
856 		if (fmt[i + 1] == '%') {
857 			i++;
858 			continue;
859 		}
860 
861 		if (num_spec >= num_args) {
862 			err = -EINVAL;
863 			goto out;
864 		}
865 
866 		/* The string is zero-terminated so if fmt[i] != 0, we can
867 		 * always access fmt[i + 1], in the worst case it will be a 0
868 		 */
869 		i++;
870 
871 		/* skip optional "[0 +-][num]" width formatting field */
872 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
873 		       fmt[i] == ' ')
874 			i++;
875 		if (fmt[i] >= '1' && fmt[i] <= '9') {
876 			i++;
877 			while (fmt[i] >= '0' && fmt[i] <= '9')
878 				i++;
879 		}
880 
881 		if (fmt[i] == 'p') {
882 			sizeof_cur_arg = sizeof(long);
883 
884 			if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
885 			    fmt[i + 2] == 's') {
886 				fmt_ptype = fmt[i + 1];
887 				i += 2;
888 				goto fmt_str;
889 			}
890 
891 			if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
892 			    ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
893 			    fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
894 			    fmt[i + 1] == 'S') {
895 				/* just kernel pointers */
896 				if (tmp_buf)
897 					cur_arg = raw_args[num_spec];
898 				i++;
899 				goto nocopy_fmt;
900 			}
901 
902 			if (fmt[i + 1] == 'B') {
903 				if (tmp_buf)  {
904 					err = snprintf(tmp_buf,
905 						       (tmp_buf_end - tmp_buf),
906 						       "%pB",
907 						       (void *)(long)raw_args[num_spec]);
908 					tmp_buf += (err + 1);
909 				}
910 
911 				i++;
912 				num_spec++;
913 				continue;
914 			}
915 
916 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
917 			if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
918 			    (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
919 				err = -EINVAL;
920 				goto out;
921 			}
922 
923 			i += 2;
924 			if (!tmp_buf)
925 				goto nocopy_fmt;
926 
927 			sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
928 			if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
929 				err = -ENOSPC;
930 				goto out;
931 			}
932 
933 			unsafe_ptr = (char *)(long)raw_args[num_spec];
934 			err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
935 						       sizeof_cur_ip);
936 			if (err < 0)
937 				memset(cur_ip, 0, sizeof_cur_ip);
938 
939 			/* hack: bstr_printf expects IP addresses to be
940 			 * pre-formatted as strings, ironically, the easiest way
941 			 * to do that is to call snprintf.
942 			 */
943 			ip_spec[2] = fmt[i - 1];
944 			ip_spec[3] = fmt[i];
945 			err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
946 				       ip_spec, &cur_ip);
947 
948 			tmp_buf += err + 1;
949 			num_spec++;
950 
951 			continue;
952 		} else if (fmt[i] == 's') {
953 			fmt_ptype = fmt[i];
954 fmt_str:
955 			if (fmt[i + 1] != 0 &&
956 			    !isspace(fmt[i + 1]) &&
957 			    !ispunct(fmt[i + 1])) {
958 				err = -EINVAL;
959 				goto out;
960 			}
961 
962 			if (!tmp_buf)
963 				goto nocopy_fmt;
964 
965 			if (tmp_buf_end == tmp_buf) {
966 				err = -ENOSPC;
967 				goto out;
968 			}
969 
970 			unsafe_ptr = (char *)(long)raw_args[num_spec];
971 			err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
972 						    fmt_ptype,
973 						    tmp_buf_end - tmp_buf);
974 			if (err < 0) {
975 				tmp_buf[0] = '\0';
976 				err = 1;
977 			}
978 
979 			tmp_buf += err;
980 			num_spec++;
981 
982 			continue;
983 		} else if (fmt[i] == 'c') {
984 			if (!tmp_buf)
985 				goto nocopy_fmt;
986 
987 			if (tmp_buf_end == tmp_buf) {
988 				err = -ENOSPC;
989 				goto out;
990 			}
991 
992 			*tmp_buf = raw_args[num_spec];
993 			tmp_buf++;
994 			num_spec++;
995 
996 			continue;
997 		}
998 
999 		sizeof_cur_arg = sizeof(int);
1000 
1001 		if (fmt[i] == 'l') {
1002 			sizeof_cur_arg = sizeof(long);
1003 			i++;
1004 		}
1005 		if (fmt[i] == 'l') {
1006 			sizeof_cur_arg = sizeof(long long);
1007 			i++;
1008 		}
1009 
1010 		if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1011 		    fmt[i] != 'x' && fmt[i] != 'X') {
1012 			err = -EINVAL;
1013 			goto out;
1014 		}
1015 
1016 		if (tmp_buf)
1017 			cur_arg = raw_args[num_spec];
1018 nocopy_fmt:
1019 		if (tmp_buf) {
1020 			tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1021 			if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1022 				err = -ENOSPC;
1023 				goto out;
1024 			}
1025 
1026 			if (sizeof_cur_arg == 8) {
1027 				*(u32 *)tmp_buf = *(u32 *)&cur_arg;
1028 				*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1029 			} else {
1030 				*(u32 *)tmp_buf = (u32)(long)cur_arg;
1031 			}
1032 			tmp_buf += sizeof_cur_arg;
1033 		}
1034 		num_spec++;
1035 	}
1036 
1037 	err = 0;
1038 out:
1039 	if (err)
1040 		bpf_bprintf_cleanup(data);
1041 	return err;
1042 }
1043 
1044 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1045 	   const void *, args, u32, data_len)
1046 {
1047 	struct bpf_bprintf_data data = {
1048 		.get_bin_args	= true,
1049 	};
1050 	int err, num_args;
1051 
1052 	if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1053 	    (data_len && !args))
1054 		return -EINVAL;
1055 	num_args = data_len / 8;
1056 
1057 	/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1058 	 * can safely give an unbounded size.
1059 	 */
1060 	err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1061 	if (err < 0)
1062 		return err;
1063 
1064 	err = bstr_printf(str, str_size, fmt, data.bin_args);
1065 
1066 	bpf_bprintf_cleanup(&data);
1067 
1068 	return err + 1;
1069 }
1070 
1071 const struct bpf_func_proto bpf_snprintf_proto = {
1072 	.func		= bpf_snprintf,
1073 	.gpl_only	= true,
1074 	.ret_type	= RET_INTEGER,
1075 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1076 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1077 	.arg3_type	= ARG_PTR_TO_CONST_STR,
1078 	.arg4_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1079 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1080 };
1081 
1082 struct bpf_async_cb {
1083 	struct bpf_map *map;
1084 	struct bpf_prog *prog;
1085 	void __rcu *callback_fn;
1086 	void *value;
1087 	struct rcu_head rcu;
1088 	u64 flags;
1089 };
1090 
1091 /* BPF map elements can contain 'struct bpf_timer'.
1092  * Such map owns all of its BPF timers.
1093  * 'struct bpf_timer' is allocated as part of map element allocation
1094  * and it's zero initialized.
1095  * That space is used to keep 'struct bpf_async_kern'.
1096  * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1097  * remembers 'struct bpf_map *' pointer it's part of.
1098  * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1099  * bpf_timer_start() arms the timer.
1100  * If user space reference to a map goes to zero at this point
1101  * ops->map_release_uref callback is responsible for cancelling the timers,
1102  * freeing their memory, and decrementing prog's refcnts.
1103  * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1104  * Inner maps can contain bpf timers as well. ops->map_release_uref is
1105  * freeing the timers when inner map is replaced or deleted by user space.
1106  */
1107 struct bpf_hrtimer {
1108 	struct bpf_async_cb cb;
1109 	struct hrtimer timer;
1110 };
1111 
1112 struct bpf_work {
1113 	struct bpf_async_cb cb;
1114 	struct work_struct work;
1115 	struct work_struct delete_work;
1116 };
1117 
1118 /* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */
1119 struct bpf_async_kern {
1120 	union {
1121 		struct bpf_async_cb *cb;
1122 		struct bpf_hrtimer *timer;
1123 		struct bpf_work *work;
1124 	};
1125 	/* bpf_spin_lock is used here instead of spinlock_t to make
1126 	 * sure that it always fits into space reserved by struct bpf_timer
1127 	 * regardless of LOCKDEP and spinlock debug flags.
1128 	 */
1129 	struct bpf_spin_lock lock;
1130 } __attribute__((aligned(8)));
1131 
1132 enum bpf_async_type {
1133 	BPF_ASYNC_TYPE_TIMER = 0,
1134 	BPF_ASYNC_TYPE_WQ,
1135 };
1136 
1137 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1138 
1139 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1140 {
1141 	struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1142 	struct bpf_map *map = t->cb.map;
1143 	void *value = t->cb.value;
1144 	bpf_callback_t callback_fn;
1145 	void *key;
1146 	u32 idx;
1147 
1148 	BTF_TYPE_EMIT(struct bpf_timer);
1149 	callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held());
1150 	if (!callback_fn)
1151 		goto out;
1152 
1153 	/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1154 	 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1155 	 * Remember the timer this callback is servicing to prevent
1156 	 * deadlock if callback_fn() calls bpf_timer_cancel() or
1157 	 * bpf_map_delete_elem() on the same timer.
1158 	 */
1159 	this_cpu_write(hrtimer_running, t);
1160 	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1161 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1162 
1163 		/* compute the key */
1164 		idx = ((char *)value - array->value) / array->elem_size;
1165 		key = &idx;
1166 	} else { /* hash or lru */
1167 		key = value - round_up(map->key_size, 8);
1168 	}
1169 
1170 	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1171 	/* The verifier checked that return value is zero. */
1172 
1173 	this_cpu_write(hrtimer_running, NULL);
1174 out:
1175 	return HRTIMER_NORESTART;
1176 }
1177 
1178 static void bpf_wq_work(struct work_struct *work)
1179 {
1180 	struct bpf_work *w = container_of(work, struct bpf_work, work);
1181 	struct bpf_async_cb *cb = &w->cb;
1182 	struct bpf_map *map = cb->map;
1183 	bpf_callback_t callback_fn;
1184 	void *value = cb->value;
1185 	void *key;
1186 	u32 idx;
1187 
1188 	BTF_TYPE_EMIT(struct bpf_wq);
1189 
1190 	callback_fn = READ_ONCE(cb->callback_fn);
1191 	if (!callback_fn)
1192 		return;
1193 
1194 	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1195 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1196 
1197 		/* compute the key */
1198 		idx = ((char *)value - array->value) / array->elem_size;
1199 		key = &idx;
1200 	} else { /* hash or lru */
1201 		key = value - round_up(map->key_size, 8);
1202 	}
1203 
1204         rcu_read_lock_trace();
1205         migrate_disable();
1206 
1207 	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1208 
1209 	migrate_enable();
1210 	rcu_read_unlock_trace();
1211 }
1212 
1213 static void bpf_wq_delete_work(struct work_struct *work)
1214 {
1215 	struct bpf_work *w = container_of(work, struct bpf_work, delete_work);
1216 
1217 	cancel_work_sync(&w->work);
1218 
1219 	kfree_rcu(w, cb.rcu);
1220 }
1221 
1222 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags,
1223 			    enum bpf_async_type type)
1224 {
1225 	struct bpf_async_cb *cb;
1226 	struct bpf_hrtimer *t;
1227 	struct bpf_work *w;
1228 	clockid_t clockid;
1229 	size_t size;
1230 	int ret = 0;
1231 
1232 	if (in_nmi())
1233 		return -EOPNOTSUPP;
1234 
1235 	switch (type) {
1236 	case BPF_ASYNC_TYPE_TIMER:
1237 		size = sizeof(struct bpf_hrtimer);
1238 		break;
1239 	case BPF_ASYNC_TYPE_WQ:
1240 		size = sizeof(struct bpf_work);
1241 		break;
1242 	default:
1243 		return -EINVAL;
1244 	}
1245 
1246 	__bpf_spin_lock_irqsave(&async->lock);
1247 	t = async->timer;
1248 	if (t) {
1249 		ret = -EBUSY;
1250 		goto out;
1251 	}
1252 
1253 	/* allocate hrtimer via map_kmalloc to use memcg accounting */
1254 	cb = bpf_map_kmalloc_node(map, size, GFP_ATOMIC, map->numa_node);
1255 	if (!cb) {
1256 		ret = -ENOMEM;
1257 		goto out;
1258 	}
1259 
1260 	switch (type) {
1261 	case BPF_ASYNC_TYPE_TIMER:
1262 		clockid = flags & (MAX_CLOCKS - 1);
1263 		t = (struct bpf_hrtimer *)cb;
1264 
1265 		hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1266 		t->timer.function = bpf_timer_cb;
1267 		cb->value = (void *)async - map->record->timer_off;
1268 		break;
1269 	case BPF_ASYNC_TYPE_WQ:
1270 		w = (struct bpf_work *)cb;
1271 
1272 		INIT_WORK(&w->work, bpf_wq_work);
1273 		INIT_WORK(&w->delete_work, bpf_wq_delete_work);
1274 		cb->value = (void *)async - map->record->wq_off;
1275 		break;
1276 	}
1277 	cb->map = map;
1278 	cb->prog = NULL;
1279 	cb->flags = flags;
1280 	rcu_assign_pointer(cb->callback_fn, NULL);
1281 
1282 	WRITE_ONCE(async->cb, cb);
1283 	/* Guarantee the order between async->cb and map->usercnt. So
1284 	 * when there are concurrent uref release and bpf timer init, either
1285 	 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1286 	 * timer or atomic64_read() below returns a zero usercnt.
1287 	 */
1288 	smp_mb();
1289 	if (!atomic64_read(&map->usercnt)) {
1290 		/* maps with timers must be either held by user space
1291 		 * or pinned in bpffs.
1292 		 */
1293 		WRITE_ONCE(async->cb, NULL);
1294 		kfree(cb);
1295 		ret = -EPERM;
1296 	}
1297 out:
1298 	__bpf_spin_unlock_irqrestore(&async->lock);
1299 	return ret;
1300 }
1301 
1302 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map,
1303 	   u64, flags)
1304 {
1305 	clock_t clockid = flags & (MAX_CLOCKS - 1);
1306 
1307 	BUILD_BUG_ON(MAX_CLOCKS != 16);
1308 	BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer));
1309 	BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer));
1310 
1311 	if (flags >= MAX_CLOCKS ||
1312 	    /* similar to timerfd except _ALARM variants are not supported */
1313 	    (clockid != CLOCK_MONOTONIC &&
1314 	     clockid != CLOCK_REALTIME &&
1315 	     clockid != CLOCK_BOOTTIME))
1316 		return -EINVAL;
1317 
1318 	return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER);
1319 }
1320 
1321 static const struct bpf_func_proto bpf_timer_init_proto = {
1322 	.func		= bpf_timer_init,
1323 	.gpl_only	= true,
1324 	.ret_type	= RET_INTEGER,
1325 	.arg1_type	= ARG_PTR_TO_TIMER,
1326 	.arg2_type	= ARG_CONST_MAP_PTR,
1327 	.arg3_type	= ARG_ANYTHING,
1328 };
1329 
1330 static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn,
1331 				    struct bpf_prog_aux *aux, unsigned int flags,
1332 				    enum bpf_async_type type)
1333 {
1334 	struct bpf_prog *prev, *prog = aux->prog;
1335 	struct bpf_async_cb *cb;
1336 	int ret = 0;
1337 
1338 	if (in_nmi())
1339 		return -EOPNOTSUPP;
1340 	__bpf_spin_lock_irqsave(&async->lock);
1341 	cb = async->cb;
1342 	if (!cb) {
1343 		ret = -EINVAL;
1344 		goto out;
1345 	}
1346 	if (!atomic64_read(&cb->map->usercnt)) {
1347 		/* maps with timers must be either held by user space
1348 		 * or pinned in bpffs. Otherwise timer might still be
1349 		 * running even when bpf prog is detached and user space
1350 		 * is gone, since map_release_uref won't ever be called.
1351 		 */
1352 		ret = -EPERM;
1353 		goto out;
1354 	}
1355 	prev = cb->prog;
1356 	if (prev != prog) {
1357 		/* Bump prog refcnt once. Every bpf_timer_set_callback()
1358 		 * can pick different callback_fn-s within the same prog.
1359 		 */
1360 		prog = bpf_prog_inc_not_zero(prog);
1361 		if (IS_ERR(prog)) {
1362 			ret = PTR_ERR(prog);
1363 			goto out;
1364 		}
1365 		if (prev)
1366 			/* Drop prev prog refcnt when swapping with new prog */
1367 			bpf_prog_put(prev);
1368 		cb->prog = prog;
1369 	}
1370 	rcu_assign_pointer(cb->callback_fn, callback_fn);
1371 out:
1372 	__bpf_spin_unlock_irqrestore(&async->lock);
1373 	return ret;
1374 }
1375 
1376 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn,
1377 	   struct bpf_prog_aux *, aux)
1378 {
1379 	return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER);
1380 }
1381 
1382 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1383 	.func		= bpf_timer_set_callback,
1384 	.gpl_only	= true,
1385 	.ret_type	= RET_INTEGER,
1386 	.arg1_type	= ARG_PTR_TO_TIMER,
1387 	.arg2_type	= ARG_PTR_TO_FUNC,
1388 };
1389 
1390 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags)
1391 {
1392 	struct bpf_hrtimer *t;
1393 	int ret = 0;
1394 	enum hrtimer_mode mode;
1395 
1396 	if (in_nmi())
1397 		return -EOPNOTSUPP;
1398 	if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN))
1399 		return -EINVAL;
1400 	__bpf_spin_lock_irqsave(&timer->lock);
1401 	t = timer->timer;
1402 	if (!t || !t->cb.prog) {
1403 		ret = -EINVAL;
1404 		goto out;
1405 	}
1406 
1407 	if (flags & BPF_F_TIMER_ABS)
1408 		mode = HRTIMER_MODE_ABS_SOFT;
1409 	else
1410 		mode = HRTIMER_MODE_REL_SOFT;
1411 
1412 	if (flags & BPF_F_TIMER_CPU_PIN)
1413 		mode |= HRTIMER_MODE_PINNED;
1414 
1415 	hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
1416 out:
1417 	__bpf_spin_unlock_irqrestore(&timer->lock);
1418 	return ret;
1419 }
1420 
1421 static const struct bpf_func_proto bpf_timer_start_proto = {
1422 	.func		= bpf_timer_start,
1423 	.gpl_only	= true,
1424 	.ret_type	= RET_INTEGER,
1425 	.arg1_type	= ARG_PTR_TO_TIMER,
1426 	.arg2_type	= ARG_ANYTHING,
1427 	.arg3_type	= ARG_ANYTHING,
1428 };
1429 
1430 static void drop_prog_refcnt(struct bpf_async_cb *async)
1431 {
1432 	struct bpf_prog *prog = async->prog;
1433 
1434 	if (prog) {
1435 		bpf_prog_put(prog);
1436 		async->prog = NULL;
1437 		rcu_assign_pointer(async->callback_fn, NULL);
1438 	}
1439 }
1440 
1441 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer)
1442 {
1443 	struct bpf_hrtimer *t;
1444 	int ret = 0;
1445 
1446 	if (in_nmi())
1447 		return -EOPNOTSUPP;
1448 	rcu_read_lock();
1449 	__bpf_spin_lock_irqsave(&timer->lock);
1450 	t = timer->timer;
1451 	if (!t) {
1452 		ret = -EINVAL;
1453 		goto out;
1454 	}
1455 	if (this_cpu_read(hrtimer_running) == t) {
1456 		/* If bpf callback_fn is trying to bpf_timer_cancel()
1457 		 * its own timer the hrtimer_cancel() will deadlock
1458 		 * since it waits for callback_fn to finish
1459 		 */
1460 		ret = -EDEADLK;
1461 		goto out;
1462 	}
1463 	drop_prog_refcnt(&t->cb);
1464 out:
1465 	__bpf_spin_unlock_irqrestore(&timer->lock);
1466 	/* Cancel the timer and wait for associated callback to finish
1467 	 * if it was running.
1468 	 */
1469 	ret = ret ?: hrtimer_cancel(&t->timer);
1470 	rcu_read_unlock();
1471 	return ret;
1472 }
1473 
1474 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1475 	.func		= bpf_timer_cancel,
1476 	.gpl_only	= true,
1477 	.ret_type	= RET_INTEGER,
1478 	.arg1_type	= ARG_PTR_TO_TIMER,
1479 };
1480 
1481 static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async)
1482 {
1483 	struct bpf_async_cb *cb;
1484 
1485 	/* Performance optimization: read async->cb without lock first. */
1486 	if (!READ_ONCE(async->cb))
1487 		return NULL;
1488 
1489 	__bpf_spin_lock_irqsave(&async->lock);
1490 	/* re-read it under lock */
1491 	cb = async->cb;
1492 	if (!cb)
1493 		goto out;
1494 	drop_prog_refcnt(cb);
1495 	/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1496 	 * this timer, since it won't be initialized.
1497 	 */
1498 	WRITE_ONCE(async->cb, NULL);
1499 out:
1500 	__bpf_spin_unlock_irqrestore(&async->lock);
1501 	return cb;
1502 }
1503 
1504 /* This function is called by map_delete/update_elem for individual element and
1505  * by ops->map_release_uref when the user space reference to a map reaches zero.
1506  */
1507 void bpf_timer_cancel_and_free(void *val)
1508 {
1509 	struct bpf_hrtimer *t;
1510 
1511 	t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val);
1512 
1513 	if (!t)
1514 		return;
1515 	/* Cancel the timer and wait for callback to complete if it was running.
1516 	 * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1517 	 * right after for both preallocated and non-preallocated maps.
1518 	 * The async->cb = NULL was already done and no code path can
1519 	 * see address 't' anymore.
1520 	 *
1521 	 * Check that bpf_map_delete/update_elem() wasn't called from timer
1522 	 * callback_fn. In such case don't call hrtimer_cancel() (since it will
1523 	 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1524 	 * return -1). Though callback_fn is still running on this cpu it's
1525 	 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1526 	 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1527 	 * since async->cb = NULL was already done. The timer will be
1528 	 * effectively cancelled because bpf_timer_cb() will return
1529 	 * HRTIMER_NORESTART.
1530 	 */
1531 	if (this_cpu_read(hrtimer_running) != t)
1532 		hrtimer_cancel(&t->timer);
1533 	kfree_rcu(t, cb.rcu);
1534 }
1535 
1536 /* This function is called by map_delete/update_elem for individual element and
1537  * by ops->map_release_uref when the user space reference to a map reaches zero.
1538  */
1539 void bpf_wq_cancel_and_free(void *val)
1540 {
1541 	struct bpf_work *work;
1542 
1543 	BTF_TYPE_EMIT(struct bpf_wq);
1544 
1545 	work = (struct bpf_work *)__bpf_async_cancel_and_free(val);
1546 	if (!work)
1547 		return;
1548 	/* Trigger cancel of the sleepable work, but *do not* wait for
1549 	 * it to finish if it was running as we might not be in a
1550 	 * sleepable context.
1551 	 * kfree will be called once the work has finished.
1552 	 */
1553 	schedule_work(&work->delete_work);
1554 }
1555 
1556 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
1557 {
1558 	unsigned long *kptr = map_value;
1559 
1560 	/* This helper may be inlined by verifier. */
1561 	return xchg(kptr, (unsigned long)ptr);
1562 }
1563 
1564 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1565  * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1566  * denote type that verifier will determine.
1567  */
1568 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1569 	.func         = bpf_kptr_xchg,
1570 	.gpl_only     = false,
1571 	.ret_type     = RET_PTR_TO_BTF_ID_OR_NULL,
1572 	.ret_btf_id   = BPF_PTR_POISON,
1573 	.arg1_type    = ARG_PTR_TO_KPTR,
1574 	.arg2_type    = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1575 	.arg2_btf_id  = BPF_PTR_POISON,
1576 };
1577 
1578 /* Since the upper 8 bits of dynptr->size is reserved, the
1579  * maximum supported size is 2^24 - 1.
1580  */
1581 #define DYNPTR_MAX_SIZE	((1UL << 24) - 1)
1582 #define DYNPTR_TYPE_SHIFT	28
1583 #define DYNPTR_SIZE_MASK	0xFFFFFF
1584 #define DYNPTR_RDONLY_BIT	BIT(31)
1585 
1586 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1587 {
1588 	return ptr->size & DYNPTR_RDONLY_BIT;
1589 }
1590 
1591 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1592 {
1593 	ptr->size |= DYNPTR_RDONLY_BIT;
1594 }
1595 
1596 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1597 {
1598 	ptr->size |= type << DYNPTR_TYPE_SHIFT;
1599 }
1600 
1601 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1602 {
1603 	return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1604 }
1605 
1606 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1607 {
1608 	return ptr->size & DYNPTR_SIZE_MASK;
1609 }
1610 
1611 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size)
1612 {
1613 	u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1614 
1615 	ptr->size = new_size | metadata;
1616 }
1617 
1618 int bpf_dynptr_check_size(u32 size)
1619 {
1620 	return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1621 }
1622 
1623 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1624 		     enum bpf_dynptr_type type, u32 offset, u32 size)
1625 {
1626 	ptr->data = data;
1627 	ptr->offset = offset;
1628 	ptr->size = size;
1629 	bpf_dynptr_set_type(ptr, type);
1630 }
1631 
1632 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1633 {
1634 	memset(ptr, 0, sizeof(*ptr));
1635 }
1636 
1637 static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1638 {
1639 	u32 size = __bpf_dynptr_size(ptr);
1640 
1641 	if (len > size || offset > size - len)
1642 		return -E2BIG;
1643 
1644 	return 0;
1645 }
1646 
1647 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1648 {
1649 	int err;
1650 
1651 	BTF_TYPE_EMIT(struct bpf_dynptr);
1652 
1653 	err = bpf_dynptr_check_size(size);
1654 	if (err)
1655 		goto error;
1656 
1657 	/* flags is currently unsupported */
1658 	if (flags) {
1659 		err = -EINVAL;
1660 		goto error;
1661 	}
1662 
1663 	bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1664 
1665 	return 0;
1666 
1667 error:
1668 	bpf_dynptr_set_null(ptr);
1669 	return err;
1670 }
1671 
1672 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1673 	.func		= bpf_dynptr_from_mem,
1674 	.gpl_only	= false,
1675 	.ret_type	= RET_INTEGER,
1676 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1677 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1678 	.arg3_type	= ARG_ANYTHING,
1679 	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT,
1680 };
1681 
1682 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
1683 	   u32, offset, u64, flags)
1684 {
1685 	enum bpf_dynptr_type type;
1686 	int err;
1687 
1688 	if (!src->data || flags)
1689 		return -EINVAL;
1690 
1691 	err = bpf_dynptr_check_off_len(src, offset, len);
1692 	if (err)
1693 		return err;
1694 
1695 	type = bpf_dynptr_get_type(src);
1696 
1697 	switch (type) {
1698 	case BPF_DYNPTR_TYPE_LOCAL:
1699 	case BPF_DYNPTR_TYPE_RINGBUF:
1700 		/* Source and destination may possibly overlap, hence use memmove to
1701 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1702 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1703 		 */
1704 		memmove(dst, src->data + src->offset + offset, len);
1705 		return 0;
1706 	case BPF_DYNPTR_TYPE_SKB:
1707 		return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1708 	case BPF_DYNPTR_TYPE_XDP:
1709 		return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1710 	default:
1711 		WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1712 		return -EFAULT;
1713 	}
1714 }
1715 
1716 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1717 	.func		= bpf_dynptr_read,
1718 	.gpl_only	= false,
1719 	.ret_type	= RET_INTEGER,
1720 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1721 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1722 	.arg3_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1723 	.arg4_type	= ARG_ANYTHING,
1724 	.arg5_type	= ARG_ANYTHING,
1725 };
1726 
1727 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1728 	   u32, len, u64, flags)
1729 {
1730 	enum bpf_dynptr_type type;
1731 	int err;
1732 
1733 	if (!dst->data || __bpf_dynptr_is_rdonly(dst))
1734 		return -EINVAL;
1735 
1736 	err = bpf_dynptr_check_off_len(dst, offset, len);
1737 	if (err)
1738 		return err;
1739 
1740 	type = bpf_dynptr_get_type(dst);
1741 
1742 	switch (type) {
1743 	case BPF_DYNPTR_TYPE_LOCAL:
1744 	case BPF_DYNPTR_TYPE_RINGBUF:
1745 		if (flags)
1746 			return -EINVAL;
1747 		/* Source and destination may possibly overlap, hence use memmove to
1748 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1749 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1750 		 */
1751 		memmove(dst->data + dst->offset + offset, src, len);
1752 		return 0;
1753 	case BPF_DYNPTR_TYPE_SKB:
1754 		return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1755 					     flags);
1756 	case BPF_DYNPTR_TYPE_XDP:
1757 		if (flags)
1758 			return -EINVAL;
1759 		return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1760 	default:
1761 		WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1762 		return -EFAULT;
1763 	}
1764 }
1765 
1766 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1767 	.func		= bpf_dynptr_write,
1768 	.gpl_only	= false,
1769 	.ret_type	= RET_INTEGER,
1770 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1771 	.arg2_type	= ARG_ANYTHING,
1772 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1773 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1774 	.arg5_type	= ARG_ANYTHING,
1775 };
1776 
1777 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1778 {
1779 	enum bpf_dynptr_type type;
1780 	int err;
1781 
1782 	if (!ptr->data)
1783 		return 0;
1784 
1785 	err = bpf_dynptr_check_off_len(ptr, offset, len);
1786 	if (err)
1787 		return 0;
1788 
1789 	if (__bpf_dynptr_is_rdonly(ptr))
1790 		return 0;
1791 
1792 	type = bpf_dynptr_get_type(ptr);
1793 
1794 	switch (type) {
1795 	case BPF_DYNPTR_TYPE_LOCAL:
1796 	case BPF_DYNPTR_TYPE_RINGBUF:
1797 		return (unsigned long)(ptr->data + ptr->offset + offset);
1798 	case BPF_DYNPTR_TYPE_SKB:
1799 	case BPF_DYNPTR_TYPE_XDP:
1800 		/* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1801 		return 0;
1802 	default:
1803 		WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1804 		return 0;
1805 	}
1806 }
1807 
1808 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1809 	.func		= bpf_dynptr_data,
1810 	.gpl_only	= false,
1811 	.ret_type	= RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1812 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1813 	.arg2_type	= ARG_ANYTHING,
1814 	.arg3_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
1815 };
1816 
1817 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1818 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1819 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1820 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1821 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1822 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1823 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1824 
1825 const struct bpf_func_proto *
1826 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1827 {
1828 	switch (func_id) {
1829 	case BPF_FUNC_map_lookup_elem:
1830 		return &bpf_map_lookup_elem_proto;
1831 	case BPF_FUNC_map_update_elem:
1832 		return &bpf_map_update_elem_proto;
1833 	case BPF_FUNC_map_delete_elem:
1834 		return &bpf_map_delete_elem_proto;
1835 	case BPF_FUNC_map_push_elem:
1836 		return &bpf_map_push_elem_proto;
1837 	case BPF_FUNC_map_pop_elem:
1838 		return &bpf_map_pop_elem_proto;
1839 	case BPF_FUNC_map_peek_elem:
1840 		return &bpf_map_peek_elem_proto;
1841 	case BPF_FUNC_map_lookup_percpu_elem:
1842 		return &bpf_map_lookup_percpu_elem_proto;
1843 	case BPF_FUNC_get_prandom_u32:
1844 		return &bpf_get_prandom_u32_proto;
1845 	case BPF_FUNC_get_smp_processor_id:
1846 		return &bpf_get_raw_smp_processor_id_proto;
1847 	case BPF_FUNC_get_numa_node_id:
1848 		return &bpf_get_numa_node_id_proto;
1849 	case BPF_FUNC_tail_call:
1850 		return &bpf_tail_call_proto;
1851 	case BPF_FUNC_ktime_get_ns:
1852 		return &bpf_ktime_get_ns_proto;
1853 	case BPF_FUNC_ktime_get_boot_ns:
1854 		return &bpf_ktime_get_boot_ns_proto;
1855 	case BPF_FUNC_ktime_get_tai_ns:
1856 		return &bpf_ktime_get_tai_ns_proto;
1857 	case BPF_FUNC_ringbuf_output:
1858 		return &bpf_ringbuf_output_proto;
1859 	case BPF_FUNC_ringbuf_reserve:
1860 		return &bpf_ringbuf_reserve_proto;
1861 	case BPF_FUNC_ringbuf_submit:
1862 		return &bpf_ringbuf_submit_proto;
1863 	case BPF_FUNC_ringbuf_discard:
1864 		return &bpf_ringbuf_discard_proto;
1865 	case BPF_FUNC_ringbuf_query:
1866 		return &bpf_ringbuf_query_proto;
1867 	case BPF_FUNC_strncmp:
1868 		return &bpf_strncmp_proto;
1869 	case BPF_FUNC_strtol:
1870 		return &bpf_strtol_proto;
1871 	case BPF_FUNC_strtoul:
1872 		return &bpf_strtoul_proto;
1873 	case BPF_FUNC_get_current_pid_tgid:
1874 		return &bpf_get_current_pid_tgid_proto;
1875 	case BPF_FUNC_get_ns_current_pid_tgid:
1876 		return &bpf_get_ns_current_pid_tgid_proto;
1877 	default:
1878 		break;
1879 	}
1880 
1881 	if (!bpf_token_capable(prog->aux->token, CAP_BPF))
1882 		return NULL;
1883 
1884 	switch (func_id) {
1885 	case BPF_FUNC_spin_lock:
1886 		return &bpf_spin_lock_proto;
1887 	case BPF_FUNC_spin_unlock:
1888 		return &bpf_spin_unlock_proto;
1889 	case BPF_FUNC_jiffies64:
1890 		return &bpf_jiffies64_proto;
1891 	case BPF_FUNC_per_cpu_ptr:
1892 		return &bpf_per_cpu_ptr_proto;
1893 	case BPF_FUNC_this_cpu_ptr:
1894 		return &bpf_this_cpu_ptr_proto;
1895 	case BPF_FUNC_timer_init:
1896 		return &bpf_timer_init_proto;
1897 	case BPF_FUNC_timer_set_callback:
1898 		return &bpf_timer_set_callback_proto;
1899 	case BPF_FUNC_timer_start:
1900 		return &bpf_timer_start_proto;
1901 	case BPF_FUNC_timer_cancel:
1902 		return &bpf_timer_cancel_proto;
1903 	case BPF_FUNC_kptr_xchg:
1904 		return &bpf_kptr_xchg_proto;
1905 	case BPF_FUNC_for_each_map_elem:
1906 		return &bpf_for_each_map_elem_proto;
1907 	case BPF_FUNC_loop:
1908 		return &bpf_loop_proto;
1909 	case BPF_FUNC_user_ringbuf_drain:
1910 		return &bpf_user_ringbuf_drain_proto;
1911 	case BPF_FUNC_ringbuf_reserve_dynptr:
1912 		return &bpf_ringbuf_reserve_dynptr_proto;
1913 	case BPF_FUNC_ringbuf_submit_dynptr:
1914 		return &bpf_ringbuf_submit_dynptr_proto;
1915 	case BPF_FUNC_ringbuf_discard_dynptr:
1916 		return &bpf_ringbuf_discard_dynptr_proto;
1917 	case BPF_FUNC_dynptr_from_mem:
1918 		return &bpf_dynptr_from_mem_proto;
1919 	case BPF_FUNC_dynptr_read:
1920 		return &bpf_dynptr_read_proto;
1921 	case BPF_FUNC_dynptr_write:
1922 		return &bpf_dynptr_write_proto;
1923 	case BPF_FUNC_dynptr_data:
1924 		return &bpf_dynptr_data_proto;
1925 #ifdef CONFIG_CGROUPS
1926 	case BPF_FUNC_cgrp_storage_get:
1927 		return &bpf_cgrp_storage_get_proto;
1928 	case BPF_FUNC_cgrp_storage_delete:
1929 		return &bpf_cgrp_storage_delete_proto;
1930 	case BPF_FUNC_get_current_cgroup_id:
1931 		return &bpf_get_current_cgroup_id_proto;
1932 	case BPF_FUNC_get_current_ancestor_cgroup_id:
1933 		return &bpf_get_current_ancestor_cgroup_id_proto;
1934 #endif
1935 	default:
1936 		break;
1937 	}
1938 
1939 	if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
1940 		return NULL;
1941 
1942 	switch (func_id) {
1943 	case BPF_FUNC_trace_printk:
1944 		return bpf_get_trace_printk_proto();
1945 	case BPF_FUNC_get_current_task:
1946 		return &bpf_get_current_task_proto;
1947 	case BPF_FUNC_get_current_task_btf:
1948 		return &bpf_get_current_task_btf_proto;
1949 	case BPF_FUNC_probe_read_user:
1950 		return &bpf_probe_read_user_proto;
1951 	case BPF_FUNC_probe_read_kernel:
1952 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1953 		       NULL : &bpf_probe_read_kernel_proto;
1954 	case BPF_FUNC_probe_read_user_str:
1955 		return &bpf_probe_read_user_str_proto;
1956 	case BPF_FUNC_probe_read_kernel_str:
1957 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1958 		       NULL : &bpf_probe_read_kernel_str_proto;
1959 	case BPF_FUNC_snprintf_btf:
1960 		return &bpf_snprintf_btf_proto;
1961 	case BPF_FUNC_snprintf:
1962 		return &bpf_snprintf_proto;
1963 	case BPF_FUNC_task_pt_regs:
1964 		return &bpf_task_pt_regs_proto;
1965 	case BPF_FUNC_trace_vprintk:
1966 		return bpf_get_trace_vprintk_proto();
1967 	default:
1968 		return NULL;
1969 	}
1970 }
1971 
1972 void bpf_list_head_free(const struct btf_field *field, void *list_head,
1973 			struct bpf_spin_lock *spin_lock)
1974 {
1975 	struct list_head *head = list_head, *orig_head = list_head;
1976 
1977 	BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
1978 	BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
1979 
1980 	/* Do the actual list draining outside the lock to not hold the lock for
1981 	 * too long, and also prevent deadlocks if tracing programs end up
1982 	 * executing on entry/exit of functions called inside the critical
1983 	 * section, and end up doing map ops that call bpf_list_head_free for
1984 	 * the same map value again.
1985 	 */
1986 	__bpf_spin_lock_irqsave(spin_lock);
1987 	if (!head->next || list_empty(head))
1988 		goto unlock;
1989 	head = head->next;
1990 unlock:
1991 	INIT_LIST_HEAD(orig_head);
1992 	__bpf_spin_unlock_irqrestore(spin_lock);
1993 
1994 	while (head != orig_head) {
1995 		void *obj = head;
1996 
1997 		obj -= field->graph_root.node_offset;
1998 		head = head->next;
1999 		/* The contained type can also have resources, including a
2000 		 * bpf_list_head which needs to be freed.
2001 		 */
2002 		migrate_disable();
2003 		__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2004 		migrate_enable();
2005 	}
2006 }
2007 
2008 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
2009  * 'rb_node *', so field name of rb_node within containing struct is not
2010  * needed.
2011  *
2012  * Since bpf_rb_tree's node type has a corresponding struct btf_field with
2013  * graph_root.node_offset, it's not necessary to know field name
2014  * or type of node struct
2015  */
2016 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
2017 	for (pos = rb_first_postorder(root); \
2018 	    pos && ({ n = rb_next_postorder(pos); 1; }); \
2019 	    pos = n)
2020 
2021 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
2022 		      struct bpf_spin_lock *spin_lock)
2023 {
2024 	struct rb_root_cached orig_root, *root = rb_root;
2025 	struct rb_node *pos, *n;
2026 	void *obj;
2027 
2028 	BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
2029 	BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
2030 
2031 	__bpf_spin_lock_irqsave(spin_lock);
2032 	orig_root = *root;
2033 	*root = RB_ROOT_CACHED;
2034 	__bpf_spin_unlock_irqrestore(spin_lock);
2035 
2036 	bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
2037 		obj = pos;
2038 		obj -= field->graph_root.node_offset;
2039 
2040 
2041 		migrate_disable();
2042 		__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2043 		migrate_enable();
2044 	}
2045 }
2046 
2047 __bpf_kfunc_start_defs();
2048 
2049 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2050 {
2051 	struct btf_struct_meta *meta = meta__ign;
2052 	u64 size = local_type_id__k;
2053 	void *p;
2054 
2055 	p = bpf_mem_alloc(&bpf_global_ma, size);
2056 	if (!p)
2057 		return NULL;
2058 	if (meta)
2059 		bpf_obj_init(meta->record, p);
2060 	return p;
2061 }
2062 
2063 __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2064 {
2065 	u64 size = local_type_id__k;
2066 
2067 	/* The verifier has ensured that meta__ign must be NULL */
2068 	return bpf_mem_alloc(&bpf_global_percpu_ma, size);
2069 }
2070 
2071 /* Must be called under migrate_disable(), as required by bpf_mem_free */
2072 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu)
2073 {
2074 	struct bpf_mem_alloc *ma;
2075 
2076 	if (rec && rec->refcount_off >= 0 &&
2077 	    !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
2078 		/* Object is refcounted and refcount_dec didn't result in 0
2079 		 * refcount. Return without freeing the object
2080 		 */
2081 		return;
2082 	}
2083 
2084 	if (rec)
2085 		bpf_obj_free_fields(rec, p);
2086 
2087 	if (percpu)
2088 		ma = &bpf_global_percpu_ma;
2089 	else
2090 		ma = &bpf_global_ma;
2091 	bpf_mem_free_rcu(ma, p);
2092 }
2093 
2094 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
2095 {
2096 	struct btf_struct_meta *meta = meta__ign;
2097 	void *p = p__alloc;
2098 
2099 	__bpf_obj_drop_impl(p, meta ? meta->record : NULL, false);
2100 }
2101 
2102 __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign)
2103 {
2104 	/* The verifier has ensured that meta__ign must be NULL */
2105 	bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc);
2106 }
2107 
2108 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
2109 {
2110 	struct btf_struct_meta *meta = meta__ign;
2111 	struct bpf_refcount *ref;
2112 
2113 	/* Could just cast directly to refcount_t *, but need some code using
2114 	 * bpf_refcount type so that it is emitted in vmlinux BTF
2115 	 */
2116 	ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
2117 	if (!refcount_inc_not_zero((refcount_t *)ref))
2118 		return NULL;
2119 
2120 	/* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
2121 	 * in verifier.c
2122 	 */
2123 	return (void *)p__refcounted_kptr;
2124 }
2125 
2126 static int __bpf_list_add(struct bpf_list_node_kern *node,
2127 			  struct bpf_list_head *head,
2128 			  bool tail, struct btf_record *rec, u64 off)
2129 {
2130 	struct list_head *n = &node->list_head, *h = (void *)head;
2131 
2132 	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2133 	 * called on its fields, so init here
2134 	 */
2135 	if (unlikely(!h->next))
2136 		INIT_LIST_HEAD(h);
2137 
2138 	/* node->owner != NULL implies !list_empty(n), no need to separately
2139 	 * check the latter
2140 	 */
2141 	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2142 		/* Only called from BPF prog, no need to migrate_disable */
2143 		__bpf_obj_drop_impl((void *)n - off, rec, false);
2144 		return -EINVAL;
2145 	}
2146 
2147 	tail ? list_add_tail(n, h) : list_add(n, h);
2148 	WRITE_ONCE(node->owner, head);
2149 
2150 	return 0;
2151 }
2152 
2153 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
2154 					 struct bpf_list_node *node,
2155 					 void *meta__ign, u64 off)
2156 {
2157 	struct bpf_list_node_kern *n = (void *)node;
2158 	struct btf_struct_meta *meta = meta__ign;
2159 
2160 	return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
2161 }
2162 
2163 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
2164 					struct bpf_list_node *node,
2165 					void *meta__ign, u64 off)
2166 {
2167 	struct bpf_list_node_kern *n = (void *)node;
2168 	struct btf_struct_meta *meta = meta__ign;
2169 
2170 	return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
2171 }
2172 
2173 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
2174 {
2175 	struct list_head *n, *h = (void *)head;
2176 	struct bpf_list_node_kern *node;
2177 
2178 	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2179 	 * called on its fields, so init here
2180 	 */
2181 	if (unlikely(!h->next))
2182 		INIT_LIST_HEAD(h);
2183 	if (list_empty(h))
2184 		return NULL;
2185 
2186 	n = tail ? h->prev : h->next;
2187 	node = container_of(n, struct bpf_list_node_kern, list_head);
2188 	if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2189 		return NULL;
2190 
2191 	list_del_init(n);
2192 	WRITE_ONCE(node->owner, NULL);
2193 	return (struct bpf_list_node *)n;
2194 }
2195 
2196 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2197 {
2198 	return __bpf_list_del(head, false);
2199 }
2200 
2201 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2202 {
2203 	return __bpf_list_del(head, true);
2204 }
2205 
2206 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2207 						  struct bpf_rb_node *node)
2208 {
2209 	struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2210 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2211 	struct rb_node *n = &node_internal->rb_node;
2212 
2213 	/* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2214 	 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2215 	 */
2216 	if (READ_ONCE(node_internal->owner) != root)
2217 		return NULL;
2218 
2219 	rb_erase_cached(n, r);
2220 	RB_CLEAR_NODE(n);
2221 	WRITE_ONCE(node_internal->owner, NULL);
2222 	return (struct bpf_rb_node *)n;
2223 }
2224 
2225 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2226  * program
2227  */
2228 static int __bpf_rbtree_add(struct bpf_rb_root *root,
2229 			    struct bpf_rb_node_kern *node,
2230 			    void *less, struct btf_record *rec, u64 off)
2231 {
2232 	struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2233 	struct rb_node *parent = NULL, *n = &node->rb_node;
2234 	bpf_callback_t cb = (bpf_callback_t)less;
2235 	bool leftmost = true;
2236 
2237 	/* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2238 	 * check the latter
2239 	 */
2240 	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2241 		/* Only called from BPF prog, no need to migrate_disable */
2242 		__bpf_obj_drop_impl((void *)n - off, rec, false);
2243 		return -EINVAL;
2244 	}
2245 
2246 	while (*link) {
2247 		parent = *link;
2248 		if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2249 			link = &parent->rb_left;
2250 		} else {
2251 			link = &parent->rb_right;
2252 			leftmost = false;
2253 		}
2254 	}
2255 
2256 	rb_link_node(n, parent, link);
2257 	rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
2258 	WRITE_ONCE(node->owner, root);
2259 	return 0;
2260 }
2261 
2262 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2263 				    bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2264 				    void *meta__ign, u64 off)
2265 {
2266 	struct btf_struct_meta *meta = meta__ign;
2267 	struct bpf_rb_node_kern *n = (void *)node;
2268 
2269 	return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
2270 }
2271 
2272 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2273 {
2274 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2275 
2276 	return (struct bpf_rb_node *)rb_first_cached(r);
2277 }
2278 
2279 /**
2280  * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2281  * kfunc which is not stored in a map as a kptr, must be released by calling
2282  * bpf_task_release().
2283  * @p: The task on which a reference is being acquired.
2284  */
2285 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2286 {
2287 	if (refcount_inc_not_zero(&p->rcu_users))
2288 		return p;
2289 	return NULL;
2290 }
2291 
2292 /**
2293  * bpf_task_release - Release the reference acquired on a task.
2294  * @p: The task on which a reference is being released.
2295  */
2296 __bpf_kfunc void bpf_task_release(struct task_struct *p)
2297 {
2298 	put_task_struct_rcu_user(p);
2299 }
2300 
2301 __bpf_kfunc void bpf_task_release_dtor(void *p)
2302 {
2303 	put_task_struct_rcu_user(p);
2304 }
2305 CFI_NOSEAL(bpf_task_release_dtor);
2306 
2307 #ifdef CONFIG_CGROUPS
2308 /**
2309  * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2310  * this kfunc which is not stored in a map as a kptr, must be released by
2311  * calling bpf_cgroup_release().
2312  * @cgrp: The cgroup on which a reference is being acquired.
2313  */
2314 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2315 {
2316 	return cgroup_tryget(cgrp) ? cgrp : NULL;
2317 }
2318 
2319 /**
2320  * bpf_cgroup_release - Release the reference acquired on a cgroup.
2321  * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2322  * not be freed until the current grace period has ended, even if its refcount
2323  * drops to 0.
2324  * @cgrp: The cgroup on which a reference is being released.
2325  */
2326 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2327 {
2328 	cgroup_put(cgrp);
2329 }
2330 
2331 __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp)
2332 {
2333 	cgroup_put(cgrp);
2334 }
2335 CFI_NOSEAL(bpf_cgroup_release_dtor);
2336 
2337 /**
2338  * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2339  * array. A cgroup returned by this kfunc which is not subsequently stored in a
2340  * map, must be released by calling bpf_cgroup_release().
2341  * @cgrp: The cgroup for which we're performing a lookup.
2342  * @level: The level of ancestor to look up.
2343  */
2344 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2345 {
2346 	struct cgroup *ancestor;
2347 
2348 	if (level > cgrp->level || level < 0)
2349 		return NULL;
2350 
2351 	/* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2352 	ancestor = cgrp->ancestors[level];
2353 	if (!cgroup_tryget(ancestor))
2354 		return NULL;
2355 	return ancestor;
2356 }
2357 
2358 /**
2359  * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2360  * kfunc which is not subsequently stored in a map, must be released by calling
2361  * bpf_cgroup_release().
2362  * @cgid: cgroup id.
2363  */
2364 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2365 {
2366 	struct cgroup *cgrp;
2367 
2368 	cgrp = cgroup_get_from_id(cgid);
2369 	if (IS_ERR(cgrp))
2370 		return NULL;
2371 	return cgrp;
2372 }
2373 
2374 /**
2375  * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2376  * task's membership of cgroup ancestry.
2377  * @task: the task to be tested
2378  * @ancestor: possible ancestor of @task's cgroup
2379  *
2380  * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2381  * It follows all the same rules as cgroup_is_descendant, and only applies
2382  * to the default hierarchy.
2383  */
2384 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2385 				       struct cgroup *ancestor)
2386 {
2387 	long ret;
2388 
2389 	rcu_read_lock();
2390 	ret = task_under_cgroup_hierarchy(task, ancestor);
2391 	rcu_read_unlock();
2392 	return ret;
2393 }
2394 
2395 /**
2396  * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a
2397  * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
2398  * hierarchy ID.
2399  * @task: The target task
2400  * @hierarchy_id: The ID of a cgroup1 hierarchy
2401  *
2402  * On success, the cgroup is returen. On failure, NULL is returned.
2403  */
2404 __bpf_kfunc struct cgroup *
2405 bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id)
2406 {
2407 	struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id);
2408 
2409 	if (IS_ERR(cgrp))
2410 		return NULL;
2411 	return cgrp;
2412 }
2413 #endif /* CONFIG_CGROUPS */
2414 
2415 /**
2416  * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2417  * in the root pid namespace idr. If a task is returned, it must either be
2418  * stored in a map, or released with bpf_task_release().
2419  * @pid: The pid of the task being looked up.
2420  */
2421 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2422 {
2423 	struct task_struct *p;
2424 
2425 	rcu_read_lock();
2426 	p = find_task_by_pid_ns(pid, &init_pid_ns);
2427 	if (p)
2428 		p = bpf_task_acquire(p);
2429 	rcu_read_unlock();
2430 
2431 	return p;
2432 }
2433 
2434 /**
2435  * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2436  * @ptr: The dynptr whose data slice to retrieve
2437  * @offset: Offset into the dynptr
2438  * @buffer__opt: User-provided buffer to copy contents into.  May be NULL
2439  * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2440  *               length of the requested slice. This must be a constant.
2441  *
2442  * For non-skb and non-xdp type dynptrs, there is no difference between
2443  * bpf_dynptr_slice and bpf_dynptr_data.
2444  *
2445  *  If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2446  *
2447  * If the intention is to write to the data slice, please use
2448  * bpf_dynptr_slice_rdwr.
2449  *
2450  * The user must check that the returned pointer is not null before using it.
2451  *
2452  * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2453  * does not change the underlying packet data pointers, so a call to
2454  * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2455  * the bpf program.
2456  *
2457  * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2458  * data slice (can be either direct pointer to the data or a pointer to the user
2459  * provided buffer, with its contents containing the data, if unable to obtain
2460  * direct pointer)
2461  */
2462 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset,
2463 				   void *buffer__opt, u32 buffer__szk)
2464 {
2465 	enum bpf_dynptr_type type;
2466 	u32 len = buffer__szk;
2467 	int err;
2468 
2469 	if (!ptr->data)
2470 		return NULL;
2471 
2472 	err = bpf_dynptr_check_off_len(ptr, offset, len);
2473 	if (err)
2474 		return NULL;
2475 
2476 	type = bpf_dynptr_get_type(ptr);
2477 
2478 	switch (type) {
2479 	case BPF_DYNPTR_TYPE_LOCAL:
2480 	case BPF_DYNPTR_TYPE_RINGBUF:
2481 		return ptr->data + ptr->offset + offset;
2482 	case BPF_DYNPTR_TYPE_SKB:
2483 		if (buffer__opt)
2484 			return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
2485 		else
2486 			return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
2487 	case BPF_DYNPTR_TYPE_XDP:
2488 	{
2489 		void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2490 		if (!IS_ERR_OR_NULL(xdp_ptr))
2491 			return xdp_ptr;
2492 
2493 		if (!buffer__opt)
2494 			return NULL;
2495 		bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
2496 		return buffer__opt;
2497 	}
2498 	default:
2499 		WARN_ONCE(true, "unknown dynptr type %d\n", type);
2500 		return NULL;
2501 	}
2502 }
2503 
2504 /**
2505  * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2506  * @ptr: The dynptr whose data slice to retrieve
2507  * @offset: Offset into the dynptr
2508  * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2509  * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2510  *               length of the requested slice. This must be a constant.
2511  *
2512  * For non-skb and non-xdp type dynptrs, there is no difference between
2513  * bpf_dynptr_slice and bpf_dynptr_data.
2514  *
2515  * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2516  *
2517  * The returned pointer is writable and may point to either directly the dynptr
2518  * data at the requested offset or to the buffer if unable to obtain a direct
2519  * data pointer to (example: the requested slice is to the paged area of an skb
2520  * packet). In the case where the returned pointer is to the buffer, the user
2521  * is responsible for persisting writes through calling bpf_dynptr_write(). This
2522  * usually looks something like this pattern:
2523  *
2524  * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2525  * if (!eth)
2526  *	return TC_ACT_SHOT;
2527  *
2528  * // mutate eth header //
2529  *
2530  * if (eth == buffer)
2531  *	bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2532  *
2533  * Please note that, as in the example above, the user must check that the
2534  * returned pointer is not null before using it.
2535  *
2536  * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2537  * does not change the underlying packet data pointers, so a call to
2538  * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2539  * the bpf program.
2540  *
2541  * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2542  * data slice (can be either direct pointer to the data or a pointer to the user
2543  * provided buffer, with its contents containing the data, if unable to obtain
2544  * direct pointer)
2545  */
2546 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 offset,
2547 					void *buffer__opt, u32 buffer__szk)
2548 {
2549 	if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2550 		return NULL;
2551 
2552 	/* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2553 	 *
2554 	 * For skb-type dynptrs, it is safe to write into the returned pointer
2555 	 * if the bpf program allows skb data writes. There are two possibilities
2556 	 * that may occur when calling bpf_dynptr_slice_rdwr:
2557 	 *
2558 	 * 1) The requested slice is in the head of the skb. In this case, the
2559 	 * returned pointer is directly to skb data, and if the skb is cloned, the
2560 	 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2561 	 * The pointer can be directly written into.
2562 	 *
2563 	 * 2) Some portion of the requested slice is in the paged buffer area.
2564 	 * In this case, the requested data will be copied out into the buffer
2565 	 * and the returned pointer will be a pointer to the buffer. The skb
2566 	 * will not be pulled. To persist the write, the user will need to call
2567 	 * bpf_dynptr_write(), which will pull the skb and commit the write.
2568 	 *
2569 	 * Similarly for xdp programs, if the requested slice is not across xdp
2570 	 * fragments, then a direct pointer will be returned, otherwise the data
2571 	 * will be copied out into the buffer and the user will need to call
2572 	 * bpf_dynptr_write() to commit changes.
2573 	 */
2574 	return bpf_dynptr_slice(ptr, offset, buffer__opt, buffer__szk);
2575 }
2576 
2577 __bpf_kfunc int bpf_dynptr_adjust(struct bpf_dynptr_kern *ptr, u32 start, u32 end)
2578 {
2579 	u32 size;
2580 
2581 	if (!ptr->data || start > end)
2582 		return -EINVAL;
2583 
2584 	size = __bpf_dynptr_size(ptr);
2585 
2586 	if (start > size || end > size)
2587 		return -ERANGE;
2588 
2589 	ptr->offset += start;
2590 	bpf_dynptr_set_size(ptr, end - start);
2591 
2592 	return 0;
2593 }
2594 
2595 __bpf_kfunc bool bpf_dynptr_is_null(struct bpf_dynptr_kern *ptr)
2596 {
2597 	return !ptr->data;
2598 }
2599 
2600 __bpf_kfunc bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr)
2601 {
2602 	if (!ptr->data)
2603 		return false;
2604 
2605 	return __bpf_dynptr_is_rdonly(ptr);
2606 }
2607 
2608 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
2609 {
2610 	if (!ptr->data)
2611 		return -EINVAL;
2612 
2613 	return __bpf_dynptr_size(ptr);
2614 }
2615 
2616 __bpf_kfunc int bpf_dynptr_clone(struct bpf_dynptr_kern *ptr,
2617 				 struct bpf_dynptr_kern *clone__uninit)
2618 {
2619 	if (!ptr->data) {
2620 		bpf_dynptr_set_null(clone__uninit);
2621 		return -EINVAL;
2622 	}
2623 
2624 	*clone__uninit = *ptr;
2625 
2626 	return 0;
2627 }
2628 
2629 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
2630 {
2631 	return obj;
2632 }
2633 
2634 __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k)
2635 {
2636 	return (void *)obj__ign;
2637 }
2638 
2639 __bpf_kfunc void bpf_rcu_read_lock(void)
2640 {
2641 	rcu_read_lock();
2642 }
2643 
2644 __bpf_kfunc void bpf_rcu_read_unlock(void)
2645 {
2646 	rcu_read_unlock();
2647 }
2648 
2649 struct bpf_throw_ctx {
2650 	struct bpf_prog_aux *aux;
2651 	u64 sp;
2652 	u64 bp;
2653 	int cnt;
2654 };
2655 
2656 static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp)
2657 {
2658 	struct bpf_throw_ctx *ctx = cookie;
2659 	struct bpf_prog *prog;
2660 
2661 	if (!is_bpf_text_address(ip))
2662 		return !ctx->cnt;
2663 	prog = bpf_prog_ksym_find(ip);
2664 	ctx->cnt++;
2665 	if (bpf_is_subprog(prog))
2666 		return true;
2667 	ctx->aux = prog->aux;
2668 	ctx->sp = sp;
2669 	ctx->bp = bp;
2670 	return false;
2671 }
2672 
2673 __bpf_kfunc void bpf_throw(u64 cookie)
2674 {
2675 	struct bpf_throw_ctx ctx = {};
2676 
2677 	arch_bpf_stack_walk(bpf_stack_walker, &ctx);
2678 	WARN_ON_ONCE(!ctx.aux);
2679 	if (ctx.aux)
2680 		WARN_ON_ONCE(!ctx.aux->exception_boundary);
2681 	WARN_ON_ONCE(!ctx.bp);
2682 	WARN_ON_ONCE(!ctx.cnt);
2683 	/* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning
2684 	 * deeper stack depths than ctx.sp as we do not return from bpf_throw,
2685 	 * which skips compiler generated instrumentation to do the same.
2686 	 */
2687 	kasan_unpoison_task_stack_below((void *)(long)ctx.sp);
2688 	ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0);
2689 	WARN(1, "A call to BPF exception callback should never return\n");
2690 }
2691 
2692 __bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags)
2693 {
2694 	struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
2695 	struct bpf_map *map = p__map;
2696 
2697 	BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq));
2698 	BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq));
2699 
2700 	if (flags)
2701 		return -EINVAL;
2702 
2703 	return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ);
2704 }
2705 
2706 __bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags)
2707 {
2708 	struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
2709 	struct bpf_work *w;
2710 
2711 	if (in_nmi())
2712 		return -EOPNOTSUPP;
2713 	if (flags)
2714 		return -EINVAL;
2715 	w = READ_ONCE(async->work);
2716 	if (!w || !READ_ONCE(w->cb.prog))
2717 		return -EINVAL;
2718 
2719 	schedule_work(&w->work);
2720 	return 0;
2721 }
2722 
2723 __bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq,
2724 					 int (callback_fn)(void *map, int *key, struct bpf_wq *wq),
2725 					 unsigned int flags,
2726 					 void *aux__ign)
2727 {
2728 	struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__ign;
2729 	struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
2730 
2731 	if (flags)
2732 		return -EINVAL;
2733 
2734 	return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ);
2735 }
2736 
2737 __bpf_kfunc void bpf_preempt_disable(void)
2738 {
2739 	preempt_disable();
2740 }
2741 
2742 __bpf_kfunc void bpf_preempt_enable(void)
2743 {
2744 	preempt_enable();
2745 }
2746 
2747 struct bpf_iter_bits {
2748 	__u64 __opaque[2];
2749 } __aligned(8);
2750 
2751 struct bpf_iter_bits_kern {
2752 	union {
2753 		unsigned long *bits;
2754 		unsigned long bits_copy;
2755 	};
2756 	u32 nr_bits;
2757 	int bit;
2758 } __aligned(8);
2759 
2760 /**
2761  * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area
2762  * @it: The new bpf_iter_bits to be created
2763  * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over
2764  * @nr_words: The size of the specified memory area, measured in 8-byte units.
2765  * Due to the limitation of memalloc, it can't be greater than 512.
2766  *
2767  * This function initializes a new bpf_iter_bits structure for iterating over
2768  * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It
2769  * copies the data of the memory area to the newly created bpf_iter_bits @it for
2770  * subsequent iteration operations.
2771  *
2772  * On success, 0 is returned. On failure, ERR is returned.
2773  */
2774 __bpf_kfunc int
2775 bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words)
2776 {
2777 	struct bpf_iter_bits_kern *kit = (void *)it;
2778 	u32 nr_bytes = nr_words * sizeof(u64);
2779 	u32 nr_bits = BYTES_TO_BITS(nr_bytes);
2780 	int err;
2781 
2782 	BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits));
2783 	BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) !=
2784 		     __alignof__(struct bpf_iter_bits));
2785 
2786 	kit->nr_bits = 0;
2787 	kit->bits_copy = 0;
2788 	kit->bit = -1;
2789 
2790 	if (!unsafe_ptr__ign || !nr_words)
2791 		return -EINVAL;
2792 
2793 	/* Optimization for u64 mask */
2794 	if (nr_bits == 64) {
2795 		err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign);
2796 		if (err)
2797 			return -EFAULT;
2798 
2799 		kit->nr_bits = nr_bits;
2800 		return 0;
2801 	}
2802 
2803 	/* Fallback to memalloc */
2804 	kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes);
2805 	if (!kit->bits)
2806 		return -ENOMEM;
2807 
2808 	err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign);
2809 	if (err) {
2810 		bpf_mem_free(&bpf_global_ma, kit->bits);
2811 		return err;
2812 	}
2813 
2814 	kit->nr_bits = nr_bits;
2815 	return 0;
2816 }
2817 
2818 /**
2819  * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits
2820  * @it: The bpf_iter_bits to be checked
2821  *
2822  * This function returns a pointer to a number representing the value of the
2823  * next bit in the bits.
2824  *
2825  * If there are no further bits available, it returns NULL.
2826  */
2827 __bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it)
2828 {
2829 	struct bpf_iter_bits_kern *kit = (void *)it;
2830 	u32 nr_bits = kit->nr_bits;
2831 	const unsigned long *bits;
2832 	int bit;
2833 
2834 	if (nr_bits == 0)
2835 		return NULL;
2836 
2837 	bits = nr_bits == 64 ? &kit->bits_copy : kit->bits;
2838 	bit = find_next_bit(bits, nr_bits, kit->bit + 1);
2839 	if (bit >= nr_bits) {
2840 		kit->nr_bits = 0;
2841 		return NULL;
2842 	}
2843 
2844 	kit->bit = bit;
2845 	return &kit->bit;
2846 }
2847 
2848 /**
2849  * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits
2850  * @it: The bpf_iter_bits to be destroyed
2851  *
2852  * Destroy the resource associated with the bpf_iter_bits.
2853  */
2854 __bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it)
2855 {
2856 	struct bpf_iter_bits_kern *kit = (void *)it;
2857 
2858 	if (kit->nr_bits <= 64)
2859 		return;
2860 	bpf_mem_free(&bpf_global_ma, kit->bits);
2861 }
2862 
2863 __bpf_kfunc_end_defs();
2864 
2865 BTF_KFUNCS_START(generic_btf_ids)
2866 #ifdef CONFIG_CRASH_DUMP
2867 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
2868 #endif
2869 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
2870 BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
2871 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
2872 BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE)
2873 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU)
2874 BTF_ID_FLAGS(func, bpf_list_push_front_impl)
2875 BTF_ID_FLAGS(func, bpf_list_push_back_impl)
2876 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
2877 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
2878 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2879 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
2880 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
2881 BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
2882 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
2883 
2884 #ifdef CONFIG_CGROUPS
2885 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2886 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
2887 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2888 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
2889 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
2890 BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2891 #endif
2892 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
2893 BTF_ID_FLAGS(func, bpf_throw)
2894 BTF_KFUNCS_END(generic_btf_ids)
2895 
2896 static const struct btf_kfunc_id_set generic_kfunc_set = {
2897 	.owner = THIS_MODULE,
2898 	.set   = &generic_btf_ids,
2899 };
2900 
2901 
2902 BTF_ID_LIST(generic_dtor_ids)
2903 BTF_ID(struct, task_struct)
2904 BTF_ID(func, bpf_task_release_dtor)
2905 #ifdef CONFIG_CGROUPS
2906 BTF_ID(struct, cgroup)
2907 BTF_ID(func, bpf_cgroup_release_dtor)
2908 #endif
2909 
2910 BTF_KFUNCS_START(common_btf_ids)
2911 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx)
2912 BTF_ID_FLAGS(func, bpf_rdonly_cast)
2913 BTF_ID_FLAGS(func, bpf_rcu_read_lock)
2914 BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
2915 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
2916 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
2917 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
2918 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
2919 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
2920 BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU)
2921 BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL)
2922 BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY)
2923 #ifdef CONFIG_CGROUPS
2924 BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS)
2925 BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL)
2926 BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY)
2927 BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
2928 BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL)
2929 BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY)
2930 #endif
2931 BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
2932 BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL)
2933 BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY)
2934 BTF_ID_FLAGS(func, bpf_dynptr_adjust)
2935 BTF_ID_FLAGS(func, bpf_dynptr_is_null)
2936 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
2937 BTF_ID_FLAGS(func, bpf_dynptr_size)
2938 BTF_ID_FLAGS(func, bpf_dynptr_clone)
2939 BTF_ID_FLAGS(func, bpf_modify_return_test_tp)
2940 BTF_ID_FLAGS(func, bpf_wq_init)
2941 BTF_ID_FLAGS(func, bpf_wq_set_callback_impl)
2942 BTF_ID_FLAGS(func, bpf_wq_start)
2943 BTF_ID_FLAGS(func, bpf_preempt_disable)
2944 BTF_ID_FLAGS(func, bpf_preempt_enable)
2945 BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW)
2946 BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL)
2947 BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY)
2948 BTF_KFUNCS_END(common_btf_ids)
2949 
2950 static const struct btf_kfunc_id_set common_kfunc_set = {
2951 	.owner = THIS_MODULE,
2952 	.set   = &common_btf_ids,
2953 };
2954 
2955 static int __init kfunc_init(void)
2956 {
2957 	int ret;
2958 	const struct btf_id_dtor_kfunc generic_dtors[] = {
2959 		{
2960 			.btf_id       = generic_dtor_ids[0],
2961 			.kfunc_btf_id = generic_dtor_ids[1]
2962 		},
2963 #ifdef CONFIG_CGROUPS
2964 		{
2965 			.btf_id       = generic_dtor_ids[2],
2966 			.kfunc_btf_id = generic_dtor_ids[3]
2967 		},
2968 #endif
2969 	};
2970 
2971 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
2972 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
2973 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set);
2974 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
2975 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set);
2976 	ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
2977 						  ARRAY_SIZE(generic_dtors),
2978 						  THIS_MODULE);
2979 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
2980 }
2981 
2982 late_initcall(kfunc_init);
2983 
2984 /* Get a pointer to dynptr data up to len bytes for read only access. If
2985  * the dynptr doesn't have continuous data up to len bytes, return NULL.
2986  */
2987 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len)
2988 {
2989 	return bpf_dynptr_slice(ptr, 0, NULL, len);
2990 }
2991 
2992 /* Get a pointer to dynptr data up to len bytes for read write access. If
2993  * the dynptr doesn't have continuous data up to len bytes, or the dynptr
2994  * is read only, return NULL.
2995  */
2996 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len)
2997 {
2998 	if (__bpf_dynptr_is_rdonly(ptr))
2999 		return NULL;
3000 	return (void *)__bpf_dynptr_data(ptr, len);
3001 }
3002