xref: /linux/kernel/bpf/helpers.c (revision 47c9214dcbea9043ac20441a285c7bb5486b8b2d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/cgroup.h>
8 #include <linux/rcupdate.h>
9 #include <linux/random.h>
10 #include <linux/smp.h>
11 #include <linux/topology.h>
12 #include <linux/ktime.h>
13 #include <linux/sched.h>
14 #include <linux/uidgid.h>
15 #include <linux/filter.h>
16 #include <linux/ctype.h>
17 #include <linux/jiffies.h>
18 #include <linux/pid_namespace.h>
19 #include <linux/poison.h>
20 #include <linux/proc_ns.h>
21 #include <linux/sched/task.h>
22 #include <linux/security.h>
23 #include <linux/btf_ids.h>
24 #include <linux/bpf_mem_alloc.h>
25 #include <linux/kasan.h>
26 #include <linux/bpf_verifier.h>
27 #include <linux/uaccess.h>
28 #include <linux/verification.h>
29 #include <linux/task_work.h>
30 #include <linux/irq_work.h>
31 #include <linux/buildid.h>
32 
33 #include "../../lib/kstrtox.h"
34 
35 /* If kernel subsystem is allowing eBPF programs to call this function,
36  * inside its own verifier_ops->get_func_proto() callback it should return
37  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
38  *
39  * Different map implementations will rely on rcu in map methods
40  * lookup/update/delete, therefore eBPF programs must run under rcu lock
41  * if program is allowed to access maps, so check rcu_read_lock_held() or
42  * rcu_read_lock_trace_held() in all three functions.
43  */
44 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
45 {
46 	WARN_ON_ONCE(!bpf_rcu_lock_held());
47 	return (unsigned long) map->ops->map_lookup_elem(map, key);
48 }
49 
50 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
51 	.func		= bpf_map_lookup_elem,
52 	.gpl_only	= false,
53 	.pkt_access	= true,
54 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
55 	.arg1_type	= ARG_CONST_MAP_PTR,
56 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
57 };
58 
59 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
60 	   void *, value, u64, flags)
61 {
62 	WARN_ON_ONCE(!bpf_rcu_lock_held());
63 	return map->ops->map_update_elem(map, key, value, flags);
64 }
65 
66 const struct bpf_func_proto bpf_map_update_elem_proto = {
67 	.func		= bpf_map_update_elem,
68 	.gpl_only	= false,
69 	.pkt_access	= true,
70 	.ret_type	= RET_INTEGER,
71 	.arg1_type	= ARG_CONST_MAP_PTR,
72 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
73 	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
74 	.arg4_type	= ARG_ANYTHING,
75 };
76 
77 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
78 {
79 	WARN_ON_ONCE(!bpf_rcu_lock_held());
80 	return map->ops->map_delete_elem(map, key);
81 }
82 
83 const struct bpf_func_proto bpf_map_delete_elem_proto = {
84 	.func		= bpf_map_delete_elem,
85 	.gpl_only	= false,
86 	.pkt_access	= true,
87 	.ret_type	= RET_INTEGER,
88 	.arg1_type	= ARG_CONST_MAP_PTR,
89 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
90 };
91 
92 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
93 {
94 	return map->ops->map_push_elem(map, value, flags);
95 }
96 
97 const struct bpf_func_proto bpf_map_push_elem_proto = {
98 	.func		= bpf_map_push_elem,
99 	.gpl_only	= false,
100 	.pkt_access	= true,
101 	.ret_type	= RET_INTEGER,
102 	.arg1_type	= ARG_CONST_MAP_PTR,
103 	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
104 	.arg3_type	= ARG_ANYTHING,
105 };
106 
107 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
108 {
109 	return map->ops->map_pop_elem(map, value);
110 }
111 
112 const struct bpf_func_proto bpf_map_pop_elem_proto = {
113 	.func		= bpf_map_pop_elem,
114 	.gpl_only	= false,
115 	.ret_type	= RET_INTEGER,
116 	.arg1_type	= ARG_CONST_MAP_PTR,
117 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
118 };
119 
120 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
121 {
122 	return map->ops->map_peek_elem(map, value);
123 }
124 
125 const struct bpf_func_proto bpf_map_peek_elem_proto = {
126 	.func		= bpf_map_peek_elem,
127 	.gpl_only	= false,
128 	.ret_type	= RET_INTEGER,
129 	.arg1_type	= ARG_CONST_MAP_PTR,
130 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
131 };
132 
133 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
134 {
135 	WARN_ON_ONCE(!bpf_rcu_lock_held());
136 	return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
137 }
138 
139 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
140 	.func		= bpf_map_lookup_percpu_elem,
141 	.gpl_only	= false,
142 	.pkt_access	= true,
143 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
144 	.arg1_type	= ARG_CONST_MAP_PTR,
145 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
146 	.arg3_type	= ARG_ANYTHING,
147 };
148 
149 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
150 	.func		= bpf_user_rnd_u32,
151 	.gpl_only	= false,
152 	.ret_type	= RET_INTEGER,
153 };
154 
155 BPF_CALL_0(bpf_get_smp_processor_id)
156 {
157 	return smp_processor_id();
158 }
159 
160 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
161 	.func		= bpf_get_smp_processor_id,
162 	.gpl_only	= false,
163 	.ret_type	= RET_INTEGER,
164 	.allow_fastcall	= true,
165 };
166 
167 BPF_CALL_0(bpf_get_numa_node_id)
168 {
169 	return numa_node_id();
170 }
171 
172 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
173 	.func		= bpf_get_numa_node_id,
174 	.gpl_only	= false,
175 	.ret_type	= RET_INTEGER,
176 };
177 
178 BPF_CALL_0(bpf_ktime_get_ns)
179 {
180 	/* NMI safe access to clock monotonic */
181 	return ktime_get_mono_fast_ns();
182 }
183 
184 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
185 	.func		= bpf_ktime_get_ns,
186 	.gpl_only	= false,
187 	.ret_type	= RET_INTEGER,
188 };
189 
190 BPF_CALL_0(bpf_ktime_get_boot_ns)
191 {
192 	/* NMI safe access to clock boottime */
193 	return ktime_get_boot_fast_ns();
194 }
195 
196 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
197 	.func		= bpf_ktime_get_boot_ns,
198 	.gpl_only	= false,
199 	.ret_type	= RET_INTEGER,
200 };
201 
202 BPF_CALL_0(bpf_ktime_get_coarse_ns)
203 {
204 	return ktime_get_coarse_ns();
205 }
206 
207 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
208 	.func		= bpf_ktime_get_coarse_ns,
209 	.gpl_only	= false,
210 	.ret_type	= RET_INTEGER,
211 };
212 
213 BPF_CALL_0(bpf_ktime_get_tai_ns)
214 {
215 	/* NMI safe access to clock tai */
216 	return ktime_get_tai_fast_ns();
217 }
218 
219 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
220 	.func		= bpf_ktime_get_tai_ns,
221 	.gpl_only	= false,
222 	.ret_type	= RET_INTEGER,
223 };
224 
225 BPF_CALL_0(bpf_get_current_pid_tgid)
226 {
227 	struct task_struct *task = current;
228 
229 	if (unlikely(!task))
230 		return -EINVAL;
231 
232 	return (u64) task->tgid << 32 | task->pid;
233 }
234 
235 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
236 	.func		= bpf_get_current_pid_tgid,
237 	.gpl_only	= false,
238 	.ret_type	= RET_INTEGER,
239 };
240 
241 BPF_CALL_0(bpf_get_current_uid_gid)
242 {
243 	struct task_struct *task = current;
244 	kuid_t uid;
245 	kgid_t gid;
246 
247 	if (unlikely(!task))
248 		return -EINVAL;
249 
250 	current_uid_gid(&uid, &gid);
251 	return (u64) from_kgid(&init_user_ns, gid) << 32 |
252 		     from_kuid(&init_user_ns, uid);
253 }
254 
255 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
256 	.func		= bpf_get_current_uid_gid,
257 	.gpl_only	= false,
258 	.ret_type	= RET_INTEGER,
259 };
260 
261 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
262 {
263 	struct task_struct *task = current;
264 
265 	if (unlikely(!task))
266 		goto err_clear;
267 
268 	/* Verifier guarantees that size > 0 */
269 	strscpy_pad(buf, task->comm, size);
270 	return 0;
271 err_clear:
272 	memset(buf, 0, size);
273 	return -EINVAL;
274 }
275 
276 const struct bpf_func_proto bpf_get_current_comm_proto = {
277 	.func		= bpf_get_current_comm,
278 	.gpl_only	= false,
279 	.ret_type	= RET_INTEGER,
280 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
281 	.arg2_type	= ARG_CONST_SIZE,
282 };
283 
284 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
285 
286 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
287 {
288 	arch_spinlock_t *l = (void *)lock;
289 	union {
290 		__u32 val;
291 		arch_spinlock_t lock;
292 	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
293 
294 	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
295 	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
296 	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
297 	preempt_disable();
298 	arch_spin_lock(l);
299 }
300 
301 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
302 {
303 	arch_spinlock_t *l = (void *)lock;
304 
305 	arch_spin_unlock(l);
306 	preempt_enable();
307 }
308 
309 #else
310 
311 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
312 {
313 	atomic_t *l = (void *)lock;
314 
315 	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
316 	do {
317 		atomic_cond_read_relaxed(l, !VAL);
318 	} while (atomic_xchg(l, 1));
319 }
320 
321 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
322 {
323 	atomic_t *l = (void *)lock;
324 
325 	atomic_set_release(l, 0);
326 }
327 
328 #endif
329 
330 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
331 
332 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
333 {
334 	unsigned long flags;
335 
336 	local_irq_save(flags);
337 	__bpf_spin_lock(lock);
338 	__this_cpu_write(irqsave_flags, flags);
339 }
340 
341 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
342 {
343 	__bpf_spin_lock_irqsave(lock);
344 	return 0;
345 }
346 
347 const struct bpf_func_proto bpf_spin_lock_proto = {
348 	.func		= bpf_spin_lock,
349 	.gpl_only	= false,
350 	.ret_type	= RET_VOID,
351 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
352 	.arg1_btf_id    = BPF_PTR_POISON,
353 };
354 
355 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
356 {
357 	unsigned long flags;
358 
359 	flags = __this_cpu_read(irqsave_flags);
360 	__bpf_spin_unlock(lock);
361 	local_irq_restore(flags);
362 }
363 
364 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
365 {
366 	__bpf_spin_unlock_irqrestore(lock);
367 	return 0;
368 }
369 
370 const struct bpf_func_proto bpf_spin_unlock_proto = {
371 	.func		= bpf_spin_unlock,
372 	.gpl_only	= false,
373 	.ret_type	= RET_VOID,
374 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
375 	.arg1_btf_id    = BPF_PTR_POISON,
376 };
377 
378 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
379 			   bool lock_src)
380 {
381 	struct bpf_spin_lock *lock;
382 
383 	if (lock_src)
384 		lock = src + map->record->spin_lock_off;
385 	else
386 		lock = dst + map->record->spin_lock_off;
387 	preempt_disable();
388 	__bpf_spin_lock_irqsave(lock);
389 	copy_map_value(map, dst, src);
390 	__bpf_spin_unlock_irqrestore(lock);
391 	preempt_enable();
392 }
393 
394 BPF_CALL_0(bpf_jiffies64)
395 {
396 	return get_jiffies_64();
397 }
398 
399 const struct bpf_func_proto bpf_jiffies64_proto = {
400 	.func		= bpf_jiffies64,
401 	.gpl_only	= false,
402 	.ret_type	= RET_INTEGER,
403 };
404 
405 #ifdef CONFIG_CGROUPS
406 BPF_CALL_0(bpf_get_current_cgroup_id)
407 {
408 	struct cgroup *cgrp;
409 	u64 cgrp_id;
410 
411 	rcu_read_lock();
412 	cgrp = task_dfl_cgroup(current);
413 	cgrp_id = cgroup_id(cgrp);
414 	rcu_read_unlock();
415 
416 	return cgrp_id;
417 }
418 
419 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
420 	.func		= bpf_get_current_cgroup_id,
421 	.gpl_only	= false,
422 	.ret_type	= RET_INTEGER,
423 };
424 
425 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
426 {
427 	struct cgroup *cgrp;
428 	struct cgroup *ancestor;
429 	u64 cgrp_id;
430 
431 	rcu_read_lock();
432 	cgrp = task_dfl_cgroup(current);
433 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
434 	cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
435 	rcu_read_unlock();
436 
437 	return cgrp_id;
438 }
439 
440 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
441 	.func		= bpf_get_current_ancestor_cgroup_id,
442 	.gpl_only	= false,
443 	.ret_type	= RET_INTEGER,
444 	.arg1_type	= ARG_ANYTHING,
445 };
446 #endif /* CONFIG_CGROUPS */
447 
448 #define BPF_STRTOX_BASE_MASK 0x1F
449 
450 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
451 			  unsigned long long *res, bool *is_negative)
452 {
453 	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
454 	const char *cur_buf = buf;
455 	size_t cur_len = buf_len;
456 	unsigned int consumed;
457 	size_t val_len;
458 	char str[64];
459 
460 	if (!buf || !buf_len || !res || !is_negative)
461 		return -EINVAL;
462 
463 	if (base != 0 && base != 8 && base != 10 && base != 16)
464 		return -EINVAL;
465 
466 	if (flags & ~BPF_STRTOX_BASE_MASK)
467 		return -EINVAL;
468 
469 	while (cur_buf < buf + buf_len && isspace(*cur_buf))
470 		++cur_buf;
471 
472 	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
473 	if (*is_negative)
474 		++cur_buf;
475 
476 	consumed = cur_buf - buf;
477 	cur_len -= consumed;
478 	if (!cur_len)
479 		return -EINVAL;
480 
481 	cur_len = min(cur_len, sizeof(str) - 1);
482 	memcpy(str, cur_buf, cur_len);
483 	str[cur_len] = '\0';
484 	cur_buf = str;
485 
486 	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
487 	val_len = _parse_integer(cur_buf, base, res);
488 
489 	if (val_len & KSTRTOX_OVERFLOW)
490 		return -ERANGE;
491 
492 	if (val_len == 0)
493 		return -EINVAL;
494 
495 	cur_buf += val_len;
496 	consumed += cur_buf - str;
497 
498 	return consumed;
499 }
500 
501 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
502 			 long long *res)
503 {
504 	unsigned long long _res;
505 	bool is_negative;
506 	int err;
507 
508 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
509 	if (err < 0)
510 		return err;
511 	if (is_negative) {
512 		if ((long long)-_res > 0)
513 			return -ERANGE;
514 		*res = -_res;
515 	} else {
516 		if ((long long)_res < 0)
517 			return -ERANGE;
518 		*res = _res;
519 	}
520 	return err;
521 }
522 
523 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
524 	   s64 *, res)
525 {
526 	long long _res;
527 	int err;
528 
529 	*res = 0;
530 	err = __bpf_strtoll(buf, buf_len, flags, &_res);
531 	if (err < 0)
532 		return err;
533 	*res = _res;
534 	return err;
535 }
536 
537 const struct bpf_func_proto bpf_strtol_proto = {
538 	.func		= bpf_strtol,
539 	.gpl_only	= false,
540 	.ret_type	= RET_INTEGER,
541 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
542 	.arg2_type	= ARG_CONST_SIZE,
543 	.arg3_type	= ARG_ANYTHING,
544 	.arg4_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
545 	.arg4_size	= sizeof(s64),
546 };
547 
548 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
549 	   u64 *, res)
550 {
551 	unsigned long long _res;
552 	bool is_negative;
553 	int err;
554 
555 	*res = 0;
556 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
557 	if (err < 0)
558 		return err;
559 	if (is_negative)
560 		return -EINVAL;
561 	*res = _res;
562 	return err;
563 }
564 
565 const struct bpf_func_proto bpf_strtoul_proto = {
566 	.func		= bpf_strtoul,
567 	.gpl_only	= false,
568 	.ret_type	= RET_INTEGER,
569 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
570 	.arg2_type	= ARG_CONST_SIZE,
571 	.arg3_type	= ARG_ANYTHING,
572 	.arg4_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
573 	.arg4_size	= sizeof(u64),
574 };
575 
576 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
577 {
578 	return strncmp(s1, s2, s1_sz);
579 }
580 
581 static const struct bpf_func_proto bpf_strncmp_proto = {
582 	.func		= bpf_strncmp,
583 	.gpl_only	= false,
584 	.ret_type	= RET_INTEGER,
585 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
586 	.arg2_type	= ARG_CONST_SIZE,
587 	.arg3_type	= ARG_PTR_TO_CONST_STR,
588 };
589 
590 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
591 	   struct bpf_pidns_info *, nsdata, u32, size)
592 {
593 	struct task_struct *task = current;
594 	struct pid_namespace *pidns;
595 	int err = -EINVAL;
596 
597 	if (unlikely(size != sizeof(struct bpf_pidns_info)))
598 		goto clear;
599 
600 	if (unlikely((u64)(dev_t)dev != dev))
601 		goto clear;
602 
603 	if (unlikely(!task))
604 		goto clear;
605 
606 	pidns = task_active_pid_ns(task);
607 	if (unlikely(!pidns)) {
608 		err = -ENOENT;
609 		goto clear;
610 	}
611 
612 	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
613 		goto clear;
614 
615 	nsdata->pid = task_pid_nr_ns(task, pidns);
616 	nsdata->tgid = task_tgid_nr_ns(task, pidns);
617 	return 0;
618 clear:
619 	memset((void *)nsdata, 0, (size_t) size);
620 	return err;
621 }
622 
623 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
624 	.func		= bpf_get_ns_current_pid_tgid,
625 	.gpl_only	= false,
626 	.ret_type	= RET_INTEGER,
627 	.arg1_type	= ARG_ANYTHING,
628 	.arg2_type	= ARG_ANYTHING,
629 	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
630 	.arg4_type      = ARG_CONST_SIZE,
631 };
632 
633 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
634 	.func		= bpf_get_raw_cpu_id,
635 	.gpl_only	= false,
636 	.ret_type	= RET_INTEGER,
637 };
638 
639 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
640 	   u64, flags, void *, data, u64, size)
641 {
642 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
643 		return -EINVAL;
644 
645 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
646 }
647 
648 const struct bpf_func_proto bpf_event_output_data_proto =  {
649 	.func		= bpf_event_output_data,
650 	.gpl_only       = true,
651 	.ret_type       = RET_INTEGER,
652 	.arg1_type      = ARG_PTR_TO_CTX,
653 	.arg2_type      = ARG_CONST_MAP_PTR,
654 	.arg3_type      = ARG_ANYTHING,
655 	.arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
656 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
657 };
658 
659 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
660 	   const void __user *, user_ptr)
661 {
662 	int ret = copy_from_user(dst, user_ptr, size);
663 
664 	if (unlikely(ret)) {
665 		memset(dst, 0, size);
666 		ret = -EFAULT;
667 	}
668 
669 	return ret;
670 }
671 
672 const struct bpf_func_proto bpf_copy_from_user_proto = {
673 	.func		= bpf_copy_from_user,
674 	.gpl_only	= false,
675 	.might_sleep	= true,
676 	.ret_type	= RET_INTEGER,
677 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
678 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
679 	.arg3_type	= ARG_ANYTHING,
680 };
681 
682 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
683 	   const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
684 {
685 	int ret;
686 
687 	/* flags is not used yet */
688 	if (unlikely(flags))
689 		return -EINVAL;
690 
691 	if (unlikely(!size))
692 		return 0;
693 
694 	ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
695 	if (ret == size)
696 		return 0;
697 
698 	memset(dst, 0, size);
699 	/* Return -EFAULT for partial read */
700 	return ret < 0 ? ret : -EFAULT;
701 }
702 
703 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
704 	.func		= bpf_copy_from_user_task,
705 	.gpl_only	= true,
706 	.might_sleep	= true,
707 	.ret_type	= RET_INTEGER,
708 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
709 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
710 	.arg3_type	= ARG_ANYTHING,
711 	.arg4_type	= ARG_PTR_TO_BTF_ID,
712 	.arg4_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
713 	.arg5_type	= ARG_ANYTHING
714 };
715 
716 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
717 {
718 	if (cpu >= nr_cpu_ids)
719 		return (unsigned long)NULL;
720 
721 	return (unsigned long)per_cpu_ptr((const void __percpu *)(const uintptr_t)ptr, cpu);
722 }
723 
724 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
725 	.func		= bpf_per_cpu_ptr,
726 	.gpl_only	= false,
727 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
728 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
729 	.arg2_type	= ARG_ANYTHING,
730 };
731 
732 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
733 {
734 	return (unsigned long)this_cpu_ptr((const void __percpu *)(const uintptr_t)percpu_ptr);
735 }
736 
737 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
738 	.func		= bpf_this_cpu_ptr,
739 	.gpl_only	= false,
740 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
741 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
742 };
743 
744 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
745 		size_t bufsz)
746 {
747 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
748 
749 	buf[0] = 0;
750 
751 	switch (fmt_ptype) {
752 	case 's':
753 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
754 		if ((unsigned long)unsafe_ptr < TASK_SIZE)
755 			return strncpy_from_user_nofault(buf, user_ptr, bufsz);
756 		fallthrough;
757 #endif
758 	case 'k':
759 		return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
760 	case 'u':
761 		return strncpy_from_user_nofault(buf, user_ptr, bufsz);
762 	}
763 
764 	return -EINVAL;
765 }
766 
767 /* Support executing three nested bprintf helper calls on a given CPU */
768 #define MAX_BPRINTF_NEST_LEVEL	3
769 
770 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
771 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
772 
773 int bpf_try_get_buffers(struct bpf_bprintf_buffers **bufs)
774 {
775 	int nest_level;
776 
777 	preempt_disable();
778 	nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
779 	if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
780 		this_cpu_dec(bpf_bprintf_nest_level);
781 		preempt_enable();
782 		return -EBUSY;
783 	}
784 	*bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
785 
786 	return 0;
787 }
788 
789 void bpf_put_buffers(void)
790 {
791 	if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
792 		return;
793 	this_cpu_dec(bpf_bprintf_nest_level);
794 	preempt_enable();
795 }
796 
797 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
798 {
799 	if (!data->bin_args && !data->buf)
800 		return;
801 	bpf_put_buffers();
802 }
803 
804 /*
805  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
806  *
807  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
808  *
809  * This can be used in two ways:
810  * - Format string verification only: when data->get_bin_args is false
811  * - Arguments preparation: in addition to the above verification, it writes in
812  *   data->bin_args a binary representation of arguments usable by bstr_printf
813  *   where pointers from BPF have been sanitized.
814  *
815  * In argument preparation mode, if 0 is returned, safe temporary buffers are
816  * allocated and bpf_bprintf_cleanup should be called to free them after use.
817  */
818 int bpf_bprintf_prepare(const char *fmt, u32 fmt_size, const u64 *raw_args,
819 			u32 num_args, struct bpf_bprintf_data *data)
820 {
821 	bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
822 	char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
823 	struct bpf_bprintf_buffers *buffers = NULL;
824 	size_t sizeof_cur_arg, sizeof_cur_ip;
825 	int err, i, num_spec = 0;
826 	u64 cur_arg;
827 	char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
828 
829 	fmt_end = strnchr(fmt, fmt_size, 0);
830 	if (!fmt_end)
831 		return -EINVAL;
832 	fmt_size = fmt_end - fmt;
833 
834 	if (get_buffers && bpf_try_get_buffers(&buffers))
835 		return -EBUSY;
836 
837 	if (data->get_bin_args) {
838 		if (num_args)
839 			tmp_buf = buffers->bin_args;
840 		tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
841 		data->bin_args = (u32 *)tmp_buf;
842 	}
843 
844 	if (data->get_buf)
845 		data->buf = buffers->buf;
846 
847 	for (i = 0; i < fmt_size; i++) {
848 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
849 			err = -EINVAL;
850 			goto out;
851 		}
852 
853 		if (fmt[i] != '%')
854 			continue;
855 
856 		if (fmt[i + 1] == '%') {
857 			i++;
858 			continue;
859 		}
860 
861 		if (num_spec >= num_args) {
862 			err = -EINVAL;
863 			goto out;
864 		}
865 
866 		/* The string is zero-terminated so if fmt[i] != 0, we can
867 		 * always access fmt[i + 1], in the worst case it will be a 0
868 		 */
869 		i++;
870 
871 		/* skip optional "[0 +-][num]" width formatting field */
872 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
873 		       fmt[i] == ' ')
874 			i++;
875 		if (fmt[i] >= '1' && fmt[i] <= '9') {
876 			i++;
877 			while (fmt[i] >= '0' && fmt[i] <= '9')
878 				i++;
879 		}
880 
881 		if (fmt[i] == 'p') {
882 			sizeof_cur_arg = sizeof(long);
883 
884 			if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
885 			    ispunct(fmt[i + 1])) {
886 				if (tmp_buf)
887 					cur_arg = raw_args[num_spec];
888 				goto nocopy_fmt;
889 			}
890 
891 			if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
892 			    fmt[i + 2] == 's') {
893 				fmt_ptype = fmt[i + 1];
894 				i += 2;
895 				goto fmt_str;
896 			}
897 
898 			if (fmt[i + 1] == 'K' ||
899 			    fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
900 			    fmt[i + 1] == 'S') {
901 				if (tmp_buf)
902 					cur_arg = raw_args[num_spec];
903 				i++;
904 				goto nocopy_fmt;
905 			}
906 
907 			if (fmt[i + 1] == 'B') {
908 				if (tmp_buf)  {
909 					err = snprintf(tmp_buf,
910 						       (tmp_buf_end - tmp_buf),
911 						       "%pB",
912 						       (void *)(long)raw_args[num_spec]);
913 					tmp_buf += (err + 1);
914 				}
915 
916 				i++;
917 				num_spec++;
918 				continue;
919 			}
920 
921 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
922 			if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
923 			    (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
924 				err = -EINVAL;
925 				goto out;
926 			}
927 
928 			i += 2;
929 			if (!tmp_buf)
930 				goto nocopy_fmt;
931 
932 			sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
933 			if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
934 				err = -ENOSPC;
935 				goto out;
936 			}
937 
938 			unsafe_ptr = (char *)(long)raw_args[num_spec];
939 			err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
940 						       sizeof_cur_ip);
941 			if (err < 0)
942 				memset(cur_ip, 0, sizeof_cur_ip);
943 
944 			/* hack: bstr_printf expects IP addresses to be
945 			 * pre-formatted as strings, ironically, the easiest way
946 			 * to do that is to call snprintf.
947 			 */
948 			ip_spec[2] = fmt[i - 1];
949 			ip_spec[3] = fmt[i];
950 			err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
951 				       ip_spec, &cur_ip);
952 
953 			tmp_buf += err + 1;
954 			num_spec++;
955 
956 			continue;
957 		} else if (fmt[i] == 's') {
958 			fmt_ptype = fmt[i];
959 fmt_str:
960 			if (fmt[i + 1] != 0 &&
961 			    !isspace(fmt[i + 1]) &&
962 			    !ispunct(fmt[i + 1])) {
963 				err = -EINVAL;
964 				goto out;
965 			}
966 
967 			if (!tmp_buf)
968 				goto nocopy_fmt;
969 
970 			if (tmp_buf_end == tmp_buf) {
971 				err = -ENOSPC;
972 				goto out;
973 			}
974 
975 			unsafe_ptr = (char *)(long)raw_args[num_spec];
976 			err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
977 						    fmt_ptype,
978 						    tmp_buf_end - tmp_buf);
979 			if (err < 0) {
980 				tmp_buf[0] = '\0';
981 				err = 1;
982 			}
983 
984 			tmp_buf += err;
985 			num_spec++;
986 
987 			continue;
988 		} else if (fmt[i] == 'c') {
989 			if (!tmp_buf)
990 				goto nocopy_fmt;
991 
992 			if (tmp_buf_end == tmp_buf) {
993 				err = -ENOSPC;
994 				goto out;
995 			}
996 
997 			*tmp_buf = raw_args[num_spec];
998 			tmp_buf++;
999 			num_spec++;
1000 
1001 			continue;
1002 		}
1003 
1004 		sizeof_cur_arg = sizeof(int);
1005 
1006 		if (fmt[i] == 'l') {
1007 			sizeof_cur_arg = sizeof(long);
1008 			i++;
1009 		}
1010 		if (fmt[i] == 'l') {
1011 			sizeof_cur_arg = sizeof(long long);
1012 			i++;
1013 		}
1014 
1015 		if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1016 		    fmt[i] != 'x' && fmt[i] != 'X') {
1017 			err = -EINVAL;
1018 			goto out;
1019 		}
1020 
1021 		if (tmp_buf)
1022 			cur_arg = raw_args[num_spec];
1023 nocopy_fmt:
1024 		if (tmp_buf) {
1025 			tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1026 			if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1027 				err = -ENOSPC;
1028 				goto out;
1029 			}
1030 
1031 			if (sizeof_cur_arg == 8) {
1032 				*(u32 *)tmp_buf = *(u32 *)&cur_arg;
1033 				*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1034 			} else {
1035 				*(u32 *)tmp_buf = (u32)(long)cur_arg;
1036 			}
1037 			tmp_buf += sizeof_cur_arg;
1038 		}
1039 		num_spec++;
1040 	}
1041 
1042 	err = 0;
1043 out:
1044 	if (err)
1045 		bpf_bprintf_cleanup(data);
1046 	return err;
1047 }
1048 
1049 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1050 	   const void *, args, u32, data_len)
1051 {
1052 	struct bpf_bprintf_data data = {
1053 		.get_bin_args	= true,
1054 	};
1055 	int err, num_args;
1056 
1057 	if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1058 	    (data_len && !args))
1059 		return -EINVAL;
1060 	num_args = data_len / 8;
1061 
1062 	/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1063 	 * can safely give an unbounded size.
1064 	 */
1065 	err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1066 	if (err < 0)
1067 		return err;
1068 
1069 	err = bstr_printf(str, str_size, fmt, data.bin_args);
1070 
1071 	bpf_bprintf_cleanup(&data);
1072 
1073 	return err + 1;
1074 }
1075 
1076 const struct bpf_func_proto bpf_snprintf_proto = {
1077 	.func		= bpf_snprintf,
1078 	.gpl_only	= true,
1079 	.ret_type	= RET_INTEGER,
1080 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1081 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1082 	.arg3_type	= ARG_PTR_TO_CONST_STR,
1083 	.arg4_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1084 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1085 };
1086 
1087 static void *map_key_from_value(struct bpf_map *map, void *value, u32 *arr_idx)
1088 {
1089 	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1090 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1091 
1092 		*arr_idx = ((char *)value - array->value) / array->elem_size;
1093 		return arr_idx;
1094 	}
1095 	return (void *)value - round_up(map->key_size, 8);
1096 }
1097 
1098 struct bpf_async_cb {
1099 	struct bpf_map *map;
1100 	struct bpf_prog *prog;
1101 	void __rcu *callback_fn;
1102 	void *value;
1103 	union {
1104 		struct rcu_head rcu;
1105 		struct work_struct delete_work;
1106 	};
1107 	u64 flags;
1108 };
1109 
1110 /* BPF map elements can contain 'struct bpf_timer'.
1111  * Such map owns all of its BPF timers.
1112  * 'struct bpf_timer' is allocated as part of map element allocation
1113  * and it's zero initialized.
1114  * That space is used to keep 'struct bpf_async_kern'.
1115  * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1116  * remembers 'struct bpf_map *' pointer it's part of.
1117  * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1118  * bpf_timer_start() arms the timer.
1119  * If user space reference to a map goes to zero at this point
1120  * ops->map_release_uref callback is responsible for cancelling the timers,
1121  * freeing their memory, and decrementing prog's refcnts.
1122  * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1123  * Inner maps can contain bpf timers as well. ops->map_release_uref is
1124  * freeing the timers when inner map is replaced or deleted by user space.
1125  */
1126 struct bpf_hrtimer {
1127 	struct bpf_async_cb cb;
1128 	struct hrtimer timer;
1129 	atomic_t cancelling;
1130 };
1131 
1132 struct bpf_work {
1133 	struct bpf_async_cb cb;
1134 	struct work_struct work;
1135 	struct work_struct delete_work;
1136 };
1137 
1138 /* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */
1139 struct bpf_async_kern {
1140 	union {
1141 		struct bpf_async_cb *cb;
1142 		struct bpf_hrtimer *timer;
1143 		struct bpf_work *work;
1144 	};
1145 	/* bpf_spin_lock is used here instead of spinlock_t to make
1146 	 * sure that it always fits into space reserved by struct bpf_timer
1147 	 * regardless of LOCKDEP and spinlock debug flags.
1148 	 */
1149 	struct bpf_spin_lock lock;
1150 } __attribute__((aligned(8)));
1151 
1152 enum bpf_async_type {
1153 	BPF_ASYNC_TYPE_TIMER = 0,
1154 	BPF_ASYNC_TYPE_WQ,
1155 };
1156 
1157 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1158 
1159 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1160 {
1161 	struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1162 	struct bpf_map *map = t->cb.map;
1163 	void *value = t->cb.value;
1164 	bpf_callback_t callback_fn;
1165 	void *key;
1166 	u32 idx;
1167 
1168 	BTF_TYPE_EMIT(struct bpf_timer);
1169 	callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held());
1170 	if (!callback_fn)
1171 		goto out;
1172 
1173 	/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1174 	 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1175 	 * Remember the timer this callback is servicing to prevent
1176 	 * deadlock if callback_fn() calls bpf_timer_cancel() or
1177 	 * bpf_map_delete_elem() on the same timer.
1178 	 */
1179 	this_cpu_write(hrtimer_running, t);
1180 
1181 	key = map_key_from_value(map, value, &idx);
1182 
1183 	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1184 	/* The verifier checked that return value is zero. */
1185 
1186 	this_cpu_write(hrtimer_running, NULL);
1187 out:
1188 	return HRTIMER_NORESTART;
1189 }
1190 
1191 static void bpf_wq_work(struct work_struct *work)
1192 {
1193 	struct bpf_work *w = container_of(work, struct bpf_work, work);
1194 	struct bpf_async_cb *cb = &w->cb;
1195 	struct bpf_map *map = cb->map;
1196 	bpf_callback_t callback_fn;
1197 	void *value = cb->value;
1198 	void *key;
1199 	u32 idx;
1200 
1201 	BTF_TYPE_EMIT(struct bpf_wq);
1202 
1203 	callback_fn = READ_ONCE(cb->callback_fn);
1204 	if (!callback_fn)
1205 		return;
1206 
1207 	key = map_key_from_value(map, value, &idx);
1208 
1209         rcu_read_lock_trace();
1210         migrate_disable();
1211 
1212 	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1213 
1214 	migrate_enable();
1215 	rcu_read_unlock_trace();
1216 }
1217 
1218 static void bpf_async_cb_rcu_free(struct rcu_head *rcu)
1219 {
1220 	struct bpf_async_cb *cb = container_of(rcu, struct bpf_async_cb, rcu);
1221 
1222 	kfree_nolock(cb);
1223 }
1224 
1225 static void bpf_wq_delete_work(struct work_struct *work)
1226 {
1227 	struct bpf_work *w = container_of(work, struct bpf_work, delete_work);
1228 
1229 	cancel_work_sync(&w->work);
1230 
1231 	call_rcu(&w->cb.rcu, bpf_async_cb_rcu_free);
1232 }
1233 
1234 static void bpf_timer_delete_work(struct work_struct *work)
1235 {
1236 	struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work);
1237 
1238 	/* Cancel the timer and wait for callback to complete if it was running.
1239 	 * If hrtimer_cancel() can be safely called it's safe to call
1240 	 * call_rcu() right after for both preallocated and non-preallocated
1241 	 * maps.  The async->cb = NULL was already done and no code path can see
1242 	 * address 't' anymore. Timer if armed for existing bpf_hrtimer before
1243 	 * bpf_timer_cancel_and_free will have been cancelled.
1244 	 */
1245 	hrtimer_cancel(&t->timer);
1246 	call_rcu(&t->cb.rcu, bpf_async_cb_rcu_free);
1247 }
1248 
1249 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags,
1250 			    enum bpf_async_type type)
1251 {
1252 	struct bpf_async_cb *cb;
1253 	struct bpf_hrtimer *t;
1254 	struct bpf_work *w;
1255 	clockid_t clockid;
1256 	size_t size;
1257 	int ret = 0;
1258 
1259 	if (in_nmi())
1260 		return -EOPNOTSUPP;
1261 
1262 	switch (type) {
1263 	case BPF_ASYNC_TYPE_TIMER:
1264 		size = sizeof(struct bpf_hrtimer);
1265 		break;
1266 	case BPF_ASYNC_TYPE_WQ:
1267 		size = sizeof(struct bpf_work);
1268 		break;
1269 	default:
1270 		return -EINVAL;
1271 	}
1272 
1273 	__bpf_spin_lock_irqsave(&async->lock);
1274 	t = async->timer;
1275 	if (t) {
1276 		ret = -EBUSY;
1277 		goto out;
1278 	}
1279 
1280 	cb = bpf_map_kmalloc_nolock(map, size, 0, map->numa_node);
1281 	if (!cb) {
1282 		ret = -ENOMEM;
1283 		goto out;
1284 	}
1285 
1286 	switch (type) {
1287 	case BPF_ASYNC_TYPE_TIMER:
1288 		clockid = flags & (MAX_CLOCKS - 1);
1289 		t = (struct bpf_hrtimer *)cb;
1290 
1291 		atomic_set(&t->cancelling, 0);
1292 		INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work);
1293 		hrtimer_setup(&t->timer, bpf_timer_cb, clockid, HRTIMER_MODE_REL_SOFT);
1294 		cb->value = (void *)async - map->record->timer_off;
1295 		break;
1296 	case BPF_ASYNC_TYPE_WQ:
1297 		w = (struct bpf_work *)cb;
1298 
1299 		INIT_WORK(&w->work, bpf_wq_work);
1300 		INIT_WORK(&w->delete_work, bpf_wq_delete_work);
1301 		cb->value = (void *)async - map->record->wq_off;
1302 		break;
1303 	}
1304 	cb->map = map;
1305 	cb->prog = NULL;
1306 	cb->flags = flags;
1307 	rcu_assign_pointer(cb->callback_fn, NULL);
1308 
1309 	WRITE_ONCE(async->cb, cb);
1310 	/* Guarantee the order between async->cb and map->usercnt. So
1311 	 * when there are concurrent uref release and bpf timer init, either
1312 	 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1313 	 * timer or atomic64_read() below returns a zero usercnt.
1314 	 */
1315 	smp_mb();
1316 	if (!atomic64_read(&map->usercnt)) {
1317 		/* maps with timers must be either held by user space
1318 		 * or pinned in bpffs.
1319 		 */
1320 		WRITE_ONCE(async->cb, NULL);
1321 		kfree_nolock(cb);
1322 		ret = -EPERM;
1323 	}
1324 out:
1325 	__bpf_spin_unlock_irqrestore(&async->lock);
1326 	return ret;
1327 }
1328 
1329 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map,
1330 	   u64, flags)
1331 {
1332 	clock_t clockid = flags & (MAX_CLOCKS - 1);
1333 
1334 	BUILD_BUG_ON(MAX_CLOCKS != 16);
1335 	BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer));
1336 	BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer));
1337 
1338 	if (flags >= MAX_CLOCKS ||
1339 	    /* similar to timerfd except _ALARM variants are not supported */
1340 	    (clockid != CLOCK_MONOTONIC &&
1341 	     clockid != CLOCK_REALTIME &&
1342 	     clockid != CLOCK_BOOTTIME))
1343 		return -EINVAL;
1344 
1345 	return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER);
1346 }
1347 
1348 static const struct bpf_func_proto bpf_timer_init_proto = {
1349 	.func		= bpf_timer_init,
1350 	.gpl_only	= true,
1351 	.ret_type	= RET_INTEGER,
1352 	.arg1_type	= ARG_PTR_TO_TIMER,
1353 	.arg2_type	= ARG_CONST_MAP_PTR,
1354 	.arg3_type	= ARG_ANYTHING,
1355 };
1356 
1357 static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn,
1358 				    struct bpf_prog_aux *aux, unsigned int flags,
1359 				    enum bpf_async_type type)
1360 {
1361 	struct bpf_prog *prev, *prog = aux->prog;
1362 	struct bpf_async_cb *cb;
1363 	int ret = 0;
1364 
1365 	if (in_nmi())
1366 		return -EOPNOTSUPP;
1367 	__bpf_spin_lock_irqsave(&async->lock);
1368 	cb = async->cb;
1369 	if (!cb) {
1370 		ret = -EINVAL;
1371 		goto out;
1372 	}
1373 	if (!atomic64_read(&cb->map->usercnt)) {
1374 		/* maps with timers must be either held by user space
1375 		 * or pinned in bpffs. Otherwise timer might still be
1376 		 * running even when bpf prog is detached and user space
1377 		 * is gone, since map_release_uref won't ever be called.
1378 		 */
1379 		ret = -EPERM;
1380 		goto out;
1381 	}
1382 	prev = cb->prog;
1383 	if (prev != prog) {
1384 		/* Bump prog refcnt once. Every bpf_timer_set_callback()
1385 		 * can pick different callback_fn-s within the same prog.
1386 		 */
1387 		prog = bpf_prog_inc_not_zero(prog);
1388 		if (IS_ERR(prog)) {
1389 			ret = PTR_ERR(prog);
1390 			goto out;
1391 		}
1392 		if (prev)
1393 			/* Drop prev prog refcnt when swapping with new prog */
1394 			bpf_prog_put(prev);
1395 		cb->prog = prog;
1396 	}
1397 	rcu_assign_pointer(cb->callback_fn, callback_fn);
1398 out:
1399 	__bpf_spin_unlock_irqrestore(&async->lock);
1400 	return ret;
1401 }
1402 
1403 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn,
1404 	   struct bpf_prog_aux *, aux)
1405 {
1406 	return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER);
1407 }
1408 
1409 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1410 	.func		= bpf_timer_set_callback,
1411 	.gpl_only	= true,
1412 	.ret_type	= RET_INTEGER,
1413 	.arg1_type	= ARG_PTR_TO_TIMER,
1414 	.arg2_type	= ARG_PTR_TO_FUNC,
1415 };
1416 
1417 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags)
1418 {
1419 	struct bpf_hrtimer *t;
1420 	int ret = 0;
1421 	enum hrtimer_mode mode;
1422 
1423 	if (in_nmi())
1424 		return -EOPNOTSUPP;
1425 	if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN))
1426 		return -EINVAL;
1427 	__bpf_spin_lock_irqsave(&timer->lock);
1428 	t = timer->timer;
1429 	if (!t || !t->cb.prog) {
1430 		ret = -EINVAL;
1431 		goto out;
1432 	}
1433 
1434 	if (flags & BPF_F_TIMER_ABS)
1435 		mode = HRTIMER_MODE_ABS_SOFT;
1436 	else
1437 		mode = HRTIMER_MODE_REL_SOFT;
1438 
1439 	if (flags & BPF_F_TIMER_CPU_PIN)
1440 		mode |= HRTIMER_MODE_PINNED;
1441 
1442 	hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
1443 out:
1444 	__bpf_spin_unlock_irqrestore(&timer->lock);
1445 	return ret;
1446 }
1447 
1448 static const struct bpf_func_proto bpf_timer_start_proto = {
1449 	.func		= bpf_timer_start,
1450 	.gpl_only	= true,
1451 	.ret_type	= RET_INTEGER,
1452 	.arg1_type	= ARG_PTR_TO_TIMER,
1453 	.arg2_type	= ARG_ANYTHING,
1454 	.arg3_type	= ARG_ANYTHING,
1455 };
1456 
1457 static void drop_prog_refcnt(struct bpf_async_cb *async)
1458 {
1459 	struct bpf_prog *prog = async->prog;
1460 
1461 	if (prog) {
1462 		bpf_prog_put(prog);
1463 		async->prog = NULL;
1464 		rcu_assign_pointer(async->callback_fn, NULL);
1465 	}
1466 }
1467 
1468 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer)
1469 {
1470 	struct bpf_hrtimer *t, *cur_t;
1471 	bool inc = false;
1472 	int ret = 0;
1473 
1474 	if (in_nmi())
1475 		return -EOPNOTSUPP;
1476 	rcu_read_lock();
1477 	__bpf_spin_lock_irqsave(&timer->lock);
1478 	t = timer->timer;
1479 	if (!t) {
1480 		ret = -EINVAL;
1481 		goto out;
1482 	}
1483 
1484 	cur_t = this_cpu_read(hrtimer_running);
1485 	if (cur_t == t) {
1486 		/* If bpf callback_fn is trying to bpf_timer_cancel()
1487 		 * its own timer the hrtimer_cancel() will deadlock
1488 		 * since it waits for callback_fn to finish.
1489 		 */
1490 		ret = -EDEADLK;
1491 		goto out;
1492 	}
1493 
1494 	/* Only account in-flight cancellations when invoked from a timer
1495 	 * callback, since we want to avoid waiting only if other _callbacks_
1496 	 * are waiting on us, to avoid introducing lockups. Non-callback paths
1497 	 * are ok, since nobody would synchronously wait for their completion.
1498 	 */
1499 	if (!cur_t)
1500 		goto drop;
1501 	atomic_inc(&t->cancelling);
1502 	/* Need full barrier after relaxed atomic_inc */
1503 	smp_mb__after_atomic();
1504 	inc = true;
1505 	if (atomic_read(&cur_t->cancelling)) {
1506 		/* We're cancelling timer t, while some other timer callback is
1507 		 * attempting to cancel us. In such a case, it might be possible
1508 		 * that timer t belongs to the other callback, or some other
1509 		 * callback waiting upon it (creating transitive dependencies
1510 		 * upon us), and we will enter a deadlock if we continue
1511 		 * cancelling and waiting for it synchronously, since it might
1512 		 * do the same. Bail!
1513 		 */
1514 		ret = -EDEADLK;
1515 		goto out;
1516 	}
1517 drop:
1518 	drop_prog_refcnt(&t->cb);
1519 out:
1520 	__bpf_spin_unlock_irqrestore(&timer->lock);
1521 	/* Cancel the timer and wait for associated callback to finish
1522 	 * if it was running.
1523 	 */
1524 	ret = ret ?: hrtimer_cancel(&t->timer);
1525 	if (inc)
1526 		atomic_dec(&t->cancelling);
1527 	rcu_read_unlock();
1528 	return ret;
1529 }
1530 
1531 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1532 	.func		= bpf_timer_cancel,
1533 	.gpl_only	= true,
1534 	.ret_type	= RET_INTEGER,
1535 	.arg1_type	= ARG_PTR_TO_TIMER,
1536 };
1537 
1538 static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async)
1539 {
1540 	struct bpf_async_cb *cb;
1541 
1542 	/* Performance optimization: read async->cb without lock first. */
1543 	if (!READ_ONCE(async->cb))
1544 		return NULL;
1545 
1546 	__bpf_spin_lock_irqsave(&async->lock);
1547 	/* re-read it under lock */
1548 	cb = async->cb;
1549 	if (!cb)
1550 		goto out;
1551 	drop_prog_refcnt(cb);
1552 	/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1553 	 * this timer, since it won't be initialized.
1554 	 */
1555 	WRITE_ONCE(async->cb, NULL);
1556 out:
1557 	__bpf_spin_unlock_irqrestore(&async->lock);
1558 	return cb;
1559 }
1560 
1561 /* This function is called by map_delete/update_elem for individual element and
1562  * by ops->map_release_uref when the user space reference to a map reaches zero.
1563  */
1564 void bpf_timer_cancel_and_free(void *val)
1565 {
1566 	struct bpf_hrtimer *t;
1567 
1568 	t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val);
1569 
1570 	if (!t)
1571 		return;
1572 	/* We check that bpf_map_delete/update_elem() was called from timer
1573 	 * callback_fn. In such case we don't call hrtimer_cancel() (since it
1574 	 * will deadlock) and don't call hrtimer_try_to_cancel() (since it will
1575 	 * just return -1). Though callback_fn is still running on this cpu it's
1576 	 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1577 	 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1578 	 * since async->cb = NULL was already done. The timer will be
1579 	 * effectively cancelled because bpf_timer_cb() will return
1580 	 * HRTIMER_NORESTART.
1581 	 *
1582 	 * However, it is possible the timer callback_fn calling us armed the
1583 	 * timer _before_ calling us, such that failing to cancel it here will
1584 	 * cause it to possibly use struct hrtimer after freeing bpf_hrtimer.
1585 	 * Therefore, we _need_ to cancel any outstanding timers before we do
1586 	 * call_rcu, even though no more timers can be armed.
1587 	 *
1588 	 * Moreover, we need to schedule work even if timer does not belong to
1589 	 * the calling callback_fn, as on two different CPUs, we can end up in a
1590 	 * situation where both sides run in parallel, try to cancel one
1591 	 * another, and we end up waiting on both sides in hrtimer_cancel
1592 	 * without making forward progress, since timer1 depends on time2
1593 	 * callback to finish, and vice versa.
1594 	 *
1595 	 *  CPU 1 (timer1_cb)			CPU 2 (timer2_cb)
1596 	 *  bpf_timer_cancel_and_free(timer2)	bpf_timer_cancel_and_free(timer1)
1597 	 *
1598 	 * To avoid these issues, punt to workqueue context when we are in a
1599 	 * timer callback.
1600 	 */
1601 	if (this_cpu_read(hrtimer_running)) {
1602 		queue_work(system_dfl_wq, &t->cb.delete_work);
1603 		return;
1604 	}
1605 
1606 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1607 		/* If the timer is running on other CPU, also use a kworker to
1608 		 * wait for the completion of the timer instead of trying to
1609 		 * acquire a sleepable lock in hrtimer_cancel() to wait for its
1610 		 * completion.
1611 		 */
1612 		if (hrtimer_try_to_cancel(&t->timer) >= 0)
1613 			call_rcu(&t->cb.rcu, bpf_async_cb_rcu_free);
1614 		else
1615 			queue_work(system_dfl_wq, &t->cb.delete_work);
1616 	} else {
1617 		bpf_timer_delete_work(&t->cb.delete_work);
1618 	}
1619 }
1620 
1621 /* This function is called by map_delete/update_elem for individual element and
1622  * by ops->map_release_uref when the user space reference to a map reaches zero.
1623  */
1624 void bpf_wq_cancel_and_free(void *val)
1625 {
1626 	struct bpf_work *work;
1627 
1628 	BTF_TYPE_EMIT(struct bpf_wq);
1629 
1630 	work = (struct bpf_work *)__bpf_async_cancel_and_free(val);
1631 	if (!work)
1632 		return;
1633 	/* Trigger cancel of the sleepable work, but *do not* wait for
1634 	 * it to finish if it was running as we might not be in a
1635 	 * sleepable context.
1636 	 * kfree will be called once the work has finished.
1637 	 */
1638 	schedule_work(&work->delete_work);
1639 }
1640 
1641 BPF_CALL_2(bpf_kptr_xchg, void *, dst, void *, ptr)
1642 {
1643 	unsigned long *kptr = dst;
1644 
1645 	/* This helper may be inlined by verifier. */
1646 	return xchg(kptr, (unsigned long)ptr);
1647 }
1648 
1649 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1650  * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1651  * denote type that verifier will determine.
1652  */
1653 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1654 	.func         = bpf_kptr_xchg,
1655 	.gpl_only     = false,
1656 	.ret_type     = RET_PTR_TO_BTF_ID_OR_NULL,
1657 	.ret_btf_id   = BPF_PTR_POISON,
1658 	.arg1_type    = ARG_KPTR_XCHG_DEST,
1659 	.arg2_type    = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1660 	.arg2_btf_id  = BPF_PTR_POISON,
1661 };
1662 
1663 struct bpf_dynptr_file_impl {
1664 	struct freader freader;
1665 	/* 64 bit offset and size overriding 32 bit ones in bpf_dynptr_kern */
1666 	u64 offset;
1667 	u64 size;
1668 };
1669 
1670 /* Since the upper 8 bits of dynptr->size is reserved, the
1671  * maximum supported size is 2^24 - 1.
1672  */
1673 #define DYNPTR_MAX_SIZE	((1UL << 24) - 1)
1674 #define DYNPTR_TYPE_SHIFT	28
1675 #define DYNPTR_SIZE_MASK	0xFFFFFF
1676 #define DYNPTR_RDONLY_BIT	BIT(31)
1677 
1678 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1679 {
1680 	return ptr->size & DYNPTR_RDONLY_BIT;
1681 }
1682 
1683 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1684 {
1685 	ptr->size |= DYNPTR_RDONLY_BIT;
1686 }
1687 
1688 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1689 {
1690 	ptr->size |= type << DYNPTR_TYPE_SHIFT;
1691 }
1692 
1693 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1694 {
1695 	return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1696 }
1697 
1698 u64 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1699 {
1700 	if (bpf_dynptr_get_type(ptr) == BPF_DYNPTR_TYPE_FILE) {
1701 		struct bpf_dynptr_file_impl *df = ptr->data;
1702 
1703 		return df->size;
1704 	}
1705 
1706 	return ptr->size & DYNPTR_SIZE_MASK;
1707 }
1708 
1709 static void bpf_dynptr_advance_offset(struct bpf_dynptr_kern *ptr, u64 off)
1710 {
1711 	if (bpf_dynptr_get_type(ptr) == BPF_DYNPTR_TYPE_FILE) {
1712 		struct bpf_dynptr_file_impl *df = ptr->data;
1713 
1714 		df->offset += off;
1715 		return;
1716 	}
1717 	ptr->offset += off;
1718 }
1719 
1720 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u64 new_size)
1721 {
1722 	u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1723 
1724 	if (bpf_dynptr_get_type(ptr) == BPF_DYNPTR_TYPE_FILE) {
1725 		struct bpf_dynptr_file_impl *df = ptr->data;
1726 
1727 		df->size = new_size;
1728 		return;
1729 	}
1730 	ptr->size = (u32)new_size | metadata;
1731 }
1732 
1733 int bpf_dynptr_check_size(u64 size)
1734 {
1735 	return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1736 }
1737 
1738 static int bpf_file_fetch_bytes(struct bpf_dynptr_file_impl *df, u64 offset, void *buf, u64 len)
1739 {
1740 	const void *ptr;
1741 
1742 	if (!buf)
1743 		return -EINVAL;
1744 
1745 	df->freader.buf = buf;
1746 	df->freader.buf_sz = len;
1747 	ptr = freader_fetch(&df->freader, offset + df->offset, len);
1748 	if (!ptr)
1749 		return df->freader.err;
1750 
1751 	if (ptr != buf) /* Force copying into the buffer */
1752 		memcpy(buf, ptr, len);
1753 
1754 	return 0;
1755 }
1756 
1757 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1758 		     enum bpf_dynptr_type type, u32 offset, u32 size)
1759 {
1760 	ptr->data = data;
1761 	ptr->offset = offset;
1762 	ptr->size = size;
1763 	bpf_dynptr_set_type(ptr, type);
1764 }
1765 
1766 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1767 {
1768 	memset(ptr, 0, sizeof(*ptr));
1769 }
1770 
1771 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u64, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1772 {
1773 	int err;
1774 
1775 	BTF_TYPE_EMIT(struct bpf_dynptr);
1776 
1777 	err = bpf_dynptr_check_size(size);
1778 	if (err)
1779 		goto error;
1780 
1781 	/* flags is currently unsupported */
1782 	if (flags) {
1783 		err = -EINVAL;
1784 		goto error;
1785 	}
1786 
1787 	bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1788 
1789 	return 0;
1790 
1791 error:
1792 	bpf_dynptr_set_null(ptr);
1793 	return err;
1794 }
1795 
1796 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1797 	.func		= bpf_dynptr_from_mem,
1798 	.gpl_only	= false,
1799 	.ret_type	= RET_INTEGER,
1800 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1801 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1802 	.arg3_type	= ARG_ANYTHING,
1803 	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE,
1804 };
1805 
1806 static int __bpf_dynptr_read(void *dst, u64 len, const struct bpf_dynptr_kern *src,
1807 			     u64 offset, u64 flags)
1808 {
1809 	enum bpf_dynptr_type type;
1810 	int err;
1811 
1812 	if (!src->data || flags)
1813 		return -EINVAL;
1814 
1815 	err = bpf_dynptr_check_off_len(src, offset, len);
1816 	if (err)
1817 		return err;
1818 
1819 	type = bpf_dynptr_get_type(src);
1820 
1821 	switch (type) {
1822 	case BPF_DYNPTR_TYPE_LOCAL:
1823 	case BPF_DYNPTR_TYPE_RINGBUF:
1824 		/* Source and destination may possibly overlap, hence use memmove to
1825 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1826 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1827 		 */
1828 		memmove(dst, src->data + src->offset + offset, len);
1829 		return 0;
1830 	case BPF_DYNPTR_TYPE_SKB:
1831 		return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1832 	case BPF_DYNPTR_TYPE_XDP:
1833 		return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1834 	case BPF_DYNPTR_TYPE_SKB_META:
1835 		memmove(dst, bpf_skb_meta_pointer(src->data, src->offset + offset), len);
1836 		return 0;
1837 	case BPF_DYNPTR_TYPE_FILE:
1838 		return bpf_file_fetch_bytes(src->data, offset, dst, len);
1839 	default:
1840 		WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1841 		return -EFAULT;
1842 	}
1843 }
1844 
1845 BPF_CALL_5(bpf_dynptr_read, void *, dst, u64, len, const struct bpf_dynptr_kern *, src,
1846 	   u64, offset, u64, flags)
1847 {
1848 	return __bpf_dynptr_read(dst, len, src, offset, flags);
1849 }
1850 
1851 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1852 	.func		= bpf_dynptr_read,
1853 	.gpl_only	= false,
1854 	.ret_type	= RET_INTEGER,
1855 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1856 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1857 	.arg3_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1858 	.arg4_type	= ARG_ANYTHING,
1859 	.arg5_type	= ARG_ANYTHING,
1860 };
1861 
1862 int __bpf_dynptr_write(const struct bpf_dynptr_kern *dst, u64 offset, void *src,
1863 		       u64 len, u64 flags)
1864 {
1865 	enum bpf_dynptr_type type;
1866 	int err;
1867 
1868 	if (!dst->data || __bpf_dynptr_is_rdonly(dst))
1869 		return -EINVAL;
1870 
1871 	err = bpf_dynptr_check_off_len(dst, offset, len);
1872 	if (err)
1873 		return err;
1874 
1875 	type = bpf_dynptr_get_type(dst);
1876 
1877 	switch (type) {
1878 	case BPF_DYNPTR_TYPE_LOCAL:
1879 	case BPF_DYNPTR_TYPE_RINGBUF:
1880 		if (flags)
1881 			return -EINVAL;
1882 		/* Source and destination may possibly overlap, hence use memmove to
1883 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1884 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1885 		 */
1886 		memmove(dst->data + dst->offset + offset, src, len);
1887 		return 0;
1888 	case BPF_DYNPTR_TYPE_SKB:
1889 		return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1890 					     flags);
1891 	case BPF_DYNPTR_TYPE_XDP:
1892 		if (flags)
1893 			return -EINVAL;
1894 		return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1895 	case BPF_DYNPTR_TYPE_SKB_META:
1896 		if (flags)
1897 			return -EINVAL;
1898 		memmove(bpf_skb_meta_pointer(dst->data, dst->offset + offset), src, len);
1899 		return 0;
1900 	default:
1901 		WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1902 		return -EFAULT;
1903 	}
1904 }
1905 
1906 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u64, offset, void *, src,
1907 	   u64, len, u64, flags)
1908 {
1909 	return __bpf_dynptr_write(dst, offset, src, len, flags);
1910 }
1911 
1912 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1913 	.func		= bpf_dynptr_write,
1914 	.gpl_only	= false,
1915 	.ret_type	= RET_INTEGER,
1916 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1917 	.arg2_type	= ARG_ANYTHING,
1918 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1919 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1920 	.arg5_type	= ARG_ANYTHING,
1921 };
1922 
1923 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u64, offset, u64, len)
1924 {
1925 	enum bpf_dynptr_type type;
1926 	int err;
1927 
1928 	if (!ptr->data)
1929 		return 0;
1930 
1931 	err = bpf_dynptr_check_off_len(ptr, offset, len);
1932 	if (err)
1933 		return 0;
1934 
1935 	if (__bpf_dynptr_is_rdonly(ptr))
1936 		return 0;
1937 
1938 	type = bpf_dynptr_get_type(ptr);
1939 
1940 	switch (type) {
1941 	case BPF_DYNPTR_TYPE_LOCAL:
1942 	case BPF_DYNPTR_TYPE_RINGBUF:
1943 		return (unsigned long)(ptr->data + ptr->offset + offset);
1944 	case BPF_DYNPTR_TYPE_SKB:
1945 	case BPF_DYNPTR_TYPE_XDP:
1946 	case BPF_DYNPTR_TYPE_SKB_META:
1947 		/* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1948 		return 0;
1949 	default:
1950 		WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1951 		return 0;
1952 	}
1953 }
1954 
1955 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1956 	.func		= bpf_dynptr_data,
1957 	.gpl_only	= false,
1958 	.ret_type	= RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1959 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1960 	.arg2_type	= ARG_ANYTHING,
1961 	.arg3_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
1962 };
1963 
1964 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1965 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1966 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1967 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1968 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1969 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1970 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1971 const struct bpf_func_proto bpf_perf_event_read_proto __weak;
1972 const struct bpf_func_proto bpf_send_signal_proto __weak;
1973 const struct bpf_func_proto bpf_send_signal_thread_proto __weak;
1974 const struct bpf_func_proto bpf_get_task_stack_sleepable_proto __weak;
1975 const struct bpf_func_proto bpf_get_task_stack_proto __weak;
1976 const struct bpf_func_proto bpf_get_branch_snapshot_proto __weak;
1977 
1978 const struct bpf_func_proto *
1979 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1980 {
1981 	switch (func_id) {
1982 	case BPF_FUNC_map_lookup_elem:
1983 		return &bpf_map_lookup_elem_proto;
1984 	case BPF_FUNC_map_update_elem:
1985 		return &bpf_map_update_elem_proto;
1986 	case BPF_FUNC_map_delete_elem:
1987 		return &bpf_map_delete_elem_proto;
1988 	case BPF_FUNC_map_push_elem:
1989 		return &bpf_map_push_elem_proto;
1990 	case BPF_FUNC_map_pop_elem:
1991 		return &bpf_map_pop_elem_proto;
1992 	case BPF_FUNC_map_peek_elem:
1993 		return &bpf_map_peek_elem_proto;
1994 	case BPF_FUNC_map_lookup_percpu_elem:
1995 		return &bpf_map_lookup_percpu_elem_proto;
1996 	case BPF_FUNC_get_prandom_u32:
1997 		return &bpf_get_prandom_u32_proto;
1998 	case BPF_FUNC_get_smp_processor_id:
1999 		return &bpf_get_raw_smp_processor_id_proto;
2000 	case BPF_FUNC_get_numa_node_id:
2001 		return &bpf_get_numa_node_id_proto;
2002 	case BPF_FUNC_tail_call:
2003 		return &bpf_tail_call_proto;
2004 	case BPF_FUNC_ktime_get_ns:
2005 		return &bpf_ktime_get_ns_proto;
2006 	case BPF_FUNC_ktime_get_boot_ns:
2007 		return &bpf_ktime_get_boot_ns_proto;
2008 	case BPF_FUNC_ktime_get_tai_ns:
2009 		return &bpf_ktime_get_tai_ns_proto;
2010 	case BPF_FUNC_ringbuf_output:
2011 		return &bpf_ringbuf_output_proto;
2012 	case BPF_FUNC_ringbuf_reserve:
2013 		return &bpf_ringbuf_reserve_proto;
2014 	case BPF_FUNC_ringbuf_submit:
2015 		return &bpf_ringbuf_submit_proto;
2016 	case BPF_FUNC_ringbuf_discard:
2017 		return &bpf_ringbuf_discard_proto;
2018 	case BPF_FUNC_ringbuf_query:
2019 		return &bpf_ringbuf_query_proto;
2020 	case BPF_FUNC_strncmp:
2021 		return &bpf_strncmp_proto;
2022 	case BPF_FUNC_strtol:
2023 		return &bpf_strtol_proto;
2024 	case BPF_FUNC_strtoul:
2025 		return &bpf_strtoul_proto;
2026 	case BPF_FUNC_get_current_pid_tgid:
2027 		return &bpf_get_current_pid_tgid_proto;
2028 	case BPF_FUNC_get_ns_current_pid_tgid:
2029 		return &bpf_get_ns_current_pid_tgid_proto;
2030 	case BPF_FUNC_get_current_uid_gid:
2031 		return &bpf_get_current_uid_gid_proto;
2032 	default:
2033 		break;
2034 	}
2035 
2036 	if (!bpf_token_capable(prog->aux->token, CAP_BPF))
2037 		return NULL;
2038 
2039 	switch (func_id) {
2040 	case BPF_FUNC_spin_lock:
2041 		return &bpf_spin_lock_proto;
2042 	case BPF_FUNC_spin_unlock:
2043 		return &bpf_spin_unlock_proto;
2044 	case BPF_FUNC_jiffies64:
2045 		return &bpf_jiffies64_proto;
2046 	case BPF_FUNC_per_cpu_ptr:
2047 		return &bpf_per_cpu_ptr_proto;
2048 	case BPF_FUNC_this_cpu_ptr:
2049 		return &bpf_this_cpu_ptr_proto;
2050 	case BPF_FUNC_timer_init:
2051 		return &bpf_timer_init_proto;
2052 	case BPF_FUNC_timer_set_callback:
2053 		return &bpf_timer_set_callback_proto;
2054 	case BPF_FUNC_timer_start:
2055 		return &bpf_timer_start_proto;
2056 	case BPF_FUNC_timer_cancel:
2057 		return &bpf_timer_cancel_proto;
2058 	case BPF_FUNC_kptr_xchg:
2059 		return &bpf_kptr_xchg_proto;
2060 	case BPF_FUNC_for_each_map_elem:
2061 		return &bpf_for_each_map_elem_proto;
2062 	case BPF_FUNC_loop:
2063 		return &bpf_loop_proto;
2064 	case BPF_FUNC_user_ringbuf_drain:
2065 		return &bpf_user_ringbuf_drain_proto;
2066 	case BPF_FUNC_ringbuf_reserve_dynptr:
2067 		return &bpf_ringbuf_reserve_dynptr_proto;
2068 	case BPF_FUNC_ringbuf_submit_dynptr:
2069 		return &bpf_ringbuf_submit_dynptr_proto;
2070 	case BPF_FUNC_ringbuf_discard_dynptr:
2071 		return &bpf_ringbuf_discard_dynptr_proto;
2072 	case BPF_FUNC_dynptr_from_mem:
2073 		return &bpf_dynptr_from_mem_proto;
2074 	case BPF_FUNC_dynptr_read:
2075 		return &bpf_dynptr_read_proto;
2076 	case BPF_FUNC_dynptr_write:
2077 		return &bpf_dynptr_write_proto;
2078 	case BPF_FUNC_dynptr_data:
2079 		return &bpf_dynptr_data_proto;
2080 #ifdef CONFIG_CGROUPS
2081 	case BPF_FUNC_cgrp_storage_get:
2082 		return &bpf_cgrp_storage_get_proto;
2083 	case BPF_FUNC_cgrp_storage_delete:
2084 		return &bpf_cgrp_storage_delete_proto;
2085 	case BPF_FUNC_get_current_cgroup_id:
2086 		return &bpf_get_current_cgroup_id_proto;
2087 	case BPF_FUNC_get_current_ancestor_cgroup_id:
2088 		return &bpf_get_current_ancestor_cgroup_id_proto;
2089 	case BPF_FUNC_current_task_under_cgroup:
2090 		return &bpf_current_task_under_cgroup_proto;
2091 #endif
2092 #ifdef CONFIG_CGROUP_NET_CLASSID
2093 	case BPF_FUNC_get_cgroup_classid:
2094 		return &bpf_get_cgroup_classid_curr_proto;
2095 #endif
2096 	case BPF_FUNC_task_storage_get:
2097 		if (bpf_prog_check_recur(prog))
2098 			return &bpf_task_storage_get_recur_proto;
2099 		return &bpf_task_storage_get_proto;
2100 	case BPF_FUNC_task_storage_delete:
2101 		if (bpf_prog_check_recur(prog))
2102 			return &bpf_task_storage_delete_recur_proto;
2103 		return &bpf_task_storage_delete_proto;
2104 	default:
2105 		break;
2106 	}
2107 
2108 	if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
2109 		return NULL;
2110 
2111 	switch (func_id) {
2112 	case BPF_FUNC_trace_printk:
2113 		return bpf_get_trace_printk_proto();
2114 	case BPF_FUNC_get_current_task:
2115 		return &bpf_get_current_task_proto;
2116 	case BPF_FUNC_get_current_task_btf:
2117 		return &bpf_get_current_task_btf_proto;
2118 	case BPF_FUNC_get_current_comm:
2119 		return &bpf_get_current_comm_proto;
2120 	case BPF_FUNC_probe_read_user:
2121 		return &bpf_probe_read_user_proto;
2122 	case BPF_FUNC_probe_read_kernel:
2123 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2124 		       NULL : &bpf_probe_read_kernel_proto;
2125 	case BPF_FUNC_probe_read_user_str:
2126 		return &bpf_probe_read_user_str_proto;
2127 	case BPF_FUNC_probe_read_kernel_str:
2128 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2129 		       NULL : &bpf_probe_read_kernel_str_proto;
2130 	case BPF_FUNC_copy_from_user:
2131 		return &bpf_copy_from_user_proto;
2132 	case BPF_FUNC_copy_from_user_task:
2133 		return &bpf_copy_from_user_task_proto;
2134 	case BPF_FUNC_snprintf_btf:
2135 		return &bpf_snprintf_btf_proto;
2136 	case BPF_FUNC_snprintf:
2137 		return &bpf_snprintf_proto;
2138 	case BPF_FUNC_task_pt_regs:
2139 		return &bpf_task_pt_regs_proto;
2140 	case BPF_FUNC_trace_vprintk:
2141 		return bpf_get_trace_vprintk_proto();
2142 	case BPF_FUNC_perf_event_read_value:
2143 		return bpf_get_perf_event_read_value_proto();
2144 	case BPF_FUNC_perf_event_read:
2145 		return &bpf_perf_event_read_proto;
2146 	case BPF_FUNC_send_signal:
2147 		return &bpf_send_signal_proto;
2148 	case BPF_FUNC_send_signal_thread:
2149 		return &bpf_send_signal_thread_proto;
2150 	case BPF_FUNC_get_task_stack:
2151 		return prog->sleepable ? &bpf_get_task_stack_sleepable_proto
2152 				       : &bpf_get_task_stack_proto;
2153 	case BPF_FUNC_get_branch_snapshot:
2154 		return &bpf_get_branch_snapshot_proto;
2155 	case BPF_FUNC_find_vma:
2156 		return &bpf_find_vma_proto;
2157 	default:
2158 		return NULL;
2159 	}
2160 }
2161 EXPORT_SYMBOL_GPL(bpf_base_func_proto);
2162 
2163 void bpf_list_head_free(const struct btf_field *field, void *list_head,
2164 			struct bpf_spin_lock *spin_lock)
2165 {
2166 	struct list_head *head = list_head, *orig_head = list_head;
2167 
2168 	BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
2169 	BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
2170 
2171 	/* Do the actual list draining outside the lock to not hold the lock for
2172 	 * too long, and also prevent deadlocks if tracing programs end up
2173 	 * executing on entry/exit of functions called inside the critical
2174 	 * section, and end up doing map ops that call bpf_list_head_free for
2175 	 * the same map value again.
2176 	 */
2177 	__bpf_spin_lock_irqsave(spin_lock);
2178 	if (!head->next || list_empty(head))
2179 		goto unlock;
2180 	head = head->next;
2181 unlock:
2182 	INIT_LIST_HEAD(orig_head);
2183 	__bpf_spin_unlock_irqrestore(spin_lock);
2184 
2185 	while (head != orig_head) {
2186 		void *obj = head;
2187 
2188 		obj -= field->graph_root.node_offset;
2189 		head = head->next;
2190 		/* The contained type can also have resources, including a
2191 		 * bpf_list_head which needs to be freed.
2192 		 */
2193 		__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2194 	}
2195 }
2196 
2197 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
2198  * 'rb_node *', so field name of rb_node within containing struct is not
2199  * needed.
2200  *
2201  * Since bpf_rb_tree's node type has a corresponding struct btf_field with
2202  * graph_root.node_offset, it's not necessary to know field name
2203  * or type of node struct
2204  */
2205 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
2206 	for (pos = rb_first_postorder(root); \
2207 	    pos && ({ n = rb_next_postorder(pos); 1; }); \
2208 	    pos = n)
2209 
2210 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
2211 		      struct bpf_spin_lock *spin_lock)
2212 {
2213 	struct rb_root_cached orig_root, *root = rb_root;
2214 	struct rb_node *pos, *n;
2215 	void *obj;
2216 
2217 	BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
2218 	BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
2219 
2220 	__bpf_spin_lock_irqsave(spin_lock);
2221 	orig_root = *root;
2222 	*root = RB_ROOT_CACHED;
2223 	__bpf_spin_unlock_irqrestore(spin_lock);
2224 
2225 	bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
2226 		obj = pos;
2227 		obj -= field->graph_root.node_offset;
2228 
2229 
2230 		__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2231 	}
2232 }
2233 
2234 __bpf_kfunc_start_defs();
2235 
2236 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2237 {
2238 	struct btf_struct_meta *meta = meta__ign;
2239 	u64 size = local_type_id__k;
2240 	void *p;
2241 
2242 	p = bpf_mem_alloc(&bpf_global_ma, size);
2243 	if (!p)
2244 		return NULL;
2245 	if (meta)
2246 		bpf_obj_init(meta->record, p);
2247 	return p;
2248 }
2249 
2250 __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2251 {
2252 	u64 size = local_type_id__k;
2253 
2254 	/* The verifier has ensured that meta__ign must be NULL */
2255 	return bpf_mem_alloc(&bpf_global_percpu_ma, size);
2256 }
2257 
2258 /* Must be called under migrate_disable(), as required by bpf_mem_free */
2259 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu)
2260 {
2261 	struct bpf_mem_alloc *ma;
2262 
2263 	if (rec && rec->refcount_off >= 0 &&
2264 	    !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
2265 		/* Object is refcounted and refcount_dec didn't result in 0
2266 		 * refcount. Return without freeing the object
2267 		 */
2268 		return;
2269 	}
2270 
2271 	if (rec)
2272 		bpf_obj_free_fields(rec, p);
2273 
2274 	if (percpu)
2275 		ma = &bpf_global_percpu_ma;
2276 	else
2277 		ma = &bpf_global_ma;
2278 	bpf_mem_free_rcu(ma, p);
2279 }
2280 
2281 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
2282 {
2283 	struct btf_struct_meta *meta = meta__ign;
2284 	void *p = p__alloc;
2285 
2286 	__bpf_obj_drop_impl(p, meta ? meta->record : NULL, false);
2287 }
2288 
2289 __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign)
2290 {
2291 	/* The verifier has ensured that meta__ign must be NULL */
2292 	bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc);
2293 }
2294 
2295 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
2296 {
2297 	struct btf_struct_meta *meta = meta__ign;
2298 	struct bpf_refcount *ref;
2299 
2300 	/* Could just cast directly to refcount_t *, but need some code using
2301 	 * bpf_refcount type so that it is emitted in vmlinux BTF
2302 	 */
2303 	ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
2304 	if (!refcount_inc_not_zero((refcount_t *)ref))
2305 		return NULL;
2306 
2307 	/* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
2308 	 * in verifier.c
2309 	 */
2310 	return (void *)p__refcounted_kptr;
2311 }
2312 
2313 static int __bpf_list_add(struct bpf_list_node_kern *node,
2314 			  struct bpf_list_head *head,
2315 			  bool tail, struct btf_record *rec, u64 off)
2316 {
2317 	struct list_head *n = &node->list_head, *h = (void *)head;
2318 
2319 	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2320 	 * called on its fields, so init here
2321 	 */
2322 	if (unlikely(!h->next))
2323 		INIT_LIST_HEAD(h);
2324 
2325 	/* node->owner != NULL implies !list_empty(n), no need to separately
2326 	 * check the latter
2327 	 */
2328 	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2329 		/* Only called from BPF prog, no need to migrate_disable */
2330 		__bpf_obj_drop_impl((void *)n - off, rec, false);
2331 		return -EINVAL;
2332 	}
2333 
2334 	tail ? list_add_tail(n, h) : list_add(n, h);
2335 	WRITE_ONCE(node->owner, head);
2336 
2337 	return 0;
2338 }
2339 
2340 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
2341 					 struct bpf_list_node *node,
2342 					 void *meta__ign, u64 off)
2343 {
2344 	struct bpf_list_node_kern *n = (void *)node;
2345 	struct btf_struct_meta *meta = meta__ign;
2346 
2347 	return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
2348 }
2349 
2350 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
2351 					struct bpf_list_node *node,
2352 					void *meta__ign, u64 off)
2353 {
2354 	struct bpf_list_node_kern *n = (void *)node;
2355 	struct btf_struct_meta *meta = meta__ign;
2356 
2357 	return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
2358 }
2359 
2360 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
2361 {
2362 	struct list_head *n, *h = (void *)head;
2363 	struct bpf_list_node_kern *node;
2364 
2365 	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2366 	 * called on its fields, so init here
2367 	 */
2368 	if (unlikely(!h->next))
2369 		INIT_LIST_HEAD(h);
2370 	if (list_empty(h))
2371 		return NULL;
2372 
2373 	n = tail ? h->prev : h->next;
2374 	node = container_of(n, struct bpf_list_node_kern, list_head);
2375 	if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2376 		return NULL;
2377 
2378 	list_del_init(n);
2379 	WRITE_ONCE(node->owner, NULL);
2380 	return (struct bpf_list_node *)n;
2381 }
2382 
2383 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2384 {
2385 	return __bpf_list_del(head, false);
2386 }
2387 
2388 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2389 {
2390 	return __bpf_list_del(head, true);
2391 }
2392 
2393 __bpf_kfunc struct bpf_list_node *bpf_list_front(struct bpf_list_head *head)
2394 {
2395 	struct list_head *h = (struct list_head *)head;
2396 
2397 	if (list_empty(h) || unlikely(!h->next))
2398 		return NULL;
2399 
2400 	return (struct bpf_list_node *)h->next;
2401 }
2402 
2403 __bpf_kfunc struct bpf_list_node *bpf_list_back(struct bpf_list_head *head)
2404 {
2405 	struct list_head *h = (struct list_head *)head;
2406 
2407 	if (list_empty(h) || unlikely(!h->next))
2408 		return NULL;
2409 
2410 	return (struct bpf_list_node *)h->prev;
2411 }
2412 
2413 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2414 						  struct bpf_rb_node *node)
2415 {
2416 	struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2417 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2418 	struct rb_node *n = &node_internal->rb_node;
2419 
2420 	/* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2421 	 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2422 	 */
2423 	if (READ_ONCE(node_internal->owner) != root)
2424 		return NULL;
2425 
2426 	rb_erase_cached(n, r);
2427 	RB_CLEAR_NODE(n);
2428 	WRITE_ONCE(node_internal->owner, NULL);
2429 	return (struct bpf_rb_node *)n;
2430 }
2431 
2432 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2433  * program
2434  */
2435 static int __bpf_rbtree_add(struct bpf_rb_root *root,
2436 			    struct bpf_rb_node_kern *node,
2437 			    void *less, struct btf_record *rec, u64 off)
2438 {
2439 	struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2440 	struct rb_node *parent = NULL, *n = &node->rb_node;
2441 	bpf_callback_t cb = (bpf_callback_t)less;
2442 	bool leftmost = true;
2443 
2444 	/* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2445 	 * check the latter
2446 	 */
2447 	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2448 		/* Only called from BPF prog, no need to migrate_disable */
2449 		__bpf_obj_drop_impl((void *)n - off, rec, false);
2450 		return -EINVAL;
2451 	}
2452 
2453 	while (*link) {
2454 		parent = *link;
2455 		if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2456 			link = &parent->rb_left;
2457 		} else {
2458 			link = &parent->rb_right;
2459 			leftmost = false;
2460 		}
2461 	}
2462 
2463 	rb_link_node(n, parent, link);
2464 	rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
2465 	WRITE_ONCE(node->owner, root);
2466 	return 0;
2467 }
2468 
2469 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2470 				    bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2471 				    void *meta__ign, u64 off)
2472 {
2473 	struct btf_struct_meta *meta = meta__ign;
2474 	struct bpf_rb_node_kern *n = (void *)node;
2475 
2476 	return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
2477 }
2478 
2479 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2480 {
2481 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2482 
2483 	return (struct bpf_rb_node *)rb_first_cached(r);
2484 }
2485 
2486 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_root(struct bpf_rb_root *root)
2487 {
2488 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2489 
2490 	return (struct bpf_rb_node *)r->rb_root.rb_node;
2491 }
2492 
2493 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_left(struct bpf_rb_root *root, struct bpf_rb_node *node)
2494 {
2495 	struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2496 
2497 	if (READ_ONCE(node_internal->owner) != root)
2498 		return NULL;
2499 
2500 	return (struct bpf_rb_node *)node_internal->rb_node.rb_left;
2501 }
2502 
2503 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_right(struct bpf_rb_root *root, struct bpf_rb_node *node)
2504 {
2505 	struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2506 
2507 	if (READ_ONCE(node_internal->owner) != root)
2508 		return NULL;
2509 
2510 	return (struct bpf_rb_node *)node_internal->rb_node.rb_right;
2511 }
2512 
2513 /**
2514  * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2515  * kfunc which is not stored in a map as a kptr, must be released by calling
2516  * bpf_task_release().
2517  * @p: The task on which a reference is being acquired.
2518  */
2519 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2520 {
2521 	if (refcount_inc_not_zero(&p->rcu_users))
2522 		return p;
2523 	return NULL;
2524 }
2525 
2526 /**
2527  * bpf_task_release - Release the reference acquired on a task.
2528  * @p: The task on which a reference is being released.
2529  */
2530 __bpf_kfunc void bpf_task_release(struct task_struct *p)
2531 {
2532 	put_task_struct_rcu_user(p);
2533 }
2534 
2535 __bpf_kfunc void bpf_task_release_dtor(void *p)
2536 {
2537 	put_task_struct_rcu_user(p);
2538 }
2539 CFI_NOSEAL(bpf_task_release_dtor);
2540 
2541 #ifdef CONFIG_CGROUPS
2542 /**
2543  * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2544  * this kfunc which is not stored in a map as a kptr, must be released by
2545  * calling bpf_cgroup_release().
2546  * @cgrp: The cgroup on which a reference is being acquired.
2547  */
2548 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2549 {
2550 	return cgroup_tryget(cgrp) ? cgrp : NULL;
2551 }
2552 
2553 /**
2554  * bpf_cgroup_release - Release the reference acquired on a cgroup.
2555  * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2556  * not be freed until the current grace period has ended, even if its refcount
2557  * drops to 0.
2558  * @cgrp: The cgroup on which a reference is being released.
2559  */
2560 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2561 {
2562 	cgroup_put(cgrp);
2563 }
2564 
2565 __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp)
2566 {
2567 	cgroup_put(cgrp);
2568 }
2569 CFI_NOSEAL(bpf_cgroup_release_dtor);
2570 
2571 /**
2572  * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2573  * array. A cgroup returned by this kfunc which is not subsequently stored in a
2574  * map, must be released by calling bpf_cgroup_release().
2575  * @cgrp: The cgroup for which we're performing a lookup.
2576  * @level: The level of ancestor to look up.
2577  */
2578 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2579 {
2580 	struct cgroup *ancestor;
2581 
2582 	if (level > cgrp->level || level < 0)
2583 		return NULL;
2584 
2585 	/* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2586 	ancestor = cgrp->ancestors[level];
2587 	if (!cgroup_tryget(ancestor))
2588 		return NULL;
2589 	return ancestor;
2590 }
2591 
2592 /**
2593  * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2594  * kfunc which is not subsequently stored in a map, must be released by calling
2595  * bpf_cgroup_release().
2596  * @cgid: cgroup id.
2597  */
2598 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2599 {
2600 	struct cgroup *cgrp;
2601 
2602 	cgrp = __cgroup_get_from_id(cgid);
2603 	if (IS_ERR(cgrp))
2604 		return NULL;
2605 	return cgrp;
2606 }
2607 
2608 /**
2609  * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2610  * task's membership of cgroup ancestry.
2611  * @task: the task to be tested
2612  * @ancestor: possible ancestor of @task's cgroup
2613  *
2614  * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2615  * It follows all the same rules as cgroup_is_descendant, and only applies
2616  * to the default hierarchy.
2617  */
2618 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2619 				       struct cgroup *ancestor)
2620 {
2621 	long ret;
2622 
2623 	rcu_read_lock();
2624 	ret = task_under_cgroup_hierarchy(task, ancestor);
2625 	rcu_read_unlock();
2626 	return ret;
2627 }
2628 
2629 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
2630 {
2631 	struct bpf_array *array = container_of(map, struct bpf_array, map);
2632 	struct cgroup *cgrp;
2633 
2634 	if (unlikely(idx >= array->map.max_entries))
2635 		return -E2BIG;
2636 
2637 	cgrp = READ_ONCE(array->ptrs[idx]);
2638 	if (unlikely(!cgrp))
2639 		return -EAGAIN;
2640 
2641 	return task_under_cgroup_hierarchy(current, cgrp);
2642 }
2643 
2644 const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
2645 	.func           = bpf_current_task_under_cgroup,
2646 	.gpl_only       = false,
2647 	.ret_type       = RET_INTEGER,
2648 	.arg1_type      = ARG_CONST_MAP_PTR,
2649 	.arg2_type      = ARG_ANYTHING,
2650 };
2651 
2652 /**
2653  * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a
2654  * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
2655  * hierarchy ID.
2656  * @task: The target task
2657  * @hierarchy_id: The ID of a cgroup1 hierarchy
2658  *
2659  * On success, the cgroup is returen. On failure, NULL is returned.
2660  */
2661 __bpf_kfunc struct cgroup *
2662 bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id)
2663 {
2664 	struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id);
2665 
2666 	if (IS_ERR(cgrp))
2667 		return NULL;
2668 	return cgrp;
2669 }
2670 #endif /* CONFIG_CGROUPS */
2671 
2672 /**
2673  * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2674  * in the root pid namespace idr. If a task is returned, it must either be
2675  * stored in a map, or released with bpf_task_release().
2676  * @pid: The pid of the task being looked up.
2677  */
2678 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2679 {
2680 	struct task_struct *p;
2681 
2682 	rcu_read_lock();
2683 	p = find_task_by_pid_ns(pid, &init_pid_ns);
2684 	if (p)
2685 		p = bpf_task_acquire(p);
2686 	rcu_read_unlock();
2687 
2688 	return p;
2689 }
2690 
2691 /**
2692  * bpf_task_from_vpid - Find a struct task_struct from its vpid by looking it up
2693  * in the pid namespace of the current task. If a task is returned, it must
2694  * either be stored in a map, or released with bpf_task_release().
2695  * @vpid: The vpid of the task being looked up.
2696  */
2697 __bpf_kfunc struct task_struct *bpf_task_from_vpid(s32 vpid)
2698 {
2699 	struct task_struct *p;
2700 
2701 	rcu_read_lock();
2702 	p = find_task_by_vpid(vpid);
2703 	if (p)
2704 		p = bpf_task_acquire(p);
2705 	rcu_read_unlock();
2706 
2707 	return p;
2708 }
2709 
2710 /**
2711  * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2712  * @p: The dynptr whose data slice to retrieve
2713  * @offset: Offset into the dynptr
2714  * @buffer__opt: User-provided buffer to copy contents into.  May be NULL
2715  * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2716  *               length of the requested slice. This must be a constant.
2717  *
2718  * For non-skb and non-xdp type dynptrs, there is no difference between
2719  * bpf_dynptr_slice and bpf_dynptr_data.
2720  *
2721  *  If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2722  *
2723  * If the intention is to write to the data slice, please use
2724  * bpf_dynptr_slice_rdwr.
2725  *
2726  * The user must check that the returned pointer is not null before using it.
2727  *
2728  * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2729  * does not change the underlying packet data pointers, so a call to
2730  * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2731  * the bpf program.
2732  *
2733  * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2734  * data slice (can be either direct pointer to the data or a pointer to the user
2735  * provided buffer, with its contents containing the data, if unable to obtain
2736  * direct pointer)
2737  */
2738 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u64 offset,
2739 				   void *buffer__opt, u64 buffer__szk)
2740 {
2741 	const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2742 	enum bpf_dynptr_type type;
2743 	u64 len = buffer__szk;
2744 	int err;
2745 
2746 	if (!ptr->data)
2747 		return NULL;
2748 
2749 	err = bpf_dynptr_check_off_len(ptr, offset, len);
2750 	if (err)
2751 		return NULL;
2752 
2753 	type = bpf_dynptr_get_type(ptr);
2754 
2755 	switch (type) {
2756 	case BPF_DYNPTR_TYPE_LOCAL:
2757 	case BPF_DYNPTR_TYPE_RINGBUF:
2758 		return ptr->data + ptr->offset + offset;
2759 	case BPF_DYNPTR_TYPE_SKB:
2760 		if (buffer__opt)
2761 			return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
2762 		else
2763 			return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
2764 	case BPF_DYNPTR_TYPE_XDP:
2765 	{
2766 		void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2767 		if (!IS_ERR_OR_NULL(xdp_ptr))
2768 			return xdp_ptr;
2769 
2770 		if (!buffer__opt)
2771 			return NULL;
2772 		bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
2773 		return buffer__opt;
2774 	}
2775 	case BPF_DYNPTR_TYPE_SKB_META:
2776 		return bpf_skb_meta_pointer(ptr->data, ptr->offset + offset);
2777 	case BPF_DYNPTR_TYPE_FILE:
2778 		err = bpf_file_fetch_bytes(ptr->data, offset, buffer__opt, buffer__szk);
2779 		return err ? NULL : buffer__opt;
2780 	default:
2781 		WARN_ONCE(true, "unknown dynptr type %d\n", type);
2782 		return NULL;
2783 	}
2784 }
2785 
2786 /**
2787  * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2788  * @p: The dynptr whose data slice to retrieve
2789  * @offset: Offset into the dynptr
2790  * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2791  * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2792  *               length of the requested slice. This must be a constant.
2793  *
2794  * For non-skb and non-xdp type dynptrs, there is no difference between
2795  * bpf_dynptr_slice and bpf_dynptr_data.
2796  *
2797  * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2798  *
2799  * The returned pointer is writable and may point to either directly the dynptr
2800  * data at the requested offset or to the buffer if unable to obtain a direct
2801  * data pointer to (example: the requested slice is to the paged area of an skb
2802  * packet). In the case where the returned pointer is to the buffer, the user
2803  * is responsible for persisting writes through calling bpf_dynptr_write(). This
2804  * usually looks something like this pattern:
2805  *
2806  * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2807  * if (!eth)
2808  *	return TC_ACT_SHOT;
2809  *
2810  * // mutate eth header //
2811  *
2812  * if (eth == buffer)
2813  *	bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2814  *
2815  * Please note that, as in the example above, the user must check that the
2816  * returned pointer is not null before using it.
2817  *
2818  * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2819  * does not change the underlying packet data pointers, so a call to
2820  * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2821  * the bpf program.
2822  *
2823  * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2824  * data slice (can be either direct pointer to the data or a pointer to the user
2825  * provided buffer, with its contents containing the data, if unable to obtain
2826  * direct pointer)
2827  */
2828 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u64 offset,
2829 					void *buffer__opt, u64 buffer__szk)
2830 {
2831 	const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2832 
2833 	if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2834 		return NULL;
2835 
2836 	/* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2837 	 *
2838 	 * For skb-type dynptrs, it is safe to write into the returned pointer
2839 	 * if the bpf program allows skb data writes. There are two possibilities
2840 	 * that may occur when calling bpf_dynptr_slice_rdwr:
2841 	 *
2842 	 * 1) The requested slice is in the head of the skb. In this case, the
2843 	 * returned pointer is directly to skb data, and if the skb is cloned, the
2844 	 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2845 	 * The pointer can be directly written into.
2846 	 *
2847 	 * 2) Some portion of the requested slice is in the paged buffer area.
2848 	 * In this case, the requested data will be copied out into the buffer
2849 	 * and the returned pointer will be a pointer to the buffer. The skb
2850 	 * will not be pulled. To persist the write, the user will need to call
2851 	 * bpf_dynptr_write(), which will pull the skb and commit the write.
2852 	 *
2853 	 * Similarly for xdp programs, if the requested slice is not across xdp
2854 	 * fragments, then a direct pointer will be returned, otherwise the data
2855 	 * will be copied out into the buffer and the user will need to call
2856 	 * bpf_dynptr_write() to commit changes.
2857 	 */
2858 	return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk);
2859 }
2860 
2861 __bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u64 start, u64 end)
2862 {
2863 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2864 	u64 size;
2865 
2866 	if (!ptr->data || start > end)
2867 		return -EINVAL;
2868 
2869 	size = __bpf_dynptr_size(ptr);
2870 
2871 	if (start > size || end > size)
2872 		return -ERANGE;
2873 
2874 	bpf_dynptr_advance_offset(ptr, start);
2875 	bpf_dynptr_set_size(ptr, end - start);
2876 
2877 	return 0;
2878 }
2879 
2880 __bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p)
2881 {
2882 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2883 
2884 	return !ptr->data;
2885 }
2886 
2887 __bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p)
2888 {
2889 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2890 
2891 	if (!ptr->data)
2892 		return false;
2893 
2894 	return __bpf_dynptr_is_rdonly(ptr);
2895 }
2896 
2897 __bpf_kfunc u64 bpf_dynptr_size(const struct bpf_dynptr *p)
2898 {
2899 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2900 
2901 	if (!ptr->data)
2902 		return -EINVAL;
2903 
2904 	return __bpf_dynptr_size(ptr);
2905 }
2906 
2907 __bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p,
2908 				 struct bpf_dynptr *clone__uninit)
2909 {
2910 	struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit;
2911 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2912 
2913 	if (!ptr->data) {
2914 		bpf_dynptr_set_null(clone);
2915 		return -EINVAL;
2916 	}
2917 
2918 	*clone = *ptr;
2919 
2920 	return 0;
2921 }
2922 
2923 /**
2924  * bpf_dynptr_copy() - Copy data from one dynptr to another.
2925  * @dst_ptr: Destination dynptr - where data should be copied to
2926  * @dst_off: Offset into the destination dynptr
2927  * @src_ptr: Source dynptr - where data should be copied from
2928  * @src_off: Offset into the source dynptr
2929  * @size: Length of the data to copy from source to destination
2930  *
2931  * Copies data from source dynptr to destination dynptr.
2932  * Returns 0 on success; negative error, otherwise.
2933  */
2934 __bpf_kfunc int bpf_dynptr_copy(struct bpf_dynptr *dst_ptr, u64 dst_off,
2935 				struct bpf_dynptr *src_ptr, u64 src_off, u64 size)
2936 {
2937 	struct bpf_dynptr_kern *dst = (struct bpf_dynptr_kern *)dst_ptr;
2938 	struct bpf_dynptr_kern *src = (struct bpf_dynptr_kern *)src_ptr;
2939 	void *src_slice, *dst_slice;
2940 	char buf[256];
2941 	u64 off;
2942 
2943 	src_slice = bpf_dynptr_slice(src_ptr, src_off, NULL, size);
2944 	dst_slice = bpf_dynptr_slice_rdwr(dst_ptr, dst_off, NULL, size);
2945 
2946 	if (src_slice && dst_slice) {
2947 		memmove(dst_slice, src_slice, size);
2948 		return 0;
2949 	}
2950 
2951 	if (src_slice)
2952 		return __bpf_dynptr_write(dst, dst_off, src_slice, size, 0);
2953 
2954 	if (dst_slice)
2955 		return __bpf_dynptr_read(dst_slice, size, src, src_off, 0);
2956 
2957 	if (bpf_dynptr_check_off_len(dst, dst_off, size) ||
2958 	    bpf_dynptr_check_off_len(src, src_off, size))
2959 		return -E2BIG;
2960 
2961 	off = 0;
2962 	while (off < size) {
2963 		u64 chunk_sz = min_t(u64, sizeof(buf), size - off);
2964 		int err;
2965 
2966 		err = __bpf_dynptr_read(buf, chunk_sz, src, src_off + off, 0);
2967 		if (err)
2968 			return err;
2969 		err = __bpf_dynptr_write(dst, dst_off + off, buf, chunk_sz, 0);
2970 		if (err)
2971 			return err;
2972 
2973 		off += chunk_sz;
2974 	}
2975 	return 0;
2976 }
2977 
2978 /**
2979  * bpf_dynptr_memset() - Fill dynptr memory with a constant byte.
2980  * @p: Destination dynptr - where data will be filled
2981  * @offset: Offset into the dynptr to start filling from
2982  * @size: Number of bytes to fill
2983  * @val: Constant byte to fill the memory with
2984  *
2985  * Fills the @size bytes of the memory area pointed to by @p
2986  * at @offset with the constant byte @val.
2987  * Returns 0 on success; negative error, otherwise.
2988  */
2989 __bpf_kfunc int bpf_dynptr_memset(struct bpf_dynptr *p, u64 offset, u64 size, u8 val)
2990 {
2991 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2992 	u64 chunk_sz, write_off;
2993 	char buf[256];
2994 	void* slice;
2995 	int err;
2996 
2997 	slice = bpf_dynptr_slice_rdwr(p, offset, NULL, size);
2998 	if (likely(slice)) {
2999 		memset(slice, val, size);
3000 		return 0;
3001 	}
3002 
3003 	if (__bpf_dynptr_is_rdonly(ptr))
3004 		return -EINVAL;
3005 
3006 	err = bpf_dynptr_check_off_len(ptr, offset, size);
3007 	if (err)
3008 		return err;
3009 
3010 	/* Non-linear data under the dynptr, write from a local buffer */
3011 	chunk_sz = min_t(u64, sizeof(buf), size);
3012 	memset(buf, val, chunk_sz);
3013 
3014 	for (write_off = 0; write_off < size; write_off += chunk_sz) {
3015 		chunk_sz = min_t(u64, sizeof(buf), size - write_off);
3016 		err = __bpf_dynptr_write(ptr, offset + write_off, buf, chunk_sz, 0);
3017 		if (err)
3018 			return err;
3019 	}
3020 
3021 	return 0;
3022 }
3023 
3024 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
3025 {
3026 	return obj;
3027 }
3028 
3029 __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k)
3030 {
3031 	return (void *)obj__ign;
3032 }
3033 
3034 __bpf_kfunc void bpf_rcu_read_lock(void)
3035 {
3036 	rcu_read_lock();
3037 }
3038 
3039 __bpf_kfunc void bpf_rcu_read_unlock(void)
3040 {
3041 	rcu_read_unlock();
3042 }
3043 
3044 struct bpf_throw_ctx {
3045 	struct bpf_prog_aux *aux;
3046 	u64 sp;
3047 	u64 bp;
3048 	int cnt;
3049 };
3050 
3051 static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp)
3052 {
3053 	struct bpf_throw_ctx *ctx = cookie;
3054 	struct bpf_prog *prog;
3055 
3056 	/*
3057 	 * The RCU read lock is held to safely traverse the latch tree, but we
3058 	 * don't need its protection when accessing the prog, since it has an
3059 	 * active stack frame on the current stack trace, and won't disappear.
3060 	 */
3061 	rcu_read_lock();
3062 	prog = bpf_prog_ksym_find(ip);
3063 	rcu_read_unlock();
3064 	if (!prog)
3065 		return !ctx->cnt;
3066 	ctx->cnt++;
3067 	if (bpf_is_subprog(prog))
3068 		return true;
3069 	ctx->aux = prog->aux;
3070 	ctx->sp = sp;
3071 	ctx->bp = bp;
3072 	return false;
3073 }
3074 
3075 __bpf_kfunc void bpf_throw(u64 cookie)
3076 {
3077 	struct bpf_throw_ctx ctx = {};
3078 
3079 	arch_bpf_stack_walk(bpf_stack_walker, &ctx);
3080 	WARN_ON_ONCE(!ctx.aux);
3081 	if (ctx.aux)
3082 		WARN_ON_ONCE(!ctx.aux->exception_boundary);
3083 	WARN_ON_ONCE(!ctx.bp);
3084 	WARN_ON_ONCE(!ctx.cnt);
3085 	/* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning
3086 	 * deeper stack depths than ctx.sp as we do not return from bpf_throw,
3087 	 * which skips compiler generated instrumentation to do the same.
3088 	 */
3089 	kasan_unpoison_task_stack_below((void *)(long)ctx.sp);
3090 	ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0);
3091 	WARN(1, "A call to BPF exception callback should never return\n");
3092 }
3093 
3094 __bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags)
3095 {
3096 	struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3097 	struct bpf_map *map = p__map;
3098 
3099 	BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq));
3100 	BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq));
3101 
3102 	if (flags)
3103 		return -EINVAL;
3104 
3105 	return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ);
3106 }
3107 
3108 __bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags)
3109 {
3110 	struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3111 	struct bpf_work *w;
3112 
3113 	if (in_nmi())
3114 		return -EOPNOTSUPP;
3115 	if (flags)
3116 		return -EINVAL;
3117 	w = READ_ONCE(async->work);
3118 	if (!w || !READ_ONCE(w->cb.prog))
3119 		return -EINVAL;
3120 
3121 	schedule_work(&w->work);
3122 	return 0;
3123 }
3124 
3125 __bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq,
3126 					 int (callback_fn)(void *map, int *key, void *value),
3127 					 unsigned int flags,
3128 					 void *aux__prog)
3129 {
3130 	struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__prog;
3131 	struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3132 
3133 	if (flags)
3134 		return -EINVAL;
3135 
3136 	return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ);
3137 }
3138 
3139 __bpf_kfunc void bpf_preempt_disable(void)
3140 {
3141 	preempt_disable();
3142 }
3143 
3144 __bpf_kfunc void bpf_preempt_enable(void)
3145 {
3146 	preempt_enable();
3147 }
3148 
3149 struct bpf_iter_bits {
3150 	__u64 __opaque[2];
3151 } __aligned(8);
3152 
3153 #define BITS_ITER_NR_WORDS_MAX 511
3154 
3155 struct bpf_iter_bits_kern {
3156 	union {
3157 		__u64 *bits;
3158 		__u64 bits_copy;
3159 	};
3160 	int nr_bits;
3161 	int bit;
3162 } __aligned(8);
3163 
3164 /* On 64-bit hosts, unsigned long and u64 have the same size, so passing
3165  * a u64 pointer and an unsigned long pointer to find_next_bit() will
3166  * return the same result, as both point to the same 8-byte area.
3167  *
3168  * For 32-bit little-endian hosts, using a u64 pointer or unsigned long
3169  * pointer also makes no difference. This is because the first iterated
3170  * unsigned long is composed of bits 0-31 of the u64 and the second unsigned
3171  * long is composed of bits 32-63 of the u64.
3172  *
3173  * However, for 32-bit big-endian hosts, this is not the case. The first
3174  * iterated unsigned long will be bits 32-63 of the u64, so swap these two
3175  * ulong values within the u64.
3176  */
3177 static void swap_ulong_in_u64(u64 *bits, unsigned int nr)
3178 {
3179 #if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN)
3180 	unsigned int i;
3181 
3182 	for (i = 0; i < nr; i++)
3183 		bits[i] = (bits[i] >> 32) | ((u64)(u32)bits[i] << 32);
3184 #endif
3185 }
3186 
3187 /**
3188  * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area
3189  * @it: The new bpf_iter_bits to be created
3190  * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over
3191  * @nr_words: The size of the specified memory area, measured in 8-byte units.
3192  * The maximum value of @nr_words is @BITS_ITER_NR_WORDS_MAX. This limit may be
3193  * further reduced by the BPF memory allocator implementation.
3194  *
3195  * This function initializes a new bpf_iter_bits structure for iterating over
3196  * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It
3197  * copies the data of the memory area to the newly created bpf_iter_bits @it for
3198  * subsequent iteration operations.
3199  *
3200  * On success, 0 is returned. On failure, ERR is returned.
3201  */
3202 __bpf_kfunc int
3203 bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words)
3204 {
3205 	struct bpf_iter_bits_kern *kit = (void *)it;
3206 	u32 nr_bytes = nr_words * sizeof(u64);
3207 	u32 nr_bits = BYTES_TO_BITS(nr_bytes);
3208 	int err;
3209 
3210 	BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits));
3211 	BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) !=
3212 		     __alignof__(struct bpf_iter_bits));
3213 
3214 	kit->nr_bits = 0;
3215 	kit->bits_copy = 0;
3216 	kit->bit = -1;
3217 
3218 	if (!unsafe_ptr__ign || !nr_words)
3219 		return -EINVAL;
3220 	if (nr_words > BITS_ITER_NR_WORDS_MAX)
3221 		return -E2BIG;
3222 
3223 	/* Optimization for u64 mask */
3224 	if (nr_bits == 64) {
3225 		err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign);
3226 		if (err)
3227 			return -EFAULT;
3228 
3229 		swap_ulong_in_u64(&kit->bits_copy, nr_words);
3230 
3231 		kit->nr_bits = nr_bits;
3232 		return 0;
3233 	}
3234 
3235 	if (bpf_mem_alloc_check_size(false, nr_bytes))
3236 		return -E2BIG;
3237 
3238 	/* Fallback to memalloc */
3239 	kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes);
3240 	if (!kit->bits)
3241 		return -ENOMEM;
3242 
3243 	err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign);
3244 	if (err) {
3245 		bpf_mem_free(&bpf_global_ma, kit->bits);
3246 		return err;
3247 	}
3248 
3249 	swap_ulong_in_u64(kit->bits, nr_words);
3250 
3251 	kit->nr_bits = nr_bits;
3252 	return 0;
3253 }
3254 
3255 /**
3256  * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits
3257  * @it: The bpf_iter_bits to be checked
3258  *
3259  * This function returns a pointer to a number representing the value of the
3260  * next bit in the bits.
3261  *
3262  * If there are no further bits available, it returns NULL.
3263  */
3264 __bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it)
3265 {
3266 	struct bpf_iter_bits_kern *kit = (void *)it;
3267 	int bit = kit->bit, nr_bits = kit->nr_bits;
3268 	const void *bits;
3269 
3270 	if (!nr_bits || bit >= nr_bits)
3271 		return NULL;
3272 
3273 	bits = nr_bits == 64 ? &kit->bits_copy : kit->bits;
3274 	bit = find_next_bit(bits, nr_bits, bit + 1);
3275 	if (bit >= nr_bits) {
3276 		kit->bit = bit;
3277 		return NULL;
3278 	}
3279 
3280 	kit->bit = bit;
3281 	return &kit->bit;
3282 }
3283 
3284 /**
3285  * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits
3286  * @it: The bpf_iter_bits to be destroyed
3287  *
3288  * Destroy the resource associated with the bpf_iter_bits.
3289  */
3290 __bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it)
3291 {
3292 	struct bpf_iter_bits_kern *kit = (void *)it;
3293 
3294 	if (kit->nr_bits <= 64)
3295 		return;
3296 	bpf_mem_free(&bpf_global_ma, kit->bits);
3297 }
3298 
3299 /**
3300  * bpf_copy_from_user_str() - Copy a string from an unsafe user address
3301  * @dst:             Destination address, in kernel space.  This buffer must be
3302  *                   at least @dst__sz bytes long.
3303  * @dst__sz:         Maximum number of bytes to copy, includes the trailing NUL.
3304  * @unsafe_ptr__ign: Source address, in user space.
3305  * @flags:           The only supported flag is BPF_F_PAD_ZEROS
3306  *
3307  * Copies a NUL-terminated string from userspace to BPF space. If user string is
3308  * too long this will still ensure zero termination in the dst buffer unless
3309  * buffer size is 0.
3310  *
3311  * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst to 0 on success and
3312  * memset all of @dst on failure.
3313  */
3314 __bpf_kfunc int bpf_copy_from_user_str(void *dst, u32 dst__sz, const void __user *unsafe_ptr__ign, u64 flags)
3315 {
3316 	int ret;
3317 
3318 	if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3319 		return -EINVAL;
3320 
3321 	if (unlikely(!dst__sz))
3322 		return 0;
3323 
3324 	ret = strncpy_from_user(dst, unsafe_ptr__ign, dst__sz - 1);
3325 	if (ret < 0) {
3326 		if (flags & BPF_F_PAD_ZEROS)
3327 			memset((char *)dst, 0, dst__sz);
3328 
3329 		return ret;
3330 	}
3331 
3332 	if (flags & BPF_F_PAD_ZEROS)
3333 		memset((char *)dst + ret, 0, dst__sz - ret);
3334 	else
3335 		((char *)dst)[ret] = '\0';
3336 
3337 	return ret + 1;
3338 }
3339 
3340 /**
3341  * bpf_copy_from_user_task_str() - Copy a string from an task's address space
3342  * @dst:             Destination address, in kernel space.  This buffer must be
3343  *                   at least @dst__sz bytes long.
3344  * @dst__sz:         Maximum number of bytes to copy, includes the trailing NUL.
3345  * @unsafe_ptr__ign: Source address in the task's address space.
3346  * @tsk:             The task whose address space will be used
3347  * @flags:           The only supported flag is BPF_F_PAD_ZEROS
3348  *
3349  * Copies a NUL terminated string from a task's address space to @dst__sz
3350  * buffer. If user string is too long this will still ensure zero termination
3351  * in the @dst__sz buffer unless buffer size is 0.
3352  *
3353  * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst__sz to 0 on success
3354  * and memset all of @dst__sz on failure.
3355  *
3356  * Return: The number of copied bytes on success including the NUL terminator.
3357  * A negative error code on failure.
3358  */
3359 __bpf_kfunc int bpf_copy_from_user_task_str(void *dst, u32 dst__sz,
3360 					    const void __user *unsafe_ptr__ign,
3361 					    struct task_struct *tsk, u64 flags)
3362 {
3363 	int ret;
3364 
3365 	if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3366 		return -EINVAL;
3367 
3368 	if (unlikely(dst__sz == 0))
3369 		return 0;
3370 
3371 	ret = copy_remote_vm_str(tsk, (unsigned long)unsafe_ptr__ign, dst, dst__sz, 0);
3372 	if (ret < 0) {
3373 		if (flags & BPF_F_PAD_ZEROS)
3374 			memset(dst, 0, dst__sz);
3375 		return ret;
3376 	}
3377 
3378 	if (flags & BPF_F_PAD_ZEROS)
3379 		memset(dst + ret, 0, dst__sz - ret);
3380 
3381 	return ret + 1;
3382 }
3383 
3384 /* Keep unsinged long in prototype so that kfunc is usable when emitted to
3385  * vmlinux.h in BPF programs directly, but note that while in BPF prog, the
3386  * unsigned long always points to 8-byte region on stack, the kernel may only
3387  * read and write the 4-bytes on 32-bit.
3388  */
3389 __bpf_kfunc void bpf_local_irq_save(unsigned long *flags__irq_flag)
3390 {
3391 	local_irq_save(*flags__irq_flag);
3392 }
3393 
3394 __bpf_kfunc void bpf_local_irq_restore(unsigned long *flags__irq_flag)
3395 {
3396 	local_irq_restore(*flags__irq_flag);
3397 }
3398 
3399 __bpf_kfunc void __bpf_trap(void)
3400 {
3401 }
3402 
3403 /*
3404  * Kfuncs for string operations.
3405  *
3406  * Since strings are not necessarily %NUL-terminated, we cannot directly call
3407  * in-kernel implementations. Instead, we open-code the implementations using
3408  * __get_kernel_nofault instead of plain dereference to make them safe.
3409  */
3410 
3411 static int __bpf_strcasecmp(const char *s1, const char *s2, bool ignore_case)
3412 {
3413 	char c1, c2;
3414 	int i;
3415 
3416 	if (!copy_from_kernel_nofault_allowed(s1, 1) ||
3417 	    !copy_from_kernel_nofault_allowed(s2, 1)) {
3418 		return -ERANGE;
3419 	}
3420 
3421 	guard(pagefault)();
3422 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3423 		__get_kernel_nofault(&c1, s1, char, err_out);
3424 		__get_kernel_nofault(&c2, s2, char, err_out);
3425 		if (ignore_case) {
3426 			c1 = tolower(c1);
3427 			c2 = tolower(c2);
3428 		}
3429 		if (c1 != c2)
3430 			return c1 < c2 ? -1 : 1;
3431 		if (c1 == '\0')
3432 			return 0;
3433 		s1++;
3434 		s2++;
3435 	}
3436 	return -E2BIG;
3437 err_out:
3438 	return -EFAULT;
3439 }
3440 
3441 /**
3442  * bpf_strcmp - Compare two strings
3443  * @s1__ign: One string
3444  * @s2__ign: Another string
3445  *
3446  * Return:
3447  * * %0       - Strings are equal
3448  * * %-1      - @s1__ign is smaller
3449  * * %1       - @s2__ign is smaller
3450  * * %-EFAULT - Cannot read one of the strings
3451  * * %-E2BIG  - One of strings is too large
3452  * * %-ERANGE - One of strings is outside of kernel address space
3453  */
3454 __bpf_kfunc int bpf_strcmp(const char *s1__ign, const char *s2__ign)
3455 {
3456 	return __bpf_strcasecmp(s1__ign, s2__ign, false);
3457 }
3458 
3459 /**
3460  * bpf_strcasecmp - Compare two strings, ignoring the case of the characters
3461  * @s1__ign: One string
3462  * @s2__ign: Another string
3463  *
3464  * Return:
3465  * * %0       - Strings are equal
3466  * * %-1      - @s1__ign is smaller
3467  * * %1       - @s2__ign is smaller
3468  * * %-EFAULT - Cannot read one of the strings
3469  * * %-E2BIG  - One of strings is too large
3470  * * %-ERANGE - One of strings is outside of kernel address space
3471  */
3472 __bpf_kfunc int bpf_strcasecmp(const char *s1__ign, const char *s2__ign)
3473 {
3474 	return __bpf_strcasecmp(s1__ign, s2__ign, true);
3475 }
3476 
3477 /**
3478  * bpf_strnchr - Find a character in a length limited string
3479  * @s__ign: The string to be searched
3480  * @count: The number of characters to be searched
3481  * @c: The character to search for
3482  *
3483  * Note that the %NUL-terminator is considered part of the string, and can
3484  * be searched for.
3485  *
3486  * Return:
3487  * * >=0      - Index of the first occurrence of @c within @s__ign
3488  * * %-ENOENT - @c not found in the first @count characters of @s__ign
3489  * * %-EFAULT - Cannot read @s__ign
3490  * * %-E2BIG  - @s__ign is too large
3491  * * %-ERANGE - @s__ign is outside of kernel address space
3492  */
3493 __bpf_kfunc int bpf_strnchr(const char *s__ign, size_t count, char c)
3494 {
3495 	char sc;
3496 	int i;
3497 
3498 	if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3499 		return -ERANGE;
3500 
3501 	guard(pagefault)();
3502 	for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) {
3503 		__get_kernel_nofault(&sc, s__ign, char, err_out);
3504 		if (sc == c)
3505 			return i;
3506 		if (sc == '\0')
3507 			return -ENOENT;
3508 		s__ign++;
3509 	}
3510 	return i == XATTR_SIZE_MAX ? -E2BIG : -ENOENT;
3511 err_out:
3512 	return -EFAULT;
3513 }
3514 
3515 /**
3516  * bpf_strchr - Find the first occurrence of a character in a string
3517  * @s__ign: The string to be searched
3518  * @c: The character to search for
3519  *
3520  * Note that the %NUL-terminator is considered part of the string, and can
3521  * be searched for.
3522  *
3523  * Return:
3524  * * >=0      - The index of the first occurrence of @c within @s__ign
3525  * * %-ENOENT - @c not found in @s__ign
3526  * * %-EFAULT - Cannot read @s__ign
3527  * * %-E2BIG  - @s__ign is too large
3528  * * %-ERANGE - @s__ign is outside of kernel address space
3529  */
3530 __bpf_kfunc int bpf_strchr(const char *s__ign, char c)
3531 {
3532 	return bpf_strnchr(s__ign, XATTR_SIZE_MAX, c);
3533 }
3534 
3535 /**
3536  * bpf_strchrnul - Find and return a character in a string, or end of string
3537  * @s__ign: The string to be searched
3538  * @c: The character to search for
3539  *
3540  * Return:
3541  * * >=0      - Index of the first occurrence of @c within @s__ign or index of
3542  *              the null byte at the end of @s__ign when @c is not found
3543  * * %-EFAULT - Cannot read @s__ign
3544  * * %-E2BIG  - @s__ign is too large
3545  * * %-ERANGE - @s__ign is outside of kernel address space
3546  */
3547 __bpf_kfunc int bpf_strchrnul(const char *s__ign, char c)
3548 {
3549 	char sc;
3550 	int i;
3551 
3552 	if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3553 		return -ERANGE;
3554 
3555 	guard(pagefault)();
3556 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3557 		__get_kernel_nofault(&sc, s__ign, char, err_out);
3558 		if (sc == '\0' || sc == c)
3559 			return i;
3560 		s__ign++;
3561 	}
3562 	return -E2BIG;
3563 err_out:
3564 	return -EFAULT;
3565 }
3566 
3567 /**
3568  * bpf_strrchr - Find the last occurrence of a character in a string
3569  * @s__ign: The string to be searched
3570  * @c: The character to search for
3571  *
3572  * Return:
3573  * * >=0      - Index of the last occurrence of @c within @s__ign
3574  * * %-ENOENT - @c not found in @s__ign
3575  * * %-EFAULT - Cannot read @s__ign
3576  * * %-E2BIG  - @s__ign is too large
3577  * * %-ERANGE - @s__ign is outside of kernel address space
3578  */
3579 __bpf_kfunc int bpf_strrchr(const char *s__ign, int c)
3580 {
3581 	char sc;
3582 	int i, last = -ENOENT;
3583 
3584 	if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3585 		return -ERANGE;
3586 
3587 	guard(pagefault)();
3588 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3589 		__get_kernel_nofault(&sc, s__ign, char, err_out);
3590 		if (sc == c)
3591 			last = i;
3592 		if (sc == '\0')
3593 			return last;
3594 		s__ign++;
3595 	}
3596 	return -E2BIG;
3597 err_out:
3598 	return -EFAULT;
3599 }
3600 
3601 /**
3602  * bpf_strnlen - Calculate the length of a length-limited string
3603  * @s__ign: The string
3604  * @count: The maximum number of characters to count
3605  *
3606  * Return:
3607  * * >=0      - The length of @s__ign
3608  * * %-EFAULT - Cannot read @s__ign
3609  * * %-E2BIG  - @s__ign is too large
3610  * * %-ERANGE - @s__ign is outside of kernel address space
3611  */
3612 __bpf_kfunc int bpf_strnlen(const char *s__ign, size_t count)
3613 {
3614 	char c;
3615 	int i;
3616 
3617 	if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3618 		return -ERANGE;
3619 
3620 	guard(pagefault)();
3621 	for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) {
3622 		__get_kernel_nofault(&c, s__ign, char, err_out);
3623 		if (c == '\0')
3624 			return i;
3625 		s__ign++;
3626 	}
3627 	return i == XATTR_SIZE_MAX ? -E2BIG : i;
3628 err_out:
3629 	return -EFAULT;
3630 }
3631 
3632 /**
3633  * bpf_strlen - Calculate the length of a string
3634  * @s__ign: The string
3635  *
3636  * Return:
3637  * * >=0      - The length of @s__ign
3638  * * %-EFAULT - Cannot read @s__ign
3639  * * %-E2BIG  - @s__ign is too large
3640  * * %-ERANGE - @s__ign is outside of kernel address space
3641  */
3642 __bpf_kfunc int bpf_strlen(const char *s__ign)
3643 {
3644 	return bpf_strnlen(s__ign, XATTR_SIZE_MAX);
3645 }
3646 
3647 /**
3648  * bpf_strspn - Calculate the length of the initial substring of @s__ign which
3649  *              only contains letters in @accept__ign
3650  * @s__ign: The string to be searched
3651  * @accept__ign: The string to search for
3652  *
3653  * Return:
3654  * * >=0      - The length of the initial substring of @s__ign which only
3655  *              contains letters from @accept__ign
3656  * * %-EFAULT - Cannot read one of the strings
3657  * * %-E2BIG  - One of the strings is too large
3658  * * %-ERANGE - One of the strings is outside of kernel address space
3659  */
3660 __bpf_kfunc int bpf_strspn(const char *s__ign, const char *accept__ign)
3661 {
3662 	char cs, ca;
3663 	int i, j;
3664 
3665 	if (!copy_from_kernel_nofault_allowed(s__ign, 1) ||
3666 	    !copy_from_kernel_nofault_allowed(accept__ign, 1)) {
3667 		return -ERANGE;
3668 	}
3669 
3670 	guard(pagefault)();
3671 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3672 		__get_kernel_nofault(&cs, s__ign, char, err_out);
3673 		if (cs == '\0')
3674 			return i;
3675 		for (j = 0; j < XATTR_SIZE_MAX; j++) {
3676 			__get_kernel_nofault(&ca, accept__ign + j, char, err_out);
3677 			if (cs == ca || ca == '\0')
3678 				break;
3679 		}
3680 		if (j == XATTR_SIZE_MAX)
3681 			return -E2BIG;
3682 		if (ca == '\0')
3683 			return i;
3684 		s__ign++;
3685 	}
3686 	return -E2BIG;
3687 err_out:
3688 	return -EFAULT;
3689 }
3690 
3691 /**
3692  * bpf_strcspn - Calculate the length of the initial substring of @s__ign which
3693  *               does not contain letters in @reject__ign
3694  * @s__ign: The string to be searched
3695  * @reject__ign: The string to search for
3696  *
3697  * Return:
3698  * * >=0      - The length of the initial substring of @s__ign which does not
3699  *              contain letters from @reject__ign
3700  * * %-EFAULT - Cannot read one of the strings
3701  * * %-E2BIG  - One of the strings is too large
3702  * * %-ERANGE - One of the strings is outside of kernel address space
3703  */
3704 __bpf_kfunc int bpf_strcspn(const char *s__ign, const char *reject__ign)
3705 {
3706 	char cs, cr;
3707 	int i, j;
3708 
3709 	if (!copy_from_kernel_nofault_allowed(s__ign, 1) ||
3710 	    !copy_from_kernel_nofault_allowed(reject__ign, 1)) {
3711 		return -ERANGE;
3712 	}
3713 
3714 	guard(pagefault)();
3715 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3716 		__get_kernel_nofault(&cs, s__ign, char, err_out);
3717 		if (cs == '\0')
3718 			return i;
3719 		for (j = 0; j < XATTR_SIZE_MAX; j++) {
3720 			__get_kernel_nofault(&cr, reject__ign + j, char, err_out);
3721 			if (cs == cr || cr == '\0')
3722 				break;
3723 		}
3724 		if (j == XATTR_SIZE_MAX)
3725 			return -E2BIG;
3726 		if (cr != '\0')
3727 			return i;
3728 		s__ign++;
3729 	}
3730 	return -E2BIG;
3731 err_out:
3732 	return -EFAULT;
3733 }
3734 
3735 static int __bpf_strnstr(const char *s1, const char *s2, size_t len,
3736 			 bool ignore_case)
3737 {
3738 	char c1, c2;
3739 	int i, j;
3740 
3741 	if (!copy_from_kernel_nofault_allowed(s1, 1) ||
3742 	    !copy_from_kernel_nofault_allowed(s2, 1)) {
3743 		return -ERANGE;
3744 	}
3745 
3746 	guard(pagefault)();
3747 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3748 		for (j = 0; i + j <= len && j < XATTR_SIZE_MAX; j++) {
3749 			__get_kernel_nofault(&c2, s2 + j, char, err_out);
3750 			if (c2 == '\0')
3751 				return i;
3752 			/*
3753 			 * We allow reading an extra byte from s2 (note the
3754 			 * `i + j <= len` above) to cover the case when s2 is
3755 			 * a suffix of the first len chars of s1.
3756 			 */
3757 			if (i + j == len)
3758 				break;
3759 			__get_kernel_nofault(&c1, s1 + j, char, err_out);
3760 
3761 			if (ignore_case) {
3762 				c1 = tolower(c1);
3763 				c2 = tolower(c2);
3764 			}
3765 
3766 			if (c1 == '\0')
3767 				return -ENOENT;
3768 			if (c1 != c2)
3769 				break;
3770 		}
3771 		if (j == XATTR_SIZE_MAX)
3772 			return -E2BIG;
3773 		if (i + j == len)
3774 			return -ENOENT;
3775 		s1++;
3776 	}
3777 	return -E2BIG;
3778 err_out:
3779 	return -EFAULT;
3780 }
3781 
3782 /**
3783  * bpf_strstr - Find the first substring in a string
3784  * @s1__ign: The string to be searched
3785  * @s2__ign: The string to search for
3786  *
3787  * Return:
3788  * * >=0      - Index of the first character of the first occurrence of @s2__ign
3789  *              within @s1__ign
3790  * * %-ENOENT - @s2__ign is not a substring of @s1__ign
3791  * * %-EFAULT - Cannot read one of the strings
3792  * * %-E2BIG  - One of the strings is too large
3793  * * %-ERANGE - One of the strings is outside of kernel address space
3794  */
3795 __bpf_kfunc int bpf_strstr(const char *s1__ign, const char *s2__ign)
3796 {
3797 	return __bpf_strnstr(s1__ign, s2__ign, XATTR_SIZE_MAX, false);
3798 }
3799 
3800 /**
3801  * bpf_strcasestr - Find the first substring in a string, ignoring the case of
3802  *                  the characters
3803  * @s1__ign: The string to be searched
3804  * @s2__ign: The string to search for
3805  *
3806  * Return:
3807  * * >=0      - Index of the first character of the first occurrence of @s2__ign
3808  *              within @s1__ign
3809  * * %-ENOENT - @s2__ign is not a substring of @s1__ign
3810  * * %-EFAULT - Cannot read one of the strings
3811  * * %-E2BIG  - One of the strings is too large
3812  * * %-ERANGE - One of the strings is outside of kernel address space
3813  */
3814 __bpf_kfunc int bpf_strcasestr(const char *s1__ign, const char *s2__ign)
3815 {
3816 	return __bpf_strnstr(s1__ign, s2__ign, XATTR_SIZE_MAX, true);
3817 }
3818 
3819 /**
3820  * bpf_strnstr - Find the first substring in a length-limited string
3821  * @s1__ign: The string to be searched
3822  * @s2__ign: The string to search for
3823  * @len: the maximum number of characters to search
3824  *
3825  * Return:
3826  * * >=0      - Index of the first character of the first occurrence of @s2__ign
3827  *              within the first @len characters of @s1__ign
3828  * * %-ENOENT - @s2__ign not found in the first @len characters of @s1__ign
3829  * * %-EFAULT - Cannot read one of the strings
3830  * * %-E2BIG  - One of the strings is too large
3831  * * %-ERANGE - One of the strings is outside of kernel address space
3832  */
3833 __bpf_kfunc int bpf_strnstr(const char *s1__ign, const char *s2__ign,
3834 			    size_t len)
3835 {
3836 	return __bpf_strnstr(s1__ign, s2__ign, len, false);
3837 }
3838 
3839 /**
3840  * bpf_strncasestr - Find the first substring in a length-limited string,
3841  *                   ignoring the case of the characters
3842  * @s1__ign: The string to be searched
3843  * @s2__ign: The string to search for
3844  * @len: the maximum number of characters to search
3845  *
3846  * Return:
3847  * * >=0      - Index of the first character of the first occurrence of @s2__ign
3848  *              within the first @len characters of @s1__ign
3849  * * %-ENOENT - @s2__ign not found in the first @len characters of @s1__ign
3850  * * %-EFAULT - Cannot read one of the strings
3851  * * %-E2BIG  - One of the strings is too large
3852  * * %-ERANGE - One of the strings is outside of kernel address space
3853  */
3854 __bpf_kfunc int bpf_strncasestr(const char *s1__ign, const char *s2__ign,
3855 				size_t len)
3856 {
3857 	return __bpf_strnstr(s1__ign, s2__ign, len, true);
3858 }
3859 
3860 #ifdef CONFIG_KEYS
3861 /**
3862  * bpf_lookup_user_key - lookup a key by its serial
3863  * @serial: key handle serial number
3864  * @flags: lookup-specific flags
3865  *
3866  * Search a key with a given *serial* and the provided *flags*.
3867  * If found, increment the reference count of the key by one, and
3868  * return it in the bpf_key structure.
3869  *
3870  * The bpf_key structure must be passed to bpf_key_put() when done
3871  * with it, so that the key reference count is decremented and the
3872  * bpf_key structure is freed.
3873  *
3874  * Permission checks are deferred to the time the key is used by
3875  * one of the available key-specific kfuncs.
3876  *
3877  * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
3878  * special keyring (e.g. session keyring), if it doesn't yet exist.
3879  * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
3880  * for the key construction, and to retrieve uninstantiated keys (keys
3881  * without data attached to them).
3882  *
3883  * Return: a bpf_key pointer with a valid key pointer if the key is found, a
3884  *         NULL pointer otherwise.
3885  */
3886 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(s32 serial, u64 flags)
3887 {
3888 	key_ref_t key_ref;
3889 	struct bpf_key *bkey;
3890 
3891 	if (flags & ~KEY_LOOKUP_ALL)
3892 		return NULL;
3893 
3894 	/*
3895 	 * Permission check is deferred until the key is used, as the
3896 	 * intent of the caller is unknown here.
3897 	 */
3898 	key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
3899 	if (IS_ERR(key_ref))
3900 		return NULL;
3901 
3902 	bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
3903 	if (!bkey) {
3904 		key_put(key_ref_to_ptr(key_ref));
3905 		return NULL;
3906 	}
3907 
3908 	bkey->key = key_ref_to_ptr(key_ref);
3909 	bkey->has_ref = true;
3910 
3911 	return bkey;
3912 }
3913 
3914 /**
3915  * bpf_lookup_system_key - lookup a key by a system-defined ID
3916  * @id: key ID
3917  *
3918  * Obtain a bpf_key structure with a key pointer set to the passed key ID.
3919  * The key pointer is marked as invalid, to prevent bpf_key_put() from
3920  * attempting to decrement the key reference count on that pointer. The key
3921  * pointer set in such way is currently understood only by
3922  * verify_pkcs7_signature().
3923  *
3924  * Set *id* to one of the values defined in include/linux/verification.h:
3925  * 0 for the primary keyring (immutable keyring of system keys);
3926  * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
3927  * (where keys can be added only if they are vouched for by existing keys
3928  * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
3929  * keyring (primarily used by the integrity subsystem to verify a kexec'ed
3930  * kerned image and, possibly, the initramfs signature).
3931  *
3932  * Return: a bpf_key pointer with an invalid key pointer set from the
3933  *         pre-determined ID on success, a NULL pointer otherwise
3934  */
3935 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id)
3936 {
3937 	struct bpf_key *bkey;
3938 
3939 	if (system_keyring_id_check(id) < 0)
3940 		return NULL;
3941 
3942 	bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
3943 	if (!bkey)
3944 		return NULL;
3945 
3946 	bkey->key = (struct key *)(unsigned long)id;
3947 	bkey->has_ref = false;
3948 
3949 	return bkey;
3950 }
3951 
3952 /**
3953  * bpf_key_put - decrement key reference count if key is valid and free bpf_key
3954  * @bkey: bpf_key structure
3955  *
3956  * Decrement the reference count of the key inside *bkey*, if the pointer
3957  * is valid, and free *bkey*.
3958  */
3959 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey)
3960 {
3961 	if (bkey->has_ref)
3962 		key_put(bkey->key);
3963 
3964 	kfree(bkey);
3965 }
3966 
3967 /**
3968  * bpf_verify_pkcs7_signature - verify a PKCS#7 signature
3969  * @data_p: data to verify
3970  * @sig_p: signature of the data
3971  * @trusted_keyring: keyring with keys trusted for signature verification
3972  *
3973  * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
3974  * with keys in a keyring referenced by *trusted_keyring*.
3975  *
3976  * Return: 0 on success, a negative value on error.
3977  */
3978 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p,
3979 			       struct bpf_dynptr *sig_p,
3980 			       struct bpf_key *trusted_keyring)
3981 {
3982 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
3983 	struct bpf_dynptr_kern *data_ptr = (struct bpf_dynptr_kern *)data_p;
3984 	struct bpf_dynptr_kern *sig_ptr = (struct bpf_dynptr_kern *)sig_p;
3985 	const void *data, *sig;
3986 	u32 data_len, sig_len;
3987 	int ret;
3988 
3989 	if (trusted_keyring->has_ref) {
3990 		/*
3991 		 * Do the permission check deferred in bpf_lookup_user_key().
3992 		 * See bpf_lookup_user_key() for more details.
3993 		 *
3994 		 * A call to key_task_permission() here would be redundant, as
3995 		 * it is already done by keyring_search() called by
3996 		 * find_asymmetric_key().
3997 		 */
3998 		ret = key_validate(trusted_keyring->key);
3999 		if (ret < 0)
4000 			return ret;
4001 	}
4002 
4003 	data_len = __bpf_dynptr_size(data_ptr);
4004 	data = __bpf_dynptr_data(data_ptr, data_len);
4005 	sig_len = __bpf_dynptr_size(sig_ptr);
4006 	sig = __bpf_dynptr_data(sig_ptr, sig_len);
4007 
4008 	return verify_pkcs7_signature(data, data_len, sig, sig_len,
4009 				      trusted_keyring->key,
4010 				      VERIFYING_BPF_SIGNATURE, NULL,
4011 				      NULL);
4012 #else
4013 	return -EOPNOTSUPP;
4014 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
4015 }
4016 #endif /* CONFIG_KEYS */
4017 
4018 typedef int (*bpf_task_work_callback_t)(struct bpf_map *map, void *key, void *value);
4019 
4020 enum bpf_task_work_state {
4021 	/* bpf_task_work is ready to be used */
4022 	BPF_TW_STANDBY = 0,
4023 	/* irq work scheduling in progress */
4024 	BPF_TW_PENDING,
4025 	/* task work scheduling in progress */
4026 	BPF_TW_SCHEDULING,
4027 	/* task work is scheduled successfully */
4028 	BPF_TW_SCHEDULED,
4029 	/* callback is running */
4030 	BPF_TW_RUNNING,
4031 	/* associated BPF map value is deleted */
4032 	BPF_TW_FREED,
4033 };
4034 
4035 struct bpf_task_work_ctx {
4036 	enum bpf_task_work_state state;
4037 	refcount_t refcnt;
4038 	struct callback_head work;
4039 	struct irq_work irq_work;
4040 	/* bpf_prog that schedules task work */
4041 	struct bpf_prog *prog;
4042 	/* task for which callback is scheduled */
4043 	struct task_struct *task;
4044 	/* the map and map value associated with this context */
4045 	struct bpf_map *map;
4046 	void *map_val;
4047 	enum task_work_notify_mode mode;
4048 	bpf_task_work_callback_t callback_fn;
4049 	struct rcu_head rcu;
4050 } __aligned(8);
4051 
4052 /* Actual type for struct bpf_task_work */
4053 struct bpf_task_work_kern {
4054 	struct bpf_task_work_ctx *ctx;
4055 };
4056 
4057 static void bpf_task_work_ctx_reset(struct bpf_task_work_ctx *ctx)
4058 {
4059 	if (ctx->prog) {
4060 		bpf_prog_put(ctx->prog);
4061 		ctx->prog = NULL;
4062 	}
4063 	if (ctx->task) {
4064 		bpf_task_release(ctx->task);
4065 		ctx->task = NULL;
4066 	}
4067 }
4068 
4069 static bool bpf_task_work_ctx_tryget(struct bpf_task_work_ctx *ctx)
4070 {
4071 	return refcount_inc_not_zero(&ctx->refcnt);
4072 }
4073 
4074 static void bpf_task_work_ctx_put(struct bpf_task_work_ctx *ctx)
4075 {
4076 	if (!refcount_dec_and_test(&ctx->refcnt))
4077 		return;
4078 
4079 	bpf_task_work_ctx_reset(ctx);
4080 
4081 	/* bpf_mem_free expects migration to be disabled */
4082 	migrate_disable();
4083 	bpf_mem_free(&bpf_global_ma, ctx);
4084 	migrate_enable();
4085 }
4086 
4087 static void bpf_task_work_cancel(struct bpf_task_work_ctx *ctx)
4088 {
4089 	/*
4090 	 * Scheduled task_work callback holds ctx ref, so if we successfully
4091 	 * cancelled, we put that ref on callback's behalf. If we couldn't
4092 	 * cancel, callback will inevitably run or has already completed
4093 	 * running, and it would have taken care of its ctx ref itself.
4094 	 */
4095 	if (task_work_cancel(ctx->task, &ctx->work))
4096 		bpf_task_work_ctx_put(ctx);
4097 }
4098 
4099 static void bpf_task_work_callback(struct callback_head *cb)
4100 {
4101 	struct bpf_task_work_ctx *ctx = container_of(cb, struct bpf_task_work_ctx, work);
4102 	enum bpf_task_work_state state;
4103 	u32 idx;
4104 	void *key;
4105 
4106 	/* Read lock is needed to protect ctx and map key/value access */
4107 	guard(rcu_tasks_trace)();
4108 	/*
4109 	 * This callback may start running before bpf_task_work_irq() switched to
4110 	 * SCHEDULED state, so handle both transition variants SCHEDULING|SCHEDULED -> RUNNING.
4111 	 */
4112 	state = cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_RUNNING);
4113 	if (state == BPF_TW_SCHEDULED)
4114 		state = cmpxchg(&ctx->state, BPF_TW_SCHEDULED, BPF_TW_RUNNING);
4115 	if (state == BPF_TW_FREED) {
4116 		bpf_task_work_ctx_put(ctx);
4117 		return;
4118 	}
4119 
4120 	key = (void *)map_key_from_value(ctx->map, ctx->map_val, &idx);
4121 
4122 	migrate_disable();
4123 	ctx->callback_fn(ctx->map, key, ctx->map_val);
4124 	migrate_enable();
4125 
4126 	bpf_task_work_ctx_reset(ctx);
4127 	(void)cmpxchg(&ctx->state, BPF_TW_RUNNING, BPF_TW_STANDBY);
4128 
4129 	bpf_task_work_ctx_put(ctx);
4130 }
4131 
4132 static void bpf_task_work_irq(struct irq_work *irq_work)
4133 {
4134 	struct bpf_task_work_ctx *ctx = container_of(irq_work, struct bpf_task_work_ctx, irq_work);
4135 	enum bpf_task_work_state state;
4136 	int err;
4137 
4138 	guard(rcu_tasks_trace)();
4139 
4140 	if (cmpxchg(&ctx->state, BPF_TW_PENDING, BPF_TW_SCHEDULING) != BPF_TW_PENDING) {
4141 		bpf_task_work_ctx_put(ctx);
4142 		return;
4143 	}
4144 
4145 	err = task_work_add(ctx->task, &ctx->work, ctx->mode);
4146 	if (err) {
4147 		bpf_task_work_ctx_reset(ctx);
4148 		/*
4149 		 * try to switch back to STANDBY for another task_work reuse, but we might have
4150 		 * gone to FREED already, which is fine as we already cleaned up after ourselves
4151 		 */
4152 		(void)cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_STANDBY);
4153 		bpf_task_work_ctx_put(ctx);
4154 		return;
4155 	}
4156 
4157 	/*
4158 	 * It's technically possible for just scheduled task_work callback to
4159 	 * complete running by now, going SCHEDULING -> RUNNING and then
4160 	 * dropping its ctx refcount. Instead of capturing extra ref just to
4161 	 * protected below ctx->state access, we rely on RCU protection to
4162 	 * perform below SCHEDULING -> SCHEDULED attempt.
4163 	 */
4164 	state = cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_SCHEDULED);
4165 	if (state == BPF_TW_FREED)
4166 		bpf_task_work_cancel(ctx); /* clean up if we switched into FREED state */
4167 }
4168 
4169 static struct bpf_task_work_ctx *bpf_task_work_fetch_ctx(struct bpf_task_work *tw,
4170 							 struct bpf_map *map)
4171 {
4172 	struct bpf_task_work_kern *twk = (void *)tw;
4173 	struct bpf_task_work_ctx *ctx, *old_ctx;
4174 
4175 	ctx = READ_ONCE(twk->ctx);
4176 	if (ctx)
4177 		return ctx;
4178 
4179 	ctx = bpf_mem_alloc(&bpf_global_ma, sizeof(struct bpf_task_work_ctx));
4180 	if (!ctx)
4181 		return ERR_PTR(-ENOMEM);
4182 
4183 	memset(ctx, 0, sizeof(*ctx));
4184 	refcount_set(&ctx->refcnt, 1); /* map's own ref */
4185 	ctx->state = BPF_TW_STANDBY;
4186 
4187 	old_ctx = cmpxchg(&twk->ctx, NULL, ctx);
4188 	if (old_ctx) {
4189 		/*
4190 		 * tw->ctx is set by concurrent BPF program, release allocated
4191 		 * memory and try to reuse already set context.
4192 		 */
4193 		bpf_mem_free(&bpf_global_ma, ctx);
4194 		return old_ctx;
4195 	}
4196 
4197 	return ctx; /* Success */
4198 }
4199 
4200 static struct bpf_task_work_ctx *bpf_task_work_acquire_ctx(struct bpf_task_work *tw,
4201 							   struct bpf_map *map)
4202 {
4203 	struct bpf_task_work_ctx *ctx;
4204 
4205 	ctx = bpf_task_work_fetch_ctx(tw, map);
4206 	if (IS_ERR(ctx))
4207 		return ctx;
4208 
4209 	/* try to get ref for task_work callback to hold */
4210 	if (!bpf_task_work_ctx_tryget(ctx))
4211 		return ERR_PTR(-EBUSY);
4212 
4213 	if (cmpxchg(&ctx->state, BPF_TW_STANDBY, BPF_TW_PENDING) != BPF_TW_STANDBY) {
4214 		/* lost acquiring race or map_release_uref() stole it from us, put ref and bail */
4215 		bpf_task_work_ctx_put(ctx);
4216 		return ERR_PTR(-EBUSY);
4217 	}
4218 
4219 	/*
4220 	 * If no process or bpffs is holding a reference to the map, no new callbacks should be
4221 	 * scheduled. This does not address any race or correctness issue, but rather is a policy
4222 	 * choice: dropping user references should stop everything.
4223 	 */
4224 	if (!atomic64_read(&map->usercnt)) {
4225 		/* drop ref we just got for task_work callback itself */
4226 		bpf_task_work_ctx_put(ctx);
4227 		/* transfer map's ref into cancel_and_free() */
4228 		bpf_task_work_cancel_and_free(tw);
4229 		return ERR_PTR(-EBUSY);
4230 	}
4231 
4232 	return ctx;
4233 }
4234 
4235 static int bpf_task_work_schedule(struct task_struct *task, struct bpf_task_work *tw,
4236 				  struct bpf_map *map, bpf_task_work_callback_t callback_fn,
4237 				  struct bpf_prog_aux *aux, enum task_work_notify_mode mode)
4238 {
4239 	struct bpf_prog *prog;
4240 	struct bpf_task_work_ctx *ctx;
4241 	int err;
4242 
4243 	BTF_TYPE_EMIT(struct bpf_task_work);
4244 
4245 	prog = bpf_prog_inc_not_zero(aux->prog);
4246 	if (IS_ERR(prog))
4247 		return -EBADF;
4248 	task = bpf_task_acquire(task);
4249 	if (!task) {
4250 		err = -EBADF;
4251 		goto release_prog;
4252 	}
4253 
4254 	ctx = bpf_task_work_acquire_ctx(tw, map);
4255 	if (IS_ERR(ctx)) {
4256 		err = PTR_ERR(ctx);
4257 		goto release_all;
4258 	}
4259 
4260 	ctx->task = task;
4261 	ctx->callback_fn = callback_fn;
4262 	ctx->prog = prog;
4263 	ctx->mode = mode;
4264 	ctx->map = map;
4265 	ctx->map_val = (void *)tw - map->record->task_work_off;
4266 	init_task_work(&ctx->work, bpf_task_work_callback);
4267 	init_irq_work(&ctx->irq_work, bpf_task_work_irq);
4268 
4269 	irq_work_queue(&ctx->irq_work);
4270 	return 0;
4271 
4272 release_all:
4273 	bpf_task_release(task);
4274 release_prog:
4275 	bpf_prog_put(prog);
4276 	return err;
4277 }
4278 
4279 /**
4280  * bpf_task_work_schedule_signal_impl - Schedule BPF callback using task_work_add with TWA_SIGNAL
4281  * mode
4282  * @task: Task struct for which callback should be scheduled
4283  * @tw: Pointer to struct bpf_task_work in BPF map value for internal bookkeeping
4284  * @map__map: bpf_map that embeds struct bpf_task_work in the values
4285  * @callback: pointer to BPF subprogram to call
4286  * @aux__prog: user should pass NULL
4287  *
4288  * Return: 0 if task work has been scheduled successfully, negative error code otherwise
4289  */
4290 __bpf_kfunc int bpf_task_work_schedule_signal_impl(struct task_struct *task,
4291 						   struct bpf_task_work *tw, void *map__map,
4292 						   bpf_task_work_callback_t callback,
4293 						   void *aux__prog)
4294 {
4295 	return bpf_task_work_schedule(task, tw, map__map, callback, aux__prog, TWA_SIGNAL);
4296 }
4297 
4298 /**
4299  * bpf_task_work_schedule_resume_impl - Schedule BPF callback using task_work_add with TWA_RESUME
4300  * mode
4301  * @task: Task struct for which callback should be scheduled
4302  * @tw: Pointer to struct bpf_task_work in BPF map value for internal bookkeeping
4303  * @map__map: bpf_map that embeds struct bpf_task_work in the values
4304  * @callback: pointer to BPF subprogram to call
4305  * @aux__prog: user should pass NULL
4306  *
4307  * Return: 0 if task work has been scheduled successfully, negative error code otherwise
4308  */
4309 __bpf_kfunc int bpf_task_work_schedule_resume_impl(struct task_struct *task,
4310 						   struct bpf_task_work *tw, void *map__map,
4311 						   bpf_task_work_callback_t callback,
4312 						   void *aux__prog)
4313 {
4314 	return bpf_task_work_schedule(task, tw, map__map, callback, aux__prog, TWA_RESUME);
4315 }
4316 
4317 static int make_file_dynptr(struct file *file, u32 flags, bool may_sleep,
4318 			    struct bpf_dynptr_kern *ptr)
4319 {
4320 	struct bpf_dynptr_file_impl *state;
4321 
4322 	/* flags is currently unsupported */
4323 	if (flags) {
4324 		bpf_dynptr_set_null(ptr);
4325 		return -EINVAL;
4326 	}
4327 
4328 	state = bpf_mem_alloc(&bpf_global_ma, sizeof(struct bpf_dynptr_file_impl));
4329 	if (!state) {
4330 		bpf_dynptr_set_null(ptr);
4331 		return -ENOMEM;
4332 	}
4333 	state->offset = 0;
4334 	state->size = U64_MAX; /* Don't restrict size, as file may change anyways */
4335 	freader_init_from_file(&state->freader, NULL, 0, file, may_sleep);
4336 	bpf_dynptr_init(ptr, state, BPF_DYNPTR_TYPE_FILE, 0, 0);
4337 	bpf_dynptr_set_rdonly(ptr);
4338 	return 0;
4339 }
4340 
4341 __bpf_kfunc int bpf_dynptr_from_file(struct file *file, u32 flags, struct bpf_dynptr *ptr__uninit)
4342 {
4343 	return make_file_dynptr(file, flags, false, (struct bpf_dynptr_kern *)ptr__uninit);
4344 }
4345 
4346 int bpf_dynptr_from_file_sleepable(struct file *file, u32 flags, struct bpf_dynptr *ptr__uninit)
4347 {
4348 	return make_file_dynptr(file, flags, true, (struct bpf_dynptr_kern *)ptr__uninit);
4349 }
4350 
4351 __bpf_kfunc int bpf_dynptr_file_discard(struct bpf_dynptr *dynptr)
4352 {
4353 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)dynptr;
4354 	struct bpf_dynptr_file_impl *df = ptr->data;
4355 
4356 	if (!df)
4357 		return 0;
4358 
4359 	freader_cleanup(&df->freader);
4360 	bpf_mem_free(&bpf_global_ma, df);
4361 	bpf_dynptr_set_null(ptr);
4362 	return 0;
4363 }
4364 
4365 __bpf_kfunc_end_defs();
4366 
4367 static void bpf_task_work_cancel_scheduled(struct irq_work *irq_work)
4368 {
4369 	struct bpf_task_work_ctx *ctx = container_of(irq_work, struct bpf_task_work_ctx, irq_work);
4370 
4371 	bpf_task_work_cancel(ctx); /* this might put task_work callback's ref */
4372 	bpf_task_work_ctx_put(ctx); /* and here we put map's own ref that was transferred to us */
4373 }
4374 
4375 void bpf_task_work_cancel_and_free(void *val)
4376 {
4377 	struct bpf_task_work_kern *twk = val;
4378 	struct bpf_task_work_ctx *ctx;
4379 	enum bpf_task_work_state state;
4380 
4381 	ctx = xchg(&twk->ctx, NULL);
4382 	if (!ctx)
4383 		return;
4384 
4385 	state = xchg(&ctx->state, BPF_TW_FREED);
4386 	if (state == BPF_TW_SCHEDULED) {
4387 		/* run in irq_work to avoid locks in NMI */
4388 		init_irq_work(&ctx->irq_work, bpf_task_work_cancel_scheduled);
4389 		irq_work_queue(&ctx->irq_work);
4390 		return;
4391 	}
4392 
4393 	bpf_task_work_ctx_put(ctx); /* put bpf map's ref */
4394 }
4395 
4396 BTF_KFUNCS_START(generic_btf_ids)
4397 #ifdef CONFIG_CRASH_DUMP
4398 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
4399 #endif
4400 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
4401 BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
4402 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
4403 BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE)
4404 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU)
4405 BTF_ID_FLAGS(func, bpf_list_push_front_impl)
4406 BTF_ID_FLAGS(func, bpf_list_push_back_impl)
4407 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
4408 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
4409 BTF_ID_FLAGS(func, bpf_list_front, KF_RET_NULL)
4410 BTF_ID_FLAGS(func, bpf_list_back, KF_RET_NULL)
4411 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
4412 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
4413 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
4414 BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
4415 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
4416 BTF_ID_FLAGS(func, bpf_rbtree_root, KF_RET_NULL)
4417 BTF_ID_FLAGS(func, bpf_rbtree_left, KF_RET_NULL)
4418 BTF_ID_FLAGS(func, bpf_rbtree_right, KF_RET_NULL)
4419 
4420 #ifdef CONFIG_CGROUPS
4421 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
4422 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
4423 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
4424 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
4425 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
4426 BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
4427 #endif
4428 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
4429 BTF_ID_FLAGS(func, bpf_task_from_vpid, KF_ACQUIRE | KF_RET_NULL)
4430 BTF_ID_FLAGS(func, bpf_throw)
4431 #ifdef CONFIG_BPF_EVENTS
4432 BTF_ID_FLAGS(func, bpf_send_signal_task, KF_TRUSTED_ARGS)
4433 #endif
4434 #ifdef CONFIG_KEYS
4435 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
4436 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
4437 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
4438 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
4439 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
4440 #endif
4441 #endif
4442 BTF_KFUNCS_END(generic_btf_ids)
4443 
4444 static const struct btf_kfunc_id_set generic_kfunc_set = {
4445 	.owner = THIS_MODULE,
4446 	.set   = &generic_btf_ids,
4447 };
4448 
4449 
4450 BTF_ID_LIST(generic_dtor_ids)
4451 BTF_ID(struct, task_struct)
4452 BTF_ID(func, bpf_task_release_dtor)
4453 #ifdef CONFIG_CGROUPS
4454 BTF_ID(struct, cgroup)
4455 BTF_ID(func, bpf_cgroup_release_dtor)
4456 #endif
4457 
4458 BTF_KFUNCS_START(common_btf_ids)
4459 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx, KF_FASTCALL)
4460 BTF_ID_FLAGS(func, bpf_rdonly_cast, KF_FASTCALL)
4461 BTF_ID_FLAGS(func, bpf_rcu_read_lock)
4462 BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
4463 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
4464 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
4465 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
4466 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
4467 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
4468 BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU)
4469 BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL)
4470 BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY)
4471 #ifdef CONFIG_CGROUPS
4472 BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS)
4473 BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL)
4474 BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY)
4475 BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
4476 BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL)
4477 BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY)
4478 #endif
4479 BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
4480 BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL)
4481 BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY)
4482 BTF_ID_FLAGS(func, bpf_dynptr_adjust)
4483 BTF_ID_FLAGS(func, bpf_dynptr_is_null)
4484 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
4485 BTF_ID_FLAGS(func, bpf_dynptr_size)
4486 BTF_ID_FLAGS(func, bpf_dynptr_clone)
4487 BTF_ID_FLAGS(func, bpf_dynptr_copy)
4488 BTF_ID_FLAGS(func, bpf_dynptr_memset)
4489 #ifdef CONFIG_NET
4490 BTF_ID_FLAGS(func, bpf_modify_return_test_tp)
4491 #endif
4492 BTF_ID_FLAGS(func, bpf_wq_init)
4493 BTF_ID_FLAGS(func, bpf_wq_set_callback_impl)
4494 BTF_ID_FLAGS(func, bpf_wq_start)
4495 BTF_ID_FLAGS(func, bpf_preempt_disable)
4496 BTF_ID_FLAGS(func, bpf_preempt_enable)
4497 BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW)
4498 BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL)
4499 BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY)
4500 BTF_ID_FLAGS(func, bpf_copy_from_user_str, KF_SLEEPABLE)
4501 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str, KF_SLEEPABLE)
4502 BTF_ID_FLAGS(func, bpf_get_kmem_cache)
4503 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_new, KF_ITER_NEW | KF_SLEEPABLE)
4504 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
4505 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
4506 BTF_ID_FLAGS(func, bpf_local_irq_save)
4507 BTF_ID_FLAGS(func, bpf_local_irq_restore)
4508 #ifdef CONFIG_BPF_EVENTS
4509 BTF_ID_FLAGS(func, bpf_probe_read_user_dynptr)
4510 BTF_ID_FLAGS(func, bpf_probe_read_kernel_dynptr)
4511 BTF_ID_FLAGS(func, bpf_probe_read_user_str_dynptr)
4512 BTF_ID_FLAGS(func, bpf_probe_read_kernel_str_dynptr)
4513 BTF_ID_FLAGS(func, bpf_copy_from_user_dynptr, KF_SLEEPABLE)
4514 BTF_ID_FLAGS(func, bpf_copy_from_user_str_dynptr, KF_SLEEPABLE)
4515 BTF_ID_FLAGS(func, bpf_copy_from_user_task_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS)
4516 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS)
4517 #endif
4518 #ifdef CONFIG_DMA_SHARED_BUFFER
4519 BTF_ID_FLAGS(func, bpf_iter_dmabuf_new, KF_ITER_NEW | KF_SLEEPABLE)
4520 BTF_ID_FLAGS(func, bpf_iter_dmabuf_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
4521 BTF_ID_FLAGS(func, bpf_iter_dmabuf_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
4522 #endif
4523 BTF_ID_FLAGS(func, __bpf_trap)
4524 BTF_ID_FLAGS(func, bpf_strcmp);
4525 BTF_ID_FLAGS(func, bpf_strcasecmp);
4526 BTF_ID_FLAGS(func, bpf_strchr);
4527 BTF_ID_FLAGS(func, bpf_strchrnul);
4528 BTF_ID_FLAGS(func, bpf_strnchr);
4529 BTF_ID_FLAGS(func, bpf_strrchr);
4530 BTF_ID_FLAGS(func, bpf_strlen);
4531 BTF_ID_FLAGS(func, bpf_strnlen);
4532 BTF_ID_FLAGS(func, bpf_strspn);
4533 BTF_ID_FLAGS(func, bpf_strcspn);
4534 BTF_ID_FLAGS(func, bpf_strstr);
4535 BTF_ID_FLAGS(func, bpf_strcasestr);
4536 BTF_ID_FLAGS(func, bpf_strnstr);
4537 BTF_ID_FLAGS(func, bpf_strncasestr);
4538 #if defined(CONFIG_BPF_LSM) && defined(CONFIG_CGROUPS)
4539 BTF_ID_FLAGS(func, bpf_cgroup_read_xattr, KF_RCU)
4540 #endif
4541 BTF_ID_FLAGS(func, bpf_stream_vprintk_impl, KF_TRUSTED_ARGS)
4542 BTF_ID_FLAGS(func, bpf_task_work_schedule_signal_impl, KF_TRUSTED_ARGS)
4543 BTF_ID_FLAGS(func, bpf_task_work_schedule_resume_impl, KF_TRUSTED_ARGS)
4544 BTF_ID_FLAGS(func, bpf_dynptr_from_file, KF_TRUSTED_ARGS)
4545 BTF_ID_FLAGS(func, bpf_dynptr_file_discard)
4546 BTF_KFUNCS_END(common_btf_ids)
4547 
4548 static const struct btf_kfunc_id_set common_kfunc_set = {
4549 	.owner = THIS_MODULE,
4550 	.set   = &common_btf_ids,
4551 };
4552 
4553 static int __init kfunc_init(void)
4554 {
4555 	int ret;
4556 	const struct btf_id_dtor_kfunc generic_dtors[] = {
4557 		{
4558 			.btf_id       = generic_dtor_ids[0],
4559 			.kfunc_btf_id = generic_dtor_ids[1]
4560 		},
4561 #ifdef CONFIG_CGROUPS
4562 		{
4563 			.btf_id       = generic_dtor_ids[2],
4564 			.kfunc_btf_id = generic_dtor_ids[3]
4565 		},
4566 #endif
4567 	};
4568 
4569 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
4570 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
4571 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set);
4572 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
4573 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set);
4574 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &generic_kfunc_set);
4575 	ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
4576 						  ARRAY_SIZE(generic_dtors),
4577 						  THIS_MODULE);
4578 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
4579 }
4580 
4581 late_initcall(kfunc_init);
4582 
4583 /* Get a pointer to dynptr data up to len bytes for read only access. If
4584  * the dynptr doesn't have continuous data up to len bytes, return NULL.
4585  */
4586 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u64 len)
4587 {
4588 	const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr;
4589 
4590 	return bpf_dynptr_slice(p, 0, NULL, len);
4591 }
4592 
4593 /* Get a pointer to dynptr data up to len bytes for read write access. If
4594  * the dynptr doesn't have continuous data up to len bytes, or the dynptr
4595  * is read only, return NULL.
4596  */
4597 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u64 len)
4598 {
4599 	if (__bpf_dynptr_is_rdonly(ptr))
4600 		return NULL;
4601 	return (void *)__bpf_dynptr_data(ptr, len);
4602 }
4603 
4604 void bpf_map_free_internal_structs(struct bpf_map *map, void *val)
4605 {
4606 	if (btf_record_has_field(map->record, BPF_TIMER))
4607 		bpf_obj_free_timer(map->record, val);
4608 	if (btf_record_has_field(map->record, BPF_WORKQUEUE))
4609 		bpf_obj_free_workqueue(map->record, val);
4610 	if (btf_record_has_field(map->record, BPF_TASK_WORK))
4611 		bpf_obj_free_task_work(map->record, val);
4612 }
4613