xref: /linux/kernel/bpf/helpers.c (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/cgroup.h>
8 #include <linux/rcupdate.h>
9 #include <linux/random.h>
10 #include <linux/smp.h>
11 #include <linux/topology.h>
12 #include <linux/ktime.h>
13 #include <linux/sched.h>
14 #include <linux/uidgid.h>
15 #include <linux/filter.h>
16 #include <linux/ctype.h>
17 #include <linux/jiffies.h>
18 #include <linux/pid_namespace.h>
19 #include <linux/poison.h>
20 #include <linux/proc_ns.h>
21 #include <linux/sched/task.h>
22 #include <linux/security.h>
23 #include <linux/btf_ids.h>
24 #include <linux/bpf_mem_alloc.h>
25 #include <linux/kasan.h>
26 
27 #include "../../lib/kstrtox.h"
28 
29 /* If kernel subsystem is allowing eBPF programs to call this function,
30  * inside its own verifier_ops->get_func_proto() callback it should return
31  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
32  *
33  * Different map implementations will rely on rcu in map methods
34  * lookup/update/delete, therefore eBPF programs must run under rcu lock
35  * if program is allowed to access maps, so check rcu_read_lock_held() or
36  * rcu_read_lock_trace_held() in all three functions.
37  */
38 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
39 {
40 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
41 		     !rcu_read_lock_bh_held());
42 	return (unsigned long) map->ops->map_lookup_elem(map, key);
43 }
44 
45 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
46 	.func		= bpf_map_lookup_elem,
47 	.gpl_only	= false,
48 	.pkt_access	= true,
49 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
50 	.arg1_type	= ARG_CONST_MAP_PTR,
51 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
52 };
53 
54 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
55 	   void *, value, u64, flags)
56 {
57 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
58 		     !rcu_read_lock_bh_held());
59 	return map->ops->map_update_elem(map, key, value, flags);
60 }
61 
62 const struct bpf_func_proto bpf_map_update_elem_proto = {
63 	.func		= bpf_map_update_elem,
64 	.gpl_only	= false,
65 	.pkt_access	= true,
66 	.ret_type	= RET_INTEGER,
67 	.arg1_type	= ARG_CONST_MAP_PTR,
68 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
69 	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
70 	.arg4_type	= ARG_ANYTHING,
71 };
72 
73 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
74 {
75 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
76 		     !rcu_read_lock_bh_held());
77 	return map->ops->map_delete_elem(map, key);
78 }
79 
80 const struct bpf_func_proto bpf_map_delete_elem_proto = {
81 	.func		= bpf_map_delete_elem,
82 	.gpl_only	= false,
83 	.pkt_access	= true,
84 	.ret_type	= RET_INTEGER,
85 	.arg1_type	= ARG_CONST_MAP_PTR,
86 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
87 };
88 
89 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
90 {
91 	return map->ops->map_push_elem(map, value, flags);
92 }
93 
94 const struct bpf_func_proto bpf_map_push_elem_proto = {
95 	.func		= bpf_map_push_elem,
96 	.gpl_only	= false,
97 	.pkt_access	= true,
98 	.ret_type	= RET_INTEGER,
99 	.arg1_type	= ARG_CONST_MAP_PTR,
100 	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
101 	.arg3_type	= ARG_ANYTHING,
102 };
103 
104 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
105 {
106 	return map->ops->map_pop_elem(map, value);
107 }
108 
109 const struct bpf_func_proto bpf_map_pop_elem_proto = {
110 	.func		= bpf_map_pop_elem,
111 	.gpl_only	= false,
112 	.ret_type	= RET_INTEGER,
113 	.arg1_type	= ARG_CONST_MAP_PTR,
114 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
115 };
116 
117 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
118 {
119 	return map->ops->map_peek_elem(map, value);
120 }
121 
122 const struct bpf_func_proto bpf_map_peek_elem_proto = {
123 	.func		= bpf_map_peek_elem,
124 	.gpl_only	= false,
125 	.ret_type	= RET_INTEGER,
126 	.arg1_type	= ARG_CONST_MAP_PTR,
127 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
128 };
129 
130 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
131 {
132 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
133 	return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
134 }
135 
136 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
137 	.func		= bpf_map_lookup_percpu_elem,
138 	.gpl_only	= false,
139 	.pkt_access	= true,
140 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
141 	.arg1_type	= ARG_CONST_MAP_PTR,
142 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
143 	.arg3_type	= ARG_ANYTHING,
144 };
145 
146 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
147 	.func		= bpf_user_rnd_u32,
148 	.gpl_only	= false,
149 	.ret_type	= RET_INTEGER,
150 };
151 
152 BPF_CALL_0(bpf_get_smp_processor_id)
153 {
154 	return smp_processor_id();
155 }
156 
157 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
158 	.func		= bpf_get_smp_processor_id,
159 	.gpl_only	= false,
160 	.ret_type	= RET_INTEGER,
161 };
162 
163 BPF_CALL_0(bpf_get_numa_node_id)
164 {
165 	return numa_node_id();
166 }
167 
168 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
169 	.func		= bpf_get_numa_node_id,
170 	.gpl_only	= false,
171 	.ret_type	= RET_INTEGER,
172 };
173 
174 BPF_CALL_0(bpf_ktime_get_ns)
175 {
176 	/* NMI safe access to clock monotonic */
177 	return ktime_get_mono_fast_ns();
178 }
179 
180 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
181 	.func		= bpf_ktime_get_ns,
182 	.gpl_only	= false,
183 	.ret_type	= RET_INTEGER,
184 };
185 
186 BPF_CALL_0(bpf_ktime_get_boot_ns)
187 {
188 	/* NMI safe access to clock boottime */
189 	return ktime_get_boot_fast_ns();
190 }
191 
192 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
193 	.func		= bpf_ktime_get_boot_ns,
194 	.gpl_only	= false,
195 	.ret_type	= RET_INTEGER,
196 };
197 
198 BPF_CALL_0(bpf_ktime_get_coarse_ns)
199 {
200 	return ktime_get_coarse_ns();
201 }
202 
203 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
204 	.func		= bpf_ktime_get_coarse_ns,
205 	.gpl_only	= false,
206 	.ret_type	= RET_INTEGER,
207 };
208 
209 BPF_CALL_0(bpf_ktime_get_tai_ns)
210 {
211 	/* NMI safe access to clock tai */
212 	return ktime_get_tai_fast_ns();
213 }
214 
215 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
216 	.func		= bpf_ktime_get_tai_ns,
217 	.gpl_only	= false,
218 	.ret_type	= RET_INTEGER,
219 };
220 
221 BPF_CALL_0(bpf_get_current_pid_tgid)
222 {
223 	struct task_struct *task = current;
224 
225 	if (unlikely(!task))
226 		return -EINVAL;
227 
228 	return (u64) task->tgid << 32 | task->pid;
229 }
230 
231 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
232 	.func		= bpf_get_current_pid_tgid,
233 	.gpl_only	= false,
234 	.ret_type	= RET_INTEGER,
235 };
236 
237 BPF_CALL_0(bpf_get_current_uid_gid)
238 {
239 	struct task_struct *task = current;
240 	kuid_t uid;
241 	kgid_t gid;
242 
243 	if (unlikely(!task))
244 		return -EINVAL;
245 
246 	current_uid_gid(&uid, &gid);
247 	return (u64) from_kgid(&init_user_ns, gid) << 32 |
248 		     from_kuid(&init_user_ns, uid);
249 }
250 
251 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
252 	.func		= bpf_get_current_uid_gid,
253 	.gpl_only	= false,
254 	.ret_type	= RET_INTEGER,
255 };
256 
257 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
258 {
259 	struct task_struct *task = current;
260 
261 	if (unlikely(!task))
262 		goto err_clear;
263 
264 	/* Verifier guarantees that size > 0 */
265 	strscpy_pad(buf, task->comm, size);
266 	return 0;
267 err_clear:
268 	memset(buf, 0, size);
269 	return -EINVAL;
270 }
271 
272 const struct bpf_func_proto bpf_get_current_comm_proto = {
273 	.func		= bpf_get_current_comm,
274 	.gpl_only	= false,
275 	.ret_type	= RET_INTEGER,
276 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
277 	.arg2_type	= ARG_CONST_SIZE,
278 };
279 
280 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
281 
282 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
283 {
284 	arch_spinlock_t *l = (void *)lock;
285 	union {
286 		__u32 val;
287 		arch_spinlock_t lock;
288 	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
289 
290 	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
291 	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
292 	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
293 	preempt_disable();
294 	arch_spin_lock(l);
295 }
296 
297 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
298 {
299 	arch_spinlock_t *l = (void *)lock;
300 
301 	arch_spin_unlock(l);
302 	preempt_enable();
303 }
304 
305 #else
306 
307 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
308 {
309 	atomic_t *l = (void *)lock;
310 
311 	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
312 	do {
313 		atomic_cond_read_relaxed(l, !VAL);
314 	} while (atomic_xchg(l, 1));
315 }
316 
317 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
318 {
319 	atomic_t *l = (void *)lock;
320 
321 	atomic_set_release(l, 0);
322 }
323 
324 #endif
325 
326 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
327 
328 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
329 {
330 	unsigned long flags;
331 
332 	local_irq_save(flags);
333 	__bpf_spin_lock(lock);
334 	__this_cpu_write(irqsave_flags, flags);
335 }
336 
337 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
338 {
339 	__bpf_spin_lock_irqsave(lock);
340 	return 0;
341 }
342 
343 const struct bpf_func_proto bpf_spin_lock_proto = {
344 	.func		= bpf_spin_lock,
345 	.gpl_only	= false,
346 	.ret_type	= RET_VOID,
347 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
348 	.arg1_btf_id    = BPF_PTR_POISON,
349 };
350 
351 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
352 {
353 	unsigned long flags;
354 
355 	flags = __this_cpu_read(irqsave_flags);
356 	__bpf_spin_unlock(lock);
357 	local_irq_restore(flags);
358 }
359 
360 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
361 {
362 	__bpf_spin_unlock_irqrestore(lock);
363 	return 0;
364 }
365 
366 const struct bpf_func_proto bpf_spin_unlock_proto = {
367 	.func		= bpf_spin_unlock,
368 	.gpl_only	= false,
369 	.ret_type	= RET_VOID,
370 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
371 	.arg1_btf_id    = BPF_PTR_POISON,
372 };
373 
374 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
375 			   bool lock_src)
376 {
377 	struct bpf_spin_lock *lock;
378 
379 	if (lock_src)
380 		lock = src + map->record->spin_lock_off;
381 	else
382 		lock = dst + map->record->spin_lock_off;
383 	preempt_disable();
384 	__bpf_spin_lock_irqsave(lock);
385 	copy_map_value(map, dst, src);
386 	__bpf_spin_unlock_irqrestore(lock);
387 	preempt_enable();
388 }
389 
390 BPF_CALL_0(bpf_jiffies64)
391 {
392 	return get_jiffies_64();
393 }
394 
395 const struct bpf_func_proto bpf_jiffies64_proto = {
396 	.func		= bpf_jiffies64,
397 	.gpl_only	= false,
398 	.ret_type	= RET_INTEGER,
399 };
400 
401 #ifdef CONFIG_CGROUPS
402 BPF_CALL_0(bpf_get_current_cgroup_id)
403 {
404 	struct cgroup *cgrp;
405 	u64 cgrp_id;
406 
407 	rcu_read_lock();
408 	cgrp = task_dfl_cgroup(current);
409 	cgrp_id = cgroup_id(cgrp);
410 	rcu_read_unlock();
411 
412 	return cgrp_id;
413 }
414 
415 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
416 	.func		= bpf_get_current_cgroup_id,
417 	.gpl_only	= false,
418 	.ret_type	= RET_INTEGER,
419 };
420 
421 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
422 {
423 	struct cgroup *cgrp;
424 	struct cgroup *ancestor;
425 	u64 cgrp_id;
426 
427 	rcu_read_lock();
428 	cgrp = task_dfl_cgroup(current);
429 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
430 	cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
431 	rcu_read_unlock();
432 
433 	return cgrp_id;
434 }
435 
436 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
437 	.func		= bpf_get_current_ancestor_cgroup_id,
438 	.gpl_only	= false,
439 	.ret_type	= RET_INTEGER,
440 	.arg1_type	= ARG_ANYTHING,
441 };
442 #endif /* CONFIG_CGROUPS */
443 
444 #define BPF_STRTOX_BASE_MASK 0x1F
445 
446 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
447 			  unsigned long long *res, bool *is_negative)
448 {
449 	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
450 	const char *cur_buf = buf;
451 	size_t cur_len = buf_len;
452 	unsigned int consumed;
453 	size_t val_len;
454 	char str[64];
455 
456 	if (!buf || !buf_len || !res || !is_negative)
457 		return -EINVAL;
458 
459 	if (base != 0 && base != 8 && base != 10 && base != 16)
460 		return -EINVAL;
461 
462 	if (flags & ~BPF_STRTOX_BASE_MASK)
463 		return -EINVAL;
464 
465 	while (cur_buf < buf + buf_len && isspace(*cur_buf))
466 		++cur_buf;
467 
468 	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
469 	if (*is_negative)
470 		++cur_buf;
471 
472 	consumed = cur_buf - buf;
473 	cur_len -= consumed;
474 	if (!cur_len)
475 		return -EINVAL;
476 
477 	cur_len = min(cur_len, sizeof(str) - 1);
478 	memcpy(str, cur_buf, cur_len);
479 	str[cur_len] = '\0';
480 	cur_buf = str;
481 
482 	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
483 	val_len = _parse_integer(cur_buf, base, res);
484 
485 	if (val_len & KSTRTOX_OVERFLOW)
486 		return -ERANGE;
487 
488 	if (val_len == 0)
489 		return -EINVAL;
490 
491 	cur_buf += val_len;
492 	consumed += cur_buf - str;
493 
494 	return consumed;
495 }
496 
497 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
498 			 long long *res)
499 {
500 	unsigned long long _res;
501 	bool is_negative;
502 	int err;
503 
504 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
505 	if (err < 0)
506 		return err;
507 	if (is_negative) {
508 		if ((long long)-_res > 0)
509 			return -ERANGE;
510 		*res = -_res;
511 	} else {
512 		if ((long long)_res < 0)
513 			return -ERANGE;
514 		*res = _res;
515 	}
516 	return err;
517 }
518 
519 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
520 	   long *, res)
521 {
522 	long long _res;
523 	int err;
524 
525 	err = __bpf_strtoll(buf, buf_len, flags, &_res);
526 	if (err < 0)
527 		return err;
528 	if (_res != (long)_res)
529 		return -ERANGE;
530 	*res = _res;
531 	return err;
532 }
533 
534 const struct bpf_func_proto bpf_strtol_proto = {
535 	.func		= bpf_strtol,
536 	.gpl_only	= false,
537 	.ret_type	= RET_INTEGER,
538 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
539 	.arg2_type	= ARG_CONST_SIZE,
540 	.arg3_type	= ARG_ANYTHING,
541 	.arg4_type	= ARG_PTR_TO_LONG,
542 };
543 
544 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
545 	   unsigned long *, res)
546 {
547 	unsigned long long _res;
548 	bool is_negative;
549 	int err;
550 
551 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
552 	if (err < 0)
553 		return err;
554 	if (is_negative)
555 		return -EINVAL;
556 	if (_res != (unsigned long)_res)
557 		return -ERANGE;
558 	*res = _res;
559 	return err;
560 }
561 
562 const struct bpf_func_proto bpf_strtoul_proto = {
563 	.func		= bpf_strtoul,
564 	.gpl_only	= false,
565 	.ret_type	= RET_INTEGER,
566 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
567 	.arg2_type	= ARG_CONST_SIZE,
568 	.arg3_type	= ARG_ANYTHING,
569 	.arg4_type	= ARG_PTR_TO_LONG,
570 };
571 
572 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
573 {
574 	return strncmp(s1, s2, s1_sz);
575 }
576 
577 static const struct bpf_func_proto bpf_strncmp_proto = {
578 	.func		= bpf_strncmp,
579 	.gpl_only	= false,
580 	.ret_type	= RET_INTEGER,
581 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
582 	.arg2_type	= ARG_CONST_SIZE,
583 	.arg3_type	= ARG_PTR_TO_CONST_STR,
584 };
585 
586 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
587 	   struct bpf_pidns_info *, nsdata, u32, size)
588 {
589 	struct task_struct *task = current;
590 	struct pid_namespace *pidns;
591 	int err = -EINVAL;
592 
593 	if (unlikely(size != sizeof(struct bpf_pidns_info)))
594 		goto clear;
595 
596 	if (unlikely((u64)(dev_t)dev != dev))
597 		goto clear;
598 
599 	if (unlikely(!task))
600 		goto clear;
601 
602 	pidns = task_active_pid_ns(task);
603 	if (unlikely(!pidns)) {
604 		err = -ENOENT;
605 		goto clear;
606 	}
607 
608 	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
609 		goto clear;
610 
611 	nsdata->pid = task_pid_nr_ns(task, pidns);
612 	nsdata->tgid = task_tgid_nr_ns(task, pidns);
613 	return 0;
614 clear:
615 	memset((void *)nsdata, 0, (size_t) size);
616 	return err;
617 }
618 
619 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
620 	.func		= bpf_get_ns_current_pid_tgid,
621 	.gpl_only	= false,
622 	.ret_type	= RET_INTEGER,
623 	.arg1_type	= ARG_ANYTHING,
624 	.arg2_type	= ARG_ANYTHING,
625 	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
626 	.arg4_type      = ARG_CONST_SIZE,
627 };
628 
629 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
630 	.func		= bpf_get_raw_cpu_id,
631 	.gpl_only	= false,
632 	.ret_type	= RET_INTEGER,
633 };
634 
635 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
636 	   u64, flags, void *, data, u64, size)
637 {
638 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
639 		return -EINVAL;
640 
641 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
642 }
643 
644 const struct bpf_func_proto bpf_event_output_data_proto =  {
645 	.func		= bpf_event_output_data,
646 	.gpl_only       = true,
647 	.ret_type       = RET_INTEGER,
648 	.arg1_type      = ARG_PTR_TO_CTX,
649 	.arg2_type      = ARG_CONST_MAP_PTR,
650 	.arg3_type      = ARG_ANYTHING,
651 	.arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
652 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
653 };
654 
655 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
656 	   const void __user *, user_ptr)
657 {
658 	int ret = copy_from_user(dst, user_ptr, size);
659 
660 	if (unlikely(ret)) {
661 		memset(dst, 0, size);
662 		ret = -EFAULT;
663 	}
664 
665 	return ret;
666 }
667 
668 const struct bpf_func_proto bpf_copy_from_user_proto = {
669 	.func		= bpf_copy_from_user,
670 	.gpl_only	= false,
671 	.might_sleep	= true,
672 	.ret_type	= RET_INTEGER,
673 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
674 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
675 	.arg3_type	= ARG_ANYTHING,
676 };
677 
678 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
679 	   const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
680 {
681 	int ret;
682 
683 	/* flags is not used yet */
684 	if (unlikely(flags))
685 		return -EINVAL;
686 
687 	if (unlikely(!size))
688 		return 0;
689 
690 	ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
691 	if (ret == size)
692 		return 0;
693 
694 	memset(dst, 0, size);
695 	/* Return -EFAULT for partial read */
696 	return ret < 0 ? ret : -EFAULT;
697 }
698 
699 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
700 	.func		= bpf_copy_from_user_task,
701 	.gpl_only	= true,
702 	.might_sleep	= true,
703 	.ret_type	= RET_INTEGER,
704 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
705 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
706 	.arg3_type	= ARG_ANYTHING,
707 	.arg4_type	= ARG_PTR_TO_BTF_ID,
708 	.arg4_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
709 	.arg5_type	= ARG_ANYTHING
710 };
711 
712 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
713 {
714 	if (cpu >= nr_cpu_ids)
715 		return (unsigned long)NULL;
716 
717 	return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
718 }
719 
720 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
721 	.func		= bpf_per_cpu_ptr,
722 	.gpl_only	= false,
723 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
724 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
725 	.arg2_type	= ARG_ANYTHING,
726 };
727 
728 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
729 {
730 	return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
731 }
732 
733 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
734 	.func		= bpf_this_cpu_ptr,
735 	.gpl_only	= false,
736 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
737 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
738 };
739 
740 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
741 		size_t bufsz)
742 {
743 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
744 
745 	buf[0] = 0;
746 
747 	switch (fmt_ptype) {
748 	case 's':
749 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
750 		if ((unsigned long)unsafe_ptr < TASK_SIZE)
751 			return strncpy_from_user_nofault(buf, user_ptr, bufsz);
752 		fallthrough;
753 #endif
754 	case 'k':
755 		return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
756 	case 'u':
757 		return strncpy_from_user_nofault(buf, user_ptr, bufsz);
758 	}
759 
760 	return -EINVAL;
761 }
762 
763 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
764  * arguments representation.
765  */
766 #define MAX_BPRINTF_BIN_ARGS	512
767 
768 /* Support executing three nested bprintf helper calls on a given CPU */
769 #define MAX_BPRINTF_NEST_LEVEL	3
770 struct bpf_bprintf_buffers {
771 	char bin_args[MAX_BPRINTF_BIN_ARGS];
772 	char buf[MAX_BPRINTF_BUF];
773 };
774 
775 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
776 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
777 
778 static int try_get_buffers(struct bpf_bprintf_buffers **bufs)
779 {
780 	int nest_level;
781 
782 	preempt_disable();
783 	nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
784 	if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
785 		this_cpu_dec(bpf_bprintf_nest_level);
786 		preempt_enable();
787 		return -EBUSY;
788 	}
789 	*bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
790 
791 	return 0;
792 }
793 
794 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
795 {
796 	if (!data->bin_args && !data->buf)
797 		return;
798 	if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
799 		return;
800 	this_cpu_dec(bpf_bprintf_nest_level);
801 	preempt_enable();
802 }
803 
804 /*
805  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
806  *
807  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
808  *
809  * This can be used in two ways:
810  * - Format string verification only: when data->get_bin_args is false
811  * - Arguments preparation: in addition to the above verification, it writes in
812  *   data->bin_args a binary representation of arguments usable by bstr_printf
813  *   where pointers from BPF have been sanitized.
814  *
815  * In argument preparation mode, if 0 is returned, safe temporary buffers are
816  * allocated and bpf_bprintf_cleanup should be called to free them after use.
817  */
818 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
819 			u32 num_args, struct bpf_bprintf_data *data)
820 {
821 	bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
822 	char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
823 	struct bpf_bprintf_buffers *buffers = NULL;
824 	size_t sizeof_cur_arg, sizeof_cur_ip;
825 	int err, i, num_spec = 0;
826 	u64 cur_arg;
827 	char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
828 
829 	fmt_end = strnchr(fmt, fmt_size, 0);
830 	if (!fmt_end)
831 		return -EINVAL;
832 	fmt_size = fmt_end - fmt;
833 
834 	if (get_buffers && try_get_buffers(&buffers))
835 		return -EBUSY;
836 
837 	if (data->get_bin_args) {
838 		if (num_args)
839 			tmp_buf = buffers->bin_args;
840 		tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
841 		data->bin_args = (u32 *)tmp_buf;
842 	}
843 
844 	if (data->get_buf)
845 		data->buf = buffers->buf;
846 
847 	for (i = 0; i < fmt_size; i++) {
848 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
849 			err = -EINVAL;
850 			goto out;
851 		}
852 
853 		if (fmt[i] != '%')
854 			continue;
855 
856 		if (fmt[i + 1] == '%') {
857 			i++;
858 			continue;
859 		}
860 
861 		if (num_spec >= num_args) {
862 			err = -EINVAL;
863 			goto out;
864 		}
865 
866 		/* The string is zero-terminated so if fmt[i] != 0, we can
867 		 * always access fmt[i + 1], in the worst case it will be a 0
868 		 */
869 		i++;
870 
871 		/* skip optional "[0 +-][num]" width formatting field */
872 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
873 		       fmt[i] == ' ')
874 			i++;
875 		if (fmt[i] >= '1' && fmt[i] <= '9') {
876 			i++;
877 			while (fmt[i] >= '0' && fmt[i] <= '9')
878 				i++;
879 		}
880 
881 		if (fmt[i] == 'p') {
882 			sizeof_cur_arg = sizeof(long);
883 
884 			if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
885 			    fmt[i + 2] == 's') {
886 				fmt_ptype = fmt[i + 1];
887 				i += 2;
888 				goto fmt_str;
889 			}
890 
891 			if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
892 			    ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
893 			    fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
894 			    fmt[i + 1] == 'S') {
895 				/* just kernel pointers */
896 				if (tmp_buf)
897 					cur_arg = raw_args[num_spec];
898 				i++;
899 				goto nocopy_fmt;
900 			}
901 
902 			if (fmt[i + 1] == 'B') {
903 				if (tmp_buf)  {
904 					err = snprintf(tmp_buf,
905 						       (tmp_buf_end - tmp_buf),
906 						       "%pB",
907 						       (void *)(long)raw_args[num_spec]);
908 					tmp_buf += (err + 1);
909 				}
910 
911 				i++;
912 				num_spec++;
913 				continue;
914 			}
915 
916 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
917 			if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
918 			    (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
919 				err = -EINVAL;
920 				goto out;
921 			}
922 
923 			i += 2;
924 			if (!tmp_buf)
925 				goto nocopy_fmt;
926 
927 			sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
928 			if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
929 				err = -ENOSPC;
930 				goto out;
931 			}
932 
933 			unsafe_ptr = (char *)(long)raw_args[num_spec];
934 			err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
935 						       sizeof_cur_ip);
936 			if (err < 0)
937 				memset(cur_ip, 0, sizeof_cur_ip);
938 
939 			/* hack: bstr_printf expects IP addresses to be
940 			 * pre-formatted as strings, ironically, the easiest way
941 			 * to do that is to call snprintf.
942 			 */
943 			ip_spec[2] = fmt[i - 1];
944 			ip_spec[3] = fmt[i];
945 			err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
946 				       ip_spec, &cur_ip);
947 
948 			tmp_buf += err + 1;
949 			num_spec++;
950 
951 			continue;
952 		} else if (fmt[i] == 's') {
953 			fmt_ptype = fmt[i];
954 fmt_str:
955 			if (fmt[i + 1] != 0 &&
956 			    !isspace(fmt[i + 1]) &&
957 			    !ispunct(fmt[i + 1])) {
958 				err = -EINVAL;
959 				goto out;
960 			}
961 
962 			if (!tmp_buf)
963 				goto nocopy_fmt;
964 
965 			if (tmp_buf_end == tmp_buf) {
966 				err = -ENOSPC;
967 				goto out;
968 			}
969 
970 			unsafe_ptr = (char *)(long)raw_args[num_spec];
971 			err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
972 						    fmt_ptype,
973 						    tmp_buf_end - tmp_buf);
974 			if (err < 0) {
975 				tmp_buf[0] = '\0';
976 				err = 1;
977 			}
978 
979 			tmp_buf += err;
980 			num_spec++;
981 
982 			continue;
983 		} else if (fmt[i] == 'c') {
984 			if (!tmp_buf)
985 				goto nocopy_fmt;
986 
987 			if (tmp_buf_end == tmp_buf) {
988 				err = -ENOSPC;
989 				goto out;
990 			}
991 
992 			*tmp_buf = raw_args[num_spec];
993 			tmp_buf++;
994 			num_spec++;
995 
996 			continue;
997 		}
998 
999 		sizeof_cur_arg = sizeof(int);
1000 
1001 		if (fmt[i] == 'l') {
1002 			sizeof_cur_arg = sizeof(long);
1003 			i++;
1004 		}
1005 		if (fmt[i] == 'l') {
1006 			sizeof_cur_arg = sizeof(long long);
1007 			i++;
1008 		}
1009 
1010 		if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1011 		    fmt[i] != 'x' && fmt[i] != 'X') {
1012 			err = -EINVAL;
1013 			goto out;
1014 		}
1015 
1016 		if (tmp_buf)
1017 			cur_arg = raw_args[num_spec];
1018 nocopy_fmt:
1019 		if (tmp_buf) {
1020 			tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1021 			if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1022 				err = -ENOSPC;
1023 				goto out;
1024 			}
1025 
1026 			if (sizeof_cur_arg == 8) {
1027 				*(u32 *)tmp_buf = *(u32 *)&cur_arg;
1028 				*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1029 			} else {
1030 				*(u32 *)tmp_buf = (u32)(long)cur_arg;
1031 			}
1032 			tmp_buf += sizeof_cur_arg;
1033 		}
1034 		num_spec++;
1035 	}
1036 
1037 	err = 0;
1038 out:
1039 	if (err)
1040 		bpf_bprintf_cleanup(data);
1041 	return err;
1042 }
1043 
1044 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1045 	   const void *, args, u32, data_len)
1046 {
1047 	struct bpf_bprintf_data data = {
1048 		.get_bin_args	= true,
1049 	};
1050 	int err, num_args;
1051 
1052 	if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1053 	    (data_len && !args))
1054 		return -EINVAL;
1055 	num_args = data_len / 8;
1056 
1057 	/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1058 	 * can safely give an unbounded size.
1059 	 */
1060 	err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1061 	if (err < 0)
1062 		return err;
1063 
1064 	err = bstr_printf(str, str_size, fmt, data.bin_args);
1065 
1066 	bpf_bprintf_cleanup(&data);
1067 
1068 	return err + 1;
1069 }
1070 
1071 const struct bpf_func_proto bpf_snprintf_proto = {
1072 	.func		= bpf_snprintf,
1073 	.gpl_only	= true,
1074 	.ret_type	= RET_INTEGER,
1075 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1076 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1077 	.arg3_type	= ARG_PTR_TO_CONST_STR,
1078 	.arg4_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1079 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1080 };
1081 
1082 struct bpf_async_cb {
1083 	struct bpf_map *map;
1084 	struct bpf_prog *prog;
1085 	void __rcu *callback_fn;
1086 	void *value;
1087 	union {
1088 		struct rcu_head rcu;
1089 		struct work_struct delete_work;
1090 	};
1091 	u64 flags;
1092 };
1093 
1094 /* BPF map elements can contain 'struct bpf_timer'.
1095  * Such map owns all of its BPF timers.
1096  * 'struct bpf_timer' is allocated as part of map element allocation
1097  * and it's zero initialized.
1098  * That space is used to keep 'struct bpf_async_kern'.
1099  * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1100  * remembers 'struct bpf_map *' pointer it's part of.
1101  * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1102  * bpf_timer_start() arms the timer.
1103  * If user space reference to a map goes to zero at this point
1104  * ops->map_release_uref callback is responsible for cancelling the timers,
1105  * freeing their memory, and decrementing prog's refcnts.
1106  * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1107  * Inner maps can contain bpf timers as well. ops->map_release_uref is
1108  * freeing the timers when inner map is replaced or deleted by user space.
1109  */
1110 struct bpf_hrtimer {
1111 	struct bpf_async_cb cb;
1112 	struct hrtimer timer;
1113 	atomic_t cancelling;
1114 };
1115 
1116 struct bpf_work {
1117 	struct bpf_async_cb cb;
1118 	struct work_struct work;
1119 	struct work_struct delete_work;
1120 };
1121 
1122 /* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */
1123 struct bpf_async_kern {
1124 	union {
1125 		struct bpf_async_cb *cb;
1126 		struct bpf_hrtimer *timer;
1127 		struct bpf_work *work;
1128 	};
1129 	/* bpf_spin_lock is used here instead of spinlock_t to make
1130 	 * sure that it always fits into space reserved by struct bpf_timer
1131 	 * regardless of LOCKDEP and spinlock debug flags.
1132 	 */
1133 	struct bpf_spin_lock lock;
1134 } __attribute__((aligned(8)));
1135 
1136 enum bpf_async_type {
1137 	BPF_ASYNC_TYPE_TIMER = 0,
1138 	BPF_ASYNC_TYPE_WQ,
1139 };
1140 
1141 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1142 
1143 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1144 {
1145 	struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1146 	struct bpf_map *map = t->cb.map;
1147 	void *value = t->cb.value;
1148 	bpf_callback_t callback_fn;
1149 	void *key;
1150 	u32 idx;
1151 
1152 	BTF_TYPE_EMIT(struct bpf_timer);
1153 	callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held());
1154 	if (!callback_fn)
1155 		goto out;
1156 
1157 	/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1158 	 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1159 	 * Remember the timer this callback is servicing to prevent
1160 	 * deadlock if callback_fn() calls bpf_timer_cancel() or
1161 	 * bpf_map_delete_elem() on the same timer.
1162 	 */
1163 	this_cpu_write(hrtimer_running, t);
1164 	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1165 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1166 
1167 		/* compute the key */
1168 		idx = ((char *)value - array->value) / array->elem_size;
1169 		key = &idx;
1170 	} else { /* hash or lru */
1171 		key = value - round_up(map->key_size, 8);
1172 	}
1173 
1174 	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1175 	/* The verifier checked that return value is zero. */
1176 
1177 	this_cpu_write(hrtimer_running, NULL);
1178 out:
1179 	return HRTIMER_NORESTART;
1180 }
1181 
1182 static void bpf_wq_work(struct work_struct *work)
1183 {
1184 	struct bpf_work *w = container_of(work, struct bpf_work, work);
1185 	struct bpf_async_cb *cb = &w->cb;
1186 	struct bpf_map *map = cb->map;
1187 	bpf_callback_t callback_fn;
1188 	void *value = cb->value;
1189 	void *key;
1190 	u32 idx;
1191 
1192 	BTF_TYPE_EMIT(struct bpf_wq);
1193 
1194 	callback_fn = READ_ONCE(cb->callback_fn);
1195 	if (!callback_fn)
1196 		return;
1197 
1198 	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1199 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1200 
1201 		/* compute the key */
1202 		idx = ((char *)value - array->value) / array->elem_size;
1203 		key = &idx;
1204 	} else { /* hash or lru */
1205 		key = value - round_up(map->key_size, 8);
1206 	}
1207 
1208         rcu_read_lock_trace();
1209         migrate_disable();
1210 
1211 	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1212 
1213 	migrate_enable();
1214 	rcu_read_unlock_trace();
1215 }
1216 
1217 static void bpf_wq_delete_work(struct work_struct *work)
1218 {
1219 	struct bpf_work *w = container_of(work, struct bpf_work, delete_work);
1220 
1221 	cancel_work_sync(&w->work);
1222 
1223 	kfree_rcu(w, cb.rcu);
1224 }
1225 
1226 static void bpf_timer_delete_work(struct work_struct *work)
1227 {
1228 	struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work);
1229 
1230 	/* Cancel the timer and wait for callback to complete if it was running.
1231 	 * If hrtimer_cancel() can be safely called it's safe to call
1232 	 * kfree_rcu(t) right after for both preallocated and non-preallocated
1233 	 * maps.  The async->cb = NULL was already done and no code path can see
1234 	 * address 't' anymore. Timer if armed for existing bpf_hrtimer before
1235 	 * bpf_timer_cancel_and_free will have been cancelled.
1236 	 */
1237 	hrtimer_cancel(&t->timer);
1238 	kfree_rcu(t, cb.rcu);
1239 }
1240 
1241 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags,
1242 			    enum bpf_async_type type)
1243 {
1244 	struct bpf_async_cb *cb;
1245 	struct bpf_hrtimer *t;
1246 	struct bpf_work *w;
1247 	clockid_t clockid;
1248 	size_t size;
1249 	int ret = 0;
1250 
1251 	if (in_nmi())
1252 		return -EOPNOTSUPP;
1253 
1254 	switch (type) {
1255 	case BPF_ASYNC_TYPE_TIMER:
1256 		size = sizeof(struct bpf_hrtimer);
1257 		break;
1258 	case BPF_ASYNC_TYPE_WQ:
1259 		size = sizeof(struct bpf_work);
1260 		break;
1261 	default:
1262 		return -EINVAL;
1263 	}
1264 
1265 	__bpf_spin_lock_irqsave(&async->lock);
1266 	t = async->timer;
1267 	if (t) {
1268 		ret = -EBUSY;
1269 		goto out;
1270 	}
1271 
1272 	/* allocate hrtimer via map_kmalloc to use memcg accounting */
1273 	cb = bpf_map_kmalloc_node(map, size, GFP_ATOMIC, map->numa_node);
1274 	if (!cb) {
1275 		ret = -ENOMEM;
1276 		goto out;
1277 	}
1278 
1279 	switch (type) {
1280 	case BPF_ASYNC_TYPE_TIMER:
1281 		clockid = flags & (MAX_CLOCKS - 1);
1282 		t = (struct bpf_hrtimer *)cb;
1283 
1284 		atomic_set(&t->cancelling, 0);
1285 		INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work);
1286 		hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1287 		t->timer.function = bpf_timer_cb;
1288 		cb->value = (void *)async - map->record->timer_off;
1289 		break;
1290 	case BPF_ASYNC_TYPE_WQ:
1291 		w = (struct bpf_work *)cb;
1292 
1293 		INIT_WORK(&w->work, bpf_wq_work);
1294 		INIT_WORK(&w->delete_work, bpf_wq_delete_work);
1295 		cb->value = (void *)async - map->record->wq_off;
1296 		break;
1297 	}
1298 	cb->map = map;
1299 	cb->prog = NULL;
1300 	cb->flags = flags;
1301 	rcu_assign_pointer(cb->callback_fn, NULL);
1302 
1303 	WRITE_ONCE(async->cb, cb);
1304 	/* Guarantee the order between async->cb and map->usercnt. So
1305 	 * when there are concurrent uref release and bpf timer init, either
1306 	 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1307 	 * timer or atomic64_read() below returns a zero usercnt.
1308 	 */
1309 	smp_mb();
1310 	if (!atomic64_read(&map->usercnt)) {
1311 		/* maps with timers must be either held by user space
1312 		 * or pinned in bpffs.
1313 		 */
1314 		WRITE_ONCE(async->cb, NULL);
1315 		kfree(cb);
1316 		ret = -EPERM;
1317 	}
1318 out:
1319 	__bpf_spin_unlock_irqrestore(&async->lock);
1320 	return ret;
1321 }
1322 
1323 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map,
1324 	   u64, flags)
1325 {
1326 	clock_t clockid = flags & (MAX_CLOCKS - 1);
1327 
1328 	BUILD_BUG_ON(MAX_CLOCKS != 16);
1329 	BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer));
1330 	BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer));
1331 
1332 	if (flags >= MAX_CLOCKS ||
1333 	    /* similar to timerfd except _ALARM variants are not supported */
1334 	    (clockid != CLOCK_MONOTONIC &&
1335 	     clockid != CLOCK_REALTIME &&
1336 	     clockid != CLOCK_BOOTTIME))
1337 		return -EINVAL;
1338 
1339 	return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER);
1340 }
1341 
1342 static const struct bpf_func_proto bpf_timer_init_proto = {
1343 	.func		= bpf_timer_init,
1344 	.gpl_only	= true,
1345 	.ret_type	= RET_INTEGER,
1346 	.arg1_type	= ARG_PTR_TO_TIMER,
1347 	.arg2_type	= ARG_CONST_MAP_PTR,
1348 	.arg3_type	= ARG_ANYTHING,
1349 };
1350 
1351 static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn,
1352 				    struct bpf_prog_aux *aux, unsigned int flags,
1353 				    enum bpf_async_type type)
1354 {
1355 	struct bpf_prog *prev, *prog = aux->prog;
1356 	struct bpf_async_cb *cb;
1357 	int ret = 0;
1358 
1359 	if (in_nmi())
1360 		return -EOPNOTSUPP;
1361 	__bpf_spin_lock_irqsave(&async->lock);
1362 	cb = async->cb;
1363 	if (!cb) {
1364 		ret = -EINVAL;
1365 		goto out;
1366 	}
1367 	if (!atomic64_read(&cb->map->usercnt)) {
1368 		/* maps with timers must be either held by user space
1369 		 * or pinned in bpffs. Otherwise timer might still be
1370 		 * running even when bpf prog is detached and user space
1371 		 * is gone, since map_release_uref won't ever be called.
1372 		 */
1373 		ret = -EPERM;
1374 		goto out;
1375 	}
1376 	prev = cb->prog;
1377 	if (prev != prog) {
1378 		/* Bump prog refcnt once. Every bpf_timer_set_callback()
1379 		 * can pick different callback_fn-s within the same prog.
1380 		 */
1381 		prog = bpf_prog_inc_not_zero(prog);
1382 		if (IS_ERR(prog)) {
1383 			ret = PTR_ERR(prog);
1384 			goto out;
1385 		}
1386 		if (prev)
1387 			/* Drop prev prog refcnt when swapping with new prog */
1388 			bpf_prog_put(prev);
1389 		cb->prog = prog;
1390 	}
1391 	rcu_assign_pointer(cb->callback_fn, callback_fn);
1392 out:
1393 	__bpf_spin_unlock_irqrestore(&async->lock);
1394 	return ret;
1395 }
1396 
1397 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn,
1398 	   struct bpf_prog_aux *, aux)
1399 {
1400 	return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER);
1401 }
1402 
1403 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1404 	.func		= bpf_timer_set_callback,
1405 	.gpl_only	= true,
1406 	.ret_type	= RET_INTEGER,
1407 	.arg1_type	= ARG_PTR_TO_TIMER,
1408 	.arg2_type	= ARG_PTR_TO_FUNC,
1409 };
1410 
1411 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags)
1412 {
1413 	struct bpf_hrtimer *t;
1414 	int ret = 0;
1415 	enum hrtimer_mode mode;
1416 
1417 	if (in_nmi())
1418 		return -EOPNOTSUPP;
1419 	if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN))
1420 		return -EINVAL;
1421 	__bpf_spin_lock_irqsave(&timer->lock);
1422 	t = timer->timer;
1423 	if (!t || !t->cb.prog) {
1424 		ret = -EINVAL;
1425 		goto out;
1426 	}
1427 
1428 	if (flags & BPF_F_TIMER_ABS)
1429 		mode = HRTIMER_MODE_ABS_SOFT;
1430 	else
1431 		mode = HRTIMER_MODE_REL_SOFT;
1432 
1433 	if (flags & BPF_F_TIMER_CPU_PIN)
1434 		mode |= HRTIMER_MODE_PINNED;
1435 
1436 	hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
1437 out:
1438 	__bpf_spin_unlock_irqrestore(&timer->lock);
1439 	return ret;
1440 }
1441 
1442 static const struct bpf_func_proto bpf_timer_start_proto = {
1443 	.func		= bpf_timer_start,
1444 	.gpl_only	= true,
1445 	.ret_type	= RET_INTEGER,
1446 	.arg1_type	= ARG_PTR_TO_TIMER,
1447 	.arg2_type	= ARG_ANYTHING,
1448 	.arg3_type	= ARG_ANYTHING,
1449 };
1450 
1451 static void drop_prog_refcnt(struct bpf_async_cb *async)
1452 {
1453 	struct bpf_prog *prog = async->prog;
1454 
1455 	if (prog) {
1456 		bpf_prog_put(prog);
1457 		async->prog = NULL;
1458 		rcu_assign_pointer(async->callback_fn, NULL);
1459 	}
1460 }
1461 
1462 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer)
1463 {
1464 	struct bpf_hrtimer *t, *cur_t;
1465 	bool inc = false;
1466 	int ret = 0;
1467 
1468 	if (in_nmi())
1469 		return -EOPNOTSUPP;
1470 	rcu_read_lock();
1471 	__bpf_spin_lock_irqsave(&timer->lock);
1472 	t = timer->timer;
1473 	if (!t) {
1474 		ret = -EINVAL;
1475 		goto out;
1476 	}
1477 
1478 	cur_t = this_cpu_read(hrtimer_running);
1479 	if (cur_t == t) {
1480 		/* If bpf callback_fn is trying to bpf_timer_cancel()
1481 		 * its own timer the hrtimer_cancel() will deadlock
1482 		 * since it waits for callback_fn to finish.
1483 		 */
1484 		ret = -EDEADLK;
1485 		goto out;
1486 	}
1487 
1488 	/* Only account in-flight cancellations when invoked from a timer
1489 	 * callback, since we want to avoid waiting only if other _callbacks_
1490 	 * are waiting on us, to avoid introducing lockups. Non-callback paths
1491 	 * are ok, since nobody would synchronously wait for their completion.
1492 	 */
1493 	if (!cur_t)
1494 		goto drop;
1495 	atomic_inc(&t->cancelling);
1496 	/* Need full barrier after relaxed atomic_inc */
1497 	smp_mb__after_atomic();
1498 	inc = true;
1499 	if (atomic_read(&cur_t->cancelling)) {
1500 		/* We're cancelling timer t, while some other timer callback is
1501 		 * attempting to cancel us. In such a case, it might be possible
1502 		 * that timer t belongs to the other callback, or some other
1503 		 * callback waiting upon it (creating transitive dependencies
1504 		 * upon us), and we will enter a deadlock if we continue
1505 		 * cancelling and waiting for it synchronously, since it might
1506 		 * do the same. Bail!
1507 		 */
1508 		ret = -EDEADLK;
1509 		goto out;
1510 	}
1511 drop:
1512 	drop_prog_refcnt(&t->cb);
1513 out:
1514 	__bpf_spin_unlock_irqrestore(&timer->lock);
1515 	/* Cancel the timer and wait for associated callback to finish
1516 	 * if it was running.
1517 	 */
1518 	ret = ret ?: hrtimer_cancel(&t->timer);
1519 	if (inc)
1520 		atomic_dec(&t->cancelling);
1521 	rcu_read_unlock();
1522 	return ret;
1523 }
1524 
1525 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1526 	.func		= bpf_timer_cancel,
1527 	.gpl_only	= true,
1528 	.ret_type	= RET_INTEGER,
1529 	.arg1_type	= ARG_PTR_TO_TIMER,
1530 };
1531 
1532 static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async)
1533 {
1534 	struct bpf_async_cb *cb;
1535 
1536 	/* Performance optimization: read async->cb without lock first. */
1537 	if (!READ_ONCE(async->cb))
1538 		return NULL;
1539 
1540 	__bpf_spin_lock_irqsave(&async->lock);
1541 	/* re-read it under lock */
1542 	cb = async->cb;
1543 	if (!cb)
1544 		goto out;
1545 	drop_prog_refcnt(cb);
1546 	/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1547 	 * this timer, since it won't be initialized.
1548 	 */
1549 	WRITE_ONCE(async->cb, NULL);
1550 out:
1551 	__bpf_spin_unlock_irqrestore(&async->lock);
1552 	return cb;
1553 }
1554 
1555 /* This function is called by map_delete/update_elem for individual element and
1556  * by ops->map_release_uref when the user space reference to a map reaches zero.
1557  */
1558 void bpf_timer_cancel_and_free(void *val)
1559 {
1560 	struct bpf_hrtimer *t;
1561 
1562 	t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val);
1563 
1564 	if (!t)
1565 		return;
1566 	/* We check that bpf_map_delete/update_elem() was called from timer
1567 	 * callback_fn. In such case we don't call hrtimer_cancel() (since it
1568 	 * will deadlock) and don't call hrtimer_try_to_cancel() (since it will
1569 	 * just return -1). Though callback_fn is still running on this cpu it's
1570 	 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1571 	 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1572 	 * since async->cb = NULL was already done. The timer will be
1573 	 * effectively cancelled because bpf_timer_cb() will return
1574 	 * HRTIMER_NORESTART.
1575 	 *
1576 	 * However, it is possible the timer callback_fn calling us armed the
1577 	 * timer _before_ calling us, such that failing to cancel it here will
1578 	 * cause it to possibly use struct hrtimer after freeing bpf_hrtimer.
1579 	 * Therefore, we _need_ to cancel any outstanding timers before we do
1580 	 * kfree_rcu, even though no more timers can be armed.
1581 	 *
1582 	 * Moreover, we need to schedule work even if timer does not belong to
1583 	 * the calling callback_fn, as on two different CPUs, we can end up in a
1584 	 * situation where both sides run in parallel, try to cancel one
1585 	 * another, and we end up waiting on both sides in hrtimer_cancel
1586 	 * without making forward progress, since timer1 depends on time2
1587 	 * callback to finish, and vice versa.
1588 	 *
1589 	 *  CPU 1 (timer1_cb)			CPU 2 (timer2_cb)
1590 	 *  bpf_timer_cancel_and_free(timer2)	bpf_timer_cancel_and_free(timer1)
1591 	 *
1592 	 * To avoid these issues, punt to workqueue context when we are in a
1593 	 * timer callback.
1594 	 */
1595 	if (this_cpu_read(hrtimer_running))
1596 		queue_work(system_unbound_wq, &t->cb.delete_work);
1597 	else
1598 		bpf_timer_delete_work(&t->cb.delete_work);
1599 }
1600 
1601 /* This function is called by map_delete/update_elem for individual element and
1602  * by ops->map_release_uref when the user space reference to a map reaches zero.
1603  */
1604 void bpf_wq_cancel_and_free(void *val)
1605 {
1606 	struct bpf_work *work;
1607 
1608 	BTF_TYPE_EMIT(struct bpf_wq);
1609 
1610 	work = (struct bpf_work *)__bpf_async_cancel_and_free(val);
1611 	if (!work)
1612 		return;
1613 	/* Trigger cancel of the sleepable work, but *do not* wait for
1614 	 * it to finish if it was running as we might not be in a
1615 	 * sleepable context.
1616 	 * kfree will be called once the work has finished.
1617 	 */
1618 	schedule_work(&work->delete_work);
1619 }
1620 
1621 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
1622 {
1623 	unsigned long *kptr = map_value;
1624 
1625 	/* This helper may be inlined by verifier. */
1626 	return xchg(kptr, (unsigned long)ptr);
1627 }
1628 
1629 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1630  * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1631  * denote type that verifier will determine.
1632  */
1633 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1634 	.func         = bpf_kptr_xchg,
1635 	.gpl_only     = false,
1636 	.ret_type     = RET_PTR_TO_BTF_ID_OR_NULL,
1637 	.ret_btf_id   = BPF_PTR_POISON,
1638 	.arg1_type    = ARG_PTR_TO_KPTR,
1639 	.arg2_type    = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1640 	.arg2_btf_id  = BPF_PTR_POISON,
1641 };
1642 
1643 /* Since the upper 8 bits of dynptr->size is reserved, the
1644  * maximum supported size is 2^24 - 1.
1645  */
1646 #define DYNPTR_MAX_SIZE	((1UL << 24) - 1)
1647 #define DYNPTR_TYPE_SHIFT	28
1648 #define DYNPTR_SIZE_MASK	0xFFFFFF
1649 #define DYNPTR_RDONLY_BIT	BIT(31)
1650 
1651 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1652 {
1653 	return ptr->size & DYNPTR_RDONLY_BIT;
1654 }
1655 
1656 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1657 {
1658 	ptr->size |= DYNPTR_RDONLY_BIT;
1659 }
1660 
1661 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1662 {
1663 	ptr->size |= type << DYNPTR_TYPE_SHIFT;
1664 }
1665 
1666 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1667 {
1668 	return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1669 }
1670 
1671 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1672 {
1673 	return ptr->size & DYNPTR_SIZE_MASK;
1674 }
1675 
1676 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size)
1677 {
1678 	u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1679 
1680 	ptr->size = new_size | metadata;
1681 }
1682 
1683 int bpf_dynptr_check_size(u32 size)
1684 {
1685 	return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1686 }
1687 
1688 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1689 		     enum bpf_dynptr_type type, u32 offset, u32 size)
1690 {
1691 	ptr->data = data;
1692 	ptr->offset = offset;
1693 	ptr->size = size;
1694 	bpf_dynptr_set_type(ptr, type);
1695 }
1696 
1697 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1698 {
1699 	memset(ptr, 0, sizeof(*ptr));
1700 }
1701 
1702 static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1703 {
1704 	u32 size = __bpf_dynptr_size(ptr);
1705 
1706 	if (len > size || offset > size - len)
1707 		return -E2BIG;
1708 
1709 	return 0;
1710 }
1711 
1712 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1713 {
1714 	int err;
1715 
1716 	BTF_TYPE_EMIT(struct bpf_dynptr);
1717 
1718 	err = bpf_dynptr_check_size(size);
1719 	if (err)
1720 		goto error;
1721 
1722 	/* flags is currently unsupported */
1723 	if (flags) {
1724 		err = -EINVAL;
1725 		goto error;
1726 	}
1727 
1728 	bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1729 
1730 	return 0;
1731 
1732 error:
1733 	bpf_dynptr_set_null(ptr);
1734 	return err;
1735 }
1736 
1737 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1738 	.func		= bpf_dynptr_from_mem,
1739 	.gpl_only	= false,
1740 	.ret_type	= RET_INTEGER,
1741 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1742 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1743 	.arg3_type	= ARG_ANYTHING,
1744 	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT,
1745 };
1746 
1747 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
1748 	   u32, offset, u64, flags)
1749 {
1750 	enum bpf_dynptr_type type;
1751 	int err;
1752 
1753 	if (!src->data || flags)
1754 		return -EINVAL;
1755 
1756 	err = bpf_dynptr_check_off_len(src, offset, len);
1757 	if (err)
1758 		return err;
1759 
1760 	type = bpf_dynptr_get_type(src);
1761 
1762 	switch (type) {
1763 	case BPF_DYNPTR_TYPE_LOCAL:
1764 	case BPF_DYNPTR_TYPE_RINGBUF:
1765 		/* Source and destination may possibly overlap, hence use memmove to
1766 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1767 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1768 		 */
1769 		memmove(dst, src->data + src->offset + offset, len);
1770 		return 0;
1771 	case BPF_DYNPTR_TYPE_SKB:
1772 		return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1773 	case BPF_DYNPTR_TYPE_XDP:
1774 		return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1775 	default:
1776 		WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1777 		return -EFAULT;
1778 	}
1779 }
1780 
1781 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1782 	.func		= bpf_dynptr_read,
1783 	.gpl_only	= false,
1784 	.ret_type	= RET_INTEGER,
1785 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1786 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1787 	.arg3_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1788 	.arg4_type	= ARG_ANYTHING,
1789 	.arg5_type	= ARG_ANYTHING,
1790 };
1791 
1792 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1793 	   u32, len, u64, flags)
1794 {
1795 	enum bpf_dynptr_type type;
1796 	int err;
1797 
1798 	if (!dst->data || __bpf_dynptr_is_rdonly(dst))
1799 		return -EINVAL;
1800 
1801 	err = bpf_dynptr_check_off_len(dst, offset, len);
1802 	if (err)
1803 		return err;
1804 
1805 	type = bpf_dynptr_get_type(dst);
1806 
1807 	switch (type) {
1808 	case BPF_DYNPTR_TYPE_LOCAL:
1809 	case BPF_DYNPTR_TYPE_RINGBUF:
1810 		if (flags)
1811 			return -EINVAL;
1812 		/* Source and destination may possibly overlap, hence use memmove to
1813 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1814 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1815 		 */
1816 		memmove(dst->data + dst->offset + offset, src, len);
1817 		return 0;
1818 	case BPF_DYNPTR_TYPE_SKB:
1819 		return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1820 					     flags);
1821 	case BPF_DYNPTR_TYPE_XDP:
1822 		if (flags)
1823 			return -EINVAL;
1824 		return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1825 	default:
1826 		WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1827 		return -EFAULT;
1828 	}
1829 }
1830 
1831 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1832 	.func		= bpf_dynptr_write,
1833 	.gpl_only	= false,
1834 	.ret_type	= RET_INTEGER,
1835 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1836 	.arg2_type	= ARG_ANYTHING,
1837 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1838 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1839 	.arg5_type	= ARG_ANYTHING,
1840 };
1841 
1842 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1843 {
1844 	enum bpf_dynptr_type type;
1845 	int err;
1846 
1847 	if (!ptr->data)
1848 		return 0;
1849 
1850 	err = bpf_dynptr_check_off_len(ptr, offset, len);
1851 	if (err)
1852 		return 0;
1853 
1854 	if (__bpf_dynptr_is_rdonly(ptr))
1855 		return 0;
1856 
1857 	type = bpf_dynptr_get_type(ptr);
1858 
1859 	switch (type) {
1860 	case BPF_DYNPTR_TYPE_LOCAL:
1861 	case BPF_DYNPTR_TYPE_RINGBUF:
1862 		return (unsigned long)(ptr->data + ptr->offset + offset);
1863 	case BPF_DYNPTR_TYPE_SKB:
1864 	case BPF_DYNPTR_TYPE_XDP:
1865 		/* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1866 		return 0;
1867 	default:
1868 		WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1869 		return 0;
1870 	}
1871 }
1872 
1873 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1874 	.func		= bpf_dynptr_data,
1875 	.gpl_only	= false,
1876 	.ret_type	= RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1877 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1878 	.arg2_type	= ARG_ANYTHING,
1879 	.arg3_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
1880 };
1881 
1882 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1883 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1884 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1885 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1886 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1887 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1888 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1889 
1890 const struct bpf_func_proto *
1891 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1892 {
1893 	switch (func_id) {
1894 	case BPF_FUNC_map_lookup_elem:
1895 		return &bpf_map_lookup_elem_proto;
1896 	case BPF_FUNC_map_update_elem:
1897 		return &bpf_map_update_elem_proto;
1898 	case BPF_FUNC_map_delete_elem:
1899 		return &bpf_map_delete_elem_proto;
1900 	case BPF_FUNC_map_push_elem:
1901 		return &bpf_map_push_elem_proto;
1902 	case BPF_FUNC_map_pop_elem:
1903 		return &bpf_map_pop_elem_proto;
1904 	case BPF_FUNC_map_peek_elem:
1905 		return &bpf_map_peek_elem_proto;
1906 	case BPF_FUNC_map_lookup_percpu_elem:
1907 		return &bpf_map_lookup_percpu_elem_proto;
1908 	case BPF_FUNC_get_prandom_u32:
1909 		return &bpf_get_prandom_u32_proto;
1910 	case BPF_FUNC_get_smp_processor_id:
1911 		return &bpf_get_raw_smp_processor_id_proto;
1912 	case BPF_FUNC_get_numa_node_id:
1913 		return &bpf_get_numa_node_id_proto;
1914 	case BPF_FUNC_tail_call:
1915 		return &bpf_tail_call_proto;
1916 	case BPF_FUNC_ktime_get_ns:
1917 		return &bpf_ktime_get_ns_proto;
1918 	case BPF_FUNC_ktime_get_boot_ns:
1919 		return &bpf_ktime_get_boot_ns_proto;
1920 	case BPF_FUNC_ktime_get_tai_ns:
1921 		return &bpf_ktime_get_tai_ns_proto;
1922 	case BPF_FUNC_ringbuf_output:
1923 		return &bpf_ringbuf_output_proto;
1924 	case BPF_FUNC_ringbuf_reserve:
1925 		return &bpf_ringbuf_reserve_proto;
1926 	case BPF_FUNC_ringbuf_submit:
1927 		return &bpf_ringbuf_submit_proto;
1928 	case BPF_FUNC_ringbuf_discard:
1929 		return &bpf_ringbuf_discard_proto;
1930 	case BPF_FUNC_ringbuf_query:
1931 		return &bpf_ringbuf_query_proto;
1932 	case BPF_FUNC_strncmp:
1933 		return &bpf_strncmp_proto;
1934 	case BPF_FUNC_strtol:
1935 		return &bpf_strtol_proto;
1936 	case BPF_FUNC_strtoul:
1937 		return &bpf_strtoul_proto;
1938 	case BPF_FUNC_get_current_pid_tgid:
1939 		return &bpf_get_current_pid_tgid_proto;
1940 	case BPF_FUNC_get_ns_current_pid_tgid:
1941 		return &bpf_get_ns_current_pid_tgid_proto;
1942 	default:
1943 		break;
1944 	}
1945 
1946 	if (!bpf_token_capable(prog->aux->token, CAP_BPF))
1947 		return NULL;
1948 
1949 	switch (func_id) {
1950 	case BPF_FUNC_spin_lock:
1951 		return &bpf_spin_lock_proto;
1952 	case BPF_FUNC_spin_unlock:
1953 		return &bpf_spin_unlock_proto;
1954 	case BPF_FUNC_jiffies64:
1955 		return &bpf_jiffies64_proto;
1956 	case BPF_FUNC_per_cpu_ptr:
1957 		return &bpf_per_cpu_ptr_proto;
1958 	case BPF_FUNC_this_cpu_ptr:
1959 		return &bpf_this_cpu_ptr_proto;
1960 	case BPF_FUNC_timer_init:
1961 		return &bpf_timer_init_proto;
1962 	case BPF_FUNC_timer_set_callback:
1963 		return &bpf_timer_set_callback_proto;
1964 	case BPF_FUNC_timer_start:
1965 		return &bpf_timer_start_proto;
1966 	case BPF_FUNC_timer_cancel:
1967 		return &bpf_timer_cancel_proto;
1968 	case BPF_FUNC_kptr_xchg:
1969 		return &bpf_kptr_xchg_proto;
1970 	case BPF_FUNC_for_each_map_elem:
1971 		return &bpf_for_each_map_elem_proto;
1972 	case BPF_FUNC_loop:
1973 		return &bpf_loop_proto;
1974 	case BPF_FUNC_user_ringbuf_drain:
1975 		return &bpf_user_ringbuf_drain_proto;
1976 	case BPF_FUNC_ringbuf_reserve_dynptr:
1977 		return &bpf_ringbuf_reserve_dynptr_proto;
1978 	case BPF_FUNC_ringbuf_submit_dynptr:
1979 		return &bpf_ringbuf_submit_dynptr_proto;
1980 	case BPF_FUNC_ringbuf_discard_dynptr:
1981 		return &bpf_ringbuf_discard_dynptr_proto;
1982 	case BPF_FUNC_dynptr_from_mem:
1983 		return &bpf_dynptr_from_mem_proto;
1984 	case BPF_FUNC_dynptr_read:
1985 		return &bpf_dynptr_read_proto;
1986 	case BPF_FUNC_dynptr_write:
1987 		return &bpf_dynptr_write_proto;
1988 	case BPF_FUNC_dynptr_data:
1989 		return &bpf_dynptr_data_proto;
1990 #ifdef CONFIG_CGROUPS
1991 	case BPF_FUNC_cgrp_storage_get:
1992 		return &bpf_cgrp_storage_get_proto;
1993 	case BPF_FUNC_cgrp_storage_delete:
1994 		return &bpf_cgrp_storage_delete_proto;
1995 	case BPF_FUNC_get_current_cgroup_id:
1996 		return &bpf_get_current_cgroup_id_proto;
1997 	case BPF_FUNC_get_current_ancestor_cgroup_id:
1998 		return &bpf_get_current_ancestor_cgroup_id_proto;
1999 #endif
2000 	default:
2001 		break;
2002 	}
2003 
2004 	if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
2005 		return NULL;
2006 
2007 	switch (func_id) {
2008 	case BPF_FUNC_trace_printk:
2009 		return bpf_get_trace_printk_proto();
2010 	case BPF_FUNC_get_current_task:
2011 		return &bpf_get_current_task_proto;
2012 	case BPF_FUNC_get_current_task_btf:
2013 		return &bpf_get_current_task_btf_proto;
2014 	case BPF_FUNC_probe_read_user:
2015 		return &bpf_probe_read_user_proto;
2016 	case BPF_FUNC_probe_read_kernel:
2017 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2018 		       NULL : &bpf_probe_read_kernel_proto;
2019 	case BPF_FUNC_probe_read_user_str:
2020 		return &bpf_probe_read_user_str_proto;
2021 	case BPF_FUNC_probe_read_kernel_str:
2022 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2023 		       NULL : &bpf_probe_read_kernel_str_proto;
2024 	case BPF_FUNC_snprintf_btf:
2025 		return &bpf_snprintf_btf_proto;
2026 	case BPF_FUNC_snprintf:
2027 		return &bpf_snprintf_proto;
2028 	case BPF_FUNC_task_pt_regs:
2029 		return &bpf_task_pt_regs_proto;
2030 	case BPF_FUNC_trace_vprintk:
2031 		return bpf_get_trace_vprintk_proto();
2032 	default:
2033 		return NULL;
2034 	}
2035 }
2036 
2037 void bpf_list_head_free(const struct btf_field *field, void *list_head,
2038 			struct bpf_spin_lock *spin_lock)
2039 {
2040 	struct list_head *head = list_head, *orig_head = list_head;
2041 
2042 	BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
2043 	BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
2044 
2045 	/* Do the actual list draining outside the lock to not hold the lock for
2046 	 * too long, and also prevent deadlocks if tracing programs end up
2047 	 * executing on entry/exit of functions called inside the critical
2048 	 * section, and end up doing map ops that call bpf_list_head_free for
2049 	 * the same map value again.
2050 	 */
2051 	__bpf_spin_lock_irqsave(spin_lock);
2052 	if (!head->next || list_empty(head))
2053 		goto unlock;
2054 	head = head->next;
2055 unlock:
2056 	INIT_LIST_HEAD(orig_head);
2057 	__bpf_spin_unlock_irqrestore(spin_lock);
2058 
2059 	while (head != orig_head) {
2060 		void *obj = head;
2061 
2062 		obj -= field->graph_root.node_offset;
2063 		head = head->next;
2064 		/* The contained type can also have resources, including a
2065 		 * bpf_list_head which needs to be freed.
2066 		 */
2067 		migrate_disable();
2068 		__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2069 		migrate_enable();
2070 	}
2071 }
2072 
2073 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
2074  * 'rb_node *', so field name of rb_node within containing struct is not
2075  * needed.
2076  *
2077  * Since bpf_rb_tree's node type has a corresponding struct btf_field with
2078  * graph_root.node_offset, it's not necessary to know field name
2079  * or type of node struct
2080  */
2081 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
2082 	for (pos = rb_first_postorder(root); \
2083 	    pos && ({ n = rb_next_postorder(pos); 1; }); \
2084 	    pos = n)
2085 
2086 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
2087 		      struct bpf_spin_lock *spin_lock)
2088 {
2089 	struct rb_root_cached orig_root, *root = rb_root;
2090 	struct rb_node *pos, *n;
2091 	void *obj;
2092 
2093 	BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
2094 	BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
2095 
2096 	__bpf_spin_lock_irqsave(spin_lock);
2097 	orig_root = *root;
2098 	*root = RB_ROOT_CACHED;
2099 	__bpf_spin_unlock_irqrestore(spin_lock);
2100 
2101 	bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
2102 		obj = pos;
2103 		obj -= field->graph_root.node_offset;
2104 
2105 
2106 		migrate_disable();
2107 		__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2108 		migrate_enable();
2109 	}
2110 }
2111 
2112 __bpf_kfunc_start_defs();
2113 
2114 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2115 {
2116 	struct btf_struct_meta *meta = meta__ign;
2117 	u64 size = local_type_id__k;
2118 	void *p;
2119 
2120 	p = bpf_mem_alloc(&bpf_global_ma, size);
2121 	if (!p)
2122 		return NULL;
2123 	if (meta)
2124 		bpf_obj_init(meta->record, p);
2125 	return p;
2126 }
2127 
2128 __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2129 {
2130 	u64 size = local_type_id__k;
2131 
2132 	/* The verifier has ensured that meta__ign must be NULL */
2133 	return bpf_mem_alloc(&bpf_global_percpu_ma, size);
2134 }
2135 
2136 /* Must be called under migrate_disable(), as required by bpf_mem_free */
2137 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu)
2138 {
2139 	struct bpf_mem_alloc *ma;
2140 
2141 	if (rec && rec->refcount_off >= 0 &&
2142 	    !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
2143 		/* Object is refcounted and refcount_dec didn't result in 0
2144 		 * refcount. Return without freeing the object
2145 		 */
2146 		return;
2147 	}
2148 
2149 	if (rec)
2150 		bpf_obj_free_fields(rec, p);
2151 
2152 	if (percpu)
2153 		ma = &bpf_global_percpu_ma;
2154 	else
2155 		ma = &bpf_global_ma;
2156 	bpf_mem_free_rcu(ma, p);
2157 }
2158 
2159 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
2160 {
2161 	struct btf_struct_meta *meta = meta__ign;
2162 	void *p = p__alloc;
2163 
2164 	__bpf_obj_drop_impl(p, meta ? meta->record : NULL, false);
2165 }
2166 
2167 __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign)
2168 {
2169 	/* The verifier has ensured that meta__ign must be NULL */
2170 	bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc);
2171 }
2172 
2173 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
2174 {
2175 	struct btf_struct_meta *meta = meta__ign;
2176 	struct bpf_refcount *ref;
2177 
2178 	/* Could just cast directly to refcount_t *, but need some code using
2179 	 * bpf_refcount type so that it is emitted in vmlinux BTF
2180 	 */
2181 	ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
2182 	if (!refcount_inc_not_zero((refcount_t *)ref))
2183 		return NULL;
2184 
2185 	/* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
2186 	 * in verifier.c
2187 	 */
2188 	return (void *)p__refcounted_kptr;
2189 }
2190 
2191 static int __bpf_list_add(struct bpf_list_node_kern *node,
2192 			  struct bpf_list_head *head,
2193 			  bool tail, struct btf_record *rec, u64 off)
2194 {
2195 	struct list_head *n = &node->list_head, *h = (void *)head;
2196 
2197 	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2198 	 * called on its fields, so init here
2199 	 */
2200 	if (unlikely(!h->next))
2201 		INIT_LIST_HEAD(h);
2202 
2203 	/* node->owner != NULL implies !list_empty(n), no need to separately
2204 	 * check the latter
2205 	 */
2206 	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2207 		/* Only called from BPF prog, no need to migrate_disable */
2208 		__bpf_obj_drop_impl((void *)n - off, rec, false);
2209 		return -EINVAL;
2210 	}
2211 
2212 	tail ? list_add_tail(n, h) : list_add(n, h);
2213 	WRITE_ONCE(node->owner, head);
2214 
2215 	return 0;
2216 }
2217 
2218 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
2219 					 struct bpf_list_node *node,
2220 					 void *meta__ign, u64 off)
2221 {
2222 	struct bpf_list_node_kern *n = (void *)node;
2223 	struct btf_struct_meta *meta = meta__ign;
2224 
2225 	return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
2226 }
2227 
2228 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
2229 					struct bpf_list_node *node,
2230 					void *meta__ign, u64 off)
2231 {
2232 	struct bpf_list_node_kern *n = (void *)node;
2233 	struct btf_struct_meta *meta = meta__ign;
2234 
2235 	return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
2236 }
2237 
2238 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
2239 {
2240 	struct list_head *n, *h = (void *)head;
2241 	struct bpf_list_node_kern *node;
2242 
2243 	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2244 	 * called on its fields, so init here
2245 	 */
2246 	if (unlikely(!h->next))
2247 		INIT_LIST_HEAD(h);
2248 	if (list_empty(h))
2249 		return NULL;
2250 
2251 	n = tail ? h->prev : h->next;
2252 	node = container_of(n, struct bpf_list_node_kern, list_head);
2253 	if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2254 		return NULL;
2255 
2256 	list_del_init(n);
2257 	WRITE_ONCE(node->owner, NULL);
2258 	return (struct bpf_list_node *)n;
2259 }
2260 
2261 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2262 {
2263 	return __bpf_list_del(head, false);
2264 }
2265 
2266 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2267 {
2268 	return __bpf_list_del(head, true);
2269 }
2270 
2271 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2272 						  struct bpf_rb_node *node)
2273 {
2274 	struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2275 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2276 	struct rb_node *n = &node_internal->rb_node;
2277 
2278 	/* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2279 	 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2280 	 */
2281 	if (READ_ONCE(node_internal->owner) != root)
2282 		return NULL;
2283 
2284 	rb_erase_cached(n, r);
2285 	RB_CLEAR_NODE(n);
2286 	WRITE_ONCE(node_internal->owner, NULL);
2287 	return (struct bpf_rb_node *)n;
2288 }
2289 
2290 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2291  * program
2292  */
2293 static int __bpf_rbtree_add(struct bpf_rb_root *root,
2294 			    struct bpf_rb_node_kern *node,
2295 			    void *less, struct btf_record *rec, u64 off)
2296 {
2297 	struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2298 	struct rb_node *parent = NULL, *n = &node->rb_node;
2299 	bpf_callback_t cb = (bpf_callback_t)less;
2300 	bool leftmost = true;
2301 
2302 	/* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2303 	 * check the latter
2304 	 */
2305 	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2306 		/* Only called from BPF prog, no need to migrate_disable */
2307 		__bpf_obj_drop_impl((void *)n - off, rec, false);
2308 		return -EINVAL;
2309 	}
2310 
2311 	while (*link) {
2312 		parent = *link;
2313 		if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2314 			link = &parent->rb_left;
2315 		} else {
2316 			link = &parent->rb_right;
2317 			leftmost = false;
2318 		}
2319 	}
2320 
2321 	rb_link_node(n, parent, link);
2322 	rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
2323 	WRITE_ONCE(node->owner, root);
2324 	return 0;
2325 }
2326 
2327 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2328 				    bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2329 				    void *meta__ign, u64 off)
2330 {
2331 	struct btf_struct_meta *meta = meta__ign;
2332 	struct bpf_rb_node_kern *n = (void *)node;
2333 
2334 	return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
2335 }
2336 
2337 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2338 {
2339 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2340 
2341 	return (struct bpf_rb_node *)rb_first_cached(r);
2342 }
2343 
2344 /**
2345  * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2346  * kfunc which is not stored in a map as a kptr, must be released by calling
2347  * bpf_task_release().
2348  * @p: The task on which a reference is being acquired.
2349  */
2350 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2351 {
2352 	if (refcount_inc_not_zero(&p->rcu_users))
2353 		return p;
2354 	return NULL;
2355 }
2356 
2357 /**
2358  * bpf_task_release - Release the reference acquired on a task.
2359  * @p: The task on which a reference is being released.
2360  */
2361 __bpf_kfunc void bpf_task_release(struct task_struct *p)
2362 {
2363 	put_task_struct_rcu_user(p);
2364 }
2365 
2366 __bpf_kfunc void bpf_task_release_dtor(void *p)
2367 {
2368 	put_task_struct_rcu_user(p);
2369 }
2370 CFI_NOSEAL(bpf_task_release_dtor);
2371 
2372 #ifdef CONFIG_CGROUPS
2373 /**
2374  * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2375  * this kfunc which is not stored in a map as a kptr, must be released by
2376  * calling bpf_cgroup_release().
2377  * @cgrp: The cgroup on which a reference is being acquired.
2378  */
2379 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2380 {
2381 	return cgroup_tryget(cgrp) ? cgrp : NULL;
2382 }
2383 
2384 /**
2385  * bpf_cgroup_release - Release the reference acquired on a cgroup.
2386  * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2387  * not be freed until the current grace period has ended, even if its refcount
2388  * drops to 0.
2389  * @cgrp: The cgroup on which a reference is being released.
2390  */
2391 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2392 {
2393 	cgroup_put(cgrp);
2394 }
2395 
2396 __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp)
2397 {
2398 	cgroup_put(cgrp);
2399 }
2400 CFI_NOSEAL(bpf_cgroup_release_dtor);
2401 
2402 /**
2403  * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2404  * array. A cgroup returned by this kfunc which is not subsequently stored in a
2405  * map, must be released by calling bpf_cgroup_release().
2406  * @cgrp: The cgroup for which we're performing a lookup.
2407  * @level: The level of ancestor to look up.
2408  */
2409 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2410 {
2411 	struct cgroup *ancestor;
2412 
2413 	if (level > cgrp->level || level < 0)
2414 		return NULL;
2415 
2416 	/* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2417 	ancestor = cgrp->ancestors[level];
2418 	if (!cgroup_tryget(ancestor))
2419 		return NULL;
2420 	return ancestor;
2421 }
2422 
2423 /**
2424  * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2425  * kfunc which is not subsequently stored in a map, must be released by calling
2426  * bpf_cgroup_release().
2427  * @cgid: cgroup id.
2428  */
2429 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2430 {
2431 	struct cgroup *cgrp;
2432 
2433 	cgrp = cgroup_get_from_id(cgid);
2434 	if (IS_ERR(cgrp))
2435 		return NULL;
2436 	return cgrp;
2437 }
2438 
2439 /**
2440  * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2441  * task's membership of cgroup ancestry.
2442  * @task: the task to be tested
2443  * @ancestor: possible ancestor of @task's cgroup
2444  *
2445  * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2446  * It follows all the same rules as cgroup_is_descendant, and only applies
2447  * to the default hierarchy.
2448  */
2449 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2450 				       struct cgroup *ancestor)
2451 {
2452 	long ret;
2453 
2454 	rcu_read_lock();
2455 	ret = task_under_cgroup_hierarchy(task, ancestor);
2456 	rcu_read_unlock();
2457 	return ret;
2458 }
2459 
2460 /**
2461  * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a
2462  * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
2463  * hierarchy ID.
2464  * @task: The target task
2465  * @hierarchy_id: The ID of a cgroup1 hierarchy
2466  *
2467  * On success, the cgroup is returen. On failure, NULL is returned.
2468  */
2469 __bpf_kfunc struct cgroup *
2470 bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id)
2471 {
2472 	struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id);
2473 
2474 	if (IS_ERR(cgrp))
2475 		return NULL;
2476 	return cgrp;
2477 }
2478 #endif /* CONFIG_CGROUPS */
2479 
2480 /**
2481  * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2482  * in the root pid namespace idr. If a task is returned, it must either be
2483  * stored in a map, or released with bpf_task_release().
2484  * @pid: The pid of the task being looked up.
2485  */
2486 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2487 {
2488 	struct task_struct *p;
2489 
2490 	rcu_read_lock();
2491 	p = find_task_by_pid_ns(pid, &init_pid_ns);
2492 	if (p)
2493 		p = bpf_task_acquire(p);
2494 	rcu_read_unlock();
2495 
2496 	return p;
2497 }
2498 
2499 /**
2500  * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2501  * @p: The dynptr whose data slice to retrieve
2502  * @offset: Offset into the dynptr
2503  * @buffer__opt: User-provided buffer to copy contents into.  May be NULL
2504  * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2505  *               length of the requested slice. This must be a constant.
2506  *
2507  * For non-skb and non-xdp type dynptrs, there is no difference between
2508  * bpf_dynptr_slice and bpf_dynptr_data.
2509  *
2510  *  If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2511  *
2512  * If the intention is to write to the data slice, please use
2513  * bpf_dynptr_slice_rdwr.
2514  *
2515  * The user must check that the returned pointer is not null before using it.
2516  *
2517  * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2518  * does not change the underlying packet data pointers, so a call to
2519  * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2520  * the bpf program.
2521  *
2522  * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2523  * data slice (can be either direct pointer to the data or a pointer to the user
2524  * provided buffer, with its contents containing the data, if unable to obtain
2525  * direct pointer)
2526  */
2527 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u32 offset,
2528 				   void *buffer__opt, u32 buffer__szk)
2529 {
2530 	const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2531 	enum bpf_dynptr_type type;
2532 	u32 len = buffer__szk;
2533 	int err;
2534 
2535 	if (!ptr->data)
2536 		return NULL;
2537 
2538 	err = bpf_dynptr_check_off_len(ptr, offset, len);
2539 	if (err)
2540 		return NULL;
2541 
2542 	type = bpf_dynptr_get_type(ptr);
2543 
2544 	switch (type) {
2545 	case BPF_DYNPTR_TYPE_LOCAL:
2546 	case BPF_DYNPTR_TYPE_RINGBUF:
2547 		return ptr->data + ptr->offset + offset;
2548 	case BPF_DYNPTR_TYPE_SKB:
2549 		if (buffer__opt)
2550 			return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
2551 		else
2552 			return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
2553 	case BPF_DYNPTR_TYPE_XDP:
2554 	{
2555 		void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2556 		if (!IS_ERR_OR_NULL(xdp_ptr))
2557 			return xdp_ptr;
2558 
2559 		if (!buffer__opt)
2560 			return NULL;
2561 		bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
2562 		return buffer__opt;
2563 	}
2564 	default:
2565 		WARN_ONCE(true, "unknown dynptr type %d\n", type);
2566 		return NULL;
2567 	}
2568 }
2569 
2570 /**
2571  * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2572  * @p: The dynptr whose data slice to retrieve
2573  * @offset: Offset into the dynptr
2574  * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2575  * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2576  *               length of the requested slice. This must be a constant.
2577  *
2578  * For non-skb and non-xdp type dynptrs, there is no difference between
2579  * bpf_dynptr_slice and bpf_dynptr_data.
2580  *
2581  * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2582  *
2583  * The returned pointer is writable and may point to either directly the dynptr
2584  * data at the requested offset or to the buffer if unable to obtain a direct
2585  * data pointer to (example: the requested slice is to the paged area of an skb
2586  * packet). In the case where the returned pointer is to the buffer, the user
2587  * is responsible for persisting writes through calling bpf_dynptr_write(). This
2588  * usually looks something like this pattern:
2589  *
2590  * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2591  * if (!eth)
2592  *	return TC_ACT_SHOT;
2593  *
2594  * // mutate eth header //
2595  *
2596  * if (eth == buffer)
2597  *	bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2598  *
2599  * Please note that, as in the example above, the user must check that the
2600  * returned pointer is not null before using it.
2601  *
2602  * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2603  * does not change the underlying packet data pointers, so a call to
2604  * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2605  * the bpf program.
2606  *
2607  * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2608  * data slice (can be either direct pointer to the data or a pointer to the user
2609  * provided buffer, with its contents containing the data, if unable to obtain
2610  * direct pointer)
2611  */
2612 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u32 offset,
2613 					void *buffer__opt, u32 buffer__szk)
2614 {
2615 	const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2616 
2617 	if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2618 		return NULL;
2619 
2620 	/* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2621 	 *
2622 	 * For skb-type dynptrs, it is safe to write into the returned pointer
2623 	 * if the bpf program allows skb data writes. There are two possibilities
2624 	 * that may occur when calling bpf_dynptr_slice_rdwr:
2625 	 *
2626 	 * 1) The requested slice is in the head of the skb. In this case, the
2627 	 * returned pointer is directly to skb data, and if the skb is cloned, the
2628 	 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2629 	 * The pointer can be directly written into.
2630 	 *
2631 	 * 2) Some portion of the requested slice is in the paged buffer area.
2632 	 * In this case, the requested data will be copied out into the buffer
2633 	 * and the returned pointer will be a pointer to the buffer. The skb
2634 	 * will not be pulled. To persist the write, the user will need to call
2635 	 * bpf_dynptr_write(), which will pull the skb and commit the write.
2636 	 *
2637 	 * Similarly for xdp programs, if the requested slice is not across xdp
2638 	 * fragments, then a direct pointer will be returned, otherwise the data
2639 	 * will be copied out into the buffer and the user will need to call
2640 	 * bpf_dynptr_write() to commit changes.
2641 	 */
2642 	return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk);
2643 }
2644 
2645 __bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u32 start, u32 end)
2646 {
2647 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2648 	u32 size;
2649 
2650 	if (!ptr->data || start > end)
2651 		return -EINVAL;
2652 
2653 	size = __bpf_dynptr_size(ptr);
2654 
2655 	if (start > size || end > size)
2656 		return -ERANGE;
2657 
2658 	ptr->offset += start;
2659 	bpf_dynptr_set_size(ptr, end - start);
2660 
2661 	return 0;
2662 }
2663 
2664 __bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p)
2665 {
2666 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2667 
2668 	return !ptr->data;
2669 }
2670 
2671 __bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p)
2672 {
2673 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2674 
2675 	if (!ptr->data)
2676 		return false;
2677 
2678 	return __bpf_dynptr_is_rdonly(ptr);
2679 }
2680 
2681 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr *p)
2682 {
2683 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2684 
2685 	if (!ptr->data)
2686 		return -EINVAL;
2687 
2688 	return __bpf_dynptr_size(ptr);
2689 }
2690 
2691 __bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p,
2692 				 struct bpf_dynptr *clone__uninit)
2693 {
2694 	struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit;
2695 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2696 
2697 	if (!ptr->data) {
2698 		bpf_dynptr_set_null(clone);
2699 		return -EINVAL;
2700 	}
2701 
2702 	*clone = *ptr;
2703 
2704 	return 0;
2705 }
2706 
2707 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
2708 {
2709 	return obj;
2710 }
2711 
2712 __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k)
2713 {
2714 	return (void *)obj__ign;
2715 }
2716 
2717 __bpf_kfunc void bpf_rcu_read_lock(void)
2718 {
2719 	rcu_read_lock();
2720 }
2721 
2722 __bpf_kfunc void bpf_rcu_read_unlock(void)
2723 {
2724 	rcu_read_unlock();
2725 }
2726 
2727 struct bpf_throw_ctx {
2728 	struct bpf_prog_aux *aux;
2729 	u64 sp;
2730 	u64 bp;
2731 	int cnt;
2732 };
2733 
2734 static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp)
2735 {
2736 	struct bpf_throw_ctx *ctx = cookie;
2737 	struct bpf_prog *prog;
2738 
2739 	if (!is_bpf_text_address(ip))
2740 		return !ctx->cnt;
2741 	prog = bpf_prog_ksym_find(ip);
2742 	ctx->cnt++;
2743 	if (bpf_is_subprog(prog))
2744 		return true;
2745 	ctx->aux = prog->aux;
2746 	ctx->sp = sp;
2747 	ctx->bp = bp;
2748 	return false;
2749 }
2750 
2751 __bpf_kfunc void bpf_throw(u64 cookie)
2752 {
2753 	struct bpf_throw_ctx ctx = {};
2754 
2755 	arch_bpf_stack_walk(bpf_stack_walker, &ctx);
2756 	WARN_ON_ONCE(!ctx.aux);
2757 	if (ctx.aux)
2758 		WARN_ON_ONCE(!ctx.aux->exception_boundary);
2759 	WARN_ON_ONCE(!ctx.bp);
2760 	WARN_ON_ONCE(!ctx.cnt);
2761 	/* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning
2762 	 * deeper stack depths than ctx.sp as we do not return from bpf_throw,
2763 	 * which skips compiler generated instrumentation to do the same.
2764 	 */
2765 	kasan_unpoison_task_stack_below((void *)(long)ctx.sp);
2766 	ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0);
2767 	WARN(1, "A call to BPF exception callback should never return\n");
2768 }
2769 
2770 __bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags)
2771 {
2772 	struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
2773 	struct bpf_map *map = p__map;
2774 
2775 	BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq));
2776 	BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq));
2777 
2778 	if (flags)
2779 		return -EINVAL;
2780 
2781 	return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ);
2782 }
2783 
2784 __bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags)
2785 {
2786 	struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
2787 	struct bpf_work *w;
2788 
2789 	if (in_nmi())
2790 		return -EOPNOTSUPP;
2791 	if (flags)
2792 		return -EINVAL;
2793 	w = READ_ONCE(async->work);
2794 	if (!w || !READ_ONCE(w->cb.prog))
2795 		return -EINVAL;
2796 
2797 	schedule_work(&w->work);
2798 	return 0;
2799 }
2800 
2801 __bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq,
2802 					 int (callback_fn)(void *map, int *key, void *value),
2803 					 unsigned int flags,
2804 					 void *aux__ign)
2805 {
2806 	struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__ign;
2807 	struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
2808 
2809 	if (flags)
2810 		return -EINVAL;
2811 
2812 	return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ);
2813 }
2814 
2815 __bpf_kfunc void bpf_preempt_disable(void)
2816 {
2817 	preempt_disable();
2818 }
2819 
2820 __bpf_kfunc void bpf_preempt_enable(void)
2821 {
2822 	preempt_enable();
2823 }
2824 
2825 struct bpf_iter_bits {
2826 	__u64 __opaque[2];
2827 } __aligned(8);
2828 
2829 struct bpf_iter_bits_kern {
2830 	union {
2831 		unsigned long *bits;
2832 		unsigned long bits_copy;
2833 	};
2834 	u32 nr_bits;
2835 	int bit;
2836 } __aligned(8);
2837 
2838 /**
2839  * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area
2840  * @it: The new bpf_iter_bits to be created
2841  * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over
2842  * @nr_words: The size of the specified memory area, measured in 8-byte units.
2843  * Due to the limitation of memalloc, it can't be greater than 512.
2844  *
2845  * This function initializes a new bpf_iter_bits structure for iterating over
2846  * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It
2847  * copies the data of the memory area to the newly created bpf_iter_bits @it for
2848  * subsequent iteration operations.
2849  *
2850  * On success, 0 is returned. On failure, ERR is returned.
2851  */
2852 __bpf_kfunc int
2853 bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words)
2854 {
2855 	struct bpf_iter_bits_kern *kit = (void *)it;
2856 	u32 nr_bytes = nr_words * sizeof(u64);
2857 	u32 nr_bits = BYTES_TO_BITS(nr_bytes);
2858 	int err;
2859 
2860 	BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits));
2861 	BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) !=
2862 		     __alignof__(struct bpf_iter_bits));
2863 
2864 	kit->nr_bits = 0;
2865 	kit->bits_copy = 0;
2866 	kit->bit = -1;
2867 
2868 	if (!unsafe_ptr__ign || !nr_words)
2869 		return -EINVAL;
2870 
2871 	/* Optimization for u64 mask */
2872 	if (nr_bits == 64) {
2873 		err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign);
2874 		if (err)
2875 			return -EFAULT;
2876 
2877 		kit->nr_bits = nr_bits;
2878 		return 0;
2879 	}
2880 
2881 	/* Fallback to memalloc */
2882 	kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes);
2883 	if (!kit->bits)
2884 		return -ENOMEM;
2885 
2886 	err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign);
2887 	if (err) {
2888 		bpf_mem_free(&bpf_global_ma, kit->bits);
2889 		return err;
2890 	}
2891 
2892 	kit->nr_bits = nr_bits;
2893 	return 0;
2894 }
2895 
2896 /**
2897  * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits
2898  * @it: The bpf_iter_bits to be checked
2899  *
2900  * This function returns a pointer to a number representing the value of the
2901  * next bit in the bits.
2902  *
2903  * If there are no further bits available, it returns NULL.
2904  */
2905 __bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it)
2906 {
2907 	struct bpf_iter_bits_kern *kit = (void *)it;
2908 	u32 nr_bits = kit->nr_bits;
2909 	const unsigned long *bits;
2910 	int bit;
2911 
2912 	if (nr_bits == 0)
2913 		return NULL;
2914 
2915 	bits = nr_bits == 64 ? &kit->bits_copy : kit->bits;
2916 	bit = find_next_bit(bits, nr_bits, kit->bit + 1);
2917 	if (bit >= nr_bits) {
2918 		kit->nr_bits = 0;
2919 		return NULL;
2920 	}
2921 
2922 	kit->bit = bit;
2923 	return &kit->bit;
2924 }
2925 
2926 /**
2927  * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits
2928  * @it: The bpf_iter_bits to be destroyed
2929  *
2930  * Destroy the resource associated with the bpf_iter_bits.
2931  */
2932 __bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it)
2933 {
2934 	struct bpf_iter_bits_kern *kit = (void *)it;
2935 
2936 	if (kit->nr_bits <= 64)
2937 		return;
2938 	bpf_mem_free(&bpf_global_ma, kit->bits);
2939 }
2940 
2941 __bpf_kfunc_end_defs();
2942 
2943 BTF_KFUNCS_START(generic_btf_ids)
2944 #ifdef CONFIG_CRASH_DUMP
2945 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
2946 #endif
2947 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
2948 BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
2949 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
2950 BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE)
2951 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU)
2952 BTF_ID_FLAGS(func, bpf_list_push_front_impl)
2953 BTF_ID_FLAGS(func, bpf_list_push_back_impl)
2954 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
2955 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
2956 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2957 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
2958 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
2959 BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
2960 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
2961 
2962 #ifdef CONFIG_CGROUPS
2963 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2964 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
2965 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2966 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
2967 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
2968 BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2969 #endif
2970 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
2971 BTF_ID_FLAGS(func, bpf_throw)
2972 BTF_KFUNCS_END(generic_btf_ids)
2973 
2974 static const struct btf_kfunc_id_set generic_kfunc_set = {
2975 	.owner = THIS_MODULE,
2976 	.set   = &generic_btf_ids,
2977 };
2978 
2979 
2980 BTF_ID_LIST(generic_dtor_ids)
2981 BTF_ID(struct, task_struct)
2982 BTF_ID(func, bpf_task_release_dtor)
2983 #ifdef CONFIG_CGROUPS
2984 BTF_ID(struct, cgroup)
2985 BTF_ID(func, bpf_cgroup_release_dtor)
2986 #endif
2987 
2988 BTF_KFUNCS_START(common_btf_ids)
2989 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx)
2990 BTF_ID_FLAGS(func, bpf_rdonly_cast)
2991 BTF_ID_FLAGS(func, bpf_rcu_read_lock)
2992 BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
2993 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
2994 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
2995 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
2996 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
2997 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
2998 BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU)
2999 BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL)
3000 BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY)
3001 #ifdef CONFIG_CGROUPS
3002 BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS)
3003 BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL)
3004 BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY)
3005 BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
3006 BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL)
3007 BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY)
3008 #endif
3009 BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
3010 BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL)
3011 BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY)
3012 BTF_ID_FLAGS(func, bpf_dynptr_adjust)
3013 BTF_ID_FLAGS(func, bpf_dynptr_is_null)
3014 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
3015 BTF_ID_FLAGS(func, bpf_dynptr_size)
3016 BTF_ID_FLAGS(func, bpf_dynptr_clone)
3017 BTF_ID_FLAGS(func, bpf_modify_return_test_tp)
3018 BTF_ID_FLAGS(func, bpf_wq_init)
3019 BTF_ID_FLAGS(func, bpf_wq_set_callback_impl)
3020 BTF_ID_FLAGS(func, bpf_wq_start)
3021 BTF_ID_FLAGS(func, bpf_preempt_disable)
3022 BTF_ID_FLAGS(func, bpf_preempt_enable)
3023 BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW)
3024 BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL)
3025 BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY)
3026 BTF_KFUNCS_END(common_btf_ids)
3027 
3028 static const struct btf_kfunc_id_set common_kfunc_set = {
3029 	.owner = THIS_MODULE,
3030 	.set   = &common_btf_ids,
3031 };
3032 
3033 static int __init kfunc_init(void)
3034 {
3035 	int ret;
3036 	const struct btf_id_dtor_kfunc generic_dtors[] = {
3037 		{
3038 			.btf_id       = generic_dtor_ids[0],
3039 			.kfunc_btf_id = generic_dtor_ids[1]
3040 		},
3041 #ifdef CONFIG_CGROUPS
3042 		{
3043 			.btf_id       = generic_dtor_ids[2],
3044 			.kfunc_btf_id = generic_dtor_ids[3]
3045 		},
3046 #endif
3047 	};
3048 
3049 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
3050 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
3051 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set);
3052 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
3053 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set);
3054 	ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
3055 						  ARRAY_SIZE(generic_dtors),
3056 						  THIS_MODULE);
3057 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
3058 }
3059 
3060 late_initcall(kfunc_init);
3061 
3062 /* Get a pointer to dynptr data up to len bytes for read only access. If
3063  * the dynptr doesn't have continuous data up to len bytes, return NULL.
3064  */
3065 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len)
3066 {
3067 	const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr;
3068 
3069 	return bpf_dynptr_slice(p, 0, NULL, len);
3070 }
3071 
3072 /* Get a pointer to dynptr data up to len bytes for read write access. If
3073  * the dynptr doesn't have continuous data up to len bytes, or the dynptr
3074  * is read only, return NULL.
3075  */
3076 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len)
3077 {
3078 	if (__bpf_dynptr_is_rdonly(ptr))
3079 		return NULL;
3080 	return (void *)__bpf_dynptr_data(ptr, len);
3081 }
3082