1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #include <linux/bpf.h> 5 #include <linux/btf.h> 6 #include <linux/bpf-cgroup.h> 7 #include <linux/rcupdate.h> 8 #include <linux/random.h> 9 #include <linux/smp.h> 10 #include <linux/topology.h> 11 #include <linux/ktime.h> 12 #include <linux/sched.h> 13 #include <linux/uidgid.h> 14 #include <linux/filter.h> 15 #include <linux/ctype.h> 16 #include <linux/jiffies.h> 17 #include <linux/pid_namespace.h> 18 #include <linux/proc_ns.h> 19 #include <linux/security.h> 20 #include <linux/btf_ids.h> 21 22 #include "../../lib/kstrtox.h" 23 24 /* If kernel subsystem is allowing eBPF programs to call this function, 25 * inside its own verifier_ops->get_func_proto() callback it should return 26 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments 27 * 28 * Different map implementations will rely on rcu in map methods 29 * lookup/update/delete, therefore eBPF programs must run under rcu lock 30 * if program is allowed to access maps, so check rcu_read_lock_held in 31 * all three functions. 32 */ 33 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) 34 { 35 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 36 return (unsigned long) map->ops->map_lookup_elem(map, key); 37 } 38 39 const struct bpf_func_proto bpf_map_lookup_elem_proto = { 40 .func = bpf_map_lookup_elem, 41 .gpl_only = false, 42 .pkt_access = true, 43 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 44 .arg1_type = ARG_CONST_MAP_PTR, 45 .arg2_type = ARG_PTR_TO_MAP_KEY, 46 }; 47 48 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, 49 void *, value, u64, flags) 50 { 51 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 52 return map->ops->map_update_elem(map, key, value, flags); 53 } 54 55 const struct bpf_func_proto bpf_map_update_elem_proto = { 56 .func = bpf_map_update_elem, 57 .gpl_only = false, 58 .pkt_access = true, 59 .ret_type = RET_INTEGER, 60 .arg1_type = ARG_CONST_MAP_PTR, 61 .arg2_type = ARG_PTR_TO_MAP_KEY, 62 .arg3_type = ARG_PTR_TO_MAP_VALUE, 63 .arg4_type = ARG_ANYTHING, 64 }; 65 66 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) 67 { 68 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 69 return map->ops->map_delete_elem(map, key); 70 } 71 72 const struct bpf_func_proto bpf_map_delete_elem_proto = { 73 .func = bpf_map_delete_elem, 74 .gpl_only = false, 75 .pkt_access = true, 76 .ret_type = RET_INTEGER, 77 .arg1_type = ARG_CONST_MAP_PTR, 78 .arg2_type = ARG_PTR_TO_MAP_KEY, 79 }; 80 81 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) 82 { 83 return map->ops->map_push_elem(map, value, flags); 84 } 85 86 const struct bpf_func_proto bpf_map_push_elem_proto = { 87 .func = bpf_map_push_elem, 88 .gpl_only = false, 89 .pkt_access = true, 90 .ret_type = RET_INTEGER, 91 .arg1_type = ARG_CONST_MAP_PTR, 92 .arg2_type = ARG_PTR_TO_MAP_VALUE, 93 .arg3_type = ARG_ANYTHING, 94 }; 95 96 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) 97 { 98 return map->ops->map_pop_elem(map, value); 99 } 100 101 const struct bpf_func_proto bpf_map_pop_elem_proto = { 102 .func = bpf_map_pop_elem, 103 .gpl_only = false, 104 .ret_type = RET_INTEGER, 105 .arg1_type = ARG_CONST_MAP_PTR, 106 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 107 }; 108 109 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) 110 { 111 return map->ops->map_peek_elem(map, value); 112 } 113 114 const struct bpf_func_proto bpf_map_peek_elem_proto = { 115 .func = bpf_map_peek_elem, 116 .gpl_only = false, 117 .ret_type = RET_INTEGER, 118 .arg1_type = ARG_CONST_MAP_PTR, 119 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 120 }; 121 122 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) 123 { 124 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 125 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); 126 } 127 128 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { 129 .func = bpf_map_lookup_percpu_elem, 130 .gpl_only = false, 131 .pkt_access = true, 132 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 133 .arg1_type = ARG_CONST_MAP_PTR, 134 .arg2_type = ARG_PTR_TO_MAP_KEY, 135 .arg3_type = ARG_ANYTHING, 136 }; 137 138 const struct bpf_func_proto bpf_get_prandom_u32_proto = { 139 .func = bpf_user_rnd_u32, 140 .gpl_only = false, 141 .ret_type = RET_INTEGER, 142 }; 143 144 BPF_CALL_0(bpf_get_smp_processor_id) 145 { 146 return smp_processor_id(); 147 } 148 149 const struct bpf_func_proto bpf_get_smp_processor_id_proto = { 150 .func = bpf_get_smp_processor_id, 151 .gpl_only = false, 152 .ret_type = RET_INTEGER, 153 }; 154 155 BPF_CALL_0(bpf_get_numa_node_id) 156 { 157 return numa_node_id(); 158 } 159 160 const struct bpf_func_proto bpf_get_numa_node_id_proto = { 161 .func = bpf_get_numa_node_id, 162 .gpl_only = false, 163 .ret_type = RET_INTEGER, 164 }; 165 166 BPF_CALL_0(bpf_ktime_get_ns) 167 { 168 /* NMI safe access to clock monotonic */ 169 return ktime_get_mono_fast_ns(); 170 } 171 172 const struct bpf_func_proto bpf_ktime_get_ns_proto = { 173 .func = bpf_ktime_get_ns, 174 .gpl_only = false, 175 .ret_type = RET_INTEGER, 176 }; 177 178 BPF_CALL_0(bpf_ktime_get_boot_ns) 179 { 180 /* NMI safe access to clock boottime */ 181 return ktime_get_boot_fast_ns(); 182 } 183 184 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { 185 .func = bpf_ktime_get_boot_ns, 186 .gpl_only = false, 187 .ret_type = RET_INTEGER, 188 }; 189 190 BPF_CALL_0(bpf_ktime_get_coarse_ns) 191 { 192 return ktime_get_coarse_ns(); 193 } 194 195 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { 196 .func = bpf_ktime_get_coarse_ns, 197 .gpl_only = false, 198 .ret_type = RET_INTEGER, 199 }; 200 201 BPF_CALL_0(bpf_get_current_pid_tgid) 202 { 203 struct task_struct *task = current; 204 205 if (unlikely(!task)) 206 return -EINVAL; 207 208 return (u64) task->tgid << 32 | task->pid; 209 } 210 211 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { 212 .func = bpf_get_current_pid_tgid, 213 .gpl_only = false, 214 .ret_type = RET_INTEGER, 215 }; 216 217 BPF_CALL_0(bpf_get_current_uid_gid) 218 { 219 struct task_struct *task = current; 220 kuid_t uid; 221 kgid_t gid; 222 223 if (unlikely(!task)) 224 return -EINVAL; 225 226 current_uid_gid(&uid, &gid); 227 return (u64) from_kgid(&init_user_ns, gid) << 32 | 228 from_kuid(&init_user_ns, uid); 229 } 230 231 const struct bpf_func_proto bpf_get_current_uid_gid_proto = { 232 .func = bpf_get_current_uid_gid, 233 .gpl_only = false, 234 .ret_type = RET_INTEGER, 235 }; 236 237 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) 238 { 239 struct task_struct *task = current; 240 241 if (unlikely(!task)) 242 goto err_clear; 243 244 /* Verifier guarantees that size > 0 */ 245 strscpy(buf, task->comm, size); 246 return 0; 247 err_clear: 248 memset(buf, 0, size); 249 return -EINVAL; 250 } 251 252 const struct bpf_func_proto bpf_get_current_comm_proto = { 253 .func = bpf_get_current_comm, 254 .gpl_only = false, 255 .ret_type = RET_INTEGER, 256 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 257 .arg2_type = ARG_CONST_SIZE, 258 }; 259 260 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) 261 262 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 263 { 264 arch_spinlock_t *l = (void *)lock; 265 union { 266 __u32 val; 267 arch_spinlock_t lock; 268 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; 269 270 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); 271 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); 272 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); 273 arch_spin_lock(l); 274 } 275 276 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 277 { 278 arch_spinlock_t *l = (void *)lock; 279 280 arch_spin_unlock(l); 281 } 282 283 #else 284 285 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 286 { 287 atomic_t *l = (void *)lock; 288 289 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); 290 do { 291 atomic_cond_read_relaxed(l, !VAL); 292 } while (atomic_xchg(l, 1)); 293 } 294 295 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 296 { 297 atomic_t *l = (void *)lock; 298 299 atomic_set_release(l, 0); 300 } 301 302 #endif 303 304 static DEFINE_PER_CPU(unsigned long, irqsave_flags); 305 306 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) 307 { 308 unsigned long flags; 309 310 local_irq_save(flags); 311 __bpf_spin_lock(lock); 312 __this_cpu_write(irqsave_flags, flags); 313 } 314 315 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) 316 { 317 __bpf_spin_lock_irqsave(lock); 318 return 0; 319 } 320 321 const struct bpf_func_proto bpf_spin_lock_proto = { 322 .func = bpf_spin_lock, 323 .gpl_only = false, 324 .ret_type = RET_VOID, 325 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 326 }; 327 328 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) 329 { 330 unsigned long flags; 331 332 flags = __this_cpu_read(irqsave_flags); 333 __bpf_spin_unlock(lock); 334 local_irq_restore(flags); 335 } 336 337 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) 338 { 339 __bpf_spin_unlock_irqrestore(lock); 340 return 0; 341 } 342 343 const struct bpf_func_proto bpf_spin_unlock_proto = { 344 .func = bpf_spin_unlock, 345 .gpl_only = false, 346 .ret_type = RET_VOID, 347 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 348 }; 349 350 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 351 bool lock_src) 352 { 353 struct bpf_spin_lock *lock; 354 355 if (lock_src) 356 lock = src + map->spin_lock_off; 357 else 358 lock = dst + map->spin_lock_off; 359 preempt_disable(); 360 __bpf_spin_lock_irqsave(lock); 361 copy_map_value(map, dst, src); 362 __bpf_spin_unlock_irqrestore(lock); 363 preempt_enable(); 364 } 365 366 BPF_CALL_0(bpf_jiffies64) 367 { 368 return get_jiffies_64(); 369 } 370 371 const struct bpf_func_proto bpf_jiffies64_proto = { 372 .func = bpf_jiffies64, 373 .gpl_only = false, 374 .ret_type = RET_INTEGER, 375 }; 376 377 #ifdef CONFIG_CGROUPS 378 BPF_CALL_0(bpf_get_current_cgroup_id) 379 { 380 struct cgroup *cgrp; 381 u64 cgrp_id; 382 383 rcu_read_lock(); 384 cgrp = task_dfl_cgroup(current); 385 cgrp_id = cgroup_id(cgrp); 386 rcu_read_unlock(); 387 388 return cgrp_id; 389 } 390 391 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { 392 .func = bpf_get_current_cgroup_id, 393 .gpl_only = false, 394 .ret_type = RET_INTEGER, 395 }; 396 397 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) 398 { 399 struct cgroup *cgrp; 400 struct cgroup *ancestor; 401 u64 cgrp_id; 402 403 rcu_read_lock(); 404 cgrp = task_dfl_cgroup(current); 405 ancestor = cgroup_ancestor(cgrp, ancestor_level); 406 cgrp_id = ancestor ? cgroup_id(ancestor) : 0; 407 rcu_read_unlock(); 408 409 return cgrp_id; 410 } 411 412 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { 413 .func = bpf_get_current_ancestor_cgroup_id, 414 .gpl_only = false, 415 .ret_type = RET_INTEGER, 416 .arg1_type = ARG_ANYTHING, 417 }; 418 419 #ifdef CONFIG_CGROUP_BPF 420 421 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags) 422 { 423 /* flags argument is not used now, 424 * but provides an ability to extend the API. 425 * verifier checks that its value is correct. 426 */ 427 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map); 428 struct bpf_cgroup_storage *storage; 429 struct bpf_cg_run_ctx *ctx; 430 void *ptr; 431 432 /* get current cgroup storage from BPF run context */ 433 ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 434 storage = ctx->prog_item->cgroup_storage[stype]; 435 436 if (stype == BPF_CGROUP_STORAGE_SHARED) 437 ptr = &READ_ONCE(storage->buf)->data[0]; 438 else 439 ptr = this_cpu_ptr(storage->percpu_buf); 440 441 return (unsigned long)ptr; 442 } 443 444 const struct bpf_func_proto bpf_get_local_storage_proto = { 445 .func = bpf_get_local_storage, 446 .gpl_only = false, 447 .ret_type = RET_PTR_TO_MAP_VALUE, 448 .arg1_type = ARG_CONST_MAP_PTR, 449 .arg2_type = ARG_ANYTHING, 450 }; 451 #endif 452 453 #define BPF_STRTOX_BASE_MASK 0x1F 454 455 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, 456 unsigned long long *res, bool *is_negative) 457 { 458 unsigned int base = flags & BPF_STRTOX_BASE_MASK; 459 const char *cur_buf = buf; 460 size_t cur_len = buf_len; 461 unsigned int consumed; 462 size_t val_len; 463 char str[64]; 464 465 if (!buf || !buf_len || !res || !is_negative) 466 return -EINVAL; 467 468 if (base != 0 && base != 8 && base != 10 && base != 16) 469 return -EINVAL; 470 471 if (flags & ~BPF_STRTOX_BASE_MASK) 472 return -EINVAL; 473 474 while (cur_buf < buf + buf_len && isspace(*cur_buf)) 475 ++cur_buf; 476 477 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); 478 if (*is_negative) 479 ++cur_buf; 480 481 consumed = cur_buf - buf; 482 cur_len -= consumed; 483 if (!cur_len) 484 return -EINVAL; 485 486 cur_len = min(cur_len, sizeof(str) - 1); 487 memcpy(str, cur_buf, cur_len); 488 str[cur_len] = '\0'; 489 cur_buf = str; 490 491 cur_buf = _parse_integer_fixup_radix(cur_buf, &base); 492 val_len = _parse_integer(cur_buf, base, res); 493 494 if (val_len & KSTRTOX_OVERFLOW) 495 return -ERANGE; 496 497 if (val_len == 0) 498 return -EINVAL; 499 500 cur_buf += val_len; 501 consumed += cur_buf - str; 502 503 return consumed; 504 } 505 506 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, 507 long long *res) 508 { 509 unsigned long long _res; 510 bool is_negative; 511 int err; 512 513 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 514 if (err < 0) 515 return err; 516 if (is_negative) { 517 if ((long long)-_res > 0) 518 return -ERANGE; 519 *res = -_res; 520 } else { 521 if ((long long)_res < 0) 522 return -ERANGE; 523 *res = _res; 524 } 525 return err; 526 } 527 528 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, 529 long *, res) 530 { 531 long long _res; 532 int err; 533 534 err = __bpf_strtoll(buf, buf_len, flags, &_res); 535 if (err < 0) 536 return err; 537 if (_res != (long)_res) 538 return -ERANGE; 539 *res = _res; 540 return err; 541 } 542 543 const struct bpf_func_proto bpf_strtol_proto = { 544 .func = bpf_strtol, 545 .gpl_only = false, 546 .ret_type = RET_INTEGER, 547 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 548 .arg2_type = ARG_CONST_SIZE, 549 .arg3_type = ARG_ANYTHING, 550 .arg4_type = ARG_PTR_TO_LONG, 551 }; 552 553 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, 554 unsigned long *, res) 555 { 556 unsigned long long _res; 557 bool is_negative; 558 int err; 559 560 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 561 if (err < 0) 562 return err; 563 if (is_negative) 564 return -EINVAL; 565 if (_res != (unsigned long)_res) 566 return -ERANGE; 567 *res = _res; 568 return err; 569 } 570 571 const struct bpf_func_proto bpf_strtoul_proto = { 572 .func = bpf_strtoul, 573 .gpl_only = false, 574 .ret_type = RET_INTEGER, 575 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 576 .arg2_type = ARG_CONST_SIZE, 577 .arg3_type = ARG_ANYTHING, 578 .arg4_type = ARG_PTR_TO_LONG, 579 }; 580 #endif 581 582 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) 583 { 584 return strncmp(s1, s2, s1_sz); 585 } 586 587 const struct bpf_func_proto bpf_strncmp_proto = { 588 .func = bpf_strncmp, 589 .gpl_only = false, 590 .ret_type = RET_INTEGER, 591 .arg1_type = ARG_PTR_TO_MEM, 592 .arg2_type = ARG_CONST_SIZE, 593 .arg3_type = ARG_PTR_TO_CONST_STR, 594 }; 595 596 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, 597 struct bpf_pidns_info *, nsdata, u32, size) 598 { 599 struct task_struct *task = current; 600 struct pid_namespace *pidns; 601 int err = -EINVAL; 602 603 if (unlikely(size != sizeof(struct bpf_pidns_info))) 604 goto clear; 605 606 if (unlikely((u64)(dev_t)dev != dev)) 607 goto clear; 608 609 if (unlikely(!task)) 610 goto clear; 611 612 pidns = task_active_pid_ns(task); 613 if (unlikely(!pidns)) { 614 err = -ENOENT; 615 goto clear; 616 } 617 618 if (!ns_match(&pidns->ns, (dev_t)dev, ino)) 619 goto clear; 620 621 nsdata->pid = task_pid_nr_ns(task, pidns); 622 nsdata->tgid = task_tgid_nr_ns(task, pidns); 623 return 0; 624 clear: 625 memset((void *)nsdata, 0, (size_t) size); 626 return err; 627 } 628 629 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { 630 .func = bpf_get_ns_current_pid_tgid, 631 .gpl_only = false, 632 .ret_type = RET_INTEGER, 633 .arg1_type = ARG_ANYTHING, 634 .arg2_type = ARG_ANYTHING, 635 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 636 .arg4_type = ARG_CONST_SIZE, 637 }; 638 639 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { 640 .func = bpf_get_raw_cpu_id, 641 .gpl_only = false, 642 .ret_type = RET_INTEGER, 643 }; 644 645 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, 646 u64, flags, void *, data, u64, size) 647 { 648 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 649 return -EINVAL; 650 651 return bpf_event_output(map, flags, data, size, NULL, 0, NULL); 652 } 653 654 const struct bpf_func_proto bpf_event_output_data_proto = { 655 .func = bpf_event_output_data, 656 .gpl_only = true, 657 .ret_type = RET_INTEGER, 658 .arg1_type = ARG_PTR_TO_CTX, 659 .arg2_type = ARG_CONST_MAP_PTR, 660 .arg3_type = ARG_ANYTHING, 661 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 662 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 663 }; 664 665 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, 666 const void __user *, user_ptr) 667 { 668 int ret = copy_from_user(dst, user_ptr, size); 669 670 if (unlikely(ret)) { 671 memset(dst, 0, size); 672 ret = -EFAULT; 673 } 674 675 return ret; 676 } 677 678 const struct bpf_func_proto bpf_copy_from_user_proto = { 679 .func = bpf_copy_from_user, 680 .gpl_only = false, 681 .ret_type = RET_INTEGER, 682 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 683 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 684 .arg3_type = ARG_ANYTHING, 685 }; 686 687 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, 688 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) 689 { 690 int ret; 691 692 /* flags is not used yet */ 693 if (unlikely(flags)) 694 return -EINVAL; 695 696 if (unlikely(!size)) 697 return 0; 698 699 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); 700 if (ret == size) 701 return 0; 702 703 memset(dst, 0, size); 704 /* Return -EFAULT for partial read */ 705 return ret < 0 ? ret : -EFAULT; 706 } 707 708 const struct bpf_func_proto bpf_copy_from_user_task_proto = { 709 .func = bpf_copy_from_user_task, 710 .gpl_only = true, 711 .ret_type = RET_INTEGER, 712 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 713 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 714 .arg3_type = ARG_ANYTHING, 715 .arg4_type = ARG_PTR_TO_BTF_ID, 716 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 717 .arg5_type = ARG_ANYTHING 718 }; 719 720 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) 721 { 722 if (cpu >= nr_cpu_ids) 723 return (unsigned long)NULL; 724 725 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); 726 } 727 728 const struct bpf_func_proto bpf_per_cpu_ptr_proto = { 729 .func = bpf_per_cpu_ptr, 730 .gpl_only = false, 731 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, 732 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 733 .arg2_type = ARG_ANYTHING, 734 }; 735 736 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) 737 { 738 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); 739 } 740 741 const struct bpf_func_proto bpf_this_cpu_ptr_proto = { 742 .func = bpf_this_cpu_ptr, 743 .gpl_only = false, 744 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, 745 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 746 }; 747 748 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 749 size_t bufsz) 750 { 751 void __user *user_ptr = (__force void __user *)unsafe_ptr; 752 753 buf[0] = 0; 754 755 switch (fmt_ptype) { 756 case 's': 757 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 758 if ((unsigned long)unsafe_ptr < TASK_SIZE) 759 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 760 fallthrough; 761 #endif 762 case 'k': 763 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 764 case 'u': 765 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 766 } 767 768 return -EINVAL; 769 } 770 771 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary 772 * arguments representation. 773 */ 774 #define MAX_BPRINTF_BUF_LEN 512 775 776 /* Support executing three nested bprintf helper calls on a given CPU */ 777 #define MAX_BPRINTF_NEST_LEVEL 3 778 struct bpf_bprintf_buffers { 779 char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN]; 780 }; 781 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs); 782 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); 783 784 static int try_get_fmt_tmp_buf(char **tmp_buf) 785 { 786 struct bpf_bprintf_buffers *bufs; 787 int nest_level; 788 789 preempt_disable(); 790 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); 791 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { 792 this_cpu_dec(bpf_bprintf_nest_level); 793 preempt_enable(); 794 return -EBUSY; 795 } 796 bufs = this_cpu_ptr(&bpf_bprintf_bufs); 797 *tmp_buf = bufs->tmp_bufs[nest_level - 1]; 798 799 return 0; 800 } 801 802 void bpf_bprintf_cleanup(void) 803 { 804 if (this_cpu_read(bpf_bprintf_nest_level)) { 805 this_cpu_dec(bpf_bprintf_nest_level); 806 preempt_enable(); 807 } 808 } 809 810 /* 811 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers 812 * 813 * Returns a negative value if fmt is an invalid format string or 0 otherwise. 814 * 815 * This can be used in two ways: 816 * - Format string verification only: when bin_args is NULL 817 * - Arguments preparation: in addition to the above verification, it writes in 818 * bin_args a binary representation of arguments usable by bstr_printf where 819 * pointers from BPF have been sanitized. 820 * 821 * In argument preparation mode, if 0 is returned, safe temporary buffers are 822 * allocated and bpf_bprintf_cleanup should be called to free them after use. 823 */ 824 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 825 u32 **bin_args, u32 num_args) 826 { 827 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; 828 size_t sizeof_cur_arg, sizeof_cur_ip; 829 int err, i, num_spec = 0; 830 u64 cur_arg; 831 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; 832 833 fmt_end = strnchr(fmt, fmt_size, 0); 834 if (!fmt_end) 835 return -EINVAL; 836 fmt_size = fmt_end - fmt; 837 838 if (bin_args) { 839 if (num_args && try_get_fmt_tmp_buf(&tmp_buf)) 840 return -EBUSY; 841 842 tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN; 843 *bin_args = (u32 *)tmp_buf; 844 } 845 846 for (i = 0; i < fmt_size; i++) { 847 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 848 err = -EINVAL; 849 goto out; 850 } 851 852 if (fmt[i] != '%') 853 continue; 854 855 if (fmt[i + 1] == '%') { 856 i++; 857 continue; 858 } 859 860 if (num_spec >= num_args) { 861 err = -EINVAL; 862 goto out; 863 } 864 865 /* The string is zero-terminated so if fmt[i] != 0, we can 866 * always access fmt[i + 1], in the worst case it will be a 0 867 */ 868 i++; 869 870 /* skip optional "[0 +-][num]" width formatting field */ 871 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 872 fmt[i] == ' ') 873 i++; 874 if (fmt[i] >= '1' && fmt[i] <= '9') { 875 i++; 876 while (fmt[i] >= '0' && fmt[i] <= '9') 877 i++; 878 } 879 880 if (fmt[i] == 'p') { 881 sizeof_cur_arg = sizeof(long); 882 883 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && 884 fmt[i + 2] == 's') { 885 fmt_ptype = fmt[i + 1]; 886 i += 2; 887 goto fmt_str; 888 } 889 890 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || 891 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || 892 fmt[i + 1] == 'x' || fmt[i + 1] == 's' || 893 fmt[i + 1] == 'S') { 894 /* just kernel pointers */ 895 if (tmp_buf) 896 cur_arg = raw_args[num_spec]; 897 i++; 898 goto nocopy_fmt; 899 } 900 901 if (fmt[i + 1] == 'B') { 902 if (tmp_buf) { 903 err = snprintf(tmp_buf, 904 (tmp_buf_end - tmp_buf), 905 "%pB", 906 (void *)(long)raw_args[num_spec]); 907 tmp_buf += (err + 1); 908 } 909 910 i++; 911 num_spec++; 912 continue; 913 } 914 915 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 916 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || 917 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { 918 err = -EINVAL; 919 goto out; 920 } 921 922 i += 2; 923 if (!tmp_buf) 924 goto nocopy_fmt; 925 926 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; 927 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { 928 err = -ENOSPC; 929 goto out; 930 } 931 932 unsafe_ptr = (char *)(long)raw_args[num_spec]; 933 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, 934 sizeof_cur_ip); 935 if (err < 0) 936 memset(cur_ip, 0, sizeof_cur_ip); 937 938 /* hack: bstr_printf expects IP addresses to be 939 * pre-formatted as strings, ironically, the easiest way 940 * to do that is to call snprintf. 941 */ 942 ip_spec[2] = fmt[i - 1]; 943 ip_spec[3] = fmt[i]; 944 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, 945 ip_spec, &cur_ip); 946 947 tmp_buf += err + 1; 948 num_spec++; 949 950 continue; 951 } else if (fmt[i] == 's') { 952 fmt_ptype = fmt[i]; 953 fmt_str: 954 if (fmt[i + 1] != 0 && 955 !isspace(fmt[i + 1]) && 956 !ispunct(fmt[i + 1])) { 957 err = -EINVAL; 958 goto out; 959 } 960 961 if (!tmp_buf) 962 goto nocopy_fmt; 963 964 if (tmp_buf_end == tmp_buf) { 965 err = -ENOSPC; 966 goto out; 967 } 968 969 unsafe_ptr = (char *)(long)raw_args[num_spec]; 970 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, 971 fmt_ptype, 972 tmp_buf_end - tmp_buf); 973 if (err < 0) { 974 tmp_buf[0] = '\0'; 975 err = 1; 976 } 977 978 tmp_buf += err; 979 num_spec++; 980 981 continue; 982 } else if (fmt[i] == 'c') { 983 if (!tmp_buf) 984 goto nocopy_fmt; 985 986 if (tmp_buf_end == tmp_buf) { 987 err = -ENOSPC; 988 goto out; 989 } 990 991 *tmp_buf = raw_args[num_spec]; 992 tmp_buf++; 993 num_spec++; 994 995 continue; 996 } 997 998 sizeof_cur_arg = sizeof(int); 999 1000 if (fmt[i] == 'l') { 1001 sizeof_cur_arg = sizeof(long); 1002 i++; 1003 } 1004 if (fmt[i] == 'l') { 1005 sizeof_cur_arg = sizeof(long long); 1006 i++; 1007 } 1008 1009 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && 1010 fmt[i] != 'x' && fmt[i] != 'X') { 1011 err = -EINVAL; 1012 goto out; 1013 } 1014 1015 if (tmp_buf) 1016 cur_arg = raw_args[num_spec]; 1017 nocopy_fmt: 1018 if (tmp_buf) { 1019 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); 1020 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { 1021 err = -ENOSPC; 1022 goto out; 1023 } 1024 1025 if (sizeof_cur_arg == 8) { 1026 *(u32 *)tmp_buf = *(u32 *)&cur_arg; 1027 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); 1028 } else { 1029 *(u32 *)tmp_buf = (u32)(long)cur_arg; 1030 } 1031 tmp_buf += sizeof_cur_arg; 1032 } 1033 num_spec++; 1034 } 1035 1036 err = 0; 1037 out: 1038 if (err) 1039 bpf_bprintf_cleanup(); 1040 return err; 1041 } 1042 1043 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, 1044 const void *, data, u32, data_len) 1045 { 1046 int err, num_args; 1047 u32 *bin_args; 1048 1049 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || 1050 (data_len && !data)) 1051 return -EINVAL; 1052 num_args = data_len / 8; 1053 1054 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we 1055 * can safely give an unbounded size. 1056 */ 1057 err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args); 1058 if (err < 0) 1059 return err; 1060 1061 err = bstr_printf(str, str_size, fmt, bin_args); 1062 1063 bpf_bprintf_cleanup(); 1064 1065 return err + 1; 1066 } 1067 1068 const struct bpf_func_proto bpf_snprintf_proto = { 1069 .func = bpf_snprintf, 1070 .gpl_only = true, 1071 .ret_type = RET_INTEGER, 1072 .arg1_type = ARG_PTR_TO_MEM_OR_NULL, 1073 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1074 .arg3_type = ARG_PTR_TO_CONST_STR, 1075 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 1076 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1077 }; 1078 1079 /* BPF map elements can contain 'struct bpf_timer'. 1080 * Such map owns all of its BPF timers. 1081 * 'struct bpf_timer' is allocated as part of map element allocation 1082 * and it's zero initialized. 1083 * That space is used to keep 'struct bpf_timer_kern'. 1084 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and 1085 * remembers 'struct bpf_map *' pointer it's part of. 1086 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. 1087 * bpf_timer_start() arms the timer. 1088 * If user space reference to a map goes to zero at this point 1089 * ops->map_release_uref callback is responsible for cancelling the timers, 1090 * freeing their memory, and decrementing prog's refcnts. 1091 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. 1092 * Inner maps can contain bpf timers as well. ops->map_release_uref is 1093 * freeing the timers when inner map is replaced or deleted by user space. 1094 */ 1095 struct bpf_hrtimer { 1096 struct hrtimer timer; 1097 struct bpf_map *map; 1098 struct bpf_prog *prog; 1099 void __rcu *callback_fn; 1100 void *value; 1101 }; 1102 1103 /* the actual struct hidden inside uapi struct bpf_timer */ 1104 struct bpf_timer_kern { 1105 struct bpf_hrtimer *timer; 1106 /* bpf_spin_lock is used here instead of spinlock_t to make 1107 * sure that it always fits into space reserved by struct bpf_timer 1108 * regardless of LOCKDEP and spinlock debug flags. 1109 */ 1110 struct bpf_spin_lock lock; 1111 } __attribute__((aligned(8))); 1112 1113 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); 1114 1115 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) 1116 { 1117 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); 1118 struct bpf_map *map = t->map; 1119 void *value = t->value; 1120 bpf_callback_t callback_fn; 1121 void *key; 1122 u32 idx; 1123 1124 BTF_TYPE_EMIT(struct bpf_timer); 1125 callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held()); 1126 if (!callback_fn) 1127 goto out; 1128 1129 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and 1130 * cannot be preempted by another bpf_timer_cb() on the same cpu. 1131 * Remember the timer this callback is servicing to prevent 1132 * deadlock if callback_fn() calls bpf_timer_cancel() or 1133 * bpf_map_delete_elem() on the same timer. 1134 */ 1135 this_cpu_write(hrtimer_running, t); 1136 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1137 struct bpf_array *array = container_of(map, struct bpf_array, map); 1138 1139 /* compute the key */ 1140 idx = ((char *)value - array->value) / array->elem_size; 1141 key = &idx; 1142 } else { /* hash or lru */ 1143 key = value - round_up(map->key_size, 8); 1144 } 1145 1146 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1147 /* The verifier checked that return value is zero. */ 1148 1149 this_cpu_write(hrtimer_running, NULL); 1150 out: 1151 return HRTIMER_NORESTART; 1152 } 1153 1154 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map, 1155 u64, flags) 1156 { 1157 clockid_t clockid = flags & (MAX_CLOCKS - 1); 1158 struct bpf_hrtimer *t; 1159 int ret = 0; 1160 1161 BUILD_BUG_ON(MAX_CLOCKS != 16); 1162 BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer)); 1163 BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer)); 1164 1165 if (in_nmi()) 1166 return -EOPNOTSUPP; 1167 1168 if (flags >= MAX_CLOCKS || 1169 /* similar to timerfd except _ALARM variants are not supported */ 1170 (clockid != CLOCK_MONOTONIC && 1171 clockid != CLOCK_REALTIME && 1172 clockid != CLOCK_BOOTTIME)) 1173 return -EINVAL; 1174 __bpf_spin_lock_irqsave(&timer->lock); 1175 t = timer->timer; 1176 if (t) { 1177 ret = -EBUSY; 1178 goto out; 1179 } 1180 if (!atomic64_read(&map->usercnt)) { 1181 /* maps with timers must be either held by user space 1182 * or pinned in bpffs. 1183 */ 1184 ret = -EPERM; 1185 goto out; 1186 } 1187 /* allocate hrtimer via map_kmalloc to use memcg accounting */ 1188 t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node); 1189 if (!t) { 1190 ret = -ENOMEM; 1191 goto out; 1192 } 1193 t->value = (void *)timer - map->timer_off; 1194 t->map = map; 1195 t->prog = NULL; 1196 rcu_assign_pointer(t->callback_fn, NULL); 1197 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); 1198 t->timer.function = bpf_timer_cb; 1199 timer->timer = t; 1200 out: 1201 __bpf_spin_unlock_irqrestore(&timer->lock); 1202 return ret; 1203 } 1204 1205 static const struct bpf_func_proto bpf_timer_init_proto = { 1206 .func = bpf_timer_init, 1207 .gpl_only = true, 1208 .ret_type = RET_INTEGER, 1209 .arg1_type = ARG_PTR_TO_TIMER, 1210 .arg2_type = ARG_CONST_MAP_PTR, 1211 .arg3_type = ARG_ANYTHING, 1212 }; 1213 1214 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn, 1215 struct bpf_prog_aux *, aux) 1216 { 1217 struct bpf_prog *prev, *prog = aux->prog; 1218 struct bpf_hrtimer *t; 1219 int ret = 0; 1220 1221 if (in_nmi()) 1222 return -EOPNOTSUPP; 1223 __bpf_spin_lock_irqsave(&timer->lock); 1224 t = timer->timer; 1225 if (!t) { 1226 ret = -EINVAL; 1227 goto out; 1228 } 1229 if (!atomic64_read(&t->map->usercnt)) { 1230 /* maps with timers must be either held by user space 1231 * or pinned in bpffs. Otherwise timer might still be 1232 * running even when bpf prog is detached and user space 1233 * is gone, since map_release_uref won't ever be called. 1234 */ 1235 ret = -EPERM; 1236 goto out; 1237 } 1238 prev = t->prog; 1239 if (prev != prog) { 1240 /* Bump prog refcnt once. Every bpf_timer_set_callback() 1241 * can pick different callback_fn-s within the same prog. 1242 */ 1243 prog = bpf_prog_inc_not_zero(prog); 1244 if (IS_ERR(prog)) { 1245 ret = PTR_ERR(prog); 1246 goto out; 1247 } 1248 if (prev) 1249 /* Drop prev prog refcnt when swapping with new prog */ 1250 bpf_prog_put(prev); 1251 t->prog = prog; 1252 } 1253 rcu_assign_pointer(t->callback_fn, callback_fn); 1254 out: 1255 __bpf_spin_unlock_irqrestore(&timer->lock); 1256 return ret; 1257 } 1258 1259 static const struct bpf_func_proto bpf_timer_set_callback_proto = { 1260 .func = bpf_timer_set_callback, 1261 .gpl_only = true, 1262 .ret_type = RET_INTEGER, 1263 .arg1_type = ARG_PTR_TO_TIMER, 1264 .arg2_type = ARG_PTR_TO_FUNC, 1265 }; 1266 1267 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags) 1268 { 1269 struct bpf_hrtimer *t; 1270 int ret = 0; 1271 1272 if (in_nmi()) 1273 return -EOPNOTSUPP; 1274 if (flags) 1275 return -EINVAL; 1276 __bpf_spin_lock_irqsave(&timer->lock); 1277 t = timer->timer; 1278 if (!t || !t->prog) { 1279 ret = -EINVAL; 1280 goto out; 1281 } 1282 hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT); 1283 out: 1284 __bpf_spin_unlock_irqrestore(&timer->lock); 1285 return ret; 1286 } 1287 1288 static const struct bpf_func_proto bpf_timer_start_proto = { 1289 .func = bpf_timer_start, 1290 .gpl_only = true, 1291 .ret_type = RET_INTEGER, 1292 .arg1_type = ARG_PTR_TO_TIMER, 1293 .arg2_type = ARG_ANYTHING, 1294 .arg3_type = ARG_ANYTHING, 1295 }; 1296 1297 static void drop_prog_refcnt(struct bpf_hrtimer *t) 1298 { 1299 struct bpf_prog *prog = t->prog; 1300 1301 if (prog) { 1302 bpf_prog_put(prog); 1303 t->prog = NULL; 1304 rcu_assign_pointer(t->callback_fn, NULL); 1305 } 1306 } 1307 1308 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer) 1309 { 1310 struct bpf_hrtimer *t; 1311 int ret = 0; 1312 1313 if (in_nmi()) 1314 return -EOPNOTSUPP; 1315 __bpf_spin_lock_irqsave(&timer->lock); 1316 t = timer->timer; 1317 if (!t) { 1318 ret = -EINVAL; 1319 goto out; 1320 } 1321 if (this_cpu_read(hrtimer_running) == t) { 1322 /* If bpf callback_fn is trying to bpf_timer_cancel() 1323 * its own timer the hrtimer_cancel() will deadlock 1324 * since it waits for callback_fn to finish 1325 */ 1326 ret = -EDEADLK; 1327 goto out; 1328 } 1329 drop_prog_refcnt(t); 1330 out: 1331 __bpf_spin_unlock_irqrestore(&timer->lock); 1332 /* Cancel the timer and wait for associated callback to finish 1333 * if it was running. 1334 */ 1335 ret = ret ?: hrtimer_cancel(&t->timer); 1336 return ret; 1337 } 1338 1339 static const struct bpf_func_proto bpf_timer_cancel_proto = { 1340 .func = bpf_timer_cancel, 1341 .gpl_only = true, 1342 .ret_type = RET_INTEGER, 1343 .arg1_type = ARG_PTR_TO_TIMER, 1344 }; 1345 1346 /* This function is called by map_delete/update_elem for individual element and 1347 * by ops->map_release_uref when the user space reference to a map reaches zero. 1348 */ 1349 void bpf_timer_cancel_and_free(void *val) 1350 { 1351 struct bpf_timer_kern *timer = val; 1352 struct bpf_hrtimer *t; 1353 1354 /* Performance optimization: read timer->timer without lock first. */ 1355 if (!READ_ONCE(timer->timer)) 1356 return; 1357 1358 __bpf_spin_lock_irqsave(&timer->lock); 1359 /* re-read it under lock */ 1360 t = timer->timer; 1361 if (!t) 1362 goto out; 1363 drop_prog_refcnt(t); 1364 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use 1365 * this timer, since it won't be initialized. 1366 */ 1367 timer->timer = NULL; 1368 out: 1369 __bpf_spin_unlock_irqrestore(&timer->lock); 1370 if (!t) 1371 return; 1372 /* Cancel the timer and wait for callback to complete if it was running. 1373 * If hrtimer_cancel() can be safely called it's safe to call kfree(t) 1374 * right after for both preallocated and non-preallocated maps. 1375 * The timer->timer = NULL was already done and no code path can 1376 * see address 't' anymore. 1377 * 1378 * Check that bpf_map_delete/update_elem() wasn't called from timer 1379 * callback_fn. In such case don't call hrtimer_cancel() (since it will 1380 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just 1381 * return -1). Though callback_fn is still running on this cpu it's 1382 * safe to do kfree(t) because bpf_timer_cb() read everything it needed 1383 * from 't'. The bpf subprog callback_fn won't be able to access 't', 1384 * since timer->timer = NULL was already done. The timer will be 1385 * effectively cancelled because bpf_timer_cb() will return 1386 * HRTIMER_NORESTART. 1387 */ 1388 if (this_cpu_read(hrtimer_running) != t) 1389 hrtimer_cancel(&t->timer); 1390 kfree(t); 1391 } 1392 1393 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr) 1394 { 1395 unsigned long *kptr = map_value; 1396 1397 return xchg(kptr, (unsigned long)ptr); 1398 } 1399 1400 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() 1401 * helper is determined dynamically by the verifier. 1402 */ 1403 #define BPF_PTR_POISON ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1404 1405 const struct bpf_func_proto bpf_kptr_xchg_proto = { 1406 .func = bpf_kptr_xchg, 1407 .gpl_only = false, 1408 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 1409 .ret_btf_id = BPF_PTR_POISON, 1410 .arg1_type = ARG_PTR_TO_KPTR, 1411 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, 1412 .arg2_btf_id = BPF_PTR_POISON, 1413 }; 1414 1415 /* Since the upper 8 bits of dynptr->size is reserved, the 1416 * maximum supported size is 2^24 - 1. 1417 */ 1418 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1) 1419 #define DYNPTR_TYPE_SHIFT 28 1420 #define DYNPTR_SIZE_MASK 0xFFFFFF 1421 #define DYNPTR_RDONLY_BIT BIT(31) 1422 1423 static bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr) 1424 { 1425 return ptr->size & DYNPTR_RDONLY_BIT; 1426 } 1427 1428 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) 1429 { 1430 ptr->size |= type << DYNPTR_TYPE_SHIFT; 1431 } 1432 1433 static u32 bpf_dynptr_get_size(struct bpf_dynptr_kern *ptr) 1434 { 1435 return ptr->size & DYNPTR_SIZE_MASK; 1436 } 1437 1438 int bpf_dynptr_check_size(u32 size) 1439 { 1440 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; 1441 } 1442 1443 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 1444 enum bpf_dynptr_type type, u32 offset, u32 size) 1445 { 1446 ptr->data = data; 1447 ptr->offset = offset; 1448 ptr->size = size; 1449 bpf_dynptr_set_type(ptr, type); 1450 } 1451 1452 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 1453 { 1454 memset(ptr, 0, sizeof(*ptr)); 1455 } 1456 1457 static int bpf_dynptr_check_off_len(struct bpf_dynptr_kern *ptr, u32 offset, u32 len) 1458 { 1459 u32 size = bpf_dynptr_get_size(ptr); 1460 1461 if (len > size || offset > size - len) 1462 return -E2BIG; 1463 1464 return 0; 1465 } 1466 1467 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) 1468 { 1469 int err; 1470 1471 err = bpf_dynptr_check_size(size); 1472 if (err) 1473 goto error; 1474 1475 /* flags is currently unsupported */ 1476 if (flags) { 1477 err = -EINVAL; 1478 goto error; 1479 } 1480 1481 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); 1482 1483 return 0; 1484 1485 error: 1486 bpf_dynptr_set_null(ptr); 1487 return err; 1488 } 1489 1490 const struct bpf_func_proto bpf_dynptr_from_mem_proto = { 1491 .func = bpf_dynptr_from_mem, 1492 .gpl_only = false, 1493 .ret_type = RET_INTEGER, 1494 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1495 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1496 .arg3_type = ARG_ANYTHING, 1497 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT, 1498 }; 1499 1500 BPF_CALL_4(bpf_dynptr_read, void *, dst, u32, len, struct bpf_dynptr_kern *, src, u32, offset) 1501 { 1502 int err; 1503 1504 if (!src->data) 1505 return -EINVAL; 1506 1507 err = bpf_dynptr_check_off_len(src, offset, len); 1508 if (err) 1509 return err; 1510 1511 memcpy(dst, src->data + src->offset + offset, len); 1512 1513 return 0; 1514 } 1515 1516 const struct bpf_func_proto bpf_dynptr_read_proto = { 1517 .func = bpf_dynptr_read, 1518 .gpl_only = false, 1519 .ret_type = RET_INTEGER, 1520 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1521 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1522 .arg3_type = ARG_PTR_TO_DYNPTR, 1523 .arg4_type = ARG_ANYTHING, 1524 }; 1525 1526 BPF_CALL_4(bpf_dynptr_write, struct bpf_dynptr_kern *, dst, u32, offset, void *, src, u32, len) 1527 { 1528 int err; 1529 1530 if (!dst->data || bpf_dynptr_is_rdonly(dst)) 1531 return -EINVAL; 1532 1533 err = bpf_dynptr_check_off_len(dst, offset, len); 1534 if (err) 1535 return err; 1536 1537 memcpy(dst->data + dst->offset + offset, src, len); 1538 1539 return 0; 1540 } 1541 1542 const struct bpf_func_proto bpf_dynptr_write_proto = { 1543 .func = bpf_dynptr_write, 1544 .gpl_only = false, 1545 .ret_type = RET_INTEGER, 1546 .arg1_type = ARG_PTR_TO_DYNPTR, 1547 .arg2_type = ARG_ANYTHING, 1548 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1549 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 1550 }; 1551 1552 BPF_CALL_3(bpf_dynptr_data, struct bpf_dynptr_kern *, ptr, u32, offset, u32, len) 1553 { 1554 int err; 1555 1556 if (!ptr->data) 1557 return 0; 1558 1559 err = bpf_dynptr_check_off_len(ptr, offset, len); 1560 if (err) 1561 return 0; 1562 1563 if (bpf_dynptr_is_rdonly(ptr)) 1564 return 0; 1565 1566 return (unsigned long)(ptr->data + ptr->offset + offset); 1567 } 1568 1569 const struct bpf_func_proto bpf_dynptr_data_proto = { 1570 .func = bpf_dynptr_data, 1571 .gpl_only = false, 1572 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL, 1573 .arg1_type = ARG_PTR_TO_DYNPTR, 1574 .arg2_type = ARG_ANYTHING, 1575 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 1576 }; 1577 1578 const struct bpf_func_proto bpf_get_current_task_proto __weak; 1579 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; 1580 const struct bpf_func_proto bpf_probe_read_user_proto __weak; 1581 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; 1582 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; 1583 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; 1584 const struct bpf_func_proto bpf_task_pt_regs_proto __weak; 1585 1586 const struct bpf_func_proto * 1587 bpf_base_func_proto(enum bpf_func_id func_id) 1588 { 1589 switch (func_id) { 1590 case BPF_FUNC_map_lookup_elem: 1591 return &bpf_map_lookup_elem_proto; 1592 case BPF_FUNC_map_update_elem: 1593 return &bpf_map_update_elem_proto; 1594 case BPF_FUNC_map_delete_elem: 1595 return &bpf_map_delete_elem_proto; 1596 case BPF_FUNC_map_push_elem: 1597 return &bpf_map_push_elem_proto; 1598 case BPF_FUNC_map_pop_elem: 1599 return &bpf_map_pop_elem_proto; 1600 case BPF_FUNC_map_peek_elem: 1601 return &bpf_map_peek_elem_proto; 1602 case BPF_FUNC_map_lookup_percpu_elem: 1603 return &bpf_map_lookup_percpu_elem_proto; 1604 case BPF_FUNC_get_prandom_u32: 1605 return &bpf_get_prandom_u32_proto; 1606 case BPF_FUNC_get_smp_processor_id: 1607 return &bpf_get_raw_smp_processor_id_proto; 1608 case BPF_FUNC_get_numa_node_id: 1609 return &bpf_get_numa_node_id_proto; 1610 case BPF_FUNC_tail_call: 1611 return &bpf_tail_call_proto; 1612 case BPF_FUNC_ktime_get_ns: 1613 return &bpf_ktime_get_ns_proto; 1614 case BPF_FUNC_ktime_get_boot_ns: 1615 return &bpf_ktime_get_boot_ns_proto; 1616 case BPF_FUNC_ringbuf_output: 1617 return &bpf_ringbuf_output_proto; 1618 case BPF_FUNC_ringbuf_reserve: 1619 return &bpf_ringbuf_reserve_proto; 1620 case BPF_FUNC_ringbuf_submit: 1621 return &bpf_ringbuf_submit_proto; 1622 case BPF_FUNC_ringbuf_discard: 1623 return &bpf_ringbuf_discard_proto; 1624 case BPF_FUNC_ringbuf_query: 1625 return &bpf_ringbuf_query_proto; 1626 case BPF_FUNC_ringbuf_reserve_dynptr: 1627 return &bpf_ringbuf_reserve_dynptr_proto; 1628 case BPF_FUNC_ringbuf_submit_dynptr: 1629 return &bpf_ringbuf_submit_dynptr_proto; 1630 case BPF_FUNC_ringbuf_discard_dynptr: 1631 return &bpf_ringbuf_discard_dynptr_proto; 1632 case BPF_FUNC_for_each_map_elem: 1633 return &bpf_for_each_map_elem_proto; 1634 case BPF_FUNC_loop: 1635 return &bpf_loop_proto; 1636 case BPF_FUNC_strncmp: 1637 return &bpf_strncmp_proto; 1638 case BPF_FUNC_dynptr_from_mem: 1639 return &bpf_dynptr_from_mem_proto; 1640 case BPF_FUNC_dynptr_read: 1641 return &bpf_dynptr_read_proto; 1642 case BPF_FUNC_dynptr_write: 1643 return &bpf_dynptr_write_proto; 1644 case BPF_FUNC_dynptr_data: 1645 return &bpf_dynptr_data_proto; 1646 default: 1647 break; 1648 } 1649 1650 if (!bpf_capable()) 1651 return NULL; 1652 1653 switch (func_id) { 1654 case BPF_FUNC_spin_lock: 1655 return &bpf_spin_lock_proto; 1656 case BPF_FUNC_spin_unlock: 1657 return &bpf_spin_unlock_proto; 1658 case BPF_FUNC_jiffies64: 1659 return &bpf_jiffies64_proto; 1660 case BPF_FUNC_per_cpu_ptr: 1661 return &bpf_per_cpu_ptr_proto; 1662 case BPF_FUNC_this_cpu_ptr: 1663 return &bpf_this_cpu_ptr_proto; 1664 case BPF_FUNC_timer_init: 1665 return &bpf_timer_init_proto; 1666 case BPF_FUNC_timer_set_callback: 1667 return &bpf_timer_set_callback_proto; 1668 case BPF_FUNC_timer_start: 1669 return &bpf_timer_start_proto; 1670 case BPF_FUNC_timer_cancel: 1671 return &bpf_timer_cancel_proto; 1672 case BPF_FUNC_kptr_xchg: 1673 return &bpf_kptr_xchg_proto; 1674 default: 1675 break; 1676 } 1677 1678 if (!perfmon_capable()) 1679 return NULL; 1680 1681 switch (func_id) { 1682 case BPF_FUNC_trace_printk: 1683 return bpf_get_trace_printk_proto(); 1684 case BPF_FUNC_get_current_task: 1685 return &bpf_get_current_task_proto; 1686 case BPF_FUNC_get_current_task_btf: 1687 return &bpf_get_current_task_btf_proto; 1688 case BPF_FUNC_probe_read_user: 1689 return &bpf_probe_read_user_proto; 1690 case BPF_FUNC_probe_read_kernel: 1691 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1692 NULL : &bpf_probe_read_kernel_proto; 1693 case BPF_FUNC_probe_read_user_str: 1694 return &bpf_probe_read_user_str_proto; 1695 case BPF_FUNC_probe_read_kernel_str: 1696 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1697 NULL : &bpf_probe_read_kernel_str_proto; 1698 case BPF_FUNC_snprintf_btf: 1699 return &bpf_snprintf_btf_proto; 1700 case BPF_FUNC_snprintf: 1701 return &bpf_snprintf_proto; 1702 case BPF_FUNC_task_pt_regs: 1703 return &bpf_task_pt_regs_proto; 1704 case BPF_FUNC_trace_vprintk: 1705 return bpf_get_trace_vprintk_proto(); 1706 default: 1707 return NULL; 1708 } 1709 } 1710