1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #include <linux/bpf.h> 5 #include <linux/btf.h> 6 #include <linux/bpf-cgroup.h> 7 #include <linux/rcupdate.h> 8 #include <linux/random.h> 9 #include <linux/smp.h> 10 #include <linux/topology.h> 11 #include <linux/ktime.h> 12 #include <linux/sched.h> 13 #include <linux/uidgid.h> 14 #include <linux/filter.h> 15 #include <linux/ctype.h> 16 #include <linux/jiffies.h> 17 #include <linux/pid_namespace.h> 18 #include <linux/proc_ns.h> 19 #include <linux/security.h> 20 #include <linux/btf_ids.h> 21 22 #include "../../lib/kstrtox.h" 23 24 /* If kernel subsystem is allowing eBPF programs to call this function, 25 * inside its own verifier_ops->get_func_proto() callback it should return 26 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments 27 * 28 * Different map implementations will rely on rcu in map methods 29 * lookup/update/delete, therefore eBPF programs must run under rcu lock 30 * if program is allowed to access maps, so check rcu_read_lock_held in 31 * all three functions. 32 */ 33 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) 34 { 35 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 36 return (unsigned long) map->ops->map_lookup_elem(map, key); 37 } 38 39 const struct bpf_func_proto bpf_map_lookup_elem_proto = { 40 .func = bpf_map_lookup_elem, 41 .gpl_only = false, 42 .pkt_access = true, 43 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 44 .arg1_type = ARG_CONST_MAP_PTR, 45 .arg2_type = ARG_PTR_TO_MAP_KEY, 46 }; 47 48 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, 49 void *, value, u64, flags) 50 { 51 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 52 return map->ops->map_update_elem(map, key, value, flags); 53 } 54 55 const struct bpf_func_proto bpf_map_update_elem_proto = { 56 .func = bpf_map_update_elem, 57 .gpl_only = false, 58 .pkt_access = true, 59 .ret_type = RET_INTEGER, 60 .arg1_type = ARG_CONST_MAP_PTR, 61 .arg2_type = ARG_PTR_TO_MAP_KEY, 62 .arg3_type = ARG_PTR_TO_MAP_VALUE, 63 .arg4_type = ARG_ANYTHING, 64 }; 65 66 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) 67 { 68 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 69 return map->ops->map_delete_elem(map, key); 70 } 71 72 const struct bpf_func_proto bpf_map_delete_elem_proto = { 73 .func = bpf_map_delete_elem, 74 .gpl_only = false, 75 .pkt_access = true, 76 .ret_type = RET_INTEGER, 77 .arg1_type = ARG_CONST_MAP_PTR, 78 .arg2_type = ARG_PTR_TO_MAP_KEY, 79 }; 80 81 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) 82 { 83 return map->ops->map_push_elem(map, value, flags); 84 } 85 86 const struct bpf_func_proto bpf_map_push_elem_proto = { 87 .func = bpf_map_push_elem, 88 .gpl_only = false, 89 .pkt_access = true, 90 .ret_type = RET_INTEGER, 91 .arg1_type = ARG_CONST_MAP_PTR, 92 .arg2_type = ARG_PTR_TO_MAP_VALUE, 93 .arg3_type = ARG_ANYTHING, 94 }; 95 96 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) 97 { 98 return map->ops->map_pop_elem(map, value); 99 } 100 101 const struct bpf_func_proto bpf_map_pop_elem_proto = { 102 .func = bpf_map_pop_elem, 103 .gpl_only = false, 104 .ret_type = RET_INTEGER, 105 .arg1_type = ARG_CONST_MAP_PTR, 106 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 107 }; 108 109 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) 110 { 111 return map->ops->map_peek_elem(map, value); 112 } 113 114 const struct bpf_func_proto bpf_map_peek_elem_proto = { 115 .func = bpf_map_peek_elem, 116 .gpl_only = false, 117 .ret_type = RET_INTEGER, 118 .arg1_type = ARG_CONST_MAP_PTR, 119 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 120 }; 121 122 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) 123 { 124 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 125 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); 126 } 127 128 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { 129 .func = bpf_map_lookup_percpu_elem, 130 .gpl_only = false, 131 .pkt_access = true, 132 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 133 .arg1_type = ARG_CONST_MAP_PTR, 134 .arg2_type = ARG_PTR_TO_MAP_KEY, 135 .arg3_type = ARG_ANYTHING, 136 }; 137 138 const struct bpf_func_proto bpf_get_prandom_u32_proto = { 139 .func = bpf_user_rnd_u32, 140 .gpl_only = false, 141 .ret_type = RET_INTEGER, 142 }; 143 144 BPF_CALL_0(bpf_get_smp_processor_id) 145 { 146 return smp_processor_id(); 147 } 148 149 const struct bpf_func_proto bpf_get_smp_processor_id_proto = { 150 .func = bpf_get_smp_processor_id, 151 .gpl_only = false, 152 .ret_type = RET_INTEGER, 153 }; 154 155 BPF_CALL_0(bpf_get_numa_node_id) 156 { 157 return numa_node_id(); 158 } 159 160 const struct bpf_func_proto bpf_get_numa_node_id_proto = { 161 .func = bpf_get_numa_node_id, 162 .gpl_only = false, 163 .ret_type = RET_INTEGER, 164 }; 165 166 BPF_CALL_0(bpf_ktime_get_ns) 167 { 168 /* NMI safe access to clock monotonic */ 169 return ktime_get_mono_fast_ns(); 170 } 171 172 const struct bpf_func_proto bpf_ktime_get_ns_proto = { 173 .func = bpf_ktime_get_ns, 174 .gpl_only = false, 175 .ret_type = RET_INTEGER, 176 }; 177 178 BPF_CALL_0(bpf_ktime_get_boot_ns) 179 { 180 /* NMI safe access to clock boottime */ 181 return ktime_get_boot_fast_ns(); 182 } 183 184 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { 185 .func = bpf_ktime_get_boot_ns, 186 .gpl_only = false, 187 .ret_type = RET_INTEGER, 188 }; 189 190 BPF_CALL_0(bpf_ktime_get_coarse_ns) 191 { 192 return ktime_get_coarse_ns(); 193 } 194 195 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { 196 .func = bpf_ktime_get_coarse_ns, 197 .gpl_only = false, 198 .ret_type = RET_INTEGER, 199 }; 200 201 BPF_CALL_0(bpf_ktime_get_tai_ns) 202 { 203 /* NMI safe access to clock tai */ 204 return ktime_get_tai_fast_ns(); 205 } 206 207 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = { 208 .func = bpf_ktime_get_tai_ns, 209 .gpl_only = false, 210 .ret_type = RET_INTEGER, 211 }; 212 213 BPF_CALL_0(bpf_get_current_pid_tgid) 214 { 215 struct task_struct *task = current; 216 217 if (unlikely(!task)) 218 return -EINVAL; 219 220 return (u64) task->tgid << 32 | task->pid; 221 } 222 223 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { 224 .func = bpf_get_current_pid_tgid, 225 .gpl_only = false, 226 .ret_type = RET_INTEGER, 227 }; 228 229 BPF_CALL_0(bpf_get_current_uid_gid) 230 { 231 struct task_struct *task = current; 232 kuid_t uid; 233 kgid_t gid; 234 235 if (unlikely(!task)) 236 return -EINVAL; 237 238 current_uid_gid(&uid, &gid); 239 return (u64) from_kgid(&init_user_ns, gid) << 32 | 240 from_kuid(&init_user_ns, uid); 241 } 242 243 const struct bpf_func_proto bpf_get_current_uid_gid_proto = { 244 .func = bpf_get_current_uid_gid, 245 .gpl_only = false, 246 .ret_type = RET_INTEGER, 247 }; 248 249 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) 250 { 251 struct task_struct *task = current; 252 253 if (unlikely(!task)) 254 goto err_clear; 255 256 /* Verifier guarantees that size > 0 */ 257 strscpy(buf, task->comm, size); 258 return 0; 259 err_clear: 260 memset(buf, 0, size); 261 return -EINVAL; 262 } 263 264 const struct bpf_func_proto bpf_get_current_comm_proto = { 265 .func = bpf_get_current_comm, 266 .gpl_only = false, 267 .ret_type = RET_INTEGER, 268 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 269 .arg2_type = ARG_CONST_SIZE, 270 }; 271 272 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) 273 274 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 275 { 276 arch_spinlock_t *l = (void *)lock; 277 union { 278 __u32 val; 279 arch_spinlock_t lock; 280 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; 281 282 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); 283 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); 284 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); 285 arch_spin_lock(l); 286 } 287 288 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 289 { 290 arch_spinlock_t *l = (void *)lock; 291 292 arch_spin_unlock(l); 293 } 294 295 #else 296 297 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 298 { 299 atomic_t *l = (void *)lock; 300 301 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); 302 do { 303 atomic_cond_read_relaxed(l, !VAL); 304 } while (atomic_xchg(l, 1)); 305 } 306 307 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 308 { 309 atomic_t *l = (void *)lock; 310 311 atomic_set_release(l, 0); 312 } 313 314 #endif 315 316 static DEFINE_PER_CPU(unsigned long, irqsave_flags); 317 318 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) 319 { 320 unsigned long flags; 321 322 local_irq_save(flags); 323 __bpf_spin_lock(lock); 324 __this_cpu_write(irqsave_flags, flags); 325 } 326 327 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) 328 { 329 __bpf_spin_lock_irqsave(lock); 330 return 0; 331 } 332 333 const struct bpf_func_proto bpf_spin_lock_proto = { 334 .func = bpf_spin_lock, 335 .gpl_only = false, 336 .ret_type = RET_VOID, 337 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 338 }; 339 340 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) 341 { 342 unsigned long flags; 343 344 flags = __this_cpu_read(irqsave_flags); 345 __bpf_spin_unlock(lock); 346 local_irq_restore(flags); 347 } 348 349 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) 350 { 351 __bpf_spin_unlock_irqrestore(lock); 352 return 0; 353 } 354 355 const struct bpf_func_proto bpf_spin_unlock_proto = { 356 .func = bpf_spin_unlock, 357 .gpl_only = false, 358 .ret_type = RET_VOID, 359 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 360 }; 361 362 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 363 bool lock_src) 364 { 365 struct bpf_spin_lock *lock; 366 367 if (lock_src) 368 lock = src + map->spin_lock_off; 369 else 370 lock = dst + map->spin_lock_off; 371 preempt_disable(); 372 __bpf_spin_lock_irqsave(lock); 373 copy_map_value(map, dst, src); 374 __bpf_spin_unlock_irqrestore(lock); 375 preempt_enable(); 376 } 377 378 BPF_CALL_0(bpf_jiffies64) 379 { 380 return get_jiffies_64(); 381 } 382 383 const struct bpf_func_proto bpf_jiffies64_proto = { 384 .func = bpf_jiffies64, 385 .gpl_only = false, 386 .ret_type = RET_INTEGER, 387 }; 388 389 #ifdef CONFIG_CGROUPS 390 BPF_CALL_0(bpf_get_current_cgroup_id) 391 { 392 struct cgroup *cgrp; 393 u64 cgrp_id; 394 395 rcu_read_lock(); 396 cgrp = task_dfl_cgroup(current); 397 cgrp_id = cgroup_id(cgrp); 398 rcu_read_unlock(); 399 400 return cgrp_id; 401 } 402 403 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { 404 .func = bpf_get_current_cgroup_id, 405 .gpl_only = false, 406 .ret_type = RET_INTEGER, 407 }; 408 409 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) 410 { 411 struct cgroup *cgrp; 412 struct cgroup *ancestor; 413 u64 cgrp_id; 414 415 rcu_read_lock(); 416 cgrp = task_dfl_cgroup(current); 417 ancestor = cgroup_ancestor(cgrp, ancestor_level); 418 cgrp_id = ancestor ? cgroup_id(ancestor) : 0; 419 rcu_read_unlock(); 420 421 return cgrp_id; 422 } 423 424 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { 425 .func = bpf_get_current_ancestor_cgroup_id, 426 .gpl_only = false, 427 .ret_type = RET_INTEGER, 428 .arg1_type = ARG_ANYTHING, 429 }; 430 #endif /* CONFIG_CGROUPS */ 431 432 #define BPF_STRTOX_BASE_MASK 0x1F 433 434 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, 435 unsigned long long *res, bool *is_negative) 436 { 437 unsigned int base = flags & BPF_STRTOX_BASE_MASK; 438 const char *cur_buf = buf; 439 size_t cur_len = buf_len; 440 unsigned int consumed; 441 size_t val_len; 442 char str[64]; 443 444 if (!buf || !buf_len || !res || !is_negative) 445 return -EINVAL; 446 447 if (base != 0 && base != 8 && base != 10 && base != 16) 448 return -EINVAL; 449 450 if (flags & ~BPF_STRTOX_BASE_MASK) 451 return -EINVAL; 452 453 while (cur_buf < buf + buf_len && isspace(*cur_buf)) 454 ++cur_buf; 455 456 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); 457 if (*is_negative) 458 ++cur_buf; 459 460 consumed = cur_buf - buf; 461 cur_len -= consumed; 462 if (!cur_len) 463 return -EINVAL; 464 465 cur_len = min(cur_len, sizeof(str) - 1); 466 memcpy(str, cur_buf, cur_len); 467 str[cur_len] = '\0'; 468 cur_buf = str; 469 470 cur_buf = _parse_integer_fixup_radix(cur_buf, &base); 471 val_len = _parse_integer(cur_buf, base, res); 472 473 if (val_len & KSTRTOX_OVERFLOW) 474 return -ERANGE; 475 476 if (val_len == 0) 477 return -EINVAL; 478 479 cur_buf += val_len; 480 consumed += cur_buf - str; 481 482 return consumed; 483 } 484 485 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, 486 long long *res) 487 { 488 unsigned long long _res; 489 bool is_negative; 490 int err; 491 492 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 493 if (err < 0) 494 return err; 495 if (is_negative) { 496 if ((long long)-_res > 0) 497 return -ERANGE; 498 *res = -_res; 499 } else { 500 if ((long long)_res < 0) 501 return -ERANGE; 502 *res = _res; 503 } 504 return err; 505 } 506 507 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, 508 long *, res) 509 { 510 long long _res; 511 int err; 512 513 err = __bpf_strtoll(buf, buf_len, flags, &_res); 514 if (err < 0) 515 return err; 516 if (_res != (long)_res) 517 return -ERANGE; 518 *res = _res; 519 return err; 520 } 521 522 const struct bpf_func_proto bpf_strtol_proto = { 523 .func = bpf_strtol, 524 .gpl_only = false, 525 .ret_type = RET_INTEGER, 526 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 527 .arg2_type = ARG_CONST_SIZE, 528 .arg3_type = ARG_ANYTHING, 529 .arg4_type = ARG_PTR_TO_LONG, 530 }; 531 532 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, 533 unsigned long *, res) 534 { 535 unsigned long long _res; 536 bool is_negative; 537 int err; 538 539 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 540 if (err < 0) 541 return err; 542 if (is_negative) 543 return -EINVAL; 544 if (_res != (unsigned long)_res) 545 return -ERANGE; 546 *res = _res; 547 return err; 548 } 549 550 const struct bpf_func_proto bpf_strtoul_proto = { 551 .func = bpf_strtoul, 552 .gpl_only = false, 553 .ret_type = RET_INTEGER, 554 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 555 .arg2_type = ARG_CONST_SIZE, 556 .arg3_type = ARG_ANYTHING, 557 .arg4_type = ARG_PTR_TO_LONG, 558 }; 559 560 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) 561 { 562 return strncmp(s1, s2, s1_sz); 563 } 564 565 static const struct bpf_func_proto bpf_strncmp_proto = { 566 .func = bpf_strncmp, 567 .gpl_only = false, 568 .ret_type = RET_INTEGER, 569 .arg1_type = ARG_PTR_TO_MEM, 570 .arg2_type = ARG_CONST_SIZE, 571 .arg3_type = ARG_PTR_TO_CONST_STR, 572 }; 573 574 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, 575 struct bpf_pidns_info *, nsdata, u32, size) 576 { 577 struct task_struct *task = current; 578 struct pid_namespace *pidns; 579 int err = -EINVAL; 580 581 if (unlikely(size != sizeof(struct bpf_pidns_info))) 582 goto clear; 583 584 if (unlikely((u64)(dev_t)dev != dev)) 585 goto clear; 586 587 if (unlikely(!task)) 588 goto clear; 589 590 pidns = task_active_pid_ns(task); 591 if (unlikely(!pidns)) { 592 err = -ENOENT; 593 goto clear; 594 } 595 596 if (!ns_match(&pidns->ns, (dev_t)dev, ino)) 597 goto clear; 598 599 nsdata->pid = task_pid_nr_ns(task, pidns); 600 nsdata->tgid = task_tgid_nr_ns(task, pidns); 601 return 0; 602 clear: 603 memset((void *)nsdata, 0, (size_t) size); 604 return err; 605 } 606 607 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { 608 .func = bpf_get_ns_current_pid_tgid, 609 .gpl_only = false, 610 .ret_type = RET_INTEGER, 611 .arg1_type = ARG_ANYTHING, 612 .arg2_type = ARG_ANYTHING, 613 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 614 .arg4_type = ARG_CONST_SIZE, 615 }; 616 617 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { 618 .func = bpf_get_raw_cpu_id, 619 .gpl_only = false, 620 .ret_type = RET_INTEGER, 621 }; 622 623 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, 624 u64, flags, void *, data, u64, size) 625 { 626 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 627 return -EINVAL; 628 629 return bpf_event_output(map, flags, data, size, NULL, 0, NULL); 630 } 631 632 const struct bpf_func_proto bpf_event_output_data_proto = { 633 .func = bpf_event_output_data, 634 .gpl_only = true, 635 .ret_type = RET_INTEGER, 636 .arg1_type = ARG_PTR_TO_CTX, 637 .arg2_type = ARG_CONST_MAP_PTR, 638 .arg3_type = ARG_ANYTHING, 639 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 640 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 641 }; 642 643 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, 644 const void __user *, user_ptr) 645 { 646 int ret = copy_from_user(dst, user_ptr, size); 647 648 if (unlikely(ret)) { 649 memset(dst, 0, size); 650 ret = -EFAULT; 651 } 652 653 return ret; 654 } 655 656 const struct bpf_func_proto bpf_copy_from_user_proto = { 657 .func = bpf_copy_from_user, 658 .gpl_only = false, 659 .ret_type = RET_INTEGER, 660 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 661 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 662 .arg3_type = ARG_ANYTHING, 663 }; 664 665 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, 666 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) 667 { 668 int ret; 669 670 /* flags is not used yet */ 671 if (unlikely(flags)) 672 return -EINVAL; 673 674 if (unlikely(!size)) 675 return 0; 676 677 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); 678 if (ret == size) 679 return 0; 680 681 memset(dst, 0, size); 682 /* Return -EFAULT for partial read */ 683 return ret < 0 ? ret : -EFAULT; 684 } 685 686 const struct bpf_func_proto bpf_copy_from_user_task_proto = { 687 .func = bpf_copy_from_user_task, 688 .gpl_only = true, 689 .ret_type = RET_INTEGER, 690 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 691 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 692 .arg3_type = ARG_ANYTHING, 693 .arg4_type = ARG_PTR_TO_BTF_ID, 694 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 695 .arg5_type = ARG_ANYTHING 696 }; 697 698 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) 699 { 700 if (cpu >= nr_cpu_ids) 701 return (unsigned long)NULL; 702 703 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); 704 } 705 706 const struct bpf_func_proto bpf_per_cpu_ptr_proto = { 707 .func = bpf_per_cpu_ptr, 708 .gpl_only = false, 709 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, 710 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 711 .arg2_type = ARG_ANYTHING, 712 }; 713 714 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) 715 { 716 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); 717 } 718 719 const struct bpf_func_proto bpf_this_cpu_ptr_proto = { 720 .func = bpf_this_cpu_ptr, 721 .gpl_only = false, 722 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, 723 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 724 }; 725 726 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 727 size_t bufsz) 728 { 729 void __user *user_ptr = (__force void __user *)unsafe_ptr; 730 731 buf[0] = 0; 732 733 switch (fmt_ptype) { 734 case 's': 735 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 736 if ((unsigned long)unsafe_ptr < TASK_SIZE) 737 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 738 fallthrough; 739 #endif 740 case 'k': 741 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 742 case 'u': 743 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 744 } 745 746 return -EINVAL; 747 } 748 749 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary 750 * arguments representation. 751 */ 752 #define MAX_BPRINTF_BUF_LEN 512 753 754 /* Support executing three nested bprintf helper calls on a given CPU */ 755 #define MAX_BPRINTF_NEST_LEVEL 3 756 struct bpf_bprintf_buffers { 757 char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN]; 758 }; 759 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs); 760 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); 761 762 static int try_get_fmt_tmp_buf(char **tmp_buf) 763 { 764 struct bpf_bprintf_buffers *bufs; 765 int nest_level; 766 767 preempt_disable(); 768 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); 769 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { 770 this_cpu_dec(bpf_bprintf_nest_level); 771 preempt_enable(); 772 return -EBUSY; 773 } 774 bufs = this_cpu_ptr(&bpf_bprintf_bufs); 775 *tmp_buf = bufs->tmp_bufs[nest_level - 1]; 776 777 return 0; 778 } 779 780 void bpf_bprintf_cleanup(void) 781 { 782 if (this_cpu_read(bpf_bprintf_nest_level)) { 783 this_cpu_dec(bpf_bprintf_nest_level); 784 preempt_enable(); 785 } 786 } 787 788 /* 789 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers 790 * 791 * Returns a negative value if fmt is an invalid format string or 0 otherwise. 792 * 793 * This can be used in two ways: 794 * - Format string verification only: when bin_args is NULL 795 * - Arguments preparation: in addition to the above verification, it writes in 796 * bin_args a binary representation of arguments usable by bstr_printf where 797 * pointers from BPF have been sanitized. 798 * 799 * In argument preparation mode, if 0 is returned, safe temporary buffers are 800 * allocated and bpf_bprintf_cleanup should be called to free them after use. 801 */ 802 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 803 u32 **bin_args, u32 num_args) 804 { 805 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; 806 size_t sizeof_cur_arg, sizeof_cur_ip; 807 int err, i, num_spec = 0; 808 u64 cur_arg; 809 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; 810 811 fmt_end = strnchr(fmt, fmt_size, 0); 812 if (!fmt_end) 813 return -EINVAL; 814 fmt_size = fmt_end - fmt; 815 816 if (bin_args) { 817 if (num_args && try_get_fmt_tmp_buf(&tmp_buf)) 818 return -EBUSY; 819 820 tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN; 821 *bin_args = (u32 *)tmp_buf; 822 } 823 824 for (i = 0; i < fmt_size; i++) { 825 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 826 err = -EINVAL; 827 goto out; 828 } 829 830 if (fmt[i] != '%') 831 continue; 832 833 if (fmt[i + 1] == '%') { 834 i++; 835 continue; 836 } 837 838 if (num_spec >= num_args) { 839 err = -EINVAL; 840 goto out; 841 } 842 843 /* The string is zero-terminated so if fmt[i] != 0, we can 844 * always access fmt[i + 1], in the worst case it will be a 0 845 */ 846 i++; 847 848 /* skip optional "[0 +-][num]" width formatting field */ 849 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 850 fmt[i] == ' ') 851 i++; 852 if (fmt[i] >= '1' && fmt[i] <= '9') { 853 i++; 854 while (fmt[i] >= '0' && fmt[i] <= '9') 855 i++; 856 } 857 858 if (fmt[i] == 'p') { 859 sizeof_cur_arg = sizeof(long); 860 861 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && 862 fmt[i + 2] == 's') { 863 fmt_ptype = fmt[i + 1]; 864 i += 2; 865 goto fmt_str; 866 } 867 868 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || 869 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || 870 fmt[i + 1] == 'x' || fmt[i + 1] == 's' || 871 fmt[i + 1] == 'S') { 872 /* just kernel pointers */ 873 if (tmp_buf) 874 cur_arg = raw_args[num_spec]; 875 i++; 876 goto nocopy_fmt; 877 } 878 879 if (fmt[i + 1] == 'B') { 880 if (tmp_buf) { 881 err = snprintf(tmp_buf, 882 (tmp_buf_end - tmp_buf), 883 "%pB", 884 (void *)(long)raw_args[num_spec]); 885 tmp_buf += (err + 1); 886 } 887 888 i++; 889 num_spec++; 890 continue; 891 } 892 893 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 894 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || 895 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { 896 err = -EINVAL; 897 goto out; 898 } 899 900 i += 2; 901 if (!tmp_buf) 902 goto nocopy_fmt; 903 904 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; 905 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { 906 err = -ENOSPC; 907 goto out; 908 } 909 910 unsafe_ptr = (char *)(long)raw_args[num_spec]; 911 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, 912 sizeof_cur_ip); 913 if (err < 0) 914 memset(cur_ip, 0, sizeof_cur_ip); 915 916 /* hack: bstr_printf expects IP addresses to be 917 * pre-formatted as strings, ironically, the easiest way 918 * to do that is to call snprintf. 919 */ 920 ip_spec[2] = fmt[i - 1]; 921 ip_spec[3] = fmt[i]; 922 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, 923 ip_spec, &cur_ip); 924 925 tmp_buf += err + 1; 926 num_spec++; 927 928 continue; 929 } else if (fmt[i] == 's') { 930 fmt_ptype = fmt[i]; 931 fmt_str: 932 if (fmt[i + 1] != 0 && 933 !isspace(fmt[i + 1]) && 934 !ispunct(fmt[i + 1])) { 935 err = -EINVAL; 936 goto out; 937 } 938 939 if (!tmp_buf) 940 goto nocopy_fmt; 941 942 if (tmp_buf_end == tmp_buf) { 943 err = -ENOSPC; 944 goto out; 945 } 946 947 unsafe_ptr = (char *)(long)raw_args[num_spec]; 948 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, 949 fmt_ptype, 950 tmp_buf_end - tmp_buf); 951 if (err < 0) { 952 tmp_buf[0] = '\0'; 953 err = 1; 954 } 955 956 tmp_buf += err; 957 num_spec++; 958 959 continue; 960 } else if (fmt[i] == 'c') { 961 if (!tmp_buf) 962 goto nocopy_fmt; 963 964 if (tmp_buf_end == tmp_buf) { 965 err = -ENOSPC; 966 goto out; 967 } 968 969 *tmp_buf = raw_args[num_spec]; 970 tmp_buf++; 971 num_spec++; 972 973 continue; 974 } 975 976 sizeof_cur_arg = sizeof(int); 977 978 if (fmt[i] == 'l') { 979 sizeof_cur_arg = sizeof(long); 980 i++; 981 } 982 if (fmt[i] == 'l') { 983 sizeof_cur_arg = sizeof(long long); 984 i++; 985 } 986 987 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && 988 fmt[i] != 'x' && fmt[i] != 'X') { 989 err = -EINVAL; 990 goto out; 991 } 992 993 if (tmp_buf) 994 cur_arg = raw_args[num_spec]; 995 nocopy_fmt: 996 if (tmp_buf) { 997 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); 998 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { 999 err = -ENOSPC; 1000 goto out; 1001 } 1002 1003 if (sizeof_cur_arg == 8) { 1004 *(u32 *)tmp_buf = *(u32 *)&cur_arg; 1005 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); 1006 } else { 1007 *(u32 *)tmp_buf = (u32)(long)cur_arg; 1008 } 1009 tmp_buf += sizeof_cur_arg; 1010 } 1011 num_spec++; 1012 } 1013 1014 err = 0; 1015 out: 1016 if (err) 1017 bpf_bprintf_cleanup(); 1018 return err; 1019 } 1020 1021 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, 1022 const void *, data, u32, data_len) 1023 { 1024 int err, num_args; 1025 u32 *bin_args; 1026 1027 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || 1028 (data_len && !data)) 1029 return -EINVAL; 1030 num_args = data_len / 8; 1031 1032 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we 1033 * can safely give an unbounded size. 1034 */ 1035 err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args); 1036 if (err < 0) 1037 return err; 1038 1039 err = bstr_printf(str, str_size, fmt, bin_args); 1040 1041 bpf_bprintf_cleanup(); 1042 1043 return err + 1; 1044 } 1045 1046 const struct bpf_func_proto bpf_snprintf_proto = { 1047 .func = bpf_snprintf, 1048 .gpl_only = true, 1049 .ret_type = RET_INTEGER, 1050 .arg1_type = ARG_PTR_TO_MEM_OR_NULL, 1051 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1052 .arg3_type = ARG_PTR_TO_CONST_STR, 1053 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 1054 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1055 }; 1056 1057 /* BPF map elements can contain 'struct bpf_timer'. 1058 * Such map owns all of its BPF timers. 1059 * 'struct bpf_timer' is allocated as part of map element allocation 1060 * and it's zero initialized. 1061 * That space is used to keep 'struct bpf_timer_kern'. 1062 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and 1063 * remembers 'struct bpf_map *' pointer it's part of. 1064 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. 1065 * bpf_timer_start() arms the timer. 1066 * If user space reference to a map goes to zero at this point 1067 * ops->map_release_uref callback is responsible for cancelling the timers, 1068 * freeing their memory, and decrementing prog's refcnts. 1069 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. 1070 * Inner maps can contain bpf timers as well. ops->map_release_uref is 1071 * freeing the timers when inner map is replaced or deleted by user space. 1072 */ 1073 struct bpf_hrtimer { 1074 struct hrtimer timer; 1075 struct bpf_map *map; 1076 struct bpf_prog *prog; 1077 void __rcu *callback_fn; 1078 void *value; 1079 }; 1080 1081 /* the actual struct hidden inside uapi struct bpf_timer */ 1082 struct bpf_timer_kern { 1083 struct bpf_hrtimer *timer; 1084 /* bpf_spin_lock is used here instead of spinlock_t to make 1085 * sure that it always fits into space reserved by struct bpf_timer 1086 * regardless of LOCKDEP and spinlock debug flags. 1087 */ 1088 struct bpf_spin_lock lock; 1089 } __attribute__((aligned(8))); 1090 1091 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); 1092 1093 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) 1094 { 1095 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); 1096 struct bpf_map *map = t->map; 1097 void *value = t->value; 1098 bpf_callback_t callback_fn; 1099 void *key; 1100 u32 idx; 1101 1102 BTF_TYPE_EMIT(struct bpf_timer); 1103 callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held()); 1104 if (!callback_fn) 1105 goto out; 1106 1107 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and 1108 * cannot be preempted by another bpf_timer_cb() on the same cpu. 1109 * Remember the timer this callback is servicing to prevent 1110 * deadlock if callback_fn() calls bpf_timer_cancel() or 1111 * bpf_map_delete_elem() on the same timer. 1112 */ 1113 this_cpu_write(hrtimer_running, t); 1114 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1115 struct bpf_array *array = container_of(map, struct bpf_array, map); 1116 1117 /* compute the key */ 1118 idx = ((char *)value - array->value) / array->elem_size; 1119 key = &idx; 1120 } else { /* hash or lru */ 1121 key = value - round_up(map->key_size, 8); 1122 } 1123 1124 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1125 /* The verifier checked that return value is zero. */ 1126 1127 this_cpu_write(hrtimer_running, NULL); 1128 out: 1129 return HRTIMER_NORESTART; 1130 } 1131 1132 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map, 1133 u64, flags) 1134 { 1135 clockid_t clockid = flags & (MAX_CLOCKS - 1); 1136 struct bpf_hrtimer *t; 1137 int ret = 0; 1138 1139 BUILD_BUG_ON(MAX_CLOCKS != 16); 1140 BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer)); 1141 BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer)); 1142 1143 if (in_nmi()) 1144 return -EOPNOTSUPP; 1145 1146 if (flags >= MAX_CLOCKS || 1147 /* similar to timerfd except _ALARM variants are not supported */ 1148 (clockid != CLOCK_MONOTONIC && 1149 clockid != CLOCK_REALTIME && 1150 clockid != CLOCK_BOOTTIME)) 1151 return -EINVAL; 1152 __bpf_spin_lock_irqsave(&timer->lock); 1153 t = timer->timer; 1154 if (t) { 1155 ret = -EBUSY; 1156 goto out; 1157 } 1158 if (!atomic64_read(&map->usercnt)) { 1159 /* maps with timers must be either held by user space 1160 * or pinned in bpffs. 1161 */ 1162 ret = -EPERM; 1163 goto out; 1164 } 1165 /* allocate hrtimer via map_kmalloc to use memcg accounting */ 1166 t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node); 1167 if (!t) { 1168 ret = -ENOMEM; 1169 goto out; 1170 } 1171 t->value = (void *)timer - map->timer_off; 1172 t->map = map; 1173 t->prog = NULL; 1174 rcu_assign_pointer(t->callback_fn, NULL); 1175 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); 1176 t->timer.function = bpf_timer_cb; 1177 timer->timer = t; 1178 out: 1179 __bpf_spin_unlock_irqrestore(&timer->lock); 1180 return ret; 1181 } 1182 1183 static const struct bpf_func_proto bpf_timer_init_proto = { 1184 .func = bpf_timer_init, 1185 .gpl_only = true, 1186 .ret_type = RET_INTEGER, 1187 .arg1_type = ARG_PTR_TO_TIMER, 1188 .arg2_type = ARG_CONST_MAP_PTR, 1189 .arg3_type = ARG_ANYTHING, 1190 }; 1191 1192 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn, 1193 struct bpf_prog_aux *, aux) 1194 { 1195 struct bpf_prog *prev, *prog = aux->prog; 1196 struct bpf_hrtimer *t; 1197 int ret = 0; 1198 1199 if (in_nmi()) 1200 return -EOPNOTSUPP; 1201 __bpf_spin_lock_irqsave(&timer->lock); 1202 t = timer->timer; 1203 if (!t) { 1204 ret = -EINVAL; 1205 goto out; 1206 } 1207 if (!atomic64_read(&t->map->usercnt)) { 1208 /* maps with timers must be either held by user space 1209 * or pinned in bpffs. Otherwise timer might still be 1210 * running even when bpf prog is detached and user space 1211 * is gone, since map_release_uref won't ever be called. 1212 */ 1213 ret = -EPERM; 1214 goto out; 1215 } 1216 prev = t->prog; 1217 if (prev != prog) { 1218 /* Bump prog refcnt once. Every bpf_timer_set_callback() 1219 * can pick different callback_fn-s within the same prog. 1220 */ 1221 prog = bpf_prog_inc_not_zero(prog); 1222 if (IS_ERR(prog)) { 1223 ret = PTR_ERR(prog); 1224 goto out; 1225 } 1226 if (prev) 1227 /* Drop prev prog refcnt when swapping with new prog */ 1228 bpf_prog_put(prev); 1229 t->prog = prog; 1230 } 1231 rcu_assign_pointer(t->callback_fn, callback_fn); 1232 out: 1233 __bpf_spin_unlock_irqrestore(&timer->lock); 1234 return ret; 1235 } 1236 1237 static const struct bpf_func_proto bpf_timer_set_callback_proto = { 1238 .func = bpf_timer_set_callback, 1239 .gpl_only = true, 1240 .ret_type = RET_INTEGER, 1241 .arg1_type = ARG_PTR_TO_TIMER, 1242 .arg2_type = ARG_PTR_TO_FUNC, 1243 }; 1244 1245 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags) 1246 { 1247 struct bpf_hrtimer *t; 1248 int ret = 0; 1249 1250 if (in_nmi()) 1251 return -EOPNOTSUPP; 1252 if (flags) 1253 return -EINVAL; 1254 __bpf_spin_lock_irqsave(&timer->lock); 1255 t = timer->timer; 1256 if (!t || !t->prog) { 1257 ret = -EINVAL; 1258 goto out; 1259 } 1260 hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT); 1261 out: 1262 __bpf_spin_unlock_irqrestore(&timer->lock); 1263 return ret; 1264 } 1265 1266 static const struct bpf_func_proto bpf_timer_start_proto = { 1267 .func = bpf_timer_start, 1268 .gpl_only = true, 1269 .ret_type = RET_INTEGER, 1270 .arg1_type = ARG_PTR_TO_TIMER, 1271 .arg2_type = ARG_ANYTHING, 1272 .arg3_type = ARG_ANYTHING, 1273 }; 1274 1275 static void drop_prog_refcnt(struct bpf_hrtimer *t) 1276 { 1277 struct bpf_prog *prog = t->prog; 1278 1279 if (prog) { 1280 bpf_prog_put(prog); 1281 t->prog = NULL; 1282 rcu_assign_pointer(t->callback_fn, NULL); 1283 } 1284 } 1285 1286 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer) 1287 { 1288 struct bpf_hrtimer *t; 1289 int ret = 0; 1290 1291 if (in_nmi()) 1292 return -EOPNOTSUPP; 1293 __bpf_spin_lock_irqsave(&timer->lock); 1294 t = timer->timer; 1295 if (!t) { 1296 ret = -EINVAL; 1297 goto out; 1298 } 1299 if (this_cpu_read(hrtimer_running) == t) { 1300 /* If bpf callback_fn is trying to bpf_timer_cancel() 1301 * its own timer the hrtimer_cancel() will deadlock 1302 * since it waits for callback_fn to finish 1303 */ 1304 ret = -EDEADLK; 1305 goto out; 1306 } 1307 drop_prog_refcnt(t); 1308 out: 1309 __bpf_spin_unlock_irqrestore(&timer->lock); 1310 /* Cancel the timer and wait for associated callback to finish 1311 * if it was running. 1312 */ 1313 ret = ret ?: hrtimer_cancel(&t->timer); 1314 return ret; 1315 } 1316 1317 static const struct bpf_func_proto bpf_timer_cancel_proto = { 1318 .func = bpf_timer_cancel, 1319 .gpl_only = true, 1320 .ret_type = RET_INTEGER, 1321 .arg1_type = ARG_PTR_TO_TIMER, 1322 }; 1323 1324 /* This function is called by map_delete/update_elem for individual element and 1325 * by ops->map_release_uref when the user space reference to a map reaches zero. 1326 */ 1327 void bpf_timer_cancel_and_free(void *val) 1328 { 1329 struct bpf_timer_kern *timer = val; 1330 struct bpf_hrtimer *t; 1331 1332 /* Performance optimization: read timer->timer without lock first. */ 1333 if (!READ_ONCE(timer->timer)) 1334 return; 1335 1336 __bpf_spin_lock_irqsave(&timer->lock); 1337 /* re-read it under lock */ 1338 t = timer->timer; 1339 if (!t) 1340 goto out; 1341 drop_prog_refcnt(t); 1342 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use 1343 * this timer, since it won't be initialized. 1344 */ 1345 timer->timer = NULL; 1346 out: 1347 __bpf_spin_unlock_irqrestore(&timer->lock); 1348 if (!t) 1349 return; 1350 /* Cancel the timer and wait for callback to complete if it was running. 1351 * If hrtimer_cancel() can be safely called it's safe to call kfree(t) 1352 * right after for both preallocated and non-preallocated maps. 1353 * The timer->timer = NULL was already done and no code path can 1354 * see address 't' anymore. 1355 * 1356 * Check that bpf_map_delete/update_elem() wasn't called from timer 1357 * callback_fn. In such case don't call hrtimer_cancel() (since it will 1358 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just 1359 * return -1). Though callback_fn is still running on this cpu it's 1360 * safe to do kfree(t) because bpf_timer_cb() read everything it needed 1361 * from 't'. The bpf subprog callback_fn won't be able to access 't', 1362 * since timer->timer = NULL was already done. The timer will be 1363 * effectively cancelled because bpf_timer_cb() will return 1364 * HRTIMER_NORESTART. 1365 */ 1366 if (this_cpu_read(hrtimer_running) != t) 1367 hrtimer_cancel(&t->timer); 1368 kfree(t); 1369 } 1370 1371 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr) 1372 { 1373 unsigned long *kptr = map_value; 1374 1375 return xchg(kptr, (unsigned long)ptr); 1376 } 1377 1378 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() 1379 * helper is determined dynamically by the verifier. 1380 */ 1381 #define BPF_PTR_POISON ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1382 1383 static const struct bpf_func_proto bpf_kptr_xchg_proto = { 1384 .func = bpf_kptr_xchg, 1385 .gpl_only = false, 1386 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 1387 .ret_btf_id = BPF_PTR_POISON, 1388 .arg1_type = ARG_PTR_TO_KPTR, 1389 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, 1390 .arg2_btf_id = BPF_PTR_POISON, 1391 }; 1392 1393 /* Since the upper 8 bits of dynptr->size is reserved, the 1394 * maximum supported size is 2^24 - 1. 1395 */ 1396 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1) 1397 #define DYNPTR_TYPE_SHIFT 28 1398 #define DYNPTR_SIZE_MASK 0xFFFFFF 1399 #define DYNPTR_RDONLY_BIT BIT(31) 1400 1401 static bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr) 1402 { 1403 return ptr->size & DYNPTR_RDONLY_BIT; 1404 } 1405 1406 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) 1407 { 1408 ptr->size |= type << DYNPTR_TYPE_SHIFT; 1409 } 1410 1411 static u32 bpf_dynptr_get_size(struct bpf_dynptr_kern *ptr) 1412 { 1413 return ptr->size & DYNPTR_SIZE_MASK; 1414 } 1415 1416 int bpf_dynptr_check_size(u32 size) 1417 { 1418 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; 1419 } 1420 1421 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 1422 enum bpf_dynptr_type type, u32 offset, u32 size) 1423 { 1424 ptr->data = data; 1425 ptr->offset = offset; 1426 ptr->size = size; 1427 bpf_dynptr_set_type(ptr, type); 1428 } 1429 1430 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 1431 { 1432 memset(ptr, 0, sizeof(*ptr)); 1433 } 1434 1435 static int bpf_dynptr_check_off_len(struct bpf_dynptr_kern *ptr, u32 offset, u32 len) 1436 { 1437 u32 size = bpf_dynptr_get_size(ptr); 1438 1439 if (len > size || offset > size - len) 1440 return -E2BIG; 1441 1442 return 0; 1443 } 1444 1445 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) 1446 { 1447 int err; 1448 1449 err = bpf_dynptr_check_size(size); 1450 if (err) 1451 goto error; 1452 1453 /* flags is currently unsupported */ 1454 if (flags) { 1455 err = -EINVAL; 1456 goto error; 1457 } 1458 1459 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); 1460 1461 return 0; 1462 1463 error: 1464 bpf_dynptr_set_null(ptr); 1465 return err; 1466 } 1467 1468 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { 1469 .func = bpf_dynptr_from_mem, 1470 .gpl_only = false, 1471 .ret_type = RET_INTEGER, 1472 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1473 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1474 .arg3_type = ARG_ANYTHING, 1475 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT, 1476 }; 1477 1478 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, struct bpf_dynptr_kern *, src, 1479 u32, offset, u64, flags) 1480 { 1481 int err; 1482 1483 if (!src->data || flags) 1484 return -EINVAL; 1485 1486 err = bpf_dynptr_check_off_len(src, offset, len); 1487 if (err) 1488 return err; 1489 1490 memcpy(dst, src->data + src->offset + offset, len); 1491 1492 return 0; 1493 } 1494 1495 static const struct bpf_func_proto bpf_dynptr_read_proto = { 1496 .func = bpf_dynptr_read, 1497 .gpl_only = false, 1498 .ret_type = RET_INTEGER, 1499 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1500 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1501 .arg3_type = ARG_PTR_TO_DYNPTR, 1502 .arg4_type = ARG_ANYTHING, 1503 .arg5_type = ARG_ANYTHING, 1504 }; 1505 1506 BPF_CALL_5(bpf_dynptr_write, struct bpf_dynptr_kern *, dst, u32, offset, void *, src, 1507 u32, len, u64, flags) 1508 { 1509 int err; 1510 1511 if (!dst->data || flags || bpf_dynptr_is_rdonly(dst)) 1512 return -EINVAL; 1513 1514 err = bpf_dynptr_check_off_len(dst, offset, len); 1515 if (err) 1516 return err; 1517 1518 memcpy(dst->data + dst->offset + offset, src, len); 1519 1520 return 0; 1521 } 1522 1523 static const struct bpf_func_proto bpf_dynptr_write_proto = { 1524 .func = bpf_dynptr_write, 1525 .gpl_only = false, 1526 .ret_type = RET_INTEGER, 1527 .arg1_type = ARG_PTR_TO_DYNPTR, 1528 .arg2_type = ARG_ANYTHING, 1529 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1530 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 1531 .arg5_type = ARG_ANYTHING, 1532 }; 1533 1534 BPF_CALL_3(bpf_dynptr_data, struct bpf_dynptr_kern *, ptr, u32, offset, u32, len) 1535 { 1536 int err; 1537 1538 if (!ptr->data) 1539 return 0; 1540 1541 err = bpf_dynptr_check_off_len(ptr, offset, len); 1542 if (err) 1543 return 0; 1544 1545 if (bpf_dynptr_is_rdonly(ptr)) 1546 return 0; 1547 1548 return (unsigned long)(ptr->data + ptr->offset + offset); 1549 } 1550 1551 static const struct bpf_func_proto bpf_dynptr_data_proto = { 1552 .func = bpf_dynptr_data, 1553 .gpl_only = false, 1554 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL, 1555 .arg1_type = ARG_PTR_TO_DYNPTR, 1556 .arg2_type = ARG_ANYTHING, 1557 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 1558 }; 1559 1560 const struct bpf_func_proto bpf_get_current_task_proto __weak; 1561 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; 1562 const struct bpf_func_proto bpf_probe_read_user_proto __weak; 1563 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; 1564 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; 1565 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; 1566 const struct bpf_func_proto bpf_task_pt_regs_proto __weak; 1567 1568 const struct bpf_func_proto * 1569 bpf_base_func_proto(enum bpf_func_id func_id) 1570 { 1571 switch (func_id) { 1572 case BPF_FUNC_map_lookup_elem: 1573 return &bpf_map_lookup_elem_proto; 1574 case BPF_FUNC_map_update_elem: 1575 return &bpf_map_update_elem_proto; 1576 case BPF_FUNC_map_delete_elem: 1577 return &bpf_map_delete_elem_proto; 1578 case BPF_FUNC_map_push_elem: 1579 return &bpf_map_push_elem_proto; 1580 case BPF_FUNC_map_pop_elem: 1581 return &bpf_map_pop_elem_proto; 1582 case BPF_FUNC_map_peek_elem: 1583 return &bpf_map_peek_elem_proto; 1584 case BPF_FUNC_map_lookup_percpu_elem: 1585 return &bpf_map_lookup_percpu_elem_proto; 1586 case BPF_FUNC_get_prandom_u32: 1587 return &bpf_get_prandom_u32_proto; 1588 case BPF_FUNC_get_smp_processor_id: 1589 return &bpf_get_raw_smp_processor_id_proto; 1590 case BPF_FUNC_get_numa_node_id: 1591 return &bpf_get_numa_node_id_proto; 1592 case BPF_FUNC_tail_call: 1593 return &bpf_tail_call_proto; 1594 case BPF_FUNC_ktime_get_ns: 1595 return &bpf_ktime_get_ns_proto; 1596 case BPF_FUNC_ktime_get_boot_ns: 1597 return &bpf_ktime_get_boot_ns_proto; 1598 case BPF_FUNC_ktime_get_tai_ns: 1599 return &bpf_ktime_get_tai_ns_proto; 1600 case BPF_FUNC_ringbuf_output: 1601 return &bpf_ringbuf_output_proto; 1602 case BPF_FUNC_ringbuf_reserve: 1603 return &bpf_ringbuf_reserve_proto; 1604 case BPF_FUNC_ringbuf_submit: 1605 return &bpf_ringbuf_submit_proto; 1606 case BPF_FUNC_ringbuf_discard: 1607 return &bpf_ringbuf_discard_proto; 1608 case BPF_FUNC_ringbuf_query: 1609 return &bpf_ringbuf_query_proto; 1610 case BPF_FUNC_ringbuf_reserve_dynptr: 1611 return &bpf_ringbuf_reserve_dynptr_proto; 1612 case BPF_FUNC_ringbuf_submit_dynptr: 1613 return &bpf_ringbuf_submit_dynptr_proto; 1614 case BPF_FUNC_ringbuf_discard_dynptr: 1615 return &bpf_ringbuf_discard_dynptr_proto; 1616 case BPF_FUNC_strncmp: 1617 return &bpf_strncmp_proto; 1618 case BPF_FUNC_strtol: 1619 return &bpf_strtol_proto; 1620 case BPF_FUNC_strtoul: 1621 return &bpf_strtoul_proto; 1622 case BPF_FUNC_dynptr_from_mem: 1623 return &bpf_dynptr_from_mem_proto; 1624 case BPF_FUNC_dynptr_read: 1625 return &bpf_dynptr_read_proto; 1626 case BPF_FUNC_dynptr_write: 1627 return &bpf_dynptr_write_proto; 1628 case BPF_FUNC_dynptr_data: 1629 return &bpf_dynptr_data_proto; 1630 default: 1631 break; 1632 } 1633 1634 if (!bpf_capable()) 1635 return NULL; 1636 1637 switch (func_id) { 1638 case BPF_FUNC_spin_lock: 1639 return &bpf_spin_lock_proto; 1640 case BPF_FUNC_spin_unlock: 1641 return &bpf_spin_unlock_proto; 1642 case BPF_FUNC_jiffies64: 1643 return &bpf_jiffies64_proto; 1644 case BPF_FUNC_per_cpu_ptr: 1645 return &bpf_per_cpu_ptr_proto; 1646 case BPF_FUNC_this_cpu_ptr: 1647 return &bpf_this_cpu_ptr_proto; 1648 case BPF_FUNC_timer_init: 1649 return &bpf_timer_init_proto; 1650 case BPF_FUNC_timer_set_callback: 1651 return &bpf_timer_set_callback_proto; 1652 case BPF_FUNC_timer_start: 1653 return &bpf_timer_start_proto; 1654 case BPF_FUNC_timer_cancel: 1655 return &bpf_timer_cancel_proto; 1656 case BPF_FUNC_kptr_xchg: 1657 return &bpf_kptr_xchg_proto; 1658 case BPF_FUNC_for_each_map_elem: 1659 return &bpf_for_each_map_elem_proto; 1660 case BPF_FUNC_loop: 1661 return &bpf_loop_proto; 1662 default: 1663 break; 1664 } 1665 1666 if (!perfmon_capable()) 1667 return NULL; 1668 1669 switch (func_id) { 1670 case BPF_FUNC_trace_printk: 1671 return bpf_get_trace_printk_proto(); 1672 case BPF_FUNC_get_current_task: 1673 return &bpf_get_current_task_proto; 1674 case BPF_FUNC_get_current_task_btf: 1675 return &bpf_get_current_task_btf_proto; 1676 case BPF_FUNC_probe_read_user: 1677 return &bpf_probe_read_user_proto; 1678 case BPF_FUNC_probe_read_kernel: 1679 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1680 NULL : &bpf_probe_read_kernel_proto; 1681 case BPF_FUNC_probe_read_user_str: 1682 return &bpf_probe_read_user_str_proto; 1683 case BPF_FUNC_probe_read_kernel_str: 1684 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1685 NULL : &bpf_probe_read_kernel_str_proto; 1686 case BPF_FUNC_snprintf_btf: 1687 return &bpf_snprintf_btf_proto; 1688 case BPF_FUNC_snprintf: 1689 return &bpf_snprintf_proto; 1690 case BPF_FUNC_task_pt_regs: 1691 return &bpf_task_pt_regs_proto; 1692 case BPF_FUNC_trace_vprintk: 1693 return bpf_get_trace_vprintk_proto(); 1694 default: 1695 return NULL; 1696 } 1697 } 1698 1699 BTF_SET8_START(tracing_btf_ids) 1700 #ifdef CONFIG_KEXEC_CORE 1701 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) 1702 #endif 1703 BTF_SET8_END(tracing_btf_ids) 1704 1705 static const struct btf_kfunc_id_set tracing_kfunc_set = { 1706 .owner = THIS_MODULE, 1707 .set = &tracing_btf_ids, 1708 }; 1709 1710 static int __init kfunc_init(void) 1711 { 1712 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &tracing_kfunc_set); 1713 } 1714 1715 late_initcall(kfunc_init); 1716