1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #include <linux/bpf.h> 5 #include <linux/btf.h> 6 #include <linux/bpf-cgroup.h> 7 #include <linux/cgroup.h> 8 #include <linux/rcupdate.h> 9 #include <linux/random.h> 10 #include <linux/smp.h> 11 #include <linux/topology.h> 12 #include <linux/ktime.h> 13 #include <linux/sched.h> 14 #include <linux/uidgid.h> 15 #include <linux/filter.h> 16 #include <linux/ctype.h> 17 #include <linux/jiffies.h> 18 #include <linux/pid_namespace.h> 19 #include <linux/poison.h> 20 #include <linux/proc_ns.h> 21 #include <linux/sched/task.h> 22 #include <linux/security.h> 23 #include <linux/btf_ids.h> 24 #include <linux/bpf_mem_alloc.h> 25 #include <linux/kasan.h> 26 #include <linux/bpf_verifier.h> 27 #include <linux/uaccess.h> 28 #include <linux/verification.h> 29 #include <linux/task_work.h> 30 #include <linux/irq_work.h> 31 #include <linux/buildid.h> 32 33 #include "../../lib/kstrtox.h" 34 35 /* If kernel subsystem is allowing eBPF programs to call this function, 36 * inside its own verifier_ops->get_func_proto() callback it should return 37 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments 38 * 39 * Different map implementations will rely on rcu in map methods 40 * lookup/update/delete, therefore eBPF programs must run under rcu lock 41 * if program is allowed to access maps, so check rcu_read_lock_held() or 42 * rcu_read_lock_trace_held() in all three functions. 43 */ 44 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) 45 { 46 WARN_ON_ONCE(!bpf_rcu_lock_held()); 47 return (unsigned long) map->ops->map_lookup_elem(map, key); 48 } 49 50 const struct bpf_func_proto bpf_map_lookup_elem_proto = { 51 .func = bpf_map_lookup_elem, 52 .gpl_only = false, 53 .pkt_access = true, 54 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 55 .arg1_type = ARG_CONST_MAP_PTR, 56 .arg2_type = ARG_PTR_TO_MAP_KEY, 57 }; 58 59 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, 60 void *, value, u64, flags) 61 { 62 WARN_ON_ONCE(!bpf_rcu_lock_held()); 63 return map->ops->map_update_elem(map, key, value, flags); 64 } 65 66 const struct bpf_func_proto bpf_map_update_elem_proto = { 67 .func = bpf_map_update_elem, 68 .gpl_only = false, 69 .pkt_access = true, 70 .ret_type = RET_INTEGER, 71 .arg1_type = ARG_CONST_MAP_PTR, 72 .arg2_type = ARG_PTR_TO_MAP_KEY, 73 .arg3_type = ARG_PTR_TO_MAP_VALUE, 74 .arg4_type = ARG_ANYTHING, 75 }; 76 77 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) 78 { 79 WARN_ON_ONCE(!bpf_rcu_lock_held()); 80 return map->ops->map_delete_elem(map, key); 81 } 82 83 const struct bpf_func_proto bpf_map_delete_elem_proto = { 84 .func = bpf_map_delete_elem, 85 .gpl_only = false, 86 .pkt_access = true, 87 .ret_type = RET_INTEGER, 88 .arg1_type = ARG_CONST_MAP_PTR, 89 .arg2_type = ARG_PTR_TO_MAP_KEY, 90 }; 91 92 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) 93 { 94 return map->ops->map_push_elem(map, value, flags); 95 } 96 97 const struct bpf_func_proto bpf_map_push_elem_proto = { 98 .func = bpf_map_push_elem, 99 .gpl_only = false, 100 .pkt_access = true, 101 .ret_type = RET_INTEGER, 102 .arg1_type = ARG_CONST_MAP_PTR, 103 .arg2_type = ARG_PTR_TO_MAP_VALUE, 104 .arg3_type = ARG_ANYTHING, 105 }; 106 107 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) 108 { 109 return map->ops->map_pop_elem(map, value); 110 } 111 112 const struct bpf_func_proto bpf_map_pop_elem_proto = { 113 .func = bpf_map_pop_elem, 114 .gpl_only = false, 115 .ret_type = RET_INTEGER, 116 .arg1_type = ARG_CONST_MAP_PTR, 117 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE, 118 }; 119 120 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) 121 { 122 return map->ops->map_peek_elem(map, value); 123 } 124 125 const struct bpf_func_proto bpf_map_peek_elem_proto = { 126 .func = bpf_map_peek_elem, 127 .gpl_only = false, 128 .ret_type = RET_INTEGER, 129 .arg1_type = ARG_CONST_MAP_PTR, 130 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE, 131 }; 132 133 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) 134 { 135 WARN_ON_ONCE(!bpf_rcu_lock_held()); 136 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); 137 } 138 139 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { 140 .func = bpf_map_lookup_percpu_elem, 141 .gpl_only = false, 142 .pkt_access = true, 143 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 144 .arg1_type = ARG_CONST_MAP_PTR, 145 .arg2_type = ARG_PTR_TO_MAP_KEY, 146 .arg3_type = ARG_ANYTHING, 147 }; 148 149 const struct bpf_func_proto bpf_get_prandom_u32_proto = { 150 .func = bpf_user_rnd_u32, 151 .gpl_only = false, 152 .ret_type = RET_INTEGER, 153 }; 154 155 BPF_CALL_0(bpf_get_smp_processor_id) 156 { 157 return smp_processor_id(); 158 } 159 160 const struct bpf_func_proto bpf_get_smp_processor_id_proto = { 161 .func = bpf_get_smp_processor_id, 162 .gpl_only = false, 163 .ret_type = RET_INTEGER, 164 .allow_fastcall = true, 165 }; 166 167 BPF_CALL_0(bpf_get_numa_node_id) 168 { 169 return numa_node_id(); 170 } 171 172 const struct bpf_func_proto bpf_get_numa_node_id_proto = { 173 .func = bpf_get_numa_node_id, 174 .gpl_only = false, 175 .ret_type = RET_INTEGER, 176 }; 177 178 BPF_CALL_0(bpf_ktime_get_ns) 179 { 180 /* NMI safe access to clock monotonic */ 181 return ktime_get_mono_fast_ns(); 182 } 183 184 const struct bpf_func_proto bpf_ktime_get_ns_proto = { 185 .func = bpf_ktime_get_ns, 186 .gpl_only = false, 187 .ret_type = RET_INTEGER, 188 }; 189 190 BPF_CALL_0(bpf_ktime_get_boot_ns) 191 { 192 /* NMI safe access to clock boottime */ 193 return ktime_get_boot_fast_ns(); 194 } 195 196 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { 197 .func = bpf_ktime_get_boot_ns, 198 .gpl_only = false, 199 .ret_type = RET_INTEGER, 200 }; 201 202 BPF_CALL_0(bpf_ktime_get_coarse_ns) 203 { 204 return ktime_get_coarse_ns(); 205 } 206 207 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { 208 .func = bpf_ktime_get_coarse_ns, 209 .gpl_only = false, 210 .ret_type = RET_INTEGER, 211 }; 212 213 BPF_CALL_0(bpf_ktime_get_tai_ns) 214 { 215 /* NMI safe access to clock tai */ 216 return ktime_get_tai_fast_ns(); 217 } 218 219 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = { 220 .func = bpf_ktime_get_tai_ns, 221 .gpl_only = false, 222 .ret_type = RET_INTEGER, 223 }; 224 225 BPF_CALL_0(bpf_get_current_pid_tgid) 226 { 227 struct task_struct *task = current; 228 229 if (unlikely(!task)) 230 return -EINVAL; 231 232 return (u64) task->tgid << 32 | task->pid; 233 } 234 235 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { 236 .func = bpf_get_current_pid_tgid, 237 .gpl_only = false, 238 .ret_type = RET_INTEGER, 239 }; 240 241 BPF_CALL_0(bpf_get_current_uid_gid) 242 { 243 struct task_struct *task = current; 244 kuid_t uid; 245 kgid_t gid; 246 247 if (unlikely(!task)) 248 return -EINVAL; 249 250 current_uid_gid(&uid, &gid); 251 return (u64) from_kgid(&init_user_ns, gid) << 32 | 252 from_kuid(&init_user_ns, uid); 253 } 254 255 const struct bpf_func_proto bpf_get_current_uid_gid_proto = { 256 .func = bpf_get_current_uid_gid, 257 .gpl_only = false, 258 .ret_type = RET_INTEGER, 259 }; 260 261 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) 262 { 263 struct task_struct *task = current; 264 265 if (unlikely(!task)) 266 goto err_clear; 267 268 /* Verifier guarantees that size > 0 */ 269 strscpy_pad(buf, task->comm, size); 270 return 0; 271 err_clear: 272 memset(buf, 0, size); 273 return -EINVAL; 274 } 275 276 const struct bpf_func_proto bpf_get_current_comm_proto = { 277 .func = bpf_get_current_comm, 278 .gpl_only = false, 279 .ret_type = RET_INTEGER, 280 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 281 .arg2_type = ARG_CONST_SIZE, 282 }; 283 284 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) 285 286 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 287 { 288 arch_spinlock_t *l = (void *)lock; 289 union { 290 __u32 val; 291 arch_spinlock_t lock; 292 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; 293 294 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); 295 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); 296 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); 297 preempt_disable(); 298 arch_spin_lock(l); 299 } 300 301 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 302 { 303 arch_spinlock_t *l = (void *)lock; 304 305 arch_spin_unlock(l); 306 preempt_enable(); 307 } 308 309 #else 310 311 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 312 { 313 atomic_t *l = (void *)lock; 314 315 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); 316 do { 317 atomic_cond_read_relaxed(l, !VAL); 318 } while (atomic_xchg(l, 1)); 319 } 320 321 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 322 { 323 atomic_t *l = (void *)lock; 324 325 atomic_set_release(l, 0); 326 } 327 328 #endif 329 330 static DEFINE_PER_CPU(unsigned long, irqsave_flags); 331 332 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) 333 { 334 unsigned long flags; 335 336 local_irq_save(flags); 337 __bpf_spin_lock(lock); 338 __this_cpu_write(irqsave_flags, flags); 339 } 340 341 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) 342 { 343 __bpf_spin_lock_irqsave(lock); 344 return 0; 345 } 346 347 const struct bpf_func_proto bpf_spin_lock_proto = { 348 .func = bpf_spin_lock, 349 .gpl_only = false, 350 .ret_type = RET_VOID, 351 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 352 .arg1_btf_id = BPF_PTR_POISON, 353 }; 354 355 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) 356 { 357 unsigned long flags; 358 359 flags = __this_cpu_read(irqsave_flags); 360 __bpf_spin_unlock(lock); 361 local_irq_restore(flags); 362 } 363 364 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) 365 { 366 __bpf_spin_unlock_irqrestore(lock); 367 return 0; 368 } 369 370 const struct bpf_func_proto bpf_spin_unlock_proto = { 371 .func = bpf_spin_unlock, 372 .gpl_only = false, 373 .ret_type = RET_VOID, 374 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 375 .arg1_btf_id = BPF_PTR_POISON, 376 }; 377 378 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 379 bool lock_src) 380 { 381 struct bpf_spin_lock *lock; 382 383 if (lock_src) 384 lock = src + map->record->spin_lock_off; 385 else 386 lock = dst + map->record->spin_lock_off; 387 preempt_disable(); 388 __bpf_spin_lock_irqsave(lock); 389 copy_map_value(map, dst, src); 390 __bpf_spin_unlock_irqrestore(lock); 391 preempt_enable(); 392 } 393 394 BPF_CALL_0(bpf_jiffies64) 395 { 396 return get_jiffies_64(); 397 } 398 399 const struct bpf_func_proto bpf_jiffies64_proto = { 400 .func = bpf_jiffies64, 401 .gpl_only = false, 402 .ret_type = RET_INTEGER, 403 }; 404 405 #ifdef CONFIG_CGROUPS 406 BPF_CALL_0(bpf_get_current_cgroup_id) 407 { 408 struct cgroup *cgrp; 409 u64 cgrp_id; 410 411 rcu_read_lock(); 412 cgrp = task_dfl_cgroup(current); 413 cgrp_id = cgroup_id(cgrp); 414 rcu_read_unlock(); 415 416 return cgrp_id; 417 } 418 419 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { 420 .func = bpf_get_current_cgroup_id, 421 .gpl_only = false, 422 .ret_type = RET_INTEGER, 423 }; 424 425 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) 426 { 427 struct cgroup *cgrp; 428 struct cgroup *ancestor; 429 u64 cgrp_id; 430 431 rcu_read_lock(); 432 cgrp = task_dfl_cgroup(current); 433 ancestor = cgroup_ancestor(cgrp, ancestor_level); 434 cgrp_id = ancestor ? cgroup_id(ancestor) : 0; 435 rcu_read_unlock(); 436 437 return cgrp_id; 438 } 439 440 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { 441 .func = bpf_get_current_ancestor_cgroup_id, 442 .gpl_only = false, 443 .ret_type = RET_INTEGER, 444 .arg1_type = ARG_ANYTHING, 445 }; 446 #endif /* CONFIG_CGROUPS */ 447 448 #define BPF_STRTOX_BASE_MASK 0x1F 449 450 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, 451 unsigned long long *res, bool *is_negative) 452 { 453 unsigned int base = flags & BPF_STRTOX_BASE_MASK; 454 const char *cur_buf = buf; 455 size_t cur_len = buf_len; 456 unsigned int consumed; 457 size_t val_len; 458 char str[64]; 459 460 if (!buf || !buf_len || !res || !is_negative) 461 return -EINVAL; 462 463 if (base != 0 && base != 8 && base != 10 && base != 16) 464 return -EINVAL; 465 466 if (flags & ~BPF_STRTOX_BASE_MASK) 467 return -EINVAL; 468 469 while (cur_buf < buf + buf_len && isspace(*cur_buf)) 470 ++cur_buf; 471 472 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); 473 if (*is_negative) 474 ++cur_buf; 475 476 consumed = cur_buf - buf; 477 cur_len -= consumed; 478 if (!cur_len) 479 return -EINVAL; 480 481 cur_len = min(cur_len, sizeof(str) - 1); 482 memcpy(str, cur_buf, cur_len); 483 str[cur_len] = '\0'; 484 cur_buf = str; 485 486 cur_buf = _parse_integer_fixup_radix(cur_buf, &base); 487 val_len = _parse_integer(cur_buf, base, res); 488 489 if (val_len & KSTRTOX_OVERFLOW) 490 return -ERANGE; 491 492 if (val_len == 0) 493 return -EINVAL; 494 495 cur_buf += val_len; 496 consumed += cur_buf - str; 497 498 return consumed; 499 } 500 501 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, 502 long long *res) 503 { 504 unsigned long long _res; 505 bool is_negative; 506 int err; 507 508 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 509 if (err < 0) 510 return err; 511 if (is_negative) { 512 if ((long long)-_res > 0) 513 return -ERANGE; 514 *res = -_res; 515 } else { 516 if ((long long)_res < 0) 517 return -ERANGE; 518 *res = _res; 519 } 520 return err; 521 } 522 523 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, 524 s64 *, res) 525 { 526 long long _res; 527 int err; 528 529 *res = 0; 530 err = __bpf_strtoll(buf, buf_len, flags, &_res); 531 if (err < 0) 532 return err; 533 *res = _res; 534 return err; 535 } 536 537 const struct bpf_func_proto bpf_strtol_proto = { 538 .func = bpf_strtol, 539 .gpl_only = false, 540 .ret_type = RET_INTEGER, 541 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 542 .arg2_type = ARG_CONST_SIZE, 543 .arg3_type = ARG_ANYTHING, 544 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED, 545 .arg4_size = sizeof(s64), 546 }; 547 548 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, 549 u64 *, res) 550 { 551 unsigned long long _res; 552 bool is_negative; 553 int err; 554 555 *res = 0; 556 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 557 if (err < 0) 558 return err; 559 if (is_negative) 560 return -EINVAL; 561 *res = _res; 562 return err; 563 } 564 565 const struct bpf_func_proto bpf_strtoul_proto = { 566 .func = bpf_strtoul, 567 .gpl_only = false, 568 .ret_type = RET_INTEGER, 569 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 570 .arg2_type = ARG_CONST_SIZE, 571 .arg3_type = ARG_ANYTHING, 572 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED, 573 .arg4_size = sizeof(u64), 574 }; 575 576 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) 577 { 578 return strncmp(s1, s2, s1_sz); 579 } 580 581 static const struct bpf_func_proto bpf_strncmp_proto = { 582 .func = bpf_strncmp, 583 .gpl_only = false, 584 .ret_type = RET_INTEGER, 585 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 586 .arg2_type = ARG_CONST_SIZE, 587 .arg3_type = ARG_PTR_TO_CONST_STR, 588 }; 589 590 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, 591 struct bpf_pidns_info *, nsdata, u32, size) 592 { 593 struct task_struct *task = current; 594 struct pid_namespace *pidns; 595 int err = -EINVAL; 596 597 if (unlikely(size != sizeof(struct bpf_pidns_info))) 598 goto clear; 599 600 if (unlikely((u64)(dev_t)dev != dev)) 601 goto clear; 602 603 if (unlikely(!task)) 604 goto clear; 605 606 pidns = task_active_pid_ns(task); 607 if (unlikely(!pidns)) { 608 err = -ENOENT; 609 goto clear; 610 } 611 612 if (!ns_match(&pidns->ns, (dev_t)dev, ino)) 613 goto clear; 614 615 nsdata->pid = task_pid_nr_ns(task, pidns); 616 nsdata->tgid = task_tgid_nr_ns(task, pidns); 617 return 0; 618 clear: 619 memset((void *)nsdata, 0, (size_t) size); 620 return err; 621 } 622 623 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { 624 .func = bpf_get_ns_current_pid_tgid, 625 .gpl_only = false, 626 .ret_type = RET_INTEGER, 627 .arg1_type = ARG_ANYTHING, 628 .arg2_type = ARG_ANYTHING, 629 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 630 .arg4_type = ARG_CONST_SIZE, 631 }; 632 633 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { 634 .func = bpf_get_raw_cpu_id, 635 .gpl_only = false, 636 .ret_type = RET_INTEGER, 637 }; 638 639 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, 640 u64, flags, void *, data, u64, size) 641 { 642 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 643 return -EINVAL; 644 645 return bpf_event_output(map, flags, data, size, NULL, 0, NULL); 646 } 647 648 const struct bpf_func_proto bpf_event_output_data_proto = { 649 .func = bpf_event_output_data, 650 .gpl_only = true, 651 .ret_type = RET_INTEGER, 652 .arg1_type = ARG_PTR_TO_CTX, 653 .arg2_type = ARG_CONST_MAP_PTR, 654 .arg3_type = ARG_ANYTHING, 655 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 656 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 657 }; 658 659 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, 660 const void __user *, user_ptr) 661 { 662 int ret = copy_from_user(dst, user_ptr, size); 663 664 if (unlikely(ret)) { 665 memset(dst, 0, size); 666 ret = -EFAULT; 667 } 668 669 return ret; 670 } 671 672 const struct bpf_func_proto bpf_copy_from_user_proto = { 673 .func = bpf_copy_from_user, 674 .gpl_only = false, 675 .might_sleep = true, 676 .ret_type = RET_INTEGER, 677 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 678 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 679 .arg3_type = ARG_ANYTHING, 680 }; 681 682 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, 683 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) 684 { 685 int ret; 686 687 /* flags is not used yet */ 688 if (unlikely(flags)) 689 return -EINVAL; 690 691 if (unlikely(!size)) 692 return 0; 693 694 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); 695 if (ret == size) 696 return 0; 697 698 memset(dst, 0, size); 699 /* Return -EFAULT for partial read */ 700 return ret < 0 ? ret : -EFAULT; 701 } 702 703 const struct bpf_func_proto bpf_copy_from_user_task_proto = { 704 .func = bpf_copy_from_user_task, 705 .gpl_only = true, 706 .might_sleep = true, 707 .ret_type = RET_INTEGER, 708 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 709 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 710 .arg3_type = ARG_ANYTHING, 711 .arg4_type = ARG_PTR_TO_BTF_ID, 712 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 713 .arg5_type = ARG_ANYTHING 714 }; 715 716 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) 717 { 718 if (cpu >= nr_cpu_ids) 719 return (unsigned long)NULL; 720 721 return (unsigned long)per_cpu_ptr((const void __percpu *)(const uintptr_t)ptr, cpu); 722 } 723 724 const struct bpf_func_proto bpf_per_cpu_ptr_proto = { 725 .func = bpf_per_cpu_ptr, 726 .gpl_only = false, 727 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, 728 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 729 .arg2_type = ARG_ANYTHING, 730 }; 731 732 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) 733 { 734 return (unsigned long)this_cpu_ptr((const void __percpu *)(const uintptr_t)percpu_ptr); 735 } 736 737 const struct bpf_func_proto bpf_this_cpu_ptr_proto = { 738 .func = bpf_this_cpu_ptr, 739 .gpl_only = false, 740 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, 741 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 742 }; 743 744 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 745 size_t bufsz) 746 { 747 void __user *user_ptr = (__force void __user *)unsafe_ptr; 748 749 buf[0] = 0; 750 751 switch (fmt_ptype) { 752 case 's': 753 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 754 if ((unsigned long)unsafe_ptr < TASK_SIZE) 755 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 756 fallthrough; 757 #endif 758 case 'k': 759 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 760 case 'u': 761 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 762 } 763 764 return -EINVAL; 765 } 766 767 /* Support executing three nested bprintf helper calls on a given CPU */ 768 #define MAX_BPRINTF_NEST_LEVEL 3 769 770 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs); 771 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); 772 773 int bpf_try_get_buffers(struct bpf_bprintf_buffers **bufs) 774 { 775 int nest_level; 776 777 preempt_disable(); 778 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); 779 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { 780 this_cpu_dec(bpf_bprintf_nest_level); 781 preempt_enable(); 782 return -EBUSY; 783 } 784 *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]); 785 786 return 0; 787 } 788 789 void bpf_put_buffers(void) 790 { 791 if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0)) 792 return; 793 this_cpu_dec(bpf_bprintf_nest_level); 794 preempt_enable(); 795 } 796 797 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data) 798 { 799 if (!data->bin_args && !data->buf) 800 return; 801 bpf_put_buffers(); 802 } 803 804 /* 805 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers 806 * 807 * Returns a negative value if fmt is an invalid format string or 0 otherwise. 808 * 809 * This can be used in two ways: 810 * - Format string verification only: when data->get_bin_args is false 811 * - Arguments preparation: in addition to the above verification, it writes in 812 * data->bin_args a binary representation of arguments usable by bstr_printf 813 * where pointers from BPF have been sanitized. 814 * 815 * In argument preparation mode, if 0 is returned, safe temporary buffers are 816 * allocated and bpf_bprintf_cleanup should be called to free them after use. 817 */ 818 int bpf_bprintf_prepare(const char *fmt, u32 fmt_size, const u64 *raw_args, 819 u32 num_args, struct bpf_bprintf_data *data) 820 { 821 bool get_buffers = (data->get_bin_args && num_args) || data->get_buf; 822 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; 823 struct bpf_bprintf_buffers *buffers = NULL; 824 size_t sizeof_cur_arg, sizeof_cur_ip; 825 int err, i, num_spec = 0; 826 u64 cur_arg; 827 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; 828 829 fmt_end = strnchr(fmt, fmt_size, 0); 830 if (!fmt_end) 831 return -EINVAL; 832 fmt_size = fmt_end - fmt; 833 834 if (get_buffers && bpf_try_get_buffers(&buffers)) 835 return -EBUSY; 836 837 if (data->get_bin_args) { 838 if (num_args) 839 tmp_buf = buffers->bin_args; 840 tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS; 841 data->bin_args = (u32 *)tmp_buf; 842 } 843 844 if (data->get_buf) 845 data->buf = buffers->buf; 846 847 for (i = 0; i < fmt_size; i++) { 848 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 849 err = -EINVAL; 850 goto out; 851 } 852 853 if (fmt[i] != '%') 854 continue; 855 856 if (fmt[i + 1] == '%') { 857 i++; 858 continue; 859 } 860 861 if (num_spec >= num_args) { 862 err = -EINVAL; 863 goto out; 864 } 865 866 /* The string is zero-terminated so if fmt[i] != 0, we can 867 * always access fmt[i + 1], in the worst case it will be a 0 868 */ 869 i++; 870 871 /* skip optional "[0 +-][num]" width formatting field */ 872 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 873 fmt[i] == ' ') 874 i++; 875 if (fmt[i] >= '1' && fmt[i] <= '9') { 876 i++; 877 while (fmt[i] >= '0' && fmt[i] <= '9') 878 i++; 879 } 880 881 if (fmt[i] == 'p') { 882 sizeof_cur_arg = sizeof(long); 883 884 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || 885 ispunct(fmt[i + 1])) { 886 if (tmp_buf) 887 cur_arg = raw_args[num_spec]; 888 goto nocopy_fmt; 889 } 890 891 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && 892 fmt[i + 2] == 's') { 893 fmt_ptype = fmt[i + 1]; 894 i += 2; 895 goto fmt_str; 896 } 897 898 if (fmt[i + 1] == 'K' || 899 fmt[i + 1] == 'x' || fmt[i + 1] == 's' || 900 fmt[i + 1] == 'S') { 901 if (tmp_buf) 902 cur_arg = raw_args[num_spec]; 903 i++; 904 goto nocopy_fmt; 905 } 906 907 if (fmt[i + 1] == 'B') { 908 if (tmp_buf) { 909 err = snprintf(tmp_buf, 910 (tmp_buf_end - tmp_buf), 911 "%pB", 912 (void *)(long)raw_args[num_spec]); 913 tmp_buf += (err + 1); 914 } 915 916 i++; 917 num_spec++; 918 continue; 919 } 920 921 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 922 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || 923 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { 924 err = -EINVAL; 925 goto out; 926 } 927 928 i += 2; 929 if (!tmp_buf) 930 goto nocopy_fmt; 931 932 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; 933 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { 934 err = -ENOSPC; 935 goto out; 936 } 937 938 unsafe_ptr = (char *)(long)raw_args[num_spec]; 939 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, 940 sizeof_cur_ip); 941 if (err < 0) 942 memset(cur_ip, 0, sizeof_cur_ip); 943 944 /* hack: bstr_printf expects IP addresses to be 945 * pre-formatted as strings, ironically, the easiest way 946 * to do that is to call snprintf. 947 */ 948 ip_spec[2] = fmt[i - 1]; 949 ip_spec[3] = fmt[i]; 950 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, 951 ip_spec, &cur_ip); 952 953 tmp_buf += err + 1; 954 num_spec++; 955 956 continue; 957 } else if (fmt[i] == 's') { 958 fmt_ptype = fmt[i]; 959 fmt_str: 960 if (fmt[i + 1] != 0 && 961 !isspace(fmt[i + 1]) && 962 !ispunct(fmt[i + 1])) { 963 err = -EINVAL; 964 goto out; 965 } 966 967 if (!tmp_buf) 968 goto nocopy_fmt; 969 970 if (tmp_buf_end == tmp_buf) { 971 err = -ENOSPC; 972 goto out; 973 } 974 975 unsafe_ptr = (char *)(long)raw_args[num_spec]; 976 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, 977 fmt_ptype, 978 tmp_buf_end - tmp_buf); 979 if (err < 0) { 980 tmp_buf[0] = '\0'; 981 err = 1; 982 } 983 984 tmp_buf += err; 985 num_spec++; 986 987 continue; 988 } else if (fmt[i] == 'c') { 989 if (!tmp_buf) 990 goto nocopy_fmt; 991 992 if (tmp_buf_end == tmp_buf) { 993 err = -ENOSPC; 994 goto out; 995 } 996 997 *tmp_buf = raw_args[num_spec]; 998 tmp_buf++; 999 num_spec++; 1000 1001 continue; 1002 } 1003 1004 sizeof_cur_arg = sizeof(int); 1005 1006 if (fmt[i] == 'l') { 1007 sizeof_cur_arg = sizeof(long); 1008 i++; 1009 } 1010 if (fmt[i] == 'l') { 1011 sizeof_cur_arg = sizeof(long long); 1012 i++; 1013 } 1014 1015 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && 1016 fmt[i] != 'x' && fmt[i] != 'X') { 1017 err = -EINVAL; 1018 goto out; 1019 } 1020 1021 if (tmp_buf) 1022 cur_arg = raw_args[num_spec]; 1023 nocopy_fmt: 1024 if (tmp_buf) { 1025 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); 1026 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { 1027 err = -ENOSPC; 1028 goto out; 1029 } 1030 1031 if (sizeof_cur_arg == 8) { 1032 *(u32 *)tmp_buf = *(u32 *)&cur_arg; 1033 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); 1034 } else { 1035 *(u32 *)tmp_buf = (u32)(long)cur_arg; 1036 } 1037 tmp_buf += sizeof_cur_arg; 1038 } 1039 num_spec++; 1040 } 1041 1042 err = 0; 1043 out: 1044 if (err) 1045 bpf_bprintf_cleanup(data); 1046 return err; 1047 } 1048 1049 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, 1050 const void *, args, u32, data_len) 1051 { 1052 struct bpf_bprintf_data data = { 1053 .get_bin_args = true, 1054 }; 1055 int err, num_args; 1056 1057 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || 1058 (data_len && !args)) 1059 return -EINVAL; 1060 num_args = data_len / 8; 1061 1062 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we 1063 * can safely give an unbounded size. 1064 */ 1065 err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data); 1066 if (err < 0) 1067 return err; 1068 1069 err = bstr_printf(str, str_size, fmt, data.bin_args); 1070 1071 bpf_bprintf_cleanup(&data); 1072 1073 return err + 1; 1074 } 1075 1076 const struct bpf_func_proto bpf_snprintf_proto = { 1077 .func = bpf_snprintf, 1078 .gpl_only = true, 1079 .ret_type = RET_INTEGER, 1080 .arg1_type = ARG_PTR_TO_MEM_OR_NULL, 1081 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1082 .arg3_type = ARG_PTR_TO_CONST_STR, 1083 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 1084 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1085 }; 1086 1087 static void *map_key_from_value(struct bpf_map *map, void *value, u32 *arr_idx) 1088 { 1089 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1090 struct bpf_array *array = container_of(map, struct bpf_array, map); 1091 1092 *arr_idx = ((char *)value - array->value) / array->elem_size; 1093 return arr_idx; 1094 } 1095 return (void *)value - round_up(map->key_size, 8); 1096 } 1097 1098 struct bpf_async_cb { 1099 struct bpf_map *map; 1100 struct bpf_prog *prog; 1101 void __rcu *callback_fn; 1102 void *value; 1103 union { 1104 struct rcu_head rcu; 1105 struct work_struct delete_work; 1106 }; 1107 u64 flags; 1108 }; 1109 1110 /* BPF map elements can contain 'struct bpf_timer'. 1111 * Such map owns all of its BPF timers. 1112 * 'struct bpf_timer' is allocated as part of map element allocation 1113 * and it's zero initialized. 1114 * That space is used to keep 'struct bpf_async_kern'. 1115 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and 1116 * remembers 'struct bpf_map *' pointer it's part of. 1117 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. 1118 * bpf_timer_start() arms the timer. 1119 * If user space reference to a map goes to zero at this point 1120 * ops->map_release_uref callback is responsible for cancelling the timers, 1121 * freeing their memory, and decrementing prog's refcnts. 1122 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. 1123 * Inner maps can contain bpf timers as well. ops->map_release_uref is 1124 * freeing the timers when inner map is replaced or deleted by user space. 1125 */ 1126 struct bpf_hrtimer { 1127 struct bpf_async_cb cb; 1128 struct hrtimer timer; 1129 atomic_t cancelling; 1130 }; 1131 1132 struct bpf_work { 1133 struct bpf_async_cb cb; 1134 struct work_struct work; 1135 struct work_struct delete_work; 1136 }; 1137 1138 /* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */ 1139 struct bpf_async_kern { 1140 union { 1141 struct bpf_async_cb *cb; 1142 struct bpf_hrtimer *timer; 1143 struct bpf_work *work; 1144 }; 1145 /* bpf_spin_lock is used here instead of spinlock_t to make 1146 * sure that it always fits into space reserved by struct bpf_timer 1147 * regardless of LOCKDEP and spinlock debug flags. 1148 */ 1149 struct bpf_spin_lock lock; 1150 } __attribute__((aligned(8))); 1151 1152 enum bpf_async_type { 1153 BPF_ASYNC_TYPE_TIMER = 0, 1154 BPF_ASYNC_TYPE_WQ, 1155 }; 1156 1157 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); 1158 1159 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) 1160 { 1161 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); 1162 struct bpf_map *map = t->cb.map; 1163 void *value = t->cb.value; 1164 bpf_callback_t callback_fn; 1165 void *key; 1166 u32 idx; 1167 1168 BTF_TYPE_EMIT(struct bpf_timer); 1169 callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held()); 1170 if (!callback_fn) 1171 goto out; 1172 1173 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and 1174 * cannot be preempted by another bpf_timer_cb() on the same cpu. 1175 * Remember the timer this callback is servicing to prevent 1176 * deadlock if callback_fn() calls bpf_timer_cancel() or 1177 * bpf_map_delete_elem() on the same timer. 1178 */ 1179 this_cpu_write(hrtimer_running, t); 1180 1181 key = map_key_from_value(map, value, &idx); 1182 1183 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1184 /* The verifier checked that return value is zero. */ 1185 1186 this_cpu_write(hrtimer_running, NULL); 1187 out: 1188 return HRTIMER_NORESTART; 1189 } 1190 1191 static void bpf_wq_work(struct work_struct *work) 1192 { 1193 struct bpf_work *w = container_of(work, struct bpf_work, work); 1194 struct bpf_async_cb *cb = &w->cb; 1195 struct bpf_map *map = cb->map; 1196 bpf_callback_t callback_fn; 1197 void *value = cb->value; 1198 void *key; 1199 u32 idx; 1200 1201 BTF_TYPE_EMIT(struct bpf_wq); 1202 1203 callback_fn = READ_ONCE(cb->callback_fn); 1204 if (!callback_fn) 1205 return; 1206 1207 key = map_key_from_value(map, value, &idx); 1208 1209 rcu_read_lock_trace(); 1210 migrate_disable(); 1211 1212 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1213 1214 migrate_enable(); 1215 rcu_read_unlock_trace(); 1216 } 1217 1218 static void bpf_async_cb_rcu_free(struct rcu_head *rcu) 1219 { 1220 struct bpf_async_cb *cb = container_of(rcu, struct bpf_async_cb, rcu); 1221 1222 kfree_nolock(cb); 1223 } 1224 1225 static void bpf_wq_delete_work(struct work_struct *work) 1226 { 1227 struct bpf_work *w = container_of(work, struct bpf_work, delete_work); 1228 1229 cancel_work_sync(&w->work); 1230 1231 call_rcu(&w->cb.rcu, bpf_async_cb_rcu_free); 1232 } 1233 1234 static void bpf_timer_delete_work(struct work_struct *work) 1235 { 1236 struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work); 1237 1238 /* Cancel the timer and wait for callback to complete if it was running. 1239 * If hrtimer_cancel() can be safely called it's safe to call 1240 * call_rcu() right after for both preallocated and non-preallocated 1241 * maps. The async->cb = NULL was already done and no code path can see 1242 * address 't' anymore. Timer if armed for existing bpf_hrtimer before 1243 * bpf_timer_cancel_and_free will have been cancelled. 1244 */ 1245 hrtimer_cancel(&t->timer); 1246 call_rcu(&t->cb.rcu, bpf_async_cb_rcu_free); 1247 } 1248 1249 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags, 1250 enum bpf_async_type type) 1251 { 1252 struct bpf_async_cb *cb; 1253 struct bpf_hrtimer *t; 1254 struct bpf_work *w; 1255 clockid_t clockid; 1256 size_t size; 1257 int ret = 0; 1258 1259 if (in_nmi()) 1260 return -EOPNOTSUPP; 1261 1262 switch (type) { 1263 case BPF_ASYNC_TYPE_TIMER: 1264 size = sizeof(struct bpf_hrtimer); 1265 break; 1266 case BPF_ASYNC_TYPE_WQ: 1267 size = sizeof(struct bpf_work); 1268 break; 1269 default: 1270 return -EINVAL; 1271 } 1272 1273 __bpf_spin_lock_irqsave(&async->lock); 1274 t = async->timer; 1275 if (t) { 1276 ret = -EBUSY; 1277 goto out; 1278 } 1279 1280 cb = bpf_map_kmalloc_nolock(map, size, 0, map->numa_node); 1281 if (!cb) { 1282 ret = -ENOMEM; 1283 goto out; 1284 } 1285 1286 switch (type) { 1287 case BPF_ASYNC_TYPE_TIMER: 1288 clockid = flags & (MAX_CLOCKS - 1); 1289 t = (struct bpf_hrtimer *)cb; 1290 1291 atomic_set(&t->cancelling, 0); 1292 INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work); 1293 hrtimer_setup(&t->timer, bpf_timer_cb, clockid, HRTIMER_MODE_REL_SOFT); 1294 cb->value = (void *)async - map->record->timer_off; 1295 break; 1296 case BPF_ASYNC_TYPE_WQ: 1297 w = (struct bpf_work *)cb; 1298 1299 INIT_WORK(&w->work, bpf_wq_work); 1300 INIT_WORK(&w->delete_work, bpf_wq_delete_work); 1301 cb->value = (void *)async - map->record->wq_off; 1302 break; 1303 } 1304 cb->map = map; 1305 cb->prog = NULL; 1306 cb->flags = flags; 1307 rcu_assign_pointer(cb->callback_fn, NULL); 1308 1309 WRITE_ONCE(async->cb, cb); 1310 /* Guarantee the order between async->cb and map->usercnt. So 1311 * when there are concurrent uref release and bpf timer init, either 1312 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL 1313 * timer or atomic64_read() below returns a zero usercnt. 1314 */ 1315 smp_mb(); 1316 if (!atomic64_read(&map->usercnt)) { 1317 /* maps with timers must be either held by user space 1318 * or pinned in bpffs. 1319 */ 1320 WRITE_ONCE(async->cb, NULL); 1321 kfree_nolock(cb); 1322 ret = -EPERM; 1323 } 1324 out: 1325 __bpf_spin_unlock_irqrestore(&async->lock); 1326 return ret; 1327 } 1328 1329 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map, 1330 u64, flags) 1331 { 1332 clock_t clockid = flags & (MAX_CLOCKS - 1); 1333 1334 BUILD_BUG_ON(MAX_CLOCKS != 16); 1335 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer)); 1336 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer)); 1337 1338 if (flags >= MAX_CLOCKS || 1339 /* similar to timerfd except _ALARM variants are not supported */ 1340 (clockid != CLOCK_MONOTONIC && 1341 clockid != CLOCK_REALTIME && 1342 clockid != CLOCK_BOOTTIME)) 1343 return -EINVAL; 1344 1345 return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER); 1346 } 1347 1348 static const struct bpf_func_proto bpf_timer_init_proto = { 1349 .func = bpf_timer_init, 1350 .gpl_only = true, 1351 .ret_type = RET_INTEGER, 1352 .arg1_type = ARG_PTR_TO_TIMER, 1353 .arg2_type = ARG_CONST_MAP_PTR, 1354 .arg3_type = ARG_ANYTHING, 1355 }; 1356 1357 static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn, 1358 struct bpf_prog_aux *aux, unsigned int flags, 1359 enum bpf_async_type type) 1360 { 1361 struct bpf_prog *prev, *prog = aux->prog; 1362 struct bpf_async_cb *cb; 1363 int ret = 0; 1364 1365 if (in_nmi()) 1366 return -EOPNOTSUPP; 1367 __bpf_spin_lock_irqsave(&async->lock); 1368 cb = async->cb; 1369 if (!cb) { 1370 ret = -EINVAL; 1371 goto out; 1372 } 1373 if (!atomic64_read(&cb->map->usercnt)) { 1374 /* maps with timers must be either held by user space 1375 * or pinned in bpffs. Otherwise timer might still be 1376 * running even when bpf prog is detached and user space 1377 * is gone, since map_release_uref won't ever be called. 1378 */ 1379 ret = -EPERM; 1380 goto out; 1381 } 1382 prev = cb->prog; 1383 if (prev != prog) { 1384 /* Bump prog refcnt once. Every bpf_timer_set_callback() 1385 * can pick different callback_fn-s within the same prog. 1386 */ 1387 prog = bpf_prog_inc_not_zero(prog); 1388 if (IS_ERR(prog)) { 1389 ret = PTR_ERR(prog); 1390 goto out; 1391 } 1392 if (prev) 1393 /* Drop prev prog refcnt when swapping with new prog */ 1394 bpf_prog_put(prev); 1395 cb->prog = prog; 1396 } 1397 rcu_assign_pointer(cb->callback_fn, callback_fn); 1398 out: 1399 __bpf_spin_unlock_irqrestore(&async->lock); 1400 return ret; 1401 } 1402 1403 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn, 1404 struct bpf_prog_aux *, aux) 1405 { 1406 return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER); 1407 } 1408 1409 static const struct bpf_func_proto bpf_timer_set_callback_proto = { 1410 .func = bpf_timer_set_callback, 1411 .gpl_only = true, 1412 .ret_type = RET_INTEGER, 1413 .arg1_type = ARG_PTR_TO_TIMER, 1414 .arg2_type = ARG_PTR_TO_FUNC, 1415 }; 1416 1417 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags) 1418 { 1419 struct bpf_hrtimer *t; 1420 int ret = 0; 1421 enum hrtimer_mode mode; 1422 1423 if (in_nmi()) 1424 return -EOPNOTSUPP; 1425 if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN)) 1426 return -EINVAL; 1427 __bpf_spin_lock_irqsave(&timer->lock); 1428 t = timer->timer; 1429 if (!t || !t->cb.prog) { 1430 ret = -EINVAL; 1431 goto out; 1432 } 1433 1434 if (flags & BPF_F_TIMER_ABS) 1435 mode = HRTIMER_MODE_ABS_SOFT; 1436 else 1437 mode = HRTIMER_MODE_REL_SOFT; 1438 1439 if (flags & BPF_F_TIMER_CPU_PIN) 1440 mode |= HRTIMER_MODE_PINNED; 1441 1442 hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode); 1443 out: 1444 __bpf_spin_unlock_irqrestore(&timer->lock); 1445 return ret; 1446 } 1447 1448 static const struct bpf_func_proto bpf_timer_start_proto = { 1449 .func = bpf_timer_start, 1450 .gpl_only = true, 1451 .ret_type = RET_INTEGER, 1452 .arg1_type = ARG_PTR_TO_TIMER, 1453 .arg2_type = ARG_ANYTHING, 1454 .arg3_type = ARG_ANYTHING, 1455 }; 1456 1457 static void drop_prog_refcnt(struct bpf_async_cb *async) 1458 { 1459 struct bpf_prog *prog = async->prog; 1460 1461 if (prog) { 1462 bpf_prog_put(prog); 1463 async->prog = NULL; 1464 rcu_assign_pointer(async->callback_fn, NULL); 1465 } 1466 } 1467 1468 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer) 1469 { 1470 struct bpf_hrtimer *t, *cur_t; 1471 bool inc = false; 1472 int ret = 0; 1473 1474 if (in_nmi()) 1475 return -EOPNOTSUPP; 1476 rcu_read_lock(); 1477 __bpf_spin_lock_irqsave(&timer->lock); 1478 t = timer->timer; 1479 if (!t) { 1480 ret = -EINVAL; 1481 goto out; 1482 } 1483 1484 cur_t = this_cpu_read(hrtimer_running); 1485 if (cur_t == t) { 1486 /* If bpf callback_fn is trying to bpf_timer_cancel() 1487 * its own timer the hrtimer_cancel() will deadlock 1488 * since it waits for callback_fn to finish. 1489 */ 1490 ret = -EDEADLK; 1491 goto out; 1492 } 1493 1494 /* Only account in-flight cancellations when invoked from a timer 1495 * callback, since we want to avoid waiting only if other _callbacks_ 1496 * are waiting on us, to avoid introducing lockups. Non-callback paths 1497 * are ok, since nobody would synchronously wait for their completion. 1498 */ 1499 if (!cur_t) 1500 goto drop; 1501 atomic_inc(&t->cancelling); 1502 /* Need full barrier after relaxed atomic_inc */ 1503 smp_mb__after_atomic(); 1504 inc = true; 1505 if (atomic_read(&cur_t->cancelling)) { 1506 /* We're cancelling timer t, while some other timer callback is 1507 * attempting to cancel us. In such a case, it might be possible 1508 * that timer t belongs to the other callback, or some other 1509 * callback waiting upon it (creating transitive dependencies 1510 * upon us), and we will enter a deadlock if we continue 1511 * cancelling and waiting for it synchronously, since it might 1512 * do the same. Bail! 1513 */ 1514 ret = -EDEADLK; 1515 goto out; 1516 } 1517 drop: 1518 drop_prog_refcnt(&t->cb); 1519 out: 1520 __bpf_spin_unlock_irqrestore(&timer->lock); 1521 /* Cancel the timer and wait for associated callback to finish 1522 * if it was running. 1523 */ 1524 ret = ret ?: hrtimer_cancel(&t->timer); 1525 if (inc) 1526 atomic_dec(&t->cancelling); 1527 rcu_read_unlock(); 1528 return ret; 1529 } 1530 1531 static const struct bpf_func_proto bpf_timer_cancel_proto = { 1532 .func = bpf_timer_cancel, 1533 .gpl_only = true, 1534 .ret_type = RET_INTEGER, 1535 .arg1_type = ARG_PTR_TO_TIMER, 1536 }; 1537 1538 static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async) 1539 { 1540 struct bpf_async_cb *cb; 1541 1542 /* Performance optimization: read async->cb without lock first. */ 1543 if (!READ_ONCE(async->cb)) 1544 return NULL; 1545 1546 __bpf_spin_lock_irqsave(&async->lock); 1547 /* re-read it under lock */ 1548 cb = async->cb; 1549 if (!cb) 1550 goto out; 1551 drop_prog_refcnt(cb); 1552 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use 1553 * this timer, since it won't be initialized. 1554 */ 1555 WRITE_ONCE(async->cb, NULL); 1556 out: 1557 __bpf_spin_unlock_irqrestore(&async->lock); 1558 return cb; 1559 } 1560 1561 /* This function is called by map_delete/update_elem for individual element and 1562 * by ops->map_release_uref when the user space reference to a map reaches zero. 1563 */ 1564 void bpf_timer_cancel_and_free(void *val) 1565 { 1566 struct bpf_hrtimer *t; 1567 1568 t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val); 1569 1570 if (!t) 1571 return; 1572 /* We check that bpf_map_delete/update_elem() was called from timer 1573 * callback_fn. In such case we don't call hrtimer_cancel() (since it 1574 * will deadlock) and don't call hrtimer_try_to_cancel() (since it will 1575 * just return -1). Though callback_fn is still running on this cpu it's 1576 * safe to do kfree(t) because bpf_timer_cb() read everything it needed 1577 * from 't'. The bpf subprog callback_fn won't be able to access 't', 1578 * since async->cb = NULL was already done. The timer will be 1579 * effectively cancelled because bpf_timer_cb() will return 1580 * HRTIMER_NORESTART. 1581 * 1582 * However, it is possible the timer callback_fn calling us armed the 1583 * timer _before_ calling us, such that failing to cancel it here will 1584 * cause it to possibly use struct hrtimer after freeing bpf_hrtimer. 1585 * Therefore, we _need_ to cancel any outstanding timers before we do 1586 * call_rcu, even though no more timers can be armed. 1587 * 1588 * Moreover, we need to schedule work even if timer does not belong to 1589 * the calling callback_fn, as on two different CPUs, we can end up in a 1590 * situation where both sides run in parallel, try to cancel one 1591 * another, and we end up waiting on both sides in hrtimer_cancel 1592 * without making forward progress, since timer1 depends on time2 1593 * callback to finish, and vice versa. 1594 * 1595 * CPU 1 (timer1_cb) CPU 2 (timer2_cb) 1596 * bpf_timer_cancel_and_free(timer2) bpf_timer_cancel_and_free(timer1) 1597 * 1598 * To avoid these issues, punt to workqueue context when we are in a 1599 * timer callback. 1600 */ 1601 if (this_cpu_read(hrtimer_running)) { 1602 queue_work(system_dfl_wq, &t->cb.delete_work); 1603 return; 1604 } 1605 1606 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 1607 /* If the timer is running on other CPU, also use a kworker to 1608 * wait for the completion of the timer instead of trying to 1609 * acquire a sleepable lock in hrtimer_cancel() to wait for its 1610 * completion. 1611 */ 1612 if (hrtimer_try_to_cancel(&t->timer) >= 0) 1613 call_rcu(&t->cb.rcu, bpf_async_cb_rcu_free); 1614 else 1615 queue_work(system_dfl_wq, &t->cb.delete_work); 1616 } else { 1617 bpf_timer_delete_work(&t->cb.delete_work); 1618 } 1619 } 1620 1621 /* This function is called by map_delete/update_elem for individual element and 1622 * by ops->map_release_uref when the user space reference to a map reaches zero. 1623 */ 1624 void bpf_wq_cancel_and_free(void *val) 1625 { 1626 struct bpf_work *work; 1627 1628 BTF_TYPE_EMIT(struct bpf_wq); 1629 1630 work = (struct bpf_work *)__bpf_async_cancel_and_free(val); 1631 if (!work) 1632 return; 1633 /* Trigger cancel of the sleepable work, but *do not* wait for 1634 * it to finish if it was running as we might not be in a 1635 * sleepable context. 1636 * kfree will be called once the work has finished. 1637 */ 1638 schedule_work(&work->delete_work); 1639 } 1640 1641 BPF_CALL_2(bpf_kptr_xchg, void *, dst, void *, ptr) 1642 { 1643 unsigned long *kptr = dst; 1644 1645 /* This helper may be inlined by verifier. */ 1646 return xchg(kptr, (unsigned long)ptr); 1647 } 1648 1649 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() 1650 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to 1651 * denote type that verifier will determine. 1652 */ 1653 static const struct bpf_func_proto bpf_kptr_xchg_proto = { 1654 .func = bpf_kptr_xchg, 1655 .gpl_only = false, 1656 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 1657 .ret_btf_id = BPF_PTR_POISON, 1658 .arg1_type = ARG_KPTR_XCHG_DEST, 1659 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, 1660 .arg2_btf_id = BPF_PTR_POISON, 1661 }; 1662 1663 struct bpf_dynptr_file_impl { 1664 struct freader freader; 1665 /* 64 bit offset and size overriding 32 bit ones in bpf_dynptr_kern */ 1666 u64 offset; 1667 u64 size; 1668 }; 1669 1670 /* Since the upper 8 bits of dynptr->size is reserved, the 1671 * maximum supported size is 2^24 - 1. 1672 */ 1673 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1) 1674 #define DYNPTR_TYPE_SHIFT 28 1675 #define DYNPTR_SIZE_MASK 0xFFFFFF 1676 #define DYNPTR_RDONLY_BIT BIT(31) 1677 1678 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr) 1679 { 1680 return ptr->size & DYNPTR_RDONLY_BIT; 1681 } 1682 1683 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 1684 { 1685 ptr->size |= DYNPTR_RDONLY_BIT; 1686 } 1687 1688 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) 1689 { 1690 ptr->size |= type << DYNPTR_TYPE_SHIFT; 1691 } 1692 1693 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr) 1694 { 1695 return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT; 1696 } 1697 1698 u64 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) 1699 { 1700 if (bpf_dynptr_get_type(ptr) == BPF_DYNPTR_TYPE_FILE) { 1701 struct bpf_dynptr_file_impl *df = ptr->data; 1702 1703 return df->size; 1704 } 1705 1706 return ptr->size & DYNPTR_SIZE_MASK; 1707 } 1708 1709 static void bpf_dynptr_advance_offset(struct bpf_dynptr_kern *ptr, u64 off) 1710 { 1711 if (bpf_dynptr_get_type(ptr) == BPF_DYNPTR_TYPE_FILE) { 1712 struct bpf_dynptr_file_impl *df = ptr->data; 1713 1714 df->offset += off; 1715 return; 1716 } 1717 ptr->offset += off; 1718 } 1719 1720 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u64 new_size) 1721 { 1722 u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK; 1723 1724 if (bpf_dynptr_get_type(ptr) == BPF_DYNPTR_TYPE_FILE) { 1725 struct bpf_dynptr_file_impl *df = ptr->data; 1726 1727 df->size = new_size; 1728 return; 1729 } 1730 ptr->size = (u32)new_size | metadata; 1731 } 1732 1733 int bpf_dynptr_check_size(u64 size) 1734 { 1735 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; 1736 } 1737 1738 static int bpf_file_fetch_bytes(struct bpf_dynptr_file_impl *df, u64 offset, void *buf, u64 len) 1739 { 1740 const void *ptr; 1741 1742 if (!buf) 1743 return -EINVAL; 1744 1745 df->freader.buf = buf; 1746 df->freader.buf_sz = len; 1747 ptr = freader_fetch(&df->freader, offset + df->offset, len); 1748 if (!ptr) 1749 return df->freader.err; 1750 1751 if (ptr != buf) /* Force copying into the buffer */ 1752 memcpy(buf, ptr, len); 1753 1754 return 0; 1755 } 1756 1757 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 1758 enum bpf_dynptr_type type, u32 offset, u32 size) 1759 { 1760 ptr->data = data; 1761 ptr->offset = offset; 1762 ptr->size = size; 1763 bpf_dynptr_set_type(ptr, type); 1764 } 1765 1766 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 1767 { 1768 memset(ptr, 0, sizeof(*ptr)); 1769 } 1770 1771 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u64, size, u64, flags, struct bpf_dynptr_kern *, ptr) 1772 { 1773 int err; 1774 1775 BTF_TYPE_EMIT(struct bpf_dynptr); 1776 1777 err = bpf_dynptr_check_size(size); 1778 if (err) 1779 goto error; 1780 1781 /* flags is currently unsupported */ 1782 if (flags) { 1783 err = -EINVAL; 1784 goto error; 1785 } 1786 1787 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); 1788 1789 return 0; 1790 1791 error: 1792 bpf_dynptr_set_null(ptr); 1793 return err; 1794 } 1795 1796 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { 1797 .func = bpf_dynptr_from_mem, 1798 .gpl_only = false, 1799 .ret_type = RET_INTEGER, 1800 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1801 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1802 .arg3_type = ARG_ANYTHING, 1803 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE, 1804 }; 1805 1806 static int __bpf_dynptr_read(void *dst, u64 len, const struct bpf_dynptr_kern *src, 1807 u64 offset, u64 flags) 1808 { 1809 enum bpf_dynptr_type type; 1810 int err; 1811 1812 if (!src->data || flags) 1813 return -EINVAL; 1814 1815 err = bpf_dynptr_check_off_len(src, offset, len); 1816 if (err) 1817 return err; 1818 1819 type = bpf_dynptr_get_type(src); 1820 1821 switch (type) { 1822 case BPF_DYNPTR_TYPE_LOCAL: 1823 case BPF_DYNPTR_TYPE_RINGBUF: 1824 /* Source and destination may possibly overlap, hence use memmove to 1825 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1826 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1827 */ 1828 memmove(dst, src->data + src->offset + offset, len); 1829 return 0; 1830 case BPF_DYNPTR_TYPE_SKB: 1831 return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len); 1832 case BPF_DYNPTR_TYPE_XDP: 1833 return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len); 1834 case BPF_DYNPTR_TYPE_SKB_META: 1835 memmove(dst, bpf_skb_meta_pointer(src->data, src->offset + offset), len); 1836 return 0; 1837 case BPF_DYNPTR_TYPE_FILE: 1838 return bpf_file_fetch_bytes(src->data, offset, dst, len); 1839 default: 1840 WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type); 1841 return -EFAULT; 1842 } 1843 } 1844 1845 BPF_CALL_5(bpf_dynptr_read, void *, dst, u64, len, const struct bpf_dynptr_kern *, src, 1846 u64, offset, u64, flags) 1847 { 1848 return __bpf_dynptr_read(dst, len, src, offset, flags); 1849 } 1850 1851 static const struct bpf_func_proto bpf_dynptr_read_proto = { 1852 .func = bpf_dynptr_read, 1853 .gpl_only = false, 1854 .ret_type = RET_INTEGER, 1855 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1856 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1857 .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1858 .arg4_type = ARG_ANYTHING, 1859 .arg5_type = ARG_ANYTHING, 1860 }; 1861 1862 int __bpf_dynptr_write(const struct bpf_dynptr_kern *dst, u64 offset, void *src, 1863 u64 len, u64 flags) 1864 { 1865 enum bpf_dynptr_type type; 1866 int err; 1867 1868 if (!dst->data || __bpf_dynptr_is_rdonly(dst)) 1869 return -EINVAL; 1870 1871 err = bpf_dynptr_check_off_len(dst, offset, len); 1872 if (err) 1873 return err; 1874 1875 type = bpf_dynptr_get_type(dst); 1876 1877 switch (type) { 1878 case BPF_DYNPTR_TYPE_LOCAL: 1879 case BPF_DYNPTR_TYPE_RINGBUF: 1880 if (flags) 1881 return -EINVAL; 1882 /* Source and destination may possibly overlap, hence use memmove to 1883 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1884 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1885 */ 1886 memmove(dst->data + dst->offset + offset, src, len); 1887 return 0; 1888 case BPF_DYNPTR_TYPE_SKB: 1889 return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len, 1890 flags); 1891 case BPF_DYNPTR_TYPE_XDP: 1892 if (flags) 1893 return -EINVAL; 1894 return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len); 1895 case BPF_DYNPTR_TYPE_SKB_META: 1896 return __bpf_skb_meta_store_bytes(dst->data, dst->offset + offset, src, 1897 len, flags); 1898 default: 1899 WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type); 1900 return -EFAULT; 1901 } 1902 } 1903 1904 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u64, offset, void *, src, 1905 u64, len, u64, flags) 1906 { 1907 return __bpf_dynptr_write(dst, offset, src, len, flags); 1908 } 1909 1910 static const struct bpf_func_proto bpf_dynptr_write_proto = { 1911 .func = bpf_dynptr_write, 1912 .gpl_only = false, 1913 .ret_type = RET_INTEGER, 1914 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1915 .arg2_type = ARG_ANYTHING, 1916 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1917 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 1918 .arg5_type = ARG_ANYTHING, 1919 }; 1920 1921 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u64, offset, u64, len) 1922 { 1923 enum bpf_dynptr_type type; 1924 int err; 1925 1926 if (!ptr->data) 1927 return 0; 1928 1929 err = bpf_dynptr_check_off_len(ptr, offset, len); 1930 if (err) 1931 return 0; 1932 1933 if (__bpf_dynptr_is_rdonly(ptr)) 1934 return 0; 1935 1936 type = bpf_dynptr_get_type(ptr); 1937 1938 switch (type) { 1939 case BPF_DYNPTR_TYPE_LOCAL: 1940 case BPF_DYNPTR_TYPE_RINGBUF: 1941 return (unsigned long)(ptr->data + ptr->offset + offset); 1942 case BPF_DYNPTR_TYPE_SKB: 1943 case BPF_DYNPTR_TYPE_XDP: 1944 case BPF_DYNPTR_TYPE_SKB_META: 1945 /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */ 1946 return 0; 1947 default: 1948 WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type); 1949 return 0; 1950 } 1951 } 1952 1953 static const struct bpf_func_proto bpf_dynptr_data_proto = { 1954 .func = bpf_dynptr_data, 1955 .gpl_only = false, 1956 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL, 1957 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1958 .arg2_type = ARG_ANYTHING, 1959 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 1960 }; 1961 1962 const struct bpf_func_proto bpf_get_current_task_proto __weak; 1963 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; 1964 const struct bpf_func_proto bpf_probe_read_user_proto __weak; 1965 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; 1966 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; 1967 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; 1968 const struct bpf_func_proto bpf_task_pt_regs_proto __weak; 1969 const struct bpf_func_proto bpf_perf_event_read_proto __weak; 1970 const struct bpf_func_proto bpf_send_signal_proto __weak; 1971 const struct bpf_func_proto bpf_send_signal_thread_proto __weak; 1972 const struct bpf_func_proto bpf_get_task_stack_sleepable_proto __weak; 1973 const struct bpf_func_proto bpf_get_task_stack_proto __weak; 1974 const struct bpf_func_proto bpf_get_branch_snapshot_proto __weak; 1975 1976 const struct bpf_func_proto * 1977 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1978 { 1979 switch (func_id) { 1980 case BPF_FUNC_map_lookup_elem: 1981 return &bpf_map_lookup_elem_proto; 1982 case BPF_FUNC_map_update_elem: 1983 return &bpf_map_update_elem_proto; 1984 case BPF_FUNC_map_delete_elem: 1985 return &bpf_map_delete_elem_proto; 1986 case BPF_FUNC_map_push_elem: 1987 return &bpf_map_push_elem_proto; 1988 case BPF_FUNC_map_pop_elem: 1989 return &bpf_map_pop_elem_proto; 1990 case BPF_FUNC_map_peek_elem: 1991 return &bpf_map_peek_elem_proto; 1992 case BPF_FUNC_map_lookup_percpu_elem: 1993 return &bpf_map_lookup_percpu_elem_proto; 1994 case BPF_FUNC_get_prandom_u32: 1995 return &bpf_get_prandom_u32_proto; 1996 case BPF_FUNC_get_smp_processor_id: 1997 return &bpf_get_raw_smp_processor_id_proto; 1998 case BPF_FUNC_get_numa_node_id: 1999 return &bpf_get_numa_node_id_proto; 2000 case BPF_FUNC_tail_call: 2001 return &bpf_tail_call_proto; 2002 case BPF_FUNC_ktime_get_ns: 2003 return &bpf_ktime_get_ns_proto; 2004 case BPF_FUNC_ktime_get_boot_ns: 2005 return &bpf_ktime_get_boot_ns_proto; 2006 case BPF_FUNC_ktime_get_tai_ns: 2007 return &bpf_ktime_get_tai_ns_proto; 2008 case BPF_FUNC_ringbuf_output: 2009 return &bpf_ringbuf_output_proto; 2010 case BPF_FUNC_ringbuf_reserve: 2011 return &bpf_ringbuf_reserve_proto; 2012 case BPF_FUNC_ringbuf_submit: 2013 return &bpf_ringbuf_submit_proto; 2014 case BPF_FUNC_ringbuf_discard: 2015 return &bpf_ringbuf_discard_proto; 2016 case BPF_FUNC_ringbuf_query: 2017 return &bpf_ringbuf_query_proto; 2018 case BPF_FUNC_strncmp: 2019 return &bpf_strncmp_proto; 2020 case BPF_FUNC_strtol: 2021 return &bpf_strtol_proto; 2022 case BPF_FUNC_strtoul: 2023 return &bpf_strtoul_proto; 2024 case BPF_FUNC_get_current_pid_tgid: 2025 return &bpf_get_current_pid_tgid_proto; 2026 case BPF_FUNC_get_ns_current_pid_tgid: 2027 return &bpf_get_ns_current_pid_tgid_proto; 2028 case BPF_FUNC_get_current_uid_gid: 2029 return &bpf_get_current_uid_gid_proto; 2030 default: 2031 break; 2032 } 2033 2034 if (!bpf_token_capable(prog->aux->token, CAP_BPF)) 2035 return NULL; 2036 2037 switch (func_id) { 2038 case BPF_FUNC_spin_lock: 2039 return &bpf_spin_lock_proto; 2040 case BPF_FUNC_spin_unlock: 2041 return &bpf_spin_unlock_proto; 2042 case BPF_FUNC_jiffies64: 2043 return &bpf_jiffies64_proto; 2044 case BPF_FUNC_per_cpu_ptr: 2045 return &bpf_per_cpu_ptr_proto; 2046 case BPF_FUNC_this_cpu_ptr: 2047 return &bpf_this_cpu_ptr_proto; 2048 case BPF_FUNC_timer_init: 2049 return &bpf_timer_init_proto; 2050 case BPF_FUNC_timer_set_callback: 2051 return &bpf_timer_set_callback_proto; 2052 case BPF_FUNC_timer_start: 2053 return &bpf_timer_start_proto; 2054 case BPF_FUNC_timer_cancel: 2055 return &bpf_timer_cancel_proto; 2056 case BPF_FUNC_kptr_xchg: 2057 return &bpf_kptr_xchg_proto; 2058 case BPF_FUNC_for_each_map_elem: 2059 return &bpf_for_each_map_elem_proto; 2060 case BPF_FUNC_loop: 2061 return &bpf_loop_proto; 2062 case BPF_FUNC_user_ringbuf_drain: 2063 return &bpf_user_ringbuf_drain_proto; 2064 case BPF_FUNC_ringbuf_reserve_dynptr: 2065 return &bpf_ringbuf_reserve_dynptr_proto; 2066 case BPF_FUNC_ringbuf_submit_dynptr: 2067 return &bpf_ringbuf_submit_dynptr_proto; 2068 case BPF_FUNC_ringbuf_discard_dynptr: 2069 return &bpf_ringbuf_discard_dynptr_proto; 2070 case BPF_FUNC_dynptr_from_mem: 2071 return &bpf_dynptr_from_mem_proto; 2072 case BPF_FUNC_dynptr_read: 2073 return &bpf_dynptr_read_proto; 2074 case BPF_FUNC_dynptr_write: 2075 return &bpf_dynptr_write_proto; 2076 case BPF_FUNC_dynptr_data: 2077 return &bpf_dynptr_data_proto; 2078 #ifdef CONFIG_CGROUPS 2079 case BPF_FUNC_cgrp_storage_get: 2080 return &bpf_cgrp_storage_get_proto; 2081 case BPF_FUNC_cgrp_storage_delete: 2082 return &bpf_cgrp_storage_delete_proto; 2083 case BPF_FUNC_get_current_cgroup_id: 2084 return &bpf_get_current_cgroup_id_proto; 2085 case BPF_FUNC_get_current_ancestor_cgroup_id: 2086 return &bpf_get_current_ancestor_cgroup_id_proto; 2087 case BPF_FUNC_current_task_under_cgroup: 2088 return &bpf_current_task_under_cgroup_proto; 2089 #endif 2090 #ifdef CONFIG_CGROUP_NET_CLASSID 2091 case BPF_FUNC_get_cgroup_classid: 2092 return &bpf_get_cgroup_classid_curr_proto; 2093 #endif 2094 case BPF_FUNC_task_storage_get: 2095 if (bpf_prog_check_recur(prog)) 2096 return &bpf_task_storage_get_recur_proto; 2097 return &bpf_task_storage_get_proto; 2098 case BPF_FUNC_task_storage_delete: 2099 if (bpf_prog_check_recur(prog)) 2100 return &bpf_task_storage_delete_recur_proto; 2101 return &bpf_task_storage_delete_proto; 2102 default: 2103 break; 2104 } 2105 2106 if (!bpf_token_capable(prog->aux->token, CAP_PERFMON)) 2107 return NULL; 2108 2109 switch (func_id) { 2110 case BPF_FUNC_trace_printk: 2111 return bpf_get_trace_printk_proto(); 2112 case BPF_FUNC_get_current_task: 2113 return &bpf_get_current_task_proto; 2114 case BPF_FUNC_get_current_task_btf: 2115 return &bpf_get_current_task_btf_proto; 2116 case BPF_FUNC_get_current_comm: 2117 return &bpf_get_current_comm_proto; 2118 case BPF_FUNC_probe_read_user: 2119 return &bpf_probe_read_user_proto; 2120 case BPF_FUNC_probe_read_kernel: 2121 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 2122 NULL : &bpf_probe_read_kernel_proto; 2123 case BPF_FUNC_probe_read_user_str: 2124 return &bpf_probe_read_user_str_proto; 2125 case BPF_FUNC_probe_read_kernel_str: 2126 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 2127 NULL : &bpf_probe_read_kernel_str_proto; 2128 case BPF_FUNC_copy_from_user: 2129 return &bpf_copy_from_user_proto; 2130 case BPF_FUNC_copy_from_user_task: 2131 return &bpf_copy_from_user_task_proto; 2132 case BPF_FUNC_snprintf_btf: 2133 return &bpf_snprintf_btf_proto; 2134 case BPF_FUNC_snprintf: 2135 return &bpf_snprintf_proto; 2136 case BPF_FUNC_task_pt_regs: 2137 return &bpf_task_pt_regs_proto; 2138 case BPF_FUNC_trace_vprintk: 2139 return bpf_get_trace_vprintk_proto(); 2140 case BPF_FUNC_perf_event_read_value: 2141 return bpf_get_perf_event_read_value_proto(); 2142 case BPF_FUNC_perf_event_read: 2143 return &bpf_perf_event_read_proto; 2144 case BPF_FUNC_send_signal: 2145 return &bpf_send_signal_proto; 2146 case BPF_FUNC_send_signal_thread: 2147 return &bpf_send_signal_thread_proto; 2148 case BPF_FUNC_get_task_stack: 2149 return prog->sleepable ? &bpf_get_task_stack_sleepable_proto 2150 : &bpf_get_task_stack_proto; 2151 case BPF_FUNC_get_branch_snapshot: 2152 return &bpf_get_branch_snapshot_proto; 2153 case BPF_FUNC_find_vma: 2154 return &bpf_find_vma_proto; 2155 default: 2156 return NULL; 2157 } 2158 } 2159 EXPORT_SYMBOL_GPL(bpf_base_func_proto); 2160 2161 void bpf_list_head_free(const struct btf_field *field, void *list_head, 2162 struct bpf_spin_lock *spin_lock) 2163 { 2164 struct list_head *head = list_head, *orig_head = list_head; 2165 2166 BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head)); 2167 BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head)); 2168 2169 /* Do the actual list draining outside the lock to not hold the lock for 2170 * too long, and also prevent deadlocks if tracing programs end up 2171 * executing on entry/exit of functions called inside the critical 2172 * section, and end up doing map ops that call bpf_list_head_free for 2173 * the same map value again. 2174 */ 2175 __bpf_spin_lock_irqsave(spin_lock); 2176 if (!head->next || list_empty(head)) 2177 goto unlock; 2178 head = head->next; 2179 unlock: 2180 INIT_LIST_HEAD(orig_head); 2181 __bpf_spin_unlock_irqrestore(spin_lock); 2182 2183 while (head != orig_head) { 2184 void *obj = head; 2185 2186 obj -= field->graph_root.node_offset; 2187 head = head->next; 2188 /* The contained type can also have resources, including a 2189 * bpf_list_head which needs to be freed. 2190 */ 2191 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); 2192 } 2193 } 2194 2195 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are 2196 * 'rb_node *', so field name of rb_node within containing struct is not 2197 * needed. 2198 * 2199 * Since bpf_rb_tree's node type has a corresponding struct btf_field with 2200 * graph_root.node_offset, it's not necessary to know field name 2201 * or type of node struct 2202 */ 2203 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \ 2204 for (pos = rb_first_postorder(root); \ 2205 pos && ({ n = rb_next_postorder(pos); 1; }); \ 2206 pos = n) 2207 2208 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 2209 struct bpf_spin_lock *spin_lock) 2210 { 2211 struct rb_root_cached orig_root, *root = rb_root; 2212 struct rb_node *pos, *n; 2213 void *obj; 2214 2215 BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root)); 2216 BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root)); 2217 2218 __bpf_spin_lock_irqsave(spin_lock); 2219 orig_root = *root; 2220 *root = RB_ROOT_CACHED; 2221 __bpf_spin_unlock_irqrestore(spin_lock); 2222 2223 bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) { 2224 obj = pos; 2225 obj -= field->graph_root.node_offset; 2226 2227 2228 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); 2229 } 2230 } 2231 2232 __bpf_kfunc_start_defs(); 2233 2234 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign) 2235 { 2236 struct btf_struct_meta *meta = meta__ign; 2237 u64 size = local_type_id__k; 2238 void *p; 2239 2240 p = bpf_mem_alloc(&bpf_global_ma, size); 2241 if (!p) 2242 return NULL; 2243 if (meta) 2244 bpf_obj_init(meta->record, p); 2245 return p; 2246 } 2247 2248 __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign) 2249 { 2250 u64 size = local_type_id__k; 2251 2252 /* The verifier has ensured that meta__ign must be NULL */ 2253 return bpf_mem_alloc(&bpf_global_percpu_ma, size); 2254 } 2255 2256 /* Must be called under migrate_disable(), as required by bpf_mem_free */ 2257 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu) 2258 { 2259 struct bpf_mem_alloc *ma; 2260 2261 if (rec && rec->refcount_off >= 0 && 2262 !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) { 2263 /* Object is refcounted and refcount_dec didn't result in 0 2264 * refcount. Return without freeing the object 2265 */ 2266 return; 2267 } 2268 2269 if (rec) 2270 bpf_obj_free_fields(rec, p); 2271 2272 if (percpu) 2273 ma = &bpf_global_percpu_ma; 2274 else 2275 ma = &bpf_global_ma; 2276 bpf_mem_free_rcu(ma, p); 2277 } 2278 2279 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign) 2280 { 2281 struct btf_struct_meta *meta = meta__ign; 2282 void *p = p__alloc; 2283 2284 __bpf_obj_drop_impl(p, meta ? meta->record : NULL, false); 2285 } 2286 2287 __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign) 2288 { 2289 /* The verifier has ensured that meta__ign must be NULL */ 2290 bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc); 2291 } 2292 2293 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign) 2294 { 2295 struct btf_struct_meta *meta = meta__ign; 2296 struct bpf_refcount *ref; 2297 2298 /* Could just cast directly to refcount_t *, but need some code using 2299 * bpf_refcount type so that it is emitted in vmlinux BTF 2300 */ 2301 ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off); 2302 if (!refcount_inc_not_zero((refcount_t *)ref)) 2303 return NULL; 2304 2305 /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null 2306 * in verifier.c 2307 */ 2308 return (void *)p__refcounted_kptr; 2309 } 2310 2311 static int __bpf_list_add(struct bpf_list_node_kern *node, 2312 struct bpf_list_head *head, 2313 bool tail, struct btf_record *rec, u64 off) 2314 { 2315 struct list_head *n = &node->list_head, *h = (void *)head; 2316 2317 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 2318 * called on its fields, so init here 2319 */ 2320 if (unlikely(!h->next)) 2321 INIT_LIST_HEAD(h); 2322 2323 /* node->owner != NULL implies !list_empty(n), no need to separately 2324 * check the latter 2325 */ 2326 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { 2327 /* Only called from BPF prog, no need to migrate_disable */ 2328 __bpf_obj_drop_impl((void *)n - off, rec, false); 2329 return -EINVAL; 2330 } 2331 2332 tail ? list_add_tail(n, h) : list_add(n, h); 2333 WRITE_ONCE(node->owner, head); 2334 2335 return 0; 2336 } 2337 2338 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head, 2339 struct bpf_list_node *node, 2340 void *meta__ign, u64 off) 2341 { 2342 struct bpf_list_node_kern *n = (void *)node; 2343 struct btf_struct_meta *meta = meta__ign; 2344 2345 return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off); 2346 } 2347 2348 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head, 2349 struct bpf_list_node *node, 2350 void *meta__ign, u64 off) 2351 { 2352 struct bpf_list_node_kern *n = (void *)node; 2353 struct btf_struct_meta *meta = meta__ign; 2354 2355 return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off); 2356 } 2357 2358 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail) 2359 { 2360 struct list_head *n, *h = (void *)head; 2361 struct bpf_list_node_kern *node; 2362 2363 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 2364 * called on its fields, so init here 2365 */ 2366 if (unlikely(!h->next)) 2367 INIT_LIST_HEAD(h); 2368 if (list_empty(h)) 2369 return NULL; 2370 2371 n = tail ? h->prev : h->next; 2372 node = container_of(n, struct bpf_list_node_kern, list_head); 2373 if (WARN_ON_ONCE(READ_ONCE(node->owner) != head)) 2374 return NULL; 2375 2376 list_del_init(n); 2377 WRITE_ONCE(node->owner, NULL); 2378 return (struct bpf_list_node *)n; 2379 } 2380 2381 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) 2382 { 2383 return __bpf_list_del(head, false); 2384 } 2385 2386 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) 2387 { 2388 return __bpf_list_del(head, true); 2389 } 2390 2391 __bpf_kfunc struct bpf_list_node *bpf_list_front(struct bpf_list_head *head) 2392 { 2393 struct list_head *h = (struct list_head *)head; 2394 2395 if (list_empty(h) || unlikely(!h->next)) 2396 return NULL; 2397 2398 return (struct bpf_list_node *)h->next; 2399 } 2400 2401 __bpf_kfunc struct bpf_list_node *bpf_list_back(struct bpf_list_head *head) 2402 { 2403 struct list_head *h = (struct list_head *)head; 2404 2405 if (list_empty(h) || unlikely(!h->next)) 2406 return NULL; 2407 2408 return (struct bpf_list_node *)h->prev; 2409 } 2410 2411 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root, 2412 struct bpf_rb_node *node) 2413 { 2414 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; 2415 struct rb_root_cached *r = (struct rb_root_cached *)root; 2416 struct rb_node *n = &node_internal->rb_node; 2417 2418 /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or 2419 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n) 2420 */ 2421 if (READ_ONCE(node_internal->owner) != root) 2422 return NULL; 2423 2424 rb_erase_cached(n, r); 2425 RB_CLEAR_NODE(n); 2426 WRITE_ONCE(node_internal->owner, NULL); 2427 return (struct bpf_rb_node *)n; 2428 } 2429 2430 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF 2431 * program 2432 */ 2433 static int __bpf_rbtree_add(struct bpf_rb_root *root, 2434 struct bpf_rb_node_kern *node, 2435 void *less, struct btf_record *rec, u64 off) 2436 { 2437 struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node; 2438 struct rb_node *parent = NULL, *n = &node->rb_node; 2439 bpf_callback_t cb = (bpf_callback_t)less; 2440 bool leftmost = true; 2441 2442 /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately 2443 * check the latter 2444 */ 2445 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { 2446 /* Only called from BPF prog, no need to migrate_disable */ 2447 __bpf_obj_drop_impl((void *)n - off, rec, false); 2448 return -EINVAL; 2449 } 2450 2451 while (*link) { 2452 parent = *link; 2453 if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) { 2454 link = &parent->rb_left; 2455 } else { 2456 link = &parent->rb_right; 2457 leftmost = false; 2458 } 2459 } 2460 2461 rb_link_node(n, parent, link); 2462 rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost); 2463 WRITE_ONCE(node->owner, root); 2464 return 0; 2465 } 2466 2467 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 2468 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b), 2469 void *meta__ign, u64 off) 2470 { 2471 struct btf_struct_meta *meta = meta__ign; 2472 struct bpf_rb_node_kern *n = (void *)node; 2473 2474 return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off); 2475 } 2476 2477 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) 2478 { 2479 struct rb_root_cached *r = (struct rb_root_cached *)root; 2480 2481 return (struct bpf_rb_node *)rb_first_cached(r); 2482 } 2483 2484 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_root(struct bpf_rb_root *root) 2485 { 2486 struct rb_root_cached *r = (struct rb_root_cached *)root; 2487 2488 return (struct bpf_rb_node *)r->rb_root.rb_node; 2489 } 2490 2491 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_left(struct bpf_rb_root *root, struct bpf_rb_node *node) 2492 { 2493 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; 2494 2495 if (READ_ONCE(node_internal->owner) != root) 2496 return NULL; 2497 2498 return (struct bpf_rb_node *)node_internal->rb_node.rb_left; 2499 } 2500 2501 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_right(struct bpf_rb_root *root, struct bpf_rb_node *node) 2502 { 2503 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; 2504 2505 if (READ_ONCE(node_internal->owner) != root) 2506 return NULL; 2507 2508 return (struct bpf_rb_node *)node_internal->rb_node.rb_right; 2509 } 2510 2511 /** 2512 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this 2513 * kfunc which is not stored in a map as a kptr, must be released by calling 2514 * bpf_task_release(). 2515 * @p: The task on which a reference is being acquired. 2516 */ 2517 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p) 2518 { 2519 if (refcount_inc_not_zero(&p->rcu_users)) 2520 return p; 2521 return NULL; 2522 } 2523 2524 /** 2525 * bpf_task_release - Release the reference acquired on a task. 2526 * @p: The task on which a reference is being released. 2527 */ 2528 __bpf_kfunc void bpf_task_release(struct task_struct *p) 2529 { 2530 put_task_struct_rcu_user(p); 2531 } 2532 2533 __bpf_kfunc void bpf_task_release_dtor(void *p) 2534 { 2535 put_task_struct_rcu_user(p); 2536 } 2537 CFI_NOSEAL(bpf_task_release_dtor); 2538 2539 #ifdef CONFIG_CGROUPS 2540 /** 2541 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by 2542 * this kfunc which is not stored in a map as a kptr, must be released by 2543 * calling bpf_cgroup_release(). 2544 * @cgrp: The cgroup on which a reference is being acquired. 2545 */ 2546 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp) 2547 { 2548 return cgroup_tryget(cgrp) ? cgrp : NULL; 2549 } 2550 2551 /** 2552 * bpf_cgroup_release - Release the reference acquired on a cgroup. 2553 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to 2554 * not be freed until the current grace period has ended, even if its refcount 2555 * drops to 0. 2556 * @cgrp: The cgroup on which a reference is being released. 2557 */ 2558 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp) 2559 { 2560 cgroup_put(cgrp); 2561 } 2562 2563 __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp) 2564 { 2565 cgroup_put(cgrp); 2566 } 2567 CFI_NOSEAL(bpf_cgroup_release_dtor); 2568 2569 /** 2570 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor 2571 * array. A cgroup returned by this kfunc which is not subsequently stored in a 2572 * map, must be released by calling bpf_cgroup_release(). 2573 * @cgrp: The cgroup for which we're performing a lookup. 2574 * @level: The level of ancestor to look up. 2575 */ 2576 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) 2577 { 2578 struct cgroup *ancestor; 2579 2580 if (level > cgrp->level || level < 0) 2581 return NULL; 2582 2583 /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */ 2584 ancestor = cgrp->ancestors[level]; 2585 if (!cgroup_tryget(ancestor)) 2586 return NULL; 2587 return ancestor; 2588 } 2589 2590 /** 2591 * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this 2592 * kfunc which is not subsequently stored in a map, must be released by calling 2593 * bpf_cgroup_release(). 2594 * @cgid: cgroup id. 2595 */ 2596 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid) 2597 { 2598 struct cgroup *cgrp; 2599 2600 cgrp = __cgroup_get_from_id(cgid); 2601 if (IS_ERR(cgrp)) 2602 return NULL; 2603 return cgrp; 2604 } 2605 2606 /** 2607 * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test 2608 * task's membership of cgroup ancestry. 2609 * @task: the task to be tested 2610 * @ancestor: possible ancestor of @task's cgroup 2611 * 2612 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor. 2613 * It follows all the same rules as cgroup_is_descendant, and only applies 2614 * to the default hierarchy. 2615 */ 2616 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task, 2617 struct cgroup *ancestor) 2618 { 2619 long ret; 2620 2621 rcu_read_lock(); 2622 ret = task_under_cgroup_hierarchy(task, ancestor); 2623 rcu_read_unlock(); 2624 return ret; 2625 } 2626 2627 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 2628 { 2629 struct bpf_array *array = container_of(map, struct bpf_array, map); 2630 struct cgroup *cgrp; 2631 2632 if (unlikely(idx >= array->map.max_entries)) 2633 return -E2BIG; 2634 2635 cgrp = READ_ONCE(array->ptrs[idx]); 2636 if (unlikely(!cgrp)) 2637 return -EAGAIN; 2638 2639 return task_under_cgroup_hierarchy(current, cgrp); 2640 } 2641 2642 const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 2643 .func = bpf_current_task_under_cgroup, 2644 .gpl_only = false, 2645 .ret_type = RET_INTEGER, 2646 .arg1_type = ARG_CONST_MAP_PTR, 2647 .arg2_type = ARG_ANYTHING, 2648 }; 2649 2650 /** 2651 * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a 2652 * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its 2653 * hierarchy ID. 2654 * @task: The target task 2655 * @hierarchy_id: The ID of a cgroup1 hierarchy 2656 * 2657 * On success, the cgroup is returen. On failure, NULL is returned. 2658 */ 2659 __bpf_kfunc struct cgroup * 2660 bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id) 2661 { 2662 struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id); 2663 2664 if (IS_ERR(cgrp)) 2665 return NULL; 2666 return cgrp; 2667 } 2668 #endif /* CONFIG_CGROUPS */ 2669 2670 /** 2671 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up 2672 * in the root pid namespace idr. If a task is returned, it must either be 2673 * stored in a map, or released with bpf_task_release(). 2674 * @pid: The pid of the task being looked up. 2675 */ 2676 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid) 2677 { 2678 struct task_struct *p; 2679 2680 rcu_read_lock(); 2681 p = find_task_by_pid_ns(pid, &init_pid_ns); 2682 if (p) 2683 p = bpf_task_acquire(p); 2684 rcu_read_unlock(); 2685 2686 return p; 2687 } 2688 2689 /** 2690 * bpf_task_from_vpid - Find a struct task_struct from its vpid by looking it up 2691 * in the pid namespace of the current task. If a task is returned, it must 2692 * either be stored in a map, or released with bpf_task_release(). 2693 * @vpid: The vpid of the task being looked up. 2694 */ 2695 __bpf_kfunc struct task_struct *bpf_task_from_vpid(s32 vpid) 2696 { 2697 struct task_struct *p; 2698 2699 rcu_read_lock(); 2700 p = find_task_by_vpid(vpid); 2701 if (p) 2702 p = bpf_task_acquire(p); 2703 rcu_read_unlock(); 2704 2705 return p; 2706 } 2707 2708 /** 2709 * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data. 2710 * @p: The dynptr whose data slice to retrieve 2711 * @offset: Offset into the dynptr 2712 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2713 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2714 * length of the requested slice. This must be a constant. 2715 * 2716 * For non-skb and non-xdp type dynptrs, there is no difference between 2717 * bpf_dynptr_slice and bpf_dynptr_data. 2718 * 2719 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2720 * 2721 * If the intention is to write to the data slice, please use 2722 * bpf_dynptr_slice_rdwr. 2723 * 2724 * The user must check that the returned pointer is not null before using it. 2725 * 2726 * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice 2727 * does not change the underlying packet data pointers, so a call to 2728 * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in 2729 * the bpf program. 2730 * 2731 * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only 2732 * data slice (can be either direct pointer to the data or a pointer to the user 2733 * provided buffer, with its contents containing the data, if unable to obtain 2734 * direct pointer) 2735 */ 2736 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u64 offset, 2737 void *buffer__opt, u64 buffer__szk) 2738 { 2739 const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2740 enum bpf_dynptr_type type; 2741 u64 len = buffer__szk; 2742 int err; 2743 2744 if (!ptr->data) 2745 return NULL; 2746 2747 err = bpf_dynptr_check_off_len(ptr, offset, len); 2748 if (err) 2749 return NULL; 2750 2751 type = bpf_dynptr_get_type(ptr); 2752 2753 switch (type) { 2754 case BPF_DYNPTR_TYPE_LOCAL: 2755 case BPF_DYNPTR_TYPE_RINGBUF: 2756 return ptr->data + ptr->offset + offset; 2757 case BPF_DYNPTR_TYPE_SKB: 2758 if (buffer__opt) 2759 return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt); 2760 else 2761 return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len); 2762 case BPF_DYNPTR_TYPE_XDP: 2763 { 2764 void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len); 2765 if (!IS_ERR_OR_NULL(xdp_ptr)) 2766 return xdp_ptr; 2767 2768 if (!buffer__opt) 2769 return NULL; 2770 bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false); 2771 return buffer__opt; 2772 } 2773 case BPF_DYNPTR_TYPE_SKB_META: 2774 return bpf_skb_meta_pointer(ptr->data, ptr->offset + offset); 2775 case BPF_DYNPTR_TYPE_FILE: 2776 err = bpf_file_fetch_bytes(ptr->data, offset, buffer__opt, buffer__szk); 2777 return err ? NULL : buffer__opt; 2778 default: 2779 WARN_ONCE(true, "unknown dynptr type %d\n", type); 2780 return NULL; 2781 } 2782 } 2783 2784 /** 2785 * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data. 2786 * @p: The dynptr whose data slice to retrieve 2787 * @offset: Offset into the dynptr 2788 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2789 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2790 * length of the requested slice. This must be a constant. 2791 * 2792 * For non-skb and non-xdp type dynptrs, there is no difference between 2793 * bpf_dynptr_slice and bpf_dynptr_data. 2794 * 2795 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2796 * 2797 * The returned pointer is writable and may point to either directly the dynptr 2798 * data at the requested offset or to the buffer if unable to obtain a direct 2799 * data pointer to (example: the requested slice is to the paged area of an skb 2800 * packet). In the case where the returned pointer is to the buffer, the user 2801 * is responsible for persisting writes through calling bpf_dynptr_write(). This 2802 * usually looks something like this pattern: 2803 * 2804 * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer)); 2805 * if (!eth) 2806 * return TC_ACT_SHOT; 2807 * 2808 * // mutate eth header // 2809 * 2810 * if (eth == buffer) 2811 * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0); 2812 * 2813 * Please note that, as in the example above, the user must check that the 2814 * returned pointer is not null before using it. 2815 * 2816 * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr 2817 * does not change the underlying packet data pointers, so a call to 2818 * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in 2819 * the bpf program. 2820 * 2821 * Return: NULL if the call failed (eg invalid dynptr), pointer to a 2822 * data slice (can be either direct pointer to the data or a pointer to the user 2823 * provided buffer, with its contents containing the data, if unable to obtain 2824 * direct pointer) 2825 */ 2826 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u64 offset, 2827 void *buffer__opt, u64 buffer__szk) 2828 { 2829 const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2830 2831 if (!ptr->data || __bpf_dynptr_is_rdonly(ptr)) 2832 return NULL; 2833 2834 /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice. 2835 * 2836 * For skb-type dynptrs, it is safe to write into the returned pointer 2837 * if the bpf program allows skb data writes. There are two possibilities 2838 * that may occur when calling bpf_dynptr_slice_rdwr: 2839 * 2840 * 1) The requested slice is in the head of the skb. In this case, the 2841 * returned pointer is directly to skb data, and if the skb is cloned, the 2842 * verifier will have uncloned it (see bpf_unclone_prologue()) already. 2843 * The pointer can be directly written into. 2844 * 2845 * 2) Some portion of the requested slice is in the paged buffer area. 2846 * In this case, the requested data will be copied out into the buffer 2847 * and the returned pointer will be a pointer to the buffer. The skb 2848 * will not be pulled. To persist the write, the user will need to call 2849 * bpf_dynptr_write(), which will pull the skb and commit the write. 2850 * 2851 * Similarly for xdp programs, if the requested slice is not across xdp 2852 * fragments, then a direct pointer will be returned, otherwise the data 2853 * will be copied out into the buffer and the user will need to call 2854 * bpf_dynptr_write() to commit changes. 2855 */ 2856 return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk); 2857 } 2858 2859 __bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u64 start, u64 end) 2860 { 2861 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2862 u64 size; 2863 2864 if (!ptr->data || start > end) 2865 return -EINVAL; 2866 2867 size = __bpf_dynptr_size(ptr); 2868 2869 if (start > size || end > size) 2870 return -ERANGE; 2871 2872 bpf_dynptr_advance_offset(ptr, start); 2873 bpf_dynptr_set_size(ptr, end - start); 2874 2875 return 0; 2876 } 2877 2878 __bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p) 2879 { 2880 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2881 2882 return !ptr->data; 2883 } 2884 2885 __bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p) 2886 { 2887 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2888 2889 if (!ptr->data) 2890 return false; 2891 2892 return __bpf_dynptr_is_rdonly(ptr); 2893 } 2894 2895 __bpf_kfunc u64 bpf_dynptr_size(const struct bpf_dynptr *p) 2896 { 2897 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2898 2899 if (!ptr->data) 2900 return -EINVAL; 2901 2902 return __bpf_dynptr_size(ptr); 2903 } 2904 2905 __bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p, 2906 struct bpf_dynptr *clone__uninit) 2907 { 2908 struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit; 2909 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2910 2911 if (!ptr->data) { 2912 bpf_dynptr_set_null(clone); 2913 return -EINVAL; 2914 } 2915 2916 *clone = *ptr; 2917 2918 return 0; 2919 } 2920 2921 /** 2922 * bpf_dynptr_copy() - Copy data from one dynptr to another. 2923 * @dst_ptr: Destination dynptr - where data should be copied to 2924 * @dst_off: Offset into the destination dynptr 2925 * @src_ptr: Source dynptr - where data should be copied from 2926 * @src_off: Offset into the source dynptr 2927 * @size: Length of the data to copy from source to destination 2928 * 2929 * Copies data from source dynptr to destination dynptr. 2930 * Returns 0 on success; negative error, otherwise. 2931 */ 2932 __bpf_kfunc int bpf_dynptr_copy(struct bpf_dynptr *dst_ptr, u64 dst_off, 2933 struct bpf_dynptr *src_ptr, u64 src_off, u64 size) 2934 { 2935 struct bpf_dynptr_kern *dst = (struct bpf_dynptr_kern *)dst_ptr; 2936 struct bpf_dynptr_kern *src = (struct bpf_dynptr_kern *)src_ptr; 2937 void *src_slice, *dst_slice; 2938 char buf[256]; 2939 u64 off; 2940 2941 src_slice = bpf_dynptr_slice(src_ptr, src_off, NULL, size); 2942 dst_slice = bpf_dynptr_slice_rdwr(dst_ptr, dst_off, NULL, size); 2943 2944 if (src_slice && dst_slice) { 2945 memmove(dst_slice, src_slice, size); 2946 return 0; 2947 } 2948 2949 if (src_slice) 2950 return __bpf_dynptr_write(dst, dst_off, src_slice, size, 0); 2951 2952 if (dst_slice) 2953 return __bpf_dynptr_read(dst_slice, size, src, src_off, 0); 2954 2955 if (bpf_dynptr_check_off_len(dst, dst_off, size) || 2956 bpf_dynptr_check_off_len(src, src_off, size)) 2957 return -E2BIG; 2958 2959 off = 0; 2960 while (off < size) { 2961 u64 chunk_sz = min_t(u64, sizeof(buf), size - off); 2962 int err; 2963 2964 err = __bpf_dynptr_read(buf, chunk_sz, src, src_off + off, 0); 2965 if (err) 2966 return err; 2967 err = __bpf_dynptr_write(dst, dst_off + off, buf, chunk_sz, 0); 2968 if (err) 2969 return err; 2970 2971 off += chunk_sz; 2972 } 2973 return 0; 2974 } 2975 2976 /** 2977 * bpf_dynptr_memset() - Fill dynptr memory with a constant byte. 2978 * @p: Destination dynptr - where data will be filled 2979 * @offset: Offset into the dynptr to start filling from 2980 * @size: Number of bytes to fill 2981 * @val: Constant byte to fill the memory with 2982 * 2983 * Fills the @size bytes of the memory area pointed to by @p 2984 * at @offset with the constant byte @val. 2985 * Returns 0 on success; negative error, otherwise. 2986 */ 2987 __bpf_kfunc int bpf_dynptr_memset(struct bpf_dynptr *p, u64 offset, u64 size, u8 val) 2988 { 2989 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2990 u64 chunk_sz, write_off; 2991 char buf[256]; 2992 void* slice; 2993 int err; 2994 2995 slice = bpf_dynptr_slice_rdwr(p, offset, NULL, size); 2996 if (likely(slice)) { 2997 memset(slice, val, size); 2998 return 0; 2999 } 3000 3001 if (__bpf_dynptr_is_rdonly(ptr)) 3002 return -EINVAL; 3003 3004 err = bpf_dynptr_check_off_len(ptr, offset, size); 3005 if (err) 3006 return err; 3007 3008 /* Non-linear data under the dynptr, write from a local buffer */ 3009 chunk_sz = min_t(u64, sizeof(buf), size); 3010 memset(buf, val, chunk_sz); 3011 3012 for (write_off = 0; write_off < size; write_off += chunk_sz) { 3013 chunk_sz = min_t(u64, sizeof(buf), size - write_off); 3014 err = __bpf_dynptr_write(ptr, offset + write_off, buf, chunk_sz, 0); 3015 if (err) 3016 return err; 3017 } 3018 3019 return 0; 3020 } 3021 3022 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj) 3023 { 3024 return obj; 3025 } 3026 3027 __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k) 3028 { 3029 return (void *)obj__ign; 3030 } 3031 3032 __bpf_kfunc void bpf_rcu_read_lock(void) 3033 { 3034 rcu_read_lock(); 3035 } 3036 3037 __bpf_kfunc void bpf_rcu_read_unlock(void) 3038 { 3039 rcu_read_unlock(); 3040 } 3041 3042 struct bpf_throw_ctx { 3043 struct bpf_prog_aux *aux; 3044 u64 sp; 3045 u64 bp; 3046 int cnt; 3047 }; 3048 3049 static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp) 3050 { 3051 struct bpf_throw_ctx *ctx = cookie; 3052 struct bpf_prog *prog; 3053 3054 /* 3055 * The RCU read lock is held to safely traverse the latch tree, but we 3056 * don't need its protection when accessing the prog, since it has an 3057 * active stack frame on the current stack trace, and won't disappear. 3058 */ 3059 rcu_read_lock(); 3060 prog = bpf_prog_ksym_find(ip); 3061 rcu_read_unlock(); 3062 if (!prog) 3063 return !ctx->cnt; 3064 ctx->cnt++; 3065 if (bpf_is_subprog(prog)) 3066 return true; 3067 ctx->aux = prog->aux; 3068 ctx->sp = sp; 3069 ctx->bp = bp; 3070 return false; 3071 } 3072 3073 __bpf_kfunc void bpf_throw(u64 cookie) 3074 { 3075 struct bpf_throw_ctx ctx = {}; 3076 3077 arch_bpf_stack_walk(bpf_stack_walker, &ctx); 3078 WARN_ON_ONCE(!ctx.aux); 3079 if (ctx.aux) 3080 WARN_ON_ONCE(!ctx.aux->exception_boundary); 3081 WARN_ON_ONCE(!ctx.bp); 3082 WARN_ON_ONCE(!ctx.cnt); 3083 /* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning 3084 * deeper stack depths than ctx.sp as we do not return from bpf_throw, 3085 * which skips compiler generated instrumentation to do the same. 3086 */ 3087 kasan_unpoison_task_stack_below((void *)(long)ctx.sp); 3088 ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0); 3089 WARN(1, "A call to BPF exception callback should never return\n"); 3090 } 3091 3092 __bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags) 3093 { 3094 struct bpf_async_kern *async = (struct bpf_async_kern *)wq; 3095 struct bpf_map *map = p__map; 3096 3097 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq)); 3098 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq)); 3099 3100 if (flags) 3101 return -EINVAL; 3102 3103 return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ); 3104 } 3105 3106 __bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags) 3107 { 3108 struct bpf_async_kern *async = (struct bpf_async_kern *)wq; 3109 struct bpf_work *w; 3110 3111 if (in_nmi()) 3112 return -EOPNOTSUPP; 3113 if (flags) 3114 return -EINVAL; 3115 w = READ_ONCE(async->work); 3116 if (!w || !READ_ONCE(w->cb.prog)) 3117 return -EINVAL; 3118 3119 schedule_work(&w->work); 3120 return 0; 3121 } 3122 3123 __bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq, 3124 int (callback_fn)(void *map, int *key, void *value), 3125 unsigned int flags, 3126 void *aux__prog) 3127 { 3128 struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__prog; 3129 struct bpf_async_kern *async = (struct bpf_async_kern *)wq; 3130 3131 if (flags) 3132 return -EINVAL; 3133 3134 return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ); 3135 } 3136 3137 __bpf_kfunc void bpf_preempt_disable(void) 3138 { 3139 preempt_disable(); 3140 } 3141 3142 __bpf_kfunc void bpf_preempt_enable(void) 3143 { 3144 preempt_enable(); 3145 } 3146 3147 struct bpf_iter_bits { 3148 __u64 __opaque[2]; 3149 } __aligned(8); 3150 3151 #define BITS_ITER_NR_WORDS_MAX 511 3152 3153 struct bpf_iter_bits_kern { 3154 union { 3155 __u64 *bits; 3156 __u64 bits_copy; 3157 }; 3158 int nr_bits; 3159 int bit; 3160 } __aligned(8); 3161 3162 /* On 64-bit hosts, unsigned long and u64 have the same size, so passing 3163 * a u64 pointer and an unsigned long pointer to find_next_bit() will 3164 * return the same result, as both point to the same 8-byte area. 3165 * 3166 * For 32-bit little-endian hosts, using a u64 pointer or unsigned long 3167 * pointer also makes no difference. This is because the first iterated 3168 * unsigned long is composed of bits 0-31 of the u64 and the second unsigned 3169 * long is composed of bits 32-63 of the u64. 3170 * 3171 * However, for 32-bit big-endian hosts, this is not the case. The first 3172 * iterated unsigned long will be bits 32-63 of the u64, so swap these two 3173 * ulong values within the u64. 3174 */ 3175 static void swap_ulong_in_u64(u64 *bits, unsigned int nr) 3176 { 3177 #if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN) 3178 unsigned int i; 3179 3180 for (i = 0; i < nr; i++) 3181 bits[i] = (bits[i] >> 32) | ((u64)(u32)bits[i] << 32); 3182 #endif 3183 } 3184 3185 /** 3186 * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area 3187 * @it: The new bpf_iter_bits to be created 3188 * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over 3189 * @nr_words: The size of the specified memory area, measured in 8-byte units. 3190 * The maximum value of @nr_words is @BITS_ITER_NR_WORDS_MAX. This limit may be 3191 * further reduced by the BPF memory allocator implementation. 3192 * 3193 * This function initializes a new bpf_iter_bits structure for iterating over 3194 * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It 3195 * copies the data of the memory area to the newly created bpf_iter_bits @it for 3196 * subsequent iteration operations. 3197 * 3198 * On success, 0 is returned. On failure, ERR is returned. 3199 */ 3200 __bpf_kfunc int 3201 bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words) 3202 { 3203 struct bpf_iter_bits_kern *kit = (void *)it; 3204 u32 nr_bytes = nr_words * sizeof(u64); 3205 u32 nr_bits = BYTES_TO_BITS(nr_bytes); 3206 int err; 3207 3208 BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits)); 3209 BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) != 3210 __alignof__(struct bpf_iter_bits)); 3211 3212 kit->nr_bits = 0; 3213 kit->bits_copy = 0; 3214 kit->bit = -1; 3215 3216 if (!unsafe_ptr__ign || !nr_words) 3217 return -EINVAL; 3218 if (nr_words > BITS_ITER_NR_WORDS_MAX) 3219 return -E2BIG; 3220 3221 /* Optimization for u64 mask */ 3222 if (nr_bits == 64) { 3223 err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign); 3224 if (err) 3225 return -EFAULT; 3226 3227 swap_ulong_in_u64(&kit->bits_copy, nr_words); 3228 3229 kit->nr_bits = nr_bits; 3230 return 0; 3231 } 3232 3233 if (bpf_mem_alloc_check_size(false, nr_bytes)) 3234 return -E2BIG; 3235 3236 /* Fallback to memalloc */ 3237 kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes); 3238 if (!kit->bits) 3239 return -ENOMEM; 3240 3241 err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign); 3242 if (err) { 3243 bpf_mem_free(&bpf_global_ma, kit->bits); 3244 return err; 3245 } 3246 3247 swap_ulong_in_u64(kit->bits, nr_words); 3248 3249 kit->nr_bits = nr_bits; 3250 return 0; 3251 } 3252 3253 /** 3254 * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits 3255 * @it: The bpf_iter_bits to be checked 3256 * 3257 * This function returns a pointer to a number representing the value of the 3258 * next bit in the bits. 3259 * 3260 * If there are no further bits available, it returns NULL. 3261 */ 3262 __bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it) 3263 { 3264 struct bpf_iter_bits_kern *kit = (void *)it; 3265 int bit = kit->bit, nr_bits = kit->nr_bits; 3266 const void *bits; 3267 3268 if (!nr_bits || bit >= nr_bits) 3269 return NULL; 3270 3271 bits = nr_bits == 64 ? &kit->bits_copy : kit->bits; 3272 bit = find_next_bit(bits, nr_bits, bit + 1); 3273 if (bit >= nr_bits) { 3274 kit->bit = bit; 3275 return NULL; 3276 } 3277 3278 kit->bit = bit; 3279 return &kit->bit; 3280 } 3281 3282 /** 3283 * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits 3284 * @it: The bpf_iter_bits to be destroyed 3285 * 3286 * Destroy the resource associated with the bpf_iter_bits. 3287 */ 3288 __bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it) 3289 { 3290 struct bpf_iter_bits_kern *kit = (void *)it; 3291 3292 if (kit->nr_bits <= 64) 3293 return; 3294 bpf_mem_free(&bpf_global_ma, kit->bits); 3295 } 3296 3297 /** 3298 * bpf_copy_from_user_str() - Copy a string from an unsafe user address 3299 * @dst: Destination address, in kernel space. This buffer must be 3300 * at least @dst__sz bytes long. 3301 * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL. 3302 * @unsafe_ptr__ign: Source address, in user space. 3303 * @flags: The only supported flag is BPF_F_PAD_ZEROS 3304 * 3305 * Copies a NUL-terminated string from userspace to BPF space. If user string is 3306 * too long this will still ensure zero termination in the dst buffer unless 3307 * buffer size is 0. 3308 * 3309 * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst to 0 on success and 3310 * memset all of @dst on failure. 3311 */ 3312 __bpf_kfunc int bpf_copy_from_user_str(void *dst, u32 dst__sz, const void __user *unsafe_ptr__ign, u64 flags) 3313 { 3314 int ret; 3315 3316 if (unlikely(flags & ~BPF_F_PAD_ZEROS)) 3317 return -EINVAL; 3318 3319 if (unlikely(!dst__sz)) 3320 return 0; 3321 3322 ret = strncpy_from_user(dst, unsafe_ptr__ign, dst__sz - 1); 3323 if (ret < 0) { 3324 if (flags & BPF_F_PAD_ZEROS) 3325 memset((char *)dst, 0, dst__sz); 3326 3327 return ret; 3328 } 3329 3330 if (flags & BPF_F_PAD_ZEROS) 3331 memset((char *)dst + ret, 0, dst__sz - ret); 3332 else 3333 ((char *)dst)[ret] = '\0'; 3334 3335 return ret + 1; 3336 } 3337 3338 /** 3339 * bpf_copy_from_user_task_str() - Copy a string from an task's address space 3340 * @dst: Destination address, in kernel space. This buffer must be 3341 * at least @dst__sz bytes long. 3342 * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL. 3343 * @unsafe_ptr__ign: Source address in the task's address space. 3344 * @tsk: The task whose address space will be used 3345 * @flags: The only supported flag is BPF_F_PAD_ZEROS 3346 * 3347 * Copies a NUL terminated string from a task's address space to @dst__sz 3348 * buffer. If user string is too long this will still ensure zero termination 3349 * in the @dst__sz buffer unless buffer size is 0. 3350 * 3351 * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst__sz to 0 on success 3352 * and memset all of @dst__sz on failure. 3353 * 3354 * Return: The number of copied bytes on success including the NUL terminator. 3355 * A negative error code on failure. 3356 */ 3357 __bpf_kfunc int bpf_copy_from_user_task_str(void *dst, u32 dst__sz, 3358 const void __user *unsafe_ptr__ign, 3359 struct task_struct *tsk, u64 flags) 3360 { 3361 int ret; 3362 3363 if (unlikely(flags & ~BPF_F_PAD_ZEROS)) 3364 return -EINVAL; 3365 3366 if (unlikely(dst__sz == 0)) 3367 return 0; 3368 3369 ret = copy_remote_vm_str(tsk, (unsigned long)unsafe_ptr__ign, dst, dst__sz, 0); 3370 if (ret < 0) { 3371 if (flags & BPF_F_PAD_ZEROS) 3372 memset(dst, 0, dst__sz); 3373 return ret; 3374 } 3375 3376 if (flags & BPF_F_PAD_ZEROS) 3377 memset(dst + ret, 0, dst__sz - ret); 3378 3379 return ret + 1; 3380 } 3381 3382 /* Keep unsinged long in prototype so that kfunc is usable when emitted to 3383 * vmlinux.h in BPF programs directly, but note that while in BPF prog, the 3384 * unsigned long always points to 8-byte region on stack, the kernel may only 3385 * read and write the 4-bytes on 32-bit. 3386 */ 3387 __bpf_kfunc void bpf_local_irq_save(unsigned long *flags__irq_flag) 3388 { 3389 local_irq_save(*flags__irq_flag); 3390 } 3391 3392 __bpf_kfunc void bpf_local_irq_restore(unsigned long *flags__irq_flag) 3393 { 3394 local_irq_restore(*flags__irq_flag); 3395 } 3396 3397 __bpf_kfunc void __bpf_trap(void) 3398 { 3399 } 3400 3401 /* 3402 * Kfuncs for string operations. 3403 * 3404 * Since strings are not necessarily %NUL-terminated, we cannot directly call 3405 * in-kernel implementations. Instead, we open-code the implementations using 3406 * __get_kernel_nofault instead of plain dereference to make them safe. 3407 */ 3408 3409 static int __bpf_strcasecmp(const char *s1, const char *s2, bool ignore_case) 3410 { 3411 char c1, c2; 3412 int i; 3413 3414 if (!copy_from_kernel_nofault_allowed(s1, 1) || 3415 !copy_from_kernel_nofault_allowed(s2, 1)) { 3416 return -ERANGE; 3417 } 3418 3419 guard(pagefault)(); 3420 for (i = 0; i < XATTR_SIZE_MAX; i++) { 3421 __get_kernel_nofault(&c1, s1, char, err_out); 3422 __get_kernel_nofault(&c2, s2, char, err_out); 3423 if (ignore_case) { 3424 c1 = tolower(c1); 3425 c2 = tolower(c2); 3426 } 3427 if (c1 != c2) 3428 return c1 < c2 ? -1 : 1; 3429 if (c1 == '\0') 3430 return 0; 3431 s1++; 3432 s2++; 3433 } 3434 return -E2BIG; 3435 err_out: 3436 return -EFAULT; 3437 } 3438 3439 /** 3440 * bpf_strcmp - Compare two strings 3441 * @s1__ign: One string 3442 * @s2__ign: Another string 3443 * 3444 * Return: 3445 * * %0 - Strings are equal 3446 * * %-1 - @s1__ign is smaller 3447 * * %1 - @s2__ign is smaller 3448 * * %-EFAULT - Cannot read one of the strings 3449 * * %-E2BIG - One of strings is too large 3450 * * %-ERANGE - One of strings is outside of kernel address space 3451 */ 3452 __bpf_kfunc int bpf_strcmp(const char *s1__ign, const char *s2__ign) 3453 { 3454 return __bpf_strcasecmp(s1__ign, s2__ign, false); 3455 } 3456 3457 /** 3458 * bpf_strcasecmp - Compare two strings, ignoring the case of the characters 3459 * @s1__ign: One string 3460 * @s2__ign: Another string 3461 * 3462 * Return: 3463 * * %0 - Strings are equal 3464 * * %-1 - @s1__ign is smaller 3465 * * %1 - @s2__ign is smaller 3466 * * %-EFAULT - Cannot read one of the strings 3467 * * %-E2BIG - One of strings is too large 3468 * * %-ERANGE - One of strings is outside of kernel address space 3469 */ 3470 __bpf_kfunc int bpf_strcasecmp(const char *s1__ign, const char *s2__ign) 3471 { 3472 return __bpf_strcasecmp(s1__ign, s2__ign, true); 3473 } 3474 3475 /** 3476 * bpf_strnchr - Find a character in a length limited string 3477 * @s__ign: The string to be searched 3478 * @count: The number of characters to be searched 3479 * @c: The character to search for 3480 * 3481 * Note that the %NUL-terminator is considered part of the string, and can 3482 * be searched for. 3483 * 3484 * Return: 3485 * * >=0 - Index of the first occurrence of @c within @s__ign 3486 * * %-ENOENT - @c not found in the first @count characters of @s__ign 3487 * * %-EFAULT - Cannot read @s__ign 3488 * * %-E2BIG - @s__ign is too large 3489 * * %-ERANGE - @s__ign is outside of kernel address space 3490 */ 3491 __bpf_kfunc int bpf_strnchr(const char *s__ign, size_t count, char c) 3492 { 3493 char sc; 3494 int i; 3495 3496 if (!copy_from_kernel_nofault_allowed(s__ign, 1)) 3497 return -ERANGE; 3498 3499 guard(pagefault)(); 3500 for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) { 3501 __get_kernel_nofault(&sc, s__ign, char, err_out); 3502 if (sc == c) 3503 return i; 3504 if (sc == '\0') 3505 return -ENOENT; 3506 s__ign++; 3507 } 3508 return i == XATTR_SIZE_MAX ? -E2BIG : -ENOENT; 3509 err_out: 3510 return -EFAULT; 3511 } 3512 3513 /** 3514 * bpf_strchr - Find the first occurrence of a character in a string 3515 * @s__ign: The string to be searched 3516 * @c: The character to search for 3517 * 3518 * Note that the %NUL-terminator is considered part of the string, and can 3519 * be searched for. 3520 * 3521 * Return: 3522 * * >=0 - The index of the first occurrence of @c within @s__ign 3523 * * %-ENOENT - @c not found in @s__ign 3524 * * %-EFAULT - Cannot read @s__ign 3525 * * %-E2BIG - @s__ign is too large 3526 * * %-ERANGE - @s__ign is outside of kernel address space 3527 */ 3528 __bpf_kfunc int bpf_strchr(const char *s__ign, char c) 3529 { 3530 return bpf_strnchr(s__ign, XATTR_SIZE_MAX, c); 3531 } 3532 3533 /** 3534 * bpf_strchrnul - Find and return a character in a string, or end of string 3535 * @s__ign: The string to be searched 3536 * @c: The character to search for 3537 * 3538 * Return: 3539 * * >=0 - Index of the first occurrence of @c within @s__ign or index of 3540 * the null byte at the end of @s__ign when @c is not found 3541 * * %-EFAULT - Cannot read @s__ign 3542 * * %-E2BIG - @s__ign is too large 3543 * * %-ERANGE - @s__ign is outside of kernel address space 3544 */ 3545 __bpf_kfunc int bpf_strchrnul(const char *s__ign, char c) 3546 { 3547 char sc; 3548 int i; 3549 3550 if (!copy_from_kernel_nofault_allowed(s__ign, 1)) 3551 return -ERANGE; 3552 3553 guard(pagefault)(); 3554 for (i = 0; i < XATTR_SIZE_MAX; i++) { 3555 __get_kernel_nofault(&sc, s__ign, char, err_out); 3556 if (sc == '\0' || sc == c) 3557 return i; 3558 s__ign++; 3559 } 3560 return -E2BIG; 3561 err_out: 3562 return -EFAULT; 3563 } 3564 3565 /** 3566 * bpf_strrchr - Find the last occurrence of a character in a string 3567 * @s__ign: The string to be searched 3568 * @c: The character to search for 3569 * 3570 * Return: 3571 * * >=0 - Index of the last occurrence of @c within @s__ign 3572 * * %-ENOENT - @c not found in @s__ign 3573 * * %-EFAULT - Cannot read @s__ign 3574 * * %-E2BIG - @s__ign is too large 3575 * * %-ERANGE - @s__ign is outside of kernel address space 3576 */ 3577 __bpf_kfunc int bpf_strrchr(const char *s__ign, int c) 3578 { 3579 char sc; 3580 int i, last = -ENOENT; 3581 3582 if (!copy_from_kernel_nofault_allowed(s__ign, 1)) 3583 return -ERANGE; 3584 3585 guard(pagefault)(); 3586 for (i = 0; i < XATTR_SIZE_MAX; i++) { 3587 __get_kernel_nofault(&sc, s__ign, char, err_out); 3588 if (sc == c) 3589 last = i; 3590 if (sc == '\0') 3591 return last; 3592 s__ign++; 3593 } 3594 return -E2BIG; 3595 err_out: 3596 return -EFAULT; 3597 } 3598 3599 /** 3600 * bpf_strnlen - Calculate the length of a length-limited string 3601 * @s__ign: The string 3602 * @count: The maximum number of characters to count 3603 * 3604 * Return: 3605 * * >=0 - The length of @s__ign 3606 * * %-EFAULT - Cannot read @s__ign 3607 * * %-E2BIG - @s__ign is too large 3608 * * %-ERANGE - @s__ign is outside of kernel address space 3609 */ 3610 __bpf_kfunc int bpf_strnlen(const char *s__ign, size_t count) 3611 { 3612 char c; 3613 int i; 3614 3615 if (!copy_from_kernel_nofault_allowed(s__ign, 1)) 3616 return -ERANGE; 3617 3618 guard(pagefault)(); 3619 for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) { 3620 __get_kernel_nofault(&c, s__ign, char, err_out); 3621 if (c == '\0') 3622 return i; 3623 s__ign++; 3624 } 3625 return i == XATTR_SIZE_MAX ? -E2BIG : i; 3626 err_out: 3627 return -EFAULT; 3628 } 3629 3630 /** 3631 * bpf_strlen - Calculate the length of a string 3632 * @s__ign: The string 3633 * 3634 * Return: 3635 * * >=0 - The length of @s__ign 3636 * * %-EFAULT - Cannot read @s__ign 3637 * * %-E2BIG - @s__ign is too large 3638 * * %-ERANGE - @s__ign is outside of kernel address space 3639 */ 3640 __bpf_kfunc int bpf_strlen(const char *s__ign) 3641 { 3642 return bpf_strnlen(s__ign, XATTR_SIZE_MAX); 3643 } 3644 3645 /** 3646 * bpf_strspn - Calculate the length of the initial substring of @s__ign which 3647 * only contains letters in @accept__ign 3648 * @s__ign: The string to be searched 3649 * @accept__ign: The string to search for 3650 * 3651 * Return: 3652 * * >=0 - The length of the initial substring of @s__ign which only 3653 * contains letters from @accept__ign 3654 * * %-EFAULT - Cannot read one of the strings 3655 * * %-E2BIG - One of the strings is too large 3656 * * %-ERANGE - One of the strings is outside of kernel address space 3657 */ 3658 __bpf_kfunc int bpf_strspn(const char *s__ign, const char *accept__ign) 3659 { 3660 char cs, ca; 3661 int i, j; 3662 3663 if (!copy_from_kernel_nofault_allowed(s__ign, 1) || 3664 !copy_from_kernel_nofault_allowed(accept__ign, 1)) { 3665 return -ERANGE; 3666 } 3667 3668 guard(pagefault)(); 3669 for (i = 0; i < XATTR_SIZE_MAX; i++) { 3670 __get_kernel_nofault(&cs, s__ign, char, err_out); 3671 if (cs == '\0') 3672 return i; 3673 for (j = 0; j < XATTR_SIZE_MAX; j++) { 3674 __get_kernel_nofault(&ca, accept__ign + j, char, err_out); 3675 if (cs == ca || ca == '\0') 3676 break; 3677 } 3678 if (j == XATTR_SIZE_MAX) 3679 return -E2BIG; 3680 if (ca == '\0') 3681 return i; 3682 s__ign++; 3683 } 3684 return -E2BIG; 3685 err_out: 3686 return -EFAULT; 3687 } 3688 3689 /** 3690 * bpf_strcspn - Calculate the length of the initial substring of @s__ign which 3691 * does not contain letters in @reject__ign 3692 * @s__ign: The string to be searched 3693 * @reject__ign: The string to search for 3694 * 3695 * Return: 3696 * * >=0 - The length of the initial substring of @s__ign which does not 3697 * contain letters from @reject__ign 3698 * * %-EFAULT - Cannot read one of the strings 3699 * * %-E2BIG - One of the strings is too large 3700 * * %-ERANGE - One of the strings is outside of kernel address space 3701 */ 3702 __bpf_kfunc int bpf_strcspn(const char *s__ign, const char *reject__ign) 3703 { 3704 char cs, cr; 3705 int i, j; 3706 3707 if (!copy_from_kernel_nofault_allowed(s__ign, 1) || 3708 !copy_from_kernel_nofault_allowed(reject__ign, 1)) { 3709 return -ERANGE; 3710 } 3711 3712 guard(pagefault)(); 3713 for (i = 0; i < XATTR_SIZE_MAX; i++) { 3714 __get_kernel_nofault(&cs, s__ign, char, err_out); 3715 if (cs == '\0') 3716 return i; 3717 for (j = 0; j < XATTR_SIZE_MAX; j++) { 3718 __get_kernel_nofault(&cr, reject__ign + j, char, err_out); 3719 if (cs == cr || cr == '\0') 3720 break; 3721 } 3722 if (j == XATTR_SIZE_MAX) 3723 return -E2BIG; 3724 if (cr != '\0') 3725 return i; 3726 s__ign++; 3727 } 3728 return -E2BIG; 3729 err_out: 3730 return -EFAULT; 3731 } 3732 3733 static int __bpf_strnstr(const char *s1, const char *s2, size_t len, 3734 bool ignore_case) 3735 { 3736 char c1, c2; 3737 int i, j; 3738 3739 if (!copy_from_kernel_nofault_allowed(s1, 1) || 3740 !copy_from_kernel_nofault_allowed(s2, 1)) { 3741 return -ERANGE; 3742 } 3743 3744 guard(pagefault)(); 3745 for (i = 0; i < XATTR_SIZE_MAX; i++) { 3746 for (j = 0; i + j <= len && j < XATTR_SIZE_MAX; j++) { 3747 __get_kernel_nofault(&c2, s2 + j, char, err_out); 3748 if (c2 == '\0') 3749 return i; 3750 /* 3751 * We allow reading an extra byte from s2 (note the 3752 * `i + j <= len` above) to cover the case when s2 is 3753 * a suffix of the first len chars of s1. 3754 */ 3755 if (i + j == len) 3756 break; 3757 __get_kernel_nofault(&c1, s1 + j, char, err_out); 3758 3759 if (ignore_case) { 3760 c1 = tolower(c1); 3761 c2 = tolower(c2); 3762 } 3763 3764 if (c1 == '\0') 3765 return -ENOENT; 3766 if (c1 != c2) 3767 break; 3768 } 3769 if (j == XATTR_SIZE_MAX) 3770 return -E2BIG; 3771 if (i + j == len) 3772 return -ENOENT; 3773 s1++; 3774 } 3775 return -E2BIG; 3776 err_out: 3777 return -EFAULT; 3778 } 3779 3780 /** 3781 * bpf_strstr - Find the first substring in a string 3782 * @s1__ign: The string to be searched 3783 * @s2__ign: The string to search for 3784 * 3785 * Return: 3786 * * >=0 - Index of the first character of the first occurrence of @s2__ign 3787 * within @s1__ign 3788 * * %-ENOENT - @s2__ign is not a substring of @s1__ign 3789 * * %-EFAULT - Cannot read one of the strings 3790 * * %-E2BIG - One of the strings is too large 3791 * * %-ERANGE - One of the strings is outside of kernel address space 3792 */ 3793 __bpf_kfunc int bpf_strstr(const char *s1__ign, const char *s2__ign) 3794 { 3795 return __bpf_strnstr(s1__ign, s2__ign, XATTR_SIZE_MAX, false); 3796 } 3797 3798 /** 3799 * bpf_strcasestr - Find the first substring in a string, ignoring the case of 3800 * the characters 3801 * @s1__ign: The string to be searched 3802 * @s2__ign: The string to search for 3803 * 3804 * Return: 3805 * * >=0 - Index of the first character of the first occurrence of @s2__ign 3806 * within @s1__ign 3807 * * %-ENOENT - @s2__ign is not a substring of @s1__ign 3808 * * %-EFAULT - Cannot read one of the strings 3809 * * %-E2BIG - One of the strings is too large 3810 * * %-ERANGE - One of the strings is outside of kernel address space 3811 */ 3812 __bpf_kfunc int bpf_strcasestr(const char *s1__ign, const char *s2__ign) 3813 { 3814 return __bpf_strnstr(s1__ign, s2__ign, XATTR_SIZE_MAX, true); 3815 } 3816 3817 /** 3818 * bpf_strnstr - Find the first substring in a length-limited string 3819 * @s1__ign: The string to be searched 3820 * @s2__ign: The string to search for 3821 * @len: the maximum number of characters to search 3822 * 3823 * Return: 3824 * * >=0 - Index of the first character of the first occurrence of @s2__ign 3825 * within the first @len characters of @s1__ign 3826 * * %-ENOENT - @s2__ign not found in the first @len characters of @s1__ign 3827 * * %-EFAULT - Cannot read one of the strings 3828 * * %-E2BIG - One of the strings is too large 3829 * * %-ERANGE - One of the strings is outside of kernel address space 3830 */ 3831 __bpf_kfunc int bpf_strnstr(const char *s1__ign, const char *s2__ign, 3832 size_t len) 3833 { 3834 return __bpf_strnstr(s1__ign, s2__ign, len, false); 3835 } 3836 3837 /** 3838 * bpf_strncasestr - Find the first substring in a length-limited string, 3839 * ignoring the case of the characters 3840 * @s1__ign: The string to be searched 3841 * @s2__ign: The string to search for 3842 * @len: the maximum number of characters to search 3843 * 3844 * Return: 3845 * * >=0 - Index of the first character of the first occurrence of @s2__ign 3846 * within the first @len characters of @s1__ign 3847 * * %-ENOENT - @s2__ign not found in the first @len characters of @s1__ign 3848 * * %-EFAULT - Cannot read one of the strings 3849 * * %-E2BIG - One of the strings is too large 3850 * * %-ERANGE - One of the strings is outside of kernel address space 3851 */ 3852 __bpf_kfunc int bpf_strncasestr(const char *s1__ign, const char *s2__ign, 3853 size_t len) 3854 { 3855 return __bpf_strnstr(s1__ign, s2__ign, len, true); 3856 } 3857 3858 #ifdef CONFIG_KEYS 3859 /** 3860 * bpf_lookup_user_key - lookup a key by its serial 3861 * @serial: key handle serial number 3862 * @flags: lookup-specific flags 3863 * 3864 * Search a key with a given *serial* and the provided *flags*. 3865 * If found, increment the reference count of the key by one, and 3866 * return it in the bpf_key structure. 3867 * 3868 * The bpf_key structure must be passed to bpf_key_put() when done 3869 * with it, so that the key reference count is decremented and the 3870 * bpf_key structure is freed. 3871 * 3872 * Permission checks are deferred to the time the key is used by 3873 * one of the available key-specific kfuncs. 3874 * 3875 * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested 3876 * special keyring (e.g. session keyring), if it doesn't yet exist. 3877 * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting 3878 * for the key construction, and to retrieve uninstantiated keys (keys 3879 * without data attached to them). 3880 * 3881 * Return: a bpf_key pointer with a valid key pointer if the key is found, a 3882 * NULL pointer otherwise. 3883 */ 3884 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(s32 serial, u64 flags) 3885 { 3886 key_ref_t key_ref; 3887 struct bpf_key *bkey; 3888 3889 if (flags & ~KEY_LOOKUP_ALL) 3890 return NULL; 3891 3892 /* 3893 * Permission check is deferred until the key is used, as the 3894 * intent of the caller is unknown here. 3895 */ 3896 key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK); 3897 if (IS_ERR(key_ref)) 3898 return NULL; 3899 3900 bkey = kmalloc(sizeof(*bkey), GFP_KERNEL); 3901 if (!bkey) { 3902 key_put(key_ref_to_ptr(key_ref)); 3903 return NULL; 3904 } 3905 3906 bkey->key = key_ref_to_ptr(key_ref); 3907 bkey->has_ref = true; 3908 3909 return bkey; 3910 } 3911 3912 /** 3913 * bpf_lookup_system_key - lookup a key by a system-defined ID 3914 * @id: key ID 3915 * 3916 * Obtain a bpf_key structure with a key pointer set to the passed key ID. 3917 * The key pointer is marked as invalid, to prevent bpf_key_put() from 3918 * attempting to decrement the key reference count on that pointer. The key 3919 * pointer set in such way is currently understood only by 3920 * verify_pkcs7_signature(). 3921 * 3922 * Set *id* to one of the values defined in include/linux/verification.h: 3923 * 0 for the primary keyring (immutable keyring of system keys); 3924 * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring 3925 * (where keys can be added only if they are vouched for by existing keys 3926 * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform 3927 * keyring (primarily used by the integrity subsystem to verify a kexec'ed 3928 * kerned image and, possibly, the initramfs signature). 3929 * 3930 * Return: a bpf_key pointer with an invalid key pointer set from the 3931 * pre-determined ID on success, a NULL pointer otherwise 3932 */ 3933 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id) 3934 { 3935 struct bpf_key *bkey; 3936 3937 if (system_keyring_id_check(id) < 0) 3938 return NULL; 3939 3940 bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC); 3941 if (!bkey) 3942 return NULL; 3943 3944 bkey->key = (struct key *)(unsigned long)id; 3945 bkey->has_ref = false; 3946 3947 return bkey; 3948 } 3949 3950 /** 3951 * bpf_key_put - decrement key reference count if key is valid and free bpf_key 3952 * @bkey: bpf_key structure 3953 * 3954 * Decrement the reference count of the key inside *bkey*, if the pointer 3955 * is valid, and free *bkey*. 3956 */ 3957 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey) 3958 { 3959 if (bkey->has_ref) 3960 key_put(bkey->key); 3961 3962 kfree(bkey); 3963 } 3964 3965 /** 3966 * bpf_verify_pkcs7_signature - verify a PKCS#7 signature 3967 * @data_p: data to verify 3968 * @sig_p: signature of the data 3969 * @trusted_keyring: keyring with keys trusted for signature verification 3970 * 3971 * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr* 3972 * with keys in a keyring referenced by *trusted_keyring*. 3973 * 3974 * Return: 0 on success, a negative value on error. 3975 */ 3976 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p, 3977 struct bpf_dynptr *sig_p, 3978 struct bpf_key *trusted_keyring) 3979 { 3980 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION 3981 struct bpf_dynptr_kern *data_ptr = (struct bpf_dynptr_kern *)data_p; 3982 struct bpf_dynptr_kern *sig_ptr = (struct bpf_dynptr_kern *)sig_p; 3983 const void *data, *sig; 3984 u32 data_len, sig_len; 3985 int ret; 3986 3987 if (trusted_keyring->has_ref) { 3988 /* 3989 * Do the permission check deferred in bpf_lookup_user_key(). 3990 * See bpf_lookup_user_key() for more details. 3991 * 3992 * A call to key_task_permission() here would be redundant, as 3993 * it is already done by keyring_search() called by 3994 * find_asymmetric_key(). 3995 */ 3996 ret = key_validate(trusted_keyring->key); 3997 if (ret < 0) 3998 return ret; 3999 } 4000 4001 data_len = __bpf_dynptr_size(data_ptr); 4002 data = __bpf_dynptr_data(data_ptr, data_len); 4003 sig_len = __bpf_dynptr_size(sig_ptr); 4004 sig = __bpf_dynptr_data(sig_ptr, sig_len); 4005 4006 return verify_pkcs7_signature(data, data_len, sig, sig_len, 4007 trusted_keyring->key, 4008 VERIFYING_BPF_SIGNATURE, NULL, 4009 NULL); 4010 #else 4011 return -EOPNOTSUPP; 4012 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */ 4013 } 4014 #endif /* CONFIG_KEYS */ 4015 4016 typedef int (*bpf_task_work_callback_t)(struct bpf_map *map, void *key, void *value); 4017 4018 enum bpf_task_work_state { 4019 /* bpf_task_work is ready to be used */ 4020 BPF_TW_STANDBY = 0, 4021 /* irq work scheduling in progress */ 4022 BPF_TW_PENDING, 4023 /* task work scheduling in progress */ 4024 BPF_TW_SCHEDULING, 4025 /* task work is scheduled successfully */ 4026 BPF_TW_SCHEDULED, 4027 /* callback is running */ 4028 BPF_TW_RUNNING, 4029 /* associated BPF map value is deleted */ 4030 BPF_TW_FREED, 4031 }; 4032 4033 struct bpf_task_work_ctx { 4034 enum bpf_task_work_state state; 4035 refcount_t refcnt; 4036 struct callback_head work; 4037 struct irq_work irq_work; 4038 /* bpf_prog that schedules task work */ 4039 struct bpf_prog *prog; 4040 /* task for which callback is scheduled */ 4041 struct task_struct *task; 4042 /* the map and map value associated with this context */ 4043 struct bpf_map *map; 4044 void *map_val; 4045 enum task_work_notify_mode mode; 4046 bpf_task_work_callback_t callback_fn; 4047 struct rcu_head rcu; 4048 } __aligned(8); 4049 4050 /* Actual type for struct bpf_task_work */ 4051 struct bpf_task_work_kern { 4052 struct bpf_task_work_ctx *ctx; 4053 }; 4054 4055 static void bpf_task_work_ctx_reset(struct bpf_task_work_ctx *ctx) 4056 { 4057 if (ctx->prog) { 4058 bpf_prog_put(ctx->prog); 4059 ctx->prog = NULL; 4060 } 4061 if (ctx->task) { 4062 bpf_task_release(ctx->task); 4063 ctx->task = NULL; 4064 } 4065 } 4066 4067 static bool bpf_task_work_ctx_tryget(struct bpf_task_work_ctx *ctx) 4068 { 4069 return refcount_inc_not_zero(&ctx->refcnt); 4070 } 4071 4072 static void bpf_task_work_ctx_put(struct bpf_task_work_ctx *ctx) 4073 { 4074 if (!refcount_dec_and_test(&ctx->refcnt)) 4075 return; 4076 4077 bpf_task_work_ctx_reset(ctx); 4078 4079 /* bpf_mem_free expects migration to be disabled */ 4080 migrate_disable(); 4081 bpf_mem_free(&bpf_global_ma, ctx); 4082 migrate_enable(); 4083 } 4084 4085 static void bpf_task_work_cancel(struct bpf_task_work_ctx *ctx) 4086 { 4087 /* 4088 * Scheduled task_work callback holds ctx ref, so if we successfully 4089 * cancelled, we put that ref on callback's behalf. If we couldn't 4090 * cancel, callback will inevitably run or has already completed 4091 * running, and it would have taken care of its ctx ref itself. 4092 */ 4093 if (task_work_cancel(ctx->task, &ctx->work)) 4094 bpf_task_work_ctx_put(ctx); 4095 } 4096 4097 static void bpf_task_work_callback(struct callback_head *cb) 4098 { 4099 struct bpf_task_work_ctx *ctx = container_of(cb, struct bpf_task_work_ctx, work); 4100 enum bpf_task_work_state state; 4101 u32 idx; 4102 void *key; 4103 4104 /* Read lock is needed to protect ctx and map key/value access */ 4105 guard(rcu_tasks_trace)(); 4106 /* 4107 * This callback may start running before bpf_task_work_irq() switched to 4108 * SCHEDULED state, so handle both transition variants SCHEDULING|SCHEDULED -> RUNNING. 4109 */ 4110 state = cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_RUNNING); 4111 if (state == BPF_TW_SCHEDULED) 4112 state = cmpxchg(&ctx->state, BPF_TW_SCHEDULED, BPF_TW_RUNNING); 4113 if (state == BPF_TW_FREED) { 4114 bpf_task_work_ctx_put(ctx); 4115 return; 4116 } 4117 4118 key = (void *)map_key_from_value(ctx->map, ctx->map_val, &idx); 4119 4120 migrate_disable(); 4121 ctx->callback_fn(ctx->map, key, ctx->map_val); 4122 migrate_enable(); 4123 4124 bpf_task_work_ctx_reset(ctx); 4125 (void)cmpxchg(&ctx->state, BPF_TW_RUNNING, BPF_TW_STANDBY); 4126 4127 bpf_task_work_ctx_put(ctx); 4128 } 4129 4130 static void bpf_task_work_irq(struct irq_work *irq_work) 4131 { 4132 struct bpf_task_work_ctx *ctx = container_of(irq_work, struct bpf_task_work_ctx, irq_work); 4133 enum bpf_task_work_state state; 4134 int err; 4135 4136 guard(rcu_tasks_trace)(); 4137 4138 if (cmpxchg(&ctx->state, BPF_TW_PENDING, BPF_TW_SCHEDULING) != BPF_TW_PENDING) { 4139 bpf_task_work_ctx_put(ctx); 4140 return; 4141 } 4142 4143 err = task_work_add(ctx->task, &ctx->work, ctx->mode); 4144 if (err) { 4145 bpf_task_work_ctx_reset(ctx); 4146 /* 4147 * try to switch back to STANDBY for another task_work reuse, but we might have 4148 * gone to FREED already, which is fine as we already cleaned up after ourselves 4149 */ 4150 (void)cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_STANDBY); 4151 bpf_task_work_ctx_put(ctx); 4152 return; 4153 } 4154 4155 /* 4156 * It's technically possible for just scheduled task_work callback to 4157 * complete running by now, going SCHEDULING -> RUNNING and then 4158 * dropping its ctx refcount. Instead of capturing extra ref just to 4159 * protected below ctx->state access, we rely on RCU protection to 4160 * perform below SCHEDULING -> SCHEDULED attempt. 4161 */ 4162 state = cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_SCHEDULED); 4163 if (state == BPF_TW_FREED) 4164 bpf_task_work_cancel(ctx); /* clean up if we switched into FREED state */ 4165 } 4166 4167 static struct bpf_task_work_ctx *bpf_task_work_fetch_ctx(struct bpf_task_work *tw, 4168 struct bpf_map *map) 4169 { 4170 struct bpf_task_work_kern *twk = (void *)tw; 4171 struct bpf_task_work_ctx *ctx, *old_ctx; 4172 4173 ctx = READ_ONCE(twk->ctx); 4174 if (ctx) 4175 return ctx; 4176 4177 ctx = bpf_mem_alloc(&bpf_global_ma, sizeof(struct bpf_task_work_ctx)); 4178 if (!ctx) 4179 return ERR_PTR(-ENOMEM); 4180 4181 memset(ctx, 0, sizeof(*ctx)); 4182 refcount_set(&ctx->refcnt, 1); /* map's own ref */ 4183 ctx->state = BPF_TW_STANDBY; 4184 4185 old_ctx = cmpxchg(&twk->ctx, NULL, ctx); 4186 if (old_ctx) { 4187 /* 4188 * tw->ctx is set by concurrent BPF program, release allocated 4189 * memory and try to reuse already set context. 4190 */ 4191 bpf_mem_free(&bpf_global_ma, ctx); 4192 return old_ctx; 4193 } 4194 4195 return ctx; /* Success */ 4196 } 4197 4198 static struct bpf_task_work_ctx *bpf_task_work_acquire_ctx(struct bpf_task_work *tw, 4199 struct bpf_map *map) 4200 { 4201 struct bpf_task_work_ctx *ctx; 4202 4203 ctx = bpf_task_work_fetch_ctx(tw, map); 4204 if (IS_ERR(ctx)) 4205 return ctx; 4206 4207 /* try to get ref for task_work callback to hold */ 4208 if (!bpf_task_work_ctx_tryget(ctx)) 4209 return ERR_PTR(-EBUSY); 4210 4211 if (cmpxchg(&ctx->state, BPF_TW_STANDBY, BPF_TW_PENDING) != BPF_TW_STANDBY) { 4212 /* lost acquiring race or map_release_uref() stole it from us, put ref and bail */ 4213 bpf_task_work_ctx_put(ctx); 4214 return ERR_PTR(-EBUSY); 4215 } 4216 4217 /* 4218 * If no process or bpffs is holding a reference to the map, no new callbacks should be 4219 * scheduled. This does not address any race or correctness issue, but rather is a policy 4220 * choice: dropping user references should stop everything. 4221 */ 4222 if (!atomic64_read(&map->usercnt)) { 4223 /* drop ref we just got for task_work callback itself */ 4224 bpf_task_work_ctx_put(ctx); 4225 /* transfer map's ref into cancel_and_free() */ 4226 bpf_task_work_cancel_and_free(tw); 4227 return ERR_PTR(-EBUSY); 4228 } 4229 4230 return ctx; 4231 } 4232 4233 static int bpf_task_work_schedule(struct task_struct *task, struct bpf_task_work *tw, 4234 struct bpf_map *map, bpf_task_work_callback_t callback_fn, 4235 struct bpf_prog_aux *aux, enum task_work_notify_mode mode) 4236 { 4237 struct bpf_prog *prog; 4238 struct bpf_task_work_ctx *ctx; 4239 int err; 4240 4241 BTF_TYPE_EMIT(struct bpf_task_work); 4242 4243 prog = bpf_prog_inc_not_zero(aux->prog); 4244 if (IS_ERR(prog)) 4245 return -EBADF; 4246 task = bpf_task_acquire(task); 4247 if (!task) { 4248 err = -EBADF; 4249 goto release_prog; 4250 } 4251 4252 ctx = bpf_task_work_acquire_ctx(tw, map); 4253 if (IS_ERR(ctx)) { 4254 err = PTR_ERR(ctx); 4255 goto release_all; 4256 } 4257 4258 ctx->task = task; 4259 ctx->callback_fn = callback_fn; 4260 ctx->prog = prog; 4261 ctx->mode = mode; 4262 ctx->map = map; 4263 ctx->map_val = (void *)tw - map->record->task_work_off; 4264 init_task_work(&ctx->work, bpf_task_work_callback); 4265 init_irq_work(&ctx->irq_work, bpf_task_work_irq); 4266 4267 irq_work_queue(&ctx->irq_work); 4268 return 0; 4269 4270 release_all: 4271 bpf_task_release(task); 4272 release_prog: 4273 bpf_prog_put(prog); 4274 return err; 4275 } 4276 4277 /** 4278 * bpf_task_work_schedule_signal_impl - Schedule BPF callback using task_work_add with TWA_SIGNAL 4279 * mode 4280 * @task: Task struct for which callback should be scheduled 4281 * @tw: Pointer to struct bpf_task_work in BPF map value for internal bookkeeping 4282 * @map__map: bpf_map that embeds struct bpf_task_work in the values 4283 * @callback: pointer to BPF subprogram to call 4284 * @aux__prog: user should pass NULL 4285 * 4286 * Return: 0 if task work has been scheduled successfully, negative error code otherwise 4287 */ 4288 __bpf_kfunc int bpf_task_work_schedule_signal_impl(struct task_struct *task, 4289 struct bpf_task_work *tw, void *map__map, 4290 bpf_task_work_callback_t callback, 4291 void *aux__prog) 4292 { 4293 return bpf_task_work_schedule(task, tw, map__map, callback, aux__prog, TWA_SIGNAL); 4294 } 4295 4296 /** 4297 * bpf_task_work_schedule_resume_impl - Schedule BPF callback using task_work_add with TWA_RESUME 4298 * mode 4299 * @task: Task struct for which callback should be scheduled 4300 * @tw: Pointer to struct bpf_task_work in BPF map value for internal bookkeeping 4301 * @map__map: bpf_map that embeds struct bpf_task_work in the values 4302 * @callback: pointer to BPF subprogram to call 4303 * @aux__prog: user should pass NULL 4304 * 4305 * Return: 0 if task work has been scheduled successfully, negative error code otherwise 4306 */ 4307 __bpf_kfunc int bpf_task_work_schedule_resume_impl(struct task_struct *task, 4308 struct bpf_task_work *tw, void *map__map, 4309 bpf_task_work_callback_t callback, 4310 void *aux__prog) 4311 { 4312 return bpf_task_work_schedule(task, tw, map__map, callback, aux__prog, TWA_RESUME); 4313 } 4314 4315 static int make_file_dynptr(struct file *file, u32 flags, bool may_sleep, 4316 struct bpf_dynptr_kern *ptr) 4317 { 4318 struct bpf_dynptr_file_impl *state; 4319 4320 /* flags is currently unsupported */ 4321 if (flags) { 4322 bpf_dynptr_set_null(ptr); 4323 return -EINVAL; 4324 } 4325 4326 state = bpf_mem_alloc(&bpf_global_ma, sizeof(struct bpf_dynptr_file_impl)); 4327 if (!state) { 4328 bpf_dynptr_set_null(ptr); 4329 return -ENOMEM; 4330 } 4331 state->offset = 0; 4332 state->size = U64_MAX; /* Don't restrict size, as file may change anyways */ 4333 freader_init_from_file(&state->freader, NULL, 0, file, may_sleep); 4334 bpf_dynptr_init(ptr, state, BPF_DYNPTR_TYPE_FILE, 0, 0); 4335 bpf_dynptr_set_rdonly(ptr); 4336 return 0; 4337 } 4338 4339 __bpf_kfunc int bpf_dynptr_from_file(struct file *file, u32 flags, struct bpf_dynptr *ptr__uninit) 4340 { 4341 return make_file_dynptr(file, flags, false, (struct bpf_dynptr_kern *)ptr__uninit); 4342 } 4343 4344 int bpf_dynptr_from_file_sleepable(struct file *file, u32 flags, struct bpf_dynptr *ptr__uninit) 4345 { 4346 return make_file_dynptr(file, flags, true, (struct bpf_dynptr_kern *)ptr__uninit); 4347 } 4348 4349 __bpf_kfunc int bpf_dynptr_file_discard(struct bpf_dynptr *dynptr) 4350 { 4351 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)dynptr; 4352 struct bpf_dynptr_file_impl *df = ptr->data; 4353 4354 if (!df) 4355 return 0; 4356 4357 freader_cleanup(&df->freader); 4358 bpf_mem_free(&bpf_global_ma, df); 4359 bpf_dynptr_set_null(ptr); 4360 return 0; 4361 } 4362 4363 __bpf_kfunc_end_defs(); 4364 4365 static void bpf_task_work_cancel_scheduled(struct irq_work *irq_work) 4366 { 4367 struct bpf_task_work_ctx *ctx = container_of(irq_work, struct bpf_task_work_ctx, irq_work); 4368 4369 bpf_task_work_cancel(ctx); /* this might put task_work callback's ref */ 4370 bpf_task_work_ctx_put(ctx); /* and here we put map's own ref that was transferred to us */ 4371 } 4372 4373 void bpf_task_work_cancel_and_free(void *val) 4374 { 4375 struct bpf_task_work_kern *twk = val; 4376 struct bpf_task_work_ctx *ctx; 4377 enum bpf_task_work_state state; 4378 4379 ctx = xchg(&twk->ctx, NULL); 4380 if (!ctx) 4381 return; 4382 4383 state = xchg(&ctx->state, BPF_TW_FREED); 4384 if (state == BPF_TW_SCHEDULED) { 4385 /* run in irq_work to avoid locks in NMI */ 4386 init_irq_work(&ctx->irq_work, bpf_task_work_cancel_scheduled); 4387 irq_work_queue(&ctx->irq_work); 4388 return; 4389 } 4390 4391 bpf_task_work_ctx_put(ctx); /* put bpf map's ref */ 4392 } 4393 4394 BTF_KFUNCS_START(generic_btf_ids) 4395 #ifdef CONFIG_CRASH_DUMP 4396 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) 4397 #endif 4398 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) 4399 BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) 4400 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE) 4401 BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE) 4402 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU) 4403 BTF_ID_FLAGS(func, bpf_list_push_front_impl) 4404 BTF_ID_FLAGS(func, bpf_list_push_back_impl) 4405 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL) 4406 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL) 4407 BTF_ID_FLAGS(func, bpf_list_front, KF_RET_NULL) 4408 BTF_ID_FLAGS(func, bpf_list_back, KF_RET_NULL) 4409 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 4410 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE) 4411 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL) 4412 BTF_ID_FLAGS(func, bpf_rbtree_add_impl) 4413 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL) 4414 BTF_ID_FLAGS(func, bpf_rbtree_root, KF_RET_NULL) 4415 BTF_ID_FLAGS(func, bpf_rbtree_left, KF_RET_NULL) 4416 BTF_ID_FLAGS(func, bpf_rbtree_right, KF_RET_NULL) 4417 4418 #ifdef CONFIG_CGROUPS 4419 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 4420 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE) 4421 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 4422 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL) 4423 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU) 4424 BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 4425 #endif 4426 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL) 4427 BTF_ID_FLAGS(func, bpf_task_from_vpid, KF_ACQUIRE | KF_RET_NULL) 4428 BTF_ID_FLAGS(func, bpf_throw) 4429 #ifdef CONFIG_BPF_EVENTS 4430 BTF_ID_FLAGS(func, bpf_send_signal_task, KF_TRUSTED_ARGS) 4431 #endif 4432 #ifdef CONFIG_KEYS 4433 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE) 4434 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL) 4435 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE) 4436 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION 4437 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE) 4438 #endif 4439 #endif 4440 BTF_KFUNCS_END(generic_btf_ids) 4441 4442 static const struct btf_kfunc_id_set generic_kfunc_set = { 4443 .owner = THIS_MODULE, 4444 .set = &generic_btf_ids, 4445 }; 4446 4447 4448 BTF_ID_LIST(generic_dtor_ids) 4449 BTF_ID(struct, task_struct) 4450 BTF_ID(func, bpf_task_release_dtor) 4451 #ifdef CONFIG_CGROUPS 4452 BTF_ID(struct, cgroup) 4453 BTF_ID(func, bpf_cgroup_release_dtor) 4454 #endif 4455 4456 BTF_KFUNCS_START(common_btf_ids) 4457 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx, KF_FASTCALL) 4458 BTF_ID_FLAGS(func, bpf_rdonly_cast, KF_FASTCALL) 4459 BTF_ID_FLAGS(func, bpf_rcu_read_lock) 4460 BTF_ID_FLAGS(func, bpf_rcu_read_unlock) 4461 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL) 4462 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL) 4463 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW) 4464 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL) 4465 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY) 4466 BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU) 4467 BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL) 4468 BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY) 4469 #ifdef CONFIG_CGROUPS 4470 BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS) 4471 BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL) 4472 BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY) 4473 BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) 4474 BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL) 4475 BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY) 4476 #endif 4477 BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) 4478 BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL) 4479 BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY) 4480 BTF_ID_FLAGS(func, bpf_dynptr_adjust) 4481 BTF_ID_FLAGS(func, bpf_dynptr_is_null) 4482 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly) 4483 BTF_ID_FLAGS(func, bpf_dynptr_size) 4484 BTF_ID_FLAGS(func, bpf_dynptr_clone) 4485 BTF_ID_FLAGS(func, bpf_dynptr_copy) 4486 BTF_ID_FLAGS(func, bpf_dynptr_memset) 4487 #ifdef CONFIG_NET 4488 BTF_ID_FLAGS(func, bpf_modify_return_test_tp) 4489 #endif 4490 BTF_ID_FLAGS(func, bpf_wq_init) 4491 BTF_ID_FLAGS(func, bpf_wq_set_callback_impl) 4492 BTF_ID_FLAGS(func, bpf_wq_start) 4493 BTF_ID_FLAGS(func, bpf_preempt_disable) 4494 BTF_ID_FLAGS(func, bpf_preempt_enable) 4495 BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW) 4496 BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL) 4497 BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY) 4498 BTF_ID_FLAGS(func, bpf_copy_from_user_str, KF_SLEEPABLE) 4499 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str, KF_SLEEPABLE) 4500 BTF_ID_FLAGS(func, bpf_get_kmem_cache) 4501 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_new, KF_ITER_NEW | KF_SLEEPABLE) 4502 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE) 4503 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_destroy, KF_ITER_DESTROY | KF_SLEEPABLE) 4504 BTF_ID_FLAGS(func, bpf_local_irq_save) 4505 BTF_ID_FLAGS(func, bpf_local_irq_restore) 4506 #ifdef CONFIG_BPF_EVENTS 4507 BTF_ID_FLAGS(func, bpf_probe_read_user_dynptr) 4508 BTF_ID_FLAGS(func, bpf_probe_read_kernel_dynptr) 4509 BTF_ID_FLAGS(func, bpf_probe_read_user_str_dynptr) 4510 BTF_ID_FLAGS(func, bpf_probe_read_kernel_str_dynptr) 4511 BTF_ID_FLAGS(func, bpf_copy_from_user_dynptr, KF_SLEEPABLE) 4512 BTF_ID_FLAGS(func, bpf_copy_from_user_str_dynptr, KF_SLEEPABLE) 4513 BTF_ID_FLAGS(func, bpf_copy_from_user_task_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS) 4514 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS) 4515 #endif 4516 #ifdef CONFIG_DMA_SHARED_BUFFER 4517 BTF_ID_FLAGS(func, bpf_iter_dmabuf_new, KF_ITER_NEW | KF_SLEEPABLE) 4518 BTF_ID_FLAGS(func, bpf_iter_dmabuf_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE) 4519 BTF_ID_FLAGS(func, bpf_iter_dmabuf_destroy, KF_ITER_DESTROY | KF_SLEEPABLE) 4520 #endif 4521 BTF_ID_FLAGS(func, __bpf_trap) 4522 BTF_ID_FLAGS(func, bpf_strcmp); 4523 BTF_ID_FLAGS(func, bpf_strcasecmp); 4524 BTF_ID_FLAGS(func, bpf_strchr); 4525 BTF_ID_FLAGS(func, bpf_strchrnul); 4526 BTF_ID_FLAGS(func, bpf_strnchr); 4527 BTF_ID_FLAGS(func, bpf_strrchr); 4528 BTF_ID_FLAGS(func, bpf_strlen); 4529 BTF_ID_FLAGS(func, bpf_strnlen); 4530 BTF_ID_FLAGS(func, bpf_strspn); 4531 BTF_ID_FLAGS(func, bpf_strcspn); 4532 BTF_ID_FLAGS(func, bpf_strstr); 4533 BTF_ID_FLAGS(func, bpf_strcasestr); 4534 BTF_ID_FLAGS(func, bpf_strnstr); 4535 BTF_ID_FLAGS(func, bpf_strncasestr); 4536 #if defined(CONFIG_BPF_LSM) && defined(CONFIG_CGROUPS) 4537 BTF_ID_FLAGS(func, bpf_cgroup_read_xattr, KF_RCU) 4538 #endif 4539 BTF_ID_FLAGS(func, bpf_stream_vprintk_impl, KF_TRUSTED_ARGS) 4540 BTF_ID_FLAGS(func, bpf_task_work_schedule_signal_impl, KF_TRUSTED_ARGS) 4541 BTF_ID_FLAGS(func, bpf_task_work_schedule_resume_impl, KF_TRUSTED_ARGS) 4542 BTF_ID_FLAGS(func, bpf_dynptr_from_file, KF_TRUSTED_ARGS) 4543 BTF_ID_FLAGS(func, bpf_dynptr_file_discard) 4544 BTF_KFUNCS_END(common_btf_ids) 4545 4546 static const struct btf_kfunc_id_set common_kfunc_set = { 4547 .owner = THIS_MODULE, 4548 .set = &common_btf_ids, 4549 }; 4550 4551 static int __init kfunc_init(void) 4552 { 4553 int ret; 4554 const struct btf_id_dtor_kfunc generic_dtors[] = { 4555 { 4556 .btf_id = generic_dtor_ids[0], 4557 .kfunc_btf_id = generic_dtor_ids[1] 4558 }, 4559 #ifdef CONFIG_CGROUPS 4560 { 4561 .btf_id = generic_dtor_ids[2], 4562 .kfunc_btf_id = generic_dtor_ids[3] 4563 }, 4564 #endif 4565 }; 4566 4567 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set); 4568 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set); 4569 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set); 4570 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set); 4571 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set); 4572 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &generic_kfunc_set); 4573 ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors, 4574 ARRAY_SIZE(generic_dtors), 4575 THIS_MODULE); 4576 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); 4577 } 4578 4579 late_initcall(kfunc_init); 4580 4581 /* Get a pointer to dynptr data up to len bytes for read only access. If 4582 * the dynptr doesn't have continuous data up to len bytes, return NULL. 4583 */ 4584 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u64 len) 4585 { 4586 const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr; 4587 4588 return bpf_dynptr_slice(p, 0, NULL, len); 4589 } 4590 4591 /* Get a pointer to dynptr data up to len bytes for read write access. If 4592 * the dynptr doesn't have continuous data up to len bytes, or the dynptr 4593 * is read only, return NULL. 4594 */ 4595 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u64 len) 4596 { 4597 if (__bpf_dynptr_is_rdonly(ptr)) 4598 return NULL; 4599 return (void *)__bpf_dynptr_data(ptr, len); 4600 } 4601 4602 void bpf_map_free_internal_structs(struct bpf_map *map, void *val) 4603 { 4604 if (btf_record_has_field(map->record, BPF_TIMER)) 4605 bpf_obj_free_timer(map->record, val); 4606 if (btf_record_has_field(map->record, BPF_WORKQUEUE)) 4607 bpf_obj_free_workqueue(map->record, val); 4608 if (btf_record_has_field(map->record, BPF_TASK_WORK)) 4609 bpf_obj_free_task_work(map->record, val); 4610 } 4611