1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #include <linux/bpf.h> 5 #include <linux/rcupdate.h> 6 #include <linux/random.h> 7 #include <linux/smp.h> 8 #include <linux/topology.h> 9 #include <linux/ktime.h> 10 #include <linux/sched.h> 11 #include <linux/uidgid.h> 12 #include <linux/filter.h> 13 #include <linux/ctype.h> 14 #include <linux/jiffies.h> 15 #include <linux/pid_namespace.h> 16 #include <linux/proc_ns.h> 17 #include <linux/security.h> 18 19 #include "../../lib/kstrtox.h" 20 21 /* If kernel subsystem is allowing eBPF programs to call this function, 22 * inside its own verifier_ops->get_func_proto() callback it should return 23 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments 24 * 25 * Different map implementations will rely on rcu in map methods 26 * lookup/update/delete, therefore eBPF programs must run under rcu lock 27 * if program is allowed to access maps, so check rcu_read_lock_held in 28 * all three functions. 29 */ 30 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) 31 { 32 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 33 return (unsigned long) map->ops->map_lookup_elem(map, key); 34 } 35 36 const struct bpf_func_proto bpf_map_lookup_elem_proto = { 37 .func = bpf_map_lookup_elem, 38 .gpl_only = false, 39 .pkt_access = true, 40 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 41 .arg1_type = ARG_CONST_MAP_PTR, 42 .arg2_type = ARG_PTR_TO_MAP_KEY, 43 }; 44 45 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, 46 void *, value, u64, flags) 47 { 48 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 49 return map->ops->map_update_elem(map, key, value, flags); 50 } 51 52 const struct bpf_func_proto bpf_map_update_elem_proto = { 53 .func = bpf_map_update_elem, 54 .gpl_only = false, 55 .pkt_access = true, 56 .ret_type = RET_INTEGER, 57 .arg1_type = ARG_CONST_MAP_PTR, 58 .arg2_type = ARG_PTR_TO_MAP_KEY, 59 .arg3_type = ARG_PTR_TO_MAP_VALUE, 60 .arg4_type = ARG_ANYTHING, 61 }; 62 63 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) 64 { 65 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 66 return map->ops->map_delete_elem(map, key); 67 } 68 69 const struct bpf_func_proto bpf_map_delete_elem_proto = { 70 .func = bpf_map_delete_elem, 71 .gpl_only = false, 72 .pkt_access = true, 73 .ret_type = RET_INTEGER, 74 .arg1_type = ARG_CONST_MAP_PTR, 75 .arg2_type = ARG_PTR_TO_MAP_KEY, 76 }; 77 78 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) 79 { 80 return map->ops->map_push_elem(map, value, flags); 81 } 82 83 const struct bpf_func_proto bpf_map_push_elem_proto = { 84 .func = bpf_map_push_elem, 85 .gpl_only = false, 86 .pkt_access = true, 87 .ret_type = RET_INTEGER, 88 .arg1_type = ARG_CONST_MAP_PTR, 89 .arg2_type = ARG_PTR_TO_MAP_VALUE, 90 .arg3_type = ARG_ANYTHING, 91 }; 92 93 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) 94 { 95 return map->ops->map_pop_elem(map, value); 96 } 97 98 const struct bpf_func_proto bpf_map_pop_elem_proto = { 99 .func = bpf_map_pop_elem, 100 .gpl_only = false, 101 .ret_type = RET_INTEGER, 102 .arg1_type = ARG_CONST_MAP_PTR, 103 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE, 104 }; 105 106 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) 107 { 108 return map->ops->map_peek_elem(map, value); 109 } 110 111 const struct bpf_func_proto bpf_map_peek_elem_proto = { 112 .func = bpf_map_peek_elem, 113 .gpl_only = false, 114 .ret_type = RET_INTEGER, 115 .arg1_type = ARG_CONST_MAP_PTR, 116 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE, 117 }; 118 119 const struct bpf_func_proto bpf_get_prandom_u32_proto = { 120 .func = bpf_user_rnd_u32, 121 .gpl_only = false, 122 .ret_type = RET_INTEGER, 123 }; 124 125 BPF_CALL_0(bpf_get_smp_processor_id) 126 { 127 return smp_processor_id(); 128 } 129 130 const struct bpf_func_proto bpf_get_smp_processor_id_proto = { 131 .func = bpf_get_smp_processor_id, 132 .gpl_only = false, 133 .ret_type = RET_INTEGER, 134 }; 135 136 BPF_CALL_0(bpf_get_numa_node_id) 137 { 138 return numa_node_id(); 139 } 140 141 const struct bpf_func_proto bpf_get_numa_node_id_proto = { 142 .func = bpf_get_numa_node_id, 143 .gpl_only = false, 144 .ret_type = RET_INTEGER, 145 }; 146 147 BPF_CALL_0(bpf_ktime_get_ns) 148 { 149 /* NMI safe access to clock monotonic */ 150 return ktime_get_mono_fast_ns(); 151 } 152 153 const struct bpf_func_proto bpf_ktime_get_ns_proto = { 154 .func = bpf_ktime_get_ns, 155 .gpl_only = false, 156 .ret_type = RET_INTEGER, 157 }; 158 159 BPF_CALL_0(bpf_ktime_get_boot_ns) 160 { 161 /* NMI safe access to clock boottime */ 162 return ktime_get_boot_fast_ns(); 163 } 164 165 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { 166 .func = bpf_ktime_get_boot_ns, 167 .gpl_only = false, 168 .ret_type = RET_INTEGER, 169 }; 170 171 BPF_CALL_0(bpf_ktime_get_coarse_ns) 172 { 173 return ktime_get_coarse_ns(); 174 } 175 176 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { 177 .func = bpf_ktime_get_coarse_ns, 178 .gpl_only = false, 179 .ret_type = RET_INTEGER, 180 }; 181 182 BPF_CALL_0(bpf_get_current_pid_tgid) 183 { 184 struct task_struct *task = current; 185 186 if (unlikely(!task)) 187 return -EINVAL; 188 189 return (u64) task->tgid << 32 | task->pid; 190 } 191 192 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { 193 .func = bpf_get_current_pid_tgid, 194 .gpl_only = false, 195 .ret_type = RET_INTEGER, 196 }; 197 198 BPF_CALL_0(bpf_get_current_uid_gid) 199 { 200 struct task_struct *task = current; 201 kuid_t uid; 202 kgid_t gid; 203 204 if (unlikely(!task)) 205 return -EINVAL; 206 207 current_uid_gid(&uid, &gid); 208 return (u64) from_kgid(&init_user_ns, gid) << 32 | 209 from_kuid(&init_user_ns, uid); 210 } 211 212 const struct bpf_func_proto bpf_get_current_uid_gid_proto = { 213 .func = bpf_get_current_uid_gid, 214 .gpl_only = false, 215 .ret_type = RET_INTEGER, 216 }; 217 218 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) 219 { 220 struct task_struct *task = current; 221 222 if (unlikely(!task)) 223 goto err_clear; 224 225 strncpy(buf, task->comm, size); 226 227 /* Verifier guarantees that size > 0. For task->comm exceeding 228 * size, guarantee that buf is %NUL-terminated. Unconditionally 229 * done here to save the size test. 230 */ 231 buf[size - 1] = 0; 232 return 0; 233 err_clear: 234 memset(buf, 0, size); 235 return -EINVAL; 236 } 237 238 const struct bpf_func_proto bpf_get_current_comm_proto = { 239 .func = bpf_get_current_comm, 240 .gpl_only = false, 241 .ret_type = RET_INTEGER, 242 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 243 .arg2_type = ARG_CONST_SIZE, 244 }; 245 246 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) 247 248 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 249 { 250 arch_spinlock_t *l = (void *)lock; 251 union { 252 __u32 val; 253 arch_spinlock_t lock; 254 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; 255 256 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); 257 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); 258 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); 259 arch_spin_lock(l); 260 } 261 262 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 263 { 264 arch_spinlock_t *l = (void *)lock; 265 266 arch_spin_unlock(l); 267 } 268 269 #else 270 271 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 272 { 273 atomic_t *l = (void *)lock; 274 275 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); 276 do { 277 atomic_cond_read_relaxed(l, !VAL); 278 } while (atomic_xchg(l, 1)); 279 } 280 281 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 282 { 283 atomic_t *l = (void *)lock; 284 285 atomic_set_release(l, 0); 286 } 287 288 #endif 289 290 static DEFINE_PER_CPU(unsigned long, irqsave_flags); 291 292 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) 293 { 294 unsigned long flags; 295 296 local_irq_save(flags); 297 __bpf_spin_lock(lock); 298 __this_cpu_write(irqsave_flags, flags); 299 } 300 301 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) 302 { 303 __bpf_spin_lock_irqsave(lock); 304 return 0; 305 } 306 307 const struct bpf_func_proto bpf_spin_lock_proto = { 308 .func = bpf_spin_lock, 309 .gpl_only = false, 310 .ret_type = RET_VOID, 311 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 312 }; 313 314 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) 315 { 316 unsigned long flags; 317 318 flags = __this_cpu_read(irqsave_flags); 319 __bpf_spin_unlock(lock); 320 local_irq_restore(flags); 321 } 322 323 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) 324 { 325 __bpf_spin_unlock_irqrestore(lock); 326 return 0; 327 } 328 329 const struct bpf_func_proto bpf_spin_unlock_proto = { 330 .func = bpf_spin_unlock, 331 .gpl_only = false, 332 .ret_type = RET_VOID, 333 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 334 }; 335 336 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 337 bool lock_src) 338 { 339 struct bpf_spin_lock *lock; 340 341 if (lock_src) 342 lock = src + map->spin_lock_off; 343 else 344 lock = dst + map->spin_lock_off; 345 preempt_disable(); 346 __bpf_spin_lock_irqsave(lock); 347 copy_map_value(map, dst, src); 348 __bpf_spin_unlock_irqrestore(lock); 349 preempt_enable(); 350 } 351 352 BPF_CALL_0(bpf_jiffies64) 353 { 354 return get_jiffies_64(); 355 } 356 357 const struct bpf_func_proto bpf_jiffies64_proto = { 358 .func = bpf_jiffies64, 359 .gpl_only = false, 360 .ret_type = RET_INTEGER, 361 }; 362 363 #ifdef CONFIG_CGROUPS 364 BPF_CALL_0(bpf_get_current_cgroup_id) 365 { 366 struct cgroup *cgrp; 367 u64 cgrp_id; 368 369 rcu_read_lock(); 370 cgrp = task_dfl_cgroup(current); 371 cgrp_id = cgroup_id(cgrp); 372 rcu_read_unlock(); 373 374 return cgrp_id; 375 } 376 377 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { 378 .func = bpf_get_current_cgroup_id, 379 .gpl_only = false, 380 .ret_type = RET_INTEGER, 381 }; 382 383 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) 384 { 385 struct cgroup *cgrp; 386 struct cgroup *ancestor; 387 u64 cgrp_id; 388 389 rcu_read_lock(); 390 cgrp = task_dfl_cgroup(current); 391 ancestor = cgroup_ancestor(cgrp, ancestor_level); 392 cgrp_id = ancestor ? cgroup_id(ancestor) : 0; 393 rcu_read_unlock(); 394 395 return cgrp_id; 396 } 397 398 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { 399 .func = bpf_get_current_ancestor_cgroup_id, 400 .gpl_only = false, 401 .ret_type = RET_INTEGER, 402 .arg1_type = ARG_ANYTHING, 403 }; 404 405 #ifdef CONFIG_CGROUP_BPF 406 407 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags) 408 { 409 /* flags argument is not used now, 410 * but provides an ability to extend the API. 411 * verifier checks that its value is correct. 412 */ 413 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map); 414 struct bpf_cgroup_storage *storage; 415 struct bpf_cg_run_ctx *ctx; 416 void *ptr; 417 418 /* get current cgroup storage from BPF run context */ 419 ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 420 storage = ctx->prog_item->cgroup_storage[stype]; 421 422 if (stype == BPF_CGROUP_STORAGE_SHARED) 423 ptr = &READ_ONCE(storage->buf)->data[0]; 424 else 425 ptr = this_cpu_ptr(storage->percpu_buf); 426 427 return (unsigned long)ptr; 428 } 429 430 const struct bpf_func_proto bpf_get_local_storage_proto = { 431 .func = bpf_get_local_storage, 432 .gpl_only = false, 433 .ret_type = RET_PTR_TO_MAP_VALUE, 434 .arg1_type = ARG_CONST_MAP_PTR, 435 .arg2_type = ARG_ANYTHING, 436 }; 437 #endif 438 439 #define BPF_STRTOX_BASE_MASK 0x1F 440 441 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, 442 unsigned long long *res, bool *is_negative) 443 { 444 unsigned int base = flags & BPF_STRTOX_BASE_MASK; 445 const char *cur_buf = buf; 446 size_t cur_len = buf_len; 447 unsigned int consumed; 448 size_t val_len; 449 char str[64]; 450 451 if (!buf || !buf_len || !res || !is_negative) 452 return -EINVAL; 453 454 if (base != 0 && base != 8 && base != 10 && base != 16) 455 return -EINVAL; 456 457 if (flags & ~BPF_STRTOX_BASE_MASK) 458 return -EINVAL; 459 460 while (cur_buf < buf + buf_len && isspace(*cur_buf)) 461 ++cur_buf; 462 463 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); 464 if (*is_negative) 465 ++cur_buf; 466 467 consumed = cur_buf - buf; 468 cur_len -= consumed; 469 if (!cur_len) 470 return -EINVAL; 471 472 cur_len = min(cur_len, sizeof(str) - 1); 473 memcpy(str, cur_buf, cur_len); 474 str[cur_len] = '\0'; 475 cur_buf = str; 476 477 cur_buf = _parse_integer_fixup_radix(cur_buf, &base); 478 val_len = _parse_integer(cur_buf, base, res); 479 480 if (val_len & KSTRTOX_OVERFLOW) 481 return -ERANGE; 482 483 if (val_len == 0) 484 return -EINVAL; 485 486 cur_buf += val_len; 487 consumed += cur_buf - str; 488 489 return consumed; 490 } 491 492 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, 493 long long *res) 494 { 495 unsigned long long _res; 496 bool is_negative; 497 int err; 498 499 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 500 if (err < 0) 501 return err; 502 if (is_negative) { 503 if ((long long)-_res > 0) 504 return -ERANGE; 505 *res = -_res; 506 } else { 507 if ((long long)_res < 0) 508 return -ERANGE; 509 *res = _res; 510 } 511 return err; 512 } 513 514 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, 515 long *, res) 516 { 517 long long _res; 518 int err; 519 520 err = __bpf_strtoll(buf, buf_len, flags, &_res); 521 if (err < 0) 522 return err; 523 if (_res != (long)_res) 524 return -ERANGE; 525 *res = _res; 526 return err; 527 } 528 529 const struct bpf_func_proto bpf_strtol_proto = { 530 .func = bpf_strtol, 531 .gpl_only = false, 532 .ret_type = RET_INTEGER, 533 .arg1_type = ARG_PTR_TO_MEM, 534 .arg2_type = ARG_CONST_SIZE, 535 .arg3_type = ARG_ANYTHING, 536 .arg4_type = ARG_PTR_TO_LONG, 537 }; 538 539 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, 540 unsigned long *, res) 541 { 542 unsigned long long _res; 543 bool is_negative; 544 int err; 545 546 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 547 if (err < 0) 548 return err; 549 if (is_negative) 550 return -EINVAL; 551 if (_res != (unsigned long)_res) 552 return -ERANGE; 553 *res = _res; 554 return err; 555 } 556 557 const struct bpf_func_proto bpf_strtoul_proto = { 558 .func = bpf_strtoul, 559 .gpl_only = false, 560 .ret_type = RET_INTEGER, 561 .arg1_type = ARG_PTR_TO_MEM, 562 .arg2_type = ARG_CONST_SIZE, 563 .arg3_type = ARG_ANYTHING, 564 .arg4_type = ARG_PTR_TO_LONG, 565 }; 566 #endif 567 568 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, 569 struct bpf_pidns_info *, nsdata, u32, size) 570 { 571 struct task_struct *task = current; 572 struct pid_namespace *pidns; 573 int err = -EINVAL; 574 575 if (unlikely(size != sizeof(struct bpf_pidns_info))) 576 goto clear; 577 578 if (unlikely((u64)(dev_t)dev != dev)) 579 goto clear; 580 581 if (unlikely(!task)) 582 goto clear; 583 584 pidns = task_active_pid_ns(task); 585 if (unlikely(!pidns)) { 586 err = -ENOENT; 587 goto clear; 588 } 589 590 if (!ns_match(&pidns->ns, (dev_t)dev, ino)) 591 goto clear; 592 593 nsdata->pid = task_pid_nr_ns(task, pidns); 594 nsdata->tgid = task_tgid_nr_ns(task, pidns); 595 return 0; 596 clear: 597 memset((void *)nsdata, 0, (size_t) size); 598 return err; 599 } 600 601 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { 602 .func = bpf_get_ns_current_pid_tgid, 603 .gpl_only = false, 604 .ret_type = RET_INTEGER, 605 .arg1_type = ARG_ANYTHING, 606 .arg2_type = ARG_ANYTHING, 607 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 608 .arg4_type = ARG_CONST_SIZE, 609 }; 610 611 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { 612 .func = bpf_get_raw_cpu_id, 613 .gpl_only = false, 614 .ret_type = RET_INTEGER, 615 }; 616 617 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, 618 u64, flags, void *, data, u64, size) 619 { 620 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 621 return -EINVAL; 622 623 return bpf_event_output(map, flags, data, size, NULL, 0, NULL); 624 } 625 626 const struct bpf_func_proto bpf_event_output_data_proto = { 627 .func = bpf_event_output_data, 628 .gpl_only = true, 629 .ret_type = RET_INTEGER, 630 .arg1_type = ARG_PTR_TO_CTX, 631 .arg2_type = ARG_CONST_MAP_PTR, 632 .arg3_type = ARG_ANYTHING, 633 .arg4_type = ARG_PTR_TO_MEM, 634 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 635 }; 636 637 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, 638 const void __user *, user_ptr) 639 { 640 int ret = copy_from_user(dst, user_ptr, size); 641 642 if (unlikely(ret)) { 643 memset(dst, 0, size); 644 ret = -EFAULT; 645 } 646 647 return ret; 648 } 649 650 const struct bpf_func_proto bpf_copy_from_user_proto = { 651 .func = bpf_copy_from_user, 652 .gpl_only = false, 653 .ret_type = RET_INTEGER, 654 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 655 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 656 .arg3_type = ARG_ANYTHING, 657 }; 658 659 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) 660 { 661 if (cpu >= nr_cpu_ids) 662 return (unsigned long)NULL; 663 664 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); 665 } 666 667 const struct bpf_func_proto bpf_per_cpu_ptr_proto = { 668 .func = bpf_per_cpu_ptr, 669 .gpl_only = false, 670 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL, 671 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 672 .arg2_type = ARG_ANYTHING, 673 }; 674 675 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) 676 { 677 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); 678 } 679 680 const struct bpf_func_proto bpf_this_cpu_ptr_proto = { 681 .func = bpf_this_cpu_ptr, 682 .gpl_only = false, 683 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID, 684 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 685 }; 686 687 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 688 size_t bufsz) 689 { 690 void __user *user_ptr = (__force void __user *)unsafe_ptr; 691 692 buf[0] = 0; 693 694 switch (fmt_ptype) { 695 case 's': 696 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 697 if ((unsigned long)unsafe_ptr < TASK_SIZE) 698 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 699 fallthrough; 700 #endif 701 case 'k': 702 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 703 case 'u': 704 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 705 } 706 707 return -EINVAL; 708 } 709 710 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary 711 * arguments representation. 712 */ 713 #define MAX_BPRINTF_BUF_LEN 512 714 715 /* Support executing three nested bprintf helper calls on a given CPU */ 716 #define MAX_BPRINTF_NEST_LEVEL 3 717 struct bpf_bprintf_buffers { 718 char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN]; 719 }; 720 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs); 721 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); 722 723 static int try_get_fmt_tmp_buf(char **tmp_buf) 724 { 725 struct bpf_bprintf_buffers *bufs; 726 int nest_level; 727 728 preempt_disable(); 729 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); 730 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { 731 this_cpu_dec(bpf_bprintf_nest_level); 732 preempt_enable(); 733 return -EBUSY; 734 } 735 bufs = this_cpu_ptr(&bpf_bprintf_bufs); 736 *tmp_buf = bufs->tmp_bufs[nest_level - 1]; 737 738 return 0; 739 } 740 741 void bpf_bprintf_cleanup(void) 742 { 743 if (this_cpu_read(bpf_bprintf_nest_level)) { 744 this_cpu_dec(bpf_bprintf_nest_level); 745 preempt_enable(); 746 } 747 } 748 749 /* 750 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers 751 * 752 * Returns a negative value if fmt is an invalid format string or 0 otherwise. 753 * 754 * This can be used in two ways: 755 * - Format string verification only: when bin_args is NULL 756 * - Arguments preparation: in addition to the above verification, it writes in 757 * bin_args a binary representation of arguments usable by bstr_printf where 758 * pointers from BPF have been sanitized. 759 * 760 * In argument preparation mode, if 0 is returned, safe temporary buffers are 761 * allocated and bpf_bprintf_cleanup should be called to free them after use. 762 */ 763 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 764 u32 **bin_args, u32 num_args) 765 { 766 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; 767 size_t sizeof_cur_arg, sizeof_cur_ip; 768 int err, i, num_spec = 0; 769 u64 cur_arg; 770 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; 771 772 fmt_end = strnchr(fmt, fmt_size, 0); 773 if (!fmt_end) 774 return -EINVAL; 775 fmt_size = fmt_end - fmt; 776 777 if (bin_args) { 778 if (num_args && try_get_fmt_tmp_buf(&tmp_buf)) 779 return -EBUSY; 780 781 tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN; 782 *bin_args = (u32 *)tmp_buf; 783 } 784 785 for (i = 0; i < fmt_size; i++) { 786 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 787 err = -EINVAL; 788 goto out; 789 } 790 791 if (fmt[i] != '%') 792 continue; 793 794 if (fmt[i + 1] == '%') { 795 i++; 796 continue; 797 } 798 799 if (num_spec >= num_args) { 800 err = -EINVAL; 801 goto out; 802 } 803 804 /* The string is zero-terminated so if fmt[i] != 0, we can 805 * always access fmt[i + 1], in the worst case it will be a 0 806 */ 807 i++; 808 809 /* skip optional "[0 +-][num]" width formatting field */ 810 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 811 fmt[i] == ' ') 812 i++; 813 if (fmt[i] >= '1' && fmt[i] <= '9') { 814 i++; 815 while (fmt[i] >= '0' && fmt[i] <= '9') 816 i++; 817 } 818 819 if (fmt[i] == 'p') { 820 sizeof_cur_arg = sizeof(long); 821 822 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && 823 fmt[i + 2] == 's') { 824 fmt_ptype = fmt[i + 1]; 825 i += 2; 826 goto fmt_str; 827 } 828 829 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || 830 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || 831 fmt[i + 1] == 'x' || fmt[i + 1] == 's' || 832 fmt[i + 1] == 'S') { 833 /* just kernel pointers */ 834 if (tmp_buf) 835 cur_arg = raw_args[num_spec]; 836 i++; 837 goto nocopy_fmt; 838 } 839 840 if (fmt[i + 1] == 'B') { 841 if (tmp_buf) { 842 err = snprintf(tmp_buf, 843 (tmp_buf_end - tmp_buf), 844 "%pB", 845 (void *)(long)raw_args[num_spec]); 846 tmp_buf += (err + 1); 847 } 848 849 i++; 850 num_spec++; 851 continue; 852 } 853 854 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 855 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || 856 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { 857 err = -EINVAL; 858 goto out; 859 } 860 861 i += 2; 862 if (!tmp_buf) 863 goto nocopy_fmt; 864 865 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; 866 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { 867 err = -ENOSPC; 868 goto out; 869 } 870 871 unsafe_ptr = (char *)(long)raw_args[num_spec]; 872 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, 873 sizeof_cur_ip); 874 if (err < 0) 875 memset(cur_ip, 0, sizeof_cur_ip); 876 877 /* hack: bstr_printf expects IP addresses to be 878 * pre-formatted as strings, ironically, the easiest way 879 * to do that is to call snprintf. 880 */ 881 ip_spec[2] = fmt[i - 1]; 882 ip_spec[3] = fmt[i]; 883 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, 884 ip_spec, &cur_ip); 885 886 tmp_buf += err + 1; 887 num_spec++; 888 889 continue; 890 } else if (fmt[i] == 's') { 891 fmt_ptype = fmt[i]; 892 fmt_str: 893 if (fmt[i + 1] != 0 && 894 !isspace(fmt[i + 1]) && 895 !ispunct(fmt[i + 1])) { 896 err = -EINVAL; 897 goto out; 898 } 899 900 if (!tmp_buf) 901 goto nocopy_fmt; 902 903 if (tmp_buf_end == tmp_buf) { 904 err = -ENOSPC; 905 goto out; 906 } 907 908 unsafe_ptr = (char *)(long)raw_args[num_spec]; 909 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, 910 fmt_ptype, 911 tmp_buf_end - tmp_buf); 912 if (err < 0) { 913 tmp_buf[0] = '\0'; 914 err = 1; 915 } 916 917 tmp_buf += err; 918 num_spec++; 919 920 continue; 921 } else if (fmt[i] == 'c') { 922 if (!tmp_buf) 923 goto nocopy_fmt; 924 925 if (tmp_buf_end == tmp_buf) { 926 err = -ENOSPC; 927 goto out; 928 } 929 930 *tmp_buf = raw_args[num_spec]; 931 tmp_buf++; 932 num_spec++; 933 934 continue; 935 } 936 937 sizeof_cur_arg = sizeof(int); 938 939 if (fmt[i] == 'l') { 940 sizeof_cur_arg = sizeof(long); 941 i++; 942 } 943 if (fmt[i] == 'l') { 944 sizeof_cur_arg = sizeof(long long); 945 i++; 946 } 947 948 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && 949 fmt[i] != 'x' && fmt[i] != 'X') { 950 err = -EINVAL; 951 goto out; 952 } 953 954 if (tmp_buf) 955 cur_arg = raw_args[num_spec]; 956 nocopy_fmt: 957 if (tmp_buf) { 958 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); 959 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { 960 err = -ENOSPC; 961 goto out; 962 } 963 964 if (sizeof_cur_arg == 8) { 965 *(u32 *)tmp_buf = *(u32 *)&cur_arg; 966 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); 967 } else { 968 *(u32 *)tmp_buf = (u32)(long)cur_arg; 969 } 970 tmp_buf += sizeof_cur_arg; 971 } 972 num_spec++; 973 } 974 975 err = 0; 976 out: 977 if (err) 978 bpf_bprintf_cleanup(); 979 return err; 980 } 981 982 #define MAX_SNPRINTF_VARARGS 12 983 984 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, 985 const void *, data, u32, data_len) 986 { 987 int err, num_args; 988 u32 *bin_args; 989 990 if (data_len % 8 || data_len > MAX_SNPRINTF_VARARGS * 8 || 991 (data_len && !data)) 992 return -EINVAL; 993 num_args = data_len / 8; 994 995 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we 996 * can safely give an unbounded size. 997 */ 998 err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args); 999 if (err < 0) 1000 return err; 1001 1002 err = bstr_printf(str, str_size, fmt, bin_args); 1003 1004 bpf_bprintf_cleanup(); 1005 1006 return err + 1; 1007 } 1008 1009 const struct bpf_func_proto bpf_snprintf_proto = { 1010 .func = bpf_snprintf, 1011 .gpl_only = true, 1012 .ret_type = RET_INTEGER, 1013 .arg1_type = ARG_PTR_TO_MEM_OR_NULL, 1014 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1015 .arg3_type = ARG_PTR_TO_CONST_STR, 1016 .arg4_type = ARG_PTR_TO_MEM_OR_NULL, 1017 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1018 }; 1019 1020 /* BPF map elements can contain 'struct bpf_timer'. 1021 * Such map owns all of its BPF timers. 1022 * 'struct bpf_timer' is allocated as part of map element allocation 1023 * and it's zero initialized. 1024 * That space is used to keep 'struct bpf_timer_kern'. 1025 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and 1026 * remembers 'struct bpf_map *' pointer it's part of. 1027 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. 1028 * bpf_timer_start() arms the timer. 1029 * If user space reference to a map goes to zero at this point 1030 * ops->map_release_uref callback is responsible for cancelling the timers, 1031 * freeing their memory, and decrementing prog's refcnts. 1032 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. 1033 * Inner maps can contain bpf timers as well. ops->map_release_uref is 1034 * freeing the timers when inner map is replaced or deleted by user space. 1035 */ 1036 struct bpf_hrtimer { 1037 struct hrtimer timer; 1038 struct bpf_map *map; 1039 struct bpf_prog *prog; 1040 void __rcu *callback_fn; 1041 void *value; 1042 }; 1043 1044 /* the actual struct hidden inside uapi struct bpf_timer */ 1045 struct bpf_timer_kern { 1046 struct bpf_hrtimer *timer; 1047 /* bpf_spin_lock is used here instead of spinlock_t to make 1048 * sure that it always fits into space resereved by struct bpf_timer 1049 * regardless of LOCKDEP and spinlock debug flags. 1050 */ 1051 struct bpf_spin_lock lock; 1052 } __attribute__((aligned(8))); 1053 1054 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); 1055 1056 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) 1057 { 1058 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); 1059 struct bpf_map *map = t->map; 1060 void *value = t->value; 1061 void *callback_fn; 1062 void *key; 1063 u32 idx; 1064 1065 callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held()); 1066 if (!callback_fn) 1067 goto out; 1068 1069 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and 1070 * cannot be preempted by another bpf_timer_cb() on the same cpu. 1071 * Remember the timer this callback is servicing to prevent 1072 * deadlock if callback_fn() calls bpf_timer_cancel() or 1073 * bpf_map_delete_elem() on the same timer. 1074 */ 1075 this_cpu_write(hrtimer_running, t); 1076 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1077 struct bpf_array *array = container_of(map, struct bpf_array, map); 1078 1079 /* compute the key */ 1080 idx = ((char *)value - array->value) / array->elem_size; 1081 key = &idx; 1082 } else { /* hash or lru */ 1083 key = value - round_up(map->key_size, 8); 1084 } 1085 1086 BPF_CAST_CALL(callback_fn)((u64)(long)map, (u64)(long)key, 1087 (u64)(long)value, 0, 0); 1088 /* The verifier checked that return value is zero. */ 1089 1090 this_cpu_write(hrtimer_running, NULL); 1091 out: 1092 return HRTIMER_NORESTART; 1093 } 1094 1095 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map, 1096 u64, flags) 1097 { 1098 clockid_t clockid = flags & (MAX_CLOCKS - 1); 1099 struct bpf_hrtimer *t; 1100 int ret = 0; 1101 1102 BUILD_BUG_ON(MAX_CLOCKS != 16); 1103 BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer)); 1104 BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer)); 1105 1106 if (in_nmi()) 1107 return -EOPNOTSUPP; 1108 1109 if (flags >= MAX_CLOCKS || 1110 /* similar to timerfd except _ALARM variants are not supported */ 1111 (clockid != CLOCK_MONOTONIC && 1112 clockid != CLOCK_REALTIME && 1113 clockid != CLOCK_BOOTTIME)) 1114 return -EINVAL; 1115 __bpf_spin_lock_irqsave(&timer->lock); 1116 t = timer->timer; 1117 if (t) { 1118 ret = -EBUSY; 1119 goto out; 1120 } 1121 if (!atomic64_read(&map->usercnt)) { 1122 /* maps with timers must be either held by user space 1123 * or pinned in bpffs. 1124 */ 1125 ret = -EPERM; 1126 goto out; 1127 } 1128 /* allocate hrtimer via map_kmalloc to use memcg accounting */ 1129 t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node); 1130 if (!t) { 1131 ret = -ENOMEM; 1132 goto out; 1133 } 1134 t->value = (void *)timer - map->timer_off; 1135 t->map = map; 1136 t->prog = NULL; 1137 rcu_assign_pointer(t->callback_fn, NULL); 1138 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); 1139 t->timer.function = bpf_timer_cb; 1140 timer->timer = t; 1141 out: 1142 __bpf_spin_unlock_irqrestore(&timer->lock); 1143 return ret; 1144 } 1145 1146 static const struct bpf_func_proto bpf_timer_init_proto = { 1147 .func = bpf_timer_init, 1148 .gpl_only = true, 1149 .ret_type = RET_INTEGER, 1150 .arg1_type = ARG_PTR_TO_TIMER, 1151 .arg2_type = ARG_CONST_MAP_PTR, 1152 .arg3_type = ARG_ANYTHING, 1153 }; 1154 1155 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn, 1156 struct bpf_prog_aux *, aux) 1157 { 1158 struct bpf_prog *prev, *prog = aux->prog; 1159 struct bpf_hrtimer *t; 1160 int ret = 0; 1161 1162 if (in_nmi()) 1163 return -EOPNOTSUPP; 1164 __bpf_spin_lock_irqsave(&timer->lock); 1165 t = timer->timer; 1166 if (!t) { 1167 ret = -EINVAL; 1168 goto out; 1169 } 1170 if (!atomic64_read(&t->map->usercnt)) { 1171 /* maps with timers must be either held by user space 1172 * or pinned in bpffs. Otherwise timer might still be 1173 * running even when bpf prog is detached and user space 1174 * is gone, since map_release_uref won't ever be called. 1175 */ 1176 ret = -EPERM; 1177 goto out; 1178 } 1179 prev = t->prog; 1180 if (prev != prog) { 1181 /* Bump prog refcnt once. Every bpf_timer_set_callback() 1182 * can pick different callback_fn-s within the same prog. 1183 */ 1184 prog = bpf_prog_inc_not_zero(prog); 1185 if (IS_ERR(prog)) { 1186 ret = PTR_ERR(prog); 1187 goto out; 1188 } 1189 if (prev) 1190 /* Drop prev prog refcnt when swapping with new prog */ 1191 bpf_prog_put(prev); 1192 t->prog = prog; 1193 } 1194 rcu_assign_pointer(t->callback_fn, callback_fn); 1195 out: 1196 __bpf_spin_unlock_irqrestore(&timer->lock); 1197 return ret; 1198 } 1199 1200 static const struct bpf_func_proto bpf_timer_set_callback_proto = { 1201 .func = bpf_timer_set_callback, 1202 .gpl_only = true, 1203 .ret_type = RET_INTEGER, 1204 .arg1_type = ARG_PTR_TO_TIMER, 1205 .arg2_type = ARG_PTR_TO_FUNC, 1206 }; 1207 1208 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags) 1209 { 1210 struct bpf_hrtimer *t; 1211 int ret = 0; 1212 1213 if (in_nmi()) 1214 return -EOPNOTSUPP; 1215 if (flags) 1216 return -EINVAL; 1217 __bpf_spin_lock_irqsave(&timer->lock); 1218 t = timer->timer; 1219 if (!t || !t->prog) { 1220 ret = -EINVAL; 1221 goto out; 1222 } 1223 hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT); 1224 out: 1225 __bpf_spin_unlock_irqrestore(&timer->lock); 1226 return ret; 1227 } 1228 1229 static const struct bpf_func_proto bpf_timer_start_proto = { 1230 .func = bpf_timer_start, 1231 .gpl_only = true, 1232 .ret_type = RET_INTEGER, 1233 .arg1_type = ARG_PTR_TO_TIMER, 1234 .arg2_type = ARG_ANYTHING, 1235 .arg3_type = ARG_ANYTHING, 1236 }; 1237 1238 static void drop_prog_refcnt(struct bpf_hrtimer *t) 1239 { 1240 struct bpf_prog *prog = t->prog; 1241 1242 if (prog) { 1243 bpf_prog_put(prog); 1244 t->prog = NULL; 1245 rcu_assign_pointer(t->callback_fn, NULL); 1246 } 1247 } 1248 1249 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer) 1250 { 1251 struct bpf_hrtimer *t; 1252 int ret = 0; 1253 1254 if (in_nmi()) 1255 return -EOPNOTSUPP; 1256 __bpf_spin_lock_irqsave(&timer->lock); 1257 t = timer->timer; 1258 if (!t) { 1259 ret = -EINVAL; 1260 goto out; 1261 } 1262 if (this_cpu_read(hrtimer_running) == t) { 1263 /* If bpf callback_fn is trying to bpf_timer_cancel() 1264 * its own timer the hrtimer_cancel() will deadlock 1265 * since it waits for callback_fn to finish 1266 */ 1267 ret = -EDEADLK; 1268 goto out; 1269 } 1270 drop_prog_refcnt(t); 1271 out: 1272 __bpf_spin_unlock_irqrestore(&timer->lock); 1273 /* Cancel the timer and wait for associated callback to finish 1274 * if it was running. 1275 */ 1276 ret = ret ?: hrtimer_cancel(&t->timer); 1277 return ret; 1278 } 1279 1280 static const struct bpf_func_proto bpf_timer_cancel_proto = { 1281 .func = bpf_timer_cancel, 1282 .gpl_only = true, 1283 .ret_type = RET_INTEGER, 1284 .arg1_type = ARG_PTR_TO_TIMER, 1285 }; 1286 1287 /* This function is called by map_delete/update_elem for individual element and 1288 * by ops->map_release_uref when the user space reference to a map reaches zero. 1289 */ 1290 void bpf_timer_cancel_and_free(void *val) 1291 { 1292 struct bpf_timer_kern *timer = val; 1293 struct bpf_hrtimer *t; 1294 1295 /* Performance optimization: read timer->timer without lock first. */ 1296 if (!READ_ONCE(timer->timer)) 1297 return; 1298 1299 __bpf_spin_lock_irqsave(&timer->lock); 1300 /* re-read it under lock */ 1301 t = timer->timer; 1302 if (!t) 1303 goto out; 1304 drop_prog_refcnt(t); 1305 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use 1306 * this timer, since it won't be initialized. 1307 */ 1308 timer->timer = NULL; 1309 out: 1310 __bpf_spin_unlock_irqrestore(&timer->lock); 1311 if (!t) 1312 return; 1313 /* Cancel the timer and wait for callback to complete if it was running. 1314 * If hrtimer_cancel() can be safely called it's safe to call kfree(t) 1315 * right after for both preallocated and non-preallocated maps. 1316 * The timer->timer = NULL was already done and no code path can 1317 * see address 't' anymore. 1318 * 1319 * Check that bpf_map_delete/update_elem() wasn't called from timer 1320 * callback_fn. In such case don't call hrtimer_cancel() (since it will 1321 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just 1322 * return -1). Though callback_fn is still running on this cpu it's 1323 * safe to do kfree(t) because bpf_timer_cb() read everything it needed 1324 * from 't'. The bpf subprog callback_fn won't be able to access 't', 1325 * since timer->timer = NULL was already done. The timer will be 1326 * effectively cancelled because bpf_timer_cb() will return 1327 * HRTIMER_NORESTART. 1328 */ 1329 if (this_cpu_read(hrtimer_running) != t) 1330 hrtimer_cancel(&t->timer); 1331 kfree(t); 1332 } 1333 1334 const struct bpf_func_proto bpf_get_current_task_proto __weak; 1335 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; 1336 const struct bpf_func_proto bpf_probe_read_user_proto __weak; 1337 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; 1338 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; 1339 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; 1340 const struct bpf_func_proto bpf_task_pt_regs_proto __weak; 1341 1342 const struct bpf_func_proto * 1343 bpf_base_func_proto(enum bpf_func_id func_id) 1344 { 1345 switch (func_id) { 1346 case BPF_FUNC_map_lookup_elem: 1347 return &bpf_map_lookup_elem_proto; 1348 case BPF_FUNC_map_update_elem: 1349 return &bpf_map_update_elem_proto; 1350 case BPF_FUNC_map_delete_elem: 1351 return &bpf_map_delete_elem_proto; 1352 case BPF_FUNC_map_push_elem: 1353 return &bpf_map_push_elem_proto; 1354 case BPF_FUNC_map_pop_elem: 1355 return &bpf_map_pop_elem_proto; 1356 case BPF_FUNC_map_peek_elem: 1357 return &bpf_map_peek_elem_proto; 1358 case BPF_FUNC_get_prandom_u32: 1359 return &bpf_get_prandom_u32_proto; 1360 case BPF_FUNC_get_smp_processor_id: 1361 return &bpf_get_raw_smp_processor_id_proto; 1362 case BPF_FUNC_get_numa_node_id: 1363 return &bpf_get_numa_node_id_proto; 1364 case BPF_FUNC_tail_call: 1365 return &bpf_tail_call_proto; 1366 case BPF_FUNC_ktime_get_ns: 1367 return &bpf_ktime_get_ns_proto; 1368 case BPF_FUNC_ktime_get_boot_ns: 1369 return &bpf_ktime_get_boot_ns_proto; 1370 case BPF_FUNC_ktime_get_coarse_ns: 1371 return &bpf_ktime_get_coarse_ns_proto; 1372 case BPF_FUNC_ringbuf_output: 1373 return &bpf_ringbuf_output_proto; 1374 case BPF_FUNC_ringbuf_reserve: 1375 return &bpf_ringbuf_reserve_proto; 1376 case BPF_FUNC_ringbuf_submit: 1377 return &bpf_ringbuf_submit_proto; 1378 case BPF_FUNC_ringbuf_discard: 1379 return &bpf_ringbuf_discard_proto; 1380 case BPF_FUNC_ringbuf_query: 1381 return &bpf_ringbuf_query_proto; 1382 case BPF_FUNC_for_each_map_elem: 1383 return &bpf_for_each_map_elem_proto; 1384 default: 1385 break; 1386 } 1387 1388 if (!bpf_capable()) 1389 return NULL; 1390 1391 switch (func_id) { 1392 case BPF_FUNC_spin_lock: 1393 return &bpf_spin_lock_proto; 1394 case BPF_FUNC_spin_unlock: 1395 return &bpf_spin_unlock_proto; 1396 case BPF_FUNC_jiffies64: 1397 return &bpf_jiffies64_proto; 1398 case BPF_FUNC_per_cpu_ptr: 1399 return &bpf_per_cpu_ptr_proto; 1400 case BPF_FUNC_this_cpu_ptr: 1401 return &bpf_this_cpu_ptr_proto; 1402 case BPF_FUNC_timer_init: 1403 return &bpf_timer_init_proto; 1404 case BPF_FUNC_timer_set_callback: 1405 return &bpf_timer_set_callback_proto; 1406 case BPF_FUNC_timer_start: 1407 return &bpf_timer_start_proto; 1408 case BPF_FUNC_timer_cancel: 1409 return &bpf_timer_cancel_proto; 1410 default: 1411 break; 1412 } 1413 1414 if (!perfmon_capable()) 1415 return NULL; 1416 1417 switch (func_id) { 1418 case BPF_FUNC_trace_printk: 1419 return bpf_get_trace_printk_proto(); 1420 case BPF_FUNC_get_current_task: 1421 return &bpf_get_current_task_proto; 1422 case BPF_FUNC_get_current_task_btf: 1423 return &bpf_get_current_task_btf_proto; 1424 case BPF_FUNC_probe_read_user: 1425 return &bpf_probe_read_user_proto; 1426 case BPF_FUNC_probe_read_kernel: 1427 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1428 NULL : &bpf_probe_read_kernel_proto; 1429 case BPF_FUNC_probe_read_user_str: 1430 return &bpf_probe_read_user_str_proto; 1431 case BPF_FUNC_probe_read_kernel_str: 1432 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1433 NULL : &bpf_probe_read_kernel_str_proto; 1434 case BPF_FUNC_snprintf_btf: 1435 return &bpf_snprintf_btf_proto; 1436 case BPF_FUNC_snprintf: 1437 return &bpf_snprintf_proto; 1438 case BPF_FUNC_task_pt_regs: 1439 return &bpf_task_pt_regs_proto; 1440 default: 1441 return NULL; 1442 } 1443 } 1444