xref: /linux/kernel/bpf/helpers.c (revision 61cb9ac66b30374c7fd8a8b2a3c4f8f432c72e36)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/rcupdate.h>
6 #include <linux/random.h>
7 #include <linux/smp.h>
8 #include <linux/topology.h>
9 #include <linux/ktime.h>
10 #include <linux/sched.h>
11 #include <linux/uidgid.h>
12 #include <linux/filter.h>
13 #include <linux/ctype.h>
14 #include <linux/jiffies.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/proc_ns.h>
17 #include <linux/security.h>
18 
19 #include "../../lib/kstrtox.h"
20 
21 /* If kernel subsystem is allowing eBPF programs to call this function,
22  * inside its own verifier_ops->get_func_proto() callback it should return
23  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
24  *
25  * Different map implementations will rely on rcu in map methods
26  * lookup/update/delete, therefore eBPF programs must run under rcu lock
27  * if program is allowed to access maps, so check rcu_read_lock_held in
28  * all three functions.
29  */
30 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
31 {
32 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
33 	return (unsigned long) map->ops->map_lookup_elem(map, key);
34 }
35 
36 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
37 	.func		= bpf_map_lookup_elem,
38 	.gpl_only	= false,
39 	.pkt_access	= true,
40 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
41 	.arg1_type	= ARG_CONST_MAP_PTR,
42 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
43 };
44 
45 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
46 	   void *, value, u64, flags)
47 {
48 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
49 	return map->ops->map_update_elem(map, key, value, flags);
50 }
51 
52 const struct bpf_func_proto bpf_map_update_elem_proto = {
53 	.func		= bpf_map_update_elem,
54 	.gpl_only	= false,
55 	.pkt_access	= true,
56 	.ret_type	= RET_INTEGER,
57 	.arg1_type	= ARG_CONST_MAP_PTR,
58 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
59 	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
60 	.arg4_type	= ARG_ANYTHING,
61 };
62 
63 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
64 {
65 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
66 	return map->ops->map_delete_elem(map, key);
67 }
68 
69 const struct bpf_func_proto bpf_map_delete_elem_proto = {
70 	.func		= bpf_map_delete_elem,
71 	.gpl_only	= false,
72 	.pkt_access	= true,
73 	.ret_type	= RET_INTEGER,
74 	.arg1_type	= ARG_CONST_MAP_PTR,
75 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
76 };
77 
78 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
79 {
80 	return map->ops->map_push_elem(map, value, flags);
81 }
82 
83 const struct bpf_func_proto bpf_map_push_elem_proto = {
84 	.func		= bpf_map_push_elem,
85 	.gpl_only	= false,
86 	.pkt_access	= true,
87 	.ret_type	= RET_INTEGER,
88 	.arg1_type	= ARG_CONST_MAP_PTR,
89 	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
90 	.arg3_type	= ARG_ANYTHING,
91 };
92 
93 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
94 {
95 	return map->ops->map_pop_elem(map, value);
96 }
97 
98 const struct bpf_func_proto bpf_map_pop_elem_proto = {
99 	.func		= bpf_map_pop_elem,
100 	.gpl_only	= false,
101 	.ret_type	= RET_INTEGER,
102 	.arg1_type	= ARG_CONST_MAP_PTR,
103 	.arg2_type	= ARG_PTR_TO_UNINIT_MAP_VALUE,
104 };
105 
106 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
107 {
108 	return map->ops->map_peek_elem(map, value);
109 }
110 
111 const struct bpf_func_proto bpf_map_peek_elem_proto = {
112 	.func		= bpf_map_peek_elem,
113 	.gpl_only	= false,
114 	.ret_type	= RET_INTEGER,
115 	.arg1_type	= ARG_CONST_MAP_PTR,
116 	.arg2_type	= ARG_PTR_TO_UNINIT_MAP_VALUE,
117 };
118 
119 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
120 	.func		= bpf_user_rnd_u32,
121 	.gpl_only	= false,
122 	.ret_type	= RET_INTEGER,
123 };
124 
125 BPF_CALL_0(bpf_get_smp_processor_id)
126 {
127 	return smp_processor_id();
128 }
129 
130 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
131 	.func		= bpf_get_smp_processor_id,
132 	.gpl_only	= false,
133 	.ret_type	= RET_INTEGER,
134 };
135 
136 BPF_CALL_0(bpf_get_numa_node_id)
137 {
138 	return numa_node_id();
139 }
140 
141 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
142 	.func		= bpf_get_numa_node_id,
143 	.gpl_only	= false,
144 	.ret_type	= RET_INTEGER,
145 };
146 
147 BPF_CALL_0(bpf_ktime_get_ns)
148 {
149 	/* NMI safe access to clock monotonic */
150 	return ktime_get_mono_fast_ns();
151 }
152 
153 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
154 	.func		= bpf_ktime_get_ns,
155 	.gpl_only	= false,
156 	.ret_type	= RET_INTEGER,
157 };
158 
159 BPF_CALL_0(bpf_ktime_get_boot_ns)
160 {
161 	/* NMI safe access to clock boottime */
162 	return ktime_get_boot_fast_ns();
163 }
164 
165 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
166 	.func		= bpf_ktime_get_boot_ns,
167 	.gpl_only	= false,
168 	.ret_type	= RET_INTEGER,
169 };
170 
171 BPF_CALL_0(bpf_ktime_get_coarse_ns)
172 {
173 	return ktime_get_coarse_ns();
174 }
175 
176 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
177 	.func		= bpf_ktime_get_coarse_ns,
178 	.gpl_only	= false,
179 	.ret_type	= RET_INTEGER,
180 };
181 
182 BPF_CALL_0(bpf_get_current_pid_tgid)
183 {
184 	struct task_struct *task = current;
185 
186 	if (unlikely(!task))
187 		return -EINVAL;
188 
189 	return (u64) task->tgid << 32 | task->pid;
190 }
191 
192 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
193 	.func		= bpf_get_current_pid_tgid,
194 	.gpl_only	= false,
195 	.ret_type	= RET_INTEGER,
196 };
197 
198 BPF_CALL_0(bpf_get_current_uid_gid)
199 {
200 	struct task_struct *task = current;
201 	kuid_t uid;
202 	kgid_t gid;
203 
204 	if (unlikely(!task))
205 		return -EINVAL;
206 
207 	current_uid_gid(&uid, &gid);
208 	return (u64) from_kgid(&init_user_ns, gid) << 32 |
209 		     from_kuid(&init_user_ns, uid);
210 }
211 
212 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
213 	.func		= bpf_get_current_uid_gid,
214 	.gpl_only	= false,
215 	.ret_type	= RET_INTEGER,
216 };
217 
218 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
219 {
220 	struct task_struct *task = current;
221 
222 	if (unlikely(!task))
223 		goto err_clear;
224 
225 	strncpy(buf, task->comm, size);
226 
227 	/* Verifier guarantees that size > 0. For task->comm exceeding
228 	 * size, guarantee that buf is %NUL-terminated. Unconditionally
229 	 * done here to save the size test.
230 	 */
231 	buf[size - 1] = 0;
232 	return 0;
233 err_clear:
234 	memset(buf, 0, size);
235 	return -EINVAL;
236 }
237 
238 const struct bpf_func_proto bpf_get_current_comm_proto = {
239 	.func		= bpf_get_current_comm,
240 	.gpl_only	= false,
241 	.ret_type	= RET_INTEGER,
242 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
243 	.arg2_type	= ARG_CONST_SIZE,
244 };
245 
246 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
247 
248 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
249 {
250 	arch_spinlock_t *l = (void *)lock;
251 	union {
252 		__u32 val;
253 		arch_spinlock_t lock;
254 	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
255 
256 	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
257 	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
258 	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
259 	arch_spin_lock(l);
260 }
261 
262 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
263 {
264 	arch_spinlock_t *l = (void *)lock;
265 
266 	arch_spin_unlock(l);
267 }
268 
269 #else
270 
271 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
272 {
273 	atomic_t *l = (void *)lock;
274 
275 	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
276 	do {
277 		atomic_cond_read_relaxed(l, !VAL);
278 	} while (atomic_xchg(l, 1));
279 }
280 
281 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
282 {
283 	atomic_t *l = (void *)lock;
284 
285 	atomic_set_release(l, 0);
286 }
287 
288 #endif
289 
290 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
291 
292 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
293 {
294 	unsigned long flags;
295 
296 	local_irq_save(flags);
297 	__bpf_spin_lock(lock);
298 	__this_cpu_write(irqsave_flags, flags);
299 }
300 
301 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
302 {
303 	__bpf_spin_lock_irqsave(lock);
304 	return 0;
305 }
306 
307 const struct bpf_func_proto bpf_spin_lock_proto = {
308 	.func		= bpf_spin_lock,
309 	.gpl_only	= false,
310 	.ret_type	= RET_VOID,
311 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
312 };
313 
314 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
315 {
316 	unsigned long flags;
317 
318 	flags = __this_cpu_read(irqsave_flags);
319 	__bpf_spin_unlock(lock);
320 	local_irq_restore(flags);
321 }
322 
323 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
324 {
325 	__bpf_spin_unlock_irqrestore(lock);
326 	return 0;
327 }
328 
329 const struct bpf_func_proto bpf_spin_unlock_proto = {
330 	.func		= bpf_spin_unlock,
331 	.gpl_only	= false,
332 	.ret_type	= RET_VOID,
333 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
334 };
335 
336 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
337 			   bool lock_src)
338 {
339 	struct bpf_spin_lock *lock;
340 
341 	if (lock_src)
342 		lock = src + map->spin_lock_off;
343 	else
344 		lock = dst + map->spin_lock_off;
345 	preempt_disable();
346 	__bpf_spin_lock_irqsave(lock);
347 	copy_map_value(map, dst, src);
348 	__bpf_spin_unlock_irqrestore(lock);
349 	preempt_enable();
350 }
351 
352 BPF_CALL_0(bpf_jiffies64)
353 {
354 	return get_jiffies_64();
355 }
356 
357 const struct bpf_func_proto bpf_jiffies64_proto = {
358 	.func		= bpf_jiffies64,
359 	.gpl_only	= false,
360 	.ret_type	= RET_INTEGER,
361 };
362 
363 #ifdef CONFIG_CGROUPS
364 BPF_CALL_0(bpf_get_current_cgroup_id)
365 {
366 	struct cgroup *cgrp;
367 	u64 cgrp_id;
368 
369 	rcu_read_lock();
370 	cgrp = task_dfl_cgroup(current);
371 	cgrp_id = cgroup_id(cgrp);
372 	rcu_read_unlock();
373 
374 	return cgrp_id;
375 }
376 
377 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
378 	.func		= bpf_get_current_cgroup_id,
379 	.gpl_only	= false,
380 	.ret_type	= RET_INTEGER,
381 };
382 
383 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
384 {
385 	struct cgroup *cgrp;
386 	struct cgroup *ancestor;
387 	u64 cgrp_id;
388 
389 	rcu_read_lock();
390 	cgrp = task_dfl_cgroup(current);
391 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
392 	cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
393 	rcu_read_unlock();
394 
395 	return cgrp_id;
396 }
397 
398 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
399 	.func		= bpf_get_current_ancestor_cgroup_id,
400 	.gpl_only	= false,
401 	.ret_type	= RET_INTEGER,
402 	.arg1_type	= ARG_ANYTHING,
403 };
404 
405 #ifdef CONFIG_CGROUP_BPF
406 
407 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
408 {
409 	/* flags argument is not used now,
410 	 * but provides an ability to extend the API.
411 	 * verifier checks that its value is correct.
412 	 */
413 	enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
414 	struct bpf_cgroup_storage *storage;
415 	struct bpf_cg_run_ctx *ctx;
416 	void *ptr;
417 
418 	/* get current cgroup storage from BPF run context */
419 	ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
420 	storage = ctx->prog_item->cgroup_storage[stype];
421 
422 	if (stype == BPF_CGROUP_STORAGE_SHARED)
423 		ptr = &READ_ONCE(storage->buf)->data[0];
424 	else
425 		ptr = this_cpu_ptr(storage->percpu_buf);
426 
427 	return (unsigned long)ptr;
428 }
429 
430 const struct bpf_func_proto bpf_get_local_storage_proto = {
431 	.func		= bpf_get_local_storage,
432 	.gpl_only	= false,
433 	.ret_type	= RET_PTR_TO_MAP_VALUE,
434 	.arg1_type	= ARG_CONST_MAP_PTR,
435 	.arg2_type	= ARG_ANYTHING,
436 };
437 #endif
438 
439 #define BPF_STRTOX_BASE_MASK 0x1F
440 
441 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
442 			  unsigned long long *res, bool *is_negative)
443 {
444 	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
445 	const char *cur_buf = buf;
446 	size_t cur_len = buf_len;
447 	unsigned int consumed;
448 	size_t val_len;
449 	char str[64];
450 
451 	if (!buf || !buf_len || !res || !is_negative)
452 		return -EINVAL;
453 
454 	if (base != 0 && base != 8 && base != 10 && base != 16)
455 		return -EINVAL;
456 
457 	if (flags & ~BPF_STRTOX_BASE_MASK)
458 		return -EINVAL;
459 
460 	while (cur_buf < buf + buf_len && isspace(*cur_buf))
461 		++cur_buf;
462 
463 	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
464 	if (*is_negative)
465 		++cur_buf;
466 
467 	consumed = cur_buf - buf;
468 	cur_len -= consumed;
469 	if (!cur_len)
470 		return -EINVAL;
471 
472 	cur_len = min(cur_len, sizeof(str) - 1);
473 	memcpy(str, cur_buf, cur_len);
474 	str[cur_len] = '\0';
475 	cur_buf = str;
476 
477 	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
478 	val_len = _parse_integer(cur_buf, base, res);
479 
480 	if (val_len & KSTRTOX_OVERFLOW)
481 		return -ERANGE;
482 
483 	if (val_len == 0)
484 		return -EINVAL;
485 
486 	cur_buf += val_len;
487 	consumed += cur_buf - str;
488 
489 	return consumed;
490 }
491 
492 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
493 			 long long *res)
494 {
495 	unsigned long long _res;
496 	bool is_negative;
497 	int err;
498 
499 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
500 	if (err < 0)
501 		return err;
502 	if (is_negative) {
503 		if ((long long)-_res > 0)
504 			return -ERANGE;
505 		*res = -_res;
506 	} else {
507 		if ((long long)_res < 0)
508 			return -ERANGE;
509 		*res = _res;
510 	}
511 	return err;
512 }
513 
514 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
515 	   long *, res)
516 {
517 	long long _res;
518 	int err;
519 
520 	err = __bpf_strtoll(buf, buf_len, flags, &_res);
521 	if (err < 0)
522 		return err;
523 	if (_res != (long)_res)
524 		return -ERANGE;
525 	*res = _res;
526 	return err;
527 }
528 
529 const struct bpf_func_proto bpf_strtol_proto = {
530 	.func		= bpf_strtol,
531 	.gpl_only	= false,
532 	.ret_type	= RET_INTEGER,
533 	.arg1_type	= ARG_PTR_TO_MEM,
534 	.arg2_type	= ARG_CONST_SIZE,
535 	.arg3_type	= ARG_ANYTHING,
536 	.arg4_type	= ARG_PTR_TO_LONG,
537 };
538 
539 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
540 	   unsigned long *, res)
541 {
542 	unsigned long long _res;
543 	bool is_negative;
544 	int err;
545 
546 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
547 	if (err < 0)
548 		return err;
549 	if (is_negative)
550 		return -EINVAL;
551 	if (_res != (unsigned long)_res)
552 		return -ERANGE;
553 	*res = _res;
554 	return err;
555 }
556 
557 const struct bpf_func_proto bpf_strtoul_proto = {
558 	.func		= bpf_strtoul,
559 	.gpl_only	= false,
560 	.ret_type	= RET_INTEGER,
561 	.arg1_type	= ARG_PTR_TO_MEM,
562 	.arg2_type	= ARG_CONST_SIZE,
563 	.arg3_type	= ARG_ANYTHING,
564 	.arg4_type	= ARG_PTR_TO_LONG,
565 };
566 #endif
567 
568 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
569 	   struct bpf_pidns_info *, nsdata, u32, size)
570 {
571 	struct task_struct *task = current;
572 	struct pid_namespace *pidns;
573 	int err = -EINVAL;
574 
575 	if (unlikely(size != sizeof(struct bpf_pidns_info)))
576 		goto clear;
577 
578 	if (unlikely((u64)(dev_t)dev != dev))
579 		goto clear;
580 
581 	if (unlikely(!task))
582 		goto clear;
583 
584 	pidns = task_active_pid_ns(task);
585 	if (unlikely(!pidns)) {
586 		err = -ENOENT;
587 		goto clear;
588 	}
589 
590 	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
591 		goto clear;
592 
593 	nsdata->pid = task_pid_nr_ns(task, pidns);
594 	nsdata->tgid = task_tgid_nr_ns(task, pidns);
595 	return 0;
596 clear:
597 	memset((void *)nsdata, 0, (size_t) size);
598 	return err;
599 }
600 
601 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
602 	.func		= bpf_get_ns_current_pid_tgid,
603 	.gpl_only	= false,
604 	.ret_type	= RET_INTEGER,
605 	.arg1_type	= ARG_ANYTHING,
606 	.arg2_type	= ARG_ANYTHING,
607 	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
608 	.arg4_type      = ARG_CONST_SIZE,
609 };
610 
611 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
612 	.func		= bpf_get_raw_cpu_id,
613 	.gpl_only	= false,
614 	.ret_type	= RET_INTEGER,
615 };
616 
617 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
618 	   u64, flags, void *, data, u64, size)
619 {
620 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
621 		return -EINVAL;
622 
623 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
624 }
625 
626 const struct bpf_func_proto bpf_event_output_data_proto =  {
627 	.func		= bpf_event_output_data,
628 	.gpl_only       = true,
629 	.ret_type       = RET_INTEGER,
630 	.arg1_type      = ARG_PTR_TO_CTX,
631 	.arg2_type      = ARG_CONST_MAP_PTR,
632 	.arg3_type      = ARG_ANYTHING,
633 	.arg4_type      = ARG_PTR_TO_MEM,
634 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
635 };
636 
637 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
638 	   const void __user *, user_ptr)
639 {
640 	int ret = copy_from_user(dst, user_ptr, size);
641 
642 	if (unlikely(ret)) {
643 		memset(dst, 0, size);
644 		ret = -EFAULT;
645 	}
646 
647 	return ret;
648 }
649 
650 const struct bpf_func_proto bpf_copy_from_user_proto = {
651 	.func		= bpf_copy_from_user,
652 	.gpl_only	= false,
653 	.ret_type	= RET_INTEGER,
654 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
655 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
656 	.arg3_type	= ARG_ANYTHING,
657 };
658 
659 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
660 {
661 	if (cpu >= nr_cpu_ids)
662 		return (unsigned long)NULL;
663 
664 	return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
665 }
666 
667 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
668 	.func		= bpf_per_cpu_ptr,
669 	.gpl_only	= false,
670 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL,
671 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
672 	.arg2_type	= ARG_ANYTHING,
673 };
674 
675 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
676 {
677 	return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
678 }
679 
680 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
681 	.func		= bpf_this_cpu_ptr,
682 	.gpl_only	= false,
683 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID,
684 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
685 };
686 
687 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
688 		size_t bufsz)
689 {
690 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
691 
692 	buf[0] = 0;
693 
694 	switch (fmt_ptype) {
695 	case 's':
696 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
697 		if ((unsigned long)unsafe_ptr < TASK_SIZE)
698 			return strncpy_from_user_nofault(buf, user_ptr, bufsz);
699 		fallthrough;
700 #endif
701 	case 'k':
702 		return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
703 	case 'u':
704 		return strncpy_from_user_nofault(buf, user_ptr, bufsz);
705 	}
706 
707 	return -EINVAL;
708 }
709 
710 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
711  * arguments representation.
712  */
713 #define MAX_BPRINTF_BUF_LEN	512
714 
715 /* Support executing three nested bprintf helper calls on a given CPU */
716 #define MAX_BPRINTF_NEST_LEVEL	3
717 struct bpf_bprintf_buffers {
718 	char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN];
719 };
720 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs);
721 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
722 
723 static int try_get_fmt_tmp_buf(char **tmp_buf)
724 {
725 	struct bpf_bprintf_buffers *bufs;
726 	int nest_level;
727 
728 	preempt_disable();
729 	nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
730 	if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
731 		this_cpu_dec(bpf_bprintf_nest_level);
732 		preempt_enable();
733 		return -EBUSY;
734 	}
735 	bufs = this_cpu_ptr(&bpf_bprintf_bufs);
736 	*tmp_buf = bufs->tmp_bufs[nest_level - 1];
737 
738 	return 0;
739 }
740 
741 void bpf_bprintf_cleanup(void)
742 {
743 	if (this_cpu_read(bpf_bprintf_nest_level)) {
744 		this_cpu_dec(bpf_bprintf_nest_level);
745 		preempt_enable();
746 	}
747 }
748 
749 /*
750  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
751  *
752  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
753  *
754  * This can be used in two ways:
755  * - Format string verification only: when bin_args is NULL
756  * - Arguments preparation: in addition to the above verification, it writes in
757  *   bin_args a binary representation of arguments usable by bstr_printf where
758  *   pointers from BPF have been sanitized.
759  *
760  * In argument preparation mode, if 0 is returned, safe temporary buffers are
761  * allocated and bpf_bprintf_cleanup should be called to free them after use.
762  */
763 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
764 			u32 **bin_args, u32 num_args)
765 {
766 	char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
767 	size_t sizeof_cur_arg, sizeof_cur_ip;
768 	int err, i, num_spec = 0;
769 	u64 cur_arg;
770 	char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
771 
772 	fmt_end = strnchr(fmt, fmt_size, 0);
773 	if (!fmt_end)
774 		return -EINVAL;
775 	fmt_size = fmt_end - fmt;
776 
777 	if (bin_args) {
778 		if (num_args && try_get_fmt_tmp_buf(&tmp_buf))
779 			return -EBUSY;
780 
781 		tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN;
782 		*bin_args = (u32 *)tmp_buf;
783 	}
784 
785 	for (i = 0; i < fmt_size; i++) {
786 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
787 			err = -EINVAL;
788 			goto out;
789 		}
790 
791 		if (fmt[i] != '%')
792 			continue;
793 
794 		if (fmt[i + 1] == '%') {
795 			i++;
796 			continue;
797 		}
798 
799 		if (num_spec >= num_args) {
800 			err = -EINVAL;
801 			goto out;
802 		}
803 
804 		/* The string is zero-terminated so if fmt[i] != 0, we can
805 		 * always access fmt[i + 1], in the worst case it will be a 0
806 		 */
807 		i++;
808 
809 		/* skip optional "[0 +-][num]" width formatting field */
810 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
811 		       fmt[i] == ' ')
812 			i++;
813 		if (fmt[i] >= '1' && fmt[i] <= '9') {
814 			i++;
815 			while (fmt[i] >= '0' && fmt[i] <= '9')
816 				i++;
817 		}
818 
819 		if (fmt[i] == 'p') {
820 			sizeof_cur_arg = sizeof(long);
821 
822 			if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
823 			    fmt[i + 2] == 's') {
824 				fmt_ptype = fmt[i + 1];
825 				i += 2;
826 				goto fmt_str;
827 			}
828 
829 			if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
830 			    ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
831 			    fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
832 			    fmt[i + 1] == 'S') {
833 				/* just kernel pointers */
834 				if (tmp_buf)
835 					cur_arg = raw_args[num_spec];
836 				i++;
837 				goto nocopy_fmt;
838 			}
839 
840 			if (fmt[i + 1] == 'B') {
841 				if (tmp_buf)  {
842 					err = snprintf(tmp_buf,
843 						       (tmp_buf_end - tmp_buf),
844 						       "%pB",
845 						       (void *)(long)raw_args[num_spec]);
846 					tmp_buf += (err + 1);
847 				}
848 
849 				i++;
850 				num_spec++;
851 				continue;
852 			}
853 
854 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
855 			if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
856 			    (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
857 				err = -EINVAL;
858 				goto out;
859 			}
860 
861 			i += 2;
862 			if (!tmp_buf)
863 				goto nocopy_fmt;
864 
865 			sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
866 			if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
867 				err = -ENOSPC;
868 				goto out;
869 			}
870 
871 			unsafe_ptr = (char *)(long)raw_args[num_spec];
872 			err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
873 						       sizeof_cur_ip);
874 			if (err < 0)
875 				memset(cur_ip, 0, sizeof_cur_ip);
876 
877 			/* hack: bstr_printf expects IP addresses to be
878 			 * pre-formatted as strings, ironically, the easiest way
879 			 * to do that is to call snprintf.
880 			 */
881 			ip_spec[2] = fmt[i - 1];
882 			ip_spec[3] = fmt[i];
883 			err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
884 				       ip_spec, &cur_ip);
885 
886 			tmp_buf += err + 1;
887 			num_spec++;
888 
889 			continue;
890 		} else if (fmt[i] == 's') {
891 			fmt_ptype = fmt[i];
892 fmt_str:
893 			if (fmt[i + 1] != 0 &&
894 			    !isspace(fmt[i + 1]) &&
895 			    !ispunct(fmt[i + 1])) {
896 				err = -EINVAL;
897 				goto out;
898 			}
899 
900 			if (!tmp_buf)
901 				goto nocopy_fmt;
902 
903 			if (tmp_buf_end == tmp_buf) {
904 				err = -ENOSPC;
905 				goto out;
906 			}
907 
908 			unsafe_ptr = (char *)(long)raw_args[num_spec];
909 			err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
910 						    fmt_ptype,
911 						    tmp_buf_end - tmp_buf);
912 			if (err < 0) {
913 				tmp_buf[0] = '\0';
914 				err = 1;
915 			}
916 
917 			tmp_buf += err;
918 			num_spec++;
919 
920 			continue;
921 		} else if (fmt[i] == 'c') {
922 			if (!tmp_buf)
923 				goto nocopy_fmt;
924 
925 			if (tmp_buf_end == tmp_buf) {
926 				err = -ENOSPC;
927 				goto out;
928 			}
929 
930 			*tmp_buf = raw_args[num_spec];
931 			tmp_buf++;
932 			num_spec++;
933 
934 			continue;
935 		}
936 
937 		sizeof_cur_arg = sizeof(int);
938 
939 		if (fmt[i] == 'l') {
940 			sizeof_cur_arg = sizeof(long);
941 			i++;
942 		}
943 		if (fmt[i] == 'l') {
944 			sizeof_cur_arg = sizeof(long long);
945 			i++;
946 		}
947 
948 		if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
949 		    fmt[i] != 'x' && fmt[i] != 'X') {
950 			err = -EINVAL;
951 			goto out;
952 		}
953 
954 		if (tmp_buf)
955 			cur_arg = raw_args[num_spec];
956 nocopy_fmt:
957 		if (tmp_buf) {
958 			tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
959 			if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
960 				err = -ENOSPC;
961 				goto out;
962 			}
963 
964 			if (sizeof_cur_arg == 8) {
965 				*(u32 *)tmp_buf = *(u32 *)&cur_arg;
966 				*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
967 			} else {
968 				*(u32 *)tmp_buf = (u32)(long)cur_arg;
969 			}
970 			tmp_buf += sizeof_cur_arg;
971 		}
972 		num_spec++;
973 	}
974 
975 	err = 0;
976 out:
977 	if (err)
978 		bpf_bprintf_cleanup();
979 	return err;
980 }
981 
982 #define MAX_SNPRINTF_VARARGS		12
983 
984 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
985 	   const void *, data, u32, data_len)
986 {
987 	int err, num_args;
988 	u32 *bin_args;
989 
990 	if (data_len % 8 || data_len > MAX_SNPRINTF_VARARGS * 8 ||
991 	    (data_len && !data))
992 		return -EINVAL;
993 	num_args = data_len / 8;
994 
995 	/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
996 	 * can safely give an unbounded size.
997 	 */
998 	err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args);
999 	if (err < 0)
1000 		return err;
1001 
1002 	err = bstr_printf(str, str_size, fmt, bin_args);
1003 
1004 	bpf_bprintf_cleanup();
1005 
1006 	return err + 1;
1007 }
1008 
1009 const struct bpf_func_proto bpf_snprintf_proto = {
1010 	.func		= bpf_snprintf,
1011 	.gpl_only	= true,
1012 	.ret_type	= RET_INTEGER,
1013 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1014 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1015 	.arg3_type	= ARG_PTR_TO_CONST_STR,
1016 	.arg4_type	= ARG_PTR_TO_MEM_OR_NULL,
1017 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1018 };
1019 
1020 /* BPF map elements can contain 'struct bpf_timer'.
1021  * Such map owns all of its BPF timers.
1022  * 'struct bpf_timer' is allocated as part of map element allocation
1023  * and it's zero initialized.
1024  * That space is used to keep 'struct bpf_timer_kern'.
1025  * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1026  * remembers 'struct bpf_map *' pointer it's part of.
1027  * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1028  * bpf_timer_start() arms the timer.
1029  * If user space reference to a map goes to zero at this point
1030  * ops->map_release_uref callback is responsible for cancelling the timers,
1031  * freeing their memory, and decrementing prog's refcnts.
1032  * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1033  * Inner maps can contain bpf timers as well. ops->map_release_uref is
1034  * freeing the timers when inner map is replaced or deleted by user space.
1035  */
1036 struct bpf_hrtimer {
1037 	struct hrtimer timer;
1038 	struct bpf_map *map;
1039 	struct bpf_prog *prog;
1040 	void __rcu *callback_fn;
1041 	void *value;
1042 };
1043 
1044 /* the actual struct hidden inside uapi struct bpf_timer */
1045 struct bpf_timer_kern {
1046 	struct bpf_hrtimer *timer;
1047 	/* bpf_spin_lock is used here instead of spinlock_t to make
1048 	 * sure that it always fits into space resereved by struct bpf_timer
1049 	 * regardless of LOCKDEP and spinlock debug flags.
1050 	 */
1051 	struct bpf_spin_lock lock;
1052 } __attribute__((aligned(8)));
1053 
1054 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1055 
1056 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1057 {
1058 	struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1059 	struct bpf_map *map = t->map;
1060 	void *value = t->value;
1061 	void *callback_fn;
1062 	void *key;
1063 	u32 idx;
1064 
1065 	callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
1066 	if (!callback_fn)
1067 		goto out;
1068 
1069 	/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1070 	 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1071 	 * Remember the timer this callback is servicing to prevent
1072 	 * deadlock if callback_fn() calls bpf_timer_cancel() or
1073 	 * bpf_map_delete_elem() on the same timer.
1074 	 */
1075 	this_cpu_write(hrtimer_running, t);
1076 	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1077 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1078 
1079 		/* compute the key */
1080 		idx = ((char *)value - array->value) / array->elem_size;
1081 		key = &idx;
1082 	} else { /* hash or lru */
1083 		key = value - round_up(map->key_size, 8);
1084 	}
1085 
1086 	BPF_CAST_CALL(callback_fn)((u64)(long)map, (u64)(long)key,
1087 				   (u64)(long)value, 0, 0);
1088 	/* The verifier checked that return value is zero. */
1089 
1090 	this_cpu_write(hrtimer_running, NULL);
1091 out:
1092 	return HRTIMER_NORESTART;
1093 }
1094 
1095 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
1096 	   u64, flags)
1097 {
1098 	clockid_t clockid = flags & (MAX_CLOCKS - 1);
1099 	struct bpf_hrtimer *t;
1100 	int ret = 0;
1101 
1102 	BUILD_BUG_ON(MAX_CLOCKS != 16);
1103 	BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
1104 	BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
1105 
1106 	if (in_nmi())
1107 		return -EOPNOTSUPP;
1108 
1109 	if (flags >= MAX_CLOCKS ||
1110 	    /* similar to timerfd except _ALARM variants are not supported */
1111 	    (clockid != CLOCK_MONOTONIC &&
1112 	     clockid != CLOCK_REALTIME &&
1113 	     clockid != CLOCK_BOOTTIME))
1114 		return -EINVAL;
1115 	__bpf_spin_lock_irqsave(&timer->lock);
1116 	t = timer->timer;
1117 	if (t) {
1118 		ret = -EBUSY;
1119 		goto out;
1120 	}
1121 	if (!atomic64_read(&map->usercnt)) {
1122 		/* maps with timers must be either held by user space
1123 		 * or pinned in bpffs.
1124 		 */
1125 		ret = -EPERM;
1126 		goto out;
1127 	}
1128 	/* allocate hrtimer via map_kmalloc to use memcg accounting */
1129 	t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
1130 	if (!t) {
1131 		ret = -ENOMEM;
1132 		goto out;
1133 	}
1134 	t->value = (void *)timer - map->timer_off;
1135 	t->map = map;
1136 	t->prog = NULL;
1137 	rcu_assign_pointer(t->callback_fn, NULL);
1138 	hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1139 	t->timer.function = bpf_timer_cb;
1140 	timer->timer = t;
1141 out:
1142 	__bpf_spin_unlock_irqrestore(&timer->lock);
1143 	return ret;
1144 }
1145 
1146 static const struct bpf_func_proto bpf_timer_init_proto = {
1147 	.func		= bpf_timer_init,
1148 	.gpl_only	= true,
1149 	.ret_type	= RET_INTEGER,
1150 	.arg1_type	= ARG_PTR_TO_TIMER,
1151 	.arg2_type	= ARG_CONST_MAP_PTR,
1152 	.arg3_type	= ARG_ANYTHING,
1153 };
1154 
1155 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
1156 	   struct bpf_prog_aux *, aux)
1157 {
1158 	struct bpf_prog *prev, *prog = aux->prog;
1159 	struct bpf_hrtimer *t;
1160 	int ret = 0;
1161 
1162 	if (in_nmi())
1163 		return -EOPNOTSUPP;
1164 	__bpf_spin_lock_irqsave(&timer->lock);
1165 	t = timer->timer;
1166 	if (!t) {
1167 		ret = -EINVAL;
1168 		goto out;
1169 	}
1170 	if (!atomic64_read(&t->map->usercnt)) {
1171 		/* maps with timers must be either held by user space
1172 		 * or pinned in bpffs. Otherwise timer might still be
1173 		 * running even when bpf prog is detached and user space
1174 		 * is gone, since map_release_uref won't ever be called.
1175 		 */
1176 		ret = -EPERM;
1177 		goto out;
1178 	}
1179 	prev = t->prog;
1180 	if (prev != prog) {
1181 		/* Bump prog refcnt once. Every bpf_timer_set_callback()
1182 		 * can pick different callback_fn-s within the same prog.
1183 		 */
1184 		prog = bpf_prog_inc_not_zero(prog);
1185 		if (IS_ERR(prog)) {
1186 			ret = PTR_ERR(prog);
1187 			goto out;
1188 		}
1189 		if (prev)
1190 			/* Drop prev prog refcnt when swapping with new prog */
1191 			bpf_prog_put(prev);
1192 		t->prog = prog;
1193 	}
1194 	rcu_assign_pointer(t->callback_fn, callback_fn);
1195 out:
1196 	__bpf_spin_unlock_irqrestore(&timer->lock);
1197 	return ret;
1198 }
1199 
1200 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1201 	.func		= bpf_timer_set_callback,
1202 	.gpl_only	= true,
1203 	.ret_type	= RET_INTEGER,
1204 	.arg1_type	= ARG_PTR_TO_TIMER,
1205 	.arg2_type	= ARG_PTR_TO_FUNC,
1206 };
1207 
1208 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
1209 {
1210 	struct bpf_hrtimer *t;
1211 	int ret = 0;
1212 
1213 	if (in_nmi())
1214 		return -EOPNOTSUPP;
1215 	if (flags)
1216 		return -EINVAL;
1217 	__bpf_spin_lock_irqsave(&timer->lock);
1218 	t = timer->timer;
1219 	if (!t || !t->prog) {
1220 		ret = -EINVAL;
1221 		goto out;
1222 	}
1223 	hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT);
1224 out:
1225 	__bpf_spin_unlock_irqrestore(&timer->lock);
1226 	return ret;
1227 }
1228 
1229 static const struct bpf_func_proto bpf_timer_start_proto = {
1230 	.func		= bpf_timer_start,
1231 	.gpl_only	= true,
1232 	.ret_type	= RET_INTEGER,
1233 	.arg1_type	= ARG_PTR_TO_TIMER,
1234 	.arg2_type	= ARG_ANYTHING,
1235 	.arg3_type	= ARG_ANYTHING,
1236 };
1237 
1238 static void drop_prog_refcnt(struct bpf_hrtimer *t)
1239 {
1240 	struct bpf_prog *prog = t->prog;
1241 
1242 	if (prog) {
1243 		bpf_prog_put(prog);
1244 		t->prog = NULL;
1245 		rcu_assign_pointer(t->callback_fn, NULL);
1246 	}
1247 }
1248 
1249 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
1250 {
1251 	struct bpf_hrtimer *t;
1252 	int ret = 0;
1253 
1254 	if (in_nmi())
1255 		return -EOPNOTSUPP;
1256 	__bpf_spin_lock_irqsave(&timer->lock);
1257 	t = timer->timer;
1258 	if (!t) {
1259 		ret = -EINVAL;
1260 		goto out;
1261 	}
1262 	if (this_cpu_read(hrtimer_running) == t) {
1263 		/* If bpf callback_fn is trying to bpf_timer_cancel()
1264 		 * its own timer the hrtimer_cancel() will deadlock
1265 		 * since it waits for callback_fn to finish
1266 		 */
1267 		ret = -EDEADLK;
1268 		goto out;
1269 	}
1270 	drop_prog_refcnt(t);
1271 out:
1272 	__bpf_spin_unlock_irqrestore(&timer->lock);
1273 	/* Cancel the timer and wait for associated callback to finish
1274 	 * if it was running.
1275 	 */
1276 	ret = ret ?: hrtimer_cancel(&t->timer);
1277 	return ret;
1278 }
1279 
1280 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1281 	.func		= bpf_timer_cancel,
1282 	.gpl_only	= true,
1283 	.ret_type	= RET_INTEGER,
1284 	.arg1_type	= ARG_PTR_TO_TIMER,
1285 };
1286 
1287 /* This function is called by map_delete/update_elem for individual element and
1288  * by ops->map_release_uref when the user space reference to a map reaches zero.
1289  */
1290 void bpf_timer_cancel_and_free(void *val)
1291 {
1292 	struct bpf_timer_kern *timer = val;
1293 	struct bpf_hrtimer *t;
1294 
1295 	/* Performance optimization: read timer->timer without lock first. */
1296 	if (!READ_ONCE(timer->timer))
1297 		return;
1298 
1299 	__bpf_spin_lock_irqsave(&timer->lock);
1300 	/* re-read it under lock */
1301 	t = timer->timer;
1302 	if (!t)
1303 		goto out;
1304 	drop_prog_refcnt(t);
1305 	/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1306 	 * this timer, since it won't be initialized.
1307 	 */
1308 	timer->timer = NULL;
1309 out:
1310 	__bpf_spin_unlock_irqrestore(&timer->lock);
1311 	if (!t)
1312 		return;
1313 	/* Cancel the timer and wait for callback to complete if it was running.
1314 	 * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1315 	 * right after for both preallocated and non-preallocated maps.
1316 	 * The timer->timer = NULL was already done and no code path can
1317 	 * see address 't' anymore.
1318 	 *
1319 	 * Check that bpf_map_delete/update_elem() wasn't called from timer
1320 	 * callback_fn. In such case don't call hrtimer_cancel() (since it will
1321 	 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1322 	 * return -1). Though callback_fn is still running on this cpu it's
1323 	 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1324 	 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1325 	 * since timer->timer = NULL was already done. The timer will be
1326 	 * effectively cancelled because bpf_timer_cb() will return
1327 	 * HRTIMER_NORESTART.
1328 	 */
1329 	if (this_cpu_read(hrtimer_running) != t)
1330 		hrtimer_cancel(&t->timer);
1331 	kfree(t);
1332 }
1333 
1334 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1335 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1336 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1337 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1338 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1339 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1340 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1341 
1342 const struct bpf_func_proto *
1343 bpf_base_func_proto(enum bpf_func_id func_id)
1344 {
1345 	switch (func_id) {
1346 	case BPF_FUNC_map_lookup_elem:
1347 		return &bpf_map_lookup_elem_proto;
1348 	case BPF_FUNC_map_update_elem:
1349 		return &bpf_map_update_elem_proto;
1350 	case BPF_FUNC_map_delete_elem:
1351 		return &bpf_map_delete_elem_proto;
1352 	case BPF_FUNC_map_push_elem:
1353 		return &bpf_map_push_elem_proto;
1354 	case BPF_FUNC_map_pop_elem:
1355 		return &bpf_map_pop_elem_proto;
1356 	case BPF_FUNC_map_peek_elem:
1357 		return &bpf_map_peek_elem_proto;
1358 	case BPF_FUNC_get_prandom_u32:
1359 		return &bpf_get_prandom_u32_proto;
1360 	case BPF_FUNC_get_smp_processor_id:
1361 		return &bpf_get_raw_smp_processor_id_proto;
1362 	case BPF_FUNC_get_numa_node_id:
1363 		return &bpf_get_numa_node_id_proto;
1364 	case BPF_FUNC_tail_call:
1365 		return &bpf_tail_call_proto;
1366 	case BPF_FUNC_ktime_get_ns:
1367 		return &bpf_ktime_get_ns_proto;
1368 	case BPF_FUNC_ktime_get_boot_ns:
1369 		return &bpf_ktime_get_boot_ns_proto;
1370 	case BPF_FUNC_ktime_get_coarse_ns:
1371 		return &bpf_ktime_get_coarse_ns_proto;
1372 	case BPF_FUNC_ringbuf_output:
1373 		return &bpf_ringbuf_output_proto;
1374 	case BPF_FUNC_ringbuf_reserve:
1375 		return &bpf_ringbuf_reserve_proto;
1376 	case BPF_FUNC_ringbuf_submit:
1377 		return &bpf_ringbuf_submit_proto;
1378 	case BPF_FUNC_ringbuf_discard:
1379 		return &bpf_ringbuf_discard_proto;
1380 	case BPF_FUNC_ringbuf_query:
1381 		return &bpf_ringbuf_query_proto;
1382 	case BPF_FUNC_for_each_map_elem:
1383 		return &bpf_for_each_map_elem_proto;
1384 	default:
1385 		break;
1386 	}
1387 
1388 	if (!bpf_capable())
1389 		return NULL;
1390 
1391 	switch (func_id) {
1392 	case BPF_FUNC_spin_lock:
1393 		return &bpf_spin_lock_proto;
1394 	case BPF_FUNC_spin_unlock:
1395 		return &bpf_spin_unlock_proto;
1396 	case BPF_FUNC_jiffies64:
1397 		return &bpf_jiffies64_proto;
1398 	case BPF_FUNC_per_cpu_ptr:
1399 		return &bpf_per_cpu_ptr_proto;
1400 	case BPF_FUNC_this_cpu_ptr:
1401 		return &bpf_this_cpu_ptr_proto;
1402 	case BPF_FUNC_timer_init:
1403 		return &bpf_timer_init_proto;
1404 	case BPF_FUNC_timer_set_callback:
1405 		return &bpf_timer_set_callback_proto;
1406 	case BPF_FUNC_timer_start:
1407 		return &bpf_timer_start_proto;
1408 	case BPF_FUNC_timer_cancel:
1409 		return &bpf_timer_cancel_proto;
1410 	default:
1411 		break;
1412 	}
1413 
1414 	if (!perfmon_capable())
1415 		return NULL;
1416 
1417 	switch (func_id) {
1418 	case BPF_FUNC_trace_printk:
1419 		return bpf_get_trace_printk_proto();
1420 	case BPF_FUNC_get_current_task:
1421 		return &bpf_get_current_task_proto;
1422 	case BPF_FUNC_get_current_task_btf:
1423 		return &bpf_get_current_task_btf_proto;
1424 	case BPF_FUNC_probe_read_user:
1425 		return &bpf_probe_read_user_proto;
1426 	case BPF_FUNC_probe_read_kernel:
1427 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1428 		       NULL : &bpf_probe_read_kernel_proto;
1429 	case BPF_FUNC_probe_read_user_str:
1430 		return &bpf_probe_read_user_str_proto;
1431 	case BPF_FUNC_probe_read_kernel_str:
1432 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1433 		       NULL : &bpf_probe_read_kernel_str_proto;
1434 	case BPF_FUNC_snprintf_btf:
1435 		return &bpf_snprintf_btf_proto;
1436 	case BPF_FUNC_snprintf:
1437 		return &bpf_snprintf_proto;
1438 	case BPF_FUNC_task_pt_regs:
1439 		return &bpf_task_pt_regs_proto;
1440 	default:
1441 		return NULL;
1442 	}
1443 }
1444