1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #include <linux/bpf.h> 5 #include <linux/btf.h> 6 #include <linux/bpf-cgroup.h> 7 #include <linux/rcupdate.h> 8 #include <linux/random.h> 9 #include <linux/smp.h> 10 #include <linux/topology.h> 11 #include <linux/ktime.h> 12 #include <linux/sched.h> 13 #include <linux/uidgid.h> 14 #include <linux/filter.h> 15 #include <linux/ctype.h> 16 #include <linux/jiffies.h> 17 #include <linux/pid_namespace.h> 18 #include <linux/poison.h> 19 #include <linux/proc_ns.h> 20 #include <linux/security.h> 21 #include <linux/btf_ids.h> 22 23 #include "../../lib/kstrtox.h" 24 25 /* If kernel subsystem is allowing eBPF programs to call this function, 26 * inside its own verifier_ops->get_func_proto() callback it should return 27 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments 28 * 29 * Different map implementations will rely on rcu in map methods 30 * lookup/update/delete, therefore eBPF programs must run under rcu lock 31 * if program is allowed to access maps, so check rcu_read_lock_held in 32 * all three functions. 33 */ 34 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) 35 { 36 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 37 return (unsigned long) map->ops->map_lookup_elem(map, key); 38 } 39 40 const struct bpf_func_proto bpf_map_lookup_elem_proto = { 41 .func = bpf_map_lookup_elem, 42 .gpl_only = false, 43 .pkt_access = true, 44 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 45 .arg1_type = ARG_CONST_MAP_PTR, 46 .arg2_type = ARG_PTR_TO_MAP_KEY, 47 }; 48 49 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, 50 void *, value, u64, flags) 51 { 52 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 53 return map->ops->map_update_elem(map, key, value, flags); 54 } 55 56 const struct bpf_func_proto bpf_map_update_elem_proto = { 57 .func = bpf_map_update_elem, 58 .gpl_only = false, 59 .pkt_access = true, 60 .ret_type = RET_INTEGER, 61 .arg1_type = ARG_CONST_MAP_PTR, 62 .arg2_type = ARG_PTR_TO_MAP_KEY, 63 .arg3_type = ARG_PTR_TO_MAP_VALUE, 64 .arg4_type = ARG_ANYTHING, 65 }; 66 67 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) 68 { 69 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 70 return map->ops->map_delete_elem(map, key); 71 } 72 73 const struct bpf_func_proto bpf_map_delete_elem_proto = { 74 .func = bpf_map_delete_elem, 75 .gpl_only = false, 76 .pkt_access = true, 77 .ret_type = RET_INTEGER, 78 .arg1_type = ARG_CONST_MAP_PTR, 79 .arg2_type = ARG_PTR_TO_MAP_KEY, 80 }; 81 82 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) 83 { 84 return map->ops->map_push_elem(map, value, flags); 85 } 86 87 const struct bpf_func_proto bpf_map_push_elem_proto = { 88 .func = bpf_map_push_elem, 89 .gpl_only = false, 90 .pkt_access = true, 91 .ret_type = RET_INTEGER, 92 .arg1_type = ARG_CONST_MAP_PTR, 93 .arg2_type = ARG_PTR_TO_MAP_VALUE, 94 .arg3_type = ARG_ANYTHING, 95 }; 96 97 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) 98 { 99 return map->ops->map_pop_elem(map, value); 100 } 101 102 const struct bpf_func_proto bpf_map_pop_elem_proto = { 103 .func = bpf_map_pop_elem, 104 .gpl_only = false, 105 .ret_type = RET_INTEGER, 106 .arg1_type = ARG_CONST_MAP_PTR, 107 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 108 }; 109 110 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) 111 { 112 return map->ops->map_peek_elem(map, value); 113 } 114 115 const struct bpf_func_proto bpf_map_peek_elem_proto = { 116 .func = bpf_map_peek_elem, 117 .gpl_only = false, 118 .ret_type = RET_INTEGER, 119 .arg1_type = ARG_CONST_MAP_PTR, 120 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 121 }; 122 123 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) 124 { 125 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 126 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); 127 } 128 129 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { 130 .func = bpf_map_lookup_percpu_elem, 131 .gpl_only = false, 132 .pkt_access = true, 133 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 134 .arg1_type = ARG_CONST_MAP_PTR, 135 .arg2_type = ARG_PTR_TO_MAP_KEY, 136 .arg3_type = ARG_ANYTHING, 137 }; 138 139 const struct bpf_func_proto bpf_get_prandom_u32_proto = { 140 .func = bpf_user_rnd_u32, 141 .gpl_only = false, 142 .ret_type = RET_INTEGER, 143 }; 144 145 BPF_CALL_0(bpf_get_smp_processor_id) 146 { 147 return smp_processor_id(); 148 } 149 150 const struct bpf_func_proto bpf_get_smp_processor_id_proto = { 151 .func = bpf_get_smp_processor_id, 152 .gpl_only = false, 153 .ret_type = RET_INTEGER, 154 }; 155 156 BPF_CALL_0(bpf_get_numa_node_id) 157 { 158 return numa_node_id(); 159 } 160 161 const struct bpf_func_proto bpf_get_numa_node_id_proto = { 162 .func = bpf_get_numa_node_id, 163 .gpl_only = false, 164 .ret_type = RET_INTEGER, 165 }; 166 167 BPF_CALL_0(bpf_ktime_get_ns) 168 { 169 /* NMI safe access to clock monotonic */ 170 return ktime_get_mono_fast_ns(); 171 } 172 173 const struct bpf_func_proto bpf_ktime_get_ns_proto = { 174 .func = bpf_ktime_get_ns, 175 .gpl_only = false, 176 .ret_type = RET_INTEGER, 177 }; 178 179 BPF_CALL_0(bpf_ktime_get_boot_ns) 180 { 181 /* NMI safe access to clock boottime */ 182 return ktime_get_boot_fast_ns(); 183 } 184 185 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { 186 .func = bpf_ktime_get_boot_ns, 187 .gpl_only = false, 188 .ret_type = RET_INTEGER, 189 }; 190 191 BPF_CALL_0(bpf_ktime_get_coarse_ns) 192 { 193 return ktime_get_coarse_ns(); 194 } 195 196 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { 197 .func = bpf_ktime_get_coarse_ns, 198 .gpl_only = false, 199 .ret_type = RET_INTEGER, 200 }; 201 202 BPF_CALL_0(bpf_ktime_get_tai_ns) 203 { 204 /* NMI safe access to clock tai */ 205 return ktime_get_tai_fast_ns(); 206 } 207 208 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = { 209 .func = bpf_ktime_get_tai_ns, 210 .gpl_only = false, 211 .ret_type = RET_INTEGER, 212 }; 213 214 BPF_CALL_0(bpf_get_current_pid_tgid) 215 { 216 struct task_struct *task = current; 217 218 if (unlikely(!task)) 219 return -EINVAL; 220 221 return (u64) task->tgid << 32 | task->pid; 222 } 223 224 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { 225 .func = bpf_get_current_pid_tgid, 226 .gpl_only = false, 227 .ret_type = RET_INTEGER, 228 }; 229 230 BPF_CALL_0(bpf_get_current_uid_gid) 231 { 232 struct task_struct *task = current; 233 kuid_t uid; 234 kgid_t gid; 235 236 if (unlikely(!task)) 237 return -EINVAL; 238 239 current_uid_gid(&uid, &gid); 240 return (u64) from_kgid(&init_user_ns, gid) << 32 | 241 from_kuid(&init_user_ns, uid); 242 } 243 244 const struct bpf_func_proto bpf_get_current_uid_gid_proto = { 245 .func = bpf_get_current_uid_gid, 246 .gpl_only = false, 247 .ret_type = RET_INTEGER, 248 }; 249 250 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) 251 { 252 struct task_struct *task = current; 253 254 if (unlikely(!task)) 255 goto err_clear; 256 257 /* Verifier guarantees that size > 0 */ 258 strscpy(buf, task->comm, size); 259 return 0; 260 err_clear: 261 memset(buf, 0, size); 262 return -EINVAL; 263 } 264 265 const struct bpf_func_proto bpf_get_current_comm_proto = { 266 .func = bpf_get_current_comm, 267 .gpl_only = false, 268 .ret_type = RET_INTEGER, 269 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 270 .arg2_type = ARG_CONST_SIZE, 271 }; 272 273 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) 274 275 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 276 { 277 arch_spinlock_t *l = (void *)lock; 278 union { 279 __u32 val; 280 arch_spinlock_t lock; 281 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; 282 283 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); 284 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); 285 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); 286 arch_spin_lock(l); 287 } 288 289 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 290 { 291 arch_spinlock_t *l = (void *)lock; 292 293 arch_spin_unlock(l); 294 } 295 296 #else 297 298 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 299 { 300 atomic_t *l = (void *)lock; 301 302 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); 303 do { 304 atomic_cond_read_relaxed(l, !VAL); 305 } while (atomic_xchg(l, 1)); 306 } 307 308 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 309 { 310 atomic_t *l = (void *)lock; 311 312 atomic_set_release(l, 0); 313 } 314 315 #endif 316 317 static DEFINE_PER_CPU(unsigned long, irqsave_flags); 318 319 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) 320 { 321 unsigned long flags; 322 323 local_irq_save(flags); 324 __bpf_spin_lock(lock); 325 __this_cpu_write(irqsave_flags, flags); 326 } 327 328 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) 329 { 330 __bpf_spin_lock_irqsave(lock); 331 return 0; 332 } 333 334 const struct bpf_func_proto bpf_spin_lock_proto = { 335 .func = bpf_spin_lock, 336 .gpl_only = false, 337 .ret_type = RET_VOID, 338 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 339 }; 340 341 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) 342 { 343 unsigned long flags; 344 345 flags = __this_cpu_read(irqsave_flags); 346 __bpf_spin_unlock(lock); 347 local_irq_restore(flags); 348 } 349 350 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) 351 { 352 __bpf_spin_unlock_irqrestore(lock); 353 return 0; 354 } 355 356 const struct bpf_func_proto bpf_spin_unlock_proto = { 357 .func = bpf_spin_unlock, 358 .gpl_only = false, 359 .ret_type = RET_VOID, 360 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 361 }; 362 363 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 364 bool lock_src) 365 { 366 struct bpf_spin_lock *lock; 367 368 if (lock_src) 369 lock = src + map->spin_lock_off; 370 else 371 lock = dst + map->spin_lock_off; 372 preempt_disable(); 373 __bpf_spin_lock_irqsave(lock); 374 copy_map_value(map, dst, src); 375 __bpf_spin_unlock_irqrestore(lock); 376 preempt_enable(); 377 } 378 379 BPF_CALL_0(bpf_jiffies64) 380 { 381 return get_jiffies_64(); 382 } 383 384 const struct bpf_func_proto bpf_jiffies64_proto = { 385 .func = bpf_jiffies64, 386 .gpl_only = false, 387 .ret_type = RET_INTEGER, 388 }; 389 390 #ifdef CONFIG_CGROUPS 391 BPF_CALL_0(bpf_get_current_cgroup_id) 392 { 393 struct cgroup *cgrp; 394 u64 cgrp_id; 395 396 rcu_read_lock(); 397 cgrp = task_dfl_cgroup(current); 398 cgrp_id = cgroup_id(cgrp); 399 rcu_read_unlock(); 400 401 return cgrp_id; 402 } 403 404 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { 405 .func = bpf_get_current_cgroup_id, 406 .gpl_only = false, 407 .ret_type = RET_INTEGER, 408 }; 409 410 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) 411 { 412 struct cgroup *cgrp; 413 struct cgroup *ancestor; 414 u64 cgrp_id; 415 416 rcu_read_lock(); 417 cgrp = task_dfl_cgroup(current); 418 ancestor = cgroup_ancestor(cgrp, ancestor_level); 419 cgrp_id = ancestor ? cgroup_id(ancestor) : 0; 420 rcu_read_unlock(); 421 422 return cgrp_id; 423 } 424 425 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { 426 .func = bpf_get_current_ancestor_cgroup_id, 427 .gpl_only = false, 428 .ret_type = RET_INTEGER, 429 .arg1_type = ARG_ANYTHING, 430 }; 431 #endif /* CONFIG_CGROUPS */ 432 433 #define BPF_STRTOX_BASE_MASK 0x1F 434 435 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, 436 unsigned long long *res, bool *is_negative) 437 { 438 unsigned int base = flags & BPF_STRTOX_BASE_MASK; 439 const char *cur_buf = buf; 440 size_t cur_len = buf_len; 441 unsigned int consumed; 442 size_t val_len; 443 char str[64]; 444 445 if (!buf || !buf_len || !res || !is_negative) 446 return -EINVAL; 447 448 if (base != 0 && base != 8 && base != 10 && base != 16) 449 return -EINVAL; 450 451 if (flags & ~BPF_STRTOX_BASE_MASK) 452 return -EINVAL; 453 454 while (cur_buf < buf + buf_len && isspace(*cur_buf)) 455 ++cur_buf; 456 457 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); 458 if (*is_negative) 459 ++cur_buf; 460 461 consumed = cur_buf - buf; 462 cur_len -= consumed; 463 if (!cur_len) 464 return -EINVAL; 465 466 cur_len = min(cur_len, sizeof(str) - 1); 467 memcpy(str, cur_buf, cur_len); 468 str[cur_len] = '\0'; 469 cur_buf = str; 470 471 cur_buf = _parse_integer_fixup_radix(cur_buf, &base); 472 val_len = _parse_integer(cur_buf, base, res); 473 474 if (val_len & KSTRTOX_OVERFLOW) 475 return -ERANGE; 476 477 if (val_len == 0) 478 return -EINVAL; 479 480 cur_buf += val_len; 481 consumed += cur_buf - str; 482 483 return consumed; 484 } 485 486 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, 487 long long *res) 488 { 489 unsigned long long _res; 490 bool is_negative; 491 int err; 492 493 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 494 if (err < 0) 495 return err; 496 if (is_negative) { 497 if ((long long)-_res > 0) 498 return -ERANGE; 499 *res = -_res; 500 } else { 501 if ((long long)_res < 0) 502 return -ERANGE; 503 *res = _res; 504 } 505 return err; 506 } 507 508 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, 509 long *, res) 510 { 511 long long _res; 512 int err; 513 514 err = __bpf_strtoll(buf, buf_len, flags, &_res); 515 if (err < 0) 516 return err; 517 if (_res != (long)_res) 518 return -ERANGE; 519 *res = _res; 520 return err; 521 } 522 523 const struct bpf_func_proto bpf_strtol_proto = { 524 .func = bpf_strtol, 525 .gpl_only = false, 526 .ret_type = RET_INTEGER, 527 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 528 .arg2_type = ARG_CONST_SIZE, 529 .arg3_type = ARG_ANYTHING, 530 .arg4_type = ARG_PTR_TO_LONG, 531 }; 532 533 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, 534 unsigned long *, res) 535 { 536 unsigned long long _res; 537 bool is_negative; 538 int err; 539 540 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 541 if (err < 0) 542 return err; 543 if (is_negative) 544 return -EINVAL; 545 if (_res != (unsigned long)_res) 546 return -ERANGE; 547 *res = _res; 548 return err; 549 } 550 551 const struct bpf_func_proto bpf_strtoul_proto = { 552 .func = bpf_strtoul, 553 .gpl_only = false, 554 .ret_type = RET_INTEGER, 555 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 556 .arg2_type = ARG_CONST_SIZE, 557 .arg3_type = ARG_ANYTHING, 558 .arg4_type = ARG_PTR_TO_LONG, 559 }; 560 561 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) 562 { 563 return strncmp(s1, s2, s1_sz); 564 } 565 566 static const struct bpf_func_proto bpf_strncmp_proto = { 567 .func = bpf_strncmp, 568 .gpl_only = false, 569 .ret_type = RET_INTEGER, 570 .arg1_type = ARG_PTR_TO_MEM, 571 .arg2_type = ARG_CONST_SIZE, 572 .arg3_type = ARG_PTR_TO_CONST_STR, 573 }; 574 575 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, 576 struct bpf_pidns_info *, nsdata, u32, size) 577 { 578 struct task_struct *task = current; 579 struct pid_namespace *pidns; 580 int err = -EINVAL; 581 582 if (unlikely(size != sizeof(struct bpf_pidns_info))) 583 goto clear; 584 585 if (unlikely((u64)(dev_t)dev != dev)) 586 goto clear; 587 588 if (unlikely(!task)) 589 goto clear; 590 591 pidns = task_active_pid_ns(task); 592 if (unlikely(!pidns)) { 593 err = -ENOENT; 594 goto clear; 595 } 596 597 if (!ns_match(&pidns->ns, (dev_t)dev, ino)) 598 goto clear; 599 600 nsdata->pid = task_pid_nr_ns(task, pidns); 601 nsdata->tgid = task_tgid_nr_ns(task, pidns); 602 return 0; 603 clear: 604 memset((void *)nsdata, 0, (size_t) size); 605 return err; 606 } 607 608 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { 609 .func = bpf_get_ns_current_pid_tgid, 610 .gpl_only = false, 611 .ret_type = RET_INTEGER, 612 .arg1_type = ARG_ANYTHING, 613 .arg2_type = ARG_ANYTHING, 614 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 615 .arg4_type = ARG_CONST_SIZE, 616 }; 617 618 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { 619 .func = bpf_get_raw_cpu_id, 620 .gpl_only = false, 621 .ret_type = RET_INTEGER, 622 }; 623 624 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, 625 u64, flags, void *, data, u64, size) 626 { 627 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 628 return -EINVAL; 629 630 return bpf_event_output(map, flags, data, size, NULL, 0, NULL); 631 } 632 633 const struct bpf_func_proto bpf_event_output_data_proto = { 634 .func = bpf_event_output_data, 635 .gpl_only = true, 636 .ret_type = RET_INTEGER, 637 .arg1_type = ARG_PTR_TO_CTX, 638 .arg2_type = ARG_CONST_MAP_PTR, 639 .arg3_type = ARG_ANYTHING, 640 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 641 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 642 }; 643 644 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, 645 const void __user *, user_ptr) 646 { 647 int ret = copy_from_user(dst, user_ptr, size); 648 649 if (unlikely(ret)) { 650 memset(dst, 0, size); 651 ret = -EFAULT; 652 } 653 654 return ret; 655 } 656 657 const struct bpf_func_proto bpf_copy_from_user_proto = { 658 .func = bpf_copy_from_user, 659 .gpl_only = false, 660 .ret_type = RET_INTEGER, 661 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 662 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 663 .arg3_type = ARG_ANYTHING, 664 }; 665 666 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, 667 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) 668 { 669 int ret; 670 671 /* flags is not used yet */ 672 if (unlikely(flags)) 673 return -EINVAL; 674 675 if (unlikely(!size)) 676 return 0; 677 678 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); 679 if (ret == size) 680 return 0; 681 682 memset(dst, 0, size); 683 /* Return -EFAULT for partial read */ 684 return ret < 0 ? ret : -EFAULT; 685 } 686 687 const struct bpf_func_proto bpf_copy_from_user_task_proto = { 688 .func = bpf_copy_from_user_task, 689 .gpl_only = true, 690 .ret_type = RET_INTEGER, 691 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 692 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 693 .arg3_type = ARG_ANYTHING, 694 .arg4_type = ARG_PTR_TO_BTF_ID, 695 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 696 .arg5_type = ARG_ANYTHING 697 }; 698 699 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) 700 { 701 if (cpu >= nr_cpu_ids) 702 return (unsigned long)NULL; 703 704 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); 705 } 706 707 const struct bpf_func_proto bpf_per_cpu_ptr_proto = { 708 .func = bpf_per_cpu_ptr, 709 .gpl_only = false, 710 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, 711 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 712 .arg2_type = ARG_ANYTHING, 713 }; 714 715 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) 716 { 717 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); 718 } 719 720 const struct bpf_func_proto bpf_this_cpu_ptr_proto = { 721 .func = bpf_this_cpu_ptr, 722 .gpl_only = false, 723 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, 724 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 725 }; 726 727 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 728 size_t bufsz) 729 { 730 void __user *user_ptr = (__force void __user *)unsafe_ptr; 731 732 buf[0] = 0; 733 734 switch (fmt_ptype) { 735 case 's': 736 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 737 if ((unsigned long)unsafe_ptr < TASK_SIZE) 738 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 739 fallthrough; 740 #endif 741 case 'k': 742 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 743 case 'u': 744 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 745 } 746 747 return -EINVAL; 748 } 749 750 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary 751 * arguments representation. 752 */ 753 #define MAX_BPRINTF_BUF_LEN 512 754 755 /* Support executing three nested bprintf helper calls on a given CPU */ 756 #define MAX_BPRINTF_NEST_LEVEL 3 757 struct bpf_bprintf_buffers { 758 char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN]; 759 }; 760 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs); 761 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); 762 763 static int try_get_fmt_tmp_buf(char **tmp_buf) 764 { 765 struct bpf_bprintf_buffers *bufs; 766 int nest_level; 767 768 preempt_disable(); 769 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); 770 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { 771 this_cpu_dec(bpf_bprintf_nest_level); 772 preempt_enable(); 773 return -EBUSY; 774 } 775 bufs = this_cpu_ptr(&bpf_bprintf_bufs); 776 *tmp_buf = bufs->tmp_bufs[nest_level - 1]; 777 778 return 0; 779 } 780 781 void bpf_bprintf_cleanup(void) 782 { 783 if (this_cpu_read(bpf_bprintf_nest_level)) { 784 this_cpu_dec(bpf_bprintf_nest_level); 785 preempt_enable(); 786 } 787 } 788 789 /* 790 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers 791 * 792 * Returns a negative value if fmt is an invalid format string or 0 otherwise. 793 * 794 * This can be used in two ways: 795 * - Format string verification only: when bin_args is NULL 796 * - Arguments preparation: in addition to the above verification, it writes in 797 * bin_args a binary representation of arguments usable by bstr_printf where 798 * pointers from BPF have been sanitized. 799 * 800 * In argument preparation mode, if 0 is returned, safe temporary buffers are 801 * allocated and bpf_bprintf_cleanup should be called to free them after use. 802 */ 803 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 804 u32 **bin_args, u32 num_args) 805 { 806 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; 807 size_t sizeof_cur_arg, sizeof_cur_ip; 808 int err, i, num_spec = 0; 809 u64 cur_arg; 810 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; 811 812 fmt_end = strnchr(fmt, fmt_size, 0); 813 if (!fmt_end) 814 return -EINVAL; 815 fmt_size = fmt_end - fmt; 816 817 if (bin_args) { 818 if (num_args && try_get_fmt_tmp_buf(&tmp_buf)) 819 return -EBUSY; 820 821 tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN; 822 *bin_args = (u32 *)tmp_buf; 823 } 824 825 for (i = 0; i < fmt_size; i++) { 826 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 827 err = -EINVAL; 828 goto out; 829 } 830 831 if (fmt[i] != '%') 832 continue; 833 834 if (fmt[i + 1] == '%') { 835 i++; 836 continue; 837 } 838 839 if (num_spec >= num_args) { 840 err = -EINVAL; 841 goto out; 842 } 843 844 /* The string is zero-terminated so if fmt[i] != 0, we can 845 * always access fmt[i + 1], in the worst case it will be a 0 846 */ 847 i++; 848 849 /* skip optional "[0 +-][num]" width formatting field */ 850 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 851 fmt[i] == ' ') 852 i++; 853 if (fmt[i] >= '1' && fmt[i] <= '9') { 854 i++; 855 while (fmt[i] >= '0' && fmt[i] <= '9') 856 i++; 857 } 858 859 if (fmt[i] == 'p') { 860 sizeof_cur_arg = sizeof(long); 861 862 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && 863 fmt[i + 2] == 's') { 864 fmt_ptype = fmt[i + 1]; 865 i += 2; 866 goto fmt_str; 867 } 868 869 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || 870 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || 871 fmt[i + 1] == 'x' || fmt[i + 1] == 's' || 872 fmt[i + 1] == 'S') { 873 /* just kernel pointers */ 874 if (tmp_buf) 875 cur_arg = raw_args[num_spec]; 876 i++; 877 goto nocopy_fmt; 878 } 879 880 if (fmt[i + 1] == 'B') { 881 if (tmp_buf) { 882 err = snprintf(tmp_buf, 883 (tmp_buf_end - tmp_buf), 884 "%pB", 885 (void *)(long)raw_args[num_spec]); 886 tmp_buf += (err + 1); 887 } 888 889 i++; 890 num_spec++; 891 continue; 892 } 893 894 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 895 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || 896 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { 897 err = -EINVAL; 898 goto out; 899 } 900 901 i += 2; 902 if (!tmp_buf) 903 goto nocopy_fmt; 904 905 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; 906 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { 907 err = -ENOSPC; 908 goto out; 909 } 910 911 unsafe_ptr = (char *)(long)raw_args[num_spec]; 912 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, 913 sizeof_cur_ip); 914 if (err < 0) 915 memset(cur_ip, 0, sizeof_cur_ip); 916 917 /* hack: bstr_printf expects IP addresses to be 918 * pre-formatted as strings, ironically, the easiest way 919 * to do that is to call snprintf. 920 */ 921 ip_spec[2] = fmt[i - 1]; 922 ip_spec[3] = fmt[i]; 923 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, 924 ip_spec, &cur_ip); 925 926 tmp_buf += err + 1; 927 num_spec++; 928 929 continue; 930 } else if (fmt[i] == 's') { 931 fmt_ptype = fmt[i]; 932 fmt_str: 933 if (fmt[i + 1] != 0 && 934 !isspace(fmt[i + 1]) && 935 !ispunct(fmt[i + 1])) { 936 err = -EINVAL; 937 goto out; 938 } 939 940 if (!tmp_buf) 941 goto nocopy_fmt; 942 943 if (tmp_buf_end == tmp_buf) { 944 err = -ENOSPC; 945 goto out; 946 } 947 948 unsafe_ptr = (char *)(long)raw_args[num_spec]; 949 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, 950 fmt_ptype, 951 tmp_buf_end - tmp_buf); 952 if (err < 0) { 953 tmp_buf[0] = '\0'; 954 err = 1; 955 } 956 957 tmp_buf += err; 958 num_spec++; 959 960 continue; 961 } else if (fmt[i] == 'c') { 962 if (!tmp_buf) 963 goto nocopy_fmt; 964 965 if (tmp_buf_end == tmp_buf) { 966 err = -ENOSPC; 967 goto out; 968 } 969 970 *tmp_buf = raw_args[num_spec]; 971 tmp_buf++; 972 num_spec++; 973 974 continue; 975 } 976 977 sizeof_cur_arg = sizeof(int); 978 979 if (fmt[i] == 'l') { 980 sizeof_cur_arg = sizeof(long); 981 i++; 982 } 983 if (fmt[i] == 'l') { 984 sizeof_cur_arg = sizeof(long long); 985 i++; 986 } 987 988 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && 989 fmt[i] != 'x' && fmt[i] != 'X') { 990 err = -EINVAL; 991 goto out; 992 } 993 994 if (tmp_buf) 995 cur_arg = raw_args[num_spec]; 996 nocopy_fmt: 997 if (tmp_buf) { 998 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); 999 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { 1000 err = -ENOSPC; 1001 goto out; 1002 } 1003 1004 if (sizeof_cur_arg == 8) { 1005 *(u32 *)tmp_buf = *(u32 *)&cur_arg; 1006 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); 1007 } else { 1008 *(u32 *)tmp_buf = (u32)(long)cur_arg; 1009 } 1010 tmp_buf += sizeof_cur_arg; 1011 } 1012 num_spec++; 1013 } 1014 1015 err = 0; 1016 out: 1017 if (err) 1018 bpf_bprintf_cleanup(); 1019 return err; 1020 } 1021 1022 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, 1023 const void *, data, u32, data_len) 1024 { 1025 int err, num_args; 1026 u32 *bin_args; 1027 1028 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || 1029 (data_len && !data)) 1030 return -EINVAL; 1031 num_args = data_len / 8; 1032 1033 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we 1034 * can safely give an unbounded size. 1035 */ 1036 err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args); 1037 if (err < 0) 1038 return err; 1039 1040 err = bstr_printf(str, str_size, fmt, bin_args); 1041 1042 bpf_bprintf_cleanup(); 1043 1044 return err + 1; 1045 } 1046 1047 const struct bpf_func_proto bpf_snprintf_proto = { 1048 .func = bpf_snprintf, 1049 .gpl_only = true, 1050 .ret_type = RET_INTEGER, 1051 .arg1_type = ARG_PTR_TO_MEM_OR_NULL, 1052 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1053 .arg3_type = ARG_PTR_TO_CONST_STR, 1054 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 1055 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1056 }; 1057 1058 /* BPF map elements can contain 'struct bpf_timer'. 1059 * Such map owns all of its BPF timers. 1060 * 'struct bpf_timer' is allocated as part of map element allocation 1061 * and it's zero initialized. 1062 * That space is used to keep 'struct bpf_timer_kern'. 1063 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and 1064 * remembers 'struct bpf_map *' pointer it's part of. 1065 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. 1066 * bpf_timer_start() arms the timer. 1067 * If user space reference to a map goes to zero at this point 1068 * ops->map_release_uref callback is responsible for cancelling the timers, 1069 * freeing their memory, and decrementing prog's refcnts. 1070 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. 1071 * Inner maps can contain bpf timers as well. ops->map_release_uref is 1072 * freeing the timers when inner map is replaced or deleted by user space. 1073 */ 1074 struct bpf_hrtimer { 1075 struct hrtimer timer; 1076 struct bpf_map *map; 1077 struct bpf_prog *prog; 1078 void __rcu *callback_fn; 1079 void *value; 1080 }; 1081 1082 /* the actual struct hidden inside uapi struct bpf_timer */ 1083 struct bpf_timer_kern { 1084 struct bpf_hrtimer *timer; 1085 /* bpf_spin_lock is used here instead of spinlock_t to make 1086 * sure that it always fits into space reserved by struct bpf_timer 1087 * regardless of LOCKDEP and spinlock debug flags. 1088 */ 1089 struct bpf_spin_lock lock; 1090 } __attribute__((aligned(8))); 1091 1092 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); 1093 1094 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) 1095 { 1096 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); 1097 struct bpf_map *map = t->map; 1098 void *value = t->value; 1099 bpf_callback_t callback_fn; 1100 void *key; 1101 u32 idx; 1102 1103 BTF_TYPE_EMIT(struct bpf_timer); 1104 callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held()); 1105 if (!callback_fn) 1106 goto out; 1107 1108 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and 1109 * cannot be preempted by another bpf_timer_cb() on the same cpu. 1110 * Remember the timer this callback is servicing to prevent 1111 * deadlock if callback_fn() calls bpf_timer_cancel() or 1112 * bpf_map_delete_elem() on the same timer. 1113 */ 1114 this_cpu_write(hrtimer_running, t); 1115 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1116 struct bpf_array *array = container_of(map, struct bpf_array, map); 1117 1118 /* compute the key */ 1119 idx = ((char *)value - array->value) / array->elem_size; 1120 key = &idx; 1121 } else { /* hash or lru */ 1122 key = value - round_up(map->key_size, 8); 1123 } 1124 1125 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1126 /* The verifier checked that return value is zero. */ 1127 1128 this_cpu_write(hrtimer_running, NULL); 1129 out: 1130 return HRTIMER_NORESTART; 1131 } 1132 1133 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map, 1134 u64, flags) 1135 { 1136 clockid_t clockid = flags & (MAX_CLOCKS - 1); 1137 struct bpf_hrtimer *t; 1138 int ret = 0; 1139 1140 BUILD_BUG_ON(MAX_CLOCKS != 16); 1141 BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer)); 1142 BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer)); 1143 1144 if (in_nmi()) 1145 return -EOPNOTSUPP; 1146 1147 if (flags >= MAX_CLOCKS || 1148 /* similar to timerfd except _ALARM variants are not supported */ 1149 (clockid != CLOCK_MONOTONIC && 1150 clockid != CLOCK_REALTIME && 1151 clockid != CLOCK_BOOTTIME)) 1152 return -EINVAL; 1153 __bpf_spin_lock_irqsave(&timer->lock); 1154 t = timer->timer; 1155 if (t) { 1156 ret = -EBUSY; 1157 goto out; 1158 } 1159 if (!atomic64_read(&map->usercnt)) { 1160 /* maps with timers must be either held by user space 1161 * or pinned in bpffs. 1162 */ 1163 ret = -EPERM; 1164 goto out; 1165 } 1166 /* allocate hrtimer via map_kmalloc to use memcg accounting */ 1167 t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node); 1168 if (!t) { 1169 ret = -ENOMEM; 1170 goto out; 1171 } 1172 t->value = (void *)timer - map->timer_off; 1173 t->map = map; 1174 t->prog = NULL; 1175 rcu_assign_pointer(t->callback_fn, NULL); 1176 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); 1177 t->timer.function = bpf_timer_cb; 1178 timer->timer = t; 1179 out: 1180 __bpf_spin_unlock_irqrestore(&timer->lock); 1181 return ret; 1182 } 1183 1184 static const struct bpf_func_proto bpf_timer_init_proto = { 1185 .func = bpf_timer_init, 1186 .gpl_only = true, 1187 .ret_type = RET_INTEGER, 1188 .arg1_type = ARG_PTR_TO_TIMER, 1189 .arg2_type = ARG_CONST_MAP_PTR, 1190 .arg3_type = ARG_ANYTHING, 1191 }; 1192 1193 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn, 1194 struct bpf_prog_aux *, aux) 1195 { 1196 struct bpf_prog *prev, *prog = aux->prog; 1197 struct bpf_hrtimer *t; 1198 int ret = 0; 1199 1200 if (in_nmi()) 1201 return -EOPNOTSUPP; 1202 __bpf_spin_lock_irqsave(&timer->lock); 1203 t = timer->timer; 1204 if (!t) { 1205 ret = -EINVAL; 1206 goto out; 1207 } 1208 if (!atomic64_read(&t->map->usercnt)) { 1209 /* maps with timers must be either held by user space 1210 * or pinned in bpffs. Otherwise timer might still be 1211 * running even when bpf prog is detached and user space 1212 * is gone, since map_release_uref won't ever be called. 1213 */ 1214 ret = -EPERM; 1215 goto out; 1216 } 1217 prev = t->prog; 1218 if (prev != prog) { 1219 /* Bump prog refcnt once. Every bpf_timer_set_callback() 1220 * can pick different callback_fn-s within the same prog. 1221 */ 1222 prog = bpf_prog_inc_not_zero(prog); 1223 if (IS_ERR(prog)) { 1224 ret = PTR_ERR(prog); 1225 goto out; 1226 } 1227 if (prev) 1228 /* Drop prev prog refcnt when swapping with new prog */ 1229 bpf_prog_put(prev); 1230 t->prog = prog; 1231 } 1232 rcu_assign_pointer(t->callback_fn, callback_fn); 1233 out: 1234 __bpf_spin_unlock_irqrestore(&timer->lock); 1235 return ret; 1236 } 1237 1238 static const struct bpf_func_proto bpf_timer_set_callback_proto = { 1239 .func = bpf_timer_set_callback, 1240 .gpl_only = true, 1241 .ret_type = RET_INTEGER, 1242 .arg1_type = ARG_PTR_TO_TIMER, 1243 .arg2_type = ARG_PTR_TO_FUNC, 1244 }; 1245 1246 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags) 1247 { 1248 struct bpf_hrtimer *t; 1249 int ret = 0; 1250 1251 if (in_nmi()) 1252 return -EOPNOTSUPP; 1253 if (flags) 1254 return -EINVAL; 1255 __bpf_spin_lock_irqsave(&timer->lock); 1256 t = timer->timer; 1257 if (!t || !t->prog) { 1258 ret = -EINVAL; 1259 goto out; 1260 } 1261 hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT); 1262 out: 1263 __bpf_spin_unlock_irqrestore(&timer->lock); 1264 return ret; 1265 } 1266 1267 static const struct bpf_func_proto bpf_timer_start_proto = { 1268 .func = bpf_timer_start, 1269 .gpl_only = true, 1270 .ret_type = RET_INTEGER, 1271 .arg1_type = ARG_PTR_TO_TIMER, 1272 .arg2_type = ARG_ANYTHING, 1273 .arg3_type = ARG_ANYTHING, 1274 }; 1275 1276 static void drop_prog_refcnt(struct bpf_hrtimer *t) 1277 { 1278 struct bpf_prog *prog = t->prog; 1279 1280 if (prog) { 1281 bpf_prog_put(prog); 1282 t->prog = NULL; 1283 rcu_assign_pointer(t->callback_fn, NULL); 1284 } 1285 } 1286 1287 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer) 1288 { 1289 struct bpf_hrtimer *t; 1290 int ret = 0; 1291 1292 if (in_nmi()) 1293 return -EOPNOTSUPP; 1294 __bpf_spin_lock_irqsave(&timer->lock); 1295 t = timer->timer; 1296 if (!t) { 1297 ret = -EINVAL; 1298 goto out; 1299 } 1300 if (this_cpu_read(hrtimer_running) == t) { 1301 /* If bpf callback_fn is trying to bpf_timer_cancel() 1302 * its own timer the hrtimer_cancel() will deadlock 1303 * since it waits for callback_fn to finish 1304 */ 1305 ret = -EDEADLK; 1306 goto out; 1307 } 1308 drop_prog_refcnt(t); 1309 out: 1310 __bpf_spin_unlock_irqrestore(&timer->lock); 1311 /* Cancel the timer and wait for associated callback to finish 1312 * if it was running. 1313 */ 1314 ret = ret ?: hrtimer_cancel(&t->timer); 1315 return ret; 1316 } 1317 1318 static const struct bpf_func_proto bpf_timer_cancel_proto = { 1319 .func = bpf_timer_cancel, 1320 .gpl_only = true, 1321 .ret_type = RET_INTEGER, 1322 .arg1_type = ARG_PTR_TO_TIMER, 1323 }; 1324 1325 /* This function is called by map_delete/update_elem for individual element and 1326 * by ops->map_release_uref when the user space reference to a map reaches zero. 1327 */ 1328 void bpf_timer_cancel_and_free(void *val) 1329 { 1330 struct bpf_timer_kern *timer = val; 1331 struct bpf_hrtimer *t; 1332 1333 /* Performance optimization: read timer->timer without lock first. */ 1334 if (!READ_ONCE(timer->timer)) 1335 return; 1336 1337 __bpf_spin_lock_irqsave(&timer->lock); 1338 /* re-read it under lock */ 1339 t = timer->timer; 1340 if (!t) 1341 goto out; 1342 drop_prog_refcnt(t); 1343 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use 1344 * this timer, since it won't be initialized. 1345 */ 1346 timer->timer = NULL; 1347 out: 1348 __bpf_spin_unlock_irqrestore(&timer->lock); 1349 if (!t) 1350 return; 1351 /* Cancel the timer and wait for callback to complete if it was running. 1352 * If hrtimer_cancel() can be safely called it's safe to call kfree(t) 1353 * right after for both preallocated and non-preallocated maps. 1354 * The timer->timer = NULL was already done and no code path can 1355 * see address 't' anymore. 1356 * 1357 * Check that bpf_map_delete/update_elem() wasn't called from timer 1358 * callback_fn. In such case don't call hrtimer_cancel() (since it will 1359 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just 1360 * return -1). Though callback_fn is still running on this cpu it's 1361 * safe to do kfree(t) because bpf_timer_cb() read everything it needed 1362 * from 't'. The bpf subprog callback_fn won't be able to access 't', 1363 * since timer->timer = NULL was already done. The timer will be 1364 * effectively cancelled because bpf_timer_cb() will return 1365 * HRTIMER_NORESTART. 1366 */ 1367 if (this_cpu_read(hrtimer_running) != t) 1368 hrtimer_cancel(&t->timer); 1369 kfree(t); 1370 } 1371 1372 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr) 1373 { 1374 unsigned long *kptr = map_value; 1375 1376 return xchg(kptr, (unsigned long)ptr); 1377 } 1378 1379 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() 1380 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to 1381 * denote type that verifier will determine. 1382 */ 1383 static const struct bpf_func_proto bpf_kptr_xchg_proto = { 1384 .func = bpf_kptr_xchg, 1385 .gpl_only = false, 1386 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 1387 .ret_btf_id = BPF_PTR_POISON, 1388 .arg1_type = ARG_PTR_TO_KPTR, 1389 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, 1390 .arg2_btf_id = BPF_PTR_POISON, 1391 }; 1392 1393 /* Since the upper 8 bits of dynptr->size is reserved, the 1394 * maximum supported size is 2^24 - 1. 1395 */ 1396 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1) 1397 #define DYNPTR_TYPE_SHIFT 28 1398 #define DYNPTR_SIZE_MASK 0xFFFFFF 1399 #define DYNPTR_RDONLY_BIT BIT(31) 1400 1401 static bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr) 1402 { 1403 return ptr->size & DYNPTR_RDONLY_BIT; 1404 } 1405 1406 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) 1407 { 1408 ptr->size |= type << DYNPTR_TYPE_SHIFT; 1409 } 1410 1411 u32 bpf_dynptr_get_size(struct bpf_dynptr_kern *ptr) 1412 { 1413 return ptr->size & DYNPTR_SIZE_MASK; 1414 } 1415 1416 int bpf_dynptr_check_size(u32 size) 1417 { 1418 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; 1419 } 1420 1421 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 1422 enum bpf_dynptr_type type, u32 offset, u32 size) 1423 { 1424 ptr->data = data; 1425 ptr->offset = offset; 1426 ptr->size = size; 1427 bpf_dynptr_set_type(ptr, type); 1428 } 1429 1430 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 1431 { 1432 memset(ptr, 0, sizeof(*ptr)); 1433 } 1434 1435 static int bpf_dynptr_check_off_len(struct bpf_dynptr_kern *ptr, u32 offset, u32 len) 1436 { 1437 u32 size = bpf_dynptr_get_size(ptr); 1438 1439 if (len > size || offset > size - len) 1440 return -E2BIG; 1441 1442 return 0; 1443 } 1444 1445 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) 1446 { 1447 int err; 1448 1449 BTF_TYPE_EMIT(struct bpf_dynptr); 1450 1451 err = bpf_dynptr_check_size(size); 1452 if (err) 1453 goto error; 1454 1455 /* flags is currently unsupported */ 1456 if (flags) { 1457 err = -EINVAL; 1458 goto error; 1459 } 1460 1461 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); 1462 1463 return 0; 1464 1465 error: 1466 bpf_dynptr_set_null(ptr); 1467 return err; 1468 } 1469 1470 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { 1471 .func = bpf_dynptr_from_mem, 1472 .gpl_only = false, 1473 .ret_type = RET_INTEGER, 1474 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1475 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1476 .arg3_type = ARG_ANYTHING, 1477 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT, 1478 }; 1479 1480 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, struct bpf_dynptr_kern *, src, 1481 u32, offset, u64, flags) 1482 { 1483 int err; 1484 1485 if (!src->data || flags) 1486 return -EINVAL; 1487 1488 err = bpf_dynptr_check_off_len(src, offset, len); 1489 if (err) 1490 return err; 1491 1492 memcpy(dst, src->data + src->offset + offset, len); 1493 1494 return 0; 1495 } 1496 1497 static const struct bpf_func_proto bpf_dynptr_read_proto = { 1498 .func = bpf_dynptr_read, 1499 .gpl_only = false, 1500 .ret_type = RET_INTEGER, 1501 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1502 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1503 .arg3_type = ARG_PTR_TO_DYNPTR, 1504 .arg4_type = ARG_ANYTHING, 1505 .arg5_type = ARG_ANYTHING, 1506 }; 1507 1508 BPF_CALL_5(bpf_dynptr_write, struct bpf_dynptr_kern *, dst, u32, offset, void *, src, 1509 u32, len, u64, flags) 1510 { 1511 int err; 1512 1513 if (!dst->data || flags || bpf_dynptr_is_rdonly(dst)) 1514 return -EINVAL; 1515 1516 err = bpf_dynptr_check_off_len(dst, offset, len); 1517 if (err) 1518 return err; 1519 1520 memcpy(dst->data + dst->offset + offset, src, len); 1521 1522 return 0; 1523 } 1524 1525 static const struct bpf_func_proto bpf_dynptr_write_proto = { 1526 .func = bpf_dynptr_write, 1527 .gpl_only = false, 1528 .ret_type = RET_INTEGER, 1529 .arg1_type = ARG_PTR_TO_DYNPTR, 1530 .arg2_type = ARG_ANYTHING, 1531 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1532 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 1533 .arg5_type = ARG_ANYTHING, 1534 }; 1535 1536 BPF_CALL_3(bpf_dynptr_data, struct bpf_dynptr_kern *, ptr, u32, offset, u32, len) 1537 { 1538 int err; 1539 1540 if (!ptr->data) 1541 return 0; 1542 1543 err = bpf_dynptr_check_off_len(ptr, offset, len); 1544 if (err) 1545 return 0; 1546 1547 if (bpf_dynptr_is_rdonly(ptr)) 1548 return 0; 1549 1550 return (unsigned long)(ptr->data + ptr->offset + offset); 1551 } 1552 1553 static const struct bpf_func_proto bpf_dynptr_data_proto = { 1554 .func = bpf_dynptr_data, 1555 .gpl_only = false, 1556 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL, 1557 .arg1_type = ARG_PTR_TO_DYNPTR, 1558 .arg2_type = ARG_ANYTHING, 1559 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 1560 }; 1561 1562 const struct bpf_func_proto bpf_get_current_task_proto __weak; 1563 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; 1564 const struct bpf_func_proto bpf_probe_read_user_proto __weak; 1565 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; 1566 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; 1567 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; 1568 const struct bpf_func_proto bpf_task_pt_regs_proto __weak; 1569 1570 const struct bpf_func_proto * 1571 bpf_base_func_proto(enum bpf_func_id func_id) 1572 { 1573 switch (func_id) { 1574 case BPF_FUNC_map_lookup_elem: 1575 return &bpf_map_lookup_elem_proto; 1576 case BPF_FUNC_map_update_elem: 1577 return &bpf_map_update_elem_proto; 1578 case BPF_FUNC_map_delete_elem: 1579 return &bpf_map_delete_elem_proto; 1580 case BPF_FUNC_map_push_elem: 1581 return &bpf_map_push_elem_proto; 1582 case BPF_FUNC_map_pop_elem: 1583 return &bpf_map_pop_elem_proto; 1584 case BPF_FUNC_map_peek_elem: 1585 return &bpf_map_peek_elem_proto; 1586 case BPF_FUNC_map_lookup_percpu_elem: 1587 return &bpf_map_lookup_percpu_elem_proto; 1588 case BPF_FUNC_get_prandom_u32: 1589 return &bpf_get_prandom_u32_proto; 1590 case BPF_FUNC_get_smp_processor_id: 1591 return &bpf_get_raw_smp_processor_id_proto; 1592 case BPF_FUNC_get_numa_node_id: 1593 return &bpf_get_numa_node_id_proto; 1594 case BPF_FUNC_tail_call: 1595 return &bpf_tail_call_proto; 1596 case BPF_FUNC_ktime_get_ns: 1597 return &bpf_ktime_get_ns_proto; 1598 case BPF_FUNC_ktime_get_boot_ns: 1599 return &bpf_ktime_get_boot_ns_proto; 1600 case BPF_FUNC_ktime_get_tai_ns: 1601 return &bpf_ktime_get_tai_ns_proto; 1602 case BPF_FUNC_ringbuf_output: 1603 return &bpf_ringbuf_output_proto; 1604 case BPF_FUNC_ringbuf_reserve: 1605 return &bpf_ringbuf_reserve_proto; 1606 case BPF_FUNC_ringbuf_submit: 1607 return &bpf_ringbuf_submit_proto; 1608 case BPF_FUNC_ringbuf_discard: 1609 return &bpf_ringbuf_discard_proto; 1610 case BPF_FUNC_ringbuf_query: 1611 return &bpf_ringbuf_query_proto; 1612 case BPF_FUNC_strncmp: 1613 return &bpf_strncmp_proto; 1614 case BPF_FUNC_strtol: 1615 return &bpf_strtol_proto; 1616 case BPF_FUNC_strtoul: 1617 return &bpf_strtoul_proto; 1618 default: 1619 break; 1620 } 1621 1622 if (!bpf_capable()) 1623 return NULL; 1624 1625 switch (func_id) { 1626 case BPF_FUNC_spin_lock: 1627 return &bpf_spin_lock_proto; 1628 case BPF_FUNC_spin_unlock: 1629 return &bpf_spin_unlock_proto; 1630 case BPF_FUNC_jiffies64: 1631 return &bpf_jiffies64_proto; 1632 case BPF_FUNC_per_cpu_ptr: 1633 return &bpf_per_cpu_ptr_proto; 1634 case BPF_FUNC_this_cpu_ptr: 1635 return &bpf_this_cpu_ptr_proto; 1636 case BPF_FUNC_timer_init: 1637 return &bpf_timer_init_proto; 1638 case BPF_FUNC_timer_set_callback: 1639 return &bpf_timer_set_callback_proto; 1640 case BPF_FUNC_timer_start: 1641 return &bpf_timer_start_proto; 1642 case BPF_FUNC_timer_cancel: 1643 return &bpf_timer_cancel_proto; 1644 case BPF_FUNC_kptr_xchg: 1645 return &bpf_kptr_xchg_proto; 1646 case BPF_FUNC_for_each_map_elem: 1647 return &bpf_for_each_map_elem_proto; 1648 case BPF_FUNC_loop: 1649 return &bpf_loop_proto; 1650 case BPF_FUNC_user_ringbuf_drain: 1651 return &bpf_user_ringbuf_drain_proto; 1652 case BPF_FUNC_ringbuf_reserve_dynptr: 1653 return &bpf_ringbuf_reserve_dynptr_proto; 1654 case BPF_FUNC_ringbuf_submit_dynptr: 1655 return &bpf_ringbuf_submit_dynptr_proto; 1656 case BPF_FUNC_ringbuf_discard_dynptr: 1657 return &bpf_ringbuf_discard_dynptr_proto; 1658 case BPF_FUNC_dynptr_from_mem: 1659 return &bpf_dynptr_from_mem_proto; 1660 case BPF_FUNC_dynptr_read: 1661 return &bpf_dynptr_read_proto; 1662 case BPF_FUNC_dynptr_write: 1663 return &bpf_dynptr_write_proto; 1664 case BPF_FUNC_dynptr_data: 1665 return &bpf_dynptr_data_proto; 1666 default: 1667 break; 1668 } 1669 1670 if (!perfmon_capable()) 1671 return NULL; 1672 1673 switch (func_id) { 1674 case BPF_FUNC_trace_printk: 1675 return bpf_get_trace_printk_proto(); 1676 case BPF_FUNC_get_current_task: 1677 return &bpf_get_current_task_proto; 1678 case BPF_FUNC_get_current_task_btf: 1679 return &bpf_get_current_task_btf_proto; 1680 case BPF_FUNC_probe_read_user: 1681 return &bpf_probe_read_user_proto; 1682 case BPF_FUNC_probe_read_kernel: 1683 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1684 NULL : &bpf_probe_read_kernel_proto; 1685 case BPF_FUNC_probe_read_user_str: 1686 return &bpf_probe_read_user_str_proto; 1687 case BPF_FUNC_probe_read_kernel_str: 1688 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1689 NULL : &bpf_probe_read_kernel_str_proto; 1690 case BPF_FUNC_snprintf_btf: 1691 return &bpf_snprintf_btf_proto; 1692 case BPF_FUNC_snprintf: 1693 return &bpf_snprintf_proto; 1694 case BPF_FUNC_task_pt_regs: 1695 return &bpf_task_pt_regs_proto; 1696 case BPF_FUNC_trace_vprintk: 1697 return bpf_get_trace_vprintk_proto(); 1698 default: 1699 return NULL; 1700 } 1701 } 1702 1703 BTF_SET8_START(tracing_btf_ids) 1704 #ifdef CONFIG_KEXEC_CORE 1705 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) 1706 #endif 1707 BTF_SET8_END(tracing_btf_ids) 1708 1709 static const struct btf_kfunc_id_set tracing_kfunc_set = { 1710 .owner = THIS_MODULE, 1711 .set = &tracing_btf_ids, 1712 }; 1713 1714 static int __init kfunc_init(void) 1715 { 1716 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &tracing_kfunc_set); 1717 } 1718 1719 late_initcall(kfunc_init); 1720