xref: /linux/kernel/bpf/helpers.c (revision 4461568aa4e565de2c336f4875ddf912f26da8a5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/rcupdate.h>
8 #include <linux/random.h>
9 #include <linux/smp.h>
10 #include <linux/topology.h>
11 #include <linux/ktime.h>
12 #include <linux/sched.h>
13 #include <linux/uidgid.h>
14 #include <linux/filter.h>
15 #include <linux/ctype.h>
16 #include <linux/jiffies.h>
17 #include <linux/pid_namespace.h>
18 #include <linux/proc_ns.h>
19 #include <linux/security.h>
20 #include <linux/btf_ids.h>
21 
22 #include "../../lib/kstrtox.h"
23 
24 /* If kernel subsystem is allowing eBPF programs to call this function,
25  * inside its own verifier_ops->get_func_proto() callback it should return
26  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
27  *
28  * Different map implementations will rely on rcu in map methods
29  * lookup/update/delete, therefore eBPF programs must run under rcu lock
30  * if program is allowed to access maps, so check rcu_read_lock_held in
31  * all three functions.
32  */
33 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
34 {
35 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
36 	return (unsigned long) map->ops->map_lookup_elem(map, key);
37 }
38 
39 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
40 	.func		= bpf_map_lookup_elem,
41 	.gpl_only	= false,
42 	.pkt_access	= true,
43 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
44 	.arg1_type	= ARG_CONST_MAP_PTR,
45 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
46 };
47 
48 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
49 	   void *, value, u64, flags)
50 {
51 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
52 	return map->ops->map_update_elem(map, key, value, flags);
53 }
54 
55 const struct bpf_func_proto bpf_map_update_elem_proto = {
56 	.func		= bpf_map_update_elem,
57 	.gpl_only	= false,
58 	.pkt_access	= true,
59 	.ret_type	= RET_INTEGER,
60 	.arg1_type	= ARG_CONST_MAP_PTR,
61 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
62 	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
63 	.arg4_type	= ARG_ANYTHING,
64 };
65 
66 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
67 {
68 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
69 	return map->ops->map_delete_elem(map, key);
70 }
71 
72 const struct bpf_func_proto bpf_map_delete_elem_proto = {
73 	.func		= bpf_map_delete_elem,
74 	.gpl_only	= false,
75 	.pkt_access	= true,
76 	.ret_type	= RET_INTEGER,
77 	.arg1_type	= ARG_CONST_MAP_PTR,
78 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
79 };
80 
81 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
82 {
83 	return map->ops->map_push_elem(map, value, flags);
84 }
85 
86 const struct bpf_func_proto bpf_map_push_elem_proto = {
87 	.func		= bpf_map_push_elem,
88 	.gpl_only	= false,
89 	.pkt_access	= true,
90 	.ret_type	= RET_INTEGER,
91 	.arg1_type	= ARG_CONST_MAP_PTR,
92 	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
93 	.arg3_type	= ARG_ANYTHING,
94 };
95 
96 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
97 {
98 	return map->ops->map_pop_elem(map, value);
99 }
100 
101 const struct bpf_func_proto bpf_map_pop_elem_proto = {
102 	.func		= bpf_map_pop_elem,
103 	.gpl_only	= false,
104 	.ret_type	= RET_INTEGER,
105 	.arg1_type	= ARG_CONST_MAP_PTR,
106 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
107 };
108 
109 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
110 {
111 	return map->ops->map_peek_elem(map, value);
112 }
113 
114 const struct bpf_func_proto bpf_map_peek_elem_proto = {
115 	.func		= bpf_map_peek_elem,
116 	.gpl_only	= false,
117 	.ret_type	= RET_INTEGER,
118 	.arg1_type	= ARG_CONST_MAP_PTR,
119 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
120 };
121 
122 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
123 {
124 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
125 	return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
126 }
127 
128 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
129 	.func		= bpf_map_lookup_percpu_elem,
130 	.gpl_only	= false,
131 	.pkt_access	= true,
132 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
133 	.arg1_type	= ARG_CONST_MAP_PTR,
134 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
135 	.arg3_type	= ARG_ANYTHING,
136 };
137 
138 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
139 	.func		= bpf_user_rnd_u32,
140 	.gpl_only	= false,
141 	.ret_type	= RET_INTEGER,
142 };
143 
144 BPF_CALL_0(bpf_get_smp_processor_id)
145 {
146 	return smp_processor_id();
147 }
148 
149 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
150 	.func		= bpf_get_smp_processor_id,
151 	.gpl_only	= false,
152 	.ret_type	= RET_INTEGER,
153 };
154 
155 BPF_CALL_0(bpf_get_numa_node_id)
156 {
157 	return numa_node_id();
158 }
159 
160 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
161 	.func		= bpf_get_numa_node_id,
162 	.gpl_only	= false,
163 	.ret_type	= RET_INTEGER,
164 };
165 
166 BPF_CALL_0(bpf_ktime_get_ns)
167 {
168 	/* NMI safe access to clock monotonic */
169 	return ktime_get_mono_fast_ns();
170 }
171 
172 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
173 	.func		= bpf_ktime_get_ns,
174 	.gpl_only	= false,
175 	.ret_type	= RET_INTEGER,
176 };
177 
178 BPF_CALL_0(bpf_ktime_get_boot_ns)
179 {
180 	/* NMI safe access to clock boottime */
181 	return ktime_get_boot_fast_ns();
182 }
183 
184 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
185 	.func		= bpf_ktime_get_boot_ns,
186 	.gpl_only	= false,
187 	.ret_type	= RET_INTEGER,
188 };
189 
190 BPF_CALL_0(bpf_ktime_get_coarse_ns)
191 {
192 	return ktime_get_coarse_ns();
193 }
194 
195 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
196 	.func		= bpf_ktime_get_coarse_ns,
197 	.gpl_only	= false,
198 	.ret_type	= RET_INTEGER,
199 };
200 
201 BPF_CALL_0(bpf_ktime_get_tai_ns)
202 {
203 	/* NMI safe access to clock tai */
204 	return ktime_get_tai_fast_ns();
205 }
206 
207 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
208 	.func		= bpf_ktime_get_tai_ns,
209 	.gpl_only	= false,
210 	.ret_type	= RET_INTEGER,
211 };
212 
213 BPF_CALL_0(bpf_get_current_pid_tgid)
214 {
215 	struct task_struct *task = current;
216 
217 	if (unlikely(!task))
218 		return -EINVAL;
219 
220 	return (u64) task->tgid << 32 | task->pid;
221 }
222 
223 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
224 	.func		= bpf_get_current_pid_tgid,
225 	.gpl_only	= false,
226 	.ret_type	= RET_INTEGER,
227 };
228 
229 BPF_CALL_0(bpf_get_current_uid_gid)
230 {
231 	struct task_struct *task = current;
232 	kuid_t uid;
233 	kgid_t gid;
234 
235 	if (unlikely(!task))
236 		return -EINVAL;
237 
238 	current_uid_gid(&uid, &gid);
239 	return (u64) from_kgid(&init_user_ns, gid) << 32 |
240 		     from_kuid(&init_user_ns, uid);
241 }
242 
243 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
244 	.func		= bpf_get_current_uid_gid,
245 	.gpl_only	= false,
246 	.ret_type	= RET_INTEGER,
247 };
248 
249 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
250 {
251 	struct task_struct *task = current;
252 
253 	if (unlikely(!task))
254 		goto err_clear;
255 
256 	/* Verifier guarantees that size > 0 */
257 	strscpy(buf, task->comm, size);
258 	return 0;
259 err_clear:
260 	memset(buf, 0, size);
261 	return -EINVAL;
262 }
263 
264 const struct bpf_func_proto bpf_get_current_comm_proto = {
265 	.func		= bpf_get_current_comm,
266 	.gpl_only	= false,
267 	.ret_type	= RET_INTEGER,
268 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
269 	.arg2_type	= ARG_CONST_SIZE,
270 };
271 
272 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
273 
274 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
275 {
276 	arch_spinlock_t *l = (void *)lock;
277 	union {
278 		__u32 val;
279 		arch_spinlock_t lock;
280 	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
281 
282 	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
283 	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
284 	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
285 	arch_spin_lock(l);
286 }
287 
288 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
289 {
290 	arch_spinlock_t *l = (void *)lock;
291 
292 	arch_spin_unlock(l);
293 }
294 
295 #else
296 
297 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
298 {
299 	atomic_t *l = (void *)lock;
300 
301 	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
302 	do {
303 		atomic_cond_read_relaxed(l, !VAL);
304 	} while (atomic_xchg(l, 1));
305 }
306 
307 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
308 {
309 	atomic_t *l = (void *)lock;
310 
311 	atomic_set_release(l, 0);
312 }
313 
314 #endif
315 
316 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
317 
318 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
319 {
320 	unsigned long flags;
321 
322 	local_irq_save(flags);
323 	__bpf_spin_lock(lock);
324 	__this_cpu_write(irqsave_flags, flags);
325 }
326 
327 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
328 {
329 	__bpf_spin_lock_irqsave(lock);
330 	return 0;
331 }
332 
333 const struct bpf_func_proto bpf_spin_lock_proto = {
334 	.func		= bpf_spin_lock,
335 	.gpl_only	= false,
336 	.ret_type	= RET_VOID,
337 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
338 };
339 
340 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
341 {
342 	unsigned long flags;
343 
344 	flags = __this_cpu_read(irqsave_flags);
345 	__bpf_spin_unlock(lock);
346 	local_irq_restore(flags);
347 }
348 
349 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
350 {
351 	__bpf_spin_unlock_irqrestore(lock);
352 	return 0;
353 }
354 
355 const struct bpf_func_proto bpf_spin_unlock_proto = {
356 	.func		= bpf_spin_unlock,
357 	.gpl_only	= false,
358 	.ret_type	= RET_VOID,
359 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
360 };
361 
362 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
363 			   bool lock_src)
364 {
365 	struct bpf_spin_lock *lock;
366 
367 	if (lock_src)
368 		lock = src + map->spin_lock_off;
369 	else
370 		lock = dst + map->spin_lock_off;
371 	preempt_disable();
372 	__bpf_spin_lock_irqsave(lock);
373 	copy_map_value(map, dst, src);
374 	__bpf_spin_unlock_irqrestore(lock);
375 	preempt_enable();
376 }
377 
378 BPF_CALL_0(bpf_jiffies64)
379 {
380 	return get_jiffies_64();
381 }
382 
383 const struct bpf_func_proto bpf_jiffies64_proto = {
384 	.func		= bpf_jiffies64,
385 	.gpl_only	= false,
386 	.ret_type	= RET_INTEGER,
387 };
388 
389 #ifdef CONFIG_CGROUPS
390 BPF_CALL_0(bpf_get_current_cgroup_id)
391 {
392 	struct cgroup *cgrp;
393 	u64 cgrp_id;
394 
395 	rcu_read_lock();
396 	cgrp = task_dfl_cgroup(current);
397 	cgrp_id = cgroup_id(cgrp);
398 	rcu_read_unlock();
399 
400 	return cgrp_id;
401 }
402 
403 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
404 	.func		= bpf_get_current_cgroup_id,
405 	.gpl_only	= false,
406 	.ret_type	= RET_INTEGER,
407 };
408 
409 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
410 {
411 	struct cgroup *cgrp;
412 	struct cgroup *ancestor;
413 	u64 cgrp_id;
414 
415 	rcu_read_lock();
416 	cgrp = task_dfl_cgroup(current);
417 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
418 	cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
419 	rcu_read_unlock();
420 
421 	return cgrp_id;
422 }
423 
424 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
425 	.func		= bpf_get_current_ancestor_cgroup_id,
426 	.gpl_only	= false,
427 	.ret_type	= RET_INTEGER,
428 	.arg1_type	= ARG_ANYTHING,
429 };
430 #endif /* CONFIG_CGROUPS */
431 
432 #define BPF_STRTOX_BASE_MASK 0x1F
433 
434 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
435 			  unsigned long long *res, bool *is_negative)
436 {
437 	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
438 	const char *cur_buf = buf;
439 	size_t cur_len = buf_len;
440 	unsigned int consumed;
441 	size_t val_len;
442 	char str[64];
443 
444 	if (!buf || !buf_len || !res || !is_negative)
445 		return -EINVAL;
446 
447 	if (base != 0 && base != 8 && base != 10 && base != 16)
448 		return -EINVAL;
449 
450 	if (flags & ~BPF_STRTOX_BASE_MASK)
451 		return -EINVAL;
452 
453 	while (cur_buf < buf + buf_len && isspace(*cur_buf))
454 		++cur_buf;
455 
456 	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
457 	if (*is_negative)
458 		++cur_buf;
459 
460 	consumed = cur_buf - buf;
461 	cur_len -= consumed;
462 	if (!cur_len)
463 		return -EINVAL;
464 
465 	cur_len = min(cur_len, sizeof(str) - 1);
466 	memcpy(str, cur_buf, cur_len);
467 	str[cur_len] = '\0';
468 	cur_buf = str;
469 
470 	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
471 	val_len = _parse_integer(cur_buf, base, res);
472 
473 	if (val_len & KSTRTOX_OVERFLOW)
474 		return -ERANGE;
475 
476 	if (val_len == 0)
477 		return -EINVAL;
478 
479 	cur_buf += val_len;
480 	consumed += cur_buf - str;
481 
482 	return consumed;
483 }
484 
485 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
486 			 long long *res)
487 {
488 	unsigned long long _res;
489 	bool is_negative;
490 	int err;
491 
492 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
493 	if (err < 0)
494 		return err;
495 	if (is_negative) {
496 		if ((long long)-_res > 0)
497 			return -ERANGE;
498 		*res = -_res;
499 	} else {
500 		if ((long long)_res < 0)
501 			return -ERANGE;
502 		*res = _res;
503 	}
504 	return err;
505 }
506 
507 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
508 	   long *, res)
509 {
510 	long long _res;
511 	int err;
512 
513 	err = __bpf_strtoll(buf, buf_len, flags, &_res);
514 	if (err < 0)
515 		return err;
516 	if (_res != (long)_res)
517 		return -ERANGE;
518 	*res = _res;
519 	return err;
520 }
521 
522 const struct bpf_func_proto bpf_strtol_proto = {
523 	.func		= bpf_strtol,
524 	.gpl_only	= false,
525 	.ret_type	= RET_INTEGER,
526 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
527 	.arg2_type	= ARG_CONST_SIZE,
528 	.arg3_type	= ARG_ANYTHING,
529 	.arg4_type	= ARG_PTR_TO_LONG,
530 };
531 
532 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
533 	   unsigned long *, res)
534 {
535 	unsigned long long _res;
536 	bool is_negative;
537 	int err;
538 
539 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
540 	if (err < 0)
541 		return err;
542 	if (is_negative)
543 		return -EINVAL;
544 	if (_res != (unsigned long)_res)
545 		return -ERANGE;
546 	*res = _res;
547 	return err;
548 }
549 
550 const struct bpf_func_proto bpf_strtoul_proto = {
551 	.func		= bpf_strtoul,
552 	.gpl_only	= false,
553 	.ret_type	= RET_INTEGER,
554 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
555 	.arg2_type	= ARG_CONST_SIZE,
556 	.arg3_type	= ARG_ANYTHING,
557 	.arg4_type	= ARG_PTR_TO_LONG,
558 };
559 
560 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
561 {
562 	return strncmp(s1, s2, s1_sz);
563 }
564 
565 static const struct bpf_func_proto bpf_strncmp_proto = {
566 	.func		= bpf_strncmp,
567 	.gpl_only	= false,
568 	.ret_type	= RET_INTEGER,
569 	.arg1_type	= ARG_PTR_TO_MEM,
570 	.arg2_type	= ARG_CONST_SIZE,
571 	.arg3_type	= ARG_PTR_TO_CONST_STR,
572 };
573 
574 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
575 	   struct bpf_pidns_info *, nsdata, u32, size)
576 {
577 	struct task_struct *task = current;
578 	struct pid_namespace *pidns;
579 	int err = -EINVAL;
580 
581 	if (unlikely(size != sizeof(struct bpf_pidns_info)))
582 		goto clear;
583 
584 	if (unlikely((u64)(dev_t)dev != dev))
585 		goto clear;
586 
587 	if (unlikely(!task))
588 		goto clear;
589 
590 	pidns = task_active_pid_ns(task);
591 	if (unlikely(!pidns)) {
592 		err = -ENOENT;
593 		goto clear;
594 	}
595 
596 	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
597 		goto clear;
598 
599 	nsdata->pid = task_pid_nr_ns(task, pidns);
600 	nsdata->tgid = task_tgid_nr_ns(task, pidns);
601 	return 0;
602 clear:
603 	memset((void *)nsdata, 0, (size_t) size);
604 	return err;
605 }
606 
607 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
608 	.func		= bpf_get_ns_current_pid_tgid,
609 	.gpl_only	= false,
610 	.ret_type	= RET_INTEGER,
611 	.arg1_type	= ARG_ANYTHING,
612 	.arg2_type	= ARG_ANYTHING,
613 	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
614 	.arg4_type      = ARG_CONST_SIZE,
615 };
616 
617 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
618 	.func		= bpf_get_raw_cpu_id,
619 	.gpl_only	= false,
620 	.ret_type	= RET_INTEGER,
621 };
622 
623 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
624 	   u64, flags, void *, data, u64, size)
625 {
626 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
627 		return -EINVAL;
628 
629 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
630 }
631 
632 const struct bpf_func_proto bpf_event_output_data_proto =  {
633 	.func		= bpf_event_output_data,
634 	.gpl_only       = true,
635 	.ret_type       = RET_INTEGER,
636 	.arg1_type      = ARG_PTR_TO_CTX,
637 	.arg2_type      = ARG_CONST_MAP_PTR,
638 	.arg3_type      = ARG_ANYTHING,
639 	.arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
640 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
641 };
642 
643 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
644 	   const void __user *, user_ptr)
645 {
646 	int ret = copy_from_user(dst, user_ptr, size);
647 
648 	if (unlikely(ret)) {
649 		memset(dst, 0, size);
650 		ret = -EFAULT;
651 	}
652 
653 	return ret;
654 }
655 
656 const struct bpf_func_proto bpf_copy_from_user_proto = {
657 	.func		= bpf_copy_from_user,
658 	.gpl_only	= false,
659 	.ret_type	= RET_INTEGER,
660 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
661 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
662 	.arg3_type	= ARG_ANYTHING,
663 };
664 
665 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
666 	   const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
667 {
668 	int ret;
669 
670 	/* flags is not used yet */
671 	if (unlikely(flags))
672 		return -EINVAL;
673 
674 	if (unlikely(!size))
675 		return 0;
676 
677 	ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
678 	if (ret == size)
679 		return 0;
680 
681 	memset(dst, 0, size);
682 	/* Return -EFAULT for partial read */
683 	return ret < 0 ? ret : -EFAULT;
684 }
685 
686 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
687 	.func		= bpf_copy_from_user_task,
688 	.gpl_only	= true,
689 	.ret_type	= RET_INTEGER,
690 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
691 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
692 	.arg3_type	= ARG_ANYTHING,
693 	.arg4_type	= ARG_PTR_TO_BTF_ID,
694 	.arg4_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
695 	.arg5_type	= ARG_ANYTHING
696 };
697 
698 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
699 {
700 	if (cpu >= nr_cpu_ids)
701 		return (unsigned long)NULL;
702 
703 	return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
704 }
705 
706 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
707 	.func		= bpf_per_cpu_ptr,
708 	.gpl_only	= false,
709 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
710 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
711 	.arg2_type	= ARG_ANYTHING,
712 };
713 
714 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
715 {
716 	return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
717 }
718 
719 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
720 	.func		= bpf_this_cpu_ptr,
721 	.gpl_only	= false,
722 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
723 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
724 };
725 
726 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
727 		size_t bufsz)
728 {
729 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
730 
731 	buf[0] = 0;
732 
733 	switch (fmt_ptype) {
734 	case 's':
735 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
736 		if ((unsigned long)unsafe_ptr < TASK_SIZE)
737 			return strncpy_from_user_nofault(buf, user_ptr, bufsz);
738 		fallthrough;
739 #endif
740 	case 'k':
741 		return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
742 	case 'u':
743 		return strncpy_from_user_nofault(buf, user_ptr, bufsz);
744 	}
745 
746 	return -EINVAL;
747 }
748 
749 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
750  * arguments representation.
751  */
752 #define MAX_BPRINTF_BUF_LEN	512
753 
754 /* Support executing three nested bprintf helper calls on a given CPU */
755 #define MAX_BPRINTF_NEST_LEVEL	3
756 struct bpf_bprintf_buffers {
757 	char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN];
758 };
759 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs);
760 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
761 
762 static int try_get_fmt_tmp_buf(char **tmp_buf)
763 {
764 	struct bpf_bprintf_buffers *bufs;
765 	int nest_level;
766 
767 	preempt_disable();
768 	nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
769 	if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
770 		this_cpu_dec(bpf_bprintf_nest_level);
771 		preempt_enable();
772 		return -EBUSY;
773 	}
774 	bufs = this_cpu_ptr(&bpf_bprintf_bufs);
775 	*tmp_buf = bufs->tmp_bufs[nest_level - 1];
776 
777 	return 0;
778 }
779 
780 void bpf_bprintf_cleanup(void)
781 {
782 	if (this_cpu_read(bpf_bprintf_nest_level)) {
783 		this_cpu_dec(bpf_bprintf_nest_level);
784 		preempt_enable();
785 	}
786 }
787 
788 /*
789  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
790  *
791  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
792  *
793  * This can be used in two ways:
794  * - Format string verification only: when bin_args is NULL
795  * - Arguments preparation: in addition to the above verification, it writes in
796  *   bin_args a binary representation of arguments usable by bstr_printf where
797  *   pointers from BPF have been sanitized.
798  *
799  * In argument preparation mode, if 0 is returned, safe temporary buffers are
800  * allocated and bpf_bprintf_cleanup should be called to free them after use.
801  */
802 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
803 			u32 **bin_args, u32 num_args)
804 {
805 	char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
806 	size_t sizeof_cur_arg, sizeof_cur_ip;
807 	int err, i, num_spec = 0;
808 	u64 cur_arg;
809 	char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
810 
811 	fmt_end = strnchr(fmt, fmt_size, 0);
812 	if (!fmt_end)
813 		return -EINVAL;
814 	fmt_size = fmt_end - fmt;
815 
816 	if (bin_args) {
817 		if (num_args && try_get_fmt_tmp_buf(&tmp_buf))
818 			return -EBUSY;
819 
820 		tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN;
821 		*bin_args = (u32 *)tmp_buf;
822 	}
823 
824 	for (i = 0; i < fmt_size; i++) {
825 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
826 			err = -EINVAL;
827 			goto out;
828 		}
829 
830 		if (fmt[i] != '%')
831 			continue;
832 
833 		if (fmt[i + 1] == '%') {
834 			i++;
835 			continue;
836 		}
837 
838 		if (num_spec >= num_args) {
839 			err = -EINVAL;
840 			goto out;
841 		}
842 
843 		/* The string is zero-terminated so if fmt[i] != 0, we can
844 		 * always access fmt[i + 1], in the worst case it will be a 0
845 		 */
846 		i++;
847 
848 		/* skip optional "[0 +-][num]" width formatting field */
849 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
850 		       fmt[i] == ' ')
851 			i++;
852 		if (fmt[i] >= '1' && fmt[i] <= '9') {
853 			i++;
854 			while (fmt[i] >= '0' && fmt[i] <= '9')
855 				i++;
856 		}
857 
858 		if (fmt[i] == 'p') {
859 			sizeof_cur_arg = sizeof(long);
860 
861 			if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
862 			    fmt[i + 2] == 's') {
863 				fmt_ptype = fmt[i + 1];
864 				i += 2;
865 				goto fmt_str;
866 			}
867 
868 			if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
869 			    ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
870 			    fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
871 			    fmt[i + 1] == 'S') {
872 				/* just kernel pointers */
873 				if (tmp_buf)
874 					cur_arg = raw_args[num_spec];
875 				i++;
876 				goto nocopy_fmt;
877 			}
878 
879 			if (fmt[i + 1] == 'B') {
880 				if (tmp_buf)  {
881 					err = snprintf(tmp_buf,
882 						       (tmp_buf_end - tmp_buf),
883 						       "%pB",
884 						       (void *)(long)raw_args[num_spec]);
885 					tmp_buf += (err + 1);
886 				}
887 
888 				i++;
889 				num_spec++;
890 				continue;
891 			}
892 
893 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
894 			if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
895 			    (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
896 				err = -EINVAL;
897 				goto out;
898 			}
899 
900 			i += 2;
901 			if (!tmp_buf)
902 				goto nocopy_fmt;
903 
904 			sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
905 			if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
906 				err = -ENOSPC;
907 				goto out;
908 			}
909 
910 			unsafe_ptr = (char *)(long)raw_args[num_spec];
911 			err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
912 						       sizeof_cur_ip);
913 			if (err < 0)
914 				memset(cur_ip, 0, sizeof_cur_ip);
915 
916 			/* hack: bstr_printf expects IP addresses to be
917 			 * pre-formatted as strings, ironically, the easiest way
918 			 * to do that is to call snprintf.
919 			 */
920 			ip_spec[2] = fmt[i - 1];
921 			ip_spec[3] = fmt[i];
922 			err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
923 				       ip_spec, &cur_ip);
924 
925 			tmp_buf += err + 1;
926 			num_spec++;
927 
928 			continue;
929 		} else if (fmt[i] == 's') {
930 			fmt_ptype = fmt[i];
931 fmt_str:
932 			if (fmt[i + 1] != 0 &&
933 			    !isspace(fmt[i + 1]) &&
934 			    !ispunct(fmt[i + 1])) {
935 				err = -EINVAL;
936 				goto out;
937 			}
938 
939 			if (!tmp_buf)
940 				goto nocopy_fmt;
941 
942 			if (tmp_buf_end == tmp_buf) {
943 				err = -ENOSPC;
944 				goto out;
945 			}
946 
947 			unsafe_ptr = (char *)(long)raw_args[num_spec];
948 			err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
949 						    fmt_ptype,
950 						    tmp_buf_end - tmp_buf);
951 			if (err < 0) {
952 				tmp_buf[0] = '\0';
953 				err = 1;
954 			}
955 
956 			tmp_buf += err;
957 			num_spec++;
958 
959 			continue;
960 		} else if (fmt[i] == 'c') {
961 			if (!tmp_buf)
962 				goto nocopy_fmt;
963 
964 			if (tmp_buf_end == tmp_buf) {
965 				err = -ENOSPC;
966 				goto out;
967 			}
968 
969 			*tmp_buf = raw_args[num_spec];
970 			tmp_buf++;
971 			num_spec++;
972 
973 			continue;
974 		}
975 
976 		sizeof_cur_arg = sizeof(int);
977 
978 		if (fmt[i] == 'l') {
979 			sizeof_cur_arg = sizeof(long);
980 			i++;
981 		}
982 		if (fmt[i] == 'l') {
983 			sizeof_cur_arg = sizeof(long long);
984 			i++;
985 		}
986 
987 		if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
988 		    fmt[i] != 'x' && fmt[i] != 'X') {
989 			err = -EINVAL;
990 			goto out;
991 		}
992 
993 		if (tmp_buf)
994 			cur_arg = raw_args[num_spec];
995 nocopy_fmt:
996 		if (tmp_buf) {
997 			tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
998 			if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
999 				err = -ENOSPC;
1000 				goto out;
1001 			}
1002 
1003 			if (sizeof_cur_arg == 8) {
1004 				*(u32 *)tmp_buf = *(u32 *)&cur_arg;
1005 				*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1006 			} else {
1007 				*(u32 *)tmp_buf = (u32)(long)cur_arg;
1008 			}
1009 			tmp_buf += sizeof_cur_arg;
1010 		}
1011 		num_spec++;
1012 	}
1013 
1014 	err = 0;
1015 out:
1016 	if (err)
1017 		bpf_bprintf_cleanup();
1018 	return err;
1019 }
1020 
1021 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1022 	   const void *, data, u32, data_len)
1023 {
1024 	int err, num_args;
1025 	u32 *bin_args;
1026 
1027 	if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1028 	    (data_len && !data))
1029 		return -EINVAL;
1030 	num_args = data_len / 8;
1031 
1032 	/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1033 	 * can safely give an unbounded size.
1034 	 */
1035 	err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args);
1036 	if (err < 0)
1037 		return err;
1038 
1039 	err = bstr_printf(str, str_size, fmt, bin_args);
1040 
1041 	bpf_bprintf_cleanup();
1042 
1043 	return err + 1;
1044 }
1045 
1046 const struct bpf_func_proto bpf_snprintf_proto = {
1047 	.func		= bpf_snprintf,
1048 	.gpl_only	= true,
1049 	.ret_type	= RET_INTEGER,
1050 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1051 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1052 	.arg3_type	= ARG_PTR_TO_CONST_STR,
1053 	.arg4_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1054 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1055 };
1056 
1057 /* BPF map elements can contain 'struct bpf_timer'.
1058  * Such map owns all of its BPF timers.
1059  * 'struct bpf_timer' is allocated as part of map element allocation
1060  * and it's zero initialized.
1061  * That space is used to keep 'struct bpf_timer_kern'.
1062  * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1063  * remembers 'struct bpf_map *' pointer it's part of.
1064  * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1065  * bpf_timer_start() arms the timer.
1066  * If user space reference to a map goes to zero at this point
1067  * ops->map_release_uref callback is responsible for cancelling the timers,
1068  * freeing their memory, and decrementing prog's refcnts.
1069  * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1070  * Inner maps can contain bpf timers as well. ops->map_release_uref is
1071  * freeing the timers when inner map is replaced or deleted by user space.
1072  */
1073 struct bpf_hrtimer {
1074 	struct hrtimer timer;
1075 	struct bpf_map *map;
1076 	struct bpf_prog *prog;
1077 	void __rcu *callback_fn;
1078 	void *value;
1079 };
1080 
1081 /* the actual struct hidden inside uapi struct bpf_timer */
1082 struct bpf_timer_kern {
1083 	struct bpf_hrtimer *timer;
1084 	/* bpf_spin_lock is used here instead of spinlock_t to make
1085 	 * sure that it always fits into space reserved by struct bpf_timer
1086 	 * regardless of LOCKDEP and spinlock debug flags.
1087 	 */
1088 	struct bpf_spin_lock lock;
1089 } __attribute__((aligned(8)));
1090 
1091 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1092 
1093 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1094 {
1095 	struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1096 	struct bpf_map *map = t->map;
1097 	void *value = t->value;
1098 	bpf_callback_t callback_fn;
1099 	void *key;
1100 	u32 idx;
1101 
1102 	BTF_TYPE_EMIT(struct bpf_timer);
1103 	callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
1104 	if (!callback_fn)
1105 		goto out;
1106 
1107 	/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1108 	 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1109 	 * Remember the timer this callback is servicing to prevent
1110 	 * deadlock if callback_fn() calls bpf_timer_cancel() or
1111 	 * bpf_map_delete_elem() on the same timer.
1112 	 */
1113 	this_cpu_write(hrtimer_running, t);
1114 	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1115 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1116 
1117 		/* compute the key */
1118 		idx = ((char *)value - array->value) / array->elem_size;
1119 		key = &idx;
1120 	} else { /* hash or lru */
1121 		key = value - round_up(map->key_size, 8);
1122 	}
1123 
1124 	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1125 	/* The verifier checked that return value is zero. */
1126 
1127 	this_cpu_write(hrtimer_running, NULL);
1128 out:
1129 	return HRTIMER_NORESTART;
1130 }
1131 
1132 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
1133 	   u64, flags)
1134 {
1135 	clockid_t clockid = flags & (MAX_CLOCKS - 1);
1136 	struct bpf_hrtimer *t;
1137 	int ret = 0;
1138 
1139 	BUILD_BUG_ON(MAX_CLOCKS != 16);
1140 	BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
1141 	BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
1142 
1143 	if (in_nmi())
1144 		return -EOPNOTSUPP;
1145 
1146 	if (flags >= MAX_CLOCKS ||
1147 	    /* similar to timerfd except _ALARM variants are not supported */
1148 	    (clockid != CLOCK_MONOTONIC &&
1149 	     clockid != CLOCK_REALTIME &&
1150 	     clockid != CLOCK_BOOTTIME))
1151 		return -EINVAL;
1152 	__bpf_spin_lock_irqsave(&timer->lock);
1153 	t = timer->timer;
1154 	if (t) {
1155 		ret = -EBUSY;
1156 		goto out;
1157 	}
1158 	if (!atomic64_read(&map->usercnt)) {
1159 		/* maps with timers must be either held by user space
1160 		 * or pinned in bpffs.
1161 		 */
1162 		ret = -EPERM;
1163 		goto out;
1164 	}
1165 	/* allocate hrtimer via map_kmalloc to use memcg accounting */
1166 	t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
1167 	if (!t) {
1168 		ret = -ENOMEM;
1169 		goto out;
1170 	}
1171 	t->value = (void *)timer - map->timer_off;
1172 	t->map = map;
1173 	t->prog = NULL;
1174 	rcu_assign_pointer(t->callback_fn, NULL);
1175 	hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1176 	t->timer.function = bpf_timer_cb;
1177 	timer->timer = t;
1178 out:
1179 	__bpf_spin_unlock_irqrestore(&timer->lock);
1180 	return ret;
1181 }
1182 
1183 static const struct bpf_func_proto bpf_timer_init_proto = {
1184 	.func		= bpf_timer_init,
1185 	.gpl_only	= true,
1186 	.ret_type	= RET_INTEGER,
1187 	.arg1_type	= ARG_PTR_TO_TIMER,
1188 	.arg2_type	= ARG_CONST_MAP_PTR,
1189 	.arg3_type	= ARG_ANYTHING,
1190 };
1191 
1192 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
1193 	   struct bpf_prog_aux *, aux)
1194 {
1195 	struct bpf_prog *prev, *prog = aux->prog;
1196 	struct bpf_hrtimer *t;
1197 	int ret = 0;
1198 
1199 	if (in_nmi())
1200 		return -EOPNOTSUPP;
1201 	__bpf_spin_lock_irqsave(&timer->lock);
1202 	t = timer->timer;
1203 	if (!t) {
1204 		ret = -EINVAL;
1205 		goto out;
1206 	}
1207 	if (!atomic64_read(&t->map->usercnt)) {
1208 		/* maps with timers must be either held by user space
1209 		 * or pinned in bpffs. Otherwise timer might still be
1210 		 * running even when bpf prog is detached and user space
1211 		 * is gone, since map_release_uref won't ever be called.
1212 		 */
1213 		ret = -EPERM;
1214 		goto out;
1215 	}
1216 	prev = t->prog;
1217 	if (prev != prog) {
1218 		/* Bump prog refcnt once. Every bpf_timer_set_callback()
1219 		 * can pick different callback_fn-s within the same prog.
1220 		 */
1221 		prog = bpf_prog_inc_not_zero(prog);
1222 		if (IS_ERR(prog)) {
1223 			ret = PTR_ERR(prog);
1224 			goto out;
1225 		}
1226 		if (prev)
1227 			/* Drop prev prog refcnt when swapping with new prog */
1228 			bpf_prog_put(prev);
1229 		t->prog = prog;
1230 	}
1231 	rcu_assign_pointer(t->callback_fn, callback_fn);
1232 out:
1233 	__bpf_spin_unlock_irqrestore(&timer->lock);
1234 	return ret;
1235 }
1236 
1237 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1238 	.func		= bpf_timer_set_callback,
1239 	.gpl_only	= true,
1240 	.ret_type	= RET_INTEGER,
1241 	.arg1_type	= ARG_PTR_TO_TIMER,
1242 	.arg2_type	= ARG_PTR_TO_FUNC,
1243 };
1244 
1245 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
1246 {
1247 	struct bpf_hrtimer *t;
1248 	int ret = 0;
1249 
1250 	if (in_nmi())
1251 		return -EOPNOTSUPP;
1252 	if (flags)
1253 		return -EINVAL;
1254 	__bpf_spin_lock_irqsave(&timer->lock);
1255 	t = timer->timer;
1256 	if (!t || !t->prog) {
1257 		ret = -EINVAL;
1258 		goto out;
1259 	}
1260 	hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT);
1261 out:
1262 	__bpf_spin_unlock_irqrestore(&timer->lock);
1263 	return ret;
1264 }
1265 
1266 static const struct bpf_func_proto bpf_timer_start_proto = {
1267 	.func		= bpf_timer_start,
1268 	.gpl_only	= true,
1269 	.ret_type	= RET_INTEGER,
1270 	.arg1_type	= ARG_PTR_TO_TIMER,
1271 	.arg2_type	= ARG_ANYTHING,
1272 	.arg3_type	= ARG_ANYTHING,
1273 };
1274 
1275 static void drop_prog_refcnt(struct bpf_hrtimer *t)
1276 {
1277 	struct bpf_prog *prog = t->prog;
1278 
1279 	if (prog) {
1280 		bpf_prog_put(prog);
1281 		t->prog = NULL;
1282 		rcu_assign_pointer(t->callback_fn, NULL);
1283 	}
1284 }
1285 
1286 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
1287 {
1288 	struct bpf_hrtimer *t;
1289 	int ret = 0;
1290 
1291 	if (in_nmi())
1292 		return -EOPNOTSUPP;
1293 	__bpf_spin_lock_irqsave(&timer->lock);
1294 	t = timer->timer;
1295 	if (!t) {
1296 		ret = -EINVAL;
1297 		goto out;
1298 	}
1299 	if (this_cpu_read(hrtimer_running) == t) {
1300 		/* If bpf callback_fn is trying to bpf_timer_cancel()
1301 		 * its own timer the hrtimer_cancel() will deadlock
1302 		 * since it waits for callback_fn to finish
1303 		 */
1304 		ret = -EDEADLK;
1305 		goto out;
1306 	}
1307 	drop_prog_refcnt(t);
1308 out:
1309 	__bpf_spin_unlock_irqrestore(&timer->lock);
1310 	/* Cancel the timer and wait for associated callback to finish
1311 	 * if it was running.
1312 	 */
1313 	ret = ret ?: hrtimer_cancel(&t->timer);
1314 	return ret;
1315 }
1316 
1317 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1318 	.func		= bpf_timer_cancel,
1319 	.gpl_only	= true,
1320 	.ret_type	= RET_INTEGER,
1321 	.arg1_type	= ARG_PTR_TO_TIMER,
1322 };
1323 
1324 /* This function is called by map_delete/update_elem for individual element and
1325  * by ops->map_release_uref when the user space reference to a map reaches zero.
1326  */
1327 void bpf_timer_cancel_and_free(void *val)
1328 {
1329 	struct bpf_timer_kern *timer = val;
1330 	struct bpf_hrtimer *t;
1331 
1332 	/* Performance optimization: read timer->timer without lock first. */
1333 	if (!READ_ONCE(timer->timer))
1334 		return;
1335 
1336 	__bpf_spin_lock_irqsave(&timer->lock);
1337 	/* re-read it under lock */
1338 	t = timer->timer;
1339 	if (!t)
1340 		goto out;
1341 	drop_prog_refcnt(t);
1342 	/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1343 	 * this timer, since it won't be initialized.
1344 	 */
1345 	timer->timer = NULL;
1346 out:
1347 	__bpf_spin_unlock_irqrestore(&timer->lock);
1348 	if (!t)
1349 		return;
1350 	/* Cancel the timer and wait for callback to complete if it was running.
1351 	 * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1352 	 * right after for both preallocated and non-preallocated maps.
1353 	 * The timer->timer = NULL was already done and no code path can
1354 	 * see address 't' anymore.
1355 	 *
1356 	 * Check that bpf_map_delete/update_elem() wasn't called from timer
1357 	 * callback_fn. In such case don't call hrtimer_cancel() (since it will
1358 	 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1359 	 * return -1). Though callback_fn is still running on this cpu it's
1360 	 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1361 	 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1362 	 * since timer->timer = NULL was already done. The timer will be
1363 	 * effectively cancelled because bpf_timer_cb() will return
1364 	 * HRTIMER_NORESTART.
1365 	 */
1366 	if (this_cpu_read(hrtimer_running) != t)
1367 		hrtimer_cancel(&t->timer);
1368 	kfree(t);
1369 }
1370 
1371 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
1372 {
1373 	unsigned long *kptr = map_value;
1374 
1375 	return xchg(kptr, (unsigned long)ptr);
1376 }
1377 
1378 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1379  * helper is determined dynamically by the verifier.
1380  */
1381 #define BPF_PTR_POISON ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1382 
1383 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1384 	.func         = bpf_kptr_xchg,
1385 	.gpl_only     = false,
1386 	.ret_type     = RET_PTR_TO_BTF_ID_OR_NULL,
1387 	.ret_btf_id   = BPF_PTR_POISON,
1388 	.arg1_type    = ARG_PTR_TO_KPTR,
1389 	.arg2_type    = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1390 	.arg2_btf_id  = BPF_PTR_POISON,
1391 };
1392 
1393 /* Since the upper 8 bits of dynptr->size is reserved, the
1394  * maximum supported size is 2^24 - 1.
1395  */
1396 #define DYNPTR_MAX_SIZE	((1UL << 24) - 1)
1397 #define DYNPTR_TYPE_SHIFT	28
1398 #define DYNPTR_SIZE_MASK	0xFFFFFF
1399 #define DYNPTR_RDONLY_BIT	BIT(31)
1400 
1401 static bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr)
1402 {
1403 	return ptr->size & DYNPTR_RDONLY_BIT;
1404 }
1405 
1406 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1407 {
1408 	ptr->size |= type << DYNPTR_TYPE_SHIFT;
1409 }
1410 
1411 static u32 bpf_dynptr_get_size(struct bpf_dynptr_kern *ptr)
1412 {
1413 	return ptr->size & DYNPTR_SIZE_MASK;
1414 }
1415 
1416 int bpf_dynptr_check_size(u32 size)
1417 {
1418 	return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1419 }
1420 
1421 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1422 		     enum bpf_dynptr_type type, u32 offset, u32 size)
1423 {
1424 	ptr->data = data;
1425 	ptr->offset = offset;
1426 	ptr->size = size;
1427 	bpf_dynptr_set_type(ptr, type);
1428 }
1429 
1430 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1431 {
1432 	memset(ptr, 0, sizeof(*ptr));
1433 }
1434 
1435 static int bpf_dynptr_check_off_len(struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1436 {
1437 	u32 size = bpf_dynptr_get_size(ptr);
1438 
1439 	if (len > size || offset > size - len)
1440 		return -E2BIG;
1441 
1442 	return 0;
1443 }
1444 
1445 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1446 {
1447 	int err;
1448 
1449 	err = bpf_dynptr_check_size(size);
1450 	if (err)
1451 		goto error;
1452 
1453 	/* flags is currently unsupported */
1454 	if (flags) {
1455 		err = -EINVAL;
1456 		goto error;
1457 	}
1458 
1459 	bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1460 
1461 	return 0;
1462 
1463 error:
1464 	bpf_dynptr_set_null(ptr);
1465 	return err;
1466 }
1467 
1468 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1469 	.func		= bpf_dynptr_from_mem,
1470 	.gpl_only	= false,
1471 	.ret_type	= RET_INTEGER,
1472 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1473 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1474 	.arg3_type	= ARG_ANYTHING,
1475 	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT,
1476 };
1477 
1478 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, struct bpf_dynptr_kern *, src,
1479 	   u32, offset, u64, flags)
1480 {
1481 	int err;
1482 
1483 	if (!src->data || flags)
1484 		return -EINVAL;
1485 
1486 	err = bpf_dynptr_check_off_len(src, offset, len);
1487 	if (err)
1488 		return err;
1489 
1490 	memcpy(dst, src->data + src->offset + offset, len);
1491 
1492 	return 0;
1493 }
1494 
1495 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1496 	.func		= bpf_dynptr_read,
1497 	.gpl_only	= false,
1498 	.ret_type	= RET_INTEGER,
1499 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1500 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1501 	.arg3_type	= ARG_PTR_TO_DYNPTR,
1502 	.arg4_type	= ARG_ANYTHING,
1503 	.arg5_type	= ARG_ANYTHING,
1504 };
1505 
1506 BPF_CALL_5(bpf_dynptr_write, struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1507 	   u32, len, u64, flags)
1508 {
1509 	int err;
1510 
1511 	if (!dst->data || flags || bpf_dynptr_is_rdonly(dst))
1512 		return -EINVAL;
1513 
1514 	err = bpf_dynptr_check_off_len(dst, offset, len);
1515 	if (err)
1516 		return err;
1517 
1518 	memcpy(dst->data + dst->offset + offset, src, len);
1519 
1520 	return 0;
1521 }
1522 
1523 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1524 	.func		= bpf_dynptr_write,
1525 	.gpl_only	= false,
1526 	.ret_type	= RET_INTEGER,
1527 	.arg1_type	= ARG_PTR_TO_DYNPTR,
1528 	.arg2_type	= ARG_ANYTHING,
1529 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1530 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1531 	.arg5_type	= ARG_ANYTHING,
1532 };
1533 
1534 BPF_CALL_3(bpf_dynptr_data, struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1535 {
1536 	int err;
1537 
1538 	if (!ptr->data)
1539 		return 0;
1540 
1541 	err = bpf_dynptr_check_off_len(ptr, offset, len);
1542 	if (err)
1543 		return 0;
1544 
1545 	if (bpf_dynptr_is_rdonly(ptr))
1546 		return 0;
1547 
1548 	return (unsigned long)(ptr->data + ptr->offset + offset);
1549 }
1550 
1551 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1552 	.func		= bpf_dynptr_data,
1553 	.gpl_only	= false,
1554 	.ret_type	= RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1555 	.arg1_type	= ARG_PTR_TO_DYNPTR,
1556 	.arg2_type	= ARG_ANYTHING,
1557 	.arg3_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
1558 };
1559 
1560 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1561 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1562 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1563 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1564 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1565 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1566 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1567 
1568 const struct bpf_func_proto *
1569 bpf_base_func_proto(enum bpf_func_id func_id)
1570 {
1571 	switch (func_id) {
1572 	case BPF_FUNC_map_lookup_elem:
1573 		return &bpf_map_lookup_elem_proto;
1574 	case BPF_FUNC_map_update_elem:
1575 		return &bpf_map_update_elem_proto;
1576 	case BPF_FUNC_map_delete_elem:
1577 		return &bpf_map_delete_elem_proto;
1578 	case BPF_FUNC_map_push_elem:
1579 		return &bpf_map_push_elem_proto;
1580 	case BPF_FUNC_map_pop_elem:
1581 		return &bpf_map_pop_elem_proto;
1582 	case BPF_FUNC_map_peek_elem:
1583 		return &bpf_map_peek_elem_proto;
1584 	case BPF_FUNC_map_lookup_percpu_elem:
1585 		return &bpf_map_lookup_percpu_elem_proto;
1586 	case BPF_FUNC_get_prandom_u32:
1587 		return &bpf_get_prandom_u32_proto;
1588 	case BPF_FUNC_get_smp_processor_id:
1589 		return &bpf_get_raw_smp_processor_id_proto;
1590 	case BPF_FUNC_get_numa_node_id:
1591 		return &bpf_get_numa_node_id_proto;
1592 	case BPF_FUNC_tail_call:
1593 		return &bpf_tail_call_proto;
1594 	case BPF_FUNC_ktime_get_ns:
1595 		return &bpf_ktime_get_ns_proto;
1596 	case BPF_FUNC_ktime_get_boot_ns:
1597 		return &bpf_ktime_get_boot_ns_proto;
1598 	case BPF_FUNC_ktime_get_tai_ns:
1599 		return &bpf_ktime_get_tai_ns_proto;
1600 	case BPF_FUNC_ringbuf_output:
1601 		return &bpf_ringbuf_output_proto;
1602 	case BPF_FUNC_ringbuf_reserve:
1603 		return &bpf_ringbuf_reserve_proto;
1604 	case BPF_FUNC_ringbuf_submit:
1605 		return &bpf_ringbuf_submit_proto;
1606 	case BPF_FUNC_ringbuf_discard:
1607 		return &bpf_ringbuf_discard_proto;
1608 	case BPF_FUNC_ringbuf_query:
1609 		return &bpf_ringbuf_query_proto;
1610 	case BPF_FUNC_ringbuf_reserve_dynptr:
1611 		return &bpf_ringbuf_reserve_dynptr_proto;
1612 	case BPF_FUNC_ringbuf_submit_dynptr:
1613 		return &bpf_ringbuf_submit_dynptr_proto;
1614 	case BPF_FUNC_ringbuf_discard_dynptr:
1615 		return &bpf_ringbuf_discard_dynptr_proto;
1616 	case BPF_FUNC_strncmp:
1617 		return &bpf_strncmp_proto;
1618 	case BPF_FUNC_strtol:
1619 		return &bpf_strtol_proto;
1620 	case BPF_FUNC_strtoul:
1621 		return &bpf_strtoul_proto;
1622 	case BPF_FUNC_dynptr_from_mem:
1623 		return &bpf_dynptr_from_mem_proto;
1624 	case BPF_FUNC_dynptr_read:
1625 		return &bpf_dynptr_read_proto;
1626 	case BPF_FUNC_dynptr_write:
1627 		return &bpf_dynptr_write_proto;
1628 	case BPF_FUNC_dynptr_data:
1629 		return &bpf_dynptr_data_proto;
1630 	default:
1631 		break;
1632 	}
1633 
1634 	if (!bpf_capable())
1635 		return NULL;
1636 
1637 	switch (func_id) {
1638 	case BPF_FUNC_spin_lock:
1639 		return &bpf_spin_lock_proto;
1640 	case BPF_FUNC_spin_unlock:
1641 		return &bpf_spin_unlock_proto;
1642 	case BPF_FUNC_jiffies64:
1643 		return &bpf_jiffies64_proto;
1644 	case BPF_FUNC_per_cpu_ptr:
1645 		return &bpf_per_cpu_ptr_proto;
1646 	case BPF_FUNC_this_cpu_ptr:
1647 		return &bpf_this_cpu_ptr_proto;
1648 	case BPF_FUNC_timer_init:
1649 		return &bpf_timer_init_proto;
1650 	case BPF_FUNC_timer_set_callback:
1651 		return &bpf_timer_set_callback_proto;
1652 	case BPF_FUNC_timer_start:
1653 		return &bpf_timer_start_proto;
1654 	case BPF_FUNC_timer_cancel:
1655 		return &bpf_timer_cancel_proto;
1656 	case BPF_FUNC_kptr_xchg:
1657 		return &bpf_kptr_xchg_proto;
1658 	case BPF_FUNC_for_each_map_elem:
1659 		return &bpf_for_each_map_elem_proto;
1660 	case BPF_FUNC_loop:
1661 		return &bpf_loop_proto;
1662 	default:
1663 		break;
1664 	}
1665 
1666 	if (!perfmon_capable())
1667 		return NULL;
1668 
1669 	switch (func_id) {
1670 	case BPF_FUNC_trace_printk:
1671 		return bpf_get_trace_printk_proto();
1672 	case BPF_FUNC_get_current_task:
1673 		return &bpf_get_current_task_proto;
1674 	case BPF_FUNC_get_current_task_btf:
1675 		return &bpf_get_current_task_btf_proto;
1676 	case BPF_FUNC_probe_read_user:
1677 		return &bpf_probe_read_user_proto;
1678 	case BPF_FUNC_probe_read_kernel:
1679 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1680 		       NULL : &bpf_probe_read_kernel_proto;
1681 	case BPF_FUNC_probe_read_user_str:
1682 		return &bpf_probe_read_user_str_proto;
1683 	case BPF_FUNC_probe_read_kernel_str:
1684 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1685 		       NULL : &bpf_probe_read_kernel_str_proto;
1686 	case BPF_FUNC_snprintf_btf:
1687 		return &bpf_snprintf_btf_proto;
1688 	case BPF_FUNC_snprintf:
1689 		return &bpf_snprintf_proto;
1690 	case BPF_FUNC_task_pt_regs:
1691 		return &bpf_task_pt_regs_proto;
1692 	case BPF_FUNC_trace_vprintk:
1693 		return bpf_get_trace_vprintk_proto();
1694 	default:
1695 		return NULL;
1696 	}
1697 }
1698 
1699 BTF_SET8_START(tracing_btf_ids)
1700 #ifdef CONFIG_KEXEC_CORE
1701 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
1702 #endif
1703 BTF_SET8_END(tracing_btf_ids)
1704 
1705 static const struct btf_kfunc_id_set tracing_kfunc_set = {
1706 	.owner = THIS_MODULE,
1707 	.set   = &tracing_btf_ids,
1708 };
1709 
1710 static int __init kfunc_init(void)
1711 {
1712 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &tracing_kfunc_set);
1713 }
1714 
1715 late_initcall(kfunc_init);
1716