1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #include <linux/bpf.h> 5 #include <linux/btf.h> 6 #include <linux/bpf-cgroup.h> 7 #include <linux/rcupdate.h> 8 #include <linux/random.h> 9 #include <linux/smp.h> 10 #include <linux/topology.h> 11 #include <linux/ktime.h> 12 #include <linux/sched.h> 13 #include <linux/uidgid.h> 14 #include <linux/filter.h> 15 #include <linux/ctype.h> 16 #include <linux/jiffies.h> 17 #include <linux/pid_namespace.h> 18 #include <linux/poison.h> 19 #include <linux/proc_ns.h> 20 #include <linux/security.h> 21 #include <linux/btf_ids.h> 22 #include <linux/bpf_mem_alloc.h> 23 24 #include "../../lib/kstrtox.h" 25 26 /* If kernel subsystem is allowing eBPF programs to call this function, 27 * inside its own verifier_ops->get_func_proto() callback it should return 28 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments 29 * 30 * Different map implementations will rely on rcu in map methods 31 * lookup/update/delete, therefore eBPF programs must run under rcu lock 32 * if program is allowed to access maps, so check rcu_read_lock_held in 33 * all three functions. 34 */ 35 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) 36 { 37 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 38 return (unsigned long) map->ops->map_lookup_elem(map, key); 39 } 40 41 const struct bpf_func_proto bpf_map_lookup_elem_proto = { 42 .func = bpf_map_lookup_elem, 43 .gpl_only = false, 44 .pkt_access = true, 45 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 46 .arg1_type = ARG_CONST_MAP_PTR, 47 .arg2_type = ARG_PTR_TO_MAP_KEY, 48 }; 49 50 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, 51 void *, value, u64, flags) 52 { 53 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 54 return map->ops->map_update_elem(map, key, value, flags); 55 } 56 57 const struct bpf_func_proto bpf_map_update_elem_proto = { 58 .func = bpf_map_update_elem, 59 .gpl_only = false, 60 .pkt_access = true, 61 .ret_type = RET_INTEGER, 62 .arg1_type = ARG_CONST_MAP_PTR, 63 .arg2_type = ARG_PTR_TO_MAP_KEY, 64 .arg3_type = ARG_PTR_TO_MAP_VALUE, 65 .arg4_type = ARG_ANYTHING, 66 }; 67 68 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) 69 { 70 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 71 return map->ops->map_delete_elem(map, key); 72 } 73 74 const struct bpf_func_proto bpf_map_delete_elem_proto = { 75 .func = bpf_map_delete_elem, 76 .gpl_only = false, 77 .pkt_access = true, 78 .ret_type = RET_INTEGER, 79 .arg1_type = ARG_CONST_MAP_PTR, 80 .arg2_type = ARG_PTR_TO_MAP_KEY, 81 }; 82 83 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) 84 { 85 return map->ops->map_push_elem(map, value, flags); 86 } 87 88 const struct bpf_func_proto bpf_map_push_elem_proto = { 89 .func = bpf_map_push_elem, 90 .gpl_only = false, 91 .pkt_access = true, 92 .ret_type = RET_INTEGER, 93 .arg1_type = ARG_CONST_MAP_PTR, 94 .arg2_type = ARG_PTR_TO_MAP_VALUE, 95 .arg3_type = ARG_ANYTHING, 96 }; 97 98 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) 99 { 100 return map->ops->map_pop_elem(map, value); 101 } 102 103 const struct bpf_func_proto bpf_map_pop_elem_proto = { 104 .func = bpf_map_pop_elem, 105 .gpl_only = false, 106 .ret_type = RET_INTEGER, 107 .arg1_type = ARG_CONST_MAP_PTR, 108 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 109 }; 110 111 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) 112 { 113 return map->ops->map_peek_elem(map, value); 114 } 115 116 const struct bpf_func_proto bpf_map_peek_elem_proto = { 117 .func = bpf_map_peek_elem, 118 .gpl_only = false, 119 .ret_type = RET_INTEGER, 120 .arg1_type = ARG_CONST_MAP_PTR, 121 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 122 }; 123 124 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) 125 { 126 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 127 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); 128 } 129 130 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { 131 .func = bpf_map_lookup_percpu_elem, 132 .gpl_only = false, 133 .pkt_access = true, 134 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 135 .arg1_type = ARG_CONST_MAP_PTR, 136 .arg2_type = ARG_PTR_TO_MAP_KEY, 137 .arg3_type = ARG_ANYTHING, 138 }; 139 140 const struct bpf_func_proto bpf_get_prandom_u32_proto = { 141 .func = bpf_user_rnd_u32, 142 .gpl_only = false, 143 .ret_type = RET_INTEGER, 144 }; 145 146 BPF_CALL_0(bpf_get_smp_processor_id) 147 { 148 return smp_processor_id(); 149 } 150 151 const struct bpf_func_proto bpf_get_smp_processor_id_proto = { 152 .func = bpf_get_smp_processor_id, 153 .gpl_only = false, 154 .ret_type = RET_INTEGER, 155 }; 156 157 BPF_CALL_0(bpf_get_numa_node_id) 158 { 159 return numa_node_id(); 160 } 161 162 const struct bpf_func_proto bpf_get_numa_node_id_proto = { 163 .func = bpf_get_numa_node_id, 164 .gpl_only = false, 165 .ret_type = RET_INTEGER, 166 }; 167 168 BPF_CALL_0(bpf_ktime_get_ns) 169 { 170 /* NMI safe access to clock monotonic */ 171 return ktime_get_mono_fast_ns(); 172 } 173 174 const struct bpf_func_proto bpf_ktime_get_ns_proto = { 175 .func = bpf_ktime_get_ns, 176 .gpl_only = false, 177 .ret_type = RET_INTEGER, 178 }; 179 180 BPF_CALL_0(bpf_ktime_get_boot_ns) 181 { 182 /* NMI safe access to clock boottime */ 183 return ktime_get_boot_fast_ns(); 184 } 185 186 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { 187 .func = bpf_ktime_get_boot_ns, 188 .gpl_only = false, 189 .ret_type = RET_INTEGER, 190 }; 191 192 BPF_CALL_0(bpf_ktime_get_coarse_ns) 193 { 194 return ktime_get_coarse_ns(); 195 } 196 197 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { 198 .func = bpf_ktime_get_coarse_ns, 199 .gpl_only = false, 200 .ret_type = RET_INTEGER, 201 }; 202 203 BPF_CALL_0(bpf_ktime_get_tai_ns) 204 { 205 /* NMI safe access to clock tai */ 206 return ktime_get_tai_fast_ns(); 207 } 208 209 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = { 210 .func = bpf_ktime_get_tai_ns, 211 .gpl_only = false, 212 .ret_type = RET_INTEGER, 213 }; 214 215 BPF_CALL_0(bpf_get_current_pid_tgid) 216 { 217 struct task_struct *task = current; 218 219 if (unlikely(!task)) 220 return -EINVAL; 221 222 return (u64) task->tgid << 32 | task->pid; 223 } 224 225 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { 226 .func = bpf_get_current_pid_tgid, 227 .gpl_only = false, 228 .ret_type = RET_INTEGER, 229 }; 230 231 BPF_CALL_0(bpf_get_current_uid_gid) 232 { 233 struct task_struct *task = current; 234 kuid_t uid; 235 kgid_t gid; 236 237 if (unlikely(!task)) 238 return -EINVAL; 239 240 current_uid_gid(&uid, &gid); 241 return (u64) from_kgid(&init_user_ns, gid) << 32 | 242 from_kuid(&init_user_ns, uid); 243 } 244 245 const struct bpf_func_proto bpf_get_current_uid_gid_proto = { 246 .func = bpf_get_current_uid_gid, 247 .gpl_only = false, 248 .ret_type = RET_INTEGER, 249 }; 250 251 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) 252 { 253 struct task_struct *task = current; 254 255 if (unlikely(!task)) 256 goto err_clear; 257 258 /* Verifier guarantees that size > 0 */ 259 strscpy(buf, task->comm, size); 260 return 0; 261 err_clear: 262 memset(buf, 0, size); 263 return -EINVAL; 264 } 265 266 const struct bpf_func_proto bpf_get_current_comm_proto = { 267 .func = bpf_get_current_comm, 268 .gpl_only = false, 269 .ret_type = RET_INTEGER, 270 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 271 .arg2_type = ARG_CONST_SIZE, 272 }; 273 274 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) 275 276 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 277 { 278 arch_spinlock_t *l = (void *)lock; 279 union { 280 __u32 val; 281 arch_spinlock_t lock; 282 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; 283 284 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); 285 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); 286 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); 287 arch_spin_lock(l); 288 } 289 290 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 291 { 292 arch_spinlock_t *l = (void *)lock; 293 294 arch_spin_unlock(l); 295 } 296 297 #else 298 299 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 300 { 301 atomic_t *l = (void *)lock; 302 303 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); 304 do { 305 atomic_cond_read_relaxed(l, !VAL); 306 } while (atomic_xchg(l, 1)); 307 } 308 309 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 310 { 311 atomic_t *l = (void *)lock; 312 313 atomic_set_release(l, 0); 314 } 315 316 #endif 317 318 static DEFINE_PER_CPU(unsigned long, irqsave_flags); 319 320 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) 321 { 322 unsigned long flags; 323 324 local_irq_save(flags); 325 __bpf_spin_lock(lock); 326 __this_cpu_write(irqsave_flags, flags); 327 } 328 329 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) 330 { 331 __bpf_spin_lock_irqsave(lock); 332 return 0; 333 } 334 335 const struct bpf_func_proto bpf_spin_lock_proto = { 336 .func = bpf_spin_lock, 337 .gpl_only = false, 338 .ret_type = RET_VOID, 339 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 340 .arg1_btf_id = BPF_PTR_POISON, 341 }; 342 343 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) 344 { 345 unsigned long flags; 346 347 flags = __this_cpu_read(irqsave_flags); 348 __bpf_spin_unlock(lock); 349 local_irq_restore(flags); 350 } 351 352 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) 353 { 354 __bpf_spin_unlock_irqrestore(lock); 355 return 0; 356 } 357 358 const struct bpf_func_proto bpf_spin_unlock_proto = { 359 .func = bpf_spin_unlock, 360 .gpl_only = false, 361 .ret_type = RET_VOID, 362 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 363 .arg1_btf_id = BPF_PTR_POISON, 364 }; 365 366 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 367 bool lock_src) 368 { 369 struct bpf_spin_lock *lock; 370 371 if (lock_src) 372 lock = src + map->record->spin_lock_off; 373 else 374 lock = dst + map->record->spin_lock_off; 375 preempt_disable(); 376 __bpf_spin_lock_irqsave(lock); 377 copy_map_value(map, dst, src); 378 __bpf_spin_unlock_irqrestore(lock); 379 preempt_enable(); 380 } 381 382 BPF_CALL_0(bpf_jiffies64) 383 { 384 return get_jiffies_64(); 385 } 386 387 const struct bpf_func_proto bpf_jiffies64_proto = { 388 .func = bpf_jiffies64, 389 .gpl_only = false, 390 .ret_type = RET_INTEGER, 391 }; 392 393 #ifdef CONFIG_CGROUPS 394 BPF_CALL_0(bpf_get_current_cgroup_id) 395 { 396 struct cgroup *cgrp; 397 u64 cgrp_id; 398 399 rcu_read_lock(); 400 cgrp = task_dfl_cgroup(current); 401 cgrp_id = cgroup_id(cgrp); 402 rcu_read_unlock(); 403 404 return cgrp_id; 405 } 406 407 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { 408 .func = bpf_get_current_cgroup_id, 409 .gpl_only = false, 410 .ret_type = RET_INTEGER, 411 }; 412 413 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) 414 { 415 struct cgroup *cgrp; 416 struct cgroup *ancestor; 417 u64 cgrp_id; 418 419 rcu_read_lock(); 420 cgrp = task_dfl_cgroup(current); 421 ancestor = cgroup_ancestor(cgrp, ancestor_level); 422 cgrp_id = ancestor ? cgroup_id(ancestor) : 0; 423 rcu_read_unlock(); 424 425 return cgrp_id; 426 } 427 428 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { 429 .func = bpf_get_current_ancestor_cgroup_id, 430 .gpl_only = false, 431 .ret_type = RET_INTEGER, 432 .arg1_type = ARG_ANYTHING, 433 }; 434 #endif /* CONFIG_CGROUPS */ 435 436 #define BPF_STRTOX_BASE_MASK 0x1F 437 438 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, 439 unsigned long long *res, bool *is_negative) 440 { 441 unsigned int base = flags & BPF_STRTOX_BASE_MASK; 442 const char *cur_buf = buf; 443 size_t cur_len = buf_len; 444 unsigned int consumed; 445 size_t val_len; 446 char str[64]; 447 448 if (!buf || !buf_len || !res || !is_negative) 449 return -EINVAL; 450 451 if (base != 0 && base != 8 && base != 10 && base != 16) 452 return -EINVAL; 453 454 if (flags & ~BPF_STRTOX_BASE_MASK) 455 return -EINVAL; 456 457 while (cur_buf < buf + buf_len && isspace(*cur_buf)) 458 ++cur_buf; 459 460 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); 461 if (*is_negative) 462 ++cur_buf; 463 464 consumed = cur_buf - buf; 465 cur_len -= consumed; 466 if (!cur_len) 467 return -EINVAL; 468 469 cur_len = min(cur_len, sizeof(str) - 1); 470 memcpy(str, cur_buf, cur_len); 471 str[cur_len] = '\0'; 472 cur_buf = str; 473 474 cur_buf = _parse_integer_fixup_radix(cur_buf, &base); 475 val_len = _parse_integer(cur_buf, base, res); 476 477 if (val_len & KSTRTOX_OVERFLOW) 478 return -ERANGE; 479 480 if (val_len == 0) 481 return -EINVAL; 482 483 cur_buf += val_len; 484 consumed += cur_buf - str; 485 486 return consumed; 487 } 488 489 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, 490 long long *res) 491 { 492 unsigned long long _res; 493 bool is_negative; 494 int err; 495 496 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 497 if (err < 0) 498 return err; 499 if (is_negative) { 500 if ((long long)-_res > 0) 501 return -ERANGE; 502 *res = -_res; 503 } else { 504 if ((long long)_res < 0) 505 return -ERANGE; 506 *res = _res; 507 } 508 return err; 509 } 510 511 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, 512 long *, res) 513 { 514 long long _res; 515 int err; 516 517 err = __bpf_strtoll(buf, buf_len, flags, &_res); 518 if (err < 0) 519 return err; 520 if (_res != (long)_res) 521 return -ERANGE; 522 *res = _res; 523 return err; 524 } 525 526 const struct bpf_func_proto bpf_strtol_proto = { 527 .func = bpf_strtol, 528 .gpl_only = false, 529 .ret_type = RET_INTEGER, 530 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 531 .arg2_type = ARG_CONST_SIZE, 532 .arg3_type = ARG_ANYTHING, 533 .arg4_type = ARG_PTR_TO_LONG, 534 }; 535 536 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, 537 unsigned long *, res) 538 { 539 unsigned long long _res; 540 bool is_negative; 541 int err; 542 543 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 544 if (err < 0) 545 return err; 546 if (is_negative) 547 return -EINVAL; 548 if (_res != (unsigned long)_res) 549 return -ERANGE; 550 *res = _res; 551 return err; 552 } 553 554 const struct bpf_func_proto bpf_strtoul_proto = { 555 .func = bpf_strtoul, 556 .gpl_only = false, 557 .ret_type = RET_INTEGER, 558 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 559 .arg2_type = ARG_CONST_SIZE, 560 .arg3_type = ARG_ANYTHING, 561 .arg4_type = ARG_PTR_TO_LONG, 562 }; 563 564 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) 565 { 566 return strncmp(s1, s2, s1_sz); 567 } 568 569 static const struct bpf_func_proto bpf_strncmp_proto = { 570 .func = bpf_strncmp, 571 .gpl_only = false, 572 .ret_type = RET_INTEGER, 573 .arg1_type = ARG_PTR_TO_MEM, 574 .arg2_type = ARG_CONST_SIZE, 575 .arg3_type = ARG_PTR_TO_CONST_STR, 576 }; 577 578 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, 579 struct bpf_pidns_info *, nsdata, u32, size) 580 { 581 struct task_struct *task = current; 582 struct pid_namespace *pidns; 583 int err = -EINVAL; 584 585 if (unlikely(size != sizeof(struct bpf_pidns_info))) 586 goto clear; 587 588 if (unlikely((u64)(dev_t)dev != dev)) 589 goto clear; 590 591 if (unlikely(!task)) 592 goto clear; 593 594 pidns = task_active_pid_ns(task); 595 if (unlikely(!pidns)) { 596 err = -ENOENT; 597 goto clear; 598 } 599 600 if (!ns_match(&pidns->ns, (dev_t)dev, ino)) 601 goto clear; 602 603 nsdata->pid = task_pid_nr_ns(task, pidns); 604 nsdata->tgid = task_tgid_nr_ns(task, pidns); 605 return 0; 606 clear: 607 memset((void *)nsdata, 0, (size_t) size); 608 return err; 609 } 610 611 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { 612 .func = bpf_get_ns_current_pid_tgid, 613 .gpl_only = false, 614 .ret_type = RET_INTEGER, 615 .arg1_type = ARG_ANYTHING, 616 .arg2_type = ARG_ANYTHING, 617 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 618 .arg4_type = ARG_CONST_SIZE, 619 }; 620 621 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { 622 .func = bpf_get_raw_cpu_id, 623 .gpl_only = false, 624 .ret_type = RET_INTEGER, 625 }; 626 627 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, 628 u64, flags, void *, data, u64, size) 629 { 630 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 631 return -EINVAL; 632 633 return bpf_event_output(map, flags, data, size, NULL, 0, NULL); 634 } 635 636 const struct bpf_func_proto bpf_event_output_data_proto = { 637 .func = bpf_event_output_data, 638 .gpl_only = true, 639 .ret_type = RET_INTEGER, 640 .arg1_type = ARG_PTR_TO_CTX, 641 .arg2_type = ARG_CONST_MAP_PTR, 642 .arg3_type = ARG_ANYTHING, 643 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 644 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 645 }; 646 647 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, 648 const void __user *, user_ptr) 649 { 650 int ret = copy_from_user(dst, user_ptr, size); 651 652 if (unlikely(ret)) { 653 memset(dst, 0, size); 654 ret = -EFAULT; 655 } 656 657 return ret; 658 } 659 660 const struct bpf_func_proto bpf_copy_from_user_proto = { 661 .func = bpf_copy_from_user, 662 .gpl_only = false, 663 .ret_type = RET_INTEGER, 664 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 665 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 666 .arg3_type = ARG_ANYTHING, 667 }; 668 669 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, 670 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) 671 { 672 int ret; 673 674 /* flags is not used yet */ 675 if (unlikely(flags)) 676 return -EINVAL; 677 678 if (unlikely(!size)) 679 return 0; 680 681 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); 682 if (ret == size) 683 return 0; 684 685 memset(dst, 0, size); 686 /* Return -EFAULT for partial read */ 687 return ret < 0 ? ret : -EFAULT; 688 } 689 690 const struct bpf_func_proto bpf_copy_from_user_task_proto = { 691 .func = bpf_copy_from_user_task, 692 .gpl_only = true, 693 .ret_type = RET_INTEGER, 694 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 695 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 696 .arg3_type = ARG_ANYTHING, 697 .arg4_type = ARG_PTR_TO_BTF_ID, 698 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 699 .arg5_type = ARG_ANYTHING 700 }; 701 702 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) 703 { 704 if (cpu >= nr_cpu_ids) 705 return (unsigned long)NULL; 706 707 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); 708 } 709 710 const struct bpf_func_proto bpf_per_cpu_ptr_proto = { 711 .func = bpf_per_cpu_ptr, 712 .gpl_only = false, 713 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, 714 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 715 .arg2_type = ARG_ANYTHING, 716 }; 717 718 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) 719 { 720 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); 721 } 722 723 const struct bpf_func_proto bpf_this_cpu_ptr_proto = { 724 .func = bpf_this_cpu_ptr, 725 .gpl_only = false, 726 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, 727 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 728 }; 729 730 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 731 size_t bufsz) 732 { 733 void __user *user_ptr = (__force void __user *)unsafe_ptr; 734 735 buf[0] = 0; 736 737 switch (fmt_ptype) { 738 case 's': 739 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 740 if ((unsigned long)unsafe_ptr < TASK_SIZE) 741 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 742 fallthrough; 743 #endif 744 case 'k': 745 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 746 case 'u': 747 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 748 } 749 750 return -EINVAL; 751 } 752 753 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary 754 * arguments representation. 755 */ 756 #define MAX_BPRINTF_BUF_LEN 512 757 758 /* Support executing three nested bprintf helper calls on a given CPU */ 759 #define MAX_BPRINTF_NEST_LEVEL 3 760 struct bpf_bprintf_buffers { 761 char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN]; 762 }; 763 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs); 764 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); 765 766 static int try_get_fmt_tmp_buf(char **tmp_buf) 767 { 768 struct bpf_bprintf_buffers *bufs; 769 int nest_level; 770 771 preempt_disable(); 772 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); 773 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { 774 this_cpu_dec(bpf_bprintf_nest_level); 775 preempt_enable(); 776 return -EBUSY; 777 } 778 bufs = this_cpu_ptr(&bpf_bprintf_bufs); 779 *tmp_buf = bufs->tmp_bufs[nest_level - 1]; 780 781 return 0; 782 } 783 784 void bpf_bprintf_cleanup(void) 785 { 786 if (this_cpu_read(bpf_bprintf_nest_level)) { 787 this_cpu_dec(bpf_bprintf_nest_level); 788 preempt_enable(); 789 } 790 } 791 792 /* 793 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers 794 * 795 * Returns a negative value if fmt is an invalid format string or 0 otherwise. 796 * 797 * This can be used in two ways: 798 * - Format string verification only: when bin_args is NULL 799 * - Arguments preparation: in addition to the above verification, it writes in 800 * bin_args a binary representation of arguments usable by bstr_printf where 801 * pointers from BPF have been sanitized. 802 * 803 * In argument preparation mode, if 0 is returned, safe temporary buffers are 804 * allocated and bpf_bprintf_cleanup should be called to free them after use. 805 */ 806 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 807 u32 **bin_args, u32 num_args) 808 { 809 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; 810 size_t sizeof_cur_arg, sizeof_cur_ip; 811 int err, i, num_spec = 0; 812 u64 cur_arg; 813 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; 814 815 fmt_end = strnchr(fmt, fmt_size, 0); 816 if (!fmt_end) 817 return -EINVAL; 818 fmt_size = fmt_end - fmt; 819 820 if (bin_args) { 821 if (num_args && try_get_fmt_tmp_buf(&tmp_buf)) 822 return -EBUSY; 823 824 tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN; 825 *bin_args = (u32 *)tmp_buf; 826 } 827 828 for (i = 0; i < fmt_size; i++) { 829 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 830 err = -EINVAL; 831 goto out; 832 } 833 834 if (fmt[i] != '%') 835 continue; 836 837 if (fmt[i + 1] == '%') { 838 i++; 839 continue; 840 } 841 842 if (num_spec >= num_args) { 843 err = -EINVAL; 844 goto out; 845 } 846 847 /* The string is zero-terminated so if fmt[i] != 0, we can 848 * always access fmt[i + 1], in the worst case it will be a 0 849 */ 850 i++; 851 852 /* skip optional "[0 +-][num]" width formatting field */ 853 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 854 fmt[i] == ' ') 855 i++; 856 if (fmt[i] >= '1' && fmt[i] <= '9') { 857 i++; 858 while (fmt[i] >= '0' && fmt[i] <= '9') 859 i++; 860 } 861 862 if (fmt[i] == 'p') { 863 sizeof_cur_arg = sizeof(long); 864 865 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && 866 fmt[i + 2] == 's') { 867 fmt_ptype = fmt[i + 1]; 868 i += 2; 869 goto fmt_str; 870 } 871 872 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || 873 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || 874 fmt[i + 1] == 'x' || fmt[i + 1] == 's' || 875 fmt[i + 1] == 'S') { 876 /* just kernel pointers */ 877 if (tmp_buf) 878 cur_arg = raw_args[num_spec]; 879 i++; 880 goto nocopy_fmt; 881 } 882 883 if (fmt[i + 1] == 'B') { 884 if (tmp_buf) { 885 err = snprintf(tmp_buf, 886 (tmp_buf_end - tmp_buf), 887 "%pB", 888 (void *)(long)raw_args[num_spec]); 889 tmp_buf += (err + 1); 890 } 891 892 i++; 893 num_spec++; 894 continue; 895 } 896 897 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 898 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || 899 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { 900 err = -EINVAL; 901 goto out; 902 } 903 904 i += 2; 905 if (!tmp_buf) 906 goto nocopy_fmt; 907 908 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; 909 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { 910 err = -ENOSPC; 911 goto out; 912 } 913 914 unsafe_ptr = (char *)(long)raw_args[num_spec]; 915 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, 916 sizeof_cur_ip); 917 if (err < 0) 918 memset(cur_ip, 0, sizeof_cur_ip); 919 920 /* hack: bstr_printf expects IP addresses to be 921 * pre-formatted as strings, ironically, the easiest way 922 * to do that is to call snprintf. 923 */ 924 ip_spec[2] = fmt[i - 1]; 925 ip_spec[3] = fmt[i]; 926 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, 927 ip_spec, &cur_ip); 928 929 tmp_buf += err + 1; 930 num_spec++; 931 932 continue; 933 } else if (fmt[i] == 's') { 934 fmt_ptype = fmt[i]; 935 fmt_str: 936 if (fmt[i + 1] != 0 && 937 !isspace(fmt[i + 1]) && 938 !ispunct(fmt[i + 1])) { 939 err = -EINVAL; 940 goto out; 941 } 942 943 if (!tmp_buf) 944 goto nocopy_fmt; 945 946 if (tmp_buf_end == tmp_buf) { 947 err = -ENOSPC; 948 goto out; 949 } 950 951 unsafe_ptr = (char *)(long)raw_args[num_spec]; 952 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, 953 fmt_ptype, 954 tmp_buf_end - tmp_buf); 955 if (err < 0) { 956 tmp_buf[0] = '\0'; 957 err = 1; 958 } 959 960 tmp_buf += err; 961 num_spec++; 962 963 continue; 964 } else if (fmt[i] == 'c') { 965 if (!tmp_buf) 966 goto nocopy_fmt; 967 968 if (tmp_buf_end == tmp_buf) { 969 err = -ENOSPC; 970 goto out; 971 } 972 973 *tmp_buf = raw_args[num_spec]; 974 tmp_buf++; 975 num_spec++; 976 977 continue; 978 } 979 980 sizeof_cur_arg = sizeof(int); 981 982 if (fmt[i] == 'l') { 983 sizeof_cur_arg = sizeof(long); 984 i++; 985 } 986 if (fmt[i] == 'l') { 987 sizeof_cur_arg = sizeof(long long); 988 i++; 989 } 990 991 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && 992 fmt[i] != 'x' && fmt[i] != 'X') { 993 err = -EINVAL; 994 goto out; 995 } 996 997 if (tmp_buf) 998 cur_arg = raw_args[num_spec]; 999 nocopy_fmt: 1000 if (tmp_buf) { 1001 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); 1002 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { 1003 err = -ENOSPC; 1004 goto out; 1005 } 1006 1007 if (sizeof_cur_arg == 8) { 1008 *(u32 *)tmp_buf = *(u32 *)&cur_arg; 1009 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); 1010 } else { 1011 *(u32 *)tmp_buf = (u32)(long)cur_arg; 1012 } 1013 tmp_buf += sizeof_cur_arg; 1014 } 1015 num_spec++; 1016 } 1017 1018 err = 0; 1019 out: 1020 if (err) 1021 bpf_bprintf_cleanup(); 1022 return err; 1023 } 1024 1025 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, 1026 const void *, data, u32, data_len) 1027 { 1028 int err, num_args; 1029 u32 *bin_args; 1030 1031 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || 1032 (data_len && !data)) 1033 return -EINVAL; 1034 num_args = data_len / 8; 1035 1036 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we 1037 * can safely give an unbounded size. 1038 */ 1039 err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args); 1040 if (err < 0) 1041 return err; 1042 1043 err = bstr_printf(str, str_size, fmt, bin_args); 1044 1045 bpf_bprintf_cleanup(); 1046 1047 return err + 1; 1048 } 1049 1050 const struct bpf_func_proto bpf_snprintf_proto = { 1051 .func = bpf_snprintf, 1052 .gpl_only = true, 1053 .ret_type = RET_INTEGER, 1054 .arg1_type = ARG_PTR_TO_MEM_OR_NULL, 1055 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1056 .arg3_type = ARG_PTR_TO_CONST_STR, 1057 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 1058 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1059 }; 1060 1061 /* BPF map elements can contain 'struct bpf_timer'. 1062 * Such map owns all of its BPF timers. 1063 * 'struct bpf_timer' is allocated as part of map element allocation 1064 * and it's zero initialized. 1065 * That space is used to keep 'struct bpf_timer_kern'. 1066 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and 1067 * remembers 'struct bpf_map *' pointer it's part of. 1068 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. 1069 * bpf_timer_start() arms the timer. 1070 * If user space reference to a map goes to zero at this point 1071 * ops->map_release_uref callback is responsible for cancelling the timers, 1072 * freeing their memory, and decrementing prog's refcnts. 1073 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. 1074 * Inner maps can contain bpf timers as well. ops->map_release_uref is 1075 * freeing the timers when inner map is replaced or deleted by user space. 1076 */ 1077 struct bpf_hrtimer { 1078 struct hrtimer timer; 1079 struct bpf_map *map; 1080 struct bpf_prog *prog; 1081 void __rcu *callback_fn; 1082 void *value; 1083 }; 1084 1085 /* the actual struct hidden inside uapi struct bpf_timer */ 1086 struct bpf_timer_kern { 1087 struct bpf_hrtimer *timer; 1088 /* bpf_spin_lock is used here instead of spinlock_t to make 1089 * sure that it always fits into space reserved by struct bpf_timer 1090 * regardless of LOCKDEP and spinlock debug flags. 1091 */ 1092 struct bpf_spin_lock lock; 1093 } __attribute__((aligned(8))); 1094 1095 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); 1096 1097 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) 1098 { 1099 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); 1100 struct bpf_map *map = t->map; 1101 void *value = t->value; 1102 bpf_callback_t callback_fn; 1103 void *key; 1104 u32 idx; 1105 1106 BTF_TYPE_EMIT(struct bpf_timer); 1107 callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held()); 1108 if (!callback_fn) 1109 goto out; 1110 1111 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and 1112 * cannot be preempted by another bpf_timer_cb() on the same cpu. 1113 * Remember the timer this callback is servicing to prevent 1114 * deadlock if callback_fn() calls bpf_timer_cancel() or 1115 * bpf_map_delete_elem() on the same timer. 1116 */ 1117 this_cpu_write(hrtimer_running, t); 1118 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1119 struct bpf_array *array = container_of(map, struct bpf_array, map); 1120 1121 /* compute the key */ 1122 idx = ((char *)value - array->value) / array->elem_size; 1123 key = &idx; 1124 } else { /* hash or lru */ 1125 key = value - round_up(map->key_size, 8); 1126 } 1127 1128 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1129 /* The verifier checked that return value is zero. */ 1130 1131 this_cpu_write(hrtimer_running, NULL); 1132 out: 1133 return HRTIMER_NORESTART; 1134 } 1135 1136 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map, 1137 u64, flags) 1138 { 1139 clockid_t clockid = flags & (MAX_CLOCKS - 1); 1140 struct bpf_hrtimer *t; 1141 int ret = 0; 1142 1143 BUILD_BUG_ON(MAX_CLOCKS != 16); 1144 BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer)); 1145 BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer)); 1146 1147 if (in_nmi()) 1148 return -EOPNOTSUPP; 1149 1150 if (flags >= MAX_CLOCKS || 1151 /* similar to timerfd except _ALARM variants are not supported */ 1152 (clockid != CLOCK_MONOTONIC && 1153 clockid != CLOCK_REALTIME && 1154 clockid != CLOCK_BOOTTIME)) 1155 return -EINVAL; 1156 __bpf_spin_lock_irqsave(&timer->lock); 1157 t = timer->timer; 1158 if (t) { 1159 ret = -EBUSY; 1160 goto out; 1161 } 1162 if (!atomic64_read(&map->usercnt)) { 1163 /* maps with timers must be either held by user space 1164 * or pinned in bpffs. 1165 */ 1166 ret = -EPERM; 1167 goto out; 1168 } 1169 /* allocate hrtimer via map_kmalloc to use memcg accounting */ 1170 t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node); 1171 if (!t) { 1172 ret = -ENOMEM; 1173 goto out; 1174 } 1175 t->value = (void *)timer - map->record->timer_off; 1176 t->map = map; 1177 t->prog = NULL; 1178 rcu_assign_pointer(t->callback_fn, NULL); 1179 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); 1180 t->timer.function = bpf_timer_cb; 1181 timer->timer = t; 1182 out: 1183 __bpf_spin_unlock_irqrestore(&timer->lock); 1184 return ret; 1185 } 1186 1187 static const struct bpf_func_proto bpf_timer_init_proto = { 1188 .func = bpf_timer_init, 1189 .gpl_only = true, 1190 .ret_type = RET_INTEGER, 1191 .arg1_type = ARG_PTR_TO_TIMER, 1192 .arg2_type = ARG_CONST_MAP_PTR, 1193 .arg3_type = ARG_ANYTHING, 1194 }; 1195 1196 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn, 1197 struct bpf_prog_aux *, aux) 1198 { 1199 struct bpf_prog *prev, *prog = aux->prog; 1200 struct bpf_hrtimer *t; 1201 int ret = 0; 1202 1203 if (in_nmi()) 1204 return -EOPNOTSUPP; 1205 __bpf_spin_lock_irqsave(&timer->lock); 1206 t = timer->timer; 1207 if (!t) { 1208 ret = -EINVAL; 1209 goto out; 1210 } 1211 if (!atomic64_read(&t->map->usercnt)) { 1212 /* maps with timers must be either held by user space 1213 * or pinned in bpffs. Otherwise timer might still be 1214 * running even when bpf prog is detached and user space 1215 * is gone, since map_release_uref won't ever be called. 1216 */ 1217 ret = -EPERM; 1218 goto out; 1219 } 1220 prev = t->prog; 1221 if (prev != prog) { 1222 /* Bump prog refcnt once. Every bpf_timer_set_callback() 1223 * can pick different callback_fn-s within the same prog. 1224 */ 1225 prog = bpf_prog_inc_not_zero(prog); 1226 if (IS_ERR(prog)) { 1227 ret = PTR_ERR(prog); 1228 goto out; 1229 } 1230 if (prev) 1231 /* Drop prev prog refcnt when swapping with new prog */ 1232 bpf_prog_put(prev); 1233 t->prog = prog; 1234 } 1235 rcu_assign_pointer(t->callback_fn, callback_fn); 1236 out: 1237 __bpf_spin_unlock_irqrestore(&timer->lock); 1238 return ret; 1239 } 1240 1241 static const struct bpf_func_proto bpf_timer_set_callback_proto = { 1242 .func = bpf_timer_set_callback, 1243 .gpl_only = true, 1244 .ret_type = RET_INTEGER, 1245 .arg1_type = ARG_PTR_TO_TIMER, 1246 .arg2_type = ARG_PTR_TO_FUNC, 1247 }; 1248 1249 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags) 1250 { 1251 struct bpf_hrtimer *t; 1252 int ret = 0; 1253 1254 if (in_nmi()) 1255 return -EOPNOTSUPP; 1256 if (flags) 1257 return -EINVAL; 1258 __bpf_spin_lock_irqsave(&timer->lock); 1259 t = timer->timer; 1260 if (!t || !t->prog) { 1261 ret = -EINVAL; 1262 goto out; 1263 } 1264 hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT); 1265 out: 1266 __bpf_spin_unlock_irqrestore(&timer->lock); 1267 return ret; 1268 } 1269 1270 static const struct bpf_func_proto bpf_timer_start_proto = { 1271 .func = bpf_timer_start, 1272 .gpl_only = true, 1273 .ret_type = RET_INTEGER, 1274 .arg1_type = ARG_PTR_TO_TIMER, 1275 .arg2_type = ARG_ANYTHING, 1276 .arg3_type = ARG_ANYTHING, 1277 }; 1278 1279 static void drop_prog_refcnt(struct bpf_hrtimer *t) 1280 { 1281 struct bpf_prog *prog = t->prog; 1282 1283 if (prog) { 1284 bpf_prog_put(prog); 1285 t->prog = NULL; 1286 rcu_assign_pointer(t->callback_fn, NULL); 1287 } 1288 } 1289 1290 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer) 1291 { 1292 struct bpf_hrtimer *t; 1293 int ret = 0; 1294 1295 if (in_nmi()) 1296 return -EOPNOTSUPP; 1297 __bpf_spin_lock_irqsave(&timer->lock); 1298 t = timer->timer; 1299 if (!t) { 1300 ret = -EINVAL; 1301 goto out; 1302 } 1303 if (this_cpu_read(hrtimer_running) == t) { 1304 /* If bpf callback_fn is trying to bpf_timer_cancel() 1305 * its own timer the hrtimer_cancel() will deadlock 1306 * since it waits for callback_fn to finish 1307 */ 1308 ret = -EDEADLK; 1309 goto out; 1310 } 1311 drop_prog_refcnt(t); 1312 out: 1313 __bpf_spin_unlock_irqrestore(&timer->lock); 1314 /* Cancel the timer and wait for associated callback to finish 1315 * if it was running. 1316 */ 1317 ret = ret ?: hrtimer_cancel(&t->timer); 1318 return ret; 1319 } 1320 1321 static const struct bpf_func_proto bpf_timer_cancel_proto = { 1322 .func = bpf_timer_cancel, 1323 .gpl_only = true, 1324 .ret_type = RET_INTEGER, 1325 .arg1_type = ARG_PTR_TO_TIMER, 1326 }; 1327 1328 /* This function is called by map_delete/update_elem for individual element and 1329 * by ops->map_release_uref when the user space reference to a map reaches zero. 1330 */ 1331 void bpf_timer_cancel_and_free(void *val) 1332 { 1333 struct bpf_timer_kern *timer = val; 1334 struct bpf_hrtimer *t; 1335 1336 /* Performance optimization: read timer->timer without lock first. */ 1337 if (!READ_ONCE(timer->timer)) 1338 return; 1339 1340 __bpf_spin_lock_irqsave(&timer->lock); 1341 /* re-read it under lock */ 1342 t = timer->timer; 1343 if (!t) 1344 goto out; 1345 drop_prog_refcnt(t); 1346 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use 1347 * this timer, since it won't be initialized. 1348 */ 1349 timer->timer = NULL; 1350 out: 1351 __bpf_spin_unlock_irqrestore(&timer->lock); 1352 if (!t) 1353 return; 1354 /* Cancel the timer and wait for callback to complete if it was running. 1355 * If hrtimer_cancel() can be safely called it's safe to call kfree(t) 1356 * right after for both preallocated and non-preallocated maps. 1357 * The timer->timer = NULL was already done and no code path can 1358 * see address 't' anymore. 1359 * 1360 * Check that bpf_map_delete/update_elem() wasn't called from timer 1361 * callback_fn. In such case don't call hrtimer_cancel() (since it will 1362 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just 1363 * return -1). Though callback_fn is still running on this cpu it's 1364 * safe to do kfree(t) because bpf_timer_cb() read everything it needed 1365 * from 't'. The bpf subprog callback_fn won't be able to access 't', 1366 * since timer->timer = NULL was already done. The timer will be 1367 * effectively cancelled because bpf_timer_cb() will return 1368 * HRTIMER_NORESTART. 1369 */ 1370 if (this_cpu_read(hrtimer_running) != t) 1371 hrtimer_cancel(&t->timer); 1372 kfree(t); 1373 } 1374 1375 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr) 1376 { 1377 unsigned long *kptr = map_value; 1378 1379 return xchg(kptr, (unsigned long)ptr); 1380 } 1381 1382 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() 1383 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to 1384 * denote type that verifier will determine. 1385 */ 1386 static const struct bpf_func_proto bpf_kptr_xchg_proto = { 1387 .func = bpf_kptr_xchg, 1388 .gpl_only = false, 1389 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 1390 .ret_btf_id = BPF_PTR_POISON, 1391 .arg1_type = ARG_PTR_TO_KPTR, 1392 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, 1393 .arg2_btf_id = BPF_PTR_POISON, 1394 }; 1395 1396 /* Since the upper 8 bits of dynptr->size is reserved, the 1397 * maximum supported size is 2^24 - 1. 1398 */ 1399 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1) 1400 #define DYNPTR_TYPE_SHIFT 28 1401 #define DYNPTR_SIZE_MASK 0xFFFFFF 1402 #define DYNPTR_RDONLY_BIT BIT(31) 1403 1404 static bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr) 1405 { 1406 return ptr->size & DYNPTR_RDONLY_BIT; 1407 } 1408 1409 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) 1410 { 1411 ptr->size |= type << DYNPTR_TYPE_SHIFT; 1412 } 1413 1414 u32 bpf_dynptr_get_size(struct bpf_dynptr_kern *ptr) 1415 { 1416 return ptr->size & DYNPTR_SIZE_MASK; 1417 } 1418 1419 int bpf_dynptr_check_size(u32 size) 1420 { 1421 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; 1422 } 1423 1424 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 1425 enum bpf_dynptr_type type, u32 offset, u32 size) 1426 { 1427 ptr->data = data; 1428 ptr->offset = offset; 1429 ptr->size = size; 1430 bpf_dynptr_set_type(ptr, type); 1431 } 1432 1433 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 1434 { 1435 memset(ptr, 0, sizeof(*ptr)); 1436 } 1437 1438 static int bpf_dynptr_check_off_len(struct bpf_dynptr_kern *ptr, u32 offset, u32 len) 1439 { 1440 u32 size = bpf_dynptr_get_size(ptr); 1441 1442 if (len > size || offset > size - len) 1443 return -E2BIG; 1444 1445 return 0; 1446 } 1447 1448 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) 1449 { 1450 int err; 1451 1452 BTF_TYPE_EMIT(struct bpf_dynptr); 1453 1454 err = bpf_dynptr_check_size(size); 1455 if (err) 1456 goto error; 1457 1458 /* flags is currently unsupported */ 1459 if (flags) { 1460 err = -EINVAL; 1461 goto error; 1462 } 1463 1464 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); 1465 1466 return 0; 1467 1468 error: 1469 bpf_dynptr_set_null(ptr); 1470 return err; 1471 } 1472 1473 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { 1474 .func = bpf_dynptr_from_mem, 1475 .gpl_only = false, 1476 .ret_type = RET_INTEGER, 1477 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1478 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1479 .arg3_type = ARG_ANYTHING, 1480 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT, 1481 }; 1482 1483 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, struct bpf_dynptr_kern *, src, 1484 u32, offset, u64, flags) 1485 { 1486 int err; 1487 1488 if (!src->data || flags) 1489 return -EINVAL; 1490 1491 err = bpf_dynptr_check_off_len(src, offset, len); 1492 if (err) 1493 return err; 1494 1495 memcpy(dst, src->data + src->offset + offset, len); 1496 1497 return 0; 1498 } 1499 1500 static const struct bpf_func_proto bpf_dynptr_read_proto = { 1501 .func = bpf_dynptr_read, 1502 .gpl_only = false, 1503 .ret_type = RET_INTEGER, 1504 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1505 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1506 .arg3_type = ARG_PTR_TO_DYNPTR, 1507 .arg4_type = ARG_ANYTHING, 1508 .arg5_type = ARG_ANYTHING, 1509 }; 1510 1511 BPF_CALL_5(bpf_dynptr_write, struct bpf_dynptr_kern *, dst, u32, offset, void *, src, 1512 u32, len, u64, flags) 1513 { 1514 int err; 1515 1516 if (!dst->data || flags || bpf_dynptr_is_rdonly(dst)) 1517 return -EINVAL; 1518 1519 err = bpf_dynptr_check_off_len(dst, offset, len); 1520 if (err) 1521 return err; 1522 1523 memcpy(dst->data + dst->offset + offset, src, len); 1524 1525 return 0; 1526 } 1527 1528 static const struct bpf_func_proto bpf_dynptr_write_proto = { 1529 .func = bpf_dynptr_write, 1530 .gpl_only = false, 1531 .ret_type = RET_INTEGER, 1532 .arg1_type = ARG_PTR_TO_DYNPTR, 1533 .arg2_type = ARG_ANYTHING, 1534 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1535 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 1536 .arg5_type = ARG_ANYTHING, 1537 }; 1538 1539 BPF_CALL_3(bpf_dynptr_data, struct bpf_dynptr_kern *, ptr, u32, offset, u32, len) 1540 { 1541 int err; 1542 1543 if (!ptr->data) 1544 return 0; 1545 1546 err = bpf_dynptr_check_off_len(ptr, offset, len); 1547 if (err) 1548 return 0; 1549 1550 if (bpf_dynptr_is_rdonly(ptr)) 1551 return 0; 1552 1553 return (unsigned long)(ptr->data + ptr->offset + offset); 1554 } 1555 1556 static const struct bpf_func_proto bpf_dynptr_data_proto = { 1557 .func = bpf_dynptr_data, 1558 .gpl_only = false, 1559 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL, 1560 .arg1_type = ARG_PTR_TO_DYNPTR, 1561 .arg2_type = ARG_ANYTHING, 1562 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 1563 }; 1564 1565 const struct bpf_func_proto bpf_get_current_task_proto __weak; 1566 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; 1567 const struct bpf_func_proto bpf_probe_read_user_proto __weak; 1568 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; 1569 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; 1570 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; 1571 const struct bpf_func_proto bpf_task_pt_regs_proto __weak; 1572 1573 const struct bpf_func_proto * 1574 bpf_base_func_proto(enum bpf_func_id func_id) 1575 { 1576 switch (func_id) { 1577 case BPF_FUNC_map_lookup_elem: 1578 return &bpf_map_lookup_elem_proto; 1579 case BPF_FUNC_map_update_elem: 1580 return &bpf_map_update_elem_proto; 1581 case BPF_FUNC_map_delete_elem: 1582 return &bpf_map_delete_elem_proto; 1583 case BPF_FUNC_map_push_elem: 1584 return &bpf_map_push_elem_proto; 1585 case BPF_FUNC_map_pop_elem: 1586 return &bpf_map_pop_elem_proto; 1587 case BPF_FUNC_map_peek_elem: 1588 return &bpf_map_peek_elem_proto; 1589 case BPF_FUNC_map_lookup_percpu_elem: 1590 return &bpf_map_lookup_percpu_elem_proto; 1591 case BPF_FUNC_get_prandom_u32: 1592 return &bpf_get_prandom_u32_proto; 1593 case BPF_FUNC_get_smp_processor_id: 1594 return &bpf_get_raw_smp_processor_id_proto; 1595 case BPF_FUNC_get_numa_node_id: 1596 return &bpf_get_numa_node_id_proto; 1597 case BPF_FUNC_tail_call: 1598 return &bpf_tail_call_proto; 1599 case BPF_FUNC_ktime_get_ns: 1600 return &bpf_ktime_get_ns_proto; 1601 case BPF_FUNC_ktime_get_boot_ns: 1602 return &bpf_ktime_get_boot_ns_proto; 1603 case BPF_FUNC_ktime_get_tai_ns: 1604 return &bpf_ktime_get_tai_ns_proto; 1605 case BPF_FUNC_ringbuf_output: 1606 return &bpf_ringbuf_output_proto; 1607 case BPF_FUNC_ringbuf_reserve: 1608 return &bpf_ringbuf_reserve_proto; 1609 case BPF_FUNC_ringbuf_submit: 1610 return &bpf_ringbuf_submit_proto; 1611 case BPF_FUNC_ringbuf_discard: 1612 return &bpf_ringbuf_discard_proto; 1613 case BPF_FUNC_ringbuf_query: 1614 return &bpf_ringbuf_query_proto; 1615 case BPF_FUNC_strncmp: 1616 return &bpf_strncmp_proto; 1617 case BPF_FUNC_strtol: 1618 return &bpf_strtol_proto; 1619 case BPF_FUNC_strtoul: 1620 return &bpf_strtoul_proto; 1621 default: 1622 break; 1623 } 1624 1625 if (!bpf_capable()) 1626 return NULL; 1627 1628 switch (func_id) { 1629 case BPF_FUNC_spin_lock: 1630 return &bpf_spin_lock_proto; 1631 case BPF_FUNC_spin_unlock: 1632 return &bpf_spin_unlock_proto; 1633 case BPF_FUNC_jiffies64: 1634 return &bpf_jiffies64_proto; 1635 case BPF_FUNC_per_cpu_ptr: 1636 return &bpf_per_cpu_ptr_proto; 1637 case BPF_FUNC_this_cpu_ptr: 1638 return &bpf_this_cpu_ptr_proto; 1639 case BPF_FUNC_timer_init: 1640 return &bpf_timer_init_proto; 1641 case BPF_FUNC_timer_set_callback: 1642 return &bpf_timer_set_callback_proto; 1643 case BPF_FUNC_timer_start: 1644 return &bpf_timer_start_proto; 1645 case BPF_FUNC_timer_cancel: 1646 return &bpf_timer_cancel_proto; 1647 case BPF_FUNC_kptr_xchg: 1648 return &bpf_kptr_xchg_proto; 1649 case BPF_FUNC_for_each_map_elem: 1650 return &bpf_for_each_map_elem_proto; 1651 case BPF_FUNC_loop: 1652 return &bpf_loop_proto; 1653 case BPF_FUNC_user_ringbuf_drain: 1654 return &bpf_user_ringbuf_drain_proto; 1655 case BPF_FUNC_ringbuf_reserve_dynptr: 1656 return &bpf_ringbuf_reserve_dynptr_proto; 1657 case BPF_FUNC_ringbuf_submit_dynptr: 1658 return &bpf_ringbuf_submit_dynptr_proto; 1659 case BPF_FUNC_ringbuf_discard_dynptr: 1660 return &bpf_ringbuf_discard_dynptr_proto; 1661 case BPF_FUNC_dynptr_from_mem: 1662 return &bpf_dynptr_from_mem_proto; 1663 case BPF_FUNC_dynptr_read: 1664 return &bpf_dynptr_read_proto; 1665 case BPF_FUNC_dynptr_write: 1666 return &bpf_dynptr_write_proto; 1667 case BPF_FUNC_dynptr_data: 1668 return &bpf_dynptr_data_proto; 1669 #ifdef CONFIG_CGROUPS 1670 case BPF_FUNC_cgrp_storage_get: 1671 return &bpf_cgrp_storage_get_proto; 1672 case BPF_FUNC_cgrp_storage_delete: 1673 return &bpf_cgrp_storage_delete_proto; 1674 #endif 1675 default: 1676 break; 1677 } 1678 1679 if (!perfmon_capable()) 1680 return NULL; 1681 1682 switch (func_id) { 1683 case BPF_FUNC_trace_printk: 1684 return bpf_get_trace_printk_proto(); 1685 case BPF_FUNC_get_current_task: 1686 return &bpf_get_current_task_proto; 1687 case BPF_FUNC_get_current_task_btf: 1688 return &bpf_get_current_task_btf_proto; 1689 case BPF_FUNC_probe_read_user: 1690 return &bpf_probe_read_user_proto; 1691 case BPF_FUNC_probe_read_kernel: 1692 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1693 NULL : &bpf_probe_read_kernel_proto; 1694 case BPF_FUNC_probe_read_user_str: 1695 return &bpf_probe_read_user_str_proto; 1696 case BPF_FUNC_probe_read_kernel_str: 1697 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1698 NULL : &bpf_probe_read_kernel_str_proto; 1699 case BPF_FUNC_snprintf_btf: 1700 return &bpf_snprintf_btf_proto; 1701 case BPF_FUNC_snprintf: 1702 return &bpf_snprintf_proto; 1703 case BPF_FUNC_task_pt_regs: 1704 return &bpf_task_pt_regs_proto; 1705 case BPF_FUNC_trace_vprintk: 1706 return bpf_get_trace_vprintk_proto(); 1707 default: 1708 return NULL; 1709 } 1710 } 1711 1712 void bpf_list_head_free(const struct btf_field *field, void *list_head, 1713 struct bpf_spin_lock *spin_lock) 1714 { 1715 struct list_head *head = list_head, *orig_head = list_head; 1716 1717 BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head)); 1718 BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head)); 1719 1720 /* Do the actual list draining outside the lock to not hold the lock for 1721 * too long, and also prevent deadlocks if tracing programs end up 1722 * executing on entry/exit of functions called inside the critical 1723 * section, and end up doing map ops that call bpf_list_head_free for 1724 * the same map value again. 1725 */ 1726 __bpf_spin_lock_irqsave(spin_lock); 1727 if (!head->next || list_empty(head)) 1728 goto unlock; 1729 head = head->next; 1730 unlock: 1731 INIT_LIST_HEAD(orig_head); 1732 __bpf_spin_unlock_irqrestore(spin_lock); 1733 1734 while (head != orig_head) { 1735 void *obj = head; 1736 1737 obj -= field->list_head.node_offset; 1738 head = head->next; 1739 /* The contained type can also have resources, including a 1740 * bpf_list_head which needs to be freed. 1741 */ 1742 bpf_obj_free_fields(field->list_head.value_rec, obj); 1743 /* bpf_mem_free requires migrate_disable(), since we can be 1744 * called from map free path as well apart from BPF program (as 1745 * part of map ops doing bpf_obj_free_fields). 1746 */ 1747 migrate_disable(); 1748 bpf_mem_free(&bpf_global_ma, obj); 1749 migrate_enable(); 1750 } 1751 } 1752 1753 __diag_push(); 1754 __diag_ignore_all("-Wmissing-prototypes", 1755 "Global functions as their definitions will be in vmlinux BTF"); 1756 1757 void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign) 1758 { 1759 struct btf_struct_meta *meta = meta__ign; 1760 u64 size = local_type_id__k; 1761 void *p; 1762 1763 p = bpf_mem_alloc(&bpf_global_ma, size); 1764 if (!p) 1765 return NULL; 1766 if (meta) 1767 bpf_obj_init(meta->field_offs, p); 1768 return p; 1769 } 1770 1771 void bpf_obj_drop_impl(void *p__alloc, void *meta__ign) 1772 { 1773 struct btf_struct_meta *meta = meta__ign; 1774 void *p = p__alloc; 1775 1776 if (meta) 1777 bpf_obj_free_fields(meta->record, p); 1778 bpf_mem_free(&bpf_global_ma, p); 1779 } 1780 1781 static void __bpf_list_add(struct bpf_list_node *node, struct bpf_list_head *head, bool tail) 1782 { 1783 struct list_head *n = (void *)node, *h = (void *)head; 1784 1785 if (unlikely(!h->next)) 1786 INIT_LIST_HEAD(h); 1787 if (unlikely(!n->next)) 1788 INIT_LIST_HEAD(n); 1789 tail ? list_add_tail(n, h) : list_add(n, h); 1790 } 1791 1792 void bpf_list_push_front(struct bpf_list_head *head, struct bpf_list_node *node) 1793 { 1794 return __bpf_list_add(node, head, false); 1795 } 1796 1797 void bpf_list_push_back(struct bpf_list_head *head, struct bpf_list_node *node) 1798 { 1799 return __bpf_list_add(node, head, true); 1800 } 1801 1802 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail) 1803 { 1804 struct list_head *n, *h = (void *)head; 1805 1806 if (unlikely(!h->next)) 1807 INIT_LIST_HEAD(h); 1808 if (list_empty(h)) 1809 return NULL; 1810 n = tail ? h->prev : h->next; 1811 list_del_init(n); 1812 return (struct bpf_list_node *)n; 1813 } 1814 1815 struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) 1816 { 1817 return __bpf_list_del(head, false); 1818 } 1819 1820 struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) 1821 { 1822 return __bpf_list_del(head, true); 1823 } 1824 1825 /** 1826 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this 1827 * kfunc which is not stored in a map as a kptr, must be released by calling 1828 * bpf_task_release(). 1829 * @p: The task on which a reference is being acquired. 1830 */ 1831 struct task_struct *bpf_task_acquire(struct task_struct *p) 1832 { 1833 refcount_inc(&p->rcu_users); 1834 return p; 1835 } 1836 1837 /** 1838 * bpf_task_kptr_get - Acquire a reference on a struct task_struct kptr. A task 1839 * kptr acquired by this kfunc which is not subsequently stored in a map, must 1840 * be released by calling bpf_task_release(). 1841 * @pp: A pointer to a task kptr on which a reference is being acquired. 1842 */ 1843 struct task_struct *bpf_task_kptr_get(struct task_struct **pp) 1844 { 1845 struct task_struct *p; 1846 1847 rcu_read_lock(); 1848 p = READ_ONCE(*pp); 1849 1850 /* Another context could remove the task from the map and release it at 1851 * any time, including after we've done the lookup above. This is safe 1852 * because we're in an RCU read region, so the task is guaranteed to 1853 * remain valid until at least the rcu_read_unlock() below. 1854 */ 1855 if (p && !refcount_inc_not_zero(&p->rcu_users)) 1856 /* If the task had been removed from the map and freed as 1857 * described above, refcount_inc_not_zero() will return false. 1858 * The task will be freed at some point after the current RCU 1859 * gp has ended, so just return NULL to the user. 1860 */ 1861 p = NULL; 1862 rcu_read_unlock(); 1863 1864 return p; 1865 } 1866 1867 /** 1868 * bpf_task_release - Release the reference acquired on a struct task_struct *. 1869 * If this kfunc is invoked in an RCU read region, the task_struct is 1870 * guaranteed to not be freed until the current grace period has ended, even if 1871 * its refcount drops to 0. 1872 * @p: The task on which a reference is being released. 1873 */ 1874 void bpf_task_release(struct task_struct *p) 1875 { 1876 if (!p) 1877 return; 1878 1879 put_task_struct_rcu_user(p); 1880 } 1881 1882 void *bpf_cast_to_kern_ctx(void *obj) 1883 { 1884 return obj; 1885 } 1886 1887 void *bpf_rdonly_cast(void *obj__ign, u32 btf_id__k) 1888 { 1889 return obj__ign; 1890 } 1891 1892 __diag_pop(); 1893 1894 BTF_SET8_START(generic_btf_ids) 1895 #ifdef CONFIG_KEXEC_CORE 1896 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) 1897 #endif 1898 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) 1899 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE) 1900 BTF_ID_FLAGS(func, bpf_list_push_front) 1901 BTF_ID_FLAGS(func, bpf_list_push_back) 1902 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL) 1903 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL) 1904 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_TRUSTED_ARGS) 1905 BTF_ID_FLAGS(func, bpf_task_kptr_get, KF_ACQUIRE | KF_KPTR_GET | KF_RET_NULL) 1906 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE) 1907 BTF_SET8_END(generic_btf_ids) 1908 1909 static const struct btf_kfunc_id_set generic_kfunc_set = { 1910 .owner = THIS_MODULE, 1911 .set = &generic_btf_ids, 1912 }; 1913 1914 1915 BTF_ID_LIST(generic_dtor_ids) 1916 BTF_ID(struct, task_struct) 1917 BTF_ID(func, bpf_task_release) 1918 1919 BTF_SET8_START(common_btf_ids) 1920 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx) 1921 BTF_ID_FLAGS(func, bpf_rdonly_cast) 1922 BTF_SET8_END(common_btf_ids) 1923 1924 static const struct btf_kfunc_id_set common_kfunc_set = { 1925 .owner = THIS_MODULE, 1926 .set = &common_btf_ids, 1927 }; 1928 1929 static int __init kfunc_init(void) 1930 { 1931 int ret; 1932 const struct btf_id_dtor_kfunc generic_dtors[] = { 1933 { 1934 .btf_id = generic_dtor_ids[0], 1935 .kfunc_btf_id = generic_dtor_ids[1] 1936 }, 1937 }; 1938 1939 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set); 1940 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set); 1941 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set); 1942 ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors, 1943 ARRAY_SIZE(generic_dtors), 1944 THIS_MODULE); 1945 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); 1946 } 1947 1948 late_initcall(kfunc_init); 1949