1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #include <linux/bpf.h> 5 #include <linux/btf.h> 6 #include <linux/bpf-cgroup.h> 7 #include <linux/cgroup.h> 8 #include <linux/rcupdate.h> 9 #include <linux/random.h> 10 #include <linux/smp.h> 11 #include <linux/topology.h> 12 #include <linux/ktime.h> 13 #include <linux/sched.h> 14 #include <linux/uidgid.h> 15 #include <linux/filter.h> 16 #include <linux/ctype.h> 17 #include <linux/jiffies.h> 18 #include <linux/pid_namespace.h> 19 #include <linux/poison.h> 20 #include <linux/proc_ns.h> 21 #include <linux/sched/task.h> 22 #include <linux/security.h> 23 #include <linux/btf_ids.h> 24 #include <linux/bpf_mem_alloc.h> 25 #include <linux/kasan.h> 26 27 #include "../../lib/kstrtox.h" 28 29 /* If kernel subsystem is allowing eBPF programs to call this function, 30 * inside its own verifier_ops->get_func_proto() callback it should return 31 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments 32 * 33 * Different map implementations will rely on rcu in map methods 34 * lookup/update/delete, therefore eBPF programs must run under rcu lock 35 * if program is allowed to access maps, so check rcu_read_lock_held() or 36 * rcu_read_lock_trace_held() in all three functions. 37 */ 38 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) 39 { 40 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 41 !rcu_read_lock_bh_held()); 42 return (unsigned long) map->ops->map_lookup_elem(map, key); 43 } 44 45 const struct bpf_func_proto bpf_map_lookup_elem_proto = { 46 .func = bpf_map_lookup_elem, 47 .gpl_only = false, 48 .pkt_access = true, 49 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 50 .arg1_type = ARG_CONST_MAP_PTR, 51 .arg2_type = ARG_PTR_TO_MAP_KEY, 52 }; 53 54 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, 55 void *, value, u64, flags) 56 { 57 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 58 !rcu_read_lock_bh_held()); 59 return map->ops->map_update_elem(map, key, value, flags); 60 } 61 62 const struct bpf_func_proto bpf_map_update_elem_proto = { 63 .func = bpf_map_update_elem, 64 .gpl_only = false, 65 .pkt_access = true, 66 .ret_type = RET_INTEGER, 67 .arg1_type = ARG_CONST_MAP_PTR, 68 .arg2_type = ARG_PTR_TO_MAP_KEY, 69 .arg3_type = ARG_PTR_TO_MAP_VALUE, 70 .arg4_type = ARG_ANYTHING, 71 }; 72 73 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) 74 { 75 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 76 !rcu_read_lock_bh_held()); 77 return map->ops->map_delete_elem(map, key); 78 } 79 80 const struct bpf_func_proto bpf_map_delete_elem_proto = { 81 .func = bpf_map_delete_elem, 82 .gpl_only = false, 83 .pkt_access = true, 84 .ret_type = RET_INTEGER, 85 .arg1_type = ARG_CONST_MAP_PTR, 86 .arg2_type = ARG_PTR_TO_MAP_KEY, 87 }; 88 89 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) 90 { 91 return map->ops->map_push_elem(map, value, flags); 92 } 93 94 const struct bpf_func_proto bpf_map_push_elem_proto = { 95 .func = bpf_map_push_elem, 96 .gpl_only = false, 97 .pkt_access = true, 98 .ret_type = RET_INTEGER, 99 .arg1_type = ARG_CONST_MAP_PTR, 100 .arg2_type = ARG_PTR_TO_MAP_VALUE, 101 .arg3_type = ARG_ANYTHING, 102 }; 103 104 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) 105 { 106 return map->ops->map_pop_elem(map, value); 107 } 108 109 const struct bpf_func_proto bpf_map_pop_elem_proto = { 110 .func = bpf_map_pop_elem, 111 .gpl_only = false, 112 .ret_type = RET_INTEGER, 113 .arg1_type = ARG_CONST_MAP_PTR, 114 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE, 115 }; 116 117 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) 118 { 119 return map->ops->map_peek_elem(map, value); 120 } 121 122 const struct bpf_func_proto bpf_map_peek_elem_proto = { 123 .func = bpf_map_peek_elem, 124 .gpl_only = false, 125 .ret_type = RET_INTEGER, 126 .arg1_type = ARG_CONST_MAP_PTR, 127 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE, 128 }; 129 130 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) 131 { 132 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 133 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); 134 } 135 136 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { 137 .func = bpf_map_lookup_percpu_elem, 138 .gpl_only = false, 139 .pkt_access = true, 140 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 141 .arg1_type = ARG_CONST_MAP_PTR, 142 .arg2_type = ARG_PTR_TO_MAP_KEY, 143 .arg3_type = ARG_ANYTHING, 144 }; 145 146 const struct bpf_func_proto bpf_get_prandom_u32_proto = { 147 .func = bpf_user_rnd_u32, 148 .gpl_only = false, 149 .ret_type = RET_INTEGER, 150 }; 151 152 BPF_CALL_0(bpf_get_smp_processor_id) 153 { 154 return smp_processor_id(); 155 } 156 157 const struct bpf_func_proto bpf_get_smp_processor_id_proto = { 158 .func = bpf_get_smp_processor_id, 159 .gpl_only = false, 160 .ret_type = RET_INTEGER, 161 .allow_fastcall = true, 162 }; 163 164 BPF_CALL_0(bpf_get_numa_node_id) 165 { 166 return numa_node_id(); 167 } 168 169 const struct bpf_func_proto bpf_get_numa_node_id_proto = { 170 .func = bpf_get_numa_node_id, 171 .gpl_only = false, 172 .ret_type = RET_INTEGER, 173 }; 174 175 BPF_CALL_0(bpf_ktime_get_ns) 176 { 177 /* NMI safe access to clock monotonic */ 178 return ktime_get_mono_fast_ns(); 179 } 180 181 const struct bpf_func_proto bpf_ktime_get_ns_proto = { 182 .func = bpf_ktime_get_ns, 183 .gpl_only = false, 184 .ret_type = RET_INTEGER, 185 }; 186 187 BPF_CALL_0(bpf_ktime_get_boot_ns) 188 { 189 /* NMI safe access to clock boottime */ 190 return ktime_get_boot_fast_ns(); 191 } 192 193 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { 194 .func = bpf_ktime_get_boot_ns, 195 .gpl_only = false, 196 .ret_type = RET_INTEGER, 197 }; 198 199 BPF_CALL_0(bpf_ktime_get_coarse_ns) 200 { 201 return ktime_get_coarse_ns(); 202 } 203 204 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { 205 .func = bpf_ktime_get_coarse_ns, 206 .gpl_only = false, 207 .ret_type = RET_INTEGER, 208 }; 209 210 BPF_CALL_0(bpf_ktime_get_tai_ns) 211 { 212 /* NMI safe access to clock tai */ 213 return ktime_get_tai_fast_ns(); 214 } 215 216 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = { 217 .func = bpf_ktime_get_tai_ns, 218 .gpl_only = false, 219 .ret_type = RET_INTEGER, 220 }; 221 222 BPF_CALL_0(bpf_get_current_pid_tgid) 223 { 224 struct task_struct *task = current; 225 226 if (unlikely(!task)) 227 return -EINVAL; 228 229 return (u64) task->tgid << 32 | task->pid; 230 } 231 232 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { 233 .func = bpf_get_current_pid_tgid, 234 .gpl_only = false, 235 .ret_type = RET_INTEGER, 236 }; 237 238 BPF_CALL_0(bpf_get_current_uid_gid) 239 { 240 struct task_struct *task = current; 241 kuid_t uid; 242 kgid_t gid; 243 244 if (unlikely(!task)) 245 return -EINVAL; 246 247 current_uid_gid(&uid, &gid); 248 return (u64) from_kgid(&init_user_ns, gid) << 32 | 249 from_kuid(&init_user_ns, uid); 250 } 251 252 const struct bpf_func_proto bpf_get_current_uid_gid_proto = { 253 .func = bpf_get_current_uid_gid, 254 .gpl_only = false, 255 .ret_type = RET_INTEGER, 256 }; 257 258 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) 259 { 260 struct task_struct *task = current; 261 262 if (unlikely(!task)) 263 goto err_clear; 264 265 /* Verifier guarantees that size > 0 */ 266 strscpy_pad(buf, task->comm, size); 267 return 0; 268 err_clear: 269 memset(buf, 0, size); 270 return -EINVAL; 271 } 272 273 const struct bpf_func_proto bpf_get_current_comm_proto = { 274 .func = bpf_get_current_comm, 275 .gpl_only = false, 276 .ret_type = RET_INTEGER, 277 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 278 .arg2_type = ARG_CONST_SIZE, 279 }; 280 281 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) 282 283 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 284 { 285 arch_spinlock_t *l = (void *)lock; 286 union { 287 __u32 val; 288 arch_spinlock_t lock; 289 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; 290 291 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); 292 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); 293 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); 294 preempt_disable(); 295 arch_spin_lock(l); 296 } 297 298 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 299 { 300 arch_spinlock_t *l = (void *)lock; 301 302 arch_spin_unlock(l); 303 preempt_enable(); 304 } 305 306 #else 307 308 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 309 { 310 atomic_t *l = (void *)lock; 311 312 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); 313 do { 314 atomic_cond_read_relaxed(l, !VAL); 315 } while (atomic_xchg(l, 1)); 316 } 317 318 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 319 { 320 atomic_t *l = (void *)lock; 321 322 atomic_set_release(l, 0); 323 } 324 325 #endif 326 327 static DEFINE_PER_CPU(unsigned long, irqsave_flags); 328 329 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) 330 { 331 unsigned long flags; 332 333 local_irq_save(flags); 334 __bpf_spin_lock(lock); 335 __this_cpu_write(irqsave_flags, flags); 336 } 337 338 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) 339 { 340 __bpf_spin_lock_irqsave(lock); 341 return 0; 342 } 343 344 const struct bpf_func_proto bpf_spin_lock_proto = { 345 .func = bpf_spin_lock, 346 .gpl_only = false, 347 .ret_type = RET_VOID, 348 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 349 .arg1_btf_id = BPF_PTR_POISON, 350 }; 351 352 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) 353 { 354 unsigned long flags; 355 356 flags = __this_cpu_read(irqsave_flags); 357 __bpf_spin_unlock(lock); 358 local_irq_restore(flags); 359 } 360 361 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) 362 { 363 __bpf_spin_unlock_irqrestore(lock); 364 return 0; 365 } 366 367 const struct bpf_func_proto bpf_spin_unlock_proto = { 368 .func = bpf_spin_unlock, 369 .gpl_only = false, 370 .ret_type = RET_VOID, 371 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 372 .arg1_btf_id = BPF_PTR_POISON, 373 }; 374 375 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 376 bool lock_src) 377 { 378 struct bpf_spin_lock *lock; 379 380 if (lock_src) 381 lock = src + map->record->spin_lock_off; 382 else 383 lock = dst + map->record->spin_lock_off; 384 preempt_disable(); 385 __bpf_spin_lock_irqsave(lock); 386 copy_map_value(map, dst, src); 387 __bpf_spin_unlock_irqrestore(lock); 388 preempt_enable(); 389 } 390 391 BPF_CALL_0(bpf_jiffies64) 392 { 393 return get_jiffies_64(); 394 } 395 396 const struct bpf_func_proto bpf_jiffies64_proto = { 397 .func = bpf_jiffies64, 398 .gpl_only = false, 399 .ret_type = RET_INTEGER, 400 }; 401 402 #ifdef CONFIG_CGROUPS 403 BPF_CALL_0(bpf_get_current_cgroup_id) 404 { 405 struct cgroup *cgrp; 406 u64 cgrp_id; 407 408 rcu_read_lock(); 409 cgrp = task_dfl_cgroup(current); 410 cgrp_id = cgroup_id(cgrp); 411 rcu_read_unlock(); 412 413 return cgrp_id; 414 } 415 416 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { 417 .func = bpf_get_current_cgroup_id, 418 .gpl_only = false, 419 .ret_type = RET_INTEGER, 420 }; 421 422 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) 423 { 424 struct cgroup *cgrp; 425 struct cgroup *ancestor; 426 u64 cgrp_id; 427 428 rcu_read_lock(); 429 cgrp = task_dfl_cgroup(current); 430 ancestor = cgroup_ancestor(cgrp, ancestor_level); 431 cgrp_id = ancestor ? cgroup_id(ancestor) : 0; 432 rcu_read_unlock(); 433 434 return cgrp_id; 435 } 436 437 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { 438 .func = bpf_get_current_ancestor_cgroup_id, 439 .gpl_only = false, 440 .ret_type = RET_INTEGER, 441 .arg1_type = ARG_ANYTHING, 442 }; 443 #endif /* CONFIG_CGROUPS */ 444 445 #define BPF_STRTOX_BASE_MASK 0x1F 446 447 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, 448 unsigned long long *res, bool *is_negative) 449 { 450 unsigned int base = flags & BPF_STRTOX_BASE_MASK; 451 const char *cur_buf = buf; 452 size_t cur_len = buf_len; 453 unsigned int consumed; 454 size_t val_len; 455 char str[64]; 456 457 if (!buf || !buf_len || !res || !is_negative) 458 return -EINVAL; 459 460 if (base != 0 && base != 8 && base != 10 && base != 16) 461 return -EINVAL; 462 463 if (flags & ~BPF_STRTOX_BASE_MASK) 464 return -EINVAL; 465 466 while (cur_buf < buf + buf_len && isspace(*cur_buf)) 467 ++cur_buf; 468 469 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); 470 if (*is_negative) 471 ++cur_buf; 472 473 consumed = cur_buf - buf; 474 cur_len -= consumed; 475 if (!cur_len) 476 return -EINVAL; 477 478 cur_len = min(cur_len, sizeof(str) - 1); 479 memcpy(str, cur_buf, cur_len); 480 str[cur_len] = '\0'; 481 cur_buf = str; 482 483 cur_buf = _parse_integer_fixup_radix(cur_buf, &base); 484 val_len = _parse_integer(cur_buf, base, res); 485 486 if (val_len & KSTRTOX_OVERFLOW) 487 return -ERANGE; 488 489 if (val_len == 0) 490 return -EINVAL; 491 492 cur_buf += val_len; 493 consumed += cur_buf - str; 494 495 return consumed; 496 } 497 498 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, 499 long long *res) 500 { 501 unsigned long long _res; 502 bool is_negative; 503 int err; 504 505 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 506 if (err < 0) 507 return err; 508 if (is_negative) { 509 if ((long long)-_res > 0) 510 return -ERANGE; 511 *res = -_res; 512 } else { 513 if ((long long)_res < 0) 514 return -ERANGE; 515 *res = _res; 516 } 517 return err; 518 } 519 520 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, 521 s64 *, res) 522 { 523 long long _res; 524 int err; 525 526 *res = 0; 527 err = __bpf_strtoll(buf, buf_len, flags, &_res); 528 if (err < 0) 529 return err; 530 *res = _res; 531 return err; 532 } 533 534 const struct bpf_func_proto bpf_strtol_proto = { 535 .func = bpf_strtol, 536 .gpl_only = false, 537 .ret_type = RET_INTEGER, 538 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 539 .arg2_type = ARG_CONST_SIZE, 540 .arg3_type = ARG_ANYTHING, 541 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED, 542 .arg4_size = sizeof(s64), 543 }; 544 545 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, 546 u64 *, res) 547 { 548 unsigned long long _res; 549 bool is_negative; 550 int err; 551 552 *res = 0; 553 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 554 if (err < 0) 555 return err; 556 if (is_negative) 557 return -EINVAL; 558 *res = _res; 559 return err; 560 } 561 562 const struct bpf_func_proto bpf_strtoul_proto = { 563 .func = bpf_strtoul, 564 .gpl_only = false, 565 .ret_type = RET_INTEGER, 566 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 567 .arg2_type = ARG_CONST_SIZE, 568 .arg3_type = ARG_ANYTHING, 569 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED, 570 .arg4_size = sizeof(u64), 571 }; 572 573 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) 574 { 575 return strncmp(s1, s2, s1_sz); 576 } 577 578 static const struct bpf_func_proto bpf_strncmp_proto = { 579 .func = bpf_strncmp, 580 .gpl_only = false, 581 .ret_type = RET_INTEGER, 582 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 583 .arg2_type = ARG_CONST_SIZE, 584 .arg3_type = ARG_PTR_TO_CONST_STR, 585 }; 586 587 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, 588 struct bpf_pidns_info *, nsdata, u32, size) 589 { 590 struct task_struct *task = current; 591 struct pid_namespace *pidns; 592 int err = -EINVAL; 593 594 if (unlikely(size != sizeof(struct bpf_pidns_info))) 595 goto clear; 596 597 if (unlikely((u64)(dev_t)dev != dev)) 598 goto clear; 599 600 if (unlikely(!task)) 601 goto clear; 602 603 pidns = task_active_pid_ns(task); 604 if (unlikely(!pidns)) { 605 err = -ENOENT; 606 goto clear; 607 } 608 609 if (!ns_match(&pidns->ns, (dev_t)dev, ino)) 610 goto clear; 611 612 nsdata->pid = task_pid_nr_ns(task, pidns); 613 nsdata->tgid = task_tgid_nr_ns(task, pidns); 614 return 0; 615 clear: 616 memset((void *)nsdata, 0, (size_t) size); 617 return err; 618 } 619 620 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { 621 .func = bpf_get_ns_current_pid_tgid, 622 .gpl_only = false, 623 .ret_type = RET_INTEGER, 624 .arg1_type = ARG_ANYTHING, 625 .arg2_type = ARG_ANYTHING, 626 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 627 .arg4_type = ARG_CONST_SIZE, 628 }; 629 630 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { 631 .func = bpf_get_raw_cpu_id, 632 .gpl_only = false, 633 .ret_type = RET_INTEGER, 634 }; 635 636 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, 637 u64, flags, void *, data, u64, size) 638 { 639 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 640 return -EINVAL; 641 642 return bpf_event_output(map, flags, data, size, NULL, 0, NULL); 643 } 644 645 const struct bpf_func_proto bpf_event_output_data_proto = { 646 .func = bpf_event_output_data, 647 .gpl_only = true, 648 .ret_type = RET_INTEGER, 649 .arg1_type = ARG_PTR_TO_CTX, 650 .arg2_type = ARG_CONST_MAP_PTR, 651 .arg3_type = ARG_ANYTHING, 652 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 653 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 654 }; 655 656 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, 657 const void __user *, user_ptr) 658 { 659 int ret = copy_from_user(dst, user_ptr, size); 660 661 if (unlikely(ret)) { 662 memset(dst, 0, size); 663 ret = -EFAULT; 664 } 665 666 return ret; 667 } 668 669 const struct bpf_func_proto bpf_copy_from_user_proto = { 670 .func = bpf_copy_from_user, 671 .gpl_only = false, 672 .might_sleep = true, 673 .ret_type = RET_INTEGER, 674 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 675 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 676 .arg3_type = ARG_ANYTHING, 677 }; 678 679 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, 680 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) 681 { 682 int ret; 683 684 /* flags is not used yet */ 685 if (unlikely(flags)) 686 return -EINVAL; 687 688 if (unlikely(!size)) 689 return 0; 690 691 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); 692 if (ret == size) 693 return 0; 694 695 memset(dst, 0, size); 696 /* Return -EFAULT for partial read */ 697 return ret < 0 ? ret : -EFAULT; 698 } 699 700 const struct bpf_func_proto bpf_copy_from_user_task_proto = { 701 .func = bpf_copy_from_user_task, 702 .gpl_only = true, 703 .might_sleep = true, 704 .ret_type = RET_INTEGER, 705 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 706 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 707 .arg3_type = ARG_ANYTHING, 708 .arg4_type = ARG_PTR_TO_BTF_ID, 709 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 710 .arg5_type = ARG_ANYTHING 711 }; 712 713 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) 714 { 715 if (cpu >= nr_cpu_ids) 716 return (unsigned long)NULL; 717 718 return (unsigned long)per_cpu_ptr((const void __percpu *)(const uintptr_t)ptr, cpu); 719 } 720 721 const struct bpf_func_proto bpf_per_cpu_ptr_proto = { 722 .func = bpf_per_cpu_ptr, 723 .gpl_only = false, 724 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, 725 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 726 .arg2_type = ARG_ANYTHING, 727 }; 728 729 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) 730 { 731 return (unsigned long)this_cpu_ptr((const void __percpu *)(const uintptr_t)percpu_ptr); 732 } 733 734 const struct bpf_func_proto bpf_this_cpu_ptr_proto = { 735 .func = bpf_this_cpu_ptr, 736 .gpl_only = false, 737 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, 738 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 739 }; 740 741 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 742 size_t bufsz) 743 { 744 void __user *user_ptr = (__force void __user *)unsafe_ptr; 745 746 buf[0] = 0; 747 748 switch (fmt_ptype) { 749 case 's': 750 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 751 if ((unsigned long)unsafe_ptr < TASK_SIZE) 752 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 753 fallthrough; 754 #endif 755 case 'k': 756 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 757 case 'u': 758 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 759 } 760 761 return -EINVAL; 762 } 763 764 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary 765 * arguments representation. 766 */ 767 #define MAX_BPRINTF_BIN_ARGS 512 768 769 /* Support executing three nested bprintf helper calls on a given CPU */ 770 #define MAX_BPRINTF_NEST_LEVEL 3 771 struct bpf_bprintf_buffers { 772 char bin_args[MAX_BPRINTF_BIN_ARGS]; 773 char buf[MAX_BPRINTF_BUF]; 774 }; 775 776 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs); 777 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); 778 779 static int try_get_buffers(struct bpf_bprintf_buffers **bufs) 780 { 781 int nest_level; 782 783 preempt_disable(); 784 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); 785 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { 786 this_cpu_dec(bpf_bprintf_nest_level); 787 preempt_enable(); 788 return -EBUSY; 789 } 790 *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]); 791 792 return 0; 793 } 794 795 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data) 796 { 797 if (!data->bin_args && !data->buf) 798 return; 799 if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0)) 800 return; 801 this_cpu_dec(bpf_bprintf_nest_level); 802 preempt_enable(); 803 } 804 805 /* 806 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers 807 * 808 * Returns a negative value if fmt is an invalid format string or 0 otherwise. 809 * 810 * This can be used in two ways: 811 * - Format string verification only: when data->get_bin_args is false 812 * - Arguments preparation: in addition to the above verification, it writes in 813 * data->bin_args a binary representation of arguments usable by bstr_printf 814 * where pointers from BPF have been sanitized. 815 * 816 * In argument preparation mode, if 0 is returned, safe temporary buffers are 817 * allocated and bpf_bprintf_cleanup should be called to free them after use. 818 */ 819 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 820 u32 num_args, struct bpf_bprintf_data *data) 821 { 822 bool get_buffers = (data->get_bin_args && num_args) || data->get_buf; 823 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; 824 struct bpf_bprintf_buffers *buffers = NULL; 825 size_t sizeof_cur_arg, sizeof_cur_ip; 826 int err, i, num_spec = 0; 827 u64 cur_arg; 828 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; 829 830 fmt_end = strnchr(fmt, fmt_size, 0); 831 if (!fmt_end) 832 return -EINVAL; 833 fmt_size = fmt_end - fmt; 834 835 if (get_buffers && try_get_buffers(&buffers)) 836 return -EBUSY; 837 838 if (data->get_bin_args) { 839 if (num_args) 840 tmp_buf = buffers->bin_args; 841 tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS; 842 data->bin_args = (u32 *)tmp_buf; 843 } 844 845 if (data->get_buf) 846 data->buf = buffers->buf; 847 848 for (i = 0; i < fmt_size; i++) { 849 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 850 err = -EINVAL; 851 goto out; 852 } 853 854 if (fmt[i] != '%') 855 continue; 856 857 if (fmt[i + 1] == '%') { 858 i++; 859 continue; 860 } 861 862 if (num_spec >= num_args) { 863 err = -EINVAL; 864 goto out; 865 } 866 867 /* The string is zero-terminated so if fmt[i] != 0, we can 868 * always access fmt[i + 1], in the worst case it will be a 0 869 */ 870 i++; 871 872 /* skip optional "[0 +-][num]" width formatting field */ 873 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 874 fmt[i] == ' ') 875 i++; 876 if (fmt[i] >= '1' && fmt[i] <= '9') { 877 i++; 878 while (fmt[i] >= '0' && fmt[i] <= '9') 879 i++; 880 } 881 882 if (fmt[i] == 'p') { 883 sizeof_cur_arg = sizeof(long); 884 885 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && 886 fmt[i + 2] == 's') { 887 fmt_ptype = fmt[i + 1]; 888 i += 2; 889 goto fmt_str; 890 } 891 892 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || 893 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || 894 fmt[i + 1] == 'x' || fmt[i + 1] == 's' || 895 fmt[i + 1] == 'S') { 896 /* just kernel pointers */ 897 if (tmp_buf) 898 cur_arg = raw_args[num_spec]; 899 i++; 900 goto nocopy_fmt; 901 } 902 903 if (fmt[i + 1] == 'B') { 904 if (tmp_buf) { 905 err = snprintf(tmp_buf, 906 (tmp_buf_end - tmp_buf), 907 "%pB", 908 (void *)(long)raw_args[num_spec]); 909 tmp_buf += (err + 1); 910 } 911 912 i++; 913 num_spec++; 914 continue; 915 } 916 917 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 918 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || 919 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { 920 err = -EINVAL; 921 goto out; 922 } 923 924 i += 2; 925 if (!tmp_buf) 926 goto nocopy_fmt; 927 928 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; 929 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { 930 err = -ENOSPC; 931 goto out; 932 } 933 934 unsafe_ptr = (char *)(long)raw_args[num_spec]; 935 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, 936 sizeof_cur_ip); 937 if (err < 0) 938 memset(cur_ip, 0, sizeof_cur_ip); 939 940 /* hack: bstr_printf expects IP addresses to be 941 * pre-formatted as strings, ironically, the easiest way 942 * to do that is to call snprintf. 943 */ 944 ip_spec[2] = fmt[i - 1]; 945 ip_spec[3] = fmt[i]; 946 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, 947 ip_spec, &cur_ip); 948 949 tmp_buf += err + 1; 950 num_spec++; 951 952 continue; 953 } else if (fmt[i] == 's') { 954 fmt_ptype = fmt[i]; 955 fmt_str: 956 if (fmt[i + 1] != 0 && 957 !isspace(fmt[i + 1]) && 958 !ispunct(fmt[i + 1])) { 959 err = -EINVAL; 960 goto out; 961 } 962 963 if (!tmp_buf) 964 goto nocopy_fmt; 965 966 if (tmp_buf_end == tmp_buf) { 967 err = -ENOSPC; 968 goto out; 969 } 970 971 unsafe_ptr = (char *)(long)raw_args[num_spec]; 972 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, 973 fmt_ptype, 974 tmp_buf_end - tmp_buf); 975 if (err < 0) { 976 tmp_buf[0] = '\0'; 977 err = 1; 978 } 979 980 tmp_buf += err; 981 num_spec++; 982 983 continue; 984 } else if (fmt[i] == 'c') { 985 if (!tmp_buf) 986 goto nocopy_fmt; 987 988 if (tmp_buf_end == tmp_buf) { 989 err = -ENOSPC; 990 goto out; 991 } 992 993 *tmp_buf = raw_args[num_spec]; 994 tmp_buf++; 995 num_spec++; 996 997 continue; 998 } 999 1000 sizeof_cur_arg = sizeof(int); 1001 1002 if (fmt[i] == 'l') { 1003 sizeof_cur_arg = sizeof(long); 1004 i++; 1005 } 1006 if (fmt[i] == 'l') { 1007 sizeof_cur_arg = sizeof(long long); 1008 i++; 1009 } 1010 1011 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && 1012 fmt[i] != 'x' && fmt[i] != 'X') { 1013 err = -EINVAL; 1014 goto out; 1015 } 1016 1017 if (tmp_buf) 1018 cur_arg = raw_args[num_spec]; 1019 nocopy_fmt: 1020 if (tmp_buf) { 1021 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); 1022 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { 1023 err = -ENOSPC; 1024 goto out; 1025 } 1026 1027 if (sizeof_cur_arg == 8) { 1028 *(u32 *)tmp_buf = *(u32 *)&cur_arg; 1029 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); 1030 } else { 1031 *(u32 *)tmp_buf = (u32)(long)cur_arg; 1032 } 1033 tmp_buf += sizeof_cur_arg; 1034 } 1035 num_spec++; 1036 } 1037 1038 err = 0; 1039 out: 1040 if (err) 1041 bpf_bprintf_cleanup(data); 1042 return err; 1043 } 1044 1045 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, 1046 const void *, args, u32, data_len) 1047 { 1048 struct bpf_bprintf_data data = { 1049 .get_bin_args = true, 1050 }; 1051 int err, num_args; 1052 1053 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || 1054 (data_len && !args)) 1055 return -EINVAL; 1056 num_args = data_len / 8; 1057 1058 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we 1059 * can safely give an unbounded size. 1060 */ 1061 err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data); 1062 if (err < 0) 1063 return err; 1064 1065 err = bstr_printf(str, str_size, fmt, data.bin_args); 1066 1067 bpf_bprintf_cleanup(&data); 1068 1069 return err + 1; 1070 } 1071 1072 const struct bpf_func_proto bpf_snprintf_proto = { 1073 .func = bpf_snprintf, 1074 .gpl_only = true, 1075 .ret_type = RET_INTEGER, 1076 .arg1_type = ARG_PTR_TO_MEM_OR_NULL, 1077 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1078 .arg3_type = ARG_PTR_TO_CONST_STR, 1079 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 1080 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1081 }; 1082 1083 struct bpf_async_cb { 1084 struct bpf_map *map; 1085 struct bpf_prog *prog; 1086 void __rcu *callback_fn; 1087 void *value; 1088 union { 1089 struct rcu_head rcu; 1090 struct work_struct delete_work; 1091 }; 1092 u64 flags; 1093 }; 1094 1095 /* BPF map elements can contain 'struct bpf_timer'. 1096 * Such map owns all of its BPF timers. 1097 * 'struct bpf_timer' is allocated as part of map element allocation 1098 * and it's zero initialized. 1099 * That space is used to keep 'struct bpf_async_kern'. 1100 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and 1101 * remembers 'struct bpf_map *' pointer it's part of. 1102 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. 1103 * bpf_timer_start() arms the timer. 1104 * If user space reference to a map goes to zero at this point 1105 * ops->map_release_uref callback is responsible for cancelling the timers, 1106 * freeing their memory, and decrementing prog's refcnts. 1107 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. 1108 * Inner maps can contain bpf timers as well. ops->map_release_uref is 1109 * freeing the timers when inner map is replaced or deleted by user space. 1110 */ 1111 struct bpf_hrtimer { 1112 struct bpf_async_cb cb; 1113 struct hrtimer timer; 1114 atomic_t cancelling; 1115 }; 1116 1117 struct bpf_work { 1118 struct bpf_async_cb cb; 1119 struct work_struct work; 1120 struct work_struct delete_work; 1121 }; 1122 1123 /* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */ 1124 struct bpf_async_kern { 1125 union { 1126 struct bpf_async_cb *cb; 1127 struct bpf_hrtimer *timer; 1128 struct bpf_work *work; 1129 }; 1130 /* bpf_spin_lock is used here instead of spinlock_t to make 1131 * sure that it always fits into space reserved by struct bpf_timer 1132 * regardless of LOCKDEP and spinlock debug flags. 1133 */ 1134 struct bpf_spin_lock lock; 1135 } __attribute__((aligned(8))); 1136 1137 enum bpf_async_type { 1138 BPF_ASYNC_TYPE_TIMER = 0, 1139 BPF_ASYNC_TYPE_WQ, 1140 }; 1141 1142 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); 1143 1144 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) 1145 { 1146 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); 1147 struct bpf_map *map = t->cb.map; 1148 void *value = t->cb.value; 1149 bpf_callback_t callback_fn; 1150 void *key; 1151 u32 idx; 1152 1153 BTF_TYPE_EMIT(struct bpf_timer); 1154 callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held()); 1155 if (!callback_fn) 1156 goto out; 1157 1158 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and 1159 * cannot be preempted by another bpf_timer_cb() on the same cpu. 1160 * Remember the timer this callback is servicing to prevent 1161 * deadlock if callback_fn() calls bpf_timer_cancel() or 1162 * bpf_map_delete_elem() on the same timer. 1163 */ 1164 this_cpu_write(hrtimer_running, t); 1165 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1166 struct bpf_array *array = container_of(map, struct bpf_array, map); 1167 1168 /* compute the key */ 1169 idx = ((char *)value - array->value) / array->elem_size; 1170 key = &idx; 1171 } else { /* hash or lru */ 1172 key = value - round_up(map->key_size, 8); 1173 } 1174 1175 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1176 /* The verifier checked that return value is zero. */ 1177 1178 this_cpu_write(hrtimer_running, NULL); 1179 out: 1180 return HRTIMER_NORESTART; 1181 } 1182 1183 static void bpf_wq_work(struct work_struct *work) 1184 { 1185 struct bpf_work *w = container_of(work, struct bpf_work, work); 1186 struct bpf_async_cb *cb = &w->cb; 1187 struct bpf_map *map = cb->map; 1188 bpf_callback_t callback_fn; 1189 void *value = cb->value; 1190 void *key; 1191 u32 idx; 1192 1193 BTF_TYPE_EMIT(struct bpf_wq); 1194 1195 callback_fn = READ_ONCE(cb->callback_fn); 1196 if (!callback_fn) 1197 return; 1198 1199 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1200 struct bpf_array *array = container_of(map, struct bpf_array, map); 1201 1202 /* compute the key */ 1203 idx = ((char *)value - array->value) / array->elem_size; 1204 key = &idx; 1205 } else { /* hash or lru */ 1206 key = value - round_up(map->key_size, 8); 1207 } 1208 1209 rcu_read_lock_trace(); 1210 migrate_disable(); 1211 1212 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1213 1214 migrate_enable(); 1215 rcu_read_unlock_trace(); 1216 } 1217 1218 static void bpf_wq_delete_work(struct work_struct *work) 1219 { 1220 struct bpf_work *w = container_of(work, struct bpf_work, delete_work); 1221 1222 cancel_work_sync(&w->work); 1223 1224 kfree_rcu(w, cb.rcu); 1225 } 1226 1227 static void bpf_timer_delete_work(struct work_struct *work) 1228 { 1229 struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work); 1230 1231 /* Cancel the timer and wait for callback to complete if it was running. 1232 * If hrtimer_cancel() can be safely called it's safe to call 1233 * kfree_rcu(t) right after for both preallocated and non-preallocated 1234 * maps. The async->cb = NULL was already done and no code path can see 1235 * address 't' anymore. Timer if armed for existing bpf_hrtimer before 1236 * bpf_timer_cancel_and_free will have been cancelled. 1237 */ 1238 hrtimer_cancel(&t->timer); 1239 kfree_rcu(t, cb.rcu); 1240 } 1241 1242 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags, 1243 enum bpf_async_type type) 1244 { 1245 struct bpf_async_cb *cb; 1246 struct bpf_hrtimer *t; 1247 struct bpf_work *w; 1248 clockid_t clockid; 1249 size_t size; 1250 int ret = 0; 1251 1252 if (in_nmi()) 1253 return -EOPNOTSUPP; 1254 1255 switch (type) { 1256 case BPF_ASYNC_TYPE_TIMER: 1257 size = sizeof(struct bpf_hrtimer); 1258 break; 1259 case BPF_ASYNC_TYPE_WQ: 1260 size = sizeof(struct bpf_work); 1261 break; 1262 default: 1263 return -EINVAL; 1264 } 1265 1266 __bpf_spin_lock_irqsave(&async->lock); 1267 t = async->timer; 1268 if (t) { 1269 ret = -EBUSY; 1270 goto out; 1271 } 1272 1273 /* allocate hrtimer via map_kmalloc to use memcg accounting */ 1274 cb = bpf_map_kmalloc_node(map, size, GFP_ATOMIC, map->numa_node); 1275 if (!cb) { 1276 ret = -ENOMEM; 1277 goto out; 1278 } 1279 1280 switch (type) { 1281 case BPF_ASYNC_TYPE_TIMER: 1282 clockid = flags & (MAX_CLOCKS - 1); 1283 t = (struct bpf_hrtimer *)cb; 1284 1285 atomic_set(&t->cancelling, 0); 1286 INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work); 1287 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); 1288 t->timer.function = bpf_timer_cb; 1289 cb->value = (void *)async - map->record->timer_off; 1290 break; 1291 case BPF_ASYNC_TYPE_WQ: 1292 w = (struct bpf_work *)cb; 1293 1294 INIT_WORK(&w->work, bpf_wq_work); 1295 INIT_WORK(&w->delete_work, bpf_wq_delete_work); 1296 cb->value = (void *)async - map->record->wq_off; 1297 break; 1298 } 1299 cb->map = map; 1300 cb->prog = NULL; 1301 cb->flags = flags; 1302 rcu_assign_pointer(cb->callback_fn, NULL); 1303 1304 WRITE_ONCE(async->cb, cb); 1305 /* Guarantee the order between async->cb and map->usercnt. So 1306 * when there are concurrent uref release and bpf timer init, either 1307 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL 1308 * timer or atomic64_read() below returns a zero usercnt. 1309 */ 1310 smp_mb(); 1311 if (!atomic64_read(&map->usercnt)) { 1312 /* maps with timers must be either held by user space 1313 * or pinned in bpffs. 1314 */ 1315 WRITE_ONCE(async->cb, NULL); 1316 kfree(cb); 1317 ret = -EPERM; 1318 } 1319 out: 1320 __bpf_spin_unlock_irqrestore(&async->lock); 1321 return ret; 1322 } 1323 1324 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map, 1325 u64, flags) 1326 { 1327 clock_t clockid = flags & (MAX_CLOCKS - 1); 1328 1329 BUILD_BUG_ON(MAX_CLOCKS != 16); 1330 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer)); 1331 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer)); 1332 1333 if (flags >= MAX_CLOCKS || 1334 /* similar to timerfd except _ALARM variants are not supported */ 1335 (clockid != CLOCK_MONOTONIC && 1336 clockid != CLOCK_REALTIME && 1337 clockid != CLOCK_BOOTTIME)) 1338 return -EINVAL; 1339 1340 return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER); 1341 } 1342 1343 static const struct bpf_func_proto bpf_timer_init_proto = { 1344 .func = bpf_timer_init, 1345 .gpl_only = true, 1346 .ret_type = RET_INTEGER, 1347 .arg1_type = ARG_PTR_TO_TIMER, 1348 .arg2_type = ARG_CONST_MAP_PTR, 1349 .arg3_type = ARG_ANYTHING, 1350 }; 1351 1352 static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn, 1353 struct bpf_prog_aux *aux, unsigned int flags, 1354 enum bpf_async_type type) 1355 { 1356 struct bpf_prog *prev, *prog = aux->prog; 1357 struct bpf_async_cb *cb; 1358 int ret = 0; 1359 1360 if (in_nmi()) 1361 return -EOPNOTSUPP; 1362 __bpf_spin_lock_irqsave(&async->lock); 1363 cb = async->cb; 1364 if (!cb) { 1365 ret = -EINVAL; 1366 goto out; 1367 } 1368 if (!atomic64_read(&cb->map->usercnt)) { 1369 /* maps with timers must be either held by user space 1370 * or pinned in bpffs. Otherwise timer might still be 1371 * running even when bpf prog is detached and user space 1372 * is gone, since map_release_uref won't ever be called. 1373 */ 1374 ret = -EPERM; 1375 goto out; 1376 } 1377 prev = cb->prog; 1378 if (prev != prog) { 1379 /* Bump prog refcnt once. Every bpf_timer_set_callback() 1380 * can pick different callback_fn-s within the same prog. 1381 */ 1382 prog = bpf_prog_inc_not_zero(prog); 1383 if (IS_ERR(prog)) { 1384 ret = PTR_ERR(prog); 1385 goto out; 1386 } 1387 if (prev) 1388 /* Drop prev prog refcnt when swapping with new prog */ 1389 bpf_prog_put(prev); 1390 cb->prog = prog; 1391 } 1392 rcu_assign_pointer(cb->callback_fn, callback_fn); 1393 out: 1394 __bpf_spin_unlock_irqrestore(&async->lock); 1395 return ret; 1396 } 1397 1398 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn, 1399 struct bpf_prog_aux *, aux) 1400 { 1401 return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER); 1402 } 1403 1404 static const struct bpf_func_proto bpf_timer_set_callback_proto = { 1405 .func = bpf_timer_set_callback, 1406 .gpl_only = true, 1407 .ret_type = RET_INTEGER, 1408 .arg1_type = ARG_PTR_TO_TIMER, 1409 .arg2_type = ARG_PTR_TO_FUNC, 1410 }; 1411 1412 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags) 1413 { 1414 struct bpf_hrtimer *t; 1415 int ret = 0; 1416 enum hrtimer_mode mode; 1417 1418 if (in_nmi()) 1419 return -EOPNOTSUPP; 1420 if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN)) 1421 return -EINVAL; 1422 __bpf_spin_lock_irqsave(&timer->lock); 1423 t = timer->timer; 1424 if (!t || !t->cb.prog) { 1425 ret = -EINVAL; 1426 goto out; 1427 } 1428 1429 if (flags & BPF_F_TIMER_ABS) 1430 mode = HRTIMER_MODE_ABS_SOFT; 1431 else 1432 mode = HRTIMER_MODE_REL_SOFT; 1433 1434 if (flags & BPF_F_TIMER_CPU_PIN) 1435 mode |= HRTIMER_MODE_PINNED; 1436 1437 hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode); 1438 out: 1439 __bpf_spin_unlock_irqrestore(&timer->lock); 1440 return ret; 1441 } 1442 1443 static const struct bpf_func_proto bpf_timer_start_proto = { 1444 .func = bpf_timer_start, 1445 .gpl_only = true, 1446 .ret_type = RET_INTEGER, 1447 .arg1_type = ARG_PTR_TO_TIMER, 1448 .arg2_type = ARG_ANYTHING, 1449 .arg3_type = ARG_ANYTHING, 1450 }; 1451 1452 static void drop_prog_refcnt(struct bpf_async_cb *async) 1453 { 1454 struct bpf_prog *prog = async->prog; 1455 1456 if (prog) { 1457 bpf_prog_put(prog); 1458 async->prog = NULL; 1459 rcu_assign_pointer(async->callback_fn, NULL); 1460 } 1461 } 1462 1463 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer) 1464 { 1465 struct bpf_hrtimer *t, *cur_t; 1466 bool inc = false; 1467 int ret = 0; 1468 1469 if (in_nmi()) 1470 return -EOPNOTSUPP; 1471 rcu_read_lock(); 1472 __bpf_spin_lock_irqsave(&timer->lock); 1473 t = timer->timer; 1474 if (!t) { 1475 ret = -EINVAL; 1476 goto out; 1477 } 1478 1479 cur_t = this_cpu_read(hrtimer_running); 1480 if (cur_t == t) { 1481 /* If bpf callback_fn is trying to bpf_timer_cancel() 1482 * its own timer the hrtimer_cancel() will deadlock 1483 * since it waits for callback_fn to finish. 1484 */ 1485 ret = -EDEADLK; 1486 goto out; 1487 } 1488 1489 /* Only account in-flight cancellations when invoked from a timer 1490 * callback, since we want to avoid waiting only if other _callbacks_ 1491 * are waiting on us, to avoid introducing lockups. Non-callback paths 1492 * are ok, since nobody would synchronously wait for their completion. 1493 */ 1494 if (!cur_t) 1495 goto drop; 1496 atomic_inc(&t->cancelling); 1497 /* Need full barrier after relaxed atomic_inc */ 1498 smp_mb__after_atomic(); 1499 inc = true; 1500 if (atomic_read(&cur_t->cancelling)) { 1501 /* We're cancelling timer t, while some other timer callback is 1502 * attempting to cancel us. In such a case, it might be possible 1503 * that timer t belongs to the other callback, or some other 1504 * callback waiting upon it (creating transitive dependencies 1505 * upon us), and we will enter a deadlock if we continue 1506 * cancelling and waiting for it synchronously, since it might 1507 * do the same. Bail! 1508 */ 1509 ret = -EDEADLK; 1510 goto out; 1511 } 1512 drop: 1513 drop_prog_refcnt(&t->cb); 1514 out: 1515 __bpf_spin_unlock_irqrestore(&timer->lock); 1516 /* Cancel the timer and wait for associated callback to finish 1517 * if it was running. 1518 */ 1519 ret = ret ?: hrtimer_cancel(&t->timer); 1520 if (inc) 1521 atomic_dec(&t->cancelling); 1522 rcu_read_unlock(); 1523 return ret; 1524 } 1525 1526 static const struct bpf_func_proto bpf_timer_cancel_proto = { 1527 .func = bpf_timer_cancel, 1528 .gpl_only = true, 1529 .ret_type = RET_INTEGER, 1530 .arg1_type = ARG_PTR_TO_TIMER, 1531 }; 1532 1533 static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async) 1534 { 1535 struct bpf_async_cb *cb; 1536 1537 /* Performance optimization: read async->cb without lock first. */ 1538 if (!READ_ONCE(async->cb)) 1539 return NULL; 1540 1541 __bpf_spin_lock_irqsave(&async->lock); 1542 /* re-read it under lock */ 1543 cb = async->cb; 1544 if (!cb) 1545 goto out; 1546 drop_prog_refcnt(cb); 1547 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use 1548 * this timer, since it won't be initialized. 1549 */ 1550 WRITE_ONCE(async->cb, NULL); 1551 out: 1552 __bpf_spin_unlock_irqrestore(&async->lock); 1553 return cb; 1554 } 1555 1556 /* This function is called by map_delete/update_elem for individual element and 1557 * by ops->map_release_uref when the user space reference to a map reaches zero. 1558 */ 1559 void bpf_timer_cancel_and_free(void *val) 1560 { 1561 struct bpf_hrtimer *t; 1562 1563 t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val); 1564 1565 if (!t) 1566 return; 1567 /* We check that bpf_map_delete/update_elem() was called from timer 1568 * callback_fn. In such case we don't call hrtimer_cancel() (since it 1569 * will deadlock) and don't call hrtimer_try_to_cancel() (since it will 1570 * just return -1). Though callback_fn is still running on this cpu it's 1571 * safe to do kfree(t) because bpf_timer_cb() read everything it needed 1572 * from 't'. The bpf subprog callback_fn won't be able to access 't', 1573 * since async->cb = NULL was already done. The timer will be 1574 * effectively cancelled because bpf_timer_cb() will return 1575 * HRTIMER_NORESTART. 1576 * 1577 * However, it is possible the timer callback_fn calling us armed the 1578 * timer _before_ calling us, such that failing to cancel it here will 1579 * cause it to possibly use struct hrtimer after freeing bpf_hrtimer. 1580 * Therefore, we _need_ to cancel any outstanding timers before we do 1581 * kfree_rcu, even though no more timers can be armed. 1582 * 1583 * Moreover, we need to schedule work even if timer does not belong to 1584 * the calling callback_fn, as on two different CPUs, we can end up in a 1585 * situation where both sides run in parallel, try to cancel one 1586 * another, and we end up waiting on both sides in hrtimer_cancel 1587 * without making forward progress, since timer1 depends on time2 1588 * callback to finish, and vice versa. 1589 * 1590 * CPU 1 (timer1_cb) CPU 2 (timer2_cb) 1591 * bpf_timer_cancel_and_free(timer2) bpf_timer_cancel_and_free(timer1) 1592 * 1593 * To avoid these issues, punt to workqueue context when we are in a 1594 * timer callback. 1595 */ 1596 if (this_cpu_read(hrtimer_running)) 1597 queue_work(system_unbound_wq, &t->cb.delete_work); 1598 else 1599 bpf_timer_delete_work(&t->cb.delete_work); 1600 } 1601 1602 /* This function is called by map_delete/update_elem for individual element and 1603 * by ops->map_release_uref when the user space reference to a map reaches zero. 1604 */ 1605 void bpf_wq_cancel_and_free(void *val) 1606 { 1607 struct bpf_work *work; 1608 1609 BTF_TYPE_EMIT(struct bpf_wq); 1610 1611 work = (struct bpf_work *)__bpf_async_cancel_and_free(val); 1612 if (!work) 1613 return; 1614 /* Trigger cancel of the sleepable work, but *do not* wait for 1615 * it to finish if it was running as we might not be in a 1616 * sleepable context. 1617 * kfree will be called once the work has finished. 1618 */ 1619 schedule_work(&work->delete_work); 1620 } 1621 1622 BPF_CALL_2(bpf_kptr_xchg, void *, dst, void *, ptr) 1623 { 1624 unsigned long *kptr = dst; 1625 1626 /* This helper may be inlined by verifier. */ 1627 return xchg(kptr, (unsigned long)ptr); 1628 } 1629 1630 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() 1631 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to 1632 * denote type that verifier will determine. 1633 */ 1634 static const struct bpf_func_proto bpf_kptr_xchg_proto = { 1635 .func = bpf_kptr_xchg, 1636 .gpl_only = false, 1637 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 1638 .ret_btf_id = BPF_PTR_POISON, 1639 .arg1_type = ARG_KPTR_XCHG_DEST, 1640 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, 1641 .arg2_btf_id = BPF_PTR_POISON, 1642 }; 1643 1644 /* Since the upper 8 bits of dynptr->size is reserved, the 1645 * maximum supported size is 2^24 - 1. 1646 */ 1647 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1) 1648 #define DYNPTR_TYPE_SHIFT 28 1649 #define DYNPTR_SIZE_MASK 0xFFFFFF 1650 #define DYNPTR_RDONLY_BIT BIT(31) 1651 1652 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr) 1653 { 1654 return ptr->size & DYNPTR_RDONLY_BIT; 1655 } 1656 1657 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 1658 { 1659 ptr->size |= DYNPTR_RDONLY_BIT; 1660 } 1661 1662 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) 1663 { 1664 ptr->size |= type << DYNPTR_TYPE_SHIFT; 1665 } 1666 1667 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr) 1668 { 1669 return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT; 1670 } 1671 1672 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) 1673 { 1674 return ptr->size & DYNPTR_SIZE_MASK; 1675 } 1676 1677 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size) 1678 { 1679 u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK; 1680 1681 ptr->size = new_size | metadata; 1682 } 1683 1684 int bpf_dynptr_check_size(u32 size) 1685 { 1686 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; 1687 } 1688 1689 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 1690 enum bpf_dynptr_type type, u32 offset, u32 size) 1691 { 1692 ptr->data = data; 1693 ptr->offset = offset; 1694 ptr->size = size; 1695 bpf_dynptr_set_type(ptr, type); 1696 } 1697 1698 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 1699 { 1700 memset(ptr, 0, sizeof(*ptr)); 1701 } 1702 1703 static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len) 1704 { 1705 u32 size = __bpf_dynptr_size(ptr); 1706 1707 if (len > size || offset > size - len) 1708 return -E2BIG; 1709 1710 return 0; 1711 } 1712 1713 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) 1714 { 1715 int err; 1716 1717 BTF_TYPE_EMIT(struct bpf_dynptr); 1718 1719 err = bpf_dynptr_check_size(size); 1720 if (err) 1721 goto error; 1722 1723 /* flags is currently unsupported */ 1724 if (flags) { 1725 err = -EINVAL; 1726 goto error; 1727 } 1728 1729 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); 1730 1731 return 0; 1732 1733 error: 1734 bpf_dynptr_set_null(ptr); 1735 return err; 1736 } 1737 1738 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { 1739 .func = bpf_dynptr_from_mem, 1740 .gpl_only = false, 1741 .ret_type = RET_INTEGER, 1742 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1743 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1744 .arg3_type = ARG_ANYTHING, 1745 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE, 1746 }; 1747 1748 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src, 1749 u32, offset, u64, flags) 1750 { 1751 enum bpf_dynptr_type type; 1752 int err; 1753 1754 if (!src->data || flags) 1755 return -EINVAL; 1756 1757 err = bpf_dynptr_check_off_len(src, offset, len); 1758 if (err) 1759 return err; 1760 1761 type = bpf_dynptr_get_type(src); 1762 1763 switch (type) { 1764 case BPF_DYNPTR_TYPE_LOCAL: 1765 case BPF_DYNPTR_TYPE_RINGBUF: 1766 /* Source and destination may possibly overlap, hence use memmove to 1767 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1768 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1769 */ 1770 memmove(dst, src->data + src->offset + offset, len); 1771 return 0; 1772 case BPF_DYNPTR_TYPE_SKB: 1773 return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len); 1774 case BPF_DYNPTR_TYPE_XDP: 1775 return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len); 1776 default: 1777 WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type); 1778 return -EFAULT; 1779 } 1780 } 1781 1782 static const struct bpf_func_proto bpf_dynptr_read_proto = { 1783 .func = bpf_dynptr_read, 1784 .gpl_only = false, 1785 .ret_type = RET_INTEGER, 1786 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1787 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1788 .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1789 .arg4_type = ARG_ANYTHING, 1790 .arg5_type = ARG_ANYTHING, 1791 }; 1792 1793 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src, 1794 u32, len, u64, flags) 1795 { 1796 enum bpf_dynptr_type type; 1797 int err; 1798 1799 if (!dst->data || __bpf_dynptr_is_rdonly(dst)) 1800 return -EINVAL; 1801 1802 err = bpf_dynptr_check_off_len(dst, offset, len); 1803 if (err) 1804 return err; 1805 1806 type = bpf_dynptr_get_type(dst); 1807 1808 switch (type) { 1809 case BPF_DYNPTR_TYPE_LOCAL: 1810 case BPF_DYNPTR_TYPE_RINGBUF: 1811 if (flags) 1812 return -EINVAL; 1813 /* Source and destination may possibly overlap, hence use memmove to 1814 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1815 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1816 */ 1817 memmove(dst->data + dst->offset + offset, src, len); 1818 return 0; 1819 case BPF_DYNPTR_TYPE_SKB: 1820 return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len, 1821 flags); 1822 case BPF_DYNPTR_TYPE_XDP: 1823 if (flags) 1824 return -EINVAL; 1825 return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len); 1826 default: 1827 WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type); 1828 return -EFAULT; 1829 } 1830 } 1831 1832 static const struct bpf_func_proto bpf_dynptr_write_proto = { 1833 .func = bpf_dynptr_write, 1834 .gpl_only = false, 1835 .ret_type = RET_INTEGER, 1836 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1837 .arg2_type = ARG_ANYTHING, 1838 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1839 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 1840 .arg5_type = ARG_ANYTHING, 1841 }; 1842 1843 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len) 1844 { 1845 enum bpf_dynptr_type type; 1846 int err; 1847 1848 if (!ptr->data) 1849 return 0; 1850 1851 err = bpf_dynptr_check_off_len(ptr, offset, len); 1852 if (err) 1853 return 0; 1854 1855 if (__bpf_dynptr_is_rdonly(ptr)) 1856 return 0; 1857 1858 type = bpf_dynptr_get_type(ptr); 1859 1860 switch (type) { 1861 case BPF_DYNPTR_TYPE_LOCAL: 1862 case BPF_DYNPTR_TYPE_RINGBUF: 1863 return (unsigned long)(ptr->data + ptr->offset + offset); 1864 case BPF_DYNPTR_TYPE_SKB: 1865 case BPF_DYNPTR_TYPE_XDP: 1866 /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */ 1867 return 0; 1868 default: 1869 WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type); 1870 return 0; 1871 } 1872 } 1873 1874 static const struct bpf_func_proto bpf_dynptr_data_proto = { 1875 .func = bpf_dynptr_data, 1876 .gpl_only = false, 1877 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL, 1878 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1879 .arg2_type = ARG_ANYTHING, 1880 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 1881 }; 1882 1883 const struct bpf_func_proto bpf_get_current_task_proto __weak; 1884 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; 1885 const struct bpf_func_proto bpf_probe_read_user_proto __weak; 1886 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; 1887 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; 1888 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; 1889 const struct bpf_func_proto bpf_task_pt_regs_proto __weak; 1890 1891 const struct bpf_func_proto * 1892 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1893 { 1894 switch (func_id) { 1895 case BPF_FUNC_map_lookup_elem: 1896 return &bpf_map_lookup_elem_proto; 1897 case BPF_FUNC_map_update_elem: 1898 return &bpf_map_update_elem_proto; 1899 case BPF_FUNC_map_delete_elem: 1900 return &bpf_map_delete_elem_proto; 1901 case BPF_FUNC_map_push_elem: 1902 return &bpf_map_push_elem_proto; 1903 case BPF_FUNC_map_pop_elem: 1904 return &bpf_map_pop_elem_proto; 1905 case BPF_FUNC_map_peek_elem: 1906 return &bpf_map_peek_elem_proto; 1907 case BPF_FUNC_map_lookup_percpu_elem: 1908 return &bpf_map_lookup_percpu_elem_proto; 1909 case BPF_FUNC_get_prandom_u32: 1910 return &bpf_get_prandom_u32_proto; 1911 case BPF_FUNC_get_smp_processor_id: 1912 return &bpf_get_raw_smp_processor_id_proto; 1913 case BPF_FUNC_get_numa_node_id: 1914 return &bpf_get_numa_node_id_proto; 1915 case BPF_FUNC_tail_call: 1916 return &bpf_tail_call_proto; 1917 case BPF_FUNC_ktime_get_ns: 1918 return &bpf_ktime_get_ns_proto; 1919 case BPF_FUNC_ktime_get_boot_ns: 1920 return &bpf_ktime_get_boot_ns_proto; 1921 case BPF_FUNC_ktime_get_tai_ns: 1922 return &bpf_ktime_get_tai_ns_proto; 1923 case BPF_FUNC_ringbuf_output: 1924 return &bpf_ringbuf_output_proto; 1925 case BPF_FUNC_ringbuf_reserve: 1926 return &bpf_ringbuf_reserve_proto; 1927 case BPF_FUNC_ringbuf_submit: 1928 return &bpf_ringbuf_submit_proto; 1929 case BPF_FUNC_ringbuf_discard: 1930 return &bpf_ringbuf_discard_proto; 1931 case BPF_FUNC_ringbuf_query: 1932 return &bpf_ringbuf_query_proto; 1933 case BPF_FUNC_strncmp: 1934 return &bpf_strncmp_proto; 1935 case BPF_FUNC_strtol: 1936 return &bpf_strtol_proto; 1937 case BPF_FUNC_strtoul: 1938 return &bpf_strtoul_proto; 1939 case BPF_FUNC_get_current_pid_tgid: 1940 return &bpf_get_current_pid_tgid_proto; 1941 case BPF_FUNC_get_ns_current_pid_tgid: 1942 return &bpf_get_ns_current_pid_tgid_proto; 1943 default: 1944 break; 1945 } 1946 1947 if (!bpf_token_capable(prog->aux->token, CAP_BPF)) 1948 return NULL; 1949 1950 switch (func_id) { 1951 case BPF_FUNC_spin_lock: 1952 return &bpf_spin_lock_proto; 1953 case BPF_FUNC_spin_unlock: 1954 return &bpf_spin_unlock_proto; 1955 case BPF_FUNC_jiffies64: 1956 return &bpf_jiffies64_proto; 1957 case BPF_FUNC_per_cpu_ptr: 1958 return &bpf_per_cpu_ptr_proto; 1959 case BPF_FUNC_this_cpu_ptr: 1960 return &bpf_this_cpu_ptr_proto; 1961 case BPF_FUNC_timer_init: 1962 return &bpf_timer_init_proto; 1963 case BPF_FUNC_timer_set_callback: 1964 return &bpf_timer_set_callback_proto; 1965 case BPF_FUNC_timer_start: 1966 return &bpf_timer_start_proto; 1967 case BPF_FUNC_timer_cancel: 1968 return &bpf_timer_cancel_proto; 1969 case BPF_FUNC_kptr_xchg: 1970 return &bpf_kptr_xchg_proto; 1971 case BPF_FUNC_for_each_map_elem: 1972 return &bpf_for_each_map_elem_proto; 1973 case BPF_FUNC_loop: 1974 return &bpf_loop_proto; 1975 case BPF_FUNC_user_ringbuf_drain: 1976 return &bpf_user_ringbuf_drain_proto; 1977 case BPF_FUNC_ringbuf_reserve_dynptr: 1978 return &bpf_ringbuf_reserve_dynptr_proto; 1979 case BPF_FUNC_ringbuf_submit_dynptr: 1980 return &bpf_ringbuf_submit_dynptr_proto; 1981 case BPF_FUNC_ringbuf_discard_dynptr: 1982 return &bpf_ringbuf_discard_dynptr_proto; 1983 case BPF_FUNC_dynptr_from_mem: 1984 return &bpf_dynptr_from_mem_proto; 1985 case BPF_FUNC_dynptr_read: 1986 return &bpf_dynptr_read_proto; 1987 case BPF_FUNC_dynptr_write: 1988 return &bpf_dynptr_write_proto; 1989 case BPF_FUNC_dynptr_data: 1990 return &bpf_dynptr_data_proto; 1991 #ifdef CONFIG_CGROUPS 1992 case BPF_FUNC_cgrp_storage_get: 1993 return &bpf_cgrp_storage_get_proto; 1994 case BPF_FUNC_cgrp_storage_delete: 1995 return &bpf_cgrp_storage_delete_proto; 1996 case BPF_FUNC_get_current_cgroup_id: 1997 return &bpf_get_current_cgroup_id_proto; 1998 case BPF_FUNC_get_current_ancestor_cgroup_id: 1999 return &bpf_get_current_ancestor_cgroup_id_proto; 2000 #endif 2001 default: 2002 break; 2003 } 2004 2005 if (!bpf_token_capable(prog->aux->token, CAP_PERFMON)) 2006 return NULL; 2007 2008 switch (func_id) { 2009 case BPF_FUNC_trace_printk: 2010 return bpf_get_trace_printk_proto(); 2011 case BPF_FUNC_get_current_task: 2012 return &bpf_get_current_task_proto; 2013 case BPF_FUNC_get_current_task_btf: 2014 return &bpf_get_current_task_btf_proto; 2015 case BPF_FUNC_probe_read_user: 2016 return &bpf_probe_read_user_proto; 2017 case BPF_FUNC_probe_read_kernel: 2018 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 2019 NULL : &bpf_probe_read_kernel_proto; 2020 case BPF_FUNC_probe_read_user_str: 2021 return &bpf_probe_read_user_str_proto; 2022 case BPF_FUNC_probe_read_kernel_str: 2023 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 2024 NULL : &bpf_probe_read_kernel_str_proto; 2025 case BPF_FUNC_snprintf_btf: 2026 return &bpf_snprintf_btf_proto; 2027 case BPF_FUNC_snprintf: 2028 return &bpf_snprintf_proto; 2029 case BPF_FUNC_task_pt_regs: 2030 return &bpf_task_pt_regs_proto; 2031 case BPF_FUNC_trace_vprintk: 2032 return bpf_get_trace_vprintk_proto(); 2033 default: 2034 return NULL; 2035 } 2036 } 2037 EXPORT_SYMBOL_GPL(bpf_base_func_proto); 2038 2039 void bpf_list_head_free(const struct btf_field *field, void *list_head, 2040 struct bpf_spin_lock *spin_lock) 2041 { 2042 struct list_head *head = list_head, *orig_head = list_head; 2043 2044 BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head)); 2045 BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head)); 2046 2047 /* Do the actual list draining outside the lock to not hold the lock for 2048 * too long, and also prevent deadlocks if tracing programs end up 2049 * executing on entry/exit of functions called inside the critical 2050 * section, and end up doing map ops that call bpf_list_head_free for 2051 * the same map value again. 2052 */ 2053 __bpf_spin_lock_irqsave(spin_lock); 2054 if (!head->next || list_empty(head)) 2055 goto unlock; 2056 head = head->next; 2057 unlock: 2058 INIT_LIST_HEAD(orig_head); 2059 __bpf_spin_unlock_irqrestore(spin_lock); 2060 2061 while (head != orig_head) { 2062 void *obj = head; 2063 2064 obj -= field->graph_root.node_offset; 2065 head = head->next; 2066 /* The contained type can also have resources, including a 2067 * bpf_list_head which needs to be freed. 2068 */ 2069 migrate_disable(); 2070 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); 2071 migrate_enable(); 2072 } 2073 } 2074 2075 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are 2076 * 'rb_node *', so field name of rb_node within containing struct is not 2077 * needed. 2078 * 2079 * Since bpf_rb_tree's node type has a corresponding struct btf_field with 2080 * graph_root.node_offset, it's not necessary to know field name 2081 * or type of node struct 2082 */ 2083 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \ 2084 for (pos = rb_first_postorder(root); \ 2085 pos && ({ n = rb_next_postorder(pos); 1; }); \ 2086 pos = n) 2087 2088 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 2089 struct bpf_spin_lock *spin_lock) 2090 { 2091 struct rb_root_cached orig_root, *root = rb_root; 2092 struct rb_node *pos, *n; 2093 void *obj; 2094 2095 BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root)); 2096 BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root)); 2097 2098 __bpf_spin_lock_irqsave(spin_lock); 2099 orig_root = *root; 2100 *root = RB_ROOT_CACHED; 2101 __bpf_spin_unlock_irqrestore(spin_lock); 2102 2103 bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) { 2104 obj = pos; 2105 obj -= field->graph_root.node_offset; 2106 2107 2108 migrate_disable(); 2109 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); 2110 migrate_enable(); 2111 } 2112 } 2113 2114 __bpf_kfunc_start_defs(); 2115 2116 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign) 2117 { 2118 struct btf_struct_meta *meta = meta__ign; 2119 u64 size = local_type_id__k; 2120 void *p; 2121 2122 p = bpf_mem_alloc(&bpf_global_ma, size); 2123 if (!p) 2124 return NULL; 2125 if (meta) 2126 bpf_obj_init(meta->record, p); 2127 return p; 2128 } 2129 2130 __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign) 2131 { 2132 u64 size = local_type_id__k; 2133 2134 /* The verifier has ensured that meta__ign must be NULL */ 2135 return bpf_mem_alloc(&bpf_global_percpu_ma, size); 2136 } 2137 2138 /* Must be called under migrate_disable(), as required by bpf_mem_free */ 2139 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu) 2140 { 2141 struct bpf_mem_alloc *ma; 2142 2143 if (rec && rec->refcount_off >= 0 && 2144 !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) { 2145 /* Object is refcounted and refcount_dec didn't result in 0 2146 * refcount. Return without freeing the object 2147 */ 2148 return; 2149 } 2150 2151 if (rec) 2152 bpf_obj_free_fields(rec, p); 2153 2154 if (percpu) 2155 ma = &bpf_global_percpu_ma; 2156 else 2157 ma = &bpf_global_ma; 2158 bpf_mem_free_rcu(ma, p); 2159 } 2160 2161 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign) 2162 { 2163 struct btf_struct_meta *meta = meta__ign; 2164 void *p = p__alloc; 2165 2166 __bpf_obj_drop_impl(p, meta ? meta->record : NULL, false); 2167 } 2168 2169 __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign) 2170 { 2171 /* The verifier has ensured that meta__ign must be NULL */ 2172 bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc); 2173 } 2174 2175 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign) 2176 { 2177 struct btf_struct_meta *meta = meta__ign; 2178 struct bpf_refcount *ref; 2179 2180 /* Could just cast directly to refcount_t *, but need some code using 2181 * bpf_refcount type so that it is emitted in vmlinux BTF 2182 */ 2183 ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off); 2184 if (!refcount_inc_not_zero((refcount_t *)ref)) 2185 return NULL; 2186 2187 /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null 2188 * in verifier.c 2189 */ 2190 return (void *)p__refcounted_kptr; 2191 } 2192 2193 static int __bpf_list_add(struct bpf_list_node_kern *node, 2194 struct bpf_list_head *head, 2195 bool tail, struct btf_record *rec, u64 off) 2196 { 2197 struct list_head *n = &node->list_head, *h = (void *)head; 2198 2199 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 2200 * called on its fields, so init here 2201 */ 2202 if (unlikely(!h->next)) 2203 INIT_LIST_HEAD(h); 2204 2205 /* node->owner != NULL implies !list_empty(n), no need to separately 2206 * check the latter 2207 */ 2208 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { 2209 /* Only called from BPF prog, no need to migrate_disable */ 2210 __bpf_obj_drop_impl((void *)n - off, rec, false); 2211 return -EINVAL; 2212 } 2213 2214 tail ? list_add_tail(n, h) : list_add(n, h); 2215 WRITE_ONCE(node->owner, head); 2216 2217 return 0; 2218 } 2219 2220 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head, 2221 struct bpf_list_node *node, 2222 void *meta__ign, u64 off) 2223 { 2224 struct bpf_list_node_kern *n = (void *)node; 2225 struct btf_struct_meta *meta = meta__ign; 2226 2227 return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off); 2228 } 2229 2230 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head, 2231 struct bpf_list_node *node, 2232 void *meta__ign, u64 off) 2233 { 2234 struct bpf_list_node_kern *n = (void *)node; 2235 struct btf_struct_meta *meta = meta__ign; 2236 2237 return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off); 2238 } 2239 2240 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail) 2241 { 2242 struct list_head *n, *h = (void *)head; 2243 struct bpf_list_node_kern *node; 2244 2245 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 2246 * called on its fields, so init here 2247 */ 2248 if (unlikely(!h->next)) 2249 INIT_LIST_HEAD(h); 2250 if (list_empty(h)) 2251 return NULL; 2252 2253 n = tail ? h->prev : h->next; 2254 node = container_of(n, struct bpf_list_node_kern, list_head); 2255 if (WARN_ON_ONCE(READ_ONCE(node->owner) != head)) 2256 return NULL; 2257 2258 list_del_init(n); 2259 WRITE_ONCE(node->owner, NULL); 2260 return (struct bpf_list_node *)n; 2261 } 2262 2263 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) 2264 { 2265 return __bpf_list_del(head, false); 2266 } 2267 2268 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) 2269 { 2270 return __bpf_list_del(head, true); 2271 } 2272 2273 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root, 2274 struct bpf_rb_node *node) 2275 { 2276 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; 2277 struct rb_root_cached *r = (struct rb_root_cached *)root; 2278 struct rb_node *n = &node_internal->rb_node; 2279 2280 /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or 2281 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n) 2282 */ 2283 if (READ_ONCE(node_internal->owner) != root) 2284 return NULL; 2285 2286 rb_erase_cached(n, r); 2287 RB_CLEAR_NODE(n); 2288 WRITE_ONCE(node_internal->owner, NULL); 2289 return (struct bpf_rb_node *)n; 2290 } 2291 2292 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF 2293 * program 2294 */ 2295 static int __bpf_rbtree_add(struct bpf_rb_root *root, 2296 struct bpf_rb_node_kern *node, 2297 void *less, struct btf_record *rec, u64 off) 2298 { 2299 struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node; 2300 struct rb_node *parent = NULL, *n = &node->rb_node; 2301 bpf_callback_t cb = (bpf_callback_t)less; 2302 bool leftmost = true; 2303 2304 /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately 2305 * check the latter 2306 */ 2307 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { 2308 /* Only called from BPF prog, no need to migrate_disable */ 2309 __bpf_obj_drop_impl((void *)n - off, rec, false); 2310 return -EINVAL; 2311 } 2312 2313 while (*link) { 2314 parent = *link; 2315 if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) { 2316 link = &parent->rb_left; 2317 } else { 2318 link = &parent->rb_right; 2319 leftmost = false; 2320 } 2321 } 2322 2323 rb_link_node(n, parent, link); 2324 rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost); 2325 WRITE_ONCE(node->owner, root); 2326 return 0; 2327 } 2328 2329 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 2330 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b), 2331 void *meta__ign, u64 off) 2332 { 2333 struct btf_struct_meta *meta = meta__ign; 2334 struct bpf_rb_node_kern *n = (void *)node; 2335 2336 return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off); 2337 } 2338 2339 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) 2340 { 2341 struct rb_root_cached *r = (struct rb_root_cached *)root; 2342 2343 return (struct bpf_rb_node *)rb_first_cached(r); 2344 } 2345 2346 /** 2347 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this 2348 * kfunc which is not stored in a map as a kptr, must be released by calling 2349 * bpf_task_release(). 2350 * @p: The task on which a reference is being acquired. 2351 */ 2352 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p) 2353 { 2354 if (refcount_inc_not_zero(&p->rcu_users)) 2355 return p; 2356 return NULL; 2357 } 2358 2359 /** 2360 * bpf_task_release - Release the reference acquired on a task. 2361 * @p: The task on which a reference is being released. 2362 */ 2363 __bpf_kfunc void bpf_task_release(struct task_struct *p) 2364 { 2365 put_task_struct_rcu_user(p); 2366 } 2367 2368 __bpf_kfunc void bpf_task_release_dtor(void *p) 2369 { 2370 put_task_struct_rcu_user(p); 2371 } 2372 CFI_NOSEAL(bpf_task_release_dtor); 2373 2374 #ifdef CONFIG_CGROUPS 2375 /** 2376 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by 2377 * this kfunc which is not stored in a map as a kptr, must be released by 2378 * calling bpf_cgroup_release(). 2379 * @cgrp: The cgroup on which a reference is being acquired. 2380 */ 2381 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp) 2382 { 2383 return cgroup_tryget(cgrp) ? cgrp : NULL; 2384 } 2385 2386 /** 2387 * bpf_cgroup_release - Release the reference acquired on a cgroup. 2388 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to 2389 * not be freed until the current grace period has ended, even if its refcount 2390 * drops to 0. 2391 * @cgrp: The cgroup on which a reference is being released. 2392 */ 2393 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp) 2394 { 2395 cgroup_put(cgrp); 2396 } 2397 2398 __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp) 2399 { 2400 cgroup_put(cgrp); 2401 } 2402 CFI_NOSEAL(bpf_cgroup_release_dtor); 2403 2404 /** 2405 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor 2406 * array. A cgroup returned by this kfunc which is not subsequently stored in a 2407 * map, must be released by calling bpf_cgroup_release(). 2408 * @cgrp: The cgroup for which we're performing a lookup. 2409 * @level: The level of ancestor to look up. 2410 */ 2411 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) 2412 { 2413 struct cgroup *ancestor; 2414 2415 if (level > cgrp->level || level < 0) 2416 return NULL; 2417 2418 /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */ 2419 ancestor = cgrp->ancestors[level]; 2420 if (!cgroup_tryget(ancestor)) 2421 return NULL; 2422 return ancestor; 2423 } 2424 2425 /** 2426 * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this 2427 * kfunc which is not subsequently stored in a map, must be released by calling 2428 * bpf_cgroup_release(). 2429 * @cgid: cgroup id. 2430 */ 2431 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid) 2432 { 2433 struct cgroup *cgrp; 2434 2435 cgrp = cgroup_get_from_id(cgid); 2436 if (IS_ERR(cgrp)) 2437 return NULL; 2438 return cgrp; 2439 } 2440 2441 /** 2442 * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test 2443 * task's membership of cgroup ancestry. 2444 * @task: the task to be tested 2445 * @ancestor: possible ancestor of @task's cgroup 2446 * 2447 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor. 2448 * It follows all the same rules as cgroup_is_descendant, and only applies 2449 * to the default hierarchy. 2450 */ 2451 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task, 2452 struct cgroup *ancestor) 2453 { 2454 long ret; 2455 2456 rcu_read_lock(); 2457 ret = task_under_cgroup_hierarchy(task, ancestor); 2458 rcu_read_unlock(); 2459 return ret; 2460 } 2461 2462 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 2463 { 2464 struct bpf_array *array = container_of(map, struct bpf_array, map); 2465 struct cgroup *cgrp; 2466 2467 if (unlikely(idx >= array->map.max_entries)) 2468 return -E2BIG; 2469 2470 cgrp = READ_ONCE(array->ptrs[idx]); 2471 if (unlikely(!cgrp)) 2472 return -EAGAIN; 2473 2474 return task_under_cgroup_hierarchy(current, cgrp); 2475 } 2476 2477 const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 2478 .func = bpf_current_task_under_cgroup, 2479 .gpl_only = false, 2480 .ret_type = RET_INTEGER, 2481 .arg1_type = ARG_CONST_MAP_PTR, 2482 .arg2_type = ARG_ANYTHING, 2483 }; 2484 2485 /** 2486 * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a 2487 * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its 2488 * hierarchy ID. 2489 * @task: The target task 2490 * @hierarchy_id: The ID of a cgroup1 hierarchy 2491 * 2492 * On success, the cgroup is returen. On failure, NULL is returned. 2493 */ 2494 __bpf_kfunc struct cgroup * 2495 bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id) 2496 { 2497 struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id); 2498 2499 if (IS_ERR(cgrp)) 2500 return NULL; 2501 return cgrp; 2502 } 2503 #endif /* CONFIG_CGROUPS */ 2504 2505 /** 2506 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up 2507 * in the root pid namespace idr. If a task is returned, it must either be 2508 * stored in a map, or released with bpf_task_release(). 2509 * @pid: The pid of the task being looked up. 2510 */ 2511 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid) 2512 { 2513 struct task_struct *p; 2514 2515 rcu_read_lock(); 2516 p = find_task_by_pid_ns(pid, &init_pid_ns); 2517 if (p) 2518 p = bpf_task_acquire(p); 2519 rcu_read_unlock(); 2520 2521 return p; 2522 } 2523 2524 /** 2525 * bpf_task_from_vpid - Find a struct task_struct from its vpid by looking it up 2526 * in the pid namespace of the current task. If a task is returned, it must 2527 * either be stored in a map, or released with bpf_task_release(). 2528 * @vpid: The vpid of the task being looked up. 2529 */ 2530 __bpf_kfunc struct task_struct *bpf_task_from_vpid(s32 vpid) 2531 { 2532 struct task_struct *p; 2533 2534 rcu_read_lock(); 2535 p = find_task_by_vpid(vpid); 2536 if (p) 2537 p = bpf_task_acquire(p); 2538 rcu_read_unlock(); 2539 2540 return p; 2541 } 2542 2543 /** 2544 * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data. 2545 * @p: The dynptr whose data slice to retrieve 2546 * @offset: Offset into the dynptr 2547 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2548 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2549 * length of the requested slice. This must be a constant. 2550 * 2551 * For non-skb and non-xdp type dynptrs, there is no difference between 2552 * bpf_dynptr_slice and bpf_dynptr_data. 2553 * 2554 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2555 * 2556 * If the intention is to write to the data slice, please use 2557 * bpf_dynptr_slice_rdwr. 2558 * 2559 * The user must check that the returned pointer is not null before using it. 2560 * 2561 * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice 2562 * does not change the underlying packet data pointers, so a call to 2563 * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in 2564 * the bpf program. 2565 * 2566 * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only 2567 * data slice (can be either direct pointer to the data or a pointer to the user 2568 * provided buffer, with its contents containing the data, if unable to obtain 2569 * direct pointer) 2570 */ 2571 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u32 offset, 2572 void *buffer__opt, u32 buffer__szk) 2573 { 2574 const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2575 enum bpf_dynptr_type type; 2576 u32 len = buffer__szk; 2577 int err; 2578 2579 if (!ptr->data) 2580 return NULL; 2581 2582 err = bpf_dynptr_check_off_len(ptr, offset, len); 2583 if (err) 2584 return NULL; 2585 2586 type = bpf_dynptr_get_type(ptr); 2587 2588 switch (type) { 2589 case BPF_DYNPTR_TYPE_LOCAL: 2590 case BPF_DYNPTR_TYPE_RINGBUF: 2591 return ptr->data + ptr->offset + offset; 2592 case BPF_DYNPTR_TYPE_SKB: 2593 if (buffer__opt) 2594 return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt); 2595 else 2596 return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len); 2597 case BPF_DYNPTR_TYPE_XDP: 2598 { 2599 void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len); 2600 if (!IS_ERR_OR_NULL(xdp_ptr)) 2601 return xdp_ptr; 2602 2603 if (!buffer__opt) 2604 return NULL; 2605 bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false); 2606 return buffer__opt; 2607 } 2608 default: 2609 WARN_ONCE(true, "unknown dynptr type %d\n", type); 2610 return NULL; 2611 } 2612 } 2613 2614 /** 2615 * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data. 2616 * @p: The dynptr whose data slice to retrieve 2617 * @offset: Offset into the dynptr 2618 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2619 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2620 * length of the requested slice. This must be a constant. 2621 * 2622 * For non-skb and non-xdp type dynptrs, there is no difference between 2623 * bpf_dynptr_slice and bpf_dynptr_data. 2624 * 2625 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2626 * 2627 * The returned pointer is writable and may point to either directly the dynptr 2628 * data at the requested offset or to the buffer if unable to obtain a direct 2629 * data pointer to (example: the requested slice is to the paged area of an skb 2630 * packet). In the case where the returned pointer is to the buffer, the user 2631 * is responsible for persisting writes through calling bpf_dynptr_write(). This 2632 * usually looks something like this pattern: 2633 * 2634 * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer)); 2635 * if (!eth) 2636 * return TC_ACT_SHOT; 2637 * 2638 * // mutate eth header // 2639 * 2640 * if (eth == buffer) 2641 * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0); 2642 * 2643 * Please note that, as in the example above, the user must check that the 2644 * returned pointer is not null before using it. 2645 * 2646 * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr 2647 * does not change the underlying packet data pointers, so a call to 2648 * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in 2649 * the bpf program. 2650 * 2651 * Return: NULL if the call failed (eg invalid dynptr), pointer to a 2652 * data slice (can be either direct pointer to the data or a pointer to the user 2653 * provided buffer, with its contents containing the data, if unable to obtain 2654 * direct pointer) 2655 */ 2656 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u32 offset, 2657 void *buffer__opt, u32 buffer__szk) 2658 { 2659 const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2660 2661 if (!ptr->data || __bpf_dynptr_is_rdonly(ptr)) 2662 return NULL; 2663 2664 /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice. 2665 * 2666 * For skb-type dynptrs, it is safe to write into the returned pointer 2667 * if the bpf program allows skb data writes. There are two possibilities 2668 * that may occur when calling bpf_dynptr_slice_rdwr: 2669 * 2670 * 1) The requested slice is in the head of the skb. In this case, the 2671 * returned pointer is directly to skb data, and if the skb is cloned, the 2672 * verifier will have uncloned it (see bpf_unclone_prologue()) already. 2673 * The pointer can be directly written into. 2674 * 2675 * 2) Some portion of the requested slice is in the paged buffer area. 2676 * In this case, the requested data will be copied out into the buffer 2677 * and the returned pointer will be a pointer to the buffer. The skb 2678 * will not be pulled. To persist the write, the user will need to call 2679 * bpf_dynptr_write(), which will pull the skb and commit the write. 2680 * 2681 * Similarly for xdp programs, if the requested slice is not across xdp 2682 * fragments, then a direct pointer will be returned, otherwise the data 2683 * will be copied out into the buffer and the user will need to call 2684 * bpf_dynptr_write() to commit changes. 2685 */ 2686 return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk); 2687 } 2688 2689 __bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u32 start, u32 end) 2690 { 2691 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2692 u32 size; 2693 2694 if (!ptr->data || start > end) 2695 return -EINVAL; 2696 2697 size = __bpf_dynptr_size(ptr); 2698 2699 if (start > size || end > size) 2700 return -ERANGE; 2701 2702 ptr->offset += start; 2703 bpf_dynptr_set_size(ptr, end - start); 2704 2705 return 0; 2706 } 2707 2708 __bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p) 2709 { 2710 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2711 2712 return !ptr->data; 2713 } 2714 2715 __bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p) 2716 { 2717 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2718 2719 if (!ptr->data) 2720 return false; 2721 2722 return __bpf_dynptr_is_rdonly(ptr); 2723 } 2724 2725 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr *p) 2726 { 2727 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2728 2729 if (!ptr->data) 2730 return -EINVAL; 2731 2732 return __bpf_dynptr_size(ptr); 2733 } 2734 2735 __bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p, 2736 struct bpf_dynptr *clone__uninit) 2737 { 2738 struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit; 2739 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2740 2741 if (!ptr->data) { 2742 bpf_dynptr_set_null(clone); 2743 return -EINVAL; 2744 } 2745 2746 *clone = *ptr; 2747 2748 return 0; 2749 } 2750 2751 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj) 2752 { 2753 return obj; 2754 } 2755 2756 __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k) 2757 { 2758 return (void *)obj__ign; 2759 } 2760 2761 __bpf_kfunc void bpf_rcu_read_lock(void) 2762 { 2763 rcu_read_lock(); 2764 } 2765 2766 __bpf_kfunc void bpf_rcu_read_unlock(void) 2767 { 2768 rcu_read_unlock(); 2769 } 2770 2771 struct bpf_throw_ctx { 2772 struct bpf_prog_aux *aux; 2773 u64 sp; 2774 u64 bp; 2775 int cnt; 2776 }; 2777 2778 static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp) 2779 { 2780 struct bpf_throw_ctx *ctx = cookie; 2781 struct bpf_prog *prog; 2782 2783 if (!is_bpf_text_address(ip)) 2784 return !ctx->cnt; 2785 prog = bpf_prog_ksym_find(ip); 2786 ctx->cnt++; 2787 if (bpf_is_subprog(prog)) 2788 return true; 2789 ctx->aux = prog->aux; 2790 ctx->sp = sp; 2791 ctx->bp = bp; 2792 return false; 2793 } 2794 2795 __bpf_kfunc void bpf_throw(u64 cookie) 2796 { 2797 struct bpf_throw_ctx ctx = {}; 2798 2799 arch_bpf_stack_walk(bpf_stack_walker, &ctx); 2800 WARN_ON_ONCE(!ctx.aux); 2801 if (ctx.aux) 2802 WARN_ON_ONCE(!ctx.aux->exception_boundary); 2803 WARN_ON_ONCE(!ctx.bp); 2804 WARN_ON_ONCE(!ctx.cnt); 2805 /* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning 2806 * deeper stack depths than ctx.sp as we do not return from bpf_throw, 2807 * which skips compiler generated instrumentation to do the same. 2808 */ 2809 kasan_unpoison_task_stack_below((void *)(long)ctx.sp); 2810 ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0); 2811 WARN(1, "A call to BPF exception callback should never return\n"); 2812 } 2813 2814 __bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags) 2815 { 2816 struct bpf_async_kern *async = (struct bpf_async_kern *)wq; 2817 struct bpf_map *map = p__map; 2818 2819 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq)); 2820 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq)); 2821 2822 if (flags) 2823 return -EINVAL; 2824 2825 return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ); 2826 } 2827 2828 __bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags) 2829 { 2830 struct bpf_async_kern *async = (struct bpf_async_kern *)wq; 2831 struct bpf_work *w; 2832 2833 if (in_nmi()) 2834 return -EOPNOTSUPP; 2835 if (flags) 2836 return -EINVAL; 2837 w = READ_ONCE(async->work); 2838 if (!w || !READ_ONCE(w->cb.prog)) 2839 return -EINVAL; 2840 2841 schedule_work(&w->work); 2842 return 0; 2843 } 2844 2845 __bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq, 2846 int (callback_fn)(void *map, int *key, void *value), 2847 unsigned int flags, 2848 void *aux__ign) 2849 { 2850 struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__ign; 2851 struct bpf_async_kern *async = (struct bpf_async_kern *)wq; 2852 2853 if (flags) 2854 return -EINVAL; 2855 2856 return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ); 2857 } 2858 2859 __bpf_kfunc void bpf_preempt_disable(void) 2860 { 2861 preempt_disable(); 2862 } 2863 2864 __bpf_kfunc void bpf_preempt_enable(void) 2865 { 2866 preempt_enable(); 2867 } 2868 2869 struct bpf_iter_bits { 2870 __u64 __opaque[2]; 2871 } __aligned(8); 2872 2873 #define BITS_ITER_NR_WORDS_MAX 511 2874 2875 struct bpf_iter_bits_kern { 2876 union { 2877 __u64 *bits; 2878 __u64 bits_copy; 2879 }; 2880 int nr_bits; 2881 int bit; 2882 } __aligned(8); 2883 2884 /* On 64-bit hosts, unsigned long and u64 have the same size, so passing 2885 * a u64 pointer and an unsigned long pointer to find_next_bit() will 2886 * return the same result, as both point to the same 8-byte area. 2887 * 2888 * For 32-bit little-endian hosts, using a u64 pointer or unsigned long 2889 * pointer also makes no difference. This is because the first iterated 2890 * unsigned long is composed of bits 0-31 of the u64 and the second unsigned 2891 * long is composed of bits 32-63 of the u64. 2892 * 2893 * However, for 32-bit big-endian hosts, this is not the case. The first 2894 * iterated unsigned long will be bits 32-63 of the u64, so swap these two 2895 * ulong values within the u64. 2896 */ 2897 static void swap_ulong_in_u64(u64 *bits, unsigned int nr) 2898 { 2899 #if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN) 2900 unsigned int i; 2901 2902 for (i = 0; i < nr; i++) 2903 bits[i] = (bits[i] >> 32) | ((u64)(u32)bits[i] << 32); 2904 #endif 2905 } 2906 2907 /** 2908 * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area 2909 * @it: The new bpf_iter_bits to be created 2910 * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over 2911 * @nr_words: The size of the specified memory area, measured in 8-byte units. 2912 * The maximum value of @nr_words is @BITS_ITER_NR_WORDS_MAX. This limit may be 2913 * further reduced by the BPF memory allocator implementation. 2914 * 2915 * This function initializes a new bpf_iter_bits structure for iterating over 2916 * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It 2917 * copies the data of the memory area to the newly created bpf_iter_bits @it for 2918 * subsequent iteration operations. 2919 * 2920 * On success, 0 is returned. On failure, ERR is returned. 2921 */ 2922 __bpf_kfunc int 2923 bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words) 2924 { 2925 struct bpf_iter_bits_kern *kit = (void *)it; 2926 u32 nr_bytes = nr_words * sizeof(u64); 2927 u32 nr_bits = BYTES_TO_BITS(nr_bytes); 2928 int err; 2929 2930 BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits)); 2931 BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) != 2932 __alignof__(struct bpf_iter_bits)); 2933 2934 kit->nr_bits = 0; 2935 kit->bits_copy = 0; 2936 kit->bit = -1; 2937 2938 if (!unsafe_ptr__ign || !nr_words) 2939 return -EINVAL; 2940 if (nr_words > BITS_ITER_NR_WORDS_MAX) 2941 return -E2BIG; 2942 2943 /* Optimization for u64 mask */ 2944 if (nr_bits == 64) { 2945 err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign); 2946 if (err) 2947 return -EFAULT; 2948 2949 swap_ulong_in_u64(&kit->bits_copy, nr_words); 2950 2951 kit->nr_bits = nr_bits; 2952 return 0; 2953 } 2954 2955 if (bpf_mem_alloc_check_size(false, nr_bytes)) 2956 return -E2BIG; 2957 2958 /* Fallback to memalloc */ 2959 kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes); 2960 if (!kit->bits) 2961 return -ENOMEM; 2962 2963 err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign); 2964 if (err) { 2965 bpf_mem_free(&bpf_global_ma, kit->bits); 2966 return err; 2967 } 2968 2969 swap_ulong_in_u64(kit->bits, nr_words); 2970 2971 kit->nr_bits = nr_bits; 2972 return 0; 2973 } 2974 2975 /** 2976 * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits 2977 * @it: The bpf_iter_bits to be checked 2978 * 2979 * This function returns a pointer to a number representing the value of the 2980 * next bit in the bits. 2981 * 2982 * If there are no further bits available, it returns NULL. 2983 */ 2984 __bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it) 2985 { 2986 struct bpf_iter_bits_kern *kit = (void *)it; 2987 int bit = kit->bit, nr_bits = kit->nr_bits; 2988 const void *bits; 2989 2990 if (!nr_bits || bit >= nr_bits) 2991 return NULL; 2992 2993 bits = nr_bits == 64 ? &kit->bits_copy : kit->bits; 2994 bit = find_next_bit(bits, nr_bits, bit + 1); 2995 if (bit >= nr_bits) { 2996 kit->bit = bit; 2997 return NULL; 2998 } 2999 3000 kit->bit = bit; 3001 return &kit->bit; 3002 } 3003 3004 /** 3005 * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits 3006 * @it: The bpf_iter_bits to be destroyed 3007 * 3008 * Destroy the resource associated with the bpf_iter_bits. 3009 */ 3010 __bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it) 3011 { 3012 struct bpf_iter_bits_kern *kit = (void *)it; 3013 3014 if (kit->nr_bits <= 64) 3015 return; 3016 bpf_mem_free(&bpf_global_ma, kit->bits); 3017 } 3018 3019 /** 3020 * bpf_copy_from_user_str() - Copy a string from an unsafe user address 3021 * @dst: Destination address, in kernel space. This buffer must be 3022 * at least @dst__sz bytes long. 3023 * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL. 3024 * @unsafe_ptr__ign: Source address, in user space. 3025 * @flags: The only supported flag is BPF_F_PAD_ZEROS 3026 * 3027 * Copies a NUL-terminated string from userspace to BPF space. If user string is 3028 * too long this will still ensure zero termination in the dst buffer unless 3029 * buffer size is 0. 3030 * 3031 * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst to 0 on success and 3032 * memset all of @dst on failure. 3033 */ 3034 __bpf_kfunc int bpf_copy_from_user_str(void *dst, u32 dst__sz, const void __user *unsafe_ptr__ign, u64 flags) 3035 { 3036 int ret; 3037 3038 if (unlikely(flags & ~BPF_F_PAD_ZEROS)) 3039 return -EINVAL; 3040 3041 if (unlikely(!dst__sz)) 3042 return 0; 3043 3044 ret = strncpy_from_user(dst, unsafe_ptr__ign, dst__sz - 1); 3045 if (ret < 0) { 3046 if (flags & BPF_F_PAD_ZEROS) 3047 memset((char *)dst, 0, dst__sz); 3048 3049 return ret; 3050 } 3051 3052 if (flags & BPF_F_PAD_ZEROS) 3053 memset((char *)dst + ret, 0, dst__sz - ret); 3054 else 3055 ((char *)dst)[ret] = '\0'; 3056 3057 return ret + 1; 3058 } 3059 3060 __bpf_kfunc_end_defs(); 3061 3062 BTF_KFUNCS_START(generic_btf_ids) 3063 #ifdef CONFIG_CRASH_DUMP 3064 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) 3065 #endif 3066 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) 3067 BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) 3068 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE) 3069 BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE) 3070 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU) 3071 BTF_ID_FLAGS(func, bpf_list_push_front_impl) 3072 BTF_ID_FLAGS(func, bpf_list_push_back_impl) 3073 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL) 3074 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL) 3075 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 3076 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE) 3077 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL) 3078 BTF_ID_FLAGS(func, bpf_rbtree_add_impl) 3079 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL) 3080 3081 #ifdef CONFIG_CGROUPS 3082 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 3083 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE) 3084 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 3085 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL) 3086 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU) 3087 BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 3088 #endif 3089 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL) 3090 BTF_ID_FLAGS(func, bpf_task_from_vpid, KF_ACQUIRE | KF_RET_NULL) 3091 BTF_ID_FLAGS(func, bpf_throw) 3092 BTF_ID_FLAGS(func, bpf_send_signal_task, KF_TRUSTED_ARGS) 3093 BTF_KFUNCS_END(generic_btf_ids) 3094 3095 static const struct btf_kfunc_id_set generic_kfunc_set = { 3096 .owner = THIS_MODULE, 3097 .set = &generic_btf_ids, 3098 }; 3099 3100 3101 BTF_ID_LIST(generic_dtor_ids) 3102 BTF_ID(struct, task_struct) 3103 BTF_ID(func, bpf_task_release_dtor) 3104 #ifdef CONFIG_CGROUPS 3105 BTF_ID(struct, cgroup) 3106 BTF_ID(func, bpf_cgroup_release_dtor) 3107 #endif 3108 3109 BTF_KFUNCS_START(common_btf_ids) 3110 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx, KF_FASTCALL) 3111 BTF_ID_FLAGS(func, bpf_rdonly_cast, KF_FASTCALL) 3112 BTF_ID_FLAGS(func, bpf_rcu_read_lock) 3113 BTF_ID_FLAGS(func, bpf_rcu_read_unlock) 3114 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL) 3115 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL) 3116 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW) 3117 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL) 3118 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY) 3119 BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU) 3120 BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL) 3121 BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY) 3122 #ifdef CONFIG_CGROUPS 3123 BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS) 3124 BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL) 3125 BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY) 3126 BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) 3127 BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL) 3128 BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY) 3129 #endif 3130 BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) 3131 BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL) 3132 BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY) 3133 BTF_ID_FLAGS(func, bpf_dynptr_adjust) 3134 BTF_ID_FLAGS(func, bpf_dynptr_is_null) 3135 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly) 3136 BTF_ID_FLAGS(func, bpf_dynptr_size) 3137 BTF_ID_FLAGS(func, bpf_dynptr_clone) 3138 BTF_ID_FLAGS(func, bpf_modify_return_test_tp) 3139 BTF_ID_FLAGS(func, bpf_wq_init) 3140 BTF_ID_FLAGS(func, bpf_wq_set_callback_impl) 3141 BTF_ID_FLAGS(func, bpf_wq_start) 3142 BTF_ID_FLAGS(func, bpf_preempt_disable) 3143 BTF_ID_FLAGS(func, bpf_preempt_enable) 3144 BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW) 3145 BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL) 3146 BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY) 3147 BTF_ID_FLAGS(func, bpf_copy_from_user_str, KF_SLEEPABLE) 3148 BTF_ID_FLAGS(func, bpf_get_kmem_cache) 3149 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_new, KF_ITER_NEW | KF_SLEEPABLE) 3150 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE) 3151 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_destroy, KF_ITER_DESTROY | KF_SLEEPABLE) 3152 BTF_KFUNCS_END(common_btf_ids) 3153 3154 static const struct btf_kfunc_id_set common_kfunc_set = { 3155 .owner = THIS_MODULE, 3156 .set = &common_btf_ids, 3157 }; 3158 3159 static int __init kfunc_init(void) 3160 { 3161 int ret; 3162 const struct btf_id_dtor_kfunc generic_dtors[] = { 3163 { 3164 .btf_id = generic_dtor_ids[0], 3165 .kfunc_btf_id = generic_dtor_ids[1] 3166 }, 3167 #ifdef CONFIG_CGROUPS 3168 { 3169 .btf_id = generic_dtor_ids[2], 3170 .kfunc_btf_id = generic_dtor_ids[3] 3171 }, 3172 #endif 3173 }; 3174 3175 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set); 3176 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set); 3177 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set); 3178 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set); 3179 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set); 3180 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &generic_kfunc_set); 3181 ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors, 3182 ARRAY_SIZE(generic_dtors), 3183 THIS_MODULE); 3184 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); 3185 } 3186 3187 late_initcall(kfunc_init); 3188 3189 /* Get a pointer to dynptr data up to len bytes for read only access. If 3190 * the dynptr doesn't have continuous data up to len bytes, return NULL. 3191 */ 3192 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len) 3193 { 3194 const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr; 3195 3196 return bpf_dynptr_slice(p, 0, NULL, len); 3197 } 3198 3199 /* Get a pointer to dynptr data up to len bytes for read write access. If 3200 * the dynptr doesn't have continuous data up to len bytes, or the dynptr 3201 * is read only, return NULL. 3202 */ 3203 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len) 3204 { 3205 if (__bpf_dynptr_is_rdonly(ptr)) 3206 return NULL; 3207 return (void *)__bpf_dynptr_data(ptr, len); 3208 } 3209