1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #include <linux/bpf.h> 5 #include <linux/btf.h> 6 #include <linux/bpf-cgroup.h> 7 #include <linux/cgroup.h> 8 #include <linux/rcupdate.h> 9 #include <linux/random.h> 10 #include <linux/smp.h> 11 #include <linux/topology.h> 12 #include <linux/ktime.h> 13 #include <linux/sched.h> 14 #include <linux/uidgid.h> 15 #include <linux/filter.h> 16 #include <linux/ctype.h> 17 #include <linux/jiffies.h> 18 #include <linux/pid_namespace.h> 19 #include <linux/poison.h> 20 #include <linux/proc_ns.h> 21 #include <linux/sched/task.h> 22 #include <linux/security.h> 23 #include <linux/btf_ids.h> 24 #include <linux/bpf_mem_alloc.h> 25 #include <linux/kasan.h> 26 27 #include "../../lib/kstrtox.h" 28 29 /* If kernel subsystem is allowing eBPF programs to call this function, 30 * inside its own verifier_ops->get_func_proto() callback it should return 31 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments 32 * 33 * Different map implementations will rely on rcu in map methods 34 * lookup/update/delete, therefore eBPF programs must run under rcu lock 35 * if program is allowed to access maps, so check rcu_read_lock_held() or 36 * rcu_read_lock_trace_held() in all three functions. 37 */ 38 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) 39 { 40 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 41 !rcu_read_lock_bh_held()); 42 return (unsigned long) map->ops->map_lookup_elem(map, key); 43 } 44 45 const struct bpf_func_proto bpf_map_lookup_elem_proto = { 46 .func = bpf_map_lookup_elem, 47 .gpl_only = false, 48 .pkt_access = true, 49 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 50 .arg1_type = ARG_CONST_MAP_PTR, 51 .arg2_type = ARG_PTR_TO_MAP_KEY, 52 }; 53 54 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, 55 void *, value, u64, flags) 56 { 57 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 58 !rcu_read_lock_bh_held()); 59 return map->ops->map_update_elem(map, key, value, flags); 60 } 61 62 const struct bpf_func_proto bpf_map_update_elem_proto = { 63 .func = bpf_map_update_elem, 64 .gpl_only = false, 65 .pkt_access = true, 66 .ret_type = RET_INTEGER, 67 .arg1_type = ARG_CONST_MAP_PTR, 68 .arg2_type = ARG_PTR_TO_MAP_KEY, 69 .arg3_type = ARG_PTR_TO_MAP_VALUE, 70 .arg4_type = ARG_ANYTHING, 71 }; 72 73 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) 74 { 75 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 76 !rcu_read_lock_bh_held()); 77 return map->ops->map_delete_elem(map, key); 78 } 79 80 const struct bpf_func_proto bpf_map_delete_elem_proto = { 81 .func = bpf_map_delete_elem, 82 .gpl_only = false, 83 .pkt_access = true, 84 .ret_type = RET_INTEGER, 85 .arg1_type = ARG_CONST_MAP_PTR, 86 .arg2_type = ARG_PTR_TO_MAP_KEY, 87 }; 88 89 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) 90 { 91 return map->ops->map_push_elem(map, value, flags); 92 } 93 94 const struct bpf_func_proto bpf_map_push_elem_proto = { 95 .func = bpf_map_push_elem, 96 .gpl_only = false, 97 .pkt_access = true, 98 .ret_type = RET_INTEGER, 99 .arg1_type = ARG_CONST_MAP_PTR, 100 .arg2_type = ARG_PTR_TO_MAP_VALUE, 101 .arg3_type = ARG_ANYTHING, 102 }; 103 104 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) 105 { 106 return map->ops->map_pop_elem(map, value); 107 } 108 109 const struct bpf_func_proto bpf_map_pop_elem_proto = { 110 .func = bpf_map_pop_elem, 111 .gpl_only = false, 112 .ret_type = RET_INTEGER, 113 .arg1_type = ARG_CONST_MAP_PTR, 114 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 115 }; 116 117 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) 118 { 119 return map->ops->map_peek_elem(map, value); 120 } 121 122 const struct bpf_func_proto bpf_map_peek_elem_proto = { 123 .func = bpf_map_peek_elem, 124 .gpl_only = false, 125 .ret_type = RET_INTEGER, 126 .arg1_type = ARG_CONST_MAP_PTR, 127 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 128 }; 129 130 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) 131 { 132 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 133 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); 134 } 135 136 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { 137 .func = bpf_map_lookup_percpu_elem, 138 .gpl_only = false, 139 .pkt_access = true, 140 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 141 .arg1_type = ARG_CONST_MAP_PTR, 142 .arg2_type = ARG_PTR_TO_MAP_KEY, 143 .arg3_type = ARG_ANYTHING, 144 }; 145 146 const struct bpf_func_proto bpf_get_prandom_u32_proto = { 147 .func = bpf_user_rnd_u32, 148 .gpl_only = false, 149 .ret_type = RET_INTEGER, 150 }; 151 152 BPF_CALL_0(bpf_get_smp_processor_id) 153 { 154 return smp_processor_id(); 155 } 156 157 const struct bpf_func_proto bpf_get_smp_processor_id_proto = { 158 .func = bpf_get_smp_processor_id, 159 .gpl_only = false, 160 .ret_type = RET_INTEGER, 161 }; 162 163 BPF_CALL_0(bpf_get_numa_node_id) 164 { 165 return numa_node_id(); 166 } 167 168 const struct bpf_func_proto bpf_get_numa_node_id_proto = { 169 .func = bpf_get_numa_node_id, 170 .gpl_only = false, 171 .ret_type = RET_INTEGER, 172 }; 173 174 BPF_CALL_0(bpf_ktime_get_ns) 175 { 176 /* NMI safe access to clock monotonic */ 177 return ktime_get_mono_fast_ns(); 178 } 179 180 const struct bpf_func_proto bpf_ktime_get_ns_proto = { 181 .func = bpf_ktime_get_ns, 182 .gpl_only = false, 183 .ret_type = RET_INTEGER, 184 }; 185 186 BPF_CALL_0(bpf_ktime_get_boot_ns) 187 { 188 /* NMI safe access to clock boottime */ 189 return ktime_get_boot_fast_ns(); 190 } 191 192 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { 193 .func = bpf_ktime_get_boot_ns, 194 .gpl_only = false, 195 .ret_type = RET_INTEGER, 196 }; 197 198 BPF_CALL_0(bpf_ktime_get_coarse_ns) 199 { 200 return ktime_get_coarse_ns(); 201 } 202 203 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { 204 .func = bpf_ktime_get_coarse_ns, 205 .gpl_only = false, 206 .ret_type = RET_INTEGER, 207 }; 208 209 BPF_CALL_0(bpf_ktime_get_tai_ns) 210 { 211 /* NMI safe access to clock tai */ 212 return ktime_get_tai_fast_ns(); 213 } 214 215 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = { 216 .func = bpf_ktime_get_tai_ns, 217 .gpl_only = false, 218 .ret_type = RET_INTEGER, 219 }; 220 221 BPF_CALL_0(bpf_get_current_pid_tgid) 222 { 223 struct task_struct *task = current; 224 225 if (unlikely(!task)) 226 return -EINVAL; 227 228 return (u64) task->tgid << 32 | task->pid; 229 } 230 231 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { 232 .func = bpf_get_current_pid_tgid, 233 .gpl_only = false, 234 .ret_type = RET_INTEGER, 235 }; 236 237 BPF_CALL_0(bpf_get_current_uid_gid) 238 { 239 struct task_struct *task = current; 240 kuid_t uid; 241 kgid_t gid; 242 243 if (unlikely(!task)) 244 return -EINVAL; 245 246 current_uid_gid(&uid, &gid); 247 return (u64) from_kgid(&init_user_ns, gid) << 32 | 248 from_kuid(&init_user_ns, uid); 249 } 250 251 const struct bpf_func_proto bpf_get_current_uid_gid_proto = { 252 .func = bpf_get_current_uid_gid, 253 .gpl_only = false, 254 .ret_type = RET_INTEGER, 255 }; 256 257 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) 258 { 259 struct task_struct *task = current; 260 261 if (unlikely(!task)) 262 goto err_clear; 263 264 /* Verifier guarantees that size > 0 */ 265 strscpy_pad(buf, task->comm, size); 266 return 0; 267 err_clear: 268 memset(buf, 0, size); 269 return -EINVAL; 270 } 271 272 const struct bpf_func_proto bpf_get_current_comm_proto = { 273 .func = bpf_get_current_comm, 274 .gpl_only = false, 275 .ret_type = RET_INTEGER, 276 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 277 .arg2_type = ARG_CONST_SIZE, 278 }; 279 280 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) 281 282 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 283 { 284 arch_spinlock_t *l = (void *)lock; 285 union { 286 __u32 val; 287 arch_spinlock_t lock; 288 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; 289 290 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); 291 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); 292 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); 293 preempt_disable(); 294 arch_spin_lock(l); 295 } 296 297 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 298 { 299 arch_spinlock_t *l = (void *)lock; 300 301 arch_spin_unlock(l); 302 preempt_enable(); 303 } 304 305 #else 306 307 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 308 { 309 atomic_t *l = (void *)lock; 310 311 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); 312 do { 313 atomic_cond_read_relaxed(l, !VAL); 314 } while (atomic_xchg(l, 1)); 315 } 316 317 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 318 { 319 atomic_t *l = (void *)lock; 320 321 atomic_set_release(l, 0); 322 } 323 324 #endif 325 326 static DEFINE_PER_CPU(unsigned long, irqsave_flags); 327 328 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) 329 { 330 unsigned long flags; 331 332 local_irq_save(flags); 333 __bpf_spin_lock(lock); 334 __this_cpu_write(irqsave_flags, flags); 335 } 336 337 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) 338 { 339 __bpf_spin_lock_irqsave(lock); 340 return 0; 341 } 342 343 const struct bpf_func_proto bpf_spin_lock_proto = { 344 .func = bpf_spin_lock, 345 .gpl_only = false, 346 .ret_type = RET_VOID, 347 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 348 .arg1_btf_id = BPF_PTR_POISON, 349 }; 350 351 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) 352 { 353 unsigned long flags; 354 355 flags = __this_cpu_read(irqsave_flags); 356 __bpf_spin_unlock(lock); 357 local_irq_restore(flags); 358 } 359 360 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) 361 { 362 __bpf_spin_unlock_irqrestore(lock); 363 return 0; 364 } 365 366 const struct bpf_func_proto bpf_spin_unlock_proto = { 367 .func = bpf_spin_unlock, 368 .gpl_only = false, 369 .ret_type = RET_VOID, 370 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 371 .arg1_btf_id = BPF_PTR_POISON, 372 }; 373 374 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 375 bool lock_src) 376 { 377 struct bpf_spin_lock *lock; 378 379 if (lock_src) 380 lock = src + map->record->spin_lock_off; 381 else 382 lock = dst + map->record->spin_lock_off; 383 preempt_disable(); 384 __bpf_spin_lock_irqsave(lock); 385 copy_map_value(map, dst, src); 386 __bpf_spin_unlock_irqrestore(lock); 387 preempt_enable(); 388 } 389 390 BPF_CALL_0(bpf_jiffies64) 391 { 392 return get_jiffies_64(); 393 } 394 395 const struct bpf_func_proto bpf_jiffies64_proto = { 396 .func = bpf_jiffies64, 397 .gpl_only = false, 398 .ret_type = RET_INTEGER, 399 }; 400 401 #ifdef CONFIG_CGROUPS 402 BPF_CALL_0(bpf_get_current_cgroup_id) 403 { 404 struct cgroup *cgrp; 405 u64 cgrp_id; 406 407 rcu_read_lock(); 408 cgrp = task_dfl_cgroup(current); 409 cgrp_id = cgroup_id(cgrp); 410 rcu_read_unlock(); 411 412 return cgrp_id; 413 } 414 415 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { 416 .func = bpf_get_current_cgroup_id, 417 .gpl_only = false, 418 .ret_type = RET_INTEGER, 419 }; 420 421 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) 422 { 423 struct cgroup *cgrp; 424 struct cgroup *ancestor; 425 u64 cgrp_id; 426 427 rcu_read_lock(); 428 cgrp = task_dfl_cgroup(current); 429 ancestor = cgroup_ancestor(cgrp, ancestor_level); 430 cgrp_id = ancestor ? cgroup_id(ancestor) : 0; 431 rcu_read_unlock(); 432 433 return cgrp_id; 434 } 435 436 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { 437 .func = bpf_get_current_ancestor_cgroup_id, 438 .gpl_only = false, 439 .ret_type = RET_INTEGER, 440 .arg1_type = ARG_ANYTHING, 441 }; 442 #endif /* CONFIG_CGROUPS */ 443 444 #define BPF_STRTOX_BASE_MASK 0x1F 445 446 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, 447 unsigned long long *res, bool *is_negative) 448 { 449 unsigned int base = flags & BPF_STRTOX_BASE_MASK; 450 const char *cur_buf = buf; 451 size_t cur_len = buf_len; 452 unsigned int consumed; 453 size_t val_len; 454 char str[64]; 455 456 if (!buf || !buf_len || !res || !is_negative) 457 return -EINVAL; 458 459 if (base != 0 && base != 8 && base != 10 && base != 16) 460 return -EINVAL; 461 462 if (flags & ~BPF_STRTOX_BASE_MASK) 463 return -EINVAL; 464 465 while (cur_buf < buf + buf_len && isspace(*cur_buf)) 466 ++cur_buf; 467 468 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); 469 if (*is_negative) 470 ++cur_buf; 471 472 consumed = cur_buf - buf; 473 cur_len -= consumed; 474 if (!cur_len) 475 return -EINVAL; 476 477 cur_len = min(cur_len, sizeof(str) - 1); 478 memcpy(str, cur_buf, cur_len); 479 str[cur_len] = '\0'; 480 cur_buf = str; 481 482 cur_buf = _parse_integer_fixup_radix(cur_buf, &base); 483 val_len = _parse_integer(cur_buf, base, res); 484 485 if (val_len & KSTRTOX_OVERFLOW) 486 return -ERANGE; 487 488 if (val_len == 0) 489 return -EINVAL; 490 491 cur_buf += val_len; 492 consumed += cur_buf - str; 493 494 return consumed; 495 } 496 497 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, 498 long long *res) 499 { 500 unsigned long long _res; 501 bool is_negative; 502 int err; 503 504 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 505 if (err < 0) 506 return err; 507 if (is_negative) { 508 if ((long long)-_res > 0) 509 return -ERANGE; 510 *res = -_res; 511 } else { 512 if ((long long)_res < 0) 513 return -ERANGE; 514 *res = _res; 515 } 516 return err; 517 } 518 519 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, 520 long *, res) 521 { 522 long long _res; 523 int err; 524 525 err = __bpf_strtoll(buf, buf_len, flags, &_res); 526 if (err < 0) 527 return err; 528 if (_res != (long)_res) 529 return -ERANGE; 530 *res = _res; 531 return err; 532 } 533 534 const struct bpf_func_proto bpf_strtol_proto = { 535 .func = bpf_strtol, 536 .gpl_only = false, 537 .ret_type = RET_INTEGER, 538 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 539 .arg2_type = ARG_CONST_SIZE, 540 .arg3_type = ARG_ANYTHING, 541 .arg4_type = ARG_PTR_TO_LONG, 542 }; 543 544 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, 545 unsigned long *, res) 546 { 547 unsigned long long _res; 548 bool is_negative; 549 int err; 550 551 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 552 if (err < 0) 553 return err; 554 if (is_negative) 555 return -EINVAL; 556 if (_res != (unsigned long)_res) 557 return -ERANGE; 558 *res = _res; 559 return err; 560 } 561 562 const struct bpf_func_proto bpf_strtoul_proto = { 563 .func = bpf_strtoul, 564 .gpl_only = false, 565 .ret_type = RET_INTEGER, 566 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 567 .arg2_type = ARG_CONST_SIZE, 568 .arg3_type = ARG_ANYTHING, 569 .arg4_type = ARG_PTR_TO_LONG, 570 }; 571 572 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) 573 { 574 return strncmp(s1, s2, s1_sz); 575 } 576 577 static const struct bpf_func_proto bpf_strncmp_proto = { 578 .func = bpf_strncmp, 579 .gpl_only = false, 580 .ret_type = RET_INTEGER, 581 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 582 .arg2_type = ARG_CONST_SIZE, 583 .arg3_type = ARG_PTR_TO_CONST_STR, 584 }; 585 586 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, 587 struct bpf_pidns_info *, nsdata, u32, size) 588 { 589 struct task_struct *task = current; 590 struct pid_namespace *pidns; 591 int err = -EINVAL; 592 593 if (unlikely(size != sizeof(struct bpf_pidns_info))) 594 goto clear; 595 596 if (unlikely((u64)(dev_t)dev != dev)) 597 goto clear; 598 599 if (unlikely(!task)) 600 goto clear; 601 602 pidns = task_active_pid_ns(task); 603 if (unlikely(!pidns)) { 604 err = -ENOENT; 605 goto clear; 606 } 607 608 if (!ns_match(&pidns->ns, (dev_t)dev, ino)) 609 goto clear; 610 611 nsdata->pid = task_pid_nr_ns(task, pidns); 612 nsdata->tgid = task_tgid_nr_ns(task, pidns); 613 return 0; 614 clear: 615 memset((void *)nsdata, 0, (size_t) size); 616 return err; 617 } 618 619 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { 620 .func = bpf_get_ns_current_pid_tgid, 621 .gpl_only = false, 622 .ret_type = RET_INTEGER, 623 .arg1_type = ARG_ANYTHING, 624 .arg2_type = ARG_ANYTHING, 625 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 626 .arg4_type = ARG_CONST_SIZE, 627 }; 628 629 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { 630 .func = bpf_get_raw_cpu_id, 631 .gpl_only = false, 632 .ret_type = RET_INTEGER, 633 }; 634 635 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, 636 u64, flags, void *, data, u64, size) 637 { 638 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 639 return -EINVAL; 640 641 return bpf_event_output(map, flags, data, size, NULL, 0, NULL); 642 } 643 644 const struct bpf_func_proto bpf_event_output_data_proto = { 645 .func = bpf_event_output_data, 646 .gpl_only = true, 647 .ret_type = RET_INTEGER, 648 .arg1_type = ARG_PTR_TO_CTX, 649 .arg2_type = ARG_CONST_MAP_PTR, 650 .arg3_type = ARG_ANYTHING, 651 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 652 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 653 }; 654 655 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, 656 const void __user *, user_ptr) 657 { 658 int ret = copy_from_user(dst, user_ptr, size); 659 660 if (unlikely(ret)) { 661 memset(dst, 0, size); 662 ret = -EFAULT; 663 } 664 665 return ret; 666 } 667 668 const struct bpf_func_proto bpf_copy_from_user_proto = { 669 .func = bpf_copy_from_user, 670 .gpl_only = false, 671 .might_sleep = true, 672 .ret_type = RET_INTEGER, 673 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 674 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 675 .arg3_type = ARG_ANYTHING, 676 }; 677 678 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, 679 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) 680 { 681 int ret; 682 683 /* flags is not used yet */ 684 if (unlikely(flags)) 685 return -EINVAL; 686 687 if (unlikely(!size)) 688 return 0; 689 690 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); 691 if (ret == size) 692 return 0; 693 694 memset(dst, 0, size); 695 /* Return -EFAULT for partial read */ 696 return ret < 0 ? ret : -EFAULT; 697 } 698 699 const struct bpf_func_proto bpf_copy_from_user_task_proto = { 700 .func = bpf_copy_from_user_task, 701 .gpl_only = true, 702 .might_sleep = true, 703 .ret_type = RET_INTEGER, 704 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 705 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 706 .arg3_type = ARG_ANYTHING, 707 .arg4_type = ARG_PTR_TO_BTF_ID, 708 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 709 .arg5_type = ARG_ANYTHING 710 }; 711 712 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) 713 { 714 if (cpu >= nr_cpu_ids) 715 return (unsigned long)NULL; 716 717 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); 718 } 719 720 const struct bpf_func_proto bpf_per_cpu_ptr_proto = { 721 .func = bpf_per_cpu_ptr, 722 .gpl_only = false, 723 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, 724 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 725 .arg2_type = ARG_ANYTHING, 726 }; 727 728 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) 729 { 730 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); 731 } 732 733 const struct bpf_func_proto bpf_this_cpu_ptr_proto = { 734 .func = bpf_this_cpu_ptr, 735 .gpl_only = false, 736 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, 737 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 738 }; 739 740 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 741 size_t bufsz) 742 { 743 void __user *user_ptr = (__force void __user *)unsafe_ptr; 744 745 buf[0] = 0; 746 747 switch (fmt_ptype) { 748 case 's': 749 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 750 if ((unsigned long)unsafe_ptr < TASK_SIZE) 751 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 752 fallthrough; 753 #endif 754 case 'k': 755 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 756 case 'u': 757 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 758 } 759 760 return -EINVAL; 761 } 762 763 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary 764 * arguments representation. 765 */ 766 #define MAX_BPRINTF_BIN_ARGS 512 767 768 /* Support executing three nested bprintf helper calls on a given CPU */ 769 #define MAX_BPRINTF_NEST_LEVEL 3 770 struct bpf_bprintf_buffers { 771 char bin_args[MAX_BPRINTF_BIN_ARGS]; 772 char buf[MAX_BPRINTF_BUF]; 773 }; 774 775 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs); 776 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); 777 778 static int try_get_buffers(struct bpf_bprintf_buffers **bufs) 779 { 780 int nest_level; 781 782 preempt_disable(); 783 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); 784 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { 785 this_cpu_dec(bpf_bprintf_nest_level); 786 preempt_enable(); 787 return -EBUSY; 788 } 789 *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]); 790 791 return 0; 792 } 793 794 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data) 795 { 796 if (!data->bin_args && !data->buf) 797 return; 798 if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0)) 799 return; 800 this_cpu_dec(bpf_bprintf_nest_level); 801 preempt_enable(); 802 } 803 804 /* 805 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers 806 * 807 * Returns a negative value if fmt is an invalid format string or 0 otherwise. 808 * 809 * This can be used in two ways: 810 * - Format string verification only: when data->get_bin_args is false 811 * - Arguments preparation: in addition to the above verification, it writes in 812 * data->bin_args a binary representation of arguments usable by bstr_printf 813 * where pointers from BPF have been sanitized. 814 * 815 * In argument preparation mode, if 0 is returned, safe temporary buffers are 816 * allocated and bpf_bprintf_cleanup should be called to free them after use. 817 */ 818 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 819 u32 num_args, struct bpf_bprintf_data *data) 820 { 821 bool get_buffers = (data->get_bin_args && num_args) || data->get_buf; 822 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; 823 struct bpf_bprintf_buffers *buffers = NULL; 824 size_t sizeof_cur_arg, sizeof_cur_ip; 825 int err, i, num_spec = 0; 826 u64 cur_arg; 827 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; 828 829 fmt_end = strnchr(fmt, fmt_size, 0); 830 if (!fmt_end) 831 return -EINVAL; 832 fmt_size = fmt_end - fmt; 833 834 if (get_buffers && try_get_buffers(&buffers)) 835 return -EBUSY; 836 837 if (data->get_bin_args) { 838 if (num_args) 839 tmp_buf = buffers->bin_args; 840 tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS; 841 data->bin_args = (u32 *)tmp_buf; 842 } 843 844 if (data->get_buf) 845 data->buf = buffers->buf; 846 847 for (i = 0; i < fmt_size; i++) { 848 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 849 err = -EINVAL; 850 goto out; 851 } 852 853 if (fmt[i] != '%') 854 continue; 855 856 if (fmt[i + 1] == '%') { 857 i++; 858 continue; 859 } 860 861 if (num_spec >= num_args) { 862 err = -EINVAL; 863 goto out; 864 } 865 866 /* The string is zero-terminated so if fmt[i] != 0, we can 867 * always access fmt[i + 1], in the worst case it will be a 0 868 */ 869 i++; 870 871 /* skip optional "[0 +-][num]" width formatting field */ 872 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 873 fmt[i] == ' ') 874 i++; 875 if (fmt[i] >= '1' && fmt[i] <= '9') { 876 i++; 877 while (fmt[i] >= '0' && fmt[i] <= '9') 878 i++; 879 } 880 881 if (fmt[i] == 'p') { 882 sizeof_cur_arg = sizeof(long); 883 884 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && 885 fmt[i + 2] == 's') { 886 fmt_ptype = fmt[i + 1]; 887 i += 2; 888 goto fmt_str; 889 } 890 891 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || 892 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || 893 fmt[i + 1] == 'x' || fmt[i + 1] == 's' || 894 fmt[i + 1] == 'S') { 895 /* just kernel pointers */ 896 if (tmp_buf) 897 cur_arg = raw_args[num_spec]; 898 i++; 899 goto nocopy_fmt; 900 } 901 902 if (fmt[i + 1] == 'B') { 903 if (tmp_buf) { 904 err = snprintf(tmp_buf, 905 (tmp_buf_end - tmp_buf), 906 "%pB", 907 (void *)(long)raw_args[num_spec]); 908 tmp_buf += (err + 1); 909 } 910 911 i++; 912 num_spec++; 913 continue; 914 } 915 916 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 917 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || 918 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { 919 err = -EINVAL; 920 goto out; 921 } 922 923 i += 2; 924 if (!tmp_buf) 925 goto nocopy_fmt; 926 927 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; 928 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { 929 err = -ENOSPC; 930 goto out; 931 } 932 933 unsafe_ptr = (char *)(long)raw_args[num_spec]; 934 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, 935 sizeof_cur_ip); 936 if (err < 0) 937 memset(cur_ip, 0, sizeof_cur_ip); 938 939 /* hack: bstr_printf expects IP addresses to be 940 * pre-formatted as strings, ironically, the easiest way 941 * to do that is to call snprintf. 942 */ 943 ip_spec[2] = fmt[i - 1]; 944 ip_spec[3] = fmt[i]; 945 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, 946 ip_spec, &cur_ip); 947 948 tmp_buf += err + 1; 949 num_spec++; 950 951 continue; 952 } else if (fmt[i] == 's') { 953 fmt_ptype = fmt[i]; 954 fmt_str: 955 if (fmt[i + 1] != 0 && 956 !isspace(fmt[i + 1]) && 957 !ispunct(fmt[i + 1])) { 958 err = -EINVAL; 959 goto out; 960 } 961 962 if (!tmp_buf) 963 goto nocopy_fmt; 964 965 if (tmp_buf_end == tmp_buf) { 966 err = -ENOSPC; 967 goto out; 968 } 969 970 unsafe_ptr = (char *)(long)raw_args[num_spec]; 971 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, 972 fmt_ptype, 973 tmp_buf_end - tmp_buf); 974 if (err < 0) { 975 tmp_buf[0] = '\0'; 976 err = 1; 977 } 978 979 tmp_buf += err; 980 num_spec++; 981 982 continue; 983 } else if (fmt[i] == 'c') { 984 if (!tmp_buf) 985 goto nocopy_fmt; 986 987 if (tmp_buf_end == tmp_buf) { 988 err = -ENOSPC; 989 goto out; 990 } 991 992 *tmp_buf = raw_args[num_spec]; 993 tmp_buf++; 994 num_spec++; 995 996 continue; 997 } 998 999 sizeof_cur_arg = sizeof(int); 1000 1001 if (fmt[i] == 'l') { 1002 sizeof_cur_arg = sizeof(long); 1003 i++; 1004 } 1005 if (fmt[i] == 'l') { 1006 sizeof_cur_arg = sizeof(long long); 1007 i++; 1008 } 1009 1010 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && 1011 fmt[i] != 'x' && fmt[i] != 'X') { 1012 err = -EINVAL; 1013 goto out; 1014 } 1015 1016 if (tmp_buf) 1017 cur_arg = raw_args[num_spec]; 1018 nocopy_fmt: 1019 if (tmp_buf) { 1020 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); 1021 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { 1022 err = -ENOSPC; 1023 goto out; 1024 } 1025 1026 if (sizeof_cur_arg == 8) { 1027 *(u32 *)tmp_buf = *(u32 *)&cur_arg; 1028 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); 1029 } else { 1030 *(u32 *)tmp_buf = (u32)(long)cur_arg; 1031 } 1032 tmp_buf += sizeof_cur_arg; 1033 } 1034 num_spec++; 1035 } 1036 1037 err = 0; 1038 out: 1039 if (err) 1040 bpf_bprintf_cleanup(data); 1041 return err; 1042 } 1043 1044 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, 1045 const void *, args, u32, data_len) 1046 { 1047 struct bpf_bprintf_data data = { 1048 .get_bin_args = true, 1049 }; 1050 int err, num_args; 1051 1052 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || 1053 (data_len && !args)) 1054 return -EINVAL; 1055 num_args = data_len / 8; 1056 1057 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we 1058 * can safely give an unbounded size. 1059 */ 1060 err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data); 1061 if (err < 0) 1062 return err; 1063 1064 err = bstr_printf(str, str_size, fmt, data.bin_args); 1065 1066 bpf_bprintf_cleanup(&data); 1067 1068 return err + 1; 1069 } 1070 1071 const struct bpf_func_proto bpf_snprintf_proto = { 1072 .func = bpf_snprintf, 1073 .gpl_only = true, 1074 .ret_type = RET_INTEGER, 1075 .arg1_type = ARG_PTR_TO_MEM_OR_NULL, 1076 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1077 .arg3_type = ARG_PTR_TO_CONST_STR, 1078 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 1079 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1080 }; 1081 1082 /* BPF map elements can contain 'struct bpf_timer'. 1083 * Such map owns all of its BPF timers. 1084 * 'struct bpf_timer' is allocated as part of map element allocation 1085 * and it's zero initialized. 1086 * That space is used to keep 'struct bpf_timer_kern'. 1087 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and 1088 * remembers 'struct bpf_map *' pointer it's part of. 1089 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. 1090 * bpf_timer_start() arms the timer. 1091 * If user space reference to a map goes to zero at this point 1092 * ops->map_release_uref callback is responsible for cancelling the timers, 1093 * freeing their memory, and decrementing prog's refcnts. 1094 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. 1095 * Inner maps can contain bpf timers as well. ops->map_release_uref is 1096 * freeing the timers when inner map is replaced or deleted by user space. 1097 */ 1098 struct bpf_hrtimer { 1099 struct hrtimer timer; 1100 struct bpf_map *map; 1101 struct bpf_prog *prog; 1102 void __rcu *callback_fn; 1103 void *value; 1104 }; 1105 1106 /* the actual struct hidden inside uapi struct bpf_timer */ 1107 struct bpf_timer_kern { 1108 struct bpf_hrtimer *timer; 1109 /* bpf_spin_lock is used here instead of spinlock_t to make 1110 * sure that it always fits into space reserved by struct bpf_timer 1111 * regardless of LOCKDEP and spinlock debug flags. 1112 */ 1113 struct bpf_spin_lock lock; 1114 } __attribute__((aligned(8))); 1115 1116 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); 1117 1118 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) 1119 { 1120 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); 1121 struct bpf_map *map = t->map; 1122 void *value = t->value; 1123 bpf_callback_t callback_fn; 1124 void *key; 1125 u32 idx; 1126 1127 BTF_TYPE_EMIT(struct bpf_timer); 1128 callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held()); 1129 if (!callback_fn) 1130 goto out; 1131 1132 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and 1133 * cannot be preempted by another bpf_timer_cb() on the same cpu. 1134 * Remember the timer this callback is servicing to prevent 1135 * deadlock if callback_fn() calls bpf_timer_cancel() or 1136 * bpf_map_delete_elem() on the same timer. 1137 */ 1138 this_cpu_write(hrtimer_running, t); 1139 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1140 struct bpf_array *array = container_of(map, struct bpf_array, map); 1141 1142 /* compute the key */ 1143 idx = ((char *)value - array->value) / array->elem_size; 1144 key = &idx; 1145 } else { /* hash or lru */ 1146 key = value - round_up(map->key_size, 8); 1147 } 1148 1149 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1150 /* The verifier checked that return value is zero. */ 1151 1152 this_cpu_write(hrtimer_running, NULL); 1153 out: 1154 return HRTIMER_NORESTART; 1155 } 1156 1157 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map, 1158 u64, flags) 1159 { 1160 clockid_t clockid = flags & (MAX_CLOCKS - 1); 1161 struct bpf_hrtimer *t; 1162 int ret = 0; 1163 1164 BUILD_BUG_ON(MAX_CLOCKS != 16); 1165 BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer)); 1166 BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer)); 1167 1168 if (in_nmi()) 1169 return -EOPNOTSUPP; 1170 1171 if (flags >= MAX_CLOCKS || 1172 /* similar to timerfd except _ALARM variants are not supported */ 1173 (clockid != CLOCK_MONOTONIC && 1174 clockid != CLOCK_REALTIME && 1175 clockid != CLOCK_BOOTTIME)) 1176 return -EINVAL; 1177 __bpf_spin_lock_irqsave(&timer->lock); 1178 t = timer->timer; 1179 if (t) { 1180 ret = -EBUSY; 1181 goto out; 1182 } 1183 /* allocate hrtimer via map_kmalloc to use memcg accounting */ 1184 t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node); 1185 if (!t) { 1186 ret = -ENOMEM; 1187 goto out; 1188 } 1189 t->value = (void *)timer - map->record->timer_off; 1190 t->map = map; 1191 t->prog = NULL; 1192 rcu_assign_pointer(t->callback_fn, NULL); 1193 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); 1194 t->timer.function = bpf_timer_cb; 1195 WRITE_ONCE(timer->timer, t); 1196 /* Guarantee the order between timer->timer and map->usercnt. So 1197 * when there are concurrent uref release and bpf timer init, either 1198 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL 1199 * timer or atomic64_read() below returns a zero usercnt. 1200 */ 1201 smp_mb(); 1202 if (!atomic64_read(&map->usercnt)) { 1203 /* maps with timers must be either held by user space 1204 * or pinned in bpffs. 1205 */ 1206 WRITE_ONCE(timer->timer, NULL); 1207 kfree(t); 1208 ret = -EPERM; 1209 } 1210 out: 1211 __bpf_spin_unlock_irqrestore(&timer->lock); 1212 return ret; 1213 } 1214 1215 static const struct bpf_func_proto bpf_timer_init_proto = { 1216 .func = bpf_timer_init, 1217 .gpl_only = true, 1218 .ret_type = RET_INTEGER, 1219 .arg1_type = ARG_PTR_TO_TIMER, 1220 .arg2_type = ARG_CONST_MAP_PTR, 1221 .arg3_type = ARG_ANYTHING, 1222 }; 1223 1224 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn, 1225 struct bpf_prog_aux *, aux) 1226 { 1227 struct bpf_prog *prev, *prog = aux->prog; 1228 struct bpf_hrtimer *t; 1229 int ret = 0; 1230 1231 if (in_nmi()) 1232 return -EOPNOTSUPP; 1233 __bpf_spin_lock_irqsave(&timer->lock); 1234 t = timer->timer; 1235 if (!t) { 1236 ret = -EINVAL; 1237 goto out; 1238 } 1239 if (!atomic64_read(&t->map->usercnt)) { 1240 /* maps with timers must be either held by user space 1241 * or pinned in bpffs. Otherwise timer might still be 1242 * running even when bpf prog is detached and user space 1243 * is gone, since map_release_uref won't ever be called. 1244 */ 1245 ret = -EPERM; 1246 goto out; 1247 } 1248 prev = t->prog; 1249 if (prev != prog) { 1250 /* Bump prog refcnt once. Every bpf_timer_set_callback() 1251 * can pick different callback_fn-s within the same prog. 1252 */ 1253 prog = bpf_prog_inc_not_zero(prog); 1254 if (IS_ERR(prog)) { 1255 ret = PTR_ERR(prog); 1256 goto out; 1257 } 1258 if (prev) 1259 /* Drop prev prog refcnt when swapping with new prog */ 1260 bpf_prog_put(prev); 1261 t->prog = prog; 1262 } 1263 rcu_assign_pointer(t->callback_fn, callback_fn); 1264 out: 1265 __bpf_spin_unlock_irqrestore(&timer->lock); 1266 return ret; 1267 } 1268 1269 static const struct bpf_func_proto bpf_timer_set_callback_proto = { 1270 .func = bpf_timer_set_callback, 1271 .gpl_only = true, 1272 .ret_type = RET_INTEGER, 1273 .arg1_type = ARG_PTR_TO_TIMER, 1274 .arg2_type = ARG_PTR_TO_FUNC, 1275 }; 1276 1277 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags) 1278 { 1279 struct bpf_hrtimer *t; 1280 int ret = 0; 1281 enum hrtimer_mode mode; 1282 1283 if (in_nmi()) 1284 return -EOPNOTSUPP; 1285 if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN)) 1286 return -EINVAL; 1287 __bpf_spin_lock_irqsave(&timer->lock); 1288 t = timer->timer; 1289 if (!t || !t->prog) { 1290 ret = -EINVAL; 1291 goto out; 1292 } 1293 1294 if (flags & BPF_F_TIMER_ABS) 1295 mode = HRTIMER_MODE_ABS_SOFT; 1296 else 1297 mode = HRTIMER_MODE_REL_SOFT; 1298 1299 if (flags & BPF_F_TIMER_CPU_PIN) 1300 mode |= HRTIMER_MODE_PINNED; 1301 1302 hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode); 1303 out: 1304 __bpf_spin_unlock_irqrestore(&timer->lock); 1305 return ret; 1306 } 1307 1308 static const struct bpf_func_proto bpf_timer_start_proto = { 1309 .func = bpf_timer_start, 1310 .gpl_only = true, 1311 .ret_type = RET_INTEGER, 1312 .arg1_type = ARG_PTR_TO_TIMER, 1313 .arg2_type = ARG_ANYTHING, 1314 .arg3_type = ARG_ANYTHING, 1315 }; 1316 1317 static void drop_prog_refcnt(struct bpf_hrtimer *t) 1318 { 1319 struct bpf_prog *prog = t->prog; 1320 1321 if (prog) { 1322 bpf_prog_put(prog); 1323 t->prog = NULL; 1324 rcu_assign_pointer(t->callback_fn, NULL); 1325 } 1326 } 1327 1328 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer) 1329 { 1330 struct bpf_hrtimer *t; 1331 int ret = 0; 1332 1333 if (in_nmi()) 1334 return -EOPNOTSUPP; 1335 __bpf_spin_lock_irqsave(&timer->lock); 1336 t = timer->timer; 1337 if (!t) { 1338 ret = -EINVAL; 1339 goto out; 1340 } 1341 if (this_cpu_read(hrtimer_running) == t) { 1342 /* If bpf callback_fn is trying to bpf_timer_cancel() 1343 * its own timer the hrtimer_cancel() will deadlock 1344 * since it waits for callback_fn to finish 1345 */ 1346 ret = -EDEADLK; 1347 goto out; 1348 } 1349 drop_prog_refcnt(t); 1350 out: 1351 __bpf_spin_unlock_irqrestore(&timer->lock); 1352 /* Cancel the timer and wait for associated callback to finish 1353 * if it was running. 1354 */ 1355 ret = ret ?: hrtimer_cancel(&t->timer); 1356 return ret; 1357 } 1358 1359 static const struct bpf_func_proto bpf_timer_cancel_proto = { 1360 .func = bpf_timer_cancel, 1361 .gpl_only = true, 1362 .ret_type = RET_INTEGER, 1363 .arg1_type = ARG_PTR_TO_TIMER, 1364 }; 1365 1366 /* This function is called by map_delete/update_elem for individual element and 1367 * by ops->map_release_uref when the user space reference to a map reaches zero. 1368 */ 1369 void bpf_timer_cancel_and_free(void *val) 1370 { 1371 struct bpf_timer_kern *timer = val; 1372 struct bpf_hrtimer *t; 1373 1374 /* Performance optimization: read timer->timer without lock first. */ 1375 if (!READ_ONCE(timer->timer)) 1376 return; 1377 1378 __bpf_spin_lock_irqsave(&timer->lock); 1379 /* re-read it under lock */ 1380 t = timer->timer; 1381 if (!t) 1382 goto out; 1383 drop_prog_refcnt(t); 1384 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use 1385 * this timer, since it won't be initialized. 1386 */ 1387 WRITE_ONCE(timer->timer, NULL); 1388 out: 1389 __bpf_spin_unlock_irqrestore(&timer->lock); 1390 if (!t) 1391 return; 1392 /* Cancel the timer and wait for callback to complete if it was running. 1393 * If hrtimer_cancel() can be safely called it's safe to call kfree(t) 1394 * right after for both preallocated and non-preallocated maps. 1395 * The timer->timer = NULL was already done and no code path can 1396 * see address 't' anymore. 1397 * 1398 * Check that bpf_map_delete/update_elem() wasn't called from timer 1399 * callback_fn. In such case don't call hrtimer_cancel() (since it will 1400 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just 1401 * return -1). Though callback_fn is still running on this cpu it's 1402 * safe to do kfree(t) because bpf_timer_cb() read everything it needed 1403 * from 't'. The bpf subprog callback_fn won't be able to access 't', 1404 * since timer->timer = NULL was already done. The timer will be 1405 * effectively cancelled because bpf_timer_cb() will return 1406 * HRTIMER_NORESTART. 1407 */ 1408 if (this_cpu_read(hrtimer_running) != t) 1409 hrtimer_cancel(&t->timer); 1410 kfree(t); 1411 } 1412 1413 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr) 1414 { 1415 unsigned long *kptr = map_value; 1416 1417 return xchg(kptr, (unsigned long)ptr); 1418 } 1419 1420 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() 1421 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to 1422 * denote type that verifier will determine. 1423 */ 1424 static const struct bpf_func_proto bpf_kptr_xchg_proto = { 1425 .func = bpf_kptr_xchg, 1426 .gpl_only = false, 1427 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 1428 .ret_btf_id = BPF_PTR_POISON, 1429 .arg1_type = ARG_PTR_TO_KPTR, 1430 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, 1431 .arg2_btf_id = BPF_PTR_POISON, 1432 }; 1433 1434 /* Since the upper 8 bits of dynptr->size is reserved, the 1435 * maximum supported size is 2^24 - 1. 1436 */ 1437 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1) 1438 #define DYNPTR_TYPE_SHIFT 28 1439 #define DYNPTR_SIZE_MASK 0xFFFFFF 1440 #define DYNPTR_RDONLY_BIT BIT(31) 1441 1442 static bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr) 1443 { 1444 return ptr->size & DYNPTR_RDONLY_BIT; 1445 } 1446 1447 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 1448 { 1449 ptr->size |= DYNPTR_RDONLY_BIT; 1450 } 1451 1452 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) 1453 { 1454 ptr->size |= type << DYNPTR_TYPE_SHIFT; 1455 } 1456 1457 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr) 1458 { 1459 return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT; 1460 } 1461 1462 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) 1463 { 1464 return ptr->size & DYNPTR_SIZE_MASK; 1465 } 1466 1467 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size) 1468 { 1469 u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK; 1470 1471 ptr->size = new_size | metadata; 1472 } 1473 1474 int bpf_dynptr_check_size(u32 size) 1475 { 1476 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; 1477 } 1478 1479 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 1480 enum bpf_dynptr_type type, u32 offset, u32 size) 1481 { 1482 ptr->data = data; 1483 ptr->offset = offset; 1484 ptr->size = size; 1485 bpf_dynptr_set_type(ptr, type); 1486 } 1487 1488 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 1489 { 1490 memset(ptr, 0, sizeof(*ptr)); 1491 } 1492 1493 static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len) 1494 { 1495 u32 size = __bpf_dynptr_size(ptr); 1496 1497 if (len > size || offset > size - len) 1498 return -E2BIG; 1499 1500 return 0; 1501 } 1502 1503 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) 1504 { 1505 int err; 1506 1507 BTF_TYPE_EMIT(struct bpf_dynptr); 1508 1509 err = bpf_dynptr_check_size(size); 1510 if (err) 1511 goto error; 1512 1513 /* flags is currently unsupported */ 1514 if (flags) { 1515 err = -EINVAL; 1516 goto error; 1517 } 1518 1519 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); 1520 1521 return 0; 1522 1523 error: 1524 bpf_dynptr_set_null(ptr); 1525 return err; 1526 } 1527 1528 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { 1529 .func = bpf_dynptr_from_mem, 1530 .gpl_only = false, 1531 .ret_type = RET_INTEGER, 1532 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1533 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1534 .arg3_type = ARG_ANYTHING, 1535 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT, 1536 }; 1537 1538 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src, 1539 u32, offset, u64, flags) 1540 { 1541 enum bpf_dynptr_type type; 1542 int err; 1543 1544 if (!src->data || flags) 1545 return -EINVAL; 1546 1547 err = bpf_dynptr_check_off_len(src, offset, len); 1548 if (err) 1549 return err; 1550 1551 type = bpf_dynptr_get_type(src); 1552 1553 switch (type) { 1554 case BPF_DYNPTR_TYPE_LOCAL: 1555 case BPF_DYNPTR_TYPE_RINGBUF: 1556 /* Source and destination may possibly overlap, hence use memmove to 1557 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1558 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1559 */ 1560 memmove(dst, src->data + src->offset + offset, len); 1561 return 0; 1562 case BPF_DYNPTR_TYPE_SKB: 1563 return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len); 1564 case BPF_DYNPTR_TYPE_XDP: 1565 return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len); 1566 default: 1567 WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type); 1568 return -EFAULT; 1569 } 1570 } 1571 1572 static const struct bpf_func_proto bpf_dynptr_read_proto = { 1573 .func = bpf_dynptr_read, 1574 .gpl_only = false, 1575 .ret_type = RET_INTEGER, 1576 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1577 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1578 .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1579 .arg4_type = ARG_ANYTHING, 1580 .arg5_type = ARG_ANYTHING, 1581 }; 1582 1583 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src, 1584 u32, len, u64, flags) 1585 { 1586 enum bpf_dynptr_type type; 1587 int err; 1588 1589 if (!dst->data || __bpf_dynptr_is_rdonly(dst)) 1590 return -EINVAL; 1591 1592 err = bpf_dynptr_check_off_len(dst, offset, len); 1593 if (err) 1594 return err; 1595 1596 type = bpf_dynptr_get_type(dst); 1597 1598 switch (type) { 1599 case BPF_DYNPTR_TYPE_LOCAL: 1600 case BPF_DYNPTR_TYPE_RINGBUF: 1601 if (flags) 1602 return -EINVAL; 1603 /* Source and destination may possibly overlap, hence use memmove to 1604 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1605 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1606 */ 1607 memmove(dst->data + dst->offset + offset, src, len); 1608 return 0; 1609 case BPF_DYNPTR_TYPE_SKB: 1610 return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len, 1611 flags); 1612 case BPF_DYNPTR_TYPE_XDP: 1613 if (flags) 1614 return -EINVAL; 1615 return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len); 1616 default: 1617 WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type); 1618 return -EFAULT; 1619 } 1620 } 1621 1622 static const struct bpf_func_proto bpf_dynptr_write_proto = { 1623 .func = bpf_dynptr_write, 1624 .gpl_only = false, 1625 .ret_type = RET_INTEGER, 1626 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1627 .arg2_type = ARG_ANYTHING, 1628 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1629 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 1630 .arg5_type = ARG_ANYTHING, 1631 }; 1632 1633 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len) 1634 { 1635 enum bpf_dynptr_type type; 1636 int err; 1637 1638 if (!ptr->data) 1639 return 0; 1640 1641 err = bpf_dynptr_check_off_len(ptr, offset, len); 1642 if (err) 1643 return 0; 1644 1645 if (__bpf_dynptr_is_rdonly(ptr)) 1646 return 0; 1647 1648 type = bpf_dynptr_get_type(ptr); 1649 1650 switch (type) { 1651 case BPF_DYNPTR_TYPE_LOCAL: 1652 case BPF_DYNPTR_TYPE_RINGBUF: 1653 return (unsigned long)(ptr->data + ptr->offset + offset); 1654 case BPF_DYNPTR_TYPE_SKB: 1655 case BPF_DYNPTR_TYPE_XDP: 1656 /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */ 1657 return 0; 1658 default: 1659 WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type); 1660 return 0; 1661 } 1662 } 1663 1664 static const struct bpf_func_proto bpf_dynptr_data_proto = { 1665 .func = bpf_dynptr_data, 1666 .gpl_only = false, 1667 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL, 1668 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1669 .arg2_type = ARG_ANYTHING, 1670 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 1671 }; 1672 1673 const struct bpf_func_proto bpf_get_current_task_proto __weak; 1674 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; 1675 const struct bpf_func_proto bpf_probe_read_user_proto __weak; 1676 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; 1677 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; 1678 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; 1679 const struct bpf_func_proto bpf_task_pt_regs_proto __weak; 1680 1681 const struct bpf_func_proto * 1682 bpf_base_func_proto(enum bpf_func_id func_id) 1683 { 1684 switch (func_id) { 1685 case BPF_FUNC_map_lookup_elem: 1686 return &bpf_map_lookup_elem_proto; 1687 case BPF_FUNC_map_update_elem: 1688 return &bpf_map_update_elem_proto; 1689 case BPF_FUNC_map_delete_elem: 1690 return &bpf_map_delete_elem_proto; 1691 case BPF_FUNC_map_push_elem: 1692 return &bpf_map_push_elem_proto; 1693 case BPF_FUNC_map_pop_elem: 1694 return &bpf_map_pop_elem_proto; 1695 case BPF_FUNC_map_peek_elem: 1696 return &bpf_map_peek_elem_proto; 1697 case BPF_FUNC_map_lookup_percpu_elem: 1698 return &bpf_map_lookup_percpu_elem_proto; 1699 case BPF_FUNC_get_prandom_u32: 1700 return &bpf_get_prandom_u32_proto; 1701 case BPF_FUNC_get_smp_processor_id: 1702 return &bpf_get_raw_smp_processor_id_proto; 1703 case BPF_FUNC_get_numa_node_id: 1704 return &bpf_get_numa_node_id_proto; 1705 case BPF_FUNC_tail_call: 1706 return &bpf_tail_call_proto; 1707 case BPF_FUNC_ktime_get_ns: 1708 return &bpf_ktime_get_ns_proto; 1709 case BPF_FUNC_ktime_get_boot_ns: 1710 return &bpf_ktime_get_boot_ns_proto; 1711 case BPF_FUNC_ktime_get_tai_ns: 1712 return &bpf_ktime_get_tai_ns_proto; 1713 case BPF_FUNC_ringbuf_output: 1714 return &bpf_ringbuf_output_proto; 1715 case BPF_FUNC_ringbuf_reserve: 1716 return &bpf_ringbuf_reserve_proto; 1717 case BPF_FUNC_ringbuf_submit: 1718 return &bpf_ringbuf_submit_proto; 1719 case BPF_FUNC_ringbuf_discard: 1720 return &bpf_ringbuf_discard_proto; 1721 case BPF_FUNC_ringbuf_query: 1722 return &bpf_ringbuf_query_proto; 1723 case BPF_FUNC_strncmp: 1724 return &bpf_strncmp_proto; 1725 case BPF_FUNC_strtol: 1726 return &bpf_strtol_proto; 1727 case BPF_FUNC_strtoul: 1728 return &bpf_strtoul_proto; 1729 default: 1730 break; 1731 } 1732 1733 if (!bpf_capable()) 1734 return NULL; 1735 1736 switch (func_id) { 1737 case BPF_FUNC_spin_lock: 1738 return &bpf_spin_lock_proto; 1739 case BPF_FUNC_spin_unlock: 1740 return &bpf_spin_unlock_proto; 1741 case BPF_FUNC_jiffies64: 1742 return &bpf_jiffies64_proto; 1743 case BPF_FUNC_per_cpu_ptr: 1744 return &bpf_per_cpu_ptr_proto; 1745 case BPF_FUNC_this_cpu_ptr: 1746 return &bpf_this_cpu_ptr_proto; 1747 case BPF_FUNC_timer_init: 1748 return &bpf_timer_init_proto; 1749 case BPF_FUNC_timer_set_callback: 1750 return &bpf_timer_set_callback_proto; 1751 case BPF_FUNC_timer_start: 1752 return &bpf_timer_start_proto; 1753 case BPF_FUNC_timer_cancel: 1754 return &bpf_timer_cancel_proto; 1755 case BPF_FUNC_kptr_xchg: 1756 return &bpf_kptr_xchg_proto; 1757 case BPF_FUNC_for_each_map_elem: 1758 return &bpf_for_each_map_elem_proto; 1759 case BPF_FUNC_loop: 1760 return &bpf_loop_proto; 1761 case BPF_FUNC_user_ringbuf_drain: 1762 return &bpf_user_ringbuf_drain_proto; 1763 case BPF_FUNC_ringbuf_reserve_dynptr: 1764 return &bpf_ringbuf_reserve_dynptr_proto; 1765 case BPF_FUNC_ringbuf_submit_dynptr: 1766 return &bpf_ringbuf_submit_dynptr_proto; 1767 case BPF_FUNC_ringbuf_discard_dynptr: 1768 return &bpf_ringbuf_discard_dynptr_proto; 1769 case BPF_FUNC_dynptr_from_mem: 1770 return &bpf_dynptr_from_mem_proto; 1771 case BPF_FUNC_dynptr_read: 1772 return &bpf_dynptr_read_proto; 1773 case BPF_FUNC_dynptr_write: 1774 return &bpf_dynptr_write_proto; 1775 case BPF_FUNC_dynptr_data: 1776 return &bpf_dynptr_data_proto; 1777 #ifdef CONFIG_CGROUPS 1778 case BPF_FUNC_cgrp_storage_get: 1779 return &bpf_cgrp_storage_get_proto; 1780 case BPF_FUNC_cgrp_storage_delete: 1781 return &bpf_cgrp_storage_delete_proto; 1782 case BPF_FUNC_get_current_cgroup_id: 1783 return &bpf_get_current_cgroup_id_proto; 1784 case BPF_FUNC_get_current_ancestor_cgroup_id: 1785 return &bpf_get_current_ancestor_cgroup_id_proto; 1786 #endif 1787 default: 1788 break; 1789 } 1790 1791 if (!perfmon_capable()) 1792 return NULL; 1793 1794 switch (func_id) { 1795 case BPF_FUNC_trace_printk: 1796 return bpf_get_trace_printk_proto(); 1797 case BPF_FUNC_get_current_task: 1798 return &bpf_get_current_task_proto; 1799 case BPF_FUNC_get_current_task_btf: 1800 return &bpf_get_current_task_btf_proto; 1801 case BPF_FUNC_probe_read_user: 1802 return &bpf_probe_read_user_proto; 1803 case BPF_FUNC_probe_read_kernel: 1804 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1805 NULL : &bpf_probe_read_kernel_proto; 1806 case BPF_FUNC_probe_read_user_str: 1807 return &bpf_probe_read_user_str_proto; 1808 case BPF_FUNC_probe_read_kernel_str: 1809 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1810 NULL : &bpf_probe_read_kernel_str_proto; 1811 case BPF_FUNC_snprintf_btf: 1812 return &bpf_snprintf_btf_proto; 1813 case BPF_FUNC_snprintf: 1814 return &bpf_snprintf_proto; 1815 case BPF_FUNC_task_pt_regs: 1816 return &bpf_task_pt_regs_proto; 1817 case BPF_FUNC_trace_vprintk: 1818 return bpf_get_trace_vprintk_proto(); 1819 default: 1820 return NULL; 1821 } 1822 } 1823 1824 void bpf_list_head_free(const struct btf_field *field, void *list_head, 1825 struct bpf_spin_lock *spin_lock) 1826 { 1827 struct list_head *head = list_head, *orig_head = list_head; 1828 1829 BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head)); 1830 BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head)); 1831 1832 /* Do the actual list draining outside the lock to not hold the lock for 1833 * too long, and also prevent deadlocks if tracing programs end up 1834 * executing on entry/exit of functions called inside the critical 1835 * section, and end up doing map ops that call bpf_list_head_free for 1836 * the same map value again. 1837 */ 1838 __bpf_spin_lock_irqsave(spin_lock); 1839 if (!head->next || list_empty(head)) 1840 goto unlock; 1841 head = head->next; 1842 unlock: 1843 INIT_LIST_HEAD(orig_head); 1844 __bpf_spin_unlock_irqrestore(spin_lock); 1845 1846 while (head != orig_head) { 1847 void *obj = head; 1848 1849 obj -= field->graph_root.node_offset; 1850 head = head->next; 1851 /* The contained type can also have resources, including a 1852 * bpf_list_head which needs to be freed. 1853 */ 1854 migrate_disable(); 1855 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); 1856 migrate_enable(); 1857 } 1858 } 1859 1860 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are 1861 * 'rb_node *', so field name of rb_node within containing struct is not 1862 * needed. 1863 * 1864 * Since bpf_rb_tree's node type has a corresponding struct btf_field with 1865 * graph_root.node_offset, it's not necessary to know field name 1866 * or type of node struct 1867 */ 1868 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \ 1869 for (pos = rb_first_postorder(root); \ 1870 pos && ({ n = rb_next_postorder(pos); 1; }); \ 1871 pos = n) 1872 1873 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 1874 struct bpf_spin_lock *spin_lock) 1875 { 1876 struct rb_root_cached orig_root, *root = rb_root; 1877 struct rb_node *pos, *n; 1878 void *obj; 1879 1880 BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root)); 1881 BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root)); 1882 1883 __bpf_spin_lock_irqsave(spin_lock); 1884 orig_root = *root; 1885 *root = RB_ROOT_CACHED; 1886 __bpf_spin_unlock_irqrestore(spin_lock); 1887 1888 bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) { 1889 obj = pos; 1890 obj -= field->graph_root.node_offset; 1891 1892 1893 migrate_disable(); 1894 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); 1895 migrate_enable(); 1896 } 1897 } 1898 1899 __bpf_kfunc_start_defs(); 1900 1901 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign) 1902 { 1903 struct btf_struct_meta *meta = meta__ign; 1904 u64 size = local_type_id__k; 1905 void *p; 1906 1907 p = bpf_mem_alloc(&bpf_global_ma, size); 1908 if (!p) 1909 return NULL; 1910 if (meta) 1911 bpf_obj_init(meta->record, p); 1912 return p; 1913 } 1914 1915 __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign) 1916 { 1917 u64 size = local_type_id__k; 1918 1919 /* The verifier has ensured that meta__ign must be NULL */ 1920 return bpf_mem_alloc(&bpf_global_percpu_ma, size); 1921 } 1922 1923 /* Must be called under migrate_disable(), as required by bpf_mem_free */ 1924 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu) 1925 { 1926 struct bpf_mem_alloc *ma; 1927 1928 if (rec && rec->refcount_off >= 0 && 1929 !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) { 1930 /* Object is refcounted and refcount_dec didn't result in 0 1931 * refcount. Return without freeing the object 1932 */ 1933 return; 1934 } 1935 1936 if (rec) 1937 bpf_obj_free_fields(rec, p); 1938 1939 if (percpu) 1940 ma = &bpf_global_percpu_ma; 1941 else 1942 ma = &bpf_global_ma; 1943 bpf_mem_free_rcu(ma, p); 1944 } 1945 1946 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign) 1947 { 1948 struct btf_struct_meta *meta = meta__ign; 1949 void *p = p__alloc; 1950 1951 __bpf_obj_drop_impl(p, meta ? meta->record : NULL, false); 1952 } 1953 1954 __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign) 1955 { 1956 /* The verifier has ensured that meta__ign must be NULL */ 1957 bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc); 1958 } 1959 1960 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign) 1961 { 1962 struct btf_struct_meta *meta = meta__ign; 1963 struct bpf_refcount *ref; 1964 1965 /* Could just cast directly to refcount_t *, but need some code using 1966 * bpf_refcount type so that it is emitted in vmlinux BTF 1967 */ 1968 ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off); 1969 if (!refcount_inc_not_zero((refcount_t *)ref)) 1970 return NULL; 1971 1972 /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null 1973 * in verifier.c 1974 */ 1975 return (void *)p__refcounted_kptr; 1976 } 1977 1978 static int __bpf_list_add(struct bpf_list_node_kern *node, 1979 struct bpf_list_head *head, 1980 bool tail, struct btf_record *rec, u64 off) 1981 { 1982 struct list_head *n = &node->list_head, *h = (void *)head; 1983 1984 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 1985 * called on its fields, so init here 1986 */ 1987 if (unlikely(!h->next)) 1988 INIT_LIST_HEAD(h); 1989 1990 /* node->owner != NULL implies !list_empty(n), no need to separately 1991 * check the latter 1992 */ 1993 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { 1994 /* Only called from BPF prog, no need to migrate_disable */ 1995 __bpf_obj_drop_impl((void *)n - off, rec, false); 1996 return -EINVAL; 1997 } 1998 1999 tail ? list_add_tail(n, h) : list_add(n, h); 2000 WRITE_ONCE(node->owner, head); 2001 2002 return 0; 2003 } 2004 2005 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head, 2006 struct bpf_list_node *node, 2007 void *meta__ign, u64 off) 2008 { 2009 struct bpf_list_node_kern *n = (void *)node; 2010 struct btf_struct_meta *meta = meta__ign; 2011 2012 return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off); 2013 } 2014 2015 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head, 2016 struct bpf_list_node *node, 2017 void *meta__ign, u64 off) 2018 { 2019 struct bpf_list_node_kern *n = (void *)node; 2020 struct btf_struct_meta *meta = meta__ign; 2021 2022 return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off); 2023 } 2024 2025 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail) 2026 { 2027 struct list_head *n, *h = (void *)head; 2028 struct bpf_list_node_kern *node; 2029 2030 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 2031 * called on its fields, so init here 2032 */ 2033 if (unlikely(!h->next)) 2034 INIT_LIST_HEAD(h); 2035 if (list_empty(h)) 2036 return NULL; 2037 2038 n = tail ? h->prev : h->next; 2039 node = container_of(n, struct bpf_list_node_kern, list_head); 2040 if (WARN_ON_ONCE(READ_ONCE(node->owner) != head)) 2041 return NULL; 2042 2043 list_del_init(n); 2044 WRITE_ONCE(node->owner, NULL); 2045 return (struct bpf_list_node *)n; 2046 } 2047 2048 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) 2049 { 2050 return __bpf_list_del(head, false); 2051 } 2052 2053 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) 2054 { 2055 return __bpf_list_del(head, true); 2056 } 2057 2058 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root, 2059 struct bpf_rb_node *node) 2060 { 2061 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; 2062 struct rb_root_cached *r = (struct rb_root_cached *)root; 2063 struct rb_node *n = &node_internal->rb_node; 2064 2065 /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or 2066 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n) 2067 */ 2068 if (READ_ONCE(node_internal->owner) != root) 2069 return NULL; 2070 2071 rb_erase_cached(n, r); 2072 RB_CLEAR_NODE(n); 2073 WRITE_ONCE(node_internal->owner, NULL); 2074 return (struct bpf_rb_node *)n; 2075 } 2076 2077 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF 2078 * program 2079 */ 2080 static int __bpf_rbtree_add(struct bpf_rb_root *root, 2081 struct bpf_rb_node_kern *node, 2082 void *less, struct btf_record *rec, u64 off) 2083 { 2084 struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node; 2085 struct rb_node *parent = NULL, *n = &node->rb_node; 2086 bpf_callback_t cb = (bpf_callback_t)less; 2087 bool leftmost = true; 2088 2089 /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately 2090 * check the latter 2091 */ 2092 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { 2093 /* Only called from BPF prog, no need to migrate_disable */ 2094 __bpf_obj_drop_impl((void *)n - off, rec, false); 2095 return -EINVAL; 2096 } 2097 2098 while (*link) { 2099 parent = *link; 2100 if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) { 2101 link = &parent->rb_left; 2102 } else { 2103 link = &parent->rb_right; 2104 leftmost = false; 2105 } 2106 } 2107 2108 rb_link_node(n, parent, link); 2109 rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost); 2110 WRITE_ONCE(node->owner, root); 2111 return 0; 2112 } 2113 2114 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 2115 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b), 2116 void *meta__ign, u64 off) 2117 { 2118 struct btf_struct_meta *meta = meta__ign; 2119 struct bpf_rb_node_kern *n = (void *)node; 2120 2121 return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off); 2122 } 2123 2124 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) 2125 { 2126 struct rb_root_cached *r = (struct rb_root_cached *)root; 2127 2128 return (struct bpf_rb_node *)rb_first_cached(r); 2129 } 2130 2131 /** 2132 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this 2133 * kfunc which is not stored in a map as a kptr, must be released by calling 2134 * bpf_task_release(). 2135 * @p: The task on which a reference is being acquired. 2136 */ 2137 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p) 2138 { 2139 if (refcount_inc_not_zero(&p->rcu_users)) 2140 return p; 2141 return NULL; 2142 } 2143 2144 /** 2145 * bpf_task_release - Release the reference acquired on a task. 2146 * @p: The task on which a reference is being released. 2147 */ 2148 __bpf_kfunc void bpf_task_release(struct task_struct *p) 2149 { 2150 put_task_struct_rcu_user(p); 2151 } 2152 2153 __bpf_kfunc void bpf_task_release_dtor(void *p) 2154 { 2155 put_task_struct_rcu_user(p); 2156 } 2157 CFI_NOSEAL(bpf_task_release_dtor); 2158 2159 #ifdef CONFIG_CGROUPS 2160 /** 2161 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by 2162 * this kfunc which is not stored in a map as a kptr, must be released by 2163 * calling bpf_cgroup_release(). 2164 * @cgrp: The cgroup on which a reference is being acquired. 2165 */ 2166 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp) 2167 { 2168 return cgroup_tryget(cgrp) ? cgrp : NULL; 2169 } 2170 2171 /** 2172 * bpf_cgroup_release - Release the reference acquired on a cgroup. 2173 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to 2174 * not be freed until the current grace period has ended, even if its refcount 2175 * drops to 0. 2176 * @cgrp: The cgroup on which a reference is being released. 2177 */ 2178 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp) 2179 { 2180 cgroup_put(cgrp); 2181 } 2182 2183 __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp) 2184 { 2185 cgroup_put(cgrp); 2186 } 2187 CFI_NOSEAL(bpf_cgroup_release_dtor); 2188 2189 /** 2190 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor 2191 * array. A cgroup returned by this kfunc which is not subsequently stored in a 2192 * map, must be released by calling bpf_cgroup_release(). 2193 * @cgrp: The cgroup for which we're performing a lookup. 2194 * @level: The level of ancestor to look up. 2195 */ 2196 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) 2197 { 2198 struct cgroup *ancestor; 2199 2200 if (level > cgrp->level || level < 0) 2201 return NULL; 2202 2203 /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */ 2204 ancestor = cgrp->ancestors[level]; 2205 if (!cgroup_tryget(ancestor)) 2206 return NULL; 2207 return ancestor; 2208 } 2209 2210 /** 2211 * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this 2212 * kfunc which is not subsequently stored in a map, must be released by calling 2213 * bpf_cgroup_release(). 2214 * @cgid: cgroup id. 2215 */ 2216 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid) 2217 { 2218 struct cgroup *cgrp; 2219 2220 cgrp = cgroup_get_from_id(cgid); 2221 if (IS_ERR(cgrp)) 2222 return NULL; 2223 return cgrp; 2224 } 2225 2226 /** 2227 * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test 2228 * task's membership of cgroup ancestry. 2229 * @task: the task to be tested 2230 * @ancestor: possible ancestor of @task's cgroup 2231 * 2232 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor. 2233 * It follows all the same rules as cgroup_is_descendant, and only applies 2234 * to the default hierarchy. 2235 */ 2236 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task, 2237 struct cgroup *ancestor) 2238 { 2239 long ret; 2240 2241 rcu_read_lock(); 2242 ret = task_under_cgroup_hierarchy(task, ancestor); 2243 rcu_read_unlock(); 2244 return ret; 2245 } 2246 2247 /** 2248 * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a 2249 * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its 2250 * hierarchy ID. 2251 * @task: The target task 2252 * @hierarchy_id: The ID of a cgroup1 hierarchy 2253 * 2254 * On success, the cgroup is returen. On failure, NULL is returned. 2255 */ 2256 __bpf_kfunc struct cgroup * 2257 bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id) 2258 { 2259 struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id); 2260 2261 if (IS_ERR(cgrp)) 2262 return NULL; 2263 return cgrp; 2264 } 2265 #endif /* CONFIG_CGROUPS */ 2266 2267 /** 2268 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up 2269 * in the root pid namespace idr. If a task is returned, it must either be 2270 * stored in a map, or released with bpf_task_release(). 2271 * @pid: The pid of the task being looked up. 2272 */ 2273 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid) 2274 { 2275 struct task_struct *p; 2276 2277 rcu_read_lock(); 2278 p = find_task_by_pid_ns(pid, &init_pid_ns); 2279 if (p) 2280 p = bpf_task_acquire(p); 2281 rcu_read_unlock(); 2282 2283 return p; 2284 } 2285 2286 /** 2287 * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data. 2288 * @ptr: The dynptr whose data slice to retrieve 2289 * @offset: Offset into the dynptr 2290 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2291 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2292 * length of the requested slice. This must be a constant. 2293 * 2294 * For non-skb and non-xdp type dynptrs, there is no difference between 2295 * bpf_dynptr_slice and bpf_dynptr_data. 2296 * 2297 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2298 * 2299 * If the intention is to write to the data slice, please use 2300 * bpf_dynptr_slice_rdwr. 2301 * 2302 * The user must check that the returned pointer is not null before using it. 2303 * 2304 * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice 2305 * does not change the underlying packet data pointers, so a call to 2306 * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in 2307 * the bpf program. 2308 * 2309 * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only 2310 * data slice (can be either direct pointer to the data or a pointer to the user 2311 * provided buffer, with its contents containing the data, if unable to obtain 2312 * direct pointer) 2313 */ 2314 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset, 2315 void *buffer__opt, u32 buffer__szk) 2316 { 2317 enum bpf_dynptr_type type; 2318 u32 len = buffer__szk; 2319 int err; 2320 2321 if (!ptr->data) 2322 return NULL; 2323 2324 err = bpf_dynptr_check_off_len(ptr, offset, len); 2325 if (err) 2326 return NULL; 2327 2328 type = bpf_dynptr_get_type(ptr); 2329 2330 switch (type) { 2331 case BPF_DYNPTR_TYPE_LOCAL: 2332 case BPF_DYNPTR_TYPE_RINGBUF: 2333 return ptr->data + ptr->offset + offset; 2334 case BPF_DYNPTR_TYPE_SKB: 2335 if (buffer__opt) 2336 return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt); 2337 else 2338 return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len); 2339 case BPF_DYNPTR_TYPE_XDP: 2340 { 2341 void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len); 2342 if (!IS_ERR_OR_NULL(xdp_ptr)) 2343 return xdp_ptr; 2344 2345 if (!buffer__opt) 2346 return NULL; 2347 bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false); 2348 return buffer__opt; 2349 } 2350 default: 2351 WARN_ONCE(true, "unknown dynptr type %d\n", type); 2352 return NULL; 2353 } 2354 } 2355 2356 /** 2357 * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data. 2358 * @ptr: The dynptr whose data slice to retrieve 2359 * @offset: Offset into the dynptr 2360 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2361 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2362 * length of the requested slice. This must be a constant. 2363 * 2364 * For non-skb and non-xdp type dynptrs, there is no difference between 2365 * bpf_dynptr_slice and bpf_dynptr_data. 2366 * 2367 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2368 * 2369 * The returned pointer is writable and may point to either directly the dynptr 2370 * data at the requested offset or to the buffer if unable to obtain a direct 2371 * data pointer to (example: the requested slice is to the paged area of an skb 2372 * packet). In the case where the returned pointer is to the buffer, the user 2373 * is responsible for persisting writes through calling bpf_dynptr_write(). This 2374 * usually looks something like this pattern: 2375 * 2376 * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer)); 2377 * if (!eth) 2378 * return TC_ACT_SHOT; 2379 * 2380 * // mutate eth header // 2381 * 2382 * if (eth == buffer) 2383 * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0); 2384 * 2385 * Please note that, as in the example above, the user must check that the 2386 * returned pointer is not null before using it. 2387 * 2388 * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr 2389 * does not change the underlying packet data pointers, so a call to 2390 * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in 2391 * the bpf program. 2392 * 2393 * Return: NULL if the call failed (eg invalid dynptr), pointer to a 2394 * data slice (can be either direct pointer to the data or a pointer to the user 2395 * provided buffer, with its contents containing the data, if unable to obtain 2396 * direct pointer) 2397 */ 2398 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 offset, 2399 void *buffer__opt, u32 buffer__szk) 2400 { 2401 if (!ptr->data || __bpf_dynptr_is_rdonly(ptr)) 2402 return NULL; 2403 2404 /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice. 2405 * 2406 * For skb-type dynptrs, it is safe to write into the returned pointer 2407 * if the bpf program allows skb data writes. There are two possiblities 2408 * that may occur when calling bpf_dynptr_slice_rdwr: 2409 * 2410 * 1) The requested slice is in the head of the skb. In this case, the 2411 * returned pointer is directly to skb data, and if the skb is cloned, the 2412 * verifier will have uncloned it (see bpf_unclone_prologue()) already. 2413 * The pointer can be directly written into. 2414 * 2415 * 2) Some portion of the requested slice is in the paged buffer area. 2416 * In this case, the requested data will be copied out into the buffer 2417 * and the returned pointer will be a pointer to the buffer. The skb 2418 * will not be pulled. To persist the write, the user will need to call 2419 * bpf_dynptr_write(), which will pull the skb and commit the write. 2420 * 2421 * Similarly for xdp programs, if the requested slice is not across xdp 2422 * fragments, then a direct pointer will be returned, otherwise the data 2423 * will be copied out into the buffer and the user will need to call 2424 * bpf_dynptr_write() to commit changes. 2425 */ 2426 return bpf_dynptr_slice(ptr, offset, buffer__opt, buffer__szk); 2427 } 2428 2429 __bpf_kfunc int bpf_dynptr_adjust(struct bpf_dynptr_kern *ptr, u32 start, u32 end) 2430 { 2431 u32 size; 2432 2433 if (!ptr->data || start > end) 2434 return -EINVAL; 2435 2436 size = __bpf_dynptr_size(ptr); 2437 2438 if (start > size || end > size) 2439 return -ERANGE; 2440 2441 ptr->offset += start; 2442 bpf_dynptr_set_size(ptr, end - start); 2443 2444 return 0; 2445 } 2446 2447 __bpf_kfunc bool bpf_dynptr_is_null(struct bpf_dynptr_kern *ptr) 2448 { 2449 return !ptr->data; 2450 } 2451 2452 __bpf_kfunc bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr) 2453 { 2454 if (!ptr->data) 2455 return false; 2456 2457 return __bpf_dynptr_is_rdonly(ptr); 2458 } 2459 2460 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) 2461 { 2462 if (!ptr->data) 2463 return -EINVAL; 2464 2465 return __bpf_dynptr_size(ptr); 2466 } 2467 2468 __bpf_kfunc int bpf_dynptr_clone(struct bpf_dynptr_kern *ptr, 2469 struct bpf_dynptr_kern *clone__uninit) 2470 { 2471 if (!ptr->data) { 2472 bpf_dynptr_set_null(clone__uninit); 2473 return -EINVAL; 2474 } 2475 2476 *clone__uninit = *ptr; 2477 2478 return 0; 2479 } 2480 2481 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj) 2482 { 2483 return obj; 2484 } 2485 2486 __bpf_kfunc void *bpf_rdonly_cast(void *obj__ign, u32 btf_id__k) 2487 { 2488 return obj__ign; 2489 } 2490 2491 __bpf_kfunc void bpf_rcu_read_lock(void) 2492 { 2493 rcu_read_lock(); 2494 } 2495 2496 __bpf_kfunc void bpf_rcu_read_unlock(void) 2497 { 2498 rcu_read_unlock(); 2499 } 2500 2501 struct bpf_throw_ctx { 2502 struct bpf_prog_aux *aux; 2503 u64 sp; 2504 u64 bp; 2505 int cnt; 2506 }; 2507 2508 static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp) 2509 { 2510 struct bpf_throw_ctx *ctx = cookie; 2511 struct bpf_prog *prog; 2512 2513 if (!is_bpf_text_address(ip)) 2514 return !ctx->cnt; 2515 prog = bpf_prog_ksym_find(ip); 2516 ctx->cnt++; 2517 if (bpf_is_subprog(prog)) 2518 return true; 2519 ctx->aux = prog->aux; 2520 ctx->sp = sp; 2521 ctx->bp = bp; 2522 return false; 2523 } 2524 2525 __bpf_kfunc void bpf_throw(u64 cookie) 2526 { 2527 struct bpf_throw_ctx ctx = {}; 2528 2529 arch_bpf_stack_walk(bpf_stack_walker, &ctx); 2530 WARN_ON_ONCE(!ctx.aux); 2531 if (ctx.aux) 2532 WARN_ON_ONCE(!ctx.aux->exception_boundary); 2533 WARN_ON_ONCE(!ctx.bp); 2534 WARN_ON_ONCE(!ctx.cnt); 2535 /* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning 2536 * deeper stack depths than ctx.sp as we do not return from bpf_throw, 2537 * which skips compiler generated instrumentation to do the same. 2538 */ 2539 kasan_unpoison_task_stack_below((void *)(long)ctx.sp); 2540 ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0); 2541 WARN(1, "A call to BPF exception callback should never return\n"); 2542 } 2543 2544 __bpf_kfunc_end_defs(); 2545 2546 BTF_SET8_START(generic_btf_ids) 2547 #ifdef CONFIG_KEXEC_CORE 2548 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) 2549 #endif 2550 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) 2551 BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) 2552 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE) 2553 BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE) 2554 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU) 2555 BTF_ID_FLAGS(func, bpf_list_push_front_impl) 2556 BTF_ID_FLAGS(func, bpf_list_push_back_impl) 2557 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL) 2558 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL) 2559 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2560 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE) 2561 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL) 2562 BTF_ID_FLAGS(func, bpf_rbtree_add_impl) 2563 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL) 2564 2565 #ifdef CONFIG_CGROUPS 2566 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2567 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE) 2568 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2569 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL) 2570 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU) 2571 BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2572 #endif 2573 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL) 2574 BTF_ID_FLAGS(func, bpf_throw) 2575 BTF_SET8_END(generic_btf_ids) 2576 2577 static const struct btf_kfunc_id_set generic_kfunc_set = { 2578 .owner = THIS_MODULE, 2579 .set = &generic_btf_ids, 2580 }; 2581 2582 2583 BTF_ID_LIST(generic_dtor_ids) 2584 BTF_ID(struct, task_struct) 2585 BTF_ID(func, bpf_task_release_dtor) 2586 #ifdef CONFIG_CGROUPS 2587 BTF_ID(struct, cgroup) 2588 BTF_ID(func, bpf_cgroup_release_dtor) 2589 #endif 2590 2591 BTF_SET8_START(common_btf_ids) 2592 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx) 2593 BTF_ID_FLAGS(func, bpf_rdonly_cast) 2594 BTF_ID_FLAGS(func, bpf_rcu_read_lock) 2595 BTF_ID_FLAGS(func, bpf_rcu_read_unlock) 2596 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL) 2597 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL) 2598 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW) 2599 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL) 2600 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY) 2601 BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU) 2602 BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL) 2603 BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY) 2604 #ifdef CONFIG_CGROUPS 2605 BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS) 2606 BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL) 2607 BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY) 2608 BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) 2609 BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL) 2610 BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY) 2611 #endif 2612 BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) 2613 BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL) 2614 BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY) 2615 BTF_ID_FLAGS(func, bpf_dynptr_adjust) 2616 BTF_ID_FLAGS(func, bpf_dynptr_is_null) 2617 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly) 2618 BTF_ID_FLAGS(func, bpf_dynptr_size) 2619 BTF_ID_FLAGS(func, bpf_dynptr_clone) 2620 BTF_SET8_END(common_btf_ids) 2621 2622 static const struct btf_kfunc_id_set common_kfunc_set = { 2623 .owner = THIS_MODULE, 2624 .set = &common_btf_ids, 2625 }; 2626 2627 static int __init kfunc_init(void) 2628 { 2629 int ret; 2630 const struct btf_id_dtor_kfunc generic_dtors[] = { 2631 { 2632 .btf_id = generic_dtor_ids[0], 2633 .kfunc_btf_id = generic_dtor_ids[1] 2634 }, 2635 #ifdef CONFIG_CGROUPS 2636 { 2637 .btf_id = generic_dtor_ids[2], 2638 .kfunc_btf_id = generic_dtor_ids[3] 2639 }, 2640 #endif 2641 }; 2642 2643 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set); 2644 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set); 2645 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set); 2646 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set); 2647 ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors, 2648 ARRAY_SIZE(generic_dtors), 2649 THIS_MODULE); 2650 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); 2651 } 2652 2653 late_initcall(kfunc_init); 2654 2655 /* Get a pointer to dynptr data up to len bytes for read only access. If 2656 * the dynptr doesn't have continuous data up to len bytes, return NULL. 2657 */ 2658 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len) 2659 { 2660 return bpf_dynptr_slice(ptr, 0, NULL, len); 2661 } 2662 2663 /* Get a pointer to dynptr data up to len bytes for read write access. If 2664 * the dynptr doesn't have continuous data up to len bytes, or the dynptr 2665 * is read only, return NULL. 2666 */ 2667 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len) 2668 { 2669 if (__bpf_dynptr_is_rdonly(ptr)) 2670 return NULL; 2671 return (void *)__bpf_dynptr_data(ptr, len); 2672 } 2673