1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #include <linux/bpf.h> 5 #include <linux/btf.h> 6 #include <linux/bpf-cgroup.h> 7 #include <linux/cgroup.h> 8 #include <linux/rcupdate.h> 9 #include <linux/random.h> 10 #include <linux/smp.h> 11 #include <linux/topology.h> 12 #include <linux/ktime.h> 13 #include <linux/sched.h> 14 #include <linux/uidgid.h> 15 #include <linux/filter.h> 16 #include <linux/ctype.h> 17 #include <linux/jiffies.h> 18 #include <linux/pid_namespace.h> 19 #include <linux/poison.h> 20 #include <linux/proc_ns.h> 21 #include <linux/sched/task.h> 22 #include <linux/security.h> 23 #include <linux/btf_ids.h> 24 #include <linux/bpf_mem_alloc.h> 25 #include <linux/kasan.h> 26 27 #include "../../lib/kstrtox.h" 28 29 /* If kernel subsystem is allowing eBPF programs to call this function, 30 * inside its own verifier_ops->get_func_proto() callback it should return 31 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments 32 * 33 * Different map implementations will rely on rcu in map methods 34 * lookup/update/delete, therefore eBPF programs must run under rcu lock 35 * if program is allowed to access maps, so check rcu_read_lock_held() or 36 * rcu_read_lock_trace_held() in all three functions. 37 */ 38 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) 39 { 40 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 41 !rcu_read_lock_bh_held()); 42 return (unsigned long) map->ops->map_lookup_elem(map, key); 43 } 44 45 const struct bpf_func_proto bpf_map_lookup_elem_proto = { 46 .func = bpf_map_lookup_elem, 47 .gpl_only = false, 48 .pkt_access = true, 49 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 50 .arg1_type = ARG_CONST_MAP_PTR, 51 .arg2_type = ARG_PTR_TO_MAP_KEY, 52 }; 53 54 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, 55 void *, value, u64, flags) 56 { 57 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 58 !rcu_read_lock_bh_held()); 59 return map->ops->map_update_elem(map, key, value, flags); 60 } 61 62 const struct bpf_func_proto bpf_map_update_elem_proto = { 63 .func = bpf_map_update_elem, 64 .gpl_only = false, 65 .pkt_access = true, 66 .ret_type = RET_INTEGER, 67 .arg1_type = ARG_CONST_MAP_PTR, 68 .arg2_type = ARG_PTR_TO_MAP_KEY, 69 .arg3_type = ARG_PTR_TO_MAP_VALUE, 70 .arg4_type = ARG_ANYTHING, 71 }; 72 73 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) 74 { 75 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 76 !rcu_read_lock_bh_held()); 77 return map->ops->map_delete_elem(map, key); 78 } 79 80 const struct bpf_func_proto bpf_map_delete_elem_proto = { 81 .func = bpf_map_delete_elem, 82 .gpl_only = false, 83 .pkt_access = true, 84 .ret_type = RET_INTEGER, 85 .arg1_type = ARG_CONST_MAP_PTR, 86 .arg2_type = ARG_PTR_TO_MAP_KEY, 87 }; 88 89 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) 90 { 91 return map->ops->map_push_elem(map, value, flags); 92 } 93 94 const struct bpf_func_proto bpf_map_push_elem_proto = { 95 .func = bpf_map_push_elem, 96 .gpl_only = false, 97 .pkt_access = true, 98 .ret_type = RET_INTEGER, 99 .arg1_type = ARG_CONST_MAP_PTR, 100 .arg2_type = ARG_PTR_TO_MAP_VALUE, 101 .arg3_type = ARG_ANYTHING, 102 }; 103 104 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) 105 { 106 return map->ops->map_pop_elem(map, value); 107 } 108 109 const struct bpf_func_proto bpf_map_pop_elem_proto = { 110 .func = bpf_map_pop_elem, 111 .gpl_only = false, 112 .ret_type = RET_INTEGER, 113 .arg1_type = ARG_CONST_MAP_PTR, 114 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 115 }; 116 117 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) 118 { 119 return map->ops->map_peek_elem(map, value); 120 } 121 122 const struct bpf_func_proto bpf_map_peek_elem_proto = { 123 .func = bpf_map_peek_elem, 124 .gpl_only = false, 125 .ret_type = RET_INTEGER, 126 .arg1_type = ARG_CONST_MAP_PTR, 127 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 128 }; 129 130 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) 131 { 132 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 133 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); 134 } 135 136 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { 137 .func = bpf_map_lookup_percpu_elem, 138 .gpl_only = false, 139 .pkt_access = true, 140 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 141 .arg1_type = ARG_CONST_MAP_PTR, 142 .arg2_type = ARG_PTR_TO_MAP_KEY, 143 .arg3_type = ARG_ANYTHING, 144 }; 145 146 const struct bpf_func_proto bpf_get_prandom_u32_proto = { 147 .func = bpf_user_rnd_u32, 148 .gpl_only = false, 149 .ret_type = RET_INTEGER, 150 }; 151 152 BPF_CALL_0(bpf_get_smp_processor_id) 153 { 154 return smp_processor_id(); 155 } 156 157 const struct bpf_func_proto bpf_get_smp_processor_id_proto = { 158 .func = bpf_get_smp_processor_id, 159 .gpl_only = false, 160 .ret_type = RET_INTEGER, 161 }; 162 163 BPF_CALL_0(bpf_get_numa_node_id) 164 { 165 return numa_node_id(); 166 } 167 168 const struct bpf_func_proto bpf_get_numa_node_id_proto = { 169 .func = bpf_get_numa_node_id, 170 .gpl_only = false, 171 .ret_type = RET_INTEGER, 172 }; 173 174 BPF_CALL_0(bpf_ktime_get_ns) 175 { 176 /* NMI safe access to clock monotonic */ 177 return ktime_get_mono_fast_ns(); 178 } 179 180 const struct bpf_func_proto bpf_ktime_get_ns_proto = { 181 .func = bpf_ktime_get_ns, 182 .gpl_only = false, 183 .ret_type = RET_INTEGER, 184 }; 185 186 BPF_CALL_0(bpf_ktime_get_boot_ns) 187 { 188 /* NMI safe access to clock boottime */ 189 return ktime_get_boot_fast_ns(); 190 } 191 192 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { 193 .func = bpf_ktime_get_boot_ns, 194 .gpl_only = false, 195 .ret_type = RET_INTEGER, 196 }; 197 198 BPF_CALL_0(bpf_ktime_get_coarse_ns) 199 { 200 return ktime_get_coarse_ns(); 201 } 202 203 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { 204 .func = bpf_ktime_get_coarse_ns, 205 .gpl_only = false, 206 .ret_type = RET_INTEGER, 207 }; 208 209 BPF_CALL_0(bpf_ktime_get_tai_ns) 210 { 211 /* NMI safe access to clock tai */ 212 return ktime_get_tai_fast_ns(); 213 } 214 215 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = { 216 .func = bpf_ktime_get_tai_ns, 217 .gpl_only = false, 218 .ret_type = RET_INTEGER, 219 }; 220 221 BPF_CALL_0(bpf_get_current_pid_tgid) 222 { 223 struct task_struct *task = current; 224 225 if (unlikely(!task)) 226 return -EINVAL; 227 228 return (u64) task->tgid << 32 | task->pid; 229 } 230 231 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { 232 .func = bpf_get_current_pid_tgid, 233 .gpl_only = false, 234 .ret_type = RET_INTEGER, 235 }; 236 237 BPF_CALL_0(bpf_get_current_uid_gid) 238 { 239 struct task_struct *task = current; 240 kuid_t uid; 241 kgid_t gid; 242 243 if (unlikely(!task)) 244 return -EINVAL; 245 246 current_uid_gid(&uid, &gid); 247 return (u64) from_kgid(&init_user_ns, gid) << 32 | 248 from_kuid(&init_user_ns, uid); 249 } 250 251 const struct bpf_func_proto bpf_get_current_uid_gid_proto = { 252 .func = bpf_get_current_uid_gid, 253 .gpl_only = false, 254 .ret_type = RET_INTEGER, 255 }; 256 257 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) 258 { 259 struct task_struct *task = current; 260 261 if (unlikely(!task)) 262 goto err_clear; 263 264 /* Verifier guarantees that size > 0 */ 265 strscpy_pad(buf, task->comm, size); 266 return 0; 267 err_clear: 268 memset(buf, 0, size); 269 return -EINVAL; 270 } 271 272 const struct bpf_func_proto bpf_get_current_comm_proto = { 273 .func = bpf_get_current_comm, 274 .gpl_only = false, 275 .ret_type = RET_INTEGER, 276 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 277 .arg2_type = ARG_CONST_SIZE, 278 }; 279 280 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) 281 282 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 283 { 284 arch_spinlock_t *l = (void *)lock; 285 union { 286 __u32 val; 287 arch_spinlock_t lock; 288 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; 289 290 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); 291 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); 292 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); 293 preempt_disable(); 294 arch_spin_lock(l); 295 } 296 297 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 298 { 299 arch_spinlock_t *l = (void *)lock; 300 301 arch_spin_unlock(l); 302 preempt_enable(); 303 } 304 305 #else 306 307 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 308 { 309 atomic_t *l = (void *)lock; 310 311 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); 312 do { 313 atomic_cond_read_relaxed(l, !VAL); 314 } while (atomic_xchg(l, 1)); 315 } 316 317 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 318 { 319 atomic_t *l = (void *)lock; 320 321 atomic_set_release(l, 0); 322 } 323 324 #endif 325 326 static DEFINE_PER_CPU(unsigned long, irqsave_flags); 327 328 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) 329 { 330 unsigned long flags; 331 332 local_irq_save(flags); 333 __bpf_spin_lock(lock); 334 __this_cpu_write(irqsave_flags, flags); 335 } 336 337 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) 338 { 339 __bpf_spin_lock_irqsave(lock); 340 return 0; 341 } 342 343 const struct bpf_func_proto bpf_spin_lock_proto = { 344 .func = bpf_spin_lock, 345 .gpl_only = false, 346 .ret_type = RET_VOID, 347 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 348 .arg1_btf_id = BPF_PTR_POISON, 349 }; 350 351 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) 352 { 353 unsigned long flags; 354 355 flags = __this_cpu_read(irqsave_flags); 356 __bpf_spin_unlock(lock); 357 local_irq_restore(flags); 358 } 359 360 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) 361 { 362 __bpf_spin_unlock_irqrestore(lock); 363 return 0; 364 } 365 366 const struct bpf_func_proto bpf_spin_unlock_proto = { 367 .func = bpf_spin_unlock, 368 .gpl_only = false, 369 .ret_type = RET_VOID, 370 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 371 .arg1_btf_id = BPF_PTR_POISON, 372 }; 373 374 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 375 bool lock_src) 376 { 377 struct bpf_spin_lock *lock; 378 379 if (lock_src) 380 lock = src + map->record->spin_lock_off; 381 else 382 lock = dst + map->record->spin_lock_off; 383 preempt_disable(); 384 __bpf_spin_lock_irqsave(lock); 385 copy_map_value(map, dst, src); 386 __bpf_spin_unlock_irqrestore(lock); 387 preempt_enable(); 388 } 389 390 BPF_CALL_0(bpf_jiffies64) 391 { 392 return get_jiffies_64(); 393 } 394 395 const struct bpf_func_proto bpf_jiffies64_proto = { 396 .func = bpf_jiffies64, 397 .gpl_only = false, 398 .ret_type = RET_INTEGER, 399 }; 400 401 #ifdef CONFIG_CGROUPS 402 BPF_CALL_0(bpf_get_current_cgroup_id) 403 { 404 struct cgroup *cgrp; 405 u64 cgrp_id; 406 407 rcu_read_lock(); 408 cgrp = task_dfl_cgroup(current); 409 cgrp_id = cgroup_id(cgrp); 410 rcu_read_unlock(); 411 412 return cgrp_id; 413 } 414 415 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { 416 .func = bpf_get_current_cgroup_id, 417 .gpl_only = false, 418 .ret_type = RET_INTEGER, 419 }; 420 421 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) 422 { 423 struct cgroup *cgrp; 424 struct cgroup *ancestor; 425 u64 cgrp_id; 426 427 rcu_read_lock(); 428 cgrp = task_dfl_cgroup(current); 429 ancestor = cgroup_ancestor(cgrp, ancestor_level); 430 cgrp_id = ancestor ? cgroup_id(ancestor) : 0; 431 rcu_read_unlock(); 432 433 return cgrp_id; 434 } 435 436 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { 437 .func = bpf_get_current_ancestor_cgroup_id, 438 .gpl_only = false, 439 .ret_type = RET_INTEGER, 440 .arg1_type = ARG_ANYTHING, 441 }; 442 #endif /* CONFIG_CGROUPS */ 443 444 #define BPF_STRTOX_BASE_MASK 0x1F 445 446 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, 447 unsigned long long *res, bool *is_negative) 448 { 449 unsigned int base = flags & BPF_STRTOX_BASE_MASK; 450 const char *cur_buf = buf; 451 size_t cur_len = buf_len; 452 unsigned int consumed; 453 size_t val_len; 454 char str[64]; 455 456 if (!buf || !buf_len || !res || !is_negative) 457 return -EINVAL; 458 459 if (base != 0 && base != 8 && base != 10 && base != 16) 460 return -EINVAL; 461 462 if (flags & ~BPF_STRTOX_BASE_MASK) 463 return -EINVAL; 464 465 while (cur_buf < buf + buf_len && isspace(*cur_buf)) 466 ++cur_buf; 467 468 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); 469 if (*is_negative) 470 ++cur_buf; 471 472 consumed = cur_buf - buf; 473 cur_len -= consumed; 474 if (!cur_len) 475 return -EINVAL; 476 477 cur_len = min(cur_len, sizeof(str) - 1); 478 memcpy(str, cur_buf, cur_len); 479 str[cur_len] = '\0'; 480 cur_buf = str; 481 482 cur_buf = _parse_integer_fixup_radix(cur_buf, &base); 483 val_len = _parse_integer(cur_buf, base, res); 484 485 if (val_len & KSTRTOX_OVERFLOW) 486 return -ERANGE; 487 488 if (val_len == 0) 489 return -EINVAL; 490 491 cur_buf += val_len; 492 consumed += cur_buf - str; 493 494 return consumed; 495 } 496 497 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, 498 long long *res) 499 { 500 unsigned long long _res; 501 bool is_negative; 502 int err; 503 504 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 505 if (err < 0) 506 return err; 507 if (is_negative) { 508 if ((long long)-_res > 0) 509 return -ERANGE; 510 *res = -_res; 511 } else { 512 if ((long long)_res < 0) 513 return -ERANGE; 514 *res = _res; 515 } 516 return err; 517 } 518 519 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, 520 long *, res) 521 { 522 long long _res; 523 int err; 524 525 err = __bpf_strtoll(buf, buf_len, flags, &_res); 526 if (err < 0) 527 return err; 528 if (_res != (long)_res) 529 return -ERANGE; 530 *res = _res; 531 return err; 532 } 533 534 const struct bpf_func_proto bpf_strtol_proto = { 535 .func = bpf_strtol, 536 .gpl_only = false, 537 .ret_type = RET_INTEGER, 538 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 539 .arg2_type = ARG_CONST_SIZE, 540 .arg3_type = ARG_ANYTHING, 541 .arg4_type = ARG_PTR_TO_LONG, 542 }; 543 544 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, 545 unsigned long *, res) 546 { 547 unsigned long long _res; 548 bool is_negative; 549 int err; 550 551 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 552 if (err < 0) 553 return err; 554 if (is_negative) 555 return -EINVAL; 556 if (_res != (unsigned long)_res) 557 return -ERANGE; 558 *res = _res; 559 return err; 560 } 561 562 const struct bpf_func_proto bpf_strtoul_proto = { 563 .func = bpf_strtoul, 564 .gpl_only = false, 565 .ret_type = RET_INTEGER, 566 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 567 .arg2_type = ARG_CONST_SIZE, 568 .arg3_type = ARG_ANYTHING, 569 .arg4_type = ARG_PTR_TO_LONG, 570 }; 571 572 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) 573 { 574 return strncmp(s1, s2, s1_sz); 575 } 576 577 static const struct bpf_func_proto bpf_strncmp_proto = { 578 .func = bpf_strncmp, 579 .gpl_only = false, 580 .ret_type = RET_INTEGER, 581 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 582 .arg2_type = ARG_CONST_SIZE, 583 .arg3_type = ARG_PTR_TO_CONST_STR, 584 }; 585 586 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, 587 struct bpf_pidns_info *, nsdata, u32, size) 588 { 589 struct task_struct *task = current; 590 struct pid_namespace *pidns; 591 int err = -EINVAL; 592 593 if (unlikely(size != sizeof(struct bpf_pidns_info))) 594 goto clear; 595 596 if (unlikely((u64)(dev_t)dev != dev)) 597 goto clear; 598 599 if (unlikely(!task)) 600 goto clear; 601 602 pidns = task_active_pid_ns(task); 603 if (unlikely(!pidns)) { 604 err = -ENOENT; 605 goto clear; 606 } 607 608 if (!ns_match(&pidns->ns, (dev_t)dev, ino)) 609 goto clear; 610 611 nsdata->pid = task_pid_nr_ns(task, pidns); 612 nsdata->tgid = task_tgid_nr_ns(task, pidns); 613 return 0; 614 clear: 615 memset((void *)nsdata, 0, (size_t) size); 616 return err; 617 } 618 619 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { 620 .func = bpf_get_ns_current_pid_tgid, 621 .gpl_only = false, 622 .ret_type = RET_INTEGER, 623 .arg1_type = ARG_ANYTHING, 624 .arg2_type = ARG_ANYTHING, 625 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 626 .arg4_type = ARG_CONST_SIZE, 627 }; 628 629 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { 630 .func = bpf_get_raw_cpu_id, 631 .gpl_only = false, 632 .ret_type = RET_INTEGER, 633 }; 634 635 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, 636 u64, flags, void *, data, u64, size) 637 { 638 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 639 return -EINVAL; 640 641 return bpf_event_output(map, flags, data, size, NULL, 0, NULL); 642 } 643 644 const struct bpf_func_proto bpf_event_output_data_proto = { 645 .func = bpf_event_output_data, 646 .gpl_only = true, 647 .ret_type = RET_INTEGER, 648 .arg1_type = ARG_PTR_TO_CTX, 649 .arg2_type = ARG_CONST_MAP_PTR, 650 .arg3_type = ARG_ANYTHING, 651 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 652 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 653 }; 654 655 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, 656 const void __user *, user_ptr) 657 { 658 int ret = copy_from_user(dst, user_ptr, size); 659 660 if (unlikely(ret)) { 661 memset(dst, 0, size); 662 ret = -EFAULT; 663 } 664 665 return ret; 666 } 667 668 const struct bpf_func_proto bpf_copy_from_user_proto = { 669 .func = bpf_copy_from_user, 670 .gpl_only = false, 671 .might_sleep = true, 672 .ret_type = RET_INTEGER, 673 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 674 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 675 .arg3_type = ARG_ANYTHING, 676 }; 677 678 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, 679 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) 680 { 681 int ret; 682 683 /* flags is not used yet */ 684 if (unlikely(flags)) 685 return -EINVAL; 686 687 if (unlikely(!size)) 688 return 0; 689 690 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); 691 if (ret == size) 692 return 0; 693 694 memset(dst, 0, size); 695 /* Return -EFAULT for partial read */ 696 return ret < 0 ? ret : -EFAULT; 697 } 698 699 const struct bpf_func_proto bpf_copy_from_user_task_proto = { 700 .func = bpf_copy_from_user_task, 701 .gpl_only = true, 702 .might_sleep = true, 703 .ret_type = RET_INTEGER, 704 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 705 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 706 .arg3_type = ARG_ANYTHING, 707 .arg4_type = ARG_PTR_TO_BTF_ID, 708 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 709 .arg5_type = ARG_ANYTHING 710 }; 711 712 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) 713 { 714 if (cpu >= nr_cpu_ids) 715 return (unsigned long)NULL; 716 717 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); 718 } 719 720 const struct bpf_func_proto bpf_per_cpu_ptr_proto = { 721 .func = bpf_per_cpu_ptr, 722 .gpl_only = false, 723 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, 724 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 725 .arg2_type = ARG_ANYTHING, 726 }; 727 728 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) 729 { 730 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); 731 } 732 733 const struct bpf_func_proto bpf_this_cpu_ptr_proto = { 734 .func = bpf_this_cpu_ptr, 735 .gpl_only = false, 736 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, 737 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 738 }; 739 740 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 741 size_t bufsz) 742 { 743 void __user *user_ptr = (__force void __user *)unsafe_ptr; 744 745 buf[0] = 0; 746 747 switch (fmt_ptype) { 748 case 's': 749 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 750 if ((unsigned long)unsafe_ptr < TASK_SIZE) 751 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 752 fallthrough; 753 #endif 754 case 'k': 755 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 756 case 'u': 757 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 758 } 759 760 return -EINVAL; 761 } 762 763 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary 764 * arguments representation. 765 */ 766 #define MAX_BPRINTF_BIN_ARGS 512 767 768 /* Support executing three nested bprintf helper calls on a given CPU */ 769 #define MAX_BPRINTF_NEST_LEVEL 3 770 struct bpf_bprintf_buffers { 771 char bin_args[MAX_BPRINTF_BIN_ARGS]; 772 char buf[MAX_BPRINTF_BUF]; 773 }; 774 775 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs); 776 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); 777 778 static int try_get_buffers(struct bpf_bprintf_buffers **bufs) 779 { 780 int nest_level; 781 782 preempt_disable(); 783 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); 784 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { 785 this_cpu_dec(bpf_bprintf_nest_level); 786 preempt_enable(); 787 return -EBUSY; 788 } 789 *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]); 790 791 return 0; 792 } 793 794 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data) 795 { 796 if (!data->bin_args && !data->buf) 797 return; 798 if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0)) 799 return; 800 this_cpu_dec(bpf_bprintf_nest_level); 801 preempt_enable(); 802 } 803 804 /* 805 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers 806 * 807 * Returns a negative value if fmt is an invalid format string or 0 otherwise. 808 * 809 * This can be used in two ways: 810 * - Format string verification only: when data->get_bin_args is false 811 * - Arguments preparation: in addition to the above verification, it writes in 812 * data->bin_args a binary representation of arguments usable by bstr_printf 813 * where pointers from BPF have been sanitized. 814 * 815 * In argument preparation mode, if 0 is returned, safe temporary buffers are 816 * allocated and bpf_bprintf_cleanup should be called to free them after use. 817 */ 818 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 819 u32 num_args, struct bpf_bprintf_data *data) 820 { 821 bool get_buffers = (data->get_bin_args && num_args) || data->get_buf; 822 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; 823 struct bpf_bprintf_buffers *buffers = NULL; 824 size_t sizeof_cur_arg, sizeof_cur_ip; 825 int err, i, num_spec = 0; 826 u64 cur_arg; 827 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; 828 829 fmt_end = strnchr(fmt, fmt_size, 0); 830 if (!fmt_end) 831 return -EINVAL; 832 fmt_size = fmt_end - fmt; 833 834 if (get_buffers && try_get_buffers(&buffers)) 835 return -EBUSY; 836 837 if (data->get_bin_args) { 838 if (num_args) 839 tmp_buf = buffers->bin_args; 840 tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS; 841 data->bin_args = (u32 *)tmp_buf; 842 } 843 844 if (data->get_buf) 845 data->buf = buffers->buf; 846 847 for (i = 0; i < fmt_size; i++) { 848 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 849 err = -EINVAL; 850 goto out; 851 } 852 853 if (fmt[i] != '%') 854 continue; 855 856 if (fmt[i + 1] == '%') { 857 i++; 858 continue; 859 } 860 861 if (num_spec >= num_args) { 862 err = -EINVAL; 863 goto out; 864 } 865 866 /* The string is zero-terminated so if fmt[i] != 0, we can 867 * always access fmt[i + 1], in the worst case it will be a 0 868 */ 869 i++; 870 871 /* skip optional "[0 +-][num]" width formatting field */ 872 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 873 fmt[i] == ' ') 874 i++; 875 if (fmt[i] >= '1' && fmt[i] <= '9') { 876 i++; 877 while (fmt[i] >= '0' && fmt[i] <= '9') 878 i++; 879 } 880 881 if (fmt[i] == 'p') { 882 sizeof_cur_arg = sizeof(long); 883 884 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && 885 fmt[i + 2] == 's') { 886 fmt_ptype = fmt[i + 1]; 887 i += 2; 888 goto fmt_str; 889 } 890 891 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || 892 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || 893 fmt[i + 1] == 'x' || fmt[i + 1] == 's' || 894 fmt[i + 1] == 'S') { 895 /* just kernel pointers */ 896 if (tmp_buf) 897 cur_arg = raw_args[num_spec]; 898 i++; 899 goto nocopy_fmt; 900 } 901 902 if (fmt[i + 1] == 'B') { 903 if (tmp_buf) { 904 err = snprintf(tmp_buf, 905 (tmp_buf_end - tmp_buf), 906 "%pB", 907 (void *)(long)raw_args[num_spec]); 908 tmp_buf += (err + 1); 909 } 910 911 i++; 912 num_spec++; 913 continue; 914 } 915 916 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 917 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || 918 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { 919 err = -EINVAL; 920 goto out; 921 } 922 923 i += 2; 924 if (!tmp_buf) 925 goto nocopy_fmt; 926 927 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; 928 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { 929 err = -ENOSPC; 930 goto out; 931 } 932 933 unsafe_ptr = (char *)(long)raw_args[num_spec]; 934 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, 935 sizeof_cur_ip); 936 if (err < 0) 937 memset(cur_ip, 0, sizeof_cur_ip); 938 939 /* hack: bstr_printf expects IP addresses to be 940 * pre-formatted as strings, ironically, the easiest way 941 * to do that is to call snprintf. 942 */ 943 ip_spec[2] = fmt[i - 1]; 944 ip_spec[3] = fmt[i]; 945 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, 946 ip_spec, &cur_ip); 947 948 tmp_buf += err + 1; 949 num_spec++; 950 951 continue; 952 } else if (fmt[i] == 's') { 953 fmt_ptype = fmt[i]; 954 fmt_str: 955 if (fmt[i + 1] != 0 && 956 !isspace(fmt[i + 1]) && 957 !ispunct(fmt[i + 1])) { 958 err = -EINVAL; 959 goto out; 960 } 961 962 if (!tmp_buf) 963 goto nocopy_fmt; 964 965 if (tmp_buf_end == tmp_buf) { 966 err = -ENOSPC; 967 goto out; 968 } 969 970 unsafe_ptr = (char *)(long)raw_args[num_spec]; 971 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, 972 fmt_ptype, 973 tmp_buf_end - tmp_buf); 974 if (err < 0) { 975 tmp_buf[0] = '\0'; 976 err = 1; 977 } 978 979 tmp_buf += err; 980 num_spec++; 981 982 continue; 983 } else if (fmt[i] == 'c') { 984 if (!tmp_buf) 985 goto nocopy_fmt; 986 987 if (tmp_buf_end == tmp_buf) { 988 err = -ENOSPC; 989 goto out; 990 } 991 992 *tmp_buf = raw_args[num_spec]; 993 tmp_buf++; 994 num_spec++; 995 996 continue; 997 } 998 999 sizeof_cur_arg = sizeof(int); 1000 1001 if (fmt[i] == 'l') { 1002 sizeof_cur_arg = sizeof(long); 1003 i++; 1004 } 1005 if (fmt[i] == 'l') { 1006 sizeof_cur_arg = sizeof(long long); 1007 i++; 1008 } 1009 1010 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && 1011 fmt[i] != 'x' && fmt[i] != 'X') { 1012 err = -EINVAL; 1013 goto out; 1014 } 1015 1016 if (tmp_buf) 1017 cur_arg = raw_args[num_spec]; 1018 nocopy_fmt: 1019 if (tmp_buf) { 1020 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); 1021 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { 1022 err = -ENOSPC; 1023 goto out; 1024 } 1025 1026 if (sizeof_cur_arg == 8) { 1027 *(u32 *)tmp_buf = *(u32 *)&cur_arg; 1028 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); 1029 } else { 1030 *(u32 *)tmp_buf = (u32)(long)cur_arg; 1031 } 1032 tmp_buf += sizeof_cur_arg; 1033 } 1034 num_spec++; 1035 } 1036 1037 err = 0; 1038 out: 1039 if (err) 1040 bpf_bprintf_cleanup(data); 1041 return err; 1042 } 1043 1044 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, 1045 const void *, args, u32, data_len) 1046 { 1047 struct bpf_bprintf_data data = { 1048 .get_bin_args = true, 1049 }; 1050 int err, num_args; 1051 1052 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || 1053 (data_len && !args)) 1054 return -EINVAL; 1055 num_args = data_len / 8; 1056 1057 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we 1058 * can safely give an unbounded size. 1059 */ 1060 err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data); 1061 if (err < 0) 1062 return err; 1063 1064 err = bstr_printf(str, str_size, fmt, data.bin_args); 1065 1066 bpf_bprintf_cleanup(&data); 1067 1068 return err + 1; 1069 } 1070 1071 const struct bpf_func_proto bpf_snprintf_proto = { 1072 .func = bpf_snprintf, 1073 .gpl_only = true, 1074 .ret_type = RET_INTEGER, 1075 .arg1_type = ARG_PTR_TO_MEM_OR_NULL, 1076 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1077 .arg3_type = ARG_PTR_TO_CONST_STR, 1078 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 1079 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1080 }; 1081 1082 /* BPF map elements can contain 'struct bpf_timer'. 1083 * Such map owns all of its BPF timers. 1084 * 'struct bpf_timer' is allocated as part of map element allocation 1085 * and it's zero initialized. 1086 * That space is used to keep 'struct bpf_timer_kern'. 1087 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and 1088 * remembers 'struct bpf_map *' pointer it's part of. 1089 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. 1090 * bpf_timer_start() arms the timer. 1091 * If user space reference to a map goes to zero at this point 1092 * ops->map_release_uref callback is responsible for cancelling the timers, 1093 * freeing their memory, and decrementing prog's refcnts. 1094 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. 1095 * Inner maps can contain bpf timers as well. ops->map_release_uref is 1096 * freeing the timers when inner map is replaced or deleted by user space. 1097 */ 1098 struct bpf_hrtimer { 1099 struct hrtimer timer; 1100 struct bpf_map *map; 1101 struct bpf_prog *prog; 1102 void __rcu *callback_fn; 1103 void *value; 1104 struct rcu_head rcu; 1105 }; 1106 1107 /* the actual struct hidden inside uapi struct bpf_timer */ 1108 struct bpf_timer_kern { 1109 struct bpf_hrtimer *timer; 1110 /* bpf_spin_lock is used here instead of spinlock_t to make 1111 * sure that it always fits into space reserved by struct bpf_timer 1112 * regardless of LOCKDEP and spinlock debug flags. 1113 */ 1114 struct bpf_spin_lock lock; 1115 } __attribute__((aligned(8))); 1116 1117 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); 1118 1119 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) 1120 { 1121 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); 1122 struct bpf_map *map = t->map; 1123 void *value = t->value; 1124 bpf_callback_t callback_fn; 1125 void *key; 1126 u32 idx; 1127 1128 BTF_TYPE_EMIT(struct bpf_timer); 1129 callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held()); 1130 if (!callback_fn) 1131 goto out; 1132 1133 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and 1134 * cannot be preempted by another bpf_timer_cb() on the same cpu. 1135 * Remember the timer this callback is servicing to prevent 1136 * deadlock if callback_fn() calls bpf_timer_cancel() or 1137 * bpf_map_delete_elem() on the same timer. 1138 */ 1139 this_cpu_write(hrtimer_running, t); 1140 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1141 struct bpf_array *array = container_of(map, struct bpf_array, map); 1142 1143 /* compute the key */ 1144 idx = ((char *)value - array->value) / array->elem_size; 1145 key = &idx; 1146 } else { /* hash or lru */ 1147 key = value - round_up(map->key_size, 8); 1148 } 1149 1150 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1151 /* The verifier checked that return value is zero. */ 1152 1153 this_cpu_write(hrtimer_running, NULL); 1154 out: 1155 return HRTIMER_NORESTART; 1156 } 1157 1158 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map, 1159 u64, flags) 1160 { 1161 clockid_t clockid = flags & (MAX_CLOCKS - 1); 1162 struct bpf_hrtimer *t; 1163 int ret = 0; 1164 1165 BUILD_BUG_ON(MAX_CLOCKS != 16); 1166 BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer)); 1167 BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer)); 1168 1169 if (in_nmi()) 1170 return -EOPNOTSUPP; 1171 1172 if (flags >= MAX_CLOCKS || 1173 /* similar to timerfd except _ALARM variants are not supported */ 1174 (clockid != CLOCK_MONOTONIC && 1175 clockid != CLOCK_REALTIME && 1176 clockid != CLOCK_BOOTTIME)) 1177 return -EINVAL; 1178 __bpf_spin_lock_irqsave(&timer->lock); 1179 t = timer->timer; 1180 if (t) { 1181 ret = -EBUSY; 1182 goto out; 1183 } 1184 /* allocate hrtimer via map_kmalloc to use memcg accounting */ 1185 t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node); 1186 if (!t) { 1187 ret = -ENOMEM; 1188 goto out; 1189 } 1190 t->value = (void *)timer - map->record->timer_off; 1191 t->map = map; 1192 t->prog = NULL; 1193 rcu_assign_pointer(t->callback_fn, NULL); 1194 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); 1195 t->timer.function = bpf_timer_cb; 1196 WRITE_ONCE(timer->timer, t); 1197 /* Guarantee the order between timer->timer and map->usercnt. So 1198 * when there are concurrent uref release and bpf timer init, either 1199 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL 1200 * timer or atomic64_read() below returns a zero usercnt. 1201 */ 1202 smp_mb(); 1203 if (!atomic64_read(&map->usercnt)) { 1204 /* maps with timers must be either held by user space 1205 * or pinned in bpffs. 1206 */ 1207 WRITE_ONCE(timer->timer, NULL); 1208 kfree(t); 1209 ret = -EPERM; 1210 } 1211 out: 1212 __bpf_spin_unlock_irqrestore(&timer->lock); 1213 return ret; 1214 } 1215 1216 static const struct bpf_func_proto bpf_timer_init_proto = { 1217 .func = bpf_timer_init, 1218 .gpl_only = true, 1219 .ret_type = RET_INTEGER, 1220 .arg1_type = ARG_PTR_TO_TIMER, 1221 .arg2_type = ARG_CONST_MAP_PTR, 1222 .arg3_type = ARG_ANYTHING, 1223 }; 1224 1225 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn, 1226 struct bpf_prog_aux *, aux) 1227 { 1228 struct bpf_prog *prev, *prog = aux->prog; 1229 struct bpf_hrtimer *t; 1230 int ret = 0; 1231 1232 if (in_nmi()) 1233 return -EOPNOTSUPP; 1234 __bpf_spin_lock_irqsave(&timer->lock); 1235 t = timer->timer; 1236 if (!t) { 1237 ret = -EINVAL; 1238 goto out; 1239 } 1240 if (!atomic64_read(&t->map->usercnt)) { 1241 /* maps with timers must be either held by user space 1242 * or pinned in bpffs. Otherwise timer might still be 1243 * running even when bpf prog is detached and user space 1244 * is gone, since map_release_uref won't ever be called. 1245 */ 1246 ret = -EPERM; 1247 goto out; 1248 } 1249 prev = t->prog; 1250 if (prev != prog) { 1251 /* Bump prog refcnt once. Every bpf_timer_set_callback() 1252 * can pick different callback_fn-s within the same prog. 1253 */ 1254 prog = bpf_prog_inc_not_zero(prog); 1255 if (IS_ERR(prog)) { 1256 ret = PTR_ERR(prog); 1257 goto out; 1258 } 1259 if (prev) 1260 /* Drop prev prog refcnt when swapping with new prog */ 1261 bpf_prog_put(prev); 1262 t->prog = prog; 1263 } 1264 rcu_assign_pointer(t->callback_fn, callback_fn); 1265 out: 1266 __bpf_spin_unlock_irqrestore(&timer->lock); 1267 return ret; 1268 } 1269 1270 static const struct bpf_func_proto bpf_timer_set_callback_proto = { 1271 .func = bpf_timer_set_callback, 1272 .gpl_only = true, 1273 .ret_type = RET_INTEGER, 1274 .arg1_type = ARG_PTR_TO_TIMER, 1275 .arg2_type = ARG_PTR_TO_FUNC, 1276 }; 1277 1278 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags) 1279 { 1280 struct bpf_hrtimer *t; 1281 int ret = 0; 1282 enum hrtimer_mode mode; 1283 1284 if (in_nmi()) 1285 return -EOPNOTSUPP; 1286 if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN)) 1287 return -EINVAL; 1288 __bpf_spin_lock_irqsave(&timer->lock); 1289 t = timer->timer; 1290 if (!t || !t->prog) { 1291 ret = -EINVAL; 1292 goto out; 1293 } 1294 1295 if (flags & BPF_F_TIMER_ABS) 1296 mode = HRTIMER_MODE_ABS_SOFT; 1297 else 1298 mode = HRTIMER_MODE_REL_SOFT; 1299 1300 if (flags & BPF_F_TIMER_CPU_PIN) 1301 mode |= HRTIMER_MODE_PINNED; 1302 1303 hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode); 1304 out: 1305 __bpf_spin_unlock_irqrestore(&timer->lock); 1306 return ret; 1307 } 1308 1309 static const struct bpf_func_proto bpf_timer_start_proto = { 1310 .func = bpf_timer_start, 1311 .gpl_only = true, 1312 .ret_type = RET_INTEGER, 1313 .arg1_type = ARG_PTR_TO_TIMER, 1314 .arg2_type = ARG_ANYTHING, 1315 .arg3_type = ARG_ANYTHING, 1316 }; 1317 1318 static void drop_prog_refcnt(struct bpf_hrtimer *t) 1319 { 1320 struct bpf_prog *prog = t->prog; 1321 1322 if (prog) { 1323 bpf_prog_put(prog); 1324 t->prog = NULL; 1325 rcu_assign_pointer(t->callback_fn, NULL); 1326 } 1327 } 1328 1329 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer) 1330 { 1331 struct bpf_hrtimer *t; 1332 int ret = 0; 1333 1334 if (in_nmi()) 1335 return -EOPNOTSUPP; 1336 rcu_read_lock(); 1337 __bpf_spin_lock_irqsave(&timer->lock); 1338 t = timer->timer; 1339 if (!t) { 1340 ret = -EINVAL; 1341 goto out; 1342 } 1343 if (this_cpu_read(hrtimer_running) == t) { 1344 /* If bpf callback_fn is trying to bpf_timer_cancel() 1345 * its own timer the hrtimer_cancel() will deadlock 1346 * since it waits for callback_fn to finish 1347 */ 1348 ret = -EDEADLK; 1349 goto out; 1350 } 1351 drop_prog_refcnt(t); 1352 out: 1353 __bpf_spin_unlock_irqrestore(&timer->lock); 1354 /* Cancel the timer and wait for associated callback to finish 1355 * if it was running. 1356 */ 1357 ret = ret ?: hrtimer_cancel(&t->timer); 1358 rcu_read_unlock(); 1359 return ret; 1360 } 1361 1362 static const struct bpf_func_proto bpf_timer_cancel_proto = { 1363 .func = bpf_timer_cancel, 1364 .gpl_only = true, 1365 .ret_type = RET_INTEGER, 1366 .arg1_type = ARG_PTR_TO_TIMER, 1367 }; 1368 1369 /* This function is called by map_delete/update_elem for individual element and 1370 * by ops->map_release_uref when the user space reference to a map reaches zero. 1371 */ 1372 void bpf_timer_cancel_and_free(void *val) 1373 { 1374 struct bpf_timer_kern *timer = val; 1375 struct bpf_hrtimer *t; 1376 1377 /* Performance optimization: read timer->timer without lock first. */ 1378 if (!READ_ONCE(timer->timer)) 1379 return; 1380 1381 __bpf_spin_lock_irqsave(&timer->lock); 1382 /* re-read it under lock */ 1383 t = timer->timer; 1384 if (!t) 1385 goto out; 1386 drop_prog_refcnt(t); 1387 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use 1388 * this timer, since it won't be initialized. 1389 */ 1390 WRITE_ONCE(timer->timer, NULL); 1391 out: 1392 __bpf_spin_unlock_irqrestore(&timer->lock); 1393 if (!t) 1394 return; 1395 /* Cancel the timer and wait for callback to complete if it was running. 1396 * If hrtimer_cancel() can be safely called it's safe to call kfree(t) 1397 * right after for both preallocated and non-preallocated maps. 1398 * The timer->timer = NULL was already done and no code path can 1399 * see address 't' anymore. 1400 * 1401 * Check that bpf_map_delete/update_elem() wasn't called from timer 1402 * callback_fn. In such case don't call hrtimer_cancel() (since it will 1403 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just 1404 * return -1). Though callback_fn is still running on this cpu it's 1405 * safe to do kfree(t) because bpf_timer_cb() read everything it needed 1406 * from 't'. The bpf subprog callback_fn won't be able to access 't', 1407 * since timer->timer = NULL was already done. The timer will be 1408 * effectively cancelled because bpf_timer_cb() will return 1409 * HRTIMER_NORESTART. 1410 */ 1411 if (this_cpu_read(hrtimer_running) != t) 1412 hrtimer_cancel(&t->timer); 1413 kfree_rcu(t, rcu); 1414 } 1415 1416 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr) 1417 { 1418 unsigned long *kptr = map_value; 1419 1420 /* This helper may be inlined by verifier. */ 1421 return xchg(kptr, (unsigned long)ptr); 1422 } 1423 1424 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() 1425 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to 1426 * denote type that verifier will determine. 1427 */ 1428 static const struct bpf_func_proto bpf_kptr_xchg_proto = { 1429 .func = bpf_kptr_xchg, 1430 .gpl_only = false, 1431 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 1432 .ret_btf_id = BPF_PTR_POISON, 1433 .arg1_type = ARG_PTR_TO_KPTR, 1434 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, 1435 .arg2_btf_id = BPF_PTR_POISON, 1436 }; 1437 1438 /* Since the upper 8 bits of dynptr->size is reserved, the 1439 * maximum supported size is 2^24 - 1. 1440 */ 1441 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1) 1442 #define DYNPTR_TYPE_SHIFT 28 1443 #define DYNPTR_SIZE_MASK 0xFFFFFF 1444 #define DYNPTR_RDONLY_BIT BIT(31) 1445 1446 static bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr) 1447 { 1448 return ptr->size & DYNPTR_RDONLY_BIT; 1449 } 1450 1451 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 1452 { 1453 ptr->size |= DYNPTR_RDONLY_BIT; 1454 } 1455 1456 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) 1457 { 1458 ptr->size |= type << DYNPTR_TYPE_SHIFT; 1459 } 1460 1461 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr) 1462 { 1463 return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT; 1464 } 1465 1466 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) 1467 { 1468 return ptr->size & DYNPTR_SIZE_MASK; 1469 } 1470 1471 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size) 1472 { 1473 u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK; 1474 1475 ptr->size = new_size | metadata; 1476 } 1477 1478 int bpf_dynptr_check_size(u32 size) 1479 { 1480 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; 1481 } 1482 1483 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 1484 enum bpf_dynptr_type type, u32 offset, u32 size) 1485 { 1486 ptr->data = data; 1487 ptr->offset = offset; 1488 ptr->size = size; 1489 bpf_dynptr_set_type(ptr, type); 1490 } 1491 1492 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 1493 { 1494 memset(ptr, 0, sizeof(*ptr)); 1495 } 1496 1497 static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len) 1498 { 1499 u32 size = __bpf_dynptr_size(ptr); 1500 1501 if (len > size || offset > size - len) 1502 return -E2BIG; 1503 1504 return 0; 1505 } 1506 1507 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) 1508 { 1509 int err; 1510 1511 BTF_TYPE_EMIT(struct bpf_dynptr); 1512 1513 err = bpf_dynptr_check_size(size); 1514 if (err) 1515 goto error; 1516 1517 /* flags is currently unsupported */ 1518 if (flags) { 1519 err = -EINVAL; 1520 goto error; 1521 } 1522 1523 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); 1524 1525 return 0; 1526 1527 error: 1528 bpf_dynptr_set_null(ptr); 1529 return err; 1530 } 1531 1532 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { 1533 .func = bpf_dynptr_from_mem, 1534 .gpl_only = false, 1535 .ret_type = RET_INTEGER, 1536 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1537 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1538 .arg3_type = ARG_ANYTHING, 1539 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT, 1540 }; 1541 1542 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src, 1543 u32, offset, u64, flags) 1544 { 1545 enum bpf_dynptr_type type; 1546 int err; 1547 1548 if (!src->data || flags) 1549 return -EINVAL; 1550 1551 err = bpf_dynptr_check_off_len(src, offset, len); 1552 if (err) 1553 return err; 1554 1555 type = bpf_dynptr_get_type(src); 1556 1557 switch (type) { 1558 case BPF_DYNPTR_TYPE_LOCAL: 1559 case BPF_DYNPTR_TYPE_RINGBUF: 1560 /* Source and destination may possibly overlap, hence use memmove to 1561 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1562 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1563 */ 1564 memmove(dst, src->data + src->offset + offset, len); 1565 return 0; 1566 case BPF_DYNPTR_TYPE_SKB: 1567 return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len); 1568 case BPF_DYNPTR_TYPE_XDP: 1569 return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len); 1570 default: 1571 WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type); 1572 return -EFAULT; 1573 } 1574 } 1575 1576 static const struct bpf_func_proto bpf_dynptr_read_proto = { 1577 .func = bpf_dynptr_read, 1578 .gpl_only = false, 1579 .ret_type = RET_INTEGER, 1580 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1581 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1582 .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1583 .arg4_type = ARG_ANYTHING, 1584 .arg5_type = ARG_ANYTHING, 1585 }; 1586 1587 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src, 1588 u32, len, u64, flags) 1589 { 1590 enum bpf_dynptr_type type; 1591 int err; 1592 1593 if (!dst->data || __bpf_dynptr_is_rdonly(dst)) 1594 return -EINVAL; 1595 1596 err = bpf_dynptr_check_off_len(dst, offset, len); 1597 if (err) 1598 return err; 1599 1600 type = bpf_dynptr_get_type(dst); 1601 1602 switch (type) { 1603 case BPF_DYNPTR_TYPE_LOCAL: 1604 case BPF_DYNPTR_TYPE_RINGBUF: 1605 if (flags) 1606 return -EINVAL; 1607 /* Source and destination may possibly overlap, hence use memmove to 1608 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1609 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1610 */ 1611 memmove(dst->data + dst->offset + offset, src, len); 1612 return 0; 1613 case BPF_DYNPTR_TYPE_SKB: 1614 return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len, 1615 flags); 1616 case BPF_DYNPTR_TYPE_XDP: 1617 if (flags) 1618 return -EINVAL; 1619 return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len); 1620 default: 1621 WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type); 1622 return -EFAULT; 1623 } 1624 } 1625 1626 static const struct bpf_func_proto bpf_dynptr_write_proto = { 1627 .func = bpf_dynptr_write, 1628 .gpl_only = false, 1629 .ret_type = RET_INTEGER, 1630 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1631 .arg2_type = ARG_ANYTHING, 1632 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1633 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 1634 .arg5_type = ARG_ANYTHING, 1635 }; 1636 1637 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len) 1638 { 1639 enum bpf_dynptr_type type; 1640 int err; 1641 1642 if (!ptr->data) 1643 return 0; 1644 1645 err = bpf_dynptr_check_off_len(ptr, offset, len); 1646 if (err) 1647 return 0; 1648 1649 if (__bpf_dynptr_is_rdonly(ptr)) 1650 return 0; 1651 1652 type = bpf_dynptr_get_type(ptr); 1653 1654 switch (type) { 1655 case BPF_DYNPTR_TYPE_LOCAL: 1656 case BPF_DYNPTR_TYPE_RINGBUF: 1657 return (unsigned long)(ptr->data + ptr->offset + offset); 1658 case BPF_DYNPTR_TYPE_SKB: 1659 case BPF_DYNPTR_TYPE_XDP: 1660 /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */ 1661 return 0; 1662 default: 1663 WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type); 1664 return 0; 1665 } 1666 } 1667 1668 static const struct bpf_func_proto bpf_dynptr_data_proto = { 1669 .func = bpf_dynptr_data, 1670 .gpl_only = false, 1671 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL, 1672 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1673 .arg2_type = ARG_ANYTHING, 1674 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 1675 }; 1676 1677 const struct bpf_func_proto bpf_get_current_task_proto __weak; 1678 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; 1679 const struct bpf_func_proto bpf_probe_read_user_proto __weak; 1680 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; 1681 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; 1682 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; 1683 const struct bpf_func_proto bpf_task_pt_regs_proto __weak; 1684 1685 const struct bpf_func_proto * 1686 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1687 { 1688 switch (func_id) { 1689 case BPF_FUNC_map_lookup_elem: 1690 return &bpf_map_lookup_elem_proto; 1691 case BPF_FUNC_map_update_elem: 1692 return &bpf_map_update_elem_proto; 1693 case BPF_FUNC_map_delete_elem: 1694 return &bpf_map_delete_elem_proto; 1695 case BPF_FUNC_map_push_elem: 1696 return &bpf_map_push_elem_proto; 1697 case BPF_FUNC_map_pop_elem: 1698 return &bpf_map_pop_elem_proto; 1699 case BPF_FUNC_map_peek_elem: 1700 return &bpf_map_peek_elem_proto; 1701 case BPF_FUNC_map_lookup_percpu_elem: 1702 return &bpf_map_lookup_percpu_elem_proto; 1703 case BPF_FUNC_get_prandom_u32: 1704 return &bpf_get_prandom_u32_proto; 1705 case BPF_FUNC_get_smp_processor_id: 1706 return &bpf_get_raw_smp_processor_id_proto; 1707 case BPF_FUNC_get_numa_node_id: 1708 return &bpf_get_numa_node_id_proto; 1709 case BPF_FUNC_tail_call: 1710 return &bpf_tail_call_proto; 1711 case BPF_FUNC_ktime_get_ns: 1712 return &bpf_ktime_get_ns_proto; 1713 case BPF_FUNC_ktime_get_boot_ns: 1714 return &bpf_ktime_get_boot_ns_proto; 1715 case BPF_FUNC_ktime_get_tai_ns: 1716 return &bpf_ktime_get_tai_ns_proto; 1717 case BPF_FUNC_ringbuf_output: 1718 return &bpf_ringbuf_output_proto; 1719 case BPF_FUNC_ringbuf_reserve: 1720 return &bpf_ringbuf_reserve_proto; 1721 case BPF_FUNC_ringbuf_submit: 1722 return &bpf_ringbuf_submit_proto; 1723 case BPF_FUNC_ringbuf_discard: 1724 return &bpf_ringbuf_discard_proto; 1725 case BPF_FUNC_ringbuf_query: 1726 return &bpf_ringbuf_query_proto; 1727 case BPF_FUNC_strncmp: 1728 return &bpf_strncmp_proto; 1729 case BPF_FUNC_strtol: 1730 return &bpf_strtol_proto; 1731 case BPF_FUNC_strtoul: 1732 return &bpf_strtoul_proto; 1733 case BPF_FUNC_get_current_pid_tgid: 1734 return &bpf_get_current_pid_tgid_proto; 1735 case BPF_FUNC_get_ns_current_pid_tgid: 1736 return &bpf_get_ns_current_pid_tgid_proto; 1737 default: 1738 break; 1739 } 1740 1741 if (!bpf_token_capable(prog->aux->token, CAP_BPF)) 1742 return NULL; 1743 1744 switch (func_id) { 1745 case BPF_FUNC_spin_lock: 1746 return &bpf_spin_lock_proto; 1747 case BPF_FUNC_spin_unlock: 1748 return &bpf_spin_unlock_proto; 1749 case BPF_FUNC_jiffies64: 1750 return &bpf_jiffies64_proto; 1751 case BPF_FUNC_per_cpu_ptr: 1752 return &bpf_per_cpu_ptr_proto; 1753 case BPF_FUNC_this_cpu_ptr: 1754 return &bpf_this_cpu_ptr_proto; 1755 case BPF_FUNC_timer_init: 1756 return &bpf_timer_init_proto; 1757 case BPF_FUNC_timer_set_callback: 1758 return &bpf_timer_set_callback_proto; 1759 case BPF_FUNC_timer_start: 1760 return &bpf_timer_start_proto; 1761 case BPF_FUNC_timer_cancel: 1762 return &bpf_timer_cancel_proto; 1763 case BPF_FUNC_kptr_xchg: 1764 return &bpf_kptr_xchg_proto; 1765 case BPF_FUNC_for_each_map_elem: 1766 return &bpf_for_each_map_elem_proto; 1767 case BPF_FUNC_loop: 1768 return &bpf_loop_proto; 1769 case BPF_FUNC_user_ringbuf_drain: 1770 return &bpf_user_ringbuf_drain_proto; 1771 case BPF_FUNC_ringbuf_reserve_dynptr: 1772 return &bpf_ringbuf_reserve_dynptr_proto; 1773 case BPF_FUNC_ringbuf_submit_dynptr: 1774 return &bpf_ringbuf_submit_dynptr_proto; 1775 case BPF_FUNC_ringbuf_discard_dynptr: 1776 return &bpf_ringbuf_discard_dynptr_proto; 1777 case BPF_FUNC_dynptr_from_mem: 1778 return &bpf_dynptr_from_mem_proto; 1779 case BPF_FUNC_dynptr_read: 1780 return &bpf_dynptr_read_proto; 1781 case BPF_FUNC_dynptr_write: 1782 return &bpf_dynptr_write_proto; 1783 case BPF_FUNC_dynptr_data: 1784 return &bpf_dynptr_data_proto; 1785 #ifdef CONFIG_CGROUPS 1786 case BPF_FUNC_cgrp_storage_get: 1787 return &bpf_cgrp_storage_get_proto; 1788 case BPF_FUNC_cgrp_storage_delete: 1789 return &bpf_cgrp_storage_delete_proto; 1790 case BPF_FUNC_get_current_cgroup_id: 1791 return &bpf_get_current_cgroup_id_proto; 1792 case BPF_FUNC_get_current_ancestor_cgroup_id: 1793 return &bpf_get_current_ancestor_cgroup_id_proto; 1794 #endif 1795 default: 1796 break; 1797 } 1798 1799 if (!bpf_token_capable(prog->aux->token, CAP_PERFMON)) 1800 return NULL; 1801 1802 switch (func_id) { 1803 case BPF_FUNC_trace_printk: 1804 return bpf_get_trace_printk_proto(); 1805 case BPF_FUNC_get_current_task: 1806 return &bpf_get_current_task_proto; 1807 case BPF_FUNC_get_current_task_btf: 1808 return &bpf_get_current_task_btf_proto; 1809 case BPF_FUNC_probe_read_user: 1810 return &bpf_probe_read_user_proto; 1811 case BPF_FUNC_probe_read_kernel: 1812 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1813 NULL : &bpf_probe_read_kernel_proto; 1814 case BPF_FUNC_probe_read_user_str: 1815 return &bpf_probe_read_user_str_proto; 1816 case BPF_FUNC_probe_read_kernel_str: 1817 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1818 NULL : &bpf_probe_read_kernel_str_proto; 1819 case BPF_FUNC_snprintf_btf: 1820 return &bpf_snprintf_btf_proto; 1821 case BPF_FUNC_snprintf: 1822 return &bpf_snprintf_proto; 1823 case BPF_FUNC_task_pt_regs: 1824 return &bpf_task_pt_regs_proto; 1825 case BPF_FUNC_trace_vprintk: 1826 return bpf_get_trace_vprintk_proto(); 1827 default: 1828 return NULL; 1829 } 1830 } 1831 1832 void bpf_list_head_free(const struct btf_field *field, void *list_head, 1833 struct bpf_spin_lock *spin_lock) 1834 { 1835 struct list_head *head = list_head, *orig_head = list_head; 1836 1837 BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head)); 1838 BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head)); 1839 1840 /* Do the actual list draining outside the lock to not hold the lock for 1841 * too long, and also prevent deadlocks if tracing programs end up 1842 * executing on entry/exit of functions called inside the critical 1843 * section, and end up doing map ops that call bpf_list_head_free for 1844 * the same map value again. 1845 */ 1846 __bpf_spin_lock_irqsave(spin_lock); 1847 if (!head->next || list_empty(head)) 1848 goto unlock; 1849 head = head->next; 1850 unlock: 1851 INIT_LIST_HEAD(orig_head); 1852 __bpf_spin_unlock_irqrestore(spin_lock); 1853 1854 while (head != orig_head) { 1855 void *obj = head; 1856 1857 obj -= field->graph_root.node_offset; 1858 head = head->next; 1859 /* The contained type can also have resources, including a 1860 * bpf_list_head which needs to be freed. 1861 */ 1862 migrate_disable(); 1863 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); 1864 migrate_enable(); 1865 } 1866 } 1867 1868 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are 1869 * 'rb_node *', so field name of rb_node within containing struct is not 1870 * needed. 1871 * 1872 * Since bpf_rb_tree's node type has a corresponding struct btf_field with 1873 * graph_root.node_offset, it's not necessary to know field name 1874 * or type of node struct 1875 */ 1876 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \ 1877 for (pos = rb_first_postorder(root); \ 1878 pos && ({ n = rb_next_postorder(pos); 1; }); \ 1879 pos = n) 1880 1881 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 1882 struct bpf_spin_lock *spin_lock) 1883 { 1884 struct rb_root_cached orig_root, *root = rb_root; 1885 struct rb_node *pos, *n; 1886 void *obj; 1887 1888 BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root)); 1889 BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root)); 1890 1891 __bpf_spin_lock_irqsave(spin_lock); 1892 orig_root = *root; 1893 *root = RB_ROOT_CACHED; 1894 __bpf_spin_unlock_irqrestore(spin_lock); 1895 1896 bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) { 1897 obj = pos; 1898 obj -= field->graph_root.node_offset; 1899 1900 1901 migrate_disable(); 1902 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); 1903 migrate_enable(); 1904 } 1905 } 1906 1907 __bpf_kfunc_start_defs(); 1908 1909 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign) 1910 { 1911 struct btf_struct_meta *meta = meta__ign; 1912 u64 size = local_type_id__k; 1913 void *p; 1914 1915 p = bpf_mem_alloc(&bpf_global_ma, size); 1916 if (!p) 1917 return NULL; 1918 if (meta) 1919 bpf_obj_init(meta->record, p); 1920 return p; 1921 } 1922 1923 __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign) 1924 { 1925 u64 size = local_type_id__k; 1926 1927 /* The verifier has ensured that meta__ign must be NULL */ 1928 return bpf_mem_alloc(&bpf_global_percpu_ma, size); 1929 } 1930 1931 /* Must be called under migrate_disable(), as required by bpf_mem_free */ 1932 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu) 1933 { 1934 struct bpf_mem_alloc *ma; 1935 1936 if (rec && rec->refcount_off >= 0 && 1937 !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) { 1938 /* Object is refcounted and refcount_dec didn't result in 0 1939 * refcount. Return without freeing the object 1940 */ 1941 return; 1942 } 1943 1944 if (rec) 1945 bpf_obj_free_fields(rec, p); 1946 1947 if (percpu) 1948 ma = &bpf_global_percpu_ma; 1949 else 1950 ma = &bpf_global_ma; 1951 bpf_mem_free_rcu(ma, p); 1952 } 1953 1954 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign) 1955 { 1956 struct btf_struct_meta *meta = meta__ign; 1957 void *p = p__alloc; 1958 1959 __bpf_obj_drop_impl(p, meta ? meta->record : NULL, false); 1960 } 1961 1962 __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign) 1963 { 1964 /* The verifier has ensured that meta__ign must be NULL */ 1965 bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc); 1966 } 1967 1968 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign) 1969 { 1970 struct btf_struct_meta *meta = meta__ign; 1971 struct bpf_refcount *ref; 1972 1973 /* Could just cast directly to refcount_t *, but need some code using 1974 * bpf_refcount type so that it is emitted in vmlinux BTF 1975 */ 1976 ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off); 1977 if (!refcount_inc_not_zero((refcount_t *)ref)) 1978 return NULL; 1979 1980 /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null 1981 * in verifier.c 1982 */ 1983 return (void *)p__refcounted_kptr; 1984 } 1985 1986 static int __bpf_list_add(struct bpf_list_node_kern *node, 1987 struct bpf_list_head *head, 1988 bool tail, struct btf_record *rec, u64 off) 1989 { 1990 struct list_head *n = &node->list_head, *h = (void *)head; 1991 1992 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 1993 * called on its fields, so init here 1994 */ 1995 if (unlikely(!h->next)) 1996 INIT_LIST_HEAD(h); 1997 1998 /* node->owner != NULL implies !list_empty(n), no need to separately 1999 * check the latter 2000 */ 2001 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { 2002 /* Only called from BPF prog, no need to migrate_disable */ 2003 __bpf_obj_drop_impl((void *)n - off, rec, false); 2004 return -EINVAL; 2005 } 2006 2007 tail ? list_add_tail(n, h) : list_add(n, h); 2008 WRITE_ONCE(node->owner, head); 2009 2010 return 0; 2011 } 2012 2013 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head, 2014 struct bpf_list_node *node, 2015 void *meta__ign, u64 off) 2016 { 2017 struct bpf_list_node_kern *n = (void *)node; 2018 struct btf_struct_meta *meta = meta__ign; 2019 2020 return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off); 2021 } 2022 2023 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head, 2024 struct bpf_list_node *node, 2025 void *meta__ign, u64 off) 2026 { 2027 struct bpf_list_node_kern *n = (void *)node; 2028 struct btf_struct_meta *meta = meta__ign; 2029 2030 return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off); 2031 } 2032 2033 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail) 2034 { 2035 struct list_head *n, *h = (void *)head; 2036 struct bpf_list_node_kern *node; 2037 2038 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 2039 * called on its fields, so init here 2040 */ 2041 if (unlikely(!h->next)) 2042 INIT_LIST_HEAD(h); 2043 if (list_empty(h)) 2044 return NULL; 2045 2046 n = tail ? h->prev : h->next; 2047 node = container_of(n, struct bpf_list_node_kern, list_head); 2048 if (WARN_ON_ONCE(READ_ONCE(node->owner) != head)) 2049 return NULL; 2050 2051 list_del_init(n); 2052 WRITE_ONCE(node->owner, NULL); 2053 return (struct bpf_list_node *)n; 2054 } 2055 2056 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) 2057 { 2058 return __bpf_list_del(head, false); 2059 } 2060 2061 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) 2062 { 2063 return __bpf_list_del(head, true); 2064 } 2065 2066 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root, 2067 struct bpf_rb_node *node) 2068 { 2069 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; 2070 struct rb_root_cached *r = (struct rb_root_cached *)root; 2071 struct rb_node *n = &node_internal->rb_node; 2072 2073 /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or 2074 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n) 2075 */ 2076 if (READ_ONCE(node_internal->owner) != root) 2077 return NULL; 2078 2079 rb_erase_cached(n, r); 2080 RB_CLEAR_NODE(n); 2081 WRITE_ONCE(node_internal->owner, NULL); 2082 return (struct bpf_rb_node *)n; 2083 } 2084 2085 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF 2086 * program 2087 */ 2088 static int __bpf_rbtree_add(struct bpf_rb_root *root, 2089 struct bpf_rb_node_kern *node, 2090 void *less, struct btf_record *rec, u64 off) 2091 { 2092 struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node; 2093 struct rb_node *parent = NULL, *n = &node->rb_node; 2094 bpf_callback_t cb = (bpf_callback_t)less; 2095 bool leftmost = true; 2096 2097 /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately 2098 * check the latter 2099 */ 2100 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { 2101 /* Only called from BPF prog, no need to migrate_disable */ 2102 __bpf_obj_drop_impl((void *)n - off, rec, false); 2103 return -EINVAL; 2104 } 2105 2106 while (*link) { 2107 parent = *link; 2108 if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) { 2109 link = &parent->rb_left; 2110 } else { 2111 link = &parent->rb_right; 2112 leftmost = false; 2113 } 2114 } 2115 2116 rb_link_node(n, parent, link); 2117 rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost); 2118 WRITE_ONCE(node->owner, root); 2119 return 0; 2120 } 2121 2122 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 2123 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b), 2124 void *meta__ign, u64 off) 2125 { 2126 struct btf_struct_meta *meta = meta__ign; 2127 struct bpf_rb_node_kern *n = (void *)node; 2128 2129 return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off); 2130 } 2131 2132 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) 2133 { 2134 struct rb_root_cached *r = (struct rb_root_cached *)root; 2135 2136 return (struct bpf_rb_node *)rb_first_cached(r); 2137 } 2138 2139 /** 2140 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this 2141 * kfunc which is not stored in a map as a kptr, must be released by calling 2142 * bpf_task_release(). 2143 * @p: The task on which a reference is being acquired. 2144 */ 2145 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p) 2146 { 2147 if (refcount_inc_not_zero(&p->rcu_users)) 2148 return p; 2149 return NULL; 2150 } 2151 2152 /** 2153 * bpf_task_release - Release the reference acquired on a task. 2154 * @p: The task on which a reference is being released. 2155 */ 2156 __bpf_kfunc void bpf_task_release(struct task_struct *p) 2157 { 2158 put_task_struct_rcu_user(p); 2159 } 2160 2161 __bpf_kfunc void bpf_task_release_dtor(void *p) 2162 { 2163 put_task_struct_rcu_user(p); 2164 } 2165 CFI_NOSEAL(bpf_task_release_dtor); 2166 2167 #ifdef CONFIG_CGROUPS 2168 /** 2169 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by 2170 * this kfunc which is not stored in a map as a kptr, must be released by 2171 * calling bpf_cgroup_release(). 2172 * @cgrp: The cgroup on which a reference is being acquired. 2173 */ 2174 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp) 2175 { 2176 return cgroup_tryget(cgrp) ? cgrp : NULL; 2177 } 2178 2179 /** 2180 * bpf_cgroup_release - Release the reference acquired on a cgroup. 2181 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to 2182 * not be freed until the current grace period has ended, even if its refcount 2183 * drops to 0. 2184 * @cgrp: The cgroup on which a reference is being released. 2185 */ 2186 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp) 2187 { 2188 cgroup_put(cgrp); 2189 } 2190 2191 __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp) 2192 { 2193 cgroup_put(cgrp); 2194 } 2195 CFI_NOSEAL(bpf_cgroup_release_dtor); 2196 2197 /** 2198 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor 2199 * array. A cgroup returned by this kfunc which is not subsequently stored in a 2200 * map, must be released by calling bpf_cgroup_release(). 2201 * @cgrp: The cgroup for which we're performing a lookup. 2202 * @level: The level of ancestor to look up. 2203 */ 2204 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) 2205 { 2206 struct cgroup *ancestor; 2207 2208 if (level > cgrp->level || level < 0) 2209 return NULL; 2210 2211 /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */ 2212 ancestor = cgrp->ancestors[level]; 2213 if (!cgroup_tryget(ancestor)) 2214 return NULL; 2215 return ancestor; 2216 } 2217 2218 /** 2219 * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this 2220 * kfunc which is not subsequently stored in a map, must be released by calling 2221 * bpf_cgroup_release(). 2222 * @cgid: cgroup id. 2223 */ 2224 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid) 2225 { 2226 struct cgroup *cgrp; 2227 2228 cgrp = cgroup_get_from_id(cgid); 2229 if (IS_ERR(cgrp)) 2230 return NULL; 2231 return cgrp; 2232 } 2233 2234 /** 2235 * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test 2236 * task's membership of cgroup ancestry. 2237 * @task: the task to be tested 2238 * @ancestor: possible ancestor of @task's cgroup 2239 * 2240 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor. 2241 * It follows all the same rules as cgroup_is_descendant, and only applies 2242 * to the default hierarchy. 2243 */ 2244 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task, 2245 struct cgroup *ancestor) 2246 { 2247 long ret; 2248 2249 rcu_read_lock(); 2250 ret = task_under_cgroup_hierarchy(task, ancestor); 2251 rcu_read_unlock(); 2252 return ret; 2253 } 2254 2255 /** 2256 * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a 2257 * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its 2258 * hierarchy ID. 2259 * @task: The target task 2260 * @hierarchy_id: The ID of a cgroup1 hierarchy 2261 * 2262 * On success, the cgroup is returen. On failure, NULL is returned. 2263 */ 2264 __bpf_kfunc struct cgroup * 2265 bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id) 2266 { 2267 struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id); 2268 2269 if (IS_ERR(cgrp)) 2270 return NULL; 2271 return cgrp; 2272 } 2273 #endif /* CONFIG_CGROUPS */ 2274 2275 /** 2276 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up 2277 * in the root pid namespace idr. If a task is returned, it must either be 2278 * stored in a map, or released with bpf_task_release(). 2279 * @pid: The pid of the task being looked up. 2280 */ 2281 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid) 2282 { 2283 struct task_struct *p; 2284 2285 rcu_read_lock(); 2286 p = find_task_by_pid_ns(pid, &init_pid_ns); 2287 if (p) 2288 p = bpf_task_acquire(p); 2289 rcu_read_unlock(); 2290 2291 return p; 2292 } 2293 2294 /** 2295 * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data. 2296 * @ptr: The dynptr whose data slice to retrieve 2297 * @offset: Offset into the dynptr 2298 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2299 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2300 * length of the requested slice. This must be a constant. 2301 * 2302 * For non-skb and non-xdp type dynptrs, there is no difference between 2303 * bpf_dynptr_slice and bpf_dynptr_data. 2304 * 2305 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2306 * 2307 * If the intention is to write to the data slice, please use 2308 * bpf_dynptr_slice_rdwr. 2309 * 2310 * The user must check that the returned pointer is not null before using it. 2311 * 2312 * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice 2313 * does not change the underlying packet data pointers, so a call to 2314 * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in 2315 * the bpf program. 2316 * 2317 * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only 2318 * data slice (can be either direct pointer to the data or a pointer to the user 2319 * provided buffer, with its contents containing the data, if unable to obtain 2320 * direct pointer) 2321 */ 2322 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset, 2323 void *buffer__opt, u32 buffer__szk) 2324 { 2325 enum bpf_dynptr_type type; 2326 u32 len = buffer__szk; 2327 int err; 2328 2329 if (!ptr->data) 2330 return NULL; 2331 2332 err = bpf_dynptr_check_off_len(ptr, offset, len); 2333 if (err) 2334 return NULL; 2335 2336 type = bpf_dynptr_get_type(ptr); 2337 2338 switch (type) { 2339 case BPF_DYNPTR_TYPE_LOCAL: 2340 case BPF_DYNPTR_TYPE_RINGBUF: 2341 return ptr->data + ptr->offset + offset; 2342 case BPF_DYNPTR_TYPE_SKB: 2343 if (buffer__opt) 2344 return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt); 2345 else 2346 return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len); 2347 case BPF_DYNPTR_TYPE_XDP: 2348 { 2349 void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len); 2350 if (!IS_ERR_OR_NULL(xdp_ptr)) 2351 return xdp_ptr; 2352 2353 if (!buffer__opt) 2354 return NULL; 2355 bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false); 2356 return buffer__opt; 2357 } 2358 default: 2359 WARN_ONCE(true, "unknown dynptr type %d\n", type); 2360 return NULL; 2361 } 2362 } 2363 2364 /** 2365 * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data. 2366 * @ptr: The dynptr whose data slice to retrieve 2367 * @offset: Offset into the dynptr 2368 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2369 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2370 * length of the requested slice. This must be a constant. 2371 * 2372 * For non-skb and non-xdp type dynptrs, there is no difference between 2373 * bpf_dynptr_slice and bpf_dynptr_data. 2374 * 2375 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2376 * 2377 * The returned pointer is writable and may point to either directly the dynptr 2378 * data at the requested offset or to the buffer if unable to obtain a direct 2379 * data pointer to (example: the requested slice is to the paged area of an skb 2380 * packet). In the case where the returned pointer is to the buffer, the user 2381 * is responsible for persisting writes through calling bpf_dynptr_write(). This 2382 * usually looks something like this pattern: 2383 * 2384 * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer)); 2385 * if (!eth) 2386 * return TC_ACT_SHOT; 2387 * 2388 * // mutate eth header // 2389 * 2390 * if (eth == buffer) 2391 * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0); 2392 * 2393 * Please note that, as in the example above, the user must check that the 2394 * returned pointer is not null before using it. 2395 * 2396 * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr 2397 * does not change the underlying packet data pointers, so a call to 2398 * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in 2399 * the bpf program. 2400 * 2401 * Return: NULL if the call failed (eg invalid dynptr), pointer to a 2402 * data slice (can be either direct pointer to the data or a pointer to the user 2403 * provided buffer, with its contents containing the data, if unable to obtain 2404 * direct pointer) 2405 */ 2406 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 offset, 2407 void *buffer__opt, u32 buffer__szk) 2408 { 2409 if (!ptr->data || __bpf_dynptr_is_rdonly(ptr)) 2410 return NULL; 2411 2412 /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice. 2413 * 2414 * For skb-type dynptrs, it is safe to write into the returned pointer 2415 * if the bpf program allows skb data writes. There are two possiblities 2416 * that may occur when calling bpf_dynptr_slice_rdwr: 2417 * 2418 * 1) The requested slice is in the head of the skb. In this case, the 2419 * returned pointer is directly to skb data, and if the skb is cloned, the 2420 * verifier will have uncloned it (see bpf_unclone_prologue()) already. 2421 * The pointer can be directly written into. 2422 * 2423 * 2) Some portion of the requested slice is in the paged buffer area. 2424 * In this case, the requested data will be copied out into the buffer 2425 * and the returned pointer will be a pointer to the buffer. The skb 2426 * will not be pulled. To persist the write, the user will need to call 2427 * bpf_dynptr_write(), which will pull the skb and commit the write. 2428 * 2429 * Similarly for xdp programs, if the requested slice is not across xdp 2430 * fragments, then a direct pointer will be returned, otherwise the data 2431 * will be copied out into the buffer and the user will need to call 2432 * bpf_dynptr_write() to commit changes. 2433 */ 2434 return bpf_dynptr_slice(ptr, offset, buffer__opt, buffer__szk); 2435 } 2436 2437 __bpf_kfunc int bpf_dynptr_adjust(struct bpf_dynptr_kern *ptr, u32 start, u32 end) 2438 { 2439 u32 size; 2440 2441 if (!ptr->data || start > end) 2442 return -EINVAL; 2443 2444 size = __bpf_dynptr_size(ptr); 2445 2446 if (start > size || end > size) 2447 return -ERANGE; 2448 2449 ptr->offset += start; 2450 bpf_dynptr_set_size(ptr, end - start); 2451 2452 return 0; 2453 } 2454 2455 __bpf_kfunc bool bpf_dynptr_is_null(struct bpf_dynptr_kern *ptr) 2456 { 2457 return !ptr->data; 2458 } 2459 2460 __bpf_kfunc bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr) 2461 { 2462 if (!ptr->data) 2463 return false; 2464 2465 return __bpf_dynptr_is_rdonly(ptr); 2466 } 2467 2468 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) 2469 { 2470 if (!ptr->data) 2471 return -EINVAL; 2472 2473 return __bpf_dynptr_size(ptr); 2474 } 2475 2476 __bpf_kfunc int bpf_dynptr_clone(struct bpf_dynptr_kern *ptr, 2477 struct bpf_dynptr_kern *clone__uninit) 2478 { 2479 if (!ptr->data) { 2480 bpf_dynptr_set_null(clone__uninit); 2481 return -EINVAL; 2482 } 2483 2484 *clone__uninit = *ptr; 2485 2486 return 0; 2487 } 2488 2489 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj) 2490 { 2491 return obj; 2492 } 2493 2494 __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k) 2495 { 2496 return (void *)obj__ign; 2497 } 2498 2499 __bpf_kfunc void bpf_rcu_read_lock(void) 2500 { 2501 rcu_read_lock(); 2502 } 2503 2504 __bpf_kfunc void bpf_rcu_read_unlock(void) 2505 { 2506 rcu_read_unlock(); 2507 } 2508 2509 struct bpf_throw_ctx { 2510 struct bpf_prog_aux *aux; 2511 u64 sp; 2512 u64 bp; 2513 int cnt; 2514 }; 2515 2516 static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp) 2517 { 2518 struct bpf_throw_ctx *ctx = cookie; 2519 struct bpf_prog *prog; 2520 2521 if (!is_bpf_text_address(ip)) 2522 return !ctx->cnt; 2523 prog = bpf_prog_ksym_find(ip); 2524 ctx->cnt++; 2525 if (bpf_is_subprog(prog)) 2526 return true; 2527 ctx->aux = prog->aux; 2528 ctx->sp = sp; 2529 ctx->bp = bp; 2530 return false; 2531 } 2532 2533 __bpf_kfunc void bpf_throw(u64 cookie) 2534 { 2535 struct bpf_throw_ctx ctx = {}; 2536 2537 arch_bpf_stack_walk(bpf_stack_walker, &ctx); 2538 WARN_ON_ONCE(!ctx.aux); 2539 if (ctx.aux) 2540 WARN_ON_ONCE(!ctx.aux->exception_boundary); 2541 WARN_ON_ONCE(!ctx.bp); 2542 WARN_ON_ONCE(!ctx.cnt); 2543 /* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning 2544 * deeper stack depths than ctx.sp as we do not return from bpf_throw, 2545 * which skips compiler generated instrumentation to do the same. 2546 */ 2547 kasan_unpoison_task_stack_below((void *)(long)ctx.sp); 2548 ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0); 2549 WARN(1, "A call to BPF exception callback should never return\n"); 2550 } 2551 2552 __bpf_kfunc_end_defs(); 2553 2554 BTF_KFUNCS_START(generic_btf_ids) 2555 #ifdef CONFIG_CRASH_DUMP 2556 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) 2557 #endif 2558 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) 2559 BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) 2560 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE) 2561 BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE) 2562 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU) 2563 BTF_ID_FLAGS(func, bpf_list_push_front_impl) 2564 BTF_ID_FLAGS(func, bpf_list_push_back_impl) 2565 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL) 2566 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL) 2567 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2568 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE) 2569 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL) 2570 BTF_ID_FLAGS(func, bpf_rbtree_add_impl) 2571 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL) 2572 2573 #ifdef CONFIG_CGROUPS 2574 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2575 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE) 2576 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2577 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL) 2578 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU) 2579 BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2580 #endif 2581 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL) 2582 BTF_ID_FLAGS(func, bpf_throw) 2583 BTF_KFUNCS_END(generic_btf_ids) 2584 2585 static const struct btf_kfunc_id_set generic_kfunc_set = { 2586 .owner = THIS_MODULE, 2587 .set = &generic_btf_ids, 2588 }; 2589 2590 2591 BTF_ID_LIST(generic_dtor_ids) 2592 BTF_ID(struct, task_struct) 2593 BTF_ID(func, bpf_task_release_dtor) 2594 #ifdef CONFIG_CGROUPS 2595 BTF_ID(struct, cgroup) 2596 BTF_ID(func, bpf_cgroup_release_dtor) 2597 #endif 2598 2599 BTF_KFUNCS_START(common_btf_ids) 2600 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx) 2601 BTF_ID_FLAGS(func, bpf_rdonly_cast) 2602 BTF_ID_FLAGS(func, bpf_rcu_read_lock) 2603 BTF_ID_FLAGS(func, bpf_rcu_read_unlock) 2604 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL) 2605 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL) 2606 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW) 2607 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL) 2608 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY) 2609 BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU) 2610 BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL) 2611 BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY) 2612 #ifdef CONFIG_CGROUPS 2613 BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS) 2614 BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL) 2615 BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY) 2616 BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) 2617 BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL) 2618 BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY) 2619 #endif 2620 BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) 2621 BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL) 2622 BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY) 2623 BTF_ID_FLAGS(func, bpf_dynptr_adjust) 2624 BTF_ID_FLAGS(func, bpf_dynptr_is_null) 2625 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly) 2626 BTF_ID_FLAGS(func, bpf_dynptr_size) 2627 BTF_ID_FLAGS(func, bpf_dynptr_clone) 2628 BTF_KFUNCS_END(common_btf_ids) 2629 2630 static const struct btf_kfunc_id_set common_kfunc_set = { 2631 .owner = THIS_MODULE, 2632 .set = &common_btf_ids, 2633 }; 2634 2635 static int __init kfunc_init(void) 2636 { 2637 int ret; 2638 const struct btf_id_dtor_kfunc generic_dtors[] = { 2639 { 2640 .btf_id = generic_dtor_ids[0], 2641 .kfunc_btf_id = generic_dtor_ids[1] 2642 }, 2643 #ifdef CONFIG_CGROUPS 2644 { 2645 .btf_id = generic_dtor_ids[2], 2646 .kfunc_btf_id = generic_dtor_ids[3] 2647 }, 2648 #endif 2649 }; 2650 2651 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set); 2652 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set); 2653 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set); 2654 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set); 2655 ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors, 2656 ARRAY_SIZE(generic_dtors), 2657 THIS_MODULE); 2658 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); 2659 } 2660 2661 late_initcall(kfunc_init); 2662 2663 /* Get a pointer to dynptr data up to len bytes for read only access. If 2664 * the dynptr doesn't have continuous data up to len bytes, return NULL. 2665 */ 2666 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len) 2667 { 2668 return bpf_dynptr_slice(ptr, 0, NULL, len); 2669 } 2670 2671 /* Get a pointer to dynptr data up to len bytes for read write access. If 2672 * the dynptr doesn't have continuous data up to len bytes, or the dynptr 2673 * is read only, return NULL. 2674 */ 2675 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len) 2676 { 2677 if (__bpf_dynptr_is_rdonly(ptr)) 2678 return NULL; 2679 return (void *)__bpf_dynptr_data(ptr, len); 2680 } 2681