xref: /linux/kernel/bpf/helpers.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/cgroup.h>
8 #include <linux/rcupdate.h>
9 #include <linux/random.h>
10 #include <linux/smp.h>
11 #include <linux/topology.h>
12 #include <linux/ktime.h>
13 #include <linux/sched.h>
14 #include <linux/uidgid.h>
15 #include <linux/filter.h>
16 #include <linux/ctype.h>
17 #include <linux/jiffies.h>
18 #include <linux/pid_namespace.h>
19 #include <linux/poison.h>
20 #include <linux/proc_ns.h>
21 #include <linux/sched/task.h>
22 #include <linux/security.h>
23 #include <linux/btf_ids.h>
24 #include <linux/bpf_mem_alloc.h>
25 #include <linux/kasan.h>
26 #include <linux/bpf_verifier.h>
27 #include <linux/uaccess.h>
28 #include <linux/verification.h>
29 #include <linux/task_work.h>
30 #include <linux/irq_work.h>
31 
32 #include "../../lib/kstrtox.h"
33 
34 /* If kernel subsystem is allowing eBPF programs to call this function,
35  * inside its own verifier_ops->get_func_proto() callback it should return
36  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
37  *
38  * Different map implementations will rely on rcu in map methods
39  * lookup/update/delete, therefore eBPF programs must run under rcu lock
40  * if program is allowed to access maps, so check rcu_read_lock_held() or
41  * rcu_read_lock_trace_held() in all three functions.
42  */
43 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
44 {
45 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
46 		     !rcu_read_lock_bh_held());
47 	return (unsigned long) map->ops->map_lookup_elem(map, key);
48 }
49 
50 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
51 	.func		= bpf_map_lookup_elem,
52 	.gpl_only	= false,
53 	.pkt_access	= true,
54 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
55 	.arg1_type	= ARG_CONST_MAP_PTR,
56 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
57 };
58 
59 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
60 	   void *, value, u64, flags)
61 {
62 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
63 		     !rcu_read_lock_bh_held());
64 	return map->ops->map_update_elem(map, key, value, flags);
65 }
66 
67 const struct bpf_func_proto bpf_map_update_elem_proto = {
68 	.func		= bpf_map_update_elem,
69 	.gpl_only	= false,
70 	.pkt_access	= true,
71 	.ret_type	= RET_INTEGER,
72 	.arg1_type	= ARG_CONST_MAP_PTR,
73 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
74 	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
75 	.arg4_type	= ARG_ANYTHING,
76 };
77 
78 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
79 {
80 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
81 		     !rcu_read_lock_bh_held());
82 	return map->ops->map_delete_elem(map, key);
83 }
84 
85 const struct bpf_func_proto bpf_map_delete_elem_proto = {
86 	.func		= bpf_map_delete_elem,
87 	.gpl_only	= false,
88 	.pkt_access	= true,
89 	.ret_type	= RET_INTEGER,
90 	.arg1_type	= ARG_CONST_MAP_PTR,
91 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
92 };
93 
94 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
95 {
96 	return map->ops->map_push_elem(map, value, flags);
97 }
98 
99 const struct bpf_func_proto bpf_map_push_elem_proto = {
100 	.func		= bpf_map_push_elem,
101 	.gpl_only	= false,
102 	.pkt_access	= true,
103 	.ret_type	= RET_INTEGER,
104 	.arg1_type	= ARG_CONST_MAP_PTR,
105 	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
106 	.arg3_type	= ARG_ANYTHING,
107 };
108 
109 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
110 {
111 	return map->ops->map_pop_elem(map, value);
112 }
113 
114 const struct bpf_func_proto bpf_map_pop_elem_proto = {
115 	.func		= bpf_map_pop_elem,
116 	.gpl_only	= false,
117 	.ret_type	= RET_INTEGER,
118 	.arg1_type	= ARG_CONST_MAP_PTR,
119 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
120 };
121 
122 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
123 {
124 	return map->ops->map_peek_elem(map, value);
125 }
126 
127 const struct bpf_func_proto bpf_map_peek_elem_proto = {
128 	.func		= bpf_map_peek_elem,
129 	.gpl_only	= false,
130 	.ret_type	= RET_INTEGER,
131 	.arg1_type	= ARG_CONST_MAP_PTR,
132 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
133 };
134 
135 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
136 {
137 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
138 		     !rcu_read_lock_bh_held());
139 	return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
140 }
141 
142 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
143 	.func		= bpf_map_lookup_percpu_elem,
144 	.gpl_only	= false,
145 	.pkt_access	= true,
146 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
147 	.arg1_type	= ARG_CONST_MAP_PTR,
148 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
149 	.arg3_type	= ARG_ANYTHING,
150 };
151 
152 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
153 	.func		= bpf_user_rnd_u32,
154 	.gpl_only	= false,
155 	.ret_type	= RET_INTEGER,
156 };
157 
158 BPF_CALL_0(bpf_get_smp_processor_id)
159 {
160 	return smp_processor_id();
161 }
162 
163 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
164 	.func		= bpf_get_smp_processor_id,
165 	.gpl_only	= false,
166 	.ret_type	= RET_INTEGER,
167 	.allow_fastcall	= true,
168 };
169 
170 BPF_CALL_0(bpf_get_numa_node_id)
171 {
172 	return numa_node_id();
173 }
174 
175 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
176 	.func		= bpf_get_numa_node_id,
177 	.gpl_only	= false,
178 	.ret_type	= RET_INTEGER,
179 };
180 
181 BPF_CALL_0(bpf_ktime_get_ns)
182 {
183 	/* NMI safe access to clock monotonic */
184 	return ktime_get_mono_fast_ns();
185 }
186 
187 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
188 	.func		= bpf_ktime_get_ns,
189 	.gpl_only	= false,
190 	.ret_type	= RET_INTEGER,
191 };
192 
193 BPF_CALL_0(bpf_ktime_get_boot_ns)
194 {
195 	/* NMI safe access to clock boottime */
196 	return ktime_get_boot_fast_ns();
197 }
198 
199 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
200 	.func		= bpf_ktime_get_boot_ns,
201 	.gpl_only	= false,
202 	.ret_type	= RET_INTEGER,
203 };
204 
205 BPF_CALL_0(bpf_ktime_get_coarse_ns)
206 {
207 	return ktime_get_coarse_ns();
208 }
209 
210 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
211 	.func		= bpf_ktime_get_coarse_ns,
212 	.gpl_only	= false,
213 	.ret_type	= RET_INTEGER,
214 };
215 
216 BPF_CALL_0(bpf_ktime_get_tai_ns)
217 {
218 	/* NMI safe access to clock tai */
219 	return ktime_get_tai_fast_ns();
220 }
221 
222 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
223 	.func		= bpf_ktime_get_tai_ns,
224 	.gpl_only	= false,
225 	.ret_type	= RET_INTEGER,
226 };
227 
228 BPF_CALL_0(bpf_get_current_pid_tgid)
229 {
230 	struct task_struct *task = current;
231 
232 	if (unlikely(!task))
233 		return -EINVAL;
234 
235 	return (u64) task->tgid << 32 | task->pid;
236 }
237 
238 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
239 	.func		= bpf_get_current_pid_tgid,
240 	.gpl_only	= false,
241 	.ret_type	= RET_INTEGER,
242 };
243 
244 BPF_CALL_0(bpf_get_current_uid_gid)
245 {
246 	struct task_struct *task = current;
247 	kuid_t uid;
248 	kgid_t gid;
249 
250 	if (unlikely(!task))
251 		return -EINVAL;
252 
253 	current_uid_gid(&uid, &gid);
254 	return (u64) from_kgid(&init_user_ns, gid) << 32 |
255 		     from_kuid(&init_user_ns, uid);
256 }
257 
258 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
259 	.func		= bpf_get_current_uid_gid,
260 	.gpl_only	= false,
261 	.ret_type	= RET_INTEGER,
262 };
263 
264 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
265 {
266 	struct task_struct *task = current;
267 
268 	if (unlikely(!task))
269 		goto err_clear;
270 
271 	/* Verifier guarantees that size > 0 */
272 	strscpy_pad(buf, task->comm, size);
273 	return 0;
274 err_clear:
275 	memset(buf, 0, size);
276 	return -EINVAL;
277 }
278 
279 const struct bpf_func_proto bpf_get_current_comm_proto = {
280 	.func		= bpf_get_current_comm,
281 	.gpl_only	= false,
282 	.ret_type	= RET_INTEGER,
283 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
284 	.arg2_type	= ARG_CONST_SIZE,
285 };
286 
287 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
288 
289 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
290 {
291 	arch_spinlock_t *l = (void *)lock;
292 	union {
293 		__u32 val;
294 		arch_spinlock_t lock;
295 	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
296 
297 	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
298 	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
299 	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
300 	preempt_disable();
301 	arch_spin_lock(l);
302 }
303 
304 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
305 {
306 	arch_spinlock_t *l = (void *)lock;
307 
308 	arch_spin_unlock(l);
309 	preempt_enable();
310 }
311 
312 #else
313 
314 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
315 {
316 	atomic_t *l = (void *)lock;
317 
318 	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
319 	do {
320 		atomic_cond_read_relaxed(l, !VAL);
321 	} while (atomic_xchg(l, 1));
322 }
323 
324 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
325 {
326 	atomic_t *l = (void *)lock;
327 
328 	atomic_set_release(l, 0);
329 }
330 
331 #endif
332 
333 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
334 
335 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
336 {
337 	unsigned long flags;
338 
339 	local_irq_save(flags);
340 	__bpf_spin_lock(lock);
341 	__this_cpu_write(irqsave_flags, flags);
342 }
343 
344 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
345 {
346 	__bpf_spin_lock_irqsave(lock);
347 	return 0;
348 }
349 
350 const struct bpf_func_proto bpf_spin_lock_proto = {
351 	.func		= bpf_spin_lock,
352 	.gpl_only	= false,
353 	.ret_type	= RET_VOID,
354 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
355 	.arg1_btf_id    = BPF_PTR_POISON,
356 };
357 
358 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
359 {
360 	unsigned long flags;
361 
362 	flags = __this_cpu_read(irqsave_flags);
363 	__bpf_spin_unlock(lock);
364 	local_irq_restore(flags);
365 }
366 
367 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
368 {
369 	__bpf_spin_unlock_irqrestore(lock);
370 	return 0;
371 }
372 
373 const struct bpf_func_proto bpf_spin_unlock_proto = {
374 	.func		= bpf_spin_unlock,
375 	.gpl_only	= false,
376 	.ret_type	= RET_VOID,
377 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
378 	.arg1_btf_id    = BPF_PTR_POISON,
379 };
380 
381 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
382 			   bool lock_src)
383 {
384 	struct bpf_spin_lock *lock;
385 
386 	if (lock_src)
387 		lock = src + map->record->spin_lock_off;
388 	else
389 		lock = dst + map->record->spin_lock_off;
390 	preempt_disable();
391 	__bpf_spin_lock_irqsave(lock);
392 	copy_map_value(map, dst, src);
393 	__bpf_spin_unlock_irqrestore(lock);
394 	preempt_enable();
395 }
396 
397 BPF_CALL_0(bpf_jiffies64)
398 {
399 	return get_jiffies_64();
400 }
401 
402 const struct bpf_func_proto bpf_jiffies64_proto = {
403 	.func		= bpf_jiffies64,
404 	.gpl_only	= false,
405 	.ret_type	= RET_INTEGER,
406 };
407 
408 #ifdef CONFIG_CGROUPS
409 BPF_CALL_0(bpf_get_current_cgroup_id)
410 {
411 	struct cgroup *cgrp;
412 	u64 cgrp_id;
413 
414 	rcu_read_lock();
415 	cgrp = task_dfl_cgroup(current);
416 	cgrp_id = cgroup_id(cgrp);
417 	rcu_read_unlock();
418 
419 	return cgrp_id;
420 }
421 
422 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
423 	.func		= bpf_get_current_cgroup_id,
424 	.gpl_only	= false,
425 	.ret_type	= RET_INTEGER,
426 };
427 
428 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
429 {
430 	struct cgroup *cgrp;
431 	struct cgroup *ancestor;
432 	u64 cgrp_id;
433 
434 	rcu_read_lock();
435 	cgrp = task_dfl_cgroup(current);
436 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
437 	cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
438 	rcu_read_unlock();
439 
440 	return cgrp_id;
441 }
442 
443 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
444 	.func		= bpf_get_current_ancestor_cgroup_id,
445 	.gpl_only	= false,
446 	.ret_type	= RET_INTEGER,
447 	.arg1_type	= ARG_ANYTHING,
448 };
449 #endif /* CONFIG_CGROUPS */
450 
451 #define BPF_STRTOX_BASE_MASK 0x1F
452 
453 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
454 			  unsigned long long *res, bool *is_negative)
455 {
456 	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
457 	const char *cur_buf = buf;
458 	size_t cur_len = buf_len;
459 	unsigned int consumed;
460 	size_t val_len;
461 	char str[64];
462 
463 	if (!buf || !buf_len || !res || !is_negative)
464 		return -EINVAL;
465 
466 	if (base != 0 && base != 8 && base != 10 && base != 16)
467 		return -EINVAL;
468 
469 	if (flags & ~BPF_STRTOX_BASE_MASK)
470 		return -EINVAL;
471 
472 	while (cur_buf < buf + buf_len && isspace(*cur_buf))
473 		++cur_buf;
474 
475 	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
476 	if (*is_negative)
477 		++cur_buf;
478 
479 	consumed = cur_buf - buf;
480 	cur_len -= consumed;
481 	if (!cur_len)
482 		return -EINVAL;
483 
484 	cur_len = min(cur_len, sizeof(str) - 1);
485 	memcpy(str, cur_buf, cur_len);
486 	str[cur_len] = '\0';
487 	cur_buf = str;
488 
489 	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
490 	val_len = _parse_integer(cur_buf, base, res);
491 
492 	if (val_len & KSTRTOX_OVERFLOW)
493 		return -ERANGE;
494 
495 	if (val_len == 0)
496 		return -EINVAL;
497 
498 	cur_buf += val_len;
499 	consumed += cur_buf - str;
500 
501 	return consumed;
502 }
503 
504 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
505 			 long long *res)
506 {
507 	unsigned long long _res;
508 	bool is_negative;
509 	int err;
510 
511 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
512 	if (err < 0)
513 		return err;
514 	if (is_negative) {
515 		if ((long long)-_res > 0)
516 			return -ERANGE;
517 		*res = -_res;
518 	} else {
519 		if ((long long)_res < 0)
520 			return -ERANGE;
521 		*res = _res;
522 	}
523 	return err;
524 }
525 
526 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
527 	   s64 *, res)
528 {
529 	long long _res;
530 	int err;
531 
532 	*res = 0;
533 	err = __bpf_strtoll(buf, buf_len, flags, &_res);
534 	if (err < 0)
535 		return err;
536 	*res = _res;
537 	return err;
538 }
539 
540 const struct bpf_func_proto bpf_strtol_proto = {
541 	.func		= bpf_strtol,
542 	.gpl_only	= false,
543 	.ret_type	= RET_INTEGER,
544 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
545 	.arg2_type	= ARG_CONST_SIZE,
546 	.arg3_type	= ARG_ANYTHING,
547 	.arg4_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
548 	.arg4_size	= sizeof(s64),
549 };
550 
551 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
552 	   u64 *, res)
553 {
554 	unsigned long long _res;
555 	bool is_negative;
556 	int err;
557 
558 	*res = 0;
559 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
560 	if (err < 0)
561 		return err;
562 	if (is_negative)
563 		return -EINVAL;
564 	*res = _res;
565 	return err;
566 }
567 
568 const struct bpf_func_proto bpf_strtoul_proto = {
569 	.func		= bpf_strtoul,
570 	.gpl_only	= false,
571 	.ret_type	= RET_INTEGER,
572 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
573 	.arg2_type	= ARG_CONST_SIZE,
574 	.arg3_type	= ARG_ANYTHING,
575 	.arg4_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
576 	.arg4_size	= sizeof(u64),
577 };
578 
579 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
580 {
581 	return strncmp(s1, s2, s1_sz);
582 }
583 
584 static const struct bpf_func_proto bpf_strncmp_proto = {
585 	.func		= bpf_strncmp,
586 	.gpl_only	= false,
587 	.ret_type	= RET_INTEGER,
588 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
589 	.arg2_type	= ARG_CONST_SIZE,
590 	.arg3_type	= ARG_PTR_TO_CONST_STR,
591 };
592 
593 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
594 	   struct bpf_pidns_info *, nsdata, u32, size)
595 {
596 	struct task_struct *task = current;
597 	struct pid_namespace *pidns;
598 	int err = -EINVAL;
599 
600 	if (unlikely(size != sizeof(struct bpf_pidns_info)))
601 		goto clear;
602 
603 	if (unlikely((u64)(dev_t)dev != dev))
604 		goto clear;
605 
606 	if (unlikely(!task))
607 		goto clear;
608 
609 	pidns = task_active_pid_ns(task);
610 	if (unlikely(!pidns)) {
611 		err = -ENOENT;
612 		goto clear;
613 	}
614 
615 	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
616 		goto clear;
617 
618 	nsdata->pid = task_pid_nr_ns(task, pidns);
619 	nsdata->tgid = task_tgid_nr_ns(task, pidns);
620 	return 0;
621 clear:
622 	memset((void *)nsdata, 0, (size_t) size);
623 	return err;
624 }
625 
626 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
627 	.func		= bpf_get_ns_current_pid_tgid,
628 	.gpl_only	= false,
629 	.ret_type	= RET_INTEGER,
630 	.arg1_type	= ARG_ANYTHING,
631 	.arg2_type	= ARG_ANYTHING,
632 	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
633 	.arg4_type      = ARG_CONST_SIZE,
634 };
635 
636 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
637 	.func		= bpf_get_raw_cpu_id,
638 	.gpl_only	= false,
639 	.ret_type	= RET_INTEGER,
640 };
641 
642 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
643 	   u64, flags, void *, data, u64, size)
644 {
645 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
646 		return -EINVAL;
647 
648 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
649 }
650 
651 const struct bpf_func_proto bpf_event_output_data_proto =  {
652 	.func		= bpf_event_output_data,
653 	.gpl_only       = true,
654 	.ret_type       = RET_INTEGER,
655 	.arg1_type      = ARG_PTR_TO_CTX,
656 	.arg2_type      = ARG_CONST_MAP_PTR,
657 	.arg3_type      = ARG_ANYTHING,
658 	.arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
659 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
660 };
661 
662 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
663 	   const void __user *, user_ptr)
664 {
665 	int ret = copy_from_user(dst, user_ptr, size);
666 
667 	if (unlikely(ret)) {
668 		memset(dst, 0, size);
669 		ret = -EFAULT;
670 	}
671 
672 	return ret;
673 }
674 
675 const struct bpf_func_proto bpf_copy_from_user_proto = {
676 	.func		= bpf_copy_from_user,
677 	.gpl_only	= false,
678 	.might_sleep	= true,
679 	.ret_type	= RET_INTEGER,
680 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
681 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
682 	.arg3_type	= ARG_ANYTHING,
683 };
684 
685 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
686 	   const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
687 {
688 	int ret;
689 
690 	/* flags is not used yet */
691 	if (unlikely(flags))
692 		return -EINVAL;
693 
694 	if (unlikely(!size))
695 		return 0;
696 
697 	ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
698 	if (ret == size)
699 		return 0;
700 
701 	memset(dst, 0, size);
702 	/* Return -EFAULT for partial read */
703 	return ret < 0 ? ret : -EFAULT;
704 }
705 
706 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
707 	.func		= bpf_copy_from_user_task,
708 	.gpl_only	= true,
709 	.might_sleep	= true,
710 	.ret_type	= RET_INTEGER,
711 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
712 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
713 	.arg3_type	= ARG_ANYTHING,
714 	.arg4_type	= ARG_PTR_TO_BTF_ID,
715 	.arg4_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
716 	.arg5_type	= ARG_ANYTHING
717 };
718 
719 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
720 {
721 	if (cpu >= nr_cpu_ids)
722 		return (unsigned long)NULL;
723 
724 	return (unsigned long)per_cpu_ptr((const void __percpu *)(const uintptr_t)ptr, cpu);
725 }
726 
727 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
728 	.func		= bpf_per_cpu_ptr,
729 	.gpl_only	= false,
730 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
731 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
732 	.arg2_type	= ARG_ANYTHING,
733 };
734 
735 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
736 {
737 	return (unsigned long)this_cpu_ptr((const void __percpu *)(const uintptr_t)percpu_ptr);
738 }
739 
740 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
741 	.func		= bpf_this_cpu_ptr,
742 	.gpl_only	= false,
743 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
744 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
745 };
746 
747 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
748 		size_t bufsz)
749 {
750 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
751 
752 	buf[0] = 0;
753 
754 	switch (fmt_ptype) {
755 	case 's':
756 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
757 		if ((unsigned long)unsafe_ptr < TASK_SIZE)
758 			return strncpy_from_user_nofault(buf, user_ptr, bufsz);
759 		fallthrough;
760 #endif
761 	case 'k':
762 		return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
763 	case 'u':
764 		return strncpy_from_user_nofault(buf, user_ptr, bufsz);
765 	}
766 
767 	return -EINVAL;
768 }
769 
770 /* Support executing three nested bprintf helper calls on a given CPU */
771 #define MAX_BPRINTF_NEST_LEVEL	3
772 
773 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
774 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
775 
776 int bpf_try_get_buffers(struct bpf_bprintf_buffers **bufs)
777 {
778 	int nest_level;
779 
780 	nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
781 	if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
782 		this_cpu_dec(bpf_bprintf_nest_level);
783 		return -EBUSY;
784 	}
785 	*bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
786 
787 	return 0;
788 }
789 
790 void bpf_put_buffers(void)
791 {
792 	if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
793 		return;
794 	this_cpu_dec(bpf_bprintf_nest_level);
795 }
796 
797 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
798 {
799 	if (!data->bin_args && !data->buf)
800 		return;
801 	bpf_put_buffers();
802 }
803 
804 /*
805  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
806  *
807  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
808  *
809  * This can be used in two ways:
810  * - Format string verification only: when data->get_bin_args is false
811  * - Arguments preparation: in addition to the above verification, it writes in
812  *   data->bin_args a binary representation of arguments usable by bstr_printf
813  *   where pointers from BPF have been sanitized.
814  *
815  * In argument preparation mode, if 0 is returned, safe temporary buffers are
816  * allocated and bpf_bprintf_cleanup should be called to free them after use.
817  */
818 int bpf_bprintf_prepare(const char *fmt, u32 fmt_size, const u64 *raw_args,
819 			u32 num_args, struct bpf_bprintf_data *data)
820 {
821 	bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
822 	char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
823 	struct bpf_bprintf_buffers *buffers = NULL;
824 	size_t sizeof_cur_arg, sizeof_cur_ip;
825 	int err, i, num_spec = 0;
826 	u64 cur_arg;
827 	char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
828 
829 	fmt_end = strnchr(fmt, fmt_size, 0);
830 	if (!fmt_end)
831 		return -EINVAL;
832 	fmt_size = fmt_end - fmt;
833 
834 	if (get_buffers && bpf_try_get_buffers(&buffers))
835 		return -EBUSY;
836 
837 	if (data->get_bin_args) {
838 		if (num_args)
839 			tmp_buf = buffers->bin_args;
840 		tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
841 		data->bin_args = (u32 *)tmp_buf;
842 	}
843 
844 	if (data->get_buf)
845 		data->buf = buffers->buf;
846 
847 	for (i = 0; i < fmt_size; i++) {
848 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
849 			err = -EINVAL;
850 			goto out;
851 		}
852 
853 		if (fmt[i] != '%')
854 			continue;
855 
856 		if (fmt[i + 1] == '%') {
857 			i++;
858 			continue;
859 		}
860 
861 		if (num_spec >= num_args) {
862 			err = -EINVAL;
863 			goto out;
864 		}
865 
866 		/* The string is zero-terminated so if fmt[i] != 0, we can
867 		 * always access fmt[i + 1], in the worst case it will be a 0
868 		 */
869 		i++;
870 
871 		/* skip optional "[0 +-][num]" width formatting field */
872 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
873 		       fmt[i] == ' ')
874 			i++;
875 		if (fmt[i] >= '1' && fmt[i] <= '9') {
876 			i++;
877 			while (fmt[i] >= '0' && fmt[i] <= '9')
878 				i++;
879 		}
880 
881 		if (fmt[i] == 'p') {
882 			sizeof_cur_arg = sizeof(long);
883 
884 			if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
885 			    ispunct(fmt[i + 1])) {
886 				if (tmp_buf)
887 					cur_arg = raw_args[num_spec];
888 				goto nocopy_fmt;
889 			}
890 
891 			if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
892 			    fmt[i + 2] == 's') {
893 				fmt_ptype = fmt[i + 1];
894 				i += 2;
895 				goto fmt_str;
896 			}
897 
898 			if (fmt[i + 1] == 'K' ||
899 			    fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
900 			    fmt[i + 1] == 'S') {
901 				if (tmp_buf)
902 					cur_arg = raw_args[num_spec];
903 				i++;
904 				goto nocopy_fmt;
905 			}
906 
907 			if (fmt[i + 1] == 'B') {
908 				if (tmp_buf)  {
909 					err = snprintf(tmp_buf,
910 						       (tmp_buf_end - tmp_buf),
911 						       "%pB",
912 						       (void *)(long)raw_args[num_spec]);
913 					tmp_buf += (err + 1);
914 				}
915 
916 				i++;
917 				num_spec++;
918 				continue;
919 			}
920 
921 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
922 			if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
923 			    (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
924 				err = -EINVAL;
925 				goto out;
926 			}
927 
928 			i += 2;
929 			if (!tmp_buf)
930 				goto nocopy_fmt;
931 
932 			sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
933 			if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
934 				err = -ENOSPC;
935 				goto out;
936 			}
937 
938 			unsafe_ptr = (char *)(long)raw_args[num_spec];
939 			err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
940 						       sizeof_cur_ip);
941 			if (err < 0)
942 				memset(cur_ip, 0, sizeof_cur_ip);
943 
944 			/* hack: bstr_printf expects IP addresses to be
945 			 * pre-formatted as strings, ironically, the easiest way
946 			 * to do that is to call snprintf.
947 			 */
948 			ip_spec[2] = fmt[i - 1];
949 			ip_spec[3] = fmt[i];
950 			err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
951 				       ip_spec, &cur_ip);
952 
953 			tmp_buf += err + 1;
954 			num_spec++;
955 
956 			continue;
957 		} else if (fmt[i] == 's') {
958 			fmt_ptype = fmt[i];
959 fmt_str:
960 			if (fmt[i + 1] != 0 &&
961 			    !isspace(fmt[i + 1]) &&
962 			    !ispunct(fmt[i + 1])) {
963 				err = -EINVAL;
964 				goto out;
965 			}
966 
967 			if (!tmp_buf)
968 				goto nocopy_fmt;
969 
970 			if (tmp_buf_end == tmp_buf) {
971 				err = -ENOSPC;
972 				goto out;
973 			}
974 
975 			unsafe_ptr = (char *)(long)raw_args[num_spec];
976 			err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
977 						    fmt_ptype,
978 						    tmp_buf_end - tmp_buf);
979 			if (err < 0) {
980 				tmp_buf[0] = '\0';
981 				err = 1;
982 			}
983 
984 			tmp_buf += err;
985 			num_spec++;
986 
987 			continue;
988 		} else if (fmt[i] == 'c') {
989 			if (!tmp_buf)
990 				goto nocopy_fmt;
991 
992 			if (tmp_buf_end == tmp_buf) {
993 				err = -ENOSPC;
994 				goto out;
995 			}
996 
997 			*tmp_buf = raw_args[num_spec];
998 			tmp_buf++;
999 			num_spec++;
1000 
1001 			continue;
1002 		}
1003 
1004 		sizeof_cur_arg = sizeof(int);
1005 
1006 		if (fmt[i] == 'l') {
1007 			sizeof_cur_arg = sizeof(long);
1008 			i++;
1009 		}
1010 		if (fmt[i] == 'l') {
1011 			sizeof_cur_arg = sizeof(long long);
1012 			i++;
1013 		}
1014 
1015 		if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1016 		    fmt[i] != 'x' && fmt[i] != 'X') {
1017 			err = -EINVAL;
1018 			goto out;
1019 		}
1020 
1021 		if (tmp_buf)
1022 			cur_arg = raw_args[num_spec];
1023 nocopy_fmt:
1024 		if (tmp_buf) {
1025 			tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1026 			if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1027 				err = -ENOSPC;
1028 				goto out;
1029 			}
1030 
1031 			if (sizeof_cur_arg == 8) {
1032 				*(u32 *)tmp_buf = *(u32 *)&cur_arg;
1033 				*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1034 			} else {
1035 				*(u32 *)tmp_buf = (u32)(long)cur_arg;
1036 			}
1037 			tmp_buf += sizeof_cur_arg;
1038 		}
1039 		num_spec++;
1040 	}
1041 
1042 	err = 0;
1043 out:
1044 	if (err)
1045 		bpf_bprintf_cleanup(data);
1046 	return err;
1047 }
1048 
1049 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1050 	   const void *, args, u32, data_len)
1051 {
1052 	struct bpf_bprintf_data data = {
1053 		.get_bin_args	= true,
1054 	};
1055 	int err, num_args;
1056 
1057 	if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1058 	    (data_len && !args))
1059 		return -EINVAL;
1060 	num_args = data_len / 8;
1061 
1062 	/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1063 	 * can safely give an unbounded size.
1064 	 */
1065 	err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1066 	if (err < 0)
1067 		return err;
1068 
1069 	err = bstr_printf(str, str_size, fmt, data.bin_args);
1070 
1071 	bpf_bprintf_cleanup(&data);
1072 
1073 	return err + 1;
1074 }
1075 
1076 const struct bpf_func_proto bpf_snprintf_proto = {
1077 	.func		= bpf_snprintf,
1078 	.gpl_only	= true,
1079 	.ret_type	= RET_INTEGER,
1080 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1081 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1082 	.arg3_type	= ARG_PTR_TO_CONST_STR,
1083 	.arg4_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1084 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1085 };
1086 
1087 static void *map_key_from_value(struct bpf_map *map, void *value, u32 *arr_idx)
1088 {
1089 	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1090 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1091 
1092 		*arr_idx = ((char *)value - array->value) / array->elem_size;
1093 		return arr_idx;
1094 	}
1095 	return (void *)value - round_up(map->key_size, 8);
1096 }
1097 
1098 struct bpf_async_cb {
1099 	struct bpf_map *map;
1100 	struct bpf_prog *prog;
1101 	void __rcu *callback_fn;
1102 	void *value;
1103 	union {
1104 		struct rcu_head rcu;
1105 		struct work_struct delete_work;
1106 	};
1107 	u64 flags;
1108 };
1109 
1110 /* BPF map elements can contain 'struct bpf_timer'.
1111  * Such map owns all of its BPF timers.
1112  * 'struct bpf_timer' is allocated as part of map element allocation
1113  * and it's zero initialized.
1114  * That space is used to keep 'struct bpf_async_kern'.
1115  * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1116  * remembers 'struct bpf_map *' pointer it's part of.
1117  * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1118  * bpf_timer_start() arms the timer.
1119  * If user space reference to a map goes to zero at this point
1120  * ops->map_release_uref callback is responsible for cancelling the timers,
1121  * freeing their memory, and decrementing prog's refcnts.
1122  * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1123  * Inner maps can contain bpf timers as well. ops->map_release_uref is
1124  * freeing the timers when inner map is replaced or deleted by user space.
1125  */
1126 struct bpf_hrtimer {
1127 	struct bpf_async_cb cb;
1128 	struct hrtimer timer;
1129 	atomic_t cancelling;
1130 };
1131 
1132 struct bpf_work {
1133 	struct bpf_async_cb cb;
1134 	struct work_struct work;
1135 	struct work_struct delete_work;
1136 };
1137 
1138 /* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */
1139 struct bpf_async_kern {
1140 	union {
1141 		struct bpf_async_cb *cb;
1142 		struct bpf_hrtimer *timer;
1143 		struct bpf_work *work;
1144 	};
1145 	/* bpf_spin_lock is used here instead of spinlock_t to make
1146 	 * sure that it always fits into space reserved by struct bpf_timer
1147 	 * regardless of LOCKDEP and spinlock debug flags.
1148 	 */
1149 	struct bpf_spin_lock lock;
1150 } __attribute__((aligned(8)));
1151 
1152 enum bpf_async_type {
1153 	BPF_ASYNC_TYPE_TIMER = 0,
1154 	BPF_ASYNC_TYPE_WQ,
1155 };
1156 
1157 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1158 
1159 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1160 {
1161 	struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1162 	struct bpf_map *map = t->cb.map;
1163 	void *value = t->cb.value;
1164 	bpf_callback_t callback_fn;
1165 	void *key;
1166 	u32 idx;
1167 
1168 	BTF_TYPE_EMIT(struct bpf_timer);
1169 	callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held());
1170 	if (!callback_fn)
1171 		goto out;
1172 
1173 	/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1174 	 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1175 	 * Remember the timer this callback is servicing to prevent
1176 	 * deadlock if callback_fn() calls bpf_timer_cancel() or
1177 	 * bpf_map_delete_elem() on the same timer.
1178 	 */
1179 	this_cpu_write(hrtimer_running, t);
1180 
1181 	key = map_key_from_value(map, value, &idx);
1182 
1183 	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1184 	/* The verifier checked that return value is zero. */
1185 
1186 	this_cpu_write(hrtimer_running, NULL);
1187 out:
1188 	return HRTIMER_NORESTART;
1189 }
1190 
1191 static void bpf_wq_work(struct work_struct *work)
1192 {
1193 	struct bpf_work *w = container_of(work, struct bpf_work, work);
1194 	struct bpf_async_cb *cb = &w->cb;
1195 	struct bpf_map *map = cb->map;
1196 	bpf_callback_t callback_fn;
1197 	void *value = cb->value;
1198 	void *key;
1199 	u32 idx;
1200 
1201 	BTF_TYPE_EMIT(struct bpf_wq);
1202 
1203 	callback_fn = READ_ONCE(cb->callback_fn);
1204 	if (!callback_fn)
1205 		return;
1206 
1207 	key = map_key_from_value(map, value, &idx);
1208 
1209         rcu_read_lock_trace();
1210         migrate_disable();
1211 
1212 	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1213 
1214 	migrate_enable();
1215 	rcu_read_unlock_trace();
1216 }
1217 
1218 static void bpf_wq_delete_work(struct work_struct *work)
1219 {
1220 	struct bpf_work *w = container_of(work, struct bpf_work, delete_work);
1221 
1222 	cancel_work_sync(&w->work);
1223 
1224 	kfree_rcu(w, cb.rcu);
1225 }
1226 
1227 static void bpf_timer_delete_work(struct work_struct *work)
1228 {
1229 	struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work);
1230 
1231 	/* Cancel the timer and wait for callback to complete if it was running.
1232 	 * If hrtimer_cancel() can be safely called it's safe to call
1233 	 * kfree_rcu(t) right after for both preallocated and non-preallocated
1234 	 * maps.  The async->cb = NULL was already done and no code path can see
1235 	 * address 't' anymore. Timer if armed for existing bpf_hrtimer before
1236 	 * bpf_timer_cancel_and_free will have been cancelled.
1237 	 */
1238 	hrtimer_cancel(&t->timer);
1239 	kfree_rcu(t, cb.rcu);
1240 }
1241 
1242 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags,
1243 			    enum bpf_async_type type)
1244 {
1245 	struct bpf_async_cb *cb;
1246 	struct bpf_hrtimer *t;
1247 	struct bpf_work *w;
1248 	clockid_t clockid;
1249 	size_t size;
1250 	int ret = 0;
1251 
1252 	if (in_nmi())
1253 		return -EOPNOTSUPP;
1254 
1255 	switch (type) {
1256 	case BPF_ASYNC_TYPE_TIMER:
1257 		size = sizeof(struct bpf_hrtimer);
1258 		break;
1259 	case BPF_ASYNC_TYPE_WQ:
1260 		size = sizeof(struct bpf_work);
1261 		break;
1262 	default:
1263 		return -EINVAL;
1264 	}
1265 
1266 	__bpf_spin_lock_irqsave(&async->lock);
1267 	t = async->timer;
1268 	if (t) {
1269 		ret = -EBUSY;
1270 		goto out;
1271 	}
1272 
1273 	/* Allocate via bpf_map_kmalloc_node() for memcg accounting. Until
1274 	 * kmalloc_nolock() is available, avoid locking issues by using
1275 	 * __GFP_HIGH (GFP_ATOMIC & ~__GFP_RECLAIM).
1276 	 */
1277 	cb = bpf_map_kmalloc_node(map, size, __GFP_HIGH, map->numa_node);
1278 	if (!cb) {
1279 		ret = -ENOMEM;
1280 		goto out;
1281 	}
1282 
1283 	switch (type) {
1284 	case BPF_ASYNC_TYPE_TIMER:
1285 		clockid = flags & (MAX_CLOCKS - 1);
1286 		t = (struct bpf_hrtimer *)cb;
1287 
1288 		atomic_set(&t->cancelling, 0);
1289 		INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work);
1290 		hrtimer_setup(&t->timer, bpf_timer_cb, clockid, HRTIMER_MODE_REL_SOFT);
1291 		cb->value = (void *)async - map->record->timer_off;
1292 		break;
1293 	case BPF_ASYNC_TYPE_WQ:
1294 		w = (struct bpf_work *)cb;
1295 
1296 		INIT_WORK(&w->work, bpf_wq_work);
1297 		INIT_WORK(&w->delete_work, bpf_wq_delete_work);
1298 		cb->value = (void *)async - map->record->wq_off;
1299 		break;
1300 	}
1301 	cb->map = map;
1302 	cb->prog = NULL;
1303 	cb->flags = flags;
1304 	rcu_assign_pointer(cb->callback_fn, NULL);
1305 
1306 	WRITE_ONCE(async->cb, cb);
1307 	/* Guarantee the order between async->cb and map->usercnt. So
1308 	 * when there are concurrent uref release and bpf timer init, either
1309 	 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1310 	 * timer or atomic64_read() below returns a zero usercnt.
1311 	 */
1312 	smp_mb();
1313 	if (!atomic64_read(&map->usercnt)) {
1314 		/* maps with timers must be either held by user space
1315 		 * or pinned in bpffs.
1316 		 */
1317 		WRITE_ONCE(async->cb, NULL);
1318 		kfree(cb);
1319 		ret = -EPERM;
1320 	}
1321 out:
1322 	__bpf_spin_unlock_irqrestore(&async->lock);
1323 	return ret;
1324 }
1325 
1326 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map,
1327 	   u64, flags)
1328 {
1329 	clock_t clockid = flags & (MAX_CLOCKS - 1);
1330 
1331 	BUILD_BUG_ON(MAX_CLOCKS != 16);
1332 	BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer));
1333 	BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer));
1334 
1335 	if (flags >= MAX_CLOCKS ||
1336 	    /* similar to timerfd except _ALARM variants are not supported */
1337 	    (clockid != CLOCK_MONOTONIC &&
1338 	     clockid != CLOCK_REALTIME &&
1339 	     clockid != CLOCK_BOOTTIME))
1340 		return -EINVAL;
1341 
1342 	return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER);
1343 }
1344 
1345 static const struct bpf_func_proto bpf_timer_init_proto = {
1346 	.func		= bpf_timer_init,
1347 	.gpl_only	= true,
1348 	.ret_type	= RET_INTEGER,
1349 	.arg1_type	= ARG_PTR_TO_TIMER,
1350 	.arg2_type	= ARG_CONST_MAP_PTR,
1351 	.arg3_type	= ARG_ANYTHING,
1352 };
1353 
1354 static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn,
1355 				    struct bpf_prog_aux *aux, unsigned int flags,
1356 				    enum bpf_async_type type)
1357 {
1358 	struct bpf_prog *prev, *prog = aux->prog;
1359 	struct bpf_async_cb *cb;
1360 	int ret = 0;
1361 
1362 	if (in_nmi())
1363 		return -EOPNOTSUPP;
1364 	__bpf_spin_lock_irqsave(&async->lock);
1365 	cb = async->cb;
1366 	if (!cb) {
1367 		ret = -EINVAL;
1368 		goto out;
1369 	}
1370 	if (!atomic64_read(&cb->map->usercnt)) {
1371 		/* maps with timers must be either held by user space
1372 		 * or pinned in bpffs. Otherwise timer might still be
1373 		 * running even when bpf prog is detached and user space
1374 		 * is gone, since map_release_uref won't ever be called.
1375 		 */
1376 		ret = -EPERM;
1377 		goto out;
1378 	}
1379 	prev = cb->prog;
1380 	if (prev != prog) {
1381 		/* Bump prog refcnt once. Every bpf_timer_set_callback()
1382 		 * can pick different callback_fn-s within the same prog.
1383 		 */
1384 		prog = bpf_prog_inc_not_zero(prog);
1385 		if (IS_ERR(prog)) {
1386 			ret = PTR_ERR(prog);
1387 			goto out;
1388 		}
1389 		if (prev)
1390 			/* Drop prev prog refcnt when swapping with new prog */
1391 			bpf_prog_put(prev);
1392 		cb->prog = prog;
1393 	}
1394 	rcu_assign_pointer(cb->callback_fn, callback_fn);
1395 out:
1396 	__bpf_spin_unlock_irqrestore(&async->lock);
1397 	return ret;
1398 }
1399 
1400 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn,
1401 	   struct bpf_prog_aux *, aux)
1402 {
1403 	return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER);
1404 }
1405 
1406 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1407 	.func		= bpf_timer_set_callback,
1408 	.gpl_only	= true,
1409 	.ret_type	= RET_INTEGER,
1410 	.arg1_type	= ARG_PTR_TO_TIMER,
1411 	.arg2_type	= ARG_PTR_TO_FUNC,
1412 };
1413 
1414 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags)
1415 {
1416 	struct bpf_hrtimer *t;
1417 	int ret = 0;
1418 	enum hrtimer_mode mode;
1419 
1420 	if (in_nmi())
1421 		return -EOPNOTSUPP;
1422 	if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN))
1423 		return -EINVAL;
1424 	__bpf_spin_lock_irqsave(&timer->lock);
1425 	t = timer->timer;
1426 	if (!t || !t->cb.prog) {
1427 		ret = -EINVAL;
1428 		goto out;
1429 	}
1430 
1431 	if (flags & BPF_F_TIMER_ABS)
1432 		mode = HRTIMER_MODE_ABS_SOFT;
1433 	else
1434 		mode = HRTIMER_MODE_REL_SOFT;
1435 
1436 	if (flags & BPF_F_TIMER_CPU_PIN)
1437 		mode |= HRTIMER_MODE_PINNED;
1438 
1439 	hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
1440 out:
1441 	__bpf_spin_unlock_irqrestore(&timer->lock);
1442 	return ret;
1443 }
1444 
1445 static const struct bpf_func_proto bpf_timer_start_proto = {
1446 	.func		= bpf_timer_start,
1447 	.gpl_only	= true,
1448 	.ret_type	= RET_INTEGER,
1449 	.arg1_type	= ARG_PTR_TO_TIMER,
1450 	.arg2_type	= ARG_ANYTHING,
1451 	.arg3_type	= ARG_ANYTHING,
1452 };
1453 
1454 static void drop_prog_refcnt(struct bpf_async_cb *async)
1455 {
1456 	struct bpf_prog *prog = async->prog;
1457 
1458 	if (prog) {
1459 		bpf_prog_put(prog);
1460 		async->prog = NULL;
1461 		rcu_assign_pointer(async->callback_fn, NULL);
1462 	}
1463 }
1464 
1465 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer)
1466 {
1467 	struct bpf_hrtimer *t, *cur_t;
1468 	bool inc = false;
1469 	int ret = 0;
1470 
1471 	if (in_nmi())
1472 		return -EOPNOTSUPP;
1473 	rcu_read_lock();
1474 	__bpf_spin_lock_irqsave(&timer->lock);
1475 	t = timer->timer;
1476 	if (!t) {
1477 		ret = -EINVAL;
1478 		goto out;
1479 	}
1480 
1481 	cur_t = this_cpu_read(hrtimer_running);
1482 	if (cur_t == t) {
1483 		/* If bpf callback_fn is trying to bpf_timer_cancel()
1484 		 * its own timer the hrtimer_cancel() will deadlock
1485 		 * since it waits for callback_fn to finish.
1486 		 */
1487 		ret = -EDEADLK;
1488 		goto out;
1489 	}
1490 
1491 	/* Only account in-flight cancellations when invoked from a timer
1492 	 * callback, since we want to avoid waiting only if other _callbacks_
1493 	 * are waiting on us, to avoid introducing lockups. Non-callback paths
1494 	 * are ok, since nobody would synchronously wait for their completion.
1495 	 */
1496 	if (!cur_t)
1497 		goto drop;
1498 	atomic_inc(&t->cancelling);
1499 	/* Need full barrier after relaxed atomic_inc */
1500 	smp_mb__after_atomic();
1501 	inc = true;
1502 	if (atomic_read(&cur_t->cancelling)) {
1503 		/* We're cancelling timer t, while some other timer callback is
1504 		 * attempting to cancel us. In such a case, it might be possible
1505 		 * that timer t belongs to the other callback, or some other
1506 		 * callback waiting upon it (creating transitive dependencies
1507 		 * upon us), and we will enter a deadlock if we continue
1508 		 * cancelling and waiting for it synchronously, since it might
1509 		 * do the same. Bail!
1510 		 */
1511 		ret = -EDEADLK;
1512 		goto out;
1513 	}
1514 drop:
1515 	drop_prog_refcnt(&t->cb);
1516 out:
1517 	__bpf_spin_unlock_irqrestore(&timer->lock);
1518 	/* Cancel the timer and wait for associated callback to finish
1519 	 * if it was running.
1520 	 */
1521 	ret = ret ?: hrtimer_cancel(&t->timer);
1522 	if (inc)
1523 		atomic_dec(&t->cancelling);
1524 	rcu_read_unlock();
1525 	return ret;
1526 }
1527 
1528 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1529 	.func		= bpf_timer_cancel,
1530 	.gpl_only	= true,
1531 	.ret_type	= RET_INTEGER,
1532 	.arg1_type	= ARG_PTR_TO_TIMER,
1533 };
1534 
1535 static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async)
1536 {
1537 	struct bpf_async_cb *cb;
1538 
1539 	/* Performance optimization: read async->cb without lock first. */
1540 	if (!READ_ONCE(async->cb))
1541 		return NULL;
1542 
1543 	__bpf_spin_lock_irqsave(&async->lock);
1544 	/* re-read it under lock */
1545 	cb = async->cb;
1546 	if (!cb)
1547 		goto out;
1548 	drop_prog_refcnt(cb);
1549 	/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1550 	 * this timer, since it won't be initialized.
1551 	 */
1552 	WRITE_ONCE(async->cb, NULL);
1553 out:
1554 	__bpf_spin_unlock_irqrestore(&async->lock);
1555 	return cb;
1556 }
1557 
1558 /* This function is called by map_delete/update_elem for individual element and
1559  * by ops->map_release_uref when the user space reference to a map reaches zero.
1560  */
1561 void bpf_timer_cancel_and_free(void *val)
1562 {
1563 	struct bpf_hrtimer *t;
1564 
1565 	t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val);
1566 
1567 	if (!t)
1568 		return;
1569 	/* We check that bpf_map_delete/update_elem() was called from timer
1570 	 * callback_fn. In such case we don't call hrtimer_cancel() (since it
1571 	 * will deadlock) and don't call hrtimer_try_to_cancel() (since it will
1572 	 * just return -1). Though callback_fn is still running on this cpu it's
1573 	 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1574 	 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1575 	 * since async->cb = NULL was already done. The timer will be
1576 	 * effectively cancelled because bpf_timer_cb() will return
1577 	 * HRTIMER_NORESTART.
1578 	 *
1579 	 * However, it is possible the timer callback_fn calling us armed the
1580 	 * timer _before_ calling us, such that failing to cancel it here will
1581 	 * cause it to possibly use struct hrtimer after freeing bpf_hrtimer.
1582 	 * Therefore, we _need_ to cancel any outstanding timers before we do
1583 	 * kfree_rcu, even though no more timers can be armed.
1584 	 *
1585 	 * Moreover, we need to schedule work even if timer does not belong to
1586 	 * the calling callback_fn, as on two different CPUs, we can end up in a
1587 	 * situation where both sides run in parallel, try to cancel one
1588 	 * another, and we end up waiting on both sides in hrtimer_cancel
1589 	 * without making forward progress, since timer1 depends on time2
1590 	 * callback to finish, and vice versa.
1591 	 *
1592 	 *  CPU 1 (timer1_cb)			CPU 2 (timer2_cb)
1593 	 *  bpf_timer_cancel_and_free(timer2)	bpf_timer_cancel_and_free(timer1)
1594 	 *
1595 	 * To avoid these issues, punt to workqueue context when we are in a
1596 	 * timer callback.
1597 	 */
1598 	if (this_cpu_read(hrtimer_running)) {
1599 		queue_work(system_dfl_wq, &t->cb.delete_work);
1600 		return;
1601 	}
1602 
1603 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1604 		/* If the timer is running on other CPU, also use a kworker to
1605 		 * wait for the completion of the timer instead of trying to
1606 		 * acquire a sleepable lock in hrtimer_cancel() to wait for its
1607 		 * completion.
1608 		 */
1609 		if (hrtimer_try_to_cancel(&t->timer) >= 0)
1610 			kfree_rcu(t, cb.rcu);
1611 		else
1612 			queue_work(system_dfl_wq, &t->cb.delete_work);
1613 	} else {
1614 		bpf_timer_delete_work(&t->cb.delete_work);
1615 	}
1616 }
1617 
1618 /* This function is called by map_delete/update_elem for individual element and
1619  * by ops->map_release_uref when the user space reference to a map reaches zero.
1620  */
1621 void bpf_wq_cancel_and_free(void *val)
1622 {
1623 	struct bpf_work *work;
1624 
1625 	BTF_TYPE_EMIT(struct bpf_wq);
1626 
1627 	work = (struct bpf_work *)__bpf_async_cancel_and_free(val);
1628 	if (!work)
1629 		return;
1630 	/* Trigger cancel of the sleepable work, but *do not* wait for
1631 	 * it to finish if it was running as we might not be in a
1632 	 * sleepable context.
1633 	 * kfree will be called once the work has finished.
1634 	 */
1635 	schedule_work(&work->delete_work);
1636 }
1637 
1638 BPF_CALL_2(bpf_kptr_xchg, void *, dst, void *, ptr)
1639 {
1640 	unsigned long *kptr = dst;
1641 
1642 	/* This helper may be inlined by verifier. */
1643 	return xchg(kptr, (unsigned long)ptr);
1644 }
1645 
1646 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1647  * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1648  * denote type that verifier will determine.
1649  */
1650 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1651 	.func         = bpf_kptr_xchg,
1652 	.gpl_only     = false,
1653 	.ret_type     = RET_PTR_TO_BTF_ID_OR_NULL,
1654 	.ret_btf_id   = BPF_PTR_POISON,
1655 	.arg1_type    = ARG_KPTR_XCHG_DEST,
1656 	.arg2_type    = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1657 	.arg2_btf_id  = BPF_PTR_POISON,
1658 };
1659 
1660 /* Since the upper 8 bits of dynptr->size is reserved, the
1661  * maximum supported size is 2^24 - 1.
1662  */
1663 #define DYNPTR_MAX_SIZE	((1UL << 24) - 1)
1664 #define DYNPTR_TYPE_SHIFT	28
1665 #define DYNPTR_SIZE_MASK	0xFFFFFF
1666 #define DYNPTR_RDONLY_BIT	BIT(31)
1667 
1668 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1669 {
1670 	return ptr->size & DYNPTR_RDONLY_BIT;
1671 }
1672 
1673 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1674 {
1675 	ptr->size |= DYNPTR_RDONLY_BIT;
1676 }
1677 
1678 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1679 {
1680 	ptr->size |= type << DYNPTR_TYPE_SHIFT;
1681 }
1682 
1683 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1684 {
1685 	return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1686 }
1687 
1688 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1689 {
1690 	return ptr->size & DYNPTR_SIZE_MASK;
1691 }
1692 
1693 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size)
1694 {
1695 	u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1696 
1697 	ptr->size = new_size | metadata;
1698 }
1699 
1700 int bpf_dynptr_check_size(u32 size)
1701 {
1702 	return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1703 }
1704 
1705 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1706 		     enum bpf_dynptr_type type, u32 offset, u32 size)
1707 {
1708 	ptr->data = data;
1709 	ptr->offset = offset;
1710 	ptr->size = size;
1711 	bpf_dynptr_set_type(ptr, type);
1712 }
1713 
1714 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1715 {
1716 	memset(ptr, 0, sizeof(*ptr));
1717 }
1718 
1719 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1720 {
1721 	int err;
1722 
1723 	BTF_TYPE_EMIT(struct bpf_dynptr);
1724 
1725 	err = bpf_dynptr_check_size(size);
1726 	if (err)
1727 		goto error;
1728 
1729 	/* flags is currently unsupported */
1730 	if (flags) {
1731 		err = -EINVAL;
1732 		goto error;
1733 	}
1734 
1735 	bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1736 
1737 	return 0;
1738 
1739 error:
1740 	bpf_dynptr_set_null(ptr);
1741 	return err;
1742 }
1743 
1744 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1745 	.func		= bpf_dynptr_from_mem,
1746 	.gpl_only	= false,
1747 	.ret_type	= RET_INTEGER,
1748 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1749 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1750 	.arg3_type	= ARG_ANYTHING,
1751 	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE,
1752 };
1753 
1754 static int __bpf_dynptr_read(void *dst, u32 len, const struct bpf_dynptr_kern *src,
1755 			     u32 offset, u64 flags)
1756 {
1757 	enum bpf_dynptr_type type;
1758 	int err;
1759 
1760 	if (!src->data || flags)
1761 		return -EINVAL;
1762 
1763 	err = bpf_dynptr_check_off_len(src, offset, len);
1764 	if (err)
1765 		return err;
1766 
1767 	type = bpf_dynptr_get_type(src);
1768 
1769 	switch (type) {
1770 	case BPF_DYNPTR_TYPE_LOCAL:
1771 	case BPF_DYNPTR_TYPE_RINGBUF:
1772 		/* Source and destination may possibly overlap, hence use memmove to
1773 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1774 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1775 		 */
1776 		memmove(dst, src->data + src->offset + offset, len);
1777 		return 0;
1778 	case BPF_DYNPTR_TYPE_SKB:
1779 		return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1780 	case BPF_DYNPTR_TYPE_XDP:
1781 		return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1782 	case BPF_DYNPTR_TYPE_SKB_META:
1783 		memmove(dst, bpf_skb_meta_pointer(src->data, src->offset + offset), len);
1784 		return 0;
1785 	default:
1786 		WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1787 		return -EFAULT;
1788 	}
1789 }
1790 
1791 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
1792 	   u32, offset, u64, flags)
1793 {
1794 	return __bpf_dynptr_read(dst, len, src, offset, flags);
1795 }
1796 
1797 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1798 	.func		= bpf_dynptr_read,
1799 	.gpl_only	= false,
1800 	.ret_type	= RET_INTEGER,
1801 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1802 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1803 	.arg3_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1804 	.arg4_type	= ARG_ANYTHING,
1805 	.arg5_type	= ARG_ANYTHING,
1806 };
1807 
1808 int __bpf_dynptr_write(const struct bpf_dynptr_kern *dst, u32 offset, void *src,
1809 		       u32 len, u64 flags)
1810 {
1811 	enum bpf_dynptr_type type;
1812 	int err;
1813 
1814 	if (!dst->data || __bpf_dynptr_is_rdonly(dst))
1815 		return -EINVAL;
1816 
1817 	err = bpf_dynptr_check_off_len(dst, offset, len);
1818 	if (err)
1819 		return err;
1820 
1821 	type = bpf_dynptr_get_type(dst);
1822 
1823 	switch (type) {
1824 	case BPF_DYNPTR_TYPE_LOCAL:
1825 	case BPF_DYNPTR_TYPE_RINGBUF:
1826 		if (flags)
1827 			return -EINVAL;
1828 		/* Source and destination may possibly overlap, hence use memmove to
1829 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1830 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1831 		 */
1832 		memmove(dst->data + dst->offset + offset, src, len);
1833 		return 0;
1834 	case BPF_DYNPTR_TYPE_SKB:
1835 		return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1836 					     flags);
1837 	case BPF_DYNPTR_TYPE_XDP:
1838 		if (flags)
1839 			return -EINVAL;
1840 		return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1841 	case BPF_DYNPTR_TYPE_SKB_META:
1842 		if (flags)
1843 			return -EINVAL;
1844 		memmove(bpf_skb_meta_pointer(dst->data, dst->offset + offset), src, len);
1845 		return 0;
1846 	default:
1847 		WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1848 		return -EFAULT;
1849 	}
1850 }
1851 
1852 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1853 	   u32, len, u64, flags)
1854 {
1855 	return __bpf_dynptr_write(dst, offset, src, len, flags);
1856 }
1857 
1858 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1859 	.func		= bpf_dynptr_write,
1860 	.gpl_only	= false,
1861 	.ret_type	= RET_INTEGER,
1862 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1863 	.arg2_type	= ARG_ANYTHING,
1864 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1865 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1866 	.arg5_type	= ARG_ANYTHING,
1867 };
1868 
1869 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1870 {
1871 	enum bpf_dynptr_type type;
1872 	int err;
1873 
1874 	if (!ptr->data)
1875 		return 0;
1876 
1877 	err = bpf_dynptr_check_off_len(ptr, offset, len);
1878 	if (err)
1879 		return 0;
1880 
1881 	if (__bpf_dynptr_is_rdonly(ptr))
1882 		return 0;
1883 
1884 	type = bpf_dynptr_get_type(ptr);
1885 
1886 	switch (type) {
1887 	case BPF_DYNPTR_TYPE_LOCAL:
1888 	case BPF_DYNPTR_TYPE_RINGBUF:
1889 		return (unsigned long)(ptr->data + ptr->offset + offset);
1890 	case BPF_DYNPTR_TYPE_SKB:
1891 	case BPF_DYNPTR_TYPE_XDP:
1892 	case BPF_DYNPTR_TYPE_SKB_META:
1893 		/* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1894 		return 0;
1895 	default:
1896 		WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1897 		return 0;
1898 	}
1899 }
1900 
1901 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1902 	.func		= bpf_dynptr_data,
1903 	.gpl_only	= false,
1904 	.ret_type	= RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1905 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1906 	.arg2_type	= ARG_ANYTHING,
1907 	.arg3_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
1908 };
1909 
1910 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1911 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1912 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1913 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1914 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1915 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1916 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1917 const struct bpf_func_proto bpf_perf_event_read_proto __weak;
1918 const struct bpf_func_proto bpf_send_signal_proto __weak;
1919 const struct bpf_func_proto bpf_send_signal_thread_proto __weak;
1920 const struct bpf_func_proto bpf_get_task_stack_sleepable_proto __weak;
1921 const struct bpf_func_proto bpf_get_task_stack_proto __weak;
1922 const struct bpf_func_proto bpf_get_branch_snapshot_proto __weak;
1923 
1924 const struct bpf_func_proto *
1925 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1926 {
1927 	switch (func_id) {
1928 	case BPF_FUNC_map_lookup_elem:
1929 		return &bpf_map_lookup_elem_proto;
1930 	case BPF_FUNC_map_update_elem:
1931 		return &bpf_map_update_elem_proto;
1932 	case BPF_FUNC_map_delete_elem:
1933 		return &bpf_map_delete_elem_proto;
1934 	case BPF_FUNC_map_push_elem:
1935 		return &bpf_map_push_elem_proto;
1936 	case BPF_FUNC_map_pop_elem:
1937 		return &bpf_map_pop_elem_proto;
1938 	case BPF_FUNC_map_peek_elem:
1939 		return &bpf_map_peek_elem_proto;
1940 	case BPF_FUNC_map_lookup_percpu_elem:
1941 		return &bpf_map_lookup_percpu_elem_proto;
1942 	case BPF_FUNC_get_prandom_u32:
1943 		return &bpf_get_prandom_u32_proto;
1944 	case BPF_FUNC_get_smp_processor_id:
1945 		return &bpf_get_raw_smp_processor_id_proto;
1946 	case BPF_FUNC_get_numa_node_id:
1947 		return &bpf_get_numa_node_id_proto;
1948 	case BPF_FUNC_tail_call:
1949 		return &bpf_tail_call_proto;
1950 	case BPF_FUNC_ktime_get_ns:
1951 		return &bpf_ktime_get_ns_proto;
1952 	case BPF_FUNC_ktime_get_boot_ns:
1953 		return &bpf_ktime_get_boot_ns_proto;
1954 	case BPF_FUNC_ktime_get_tai_ns:
1955 		return &bpf_ktime_get_tai_ns_proto;
1956 	case BPF_FUNC_ringbuf_output:
1957 		return &bpf_ringbuf_output_proto;
1958 	case BPF_FUNC_ringbuf_reserve:
1959 		return &bpf_ringbuf_reserve_proto;
1960 	case BPF_FUNC_ringbuf_submit:
1961 		return &bpf_ringbuf_submit_proto;
1962 	case BPF_FUNC_ringbuf_discard:
1963 		return &bpf_ringbuf_discard_proto;
1964 	case BPF_FUNC_ringbuf_query:
1965 		return &bpf_ringbuf_query_proto;
1966 	case BPF_FUNC_strncmp:
1967 		return &bpf_strncmp_proto;
1968 	case BPF_FUNC_strtol:
1969 		return &bpf_strtol_proto;
1970 	case BPF_FUNC_strtoul:
1971 		return &bpf_strtoul_proto;
1972 	case BPF_FUNC_get_current_pid_tgid:
1973 		return &bpf_get_current_pid_tgid_proto;
1974 	case BPF_FUNC_get_ns_current_pid_tgid:
1975 		return &bpf_get_ns_current_pid_tgid_proto;
1976 	case BPF_FUNC_get_current_uid_gid:
1977 		return &bpf_get_current_uid_gid_proto;
1978 	default:
1979 		break;
1980 	}
1981 
1982 	if (!bpf_token_capable(prog->aux->token, CAP_BPF))
1983 		return NULL;
1984 
1985 	switch (func_id) {
1986 	case BPF_FUNC_spin_lock:
1987 		return &bpf_spin_lock_proto;
1988 	case BPF_FUNC_spin_unlock:
1989 		return &bpf_spin_unlock_proto;
1990 	case BPF_FUNC_jiffies64:
1991 		return &bpf_jiffies64_proto;
1992 	case BPF_FUNC_per_cpu_ptr:
1993 		return &bpf_per_cpu_ptr_proto;
1994 	case BPF_FUNC_this_cpu_ptr:
1995 		return &bpf_this_cpu_ptr_proto;
1996 	case BPF_FUNC_timer_init:
1997 		return &bpf_timer_init_proto;
1998 	case BPF_FUNC_timer_set_callback:
1999 		return &bpf_timer_set_callback_proto;
2000 	case BPF_FUNC_timer_start:
2001 		return &bpf_timer_start_proto;
2002 	case BPF_FUNC_timer_cancel:
2003 		return &bpf_timer_cancel_proto;
2004 	case BPF_FUNC_kptr_xchg:
2005 		return &bpf_kptr_xchg_proto;
2006 	case BPF_FUNC_for_each_map_elem:
2007 		return &bpf_for_each_map_elem_proto;
2008 	case BPF_FUNC_loop:
2009 		return &bpf_loop_proto;
2010 	case BPF_FUNC_user_ringbuf_drain:
2011 		return &bpf_user_ringbuf_drain_proto;
2012 	case BPF_FUNC_ringbuf_reserve_dynptr:
2013 		return &bpf_ringbuf_reserve_dynptr_proto;
2014 	case BPF_FUNC_ringbuf_submit_dynptr:
2015 		return &bpf_ringbuf_submit_dynptr_proto;
2016 	case BPF_FUNC_ringbuf_discard_dynptr:
2017 		return &bpf_ringbuf_discard_dynptr_proto;
2018 	case BPF_FUNC_dynptr_from_mem:
2019 		return &bpf_dynptr_from_mem_proto;
2020 	case BPF_FUNC_dynptr_read:
2021 		return &bpf_dynptr_read_proto;
2022 	case BPF_FUNC_dynptr_write:
2023 		return &bpf_dynptr_write_proto;
2024 	case BPF_FUNC_dynptr_data:
2025 		return &bpf_dynptr_data_proto;
2026 #ifdef CONFIG_CGROUPS
2027 	case BPF_FUNC_cgrp_storage_get:
2028 		return &bpf_cgrp_storage_get_proto;
2029 	case BPF_FUNC_cgrp_storage_delete:
2030 		return &bpf_cgrp_storage_delete_proto;
2031 	case BPF_FUNC_get_current_cgroup_id:
2032 		return &bpf_get_current_cgroup_id_proto;
2033 	case BPF_FUNC_get_current_ancestor_cgroup_id:
2034 		return &bpf_get_current_ancestor_cgroup_id_proto;
2035 	case BPF_FUNC_current_task_under_cgroup:
2036 		return &bpf_current_task_under_cgroup_proto;
2037 #endif
2038 #ifdef CONFIG_CGROUP_NET_CLASSID
2039 	case BPF_FUNC_get_cgroup_classid:
2040 		return &bpf_get_cgroup_classid_curr_proto;
2041 #endif
2042 	case BPF_FUNC_task_storage_get:
2043 		if (bpf_prog_check_recur(prog))
2044 			return &bpf_task_storage_get_recur_proto;
2045 		return &bpf_task_storage_get_proto;
2046 	case BPF_FUNC_task_storage_delete:
2047 		if (bpf_prog_check_recur(prog))
2048 			return &bpf_task_storage_delete_recur_proto;
2049 		return &bpf_task_storage_delete_proto;
2050 	default:
2051 		break;
2052 	}
2053 
2054 	if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
2055 		return NULL;
2056 
2057 	switch (func_id) {
2058 	case BPF_FUNC_trace_printk:
2059 		return bpf_get_trace_printk_proto();
2060 	case BPF_FUNC_get_current_task:
2061 		return &bpf_get_current_task_proto;
2062 	case BPF_FUNC_get_current_task_btf:
2063 		return &bpf_get_current_task_btf_proto;
2064 	case BPF_FUNC_get_current_comm:
2065 		return &bpf_get_current_comm_proto;
2066 	case BPF_FUNC_probe_read_user:
2067 		return &bpf_probe_read_user_proto;
2068 	case BPF_FUNC_probe_read_kernel:
2069 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2070 		       NULL : &bpf_probe_read_kernel_proto;
2071 	case BPF_FUNC_probe_read_user_str:
2072 		return &bpf_probe_read_user_str_proto;
2073 	case BPF_FUNC_probe_read_kernel_str:
2074 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2075 		       NULL : &bpf_probe_read_kernel_str_proto;
2076 	case BPF_FUNC_copy_from_user:
2077 		return &bpf_copy_from_user_proto;
2078 	case BPF_FUNC_copy_from_user_task:
2079 		return &bpf_copy_from_user_task_proto;
2080 	case BPF_FUNC_snprintf_btf:
2081 		return &bpf_snprintf_btf_proto;
2082 	case BPF_FUNC_snprintf:
2083 		return &bpf_snprintf_proto;
2084 	case BPF_FUNC_task_pt_regs:
2085 		return &bpf_task_pt_regs_proto;
2086 	case BPF_FUNC_trace_vprintk:
2087 		return bpf_get_trace_vprintk_proto();
2088 	case BPF_FUNC_perf_event_read_value:
2089 		return bpf_get_perf_event_read_value_proto();
2090 	case BPF_FUNC_perf_event_read:
2091 		return &bpf_perf_event_read_proto;
2092 	case BPF_FUNC_send_signal:
2093 		return &bpf_send_signal_proto;
2094 	case BPF_FUNC_send_signal_thread:
2095 		return &bpf_send_signal_thread_proto;
2096 	case BPF_FUNC_get_task_stack:
2097 		return prog->sleepable ? &bpf_get_task_stack_sleepable_proto
2098 				       : &bpf_get_task_stack_proto;
2099 	case BPF_FUNC_get_branch_snapshot:
2100 		return &bpf_get_branch_snapshot_proto;
2101 	case BPF_FUNC_find_vma:
2102 		return &bpf_find_vma_proto;
2103 	default:
2104 		return NULL;
2105 	}
2106 }
2107 EXPORT_SYMBOL_GPL(bpf_base_func_proto);
2108 
2109 void bpf_list_head_free(const struct btf_field *field, void *list_head,
2110 			struct bpf_spin_lock *spin_lock)
2111 {
2112 	struct list_head *head = list_head, *orig_head = list_head;
2113 
2114 	BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
2115 	BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
2116 
2117 	/* Do the actual list draining outside the lock to not hold the lock for
2118 	 * too long, and also prevent deadlocks if tracing programs end up
2119 	 * executing on entry/exit of functions called inside the critical
2120 	 * section, and end up doing map ops that call bpf_list_head_free for
2121 	 * the same map value again.
2122 	 */
2123 	__bpf_spin_lock_irqsave(spin_lock);
2124 	if (!head->next || list_empty(head))
2125 		goto unlock;
2126 	head = head->next;
2127 unlock:
2128 	INIT_LIST_HEAD(orig_head);
2129 	__bpf_spin_unlock_irqrestore(spin_lock);
2130 
2131 	while (head != orig_head) {
2132 		void *obj = head;
2133 
2134 		obj -= field->graph_root.node_offset;
2135 		head = head->next;
2136 		/* The contained type can also have resources, including a
2137 		 * bpf_list_head which needs to be freed.
2138 		 */
2139 		__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2140 	}
2141 }
2142 
2143 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
2144  * 'rb_node *', so field name of rb_node within containing struct is not
2145  * needed.
2146  *
2147  * Since bpf_rb_tree's node type has a corresponding struct btf_field with
2148  * graph_root.node_offset, it's not necessary to know field name
2149  * or type of node struct
2150  */
2151 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
2152 	for (pos = rb_first_postorder(root); \
2153 	    pos && ({ n = rb_next_postorder(pos); 1; }); \
2154 	    pos = n)
2155 
2156 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
2157 		      struct bpf_spin_lock *spin_lock)
2158 {
2159 	struct rb_root_cached orig_root, *root = rb_root;
2160 	struct rb_node *pos, *n;
2161 	void *obj;
2162 
2163 	BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
2164 	BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
2165 
2166 	__bpf_spin_lock_irqsave(spin_lock);
2167 	orig_root = *root;
2168 	*root = RB_ROOT_CACHED;
2169 	__bpf_spin_unlock_irqrestore(spin_lock);
2170 
2171 	bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
2172 		obj = pos;
2173 		obj -= field->graph_root.node_offset;
2174 
2175 
2176 		__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2177 	}
2178 }
2179 
2180 __bpf_kfunc_start_defs();
2181 
2182 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2183 {
2184 	struct btf_struct_meta *meta = meta__ign;
2185 	u64 size = local_type_id__k;
2186 	void *p;
2187 
2188 	p = bpf_mem_alloc(&bpf_global_ma, size);
2189 	if (!p)
2190 		return NULL;
2191 	if (meta)
2192 		bpf_obj_init(meta->record, p);
2193 	return p;
2194 }
2195 
2196 __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2197 {
2198 	u64 size = local_type_id__k;
2199 
2200 	/* The verifier has ensured that meta__ign must be NULL */
2201 	return bpf_mem_alloc(&bpf_global_percpu_ma, size);
2202 }
2203 
2204 /* Must be called under migrate_disable(), as required by bpf_mem_free */
2205 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu)
2206 {
2207 	struct bpf_mem_alloc *ma;
2208 
2209 	if (rec && rec->refcount_off >= 0 &&
2210 	    !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
2211 		/* Object is refcounted and refcount_dec didn't result in 0
2212 		 * refcount. Return without freeing the object
2213 		 */
2214 		return;
2215 	}
2216 
2217 	if (rec)
2218 		bpf_obj_free_fields(rec, p);
2219 
2220 	if (percpu)
2221 		ma = &bpf_global_percpu_ma;
2222 	else
2223 		ma = &bpf_global_ma;
2224 	bpf_mem_free_rcu(ma, p);
2225 }
2226 
2227 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
2228 {
2229 	struct btf_struct_meta *meta = meta__ign;
2230 	void *p = p__alloc;
2231 
2232 	__bpf_obj_drop_impl(p, meta ? meta->record : NULL, false);
2233 }
2234 
2235 __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign)
2236 {
2237 	/* The verifier has ensured that meta__ign must be NULL */
2238 	bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc);
2239 }
2240 
2241 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
2242 {
2243 	struct btf_struct_meta *meta = meta__ign;
2244 	struct bpf_refcount *ref;
2245 
2246 	/* Could just cast directly to refcount_t *, but need some code using
2247 	 * bpf_refcount type so that it is emitted in vmlinux BTF
2248 	 */
2249 	ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
2250 	if (!refcount_inc_not_zero((refcount_t *)ref))
2251 		return NULL;
2252 
2253 	/* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
2254 	 * in verifier.c
2255 	 */
2256 	return (void *)p__refcounted_kptr;
2257 }
2258 
2259 static int __bpf_list_add(struct bpf_list_node_kern *node,
2260 			  struct bpf_list_head *head,
2261 			  bool tail, struct btf_record *rec, u64 off)
2262 {
2263 	struct list_head *n = &node->list_head, *h = (void *)head;
2264 
2265 	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2266 	 * called on its fields, so init here
2267 	 */
2268 	if (unlikely(!h->next))
2269 		INIT_LIST_HEAD(h);
2270 
2271 	/* node->owner != NULL implies !list_empty(n), no need to separately
2272 	 * check the latter
2273 	 */
2274 	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2275 		/* Only called from BPF prog, no need to migrate_disable */
2276 		__bpf_obj_drop_impl((void *)n - off, rec, false);
2277 		return -EINVAL;
2278 	}
2279 
2280 	tail ? list_add_tail(n, h) : list_add(n, h);
2281 	WRITE_ONCE(node->owner, head);
2282 
2283 	return 0;
2284 }
2285 
2286 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
2287 					 struct bpf_list_node *node,
2288 					 void *meta__ign, u64 off)
2289 {
2290 	struct bpf_list_node_kern *n = (void *)node;
2291 	struct btf_struct_meta *meta = meta__ign;
2292 
2293 	return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
2294 }
2295 
2296 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
2297 					struct bpf_list_node *node,
2298 					void *meta__ign, u64 off)
2299 {
2300 	struct bpf_list_node_kern *n = (void *)node;
2301 	struct btf_struct_meta *meta = meta__ign;
2302 
2303 	return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
2304 }
2305 
2306 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
2307 {
2308 	struct list_head *n, *h = (void *)head;
2309 	struct bpf_list_node_kern *node;
2310 
2311 	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2312 	 * called on its fields, so init here
2313 	 */
2314 	if (unlikely(!h->next))
2315 		INIT_LIST_HEAD(h);
2316 	if (list_empty(h))
2317 		return NULL;
2318 
2319 	n = tail ? h->prev : h->next;
2320 	node = container_of(n, struct bpf_list_node_kern, list_head);
2321 	if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2322 		return NULL;
2323 
2324 	list_del_init(n);
2325 	WRITE_ONCE(node->owner, NULL);
2326 	return (struct bpf_list_node *)n;
2327 }
2328 
2329 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2330 {
2331 	return __bpf_list_del(head, false);
2332 }
2333 
2334 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2335 {
2336 	return __bpf_list_del(head, true);
2337 }
2338 
2339 __bpf_kfunc struct bpf_list_node *bpf_list_front(struct bpf_list_head *head)
2340 {
2341 	struct list_head *h = (struct list_head *)head;
2342 
2343 	if (list_empty(h) || unlikely(!h->next))
2344 		return NULL;
2345 
2346 	return (struct bpf_list_node *)h->next;
2347 }
2348 
2349 __bpf_kfunc struct bpf_list_node *bpf_list_back(struct bpf_list_head *head)
2350 {
2351 	struct list_head *h = (struct list_head *)head;
2352 
2353 	if (list_empty(h) || unlikely(!h->next))
2354 		return NULL;
2355 
2356 	return (struct bpf_list_node *)h->prev;
2357 }
2358 
2359 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2360 						  struct bpf_rb_node *node)
2361 {
2362 	struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2363 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2364 	struct rb_node *n = &node_internal->rb_node;
2365 
2366 	/* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2367 	 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2368 	 */
2369 	if (READ_ONCE(node_internal->owner) != root)
2370 		return NULL;
2371 
2372 	rb_erase_cached(n, r);
2373 	RB_CLEAR_NODE(n);
2374 	WRITE_ONCE(node_internal->owner, NULL);
2375 	return (struct bpf_rb_node *)n;
2376 }
2377 
2378 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2379  * program
2380  */
2381 static int __bpf_rbtree_add(struct bpf_rb_root *root,
2382 			    struct bpf_rb_node_kern *node,
2383 			    void *less, struct btf_record *rec, u64 off)
2384 {
2385 	struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2386 	struct rb_node *parent = NULL, *n = &node->rb_node;
2387 	bpf_callback_t cb = (bpf_callback_t)less;
2388 	bool leftmost = true;
2389 
2390 	/* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2391 	 * check the latter
2392 	 */
2393 	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2394 		/* Only called from BPF prog, no need to migrate_disable */
2395 		__bpf_obj_drop_impl((void *)n - off, rec, false);
2396 		return -EINVAL;
2397 	}
2398 
2399 	while (*link) {
2400 		parent = *link;
2401 		if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2402 			link = &parent->rb_left;
2403 		} else {
2404 			link = &parent->rb_right;
2405 			leftmost = false;
2406 		}
2407 	}
2408 
2409 	rb_link_node(n, parent, link);
2410 	rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
2411 	WRITE_ONCE(node->owner, root);
2412 	return 0;
2413 }
2414 
2415 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2416 				    bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2417 				    void *meta__ign, u64 off)
2418 {
2419 	struct btf_struct_meta *meta = meta__ign;
2420 	struct bpf_rb_node_kern *n = (void *)node;
2421 
2422 	return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
2423 }
2424 
2425 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2426 {
2427 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2428 
2429 	return (struct bpf_rb_node *)rb_first_cached(r);
2430 }
2431 
2432 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_root(struct bpf_rb_root *root)
2433 {
2434 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2435 
2436 	return (struct bpf_rb_node *)r->rb_root.rb_node;
2437 }
2438 
2439 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_left(struct bpf_rb_root *root, struct bpf_rb_node *node)
2440 {
2441 	struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2442 
2443 	if (READ_ONCE(node_internal->owner) != root)
2444 		return NULL;
2445 
2446 	return (struct bpf_rb_node *)node_internal->rb_node.rb_left;
2447 }
2448 
2449 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_right(struct bpf_rb_root *root, struct bpf_rb_node *node)
2450 {
2451 	struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2452 
2453 	if (READ_ONCE(node_internal->owner) != root)
2454 		return NULL;
2455 
2456 	return (struct bpf_rb_node *)node_internal->rb_node.rb_right;
2457 }
2458 
2459 /**
2460  * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2461  * kfunc which is not stored in a map as a kptr, must be released by calling
2462  * bpf_task_release().
2463  * @p: The task on which a reference is being acquired.
2464  */
2465 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2466 {
2467 	if (refcount_inc_not_zero(&p->rcu_users))
2468 		return p;
2469 	return NULL;
2470 }
2471 
2472 /**
2473  * bpf_task_release - Release the reference acquired on a task.
2474  * @p: The task on which a reference is being released.
2475  */
2476 __bpf_kfunc void bpf_task_release(struct task_struct *p)
2477 {
2478 	put_task_struct_rcu_user(p);
2479 }
2480 
2481 __bpf_kfunc void bpf_task_release_dtor(void *p)
2482 {
2483 	put_task_struct_rcu_user(p);
2484 }
2485 CFI_NOSEAL(bpf_task_release_dtor);
2486 
2487 #ifdef CONFIG_CGROUPS
2488 /**
2489  * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2490  * this kfunc which is not stored in a map as a kptr, must be released by
2491  * calling bpf_cgroup_release().
2492  * @cgrp: The cgroup on which a reference is being acquired.
2493  */
2494 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2495 {
2496 	return cgroup_tryget(cgrp) ? cgrp : NULL;
2497 }
2498 
2499 /**
2500  * bpf_cgroup_release - Release the reference acquired on a cgroup.
2501  * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2502  * not be freed until the current grace period has ended, even if its refcount
2503  * drops to 0.
2504  * @cgrp: The cgroup on which a reference is being released.
2505  */
2506 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2507 {
2508 	cgroup_put(cgrp);
2509 }
2510 
2511 __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp)
2512 {
2513 	cgroup_put(cgrp);
2514 }
2515 CFI_NOSEAL(bpf_cgroup_release_dtor);
2516 
2517 /**
2518  * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2519  * array. A cgroup returned by this kfunc which is not subsequently stored in a
2520  * map, must be released by calling bpf_cgroup_release().
2521  * @cgrp: The cgroup for which we're performing a lookup.
2522  * @level: The level of ancestor to look up.
2523  */
2524 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2525 {
2526 	struct cgroup *ancestor;
2527 
2528 	if (level > cgrp->level || level < 0)
2529 		return NULL;
2530 
2531 	/* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2532 	ancestor = cgrp->ancestors[level];
2533 	if (!cgroup_tryget(ancestor))
2534 		return NULL;
2535 	return ancestor;
2536 }
2537 
2538 /**
2539  * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2540  * kfunc which is not subsequently stored in a map, must be released by calling
2541  * bpf_cgroup_release().
2542  * @cgid: cgroup id.
2543  */
2544 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2545 {
2546 	struct cgroup *cgrp;
2547 
2548 	cgrp = __cgroup_get_from_id(cgid);
2549 	if (IS_ERR(cgrp))
2550 		return NULL;
2551 	return cgrp;
2552 }
2553 
2554 /**
2555  * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2556  * task's membership of cgroup ancestry.
2557  * @task: the task to be tested
2558  * @ancestor: possible ancestor of @task's cgroup
2559  *
2560  * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2561  * It follows all the same rules as cgroup_is_descendant, and only applies
2562  * to the default hierarchy.
2563  */
2564 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2565 				       struct cgroup *ancestor)
2566 {
2567 	long ret;
2568 
2569 	rcu_read_lock();
2570 	ret = task_under_cgroup_hierarchy(task, ancestor);
2571 	rcu_read_unlock();
2572 	return ret;
2573 }
2574 
2575 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
2576 {
2577 	struct bpf_array *array = container_of(map, struct bpf_array, map);
2578 	struct cgroup *cgrp;
2579 
2580 	if (unlikely(idx >= array->map.max_entries))
2581 		return -E2BIG;
2582 
2583 	cgrp = READ_ONCE(array->ptrs[idx]);
2584 	if (unlikely(!cgrp))
2585 		return -EAGAIN;
2586 
2587 	return task_under_cgroup_hierarchy(current, cgrp);
2588 }
2589 
2590 const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
2591 	.func           = bpf_current_task_under_cgroup,
2592 	.gpl_only       = false,
2593 	.ret_type       = RET_INTEGER,
2594 	.arg1_type      = ARG_CONST_MAP_PTR,
2595 	.arg2_type      = ARG_ANYTHING,
2596 };
2597 
2598 /**
2599  * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a
2600  * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
2601  * hierarchy ID.
2602  * @task: The target task
2603  * @hierarchy_id: The ID of a cgroup1 hierarchy
2604  *
2605  * On success, the cgroup is returen. On failure, NULL is returned.
2606  */
2607 __bpf_kfunc struct cgroup *
2608 bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id)
2609 {
2610 	struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id);
2611 
2612 	if (IS_ERR(cgrp))
2613 		return NULL;
2614 	return cgrp;
2615 }
2616 #endif /* CONFIG_CGROUPS */
2617 
2618 /**
2619  * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2620  * in the root pid namespace idr. If a task is returned, it must either be
2621  * stored in a map, or released with bpf_task_release().
2622  * @pid: The pid of the task being looked up.
2623  */
2624 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2625 {
2626 	struct task_struct *p;
2627 
2628 	rcu_read_lock();
2629 	p = find_task_by_pid_ns(pid, &init_pid_ns);
2630 	if (p)
2631 		p = bpf_task_acquire(p);
2632 	rcu_read_unlock();
2633 
2634 	return p;
2635 }
2636 
2637 /**
2638  * bpf_task_from_vpid - Find a struct task_struct from its vpid by looking it up
2639  * in the pid namespace of the current task. If a task is returned, it must
2640  * either be stored in a map, or released with bpf_task_release().
2641  * @vpid: The vpid of the task being looked up.
2642  */
2643 __bpf_kfunc struct task_struct *bpf_task_from_vpid(s32 vpid)
2644 {
2645 	struct task_struct *p;
2646 
2647 	rcu_read_lock();
2648 	p = find_task_by_vpid(vpid);
2649 	if (p)
2650 		p = bpf_task_acquire(p);
2651 	rcu_read_unlock();
2652 
2653 	return p;
2654 }
2655 
2656 /**
2657  * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2658  * @p: The dynptr whose data slice to retrieve
2659  * @offset: Offset into the dynptr
2660  * @buffer__opt: User-provided buffer to copy contents into.  May be NULL
2661  * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2662  *               length of the requested slice. This must be a constant.
2663  *
2664  * For non-skb and non-xdp type dynptrs, there is no difference between
2665  * bpf_dynptr_slice and bpf_dynptr_data.
2666  *
2667  *  If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2668  *
2669  * If the intention is to write to the data slice, please use
2670  * bpf_dynptr_slice_rdwr.
2671  *
2672  * The user must check that the returned pointer is not null before using it.
2673  *
2674  * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2675  * does not change the underlying packet data pointers, so a call to
2676  * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2677  * the bpf program.
2678  *
2679  * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2680  * data slice (can be either direct pointer to the data or a pointer to the user
2681  * provided buffer, with its contents containing the data, if unable to obtain
2682  * direct pointer)
2683  */
2684 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u32 offset,
2685 				   void *buffer__opt, u32 buffer__szk)
2686 {
2687 	const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2688 	enum bpf_dynptr_type type;
2689 	u32 len = buffer__szk;
2690 	int err;
2691 
2692 	if (!ptr->data)
2693 		return NULL;
2694 
2695 	err = bpf_dynptr_check_off_len(ptr, offset, len);
2696 	if (err)
2697 		return NULL;
2698 
2699 	type = bpf_dynptr_get_type(ptr);
2700 
2701 	switch (type) {
2702 	case BPF_DYNPTR_TYPE_LOCAL:
2703 	case BPF_DYNPTR_TYPE_RINGBUF:
2704 		return ptr->data + ptr->offset + offset;
2705 	case BPF_DYNPTR_TYPE_SKB:
2706 		if (buffer__opt)
2707 			return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
2708 		else
2709 			return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
2710 	case BPF_DYNPTR_TYPE_XDP:
2711 	{
2712 		void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2713 		if (!IS_ERR_OR_NULL(xdp_ptr))
2714 			return xdp_ptr;
2715 
2716 		if (!buffer__opt)
2717 			return NULL;
2718 		bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
2719 		return buffer__opt;
2720 	}
2721 	case BPF_DYNPTR_TYPE_SKB_META:
2722 		return bpf_skb_meta_pointer(ptr->data, ptr->offset + offset);
2723 	default:
2724 		WARN_ONCE(true, "unknown dynptr type %d\n", type);
2725 		return NULL;
2726 	}
2727 }
2728 
2729 /**
2730  * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2731  * @p: The dynptr whose data slice to retrieve
2732  * @offset: Offset into the dynptr
2733  * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2734  * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2735  *               length of the requested slice. This must be a constant.
2736  *
2737  * For non-skb and non-xdp type dynptrs, there is no difference between
2738  * bpf_dynptr_slice and bpf_dynptr_data.
2739  *
2740  * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2741  *
2742  * The returned pointer is writable and may point to either directly the dynptr
2743  * data at the requested offset or to the buffer if unable to obtain a direct
2744  * data pointer to (example: the requested slice is to the paged area of an skb
2745  * packet). In the case where the returned pointer is to the buffer, the user
2746  * is responsible for persisting writes through calling bpf_dynptr_write(). This
2747  * usually looks something like this pattern:
2748  *
2749  * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2750  * if (!eth)
2751  *	return TC_ACT_SHOT;
2752  *
2753  * // mutate eth header //
2754  *
2755  * if (eth == buffer)
2756  *	bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2757  *
2758  * Please note that, as in the example above, the user must check that the
2759  * returned pointer is not null before using it.
2760  *
2761  * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2762  * does not change the underlying packet data pointers, so a call to
2763  * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2764  * the bpf program.
2765  *
2766  * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2767  * data slice (can be either direct pointer to the data or a pointer to the user
2768  * provided buffer, with its contents containing the data, if unable to obtain
2769  * direct pointer)
2770  */
2771 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u32 offset,
2772 					void *buffer__opt, u32 buffer__szk)
2773 {
2774 	const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2775 
2776 	if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2777 		return NULL;
2778 
2779 	/* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2780 	 *
2781 	 * For skb-type dynptrs, it is safe to write into the returned pointer
2782 	 * if the bpf program allows skb data writes. There are two possibilities
2783 	 * that may occur when calling bpf_dynptr_slice_rdwr:
2784 	 *
2785 	 * 1) The requested slice is in the head of the skb. In this case, the
2786 	 * returned pointer is directly to skb data, and if the skb is cloned, the
2787 	 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2788 	 * The pointer can be directly written into.
2789 	 *
2790 	 * 2) Some portion of the requested slice is in the paged buffer area.
2791 	 * In this case, the requested data will be copied out into the buffer
2792 	 * and the returned pointer will be a pointer to the buffer. The skb
2793 	 * will not be pulled. To persist the write, the user will need to call
2794 	 * bpf_dynptr_write(), which will pull the skb and commit the write.
2795 	 *
2796 	 * Similarly for xdp programs, if the requested slice is not across xdp
2797 	 * fragments, then a direct pointer will be returned, otherwise the data
2798 	 * will be copied out into the buffer and the user will need to call
2799 	 * bpf_dynptr_write() to commit changes.
2800 	 */
2801 	return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk);
2802 }
2803 
2804 __bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u32 start, u32 end)
2805 {
2806 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2807 	u32 size;
2808 
2809 	if (!ptr->data || start > end)
2810 		return -EINVAL;
2811 
2812 	size = __bpf_dynptr_size(ptr);
2813 
2814 	if (start > size || end > size)
2815 		return -ERANGE;
2816 
2817 	ptr->offset += start;
2818 	bpf_dynptr_set_size(ptr, end - start);
2819 
2820 	return 0;
2821 }
2822 
2823 __bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p)
2824 {
2825 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2826 
2827 	return !ptr->data;
2828 }
2829 
2830 __bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p)
2831 {
2832 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2833 
2834 	if (!ptr->data)
2835 		return false;
2836 
2837 	return __bpf_dynptr_is_rdonly(ptr);
2838 }
2839 
2840 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr *p)
2841 {
2842 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2843 
2844 	if (!ptr->data)
2845 		return -EINVAL;
2846 
2847 	return __bpf_dynptr_size(ptr);
2848 }
2849 
2850 __bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p,
2851 				 struct bpf_dynptr *clone__uninit)
2852 {
2853 	struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit;
2854 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2855 
2856 	if (!ptr->data) {
2857 		bpf_dynptr_set_null(clone);
2858 		return -EINVAL;
2859 	}
2860 
2861 	*clone = *ptr;
2862 
2863 	return 0;
2864 }
2865 
2866 /**
2867  * bpf_dynptr_copy() - Copy data from one dynptr to another.
2868  * @dst_ptr: Destination dynptr - where data should be copied to
2869  * @dst_off: Offset into the destination dynptr
2870  * @src_ptr: Source dynptr - where data should be copied from
2871  * @src_off: Offset into the source dynptr
2872  * @size: Length of the data to copy from source to destination
2873  *
2874  * Copies data from source dynptr to destination dynptr.
2875  * Returns 0 on success; negative error, otherwise.
2876  */
2877 __bpf_kfunc int bpf_dynptr_copy(struct bpf_dynptr *dst_ptr, u32 dst_off,
2878 				struct bpf_dynptr *src_ptr, u32 src_off, u32 size)
2879 {
2880 	struct bpf_dynptr_kern *dst = (struct bpf_dynptr_kern *)dst_ptr;
2881 	struct bpf_dynptr_kern *src = (struct bpf_dynptr_kern *)src_ptr;
2882 	void *src_slice, *dst_slice;
2883 	char buf[256];
2884 	u32 off;
2885 
2886 	src_slice = bpf_dynptr_slice(src_ptr, src_off, NULL, size);
2887 	dst_slice = bpf_dynptr_slice_rdwr(dst_ptr, dst_off, NULL, size);
2888 
2889 	if (src_slice && dst_slice) {
2890 		memmove(dst_slice, src_slice, size);
2891 		return 0;
2892 	}
2893 
2894 	if (src_slice)
2895 		return __bpf_dynptr_write(dst, dst_off, src_slice, size, 0);
2896 
2897 	if (dst_slice)
2898 		return __bpf_dynptr_read(dst_slice, size, src, src_off, 0);
2899 
2900 	if (bpf_dynptr_check_off_len(dst, dst_off, size) ||
2901 	    bpf_dynptr_check_off_len(src, src_off, size))
2902 		return -E2BIG;
2903 
2904 	off = 0;
2905 	while (off < size) {
2906 		u32 chunk_sz = min_t(u32, sizeof(buf), size - off);
2907 		int err;
2908 
2909 		err = __bpf_dynptr_read(buf, chunk_sz, src, src_off + off, 0);
2910 		if (err)
2911 			return err;
2912 		err = __bpf_dynptr_write(dst, dst_off + off, buf, chunk_sz, 0);
2913 		if (err)
2914 			return err;
2915 
2916 		off += chunk_sz;
2917 	}
2918 	return 0;
2919 }
2920 
2921 /**
2922  * bpf_dynptr_memset() - Fill dynptr memory with a constant byte.
2923  * @p: Destination dynptr - where data will be filled
2924  * @offset: Offset into the dynptr to start filling from
2925  * @size: Number of bytes to fill
2926  * @val: Constant byte to fill the memory with
2927  *
2928  * Fills the @size bytes of the memory area pointed to by @p
2929  * at @offset with the constant byte @val.
2930  * Returns 0 on success; negative error, otherwise.
2931  */
2932  __bpf_kfunc int bpf_dynptr_memset(struct bpf_dynptr *p, u32 offset, u32 size, u8 val)
2933  {
2934 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2935 	u32 chunk_sz, write_off;
2936 	char buf[256];
2937 	void* slice;
2938 	int err;
2939 
2940 	slice = bpf_dynptr_slice_rdwr(p, offset, NULL, size);
2941 	if (likely(slice)) {
2942 		memset(slice, val, size);
2943 		return 0;
2944 	}
2945 
2946 	if (__bpf_dynptr_is_rdonly(ptr))
2947 		return -EINVAL;
2948 
2949 	err = bpf_dynptr_check_off_len(ptr, offset, size);
2950 	if (err)
2951 		return err;
2952 
2953 	/* Non-linear data under the dynptr, write from a local buffer */
2954 	chunk_sz = min_t(u32, sizeof(buf), size);
2955 	memset(buf, val, chunk_sz);
2956 
2957 	for (write_off = 0; write_off < size; write_off += chunk_sz) {
2958 		chunk_sz = min_t(u32, sizeof(buf), size - write_off);
2959 		err = __bpf_dynptr_write(ptr, offset + write_off, buf, chunk_sz, 0);
2960 		if (err)
2961 			return err;
2962 	}
2963 
2964 	return 0;
2965 }
2966 
2967 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
2968 {
2969 	return obj;
2970 }
2971 
2972 __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k)
2973 {
2974 	return (void *)obj__ign;
2975 }
2976 
2977 __bpf_kfunc void bpf_rcu_read_lock(void)
2978 {
2979 	rcu_read_lock();
2980 }
2981 
2982 __bpf_kfunc void bpf_rcu_read_unlock(void)
2983 {
2984 	rcu_read_unlock();
2985 }
2986 
2987 struct bpf_throw_ctx {
2988 	struct bpf_prog_aux *aux;
2989 	u64 sp;
2990 	u64 bp;
2991 	int cnt;
2992 };
2993 
2994 static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp)
2995 {
2996 	struct bpf_throw_ctx *ctx = cookie;
2997 	struct bpf_prog *prog;
2998 
2999 	/*
3000 	 * The RCU read lock is held to safely traverse the latch tree, but we
3001 	 * don't need its protection when accessing the prog, since it has an
3002 	 * active stack frame on the current stack trace, and won't disappear.
3003 	 */
3004 	rcu_read_lock();
3005 	prog = bpf_prog_ksym_find(ip);
3006 	rcu_read_unlock();
3007 	if (!prog)
3008 		return !ctx->cnt;
3009 	ctx->cnt++;
3010 	if (bpf_is_subprog(prog))
3011 		return true;
3012 	ctx->aux = prog->aux;
3013 	ctx->sp = sp;
3014 	ctx->bp = bp;
3015 	return false;
3016 }
3017 
3018 __bpf_kfunc void bpf_throw(u64 cookie)
3019 {
3020 	struct bpf_throw_ctx ctx = {};
3021 
3022 	arch_bpf_stack_walk(bpf_stack_walker, &ctx);
3023 	WARN_ON_ONCE(!ctx.aux);
3024 	if (ctx.aux)
3025 		WARN_ON_ONCE(!ctx.aux->exception_boundary);
3026 	WARN_ON_ONCE(!ctx.bp);
3027 	WARN_ON_ONCE(!ctx.cnt);
3028 	/* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning
3029 	 * deeper stack depths than ctx.sp as we do not return from bpf_throw,
3030 	 * which skips compiler generated instrumentation to do the same.
3031 	 */
3032 	kasan_unpoison_task_stack_below((void *)(long)ctx.sp);
3033 	ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0);
3034 	WARN(1, "A call to BPF exception callback should never return\n");
3035 }
3036 
3037 __bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags)
3038 {
3039 	struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3040 	struct bpf_map *map = p__map;
3041 
3042 	BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq));
3043 	BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq));
3044 
3045 	if (flags)
3046 		return -EINVAL;
3047 
3048 	return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ);
3049 }
3050 
3051 __bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags)
3052 {
3053 	struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3054 	struct bpf_work *w;
3055 
3056 	if (in_nmi())
3057 		return -EOPNOTSUPP;
3058 	if (flags)
3059 		return -EINVAL;
3060 	w = READ_ONCE(async->work);
3061 	if (!w || !READ_ONCE(w->cb.prog))
3062 		return -EINVAL;
3063 
3064 	schedule_work(&w->work);
3065 	return 0;
3066 }
3067 
3068 __bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq,
3069 					 int (callback_fn)(void *map, int *key, void *value),
3070 					 unsigned int flags,
3071 					 void *aux__prog)
3072 {
3073 	struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__prog;
3074 	struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3075 
3076 	if (flags)
3077 		return -EINVAL;
3078 
3079 	return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ);
3080 }
3081 
3082 __bpf_kfunc void bpf_preempt_disable(void)
3083 {
3084 	preempt_disable();
3085 }
3086 
3087 __bpf_kfunc void bpf_preempt_enable(void)
3088 {
3089 	preempt_enable();
3090 }
3091 
3092 struct bpf_iter_bits {
3093 	__u64 __opaque[2];
3094 } __aligned(8);
3095 
3096 #define BITS_ITER_NR_WORDS_MAX 511
3097 
3098 struct bpf_iter_bits_kern {
3099 	union {
3100 		__u64 *bits;
3101 		__u64 bits_copy;
3102 	};
3103 	int nr_bits;
3104 	int bit;
3105 } __aligned(8);
3106 
3107 /* On 64-bit hosts, unsigned long and u64 have the same size, so passing
3108  * a u64 pointer and an unsigned long pointer to find_next_bit() will
3109  * return the same result, as both point to the same 8-byte area.
3110  *
3111  * For 32-bit little-endian hosts, using a u64 pointer or unsigned long
3112  * pointer also makes no difference. This is because the first iterated
3113  * unsigned long is composed of bits 0-31 of the u64 and the second unsigned
3114  * long is composed of bits 32-63 of the u64.
3115  *
3116  * However, for 32-bit big-endian hosts, this is not the case. The first
3117  * iterated unsigned long will be bits 32-63 of the u64, so swap these two
3118  * ulong values within the u64.
3119  */
3120 static void swap_ulong_in_u64(u64 *bits, unsigned int nr)
3121 {
3122 #if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN)
3123 	unsigned int i;
3124 
3125 	for (i = 0; i < nr; i++)
3126 		bits[i] = (bits[i] >> 32) | ((u64)(u32)bits[i] << 32);
3127 #endif
3128 }
3129 
3130 /**
3131  * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area
3132  * @it: The new bpf_iter_bits to be created
3133  * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over
3134  * @nr_words: The size of the specified memory area, measured in 8-byte units.
3135  * The maximum value of @nr_words is @BITS_ITER_NR_WORDS_MAX. This limit may be
3136  * further reduced by the BPF memory allocator implementation.
3137  *
3138  * This function initializes a new bpf_iter_bits structure for iterating over
3139  * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It
3140  * copies the data of the memory area to the newly created bpf_iter_bits @it for
3141  * subsequent iteration operations.
3142  *
3143  * On success, 0 is returned. On failure, ERR is returned.
3144  */
3145 __bpf_kfunc int
3146 bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words)
3147 {
3148 	struct bpf_iter_bits_kern *kit = (void *)it;
3149 	u32 nr_bytes = nr_words * sizeof(u64);
3150 	u32 nr_bits = BYTES_TO_BITS(nr_bytes);
3151 	int err;
3152 
3153 	BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits));
3154 	BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) !=
3155 		     __alignof__(struct bpf_iter_bits));
3156 
3157 	kit->nr_bits = 0;
3158 	kit->bits_copy = 0;
3159 	kit->bit = -1;
3160 
3161 	if (!unsafe_ptr__ign || !nr_words)
3162 		return -EINVAL;
3163 	if (nr_words > BITS_ITER_NR_WORDS_MAX)
3164 		return -E2BIG;
3165 
3166 	/* Optimization for u64 mask */
3167 	if (nr_bits == 64) {
3168 		err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign);
3169 		if (err)
3170 			return -EFAULT;
3171 
3172 		swap_ulong_in_u64(&kit->bits_copy, nr_words);
3173 
3174 		kit->nr_bits = nr_bits;
3175 		return 0;
3176 	}
3177 
3178 	if (bpf_mem_alloc_check_size(false, nr_bytes))
3179 		return -E2BIG;
3180 
3181 	/* Fallback to memalloc */
3182 	kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes);
3183 	if (!kit->bits)
3184 		return -ENOMEM;
3185 
3186 	err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign);
3187 	if (err) {
3188 		bpf_mem_free(&bpf_global_ma, kit->bits);
3189 		return err;
3190 	}
3191 
3192 	swap_ulong_in_u64(kit->bits, nr_words);
3193 
3194 	kit->nr_bits = nr_bits;
3195 	return 0;
3196 }
3197 
3198 /**
3199  * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits
3200  * @it: The bpf_iter_bits to be checked
3201  *
3202  * This function returns a pointer to a number representing the value of the
3203  * next bit in the bits.
3204  *
3205  * If there are no further bits available, it returns NULL.
3206  */
3207 __bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it)
3208 {
3209 	struct bpf_iter_bits_kern *kit = (void *)it;
3210 	int bit = kit->bit, nr_bits = kit->nr_bits;
3211 	const void *bits;
3212 
3213 	if (!nr_bits || bit >= nr_bits)
3214 		return NULL;
3215 
3216 	bits = nr_bits == 64 ? &kit->bits_copy : kit->bits;
3217 	bit = find_next_bit(bits, nr_bits, bit + 1);
3218 	if (bit >= nr_bits) {
3219 		kit->bit = bit;
3220 		return NULL;
3221 	}
3222 
3223 	kit->bit = bit;
3224 	return &kit->bit;
3225 }
3226 
3227 /**
3228  * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits
3229  * @it: The bpf_iter_bits to be destroyed
3230  *
3231  * Destroy the resource associated with the bpf_iter_bits.
3232  */
3233 __bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it)
3234 {
3235 	struct bpf_iter_bits_kern *kit = (void *)it;
3236 
3237 	if (kit->nr_bits <= 64)
3238 		return;
3239 	bpf_mem_free(&bpf_global_ma, kit->bits);
3240 }
3241 
3242 /**
3243  * bpf_copy_from_user_str() - Copy a string from an unsafe user address
3244  * @dst:             Destination address, in kernel space.  This buffer must be
3245  *                   at least @dst__sz bytes long.
3246  * @dst__sz:         Maximum number of bytes to copy, includes the trailing NUL.
3247  * @unsafe_ptr__ign: Source address, in user space.
3248  * @flags:           The only supported flag is BPF_F_PAD_ZEROS
3249  *
3250  * Copies a NUL-terminated string from userspace to BPF space. If user string is
3251  * too long this will still ensure zero termination in the dst buffer unless
3252  * buffer size is 0.
3253  *
3254  * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst to 0 on success and
3255  * memset all of @dst on failure.
3256  */
3257 __bpf_kfunc int bpf_copy_from_user_str(void *dst, u32 dst__sz, const void __user *unsafe_ptr__ign, u64 flags)
3258 {
3259 	int ret;
3260 
3261 	if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3262 		return -EINVAL;
3263 
3264 	if (unlikely(!dst__sz))
3265 		return 0;
3266 
3267 	ret = strncpy_from_user(dst, unsafe_ptr__ign, dst__sz - 1);
3268 	if (ret < 0) {
3269 		if (flags & BPF_F_PAD_ZEROS)
3270 			memset((char *)dst, 0, dst__sz);
3271 
3272 		return ret;
3273 	}
3274 
3275 	if (flags & BPF_F_PAD_ZEROS)
3276 		memset((char *)dst + ret, 0, dst__sz - ret);
3277 	else
3278 		((char *)dst)[ret] = '\0';
3279 
3280 	return ret + 1;
3281 }
3282 
3283 /**
3284  * bpf_copy_from_user_task_str() - Copy a string from an task's address space
3285  * @dst:             Destination address, in kernel space.  This buffer must be
3286  *                   at least @dst__sz bytes long.
3287  * @dst__sz:         Maximum number of bytes to copy, includes the trailing NUL.
3288  * @unsafe_ptr__ign: Source address in the task's address space.
3289  * @tsk:             The task whose address space will be used
3290  * @flags:           The only supported flag is BPF_F_PAD_ZEROS
3291  *
3292  * Copies a NUL terminated string from a task's address space to @dst__sz
3293  * buffer. If user string is too long this will still ensure zero termination
3294  * in the @dst__sz buffer unless buffer size is 0.
3295  *
3296  * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst__sz to 0 on success
3297  * and memset all of @dst__sz on failure.
3298  *
3299  * Return: The number of copied bytes on success including the NUL terminator.
3300  * A negative error code on failure.
3301  */
3302 __bpf_kfunc int bpf_copy_from_user_task_str(void *dst, u32 dst__sz,
3303 					    const void __user *unsafe_ptr__ign,
3304 					    struct task_struct *tsk, u64 flags)
3305 {
3306 	int ret;
3307 
3308 	if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3309 		return -EINVAL;
3310 
3311 	if (unlikely(dst__sz == 0))
3312 		return 0;
3313 
3314 	ret = copy_remote_vm_str(tsk, (unsigned long)unsafe_ptr__ign, dst, dst__sz, 0);
3315 	if (ret < 0) {
3316 		if (flags & BPF_F_PAD_ZEROS)
3317 			memset(dst, 0, dst__sz);
3318 		return ret;
3319 	}
3320 
3321 	if (flags & BPF_F_PAD_ZEROS)
3322 		memset(dst + ret, 0, dst__sz - ret);
3323 
3324 	return ret + 1;
3325 }
3326 
3327 /* Keep unsinged long in prototype so that kfunc is usable when emitted to
3328  * vmlinux.h in BPF programs directly, but note that while in BPF prog, the
3329  * unsigned long always points to 8-byte region on stack, the kernel may only
3330  * read and write the 4-bytes on 32-bit.
3331  */
3332 __bpf_kfunc void bpf_local_irq_save(unsigned long *flags__irq_flag)
3333 {
3334 	local_irq_save(*flags__irq_flag);
3335 }
3336 
3337 __bpf_kfunc void bpf_local_irq_restore(unsigned long *flags__irq_flag)
3338 {
3339 	local_irq_restore(*flags__irq_flag);
3340 }
3341 
3342 __bpf_kfunc void __bpf_trap(void)
3343 {
3344 }
3345 
3346 /*
3347  * Kfuncs for string operations.
3348  *
3349  * Since strings are not necessarily %NUL-terminated, we cannot directly call
3350  * in-kernel implementations. Instead, we open-code the implementations using
3351  * __get_kernel_nofault instead of plain dereference to make them safe.
3352  */
3353 
3354 static int __bpf_strcasecmp(const char *s1, const char *s2, bool ignore_case)
3355 {
3356 	char c1, c2;
3357 	int i;
3358 
3359 	if (!copy_from_kernel_nofault_allowed(s1, 1) ||
3360 	    !copy_from_kernel_nofault_allowed(s2, 1)) {
3361 		return -ERANGE;
3362 	}
3363 
3364 	guard(pagefault)();
3365 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3366 		__get_kernel_nofault(&c1, s1, char, err_out);
3367 		__get_kernel_nofault(&c2, s2, char, err_out);
3368 		if (ignore_case) {
3369 			c1 = tolower(c1);
3370 			c2 = tolower(c2);
3371 		}
3372 		if (c1 != c2)
3373 			return c1 < c2 ? -1 : 1;
3374 		if (c1 == '\0')
3375 			return 0;
3376 		s1++;
3377 		s2++;
3378 	}
3379 	return -E2BIG;
3380 err_out:
3381 	return -EFAULT;
3382 }
3383 
3384 /**
3385  * bpf_strcmp - Compare two strings
3386  * @s1__ign: One string
3387  * @s2__ign: Another string
3388  *
3389  * Return:
3390  * * %0       - Strings are equal
3391  * * %-1      - @s1__ign is smaller
3392  * * %1       - @s2__ign is smaller
3393  * * %-EFAULT - Cannot read one of the strings
3394  * * %-E2BIG  - One of strings is too large
3395  * * %-ERANGE - One of strings is outside of kernel address space
3396  */
3397 __bpf_kfunc int bpf_strcmp(const char *s1__ign, const char *s2__ign)
3398 {
3399 	return __bpf_strcasecmp(s1__ign, s2__ign, false);
3400 }
3401 
3402 /**
3403  * bpf_strcasecmp - Compare two strings, ignoring the case of the characters
3404  * @s1__ign: One string
3405  * @s2__ign: Another string
3406  *
3407  * Return:
3408  * * %0       - Strings are equal
3409  * * %-1      - @s1__ign is smaller
3410  * * %1       - @s2__ign is smaller
3411  * * %-EFAULT - Cannot read one of the strings
3412  * * %-E2BIG  - One of strings is too large
3413  * * %-ERANGE - One of strings is outside of kernel address space
3414  */
3415 __bpf_kfunc int bpf_strcasecmp(const char *s1__ign, const char *s2__ign)
3416 {
3417 	return __bpf_strcasecmp(s1__ign, s2__ign, true);
3418 }
3419 
3420 /**
3421  * bpf_strnchr - Find a character in a length limited string
3422  * @s__ign: The string to be searched
3423  * @count: The number of characters to be searched
3424  * @c: The character to search for
3425  *
3426  * Note that the %NUL-terminator is considered part of the string, and can
3427  * be searched for.
3428  *
3429  * Return:
3430  * * >=0      - Index of the first occurrence of @c within @s__ign
3431  * * %-ENOENT - @c not found in the first @count characters of @s__ign
3432  * * %-EFAULT - Cannot read @s__ign
3433  * * %-E2BIG  - @s__ign is too large
3434  * * %-ERANGE - @s__ign is outside of kernel address space
3435  */
3436 __bpf_kfunc int bpf_strnchr(const char *s__ign, size_t count, char c)
3437 {
3438 	char sc;
3439 	int i;
3440 
3441 	if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3442 		return -ERANGE;
3443 
3444 	guard(pagefault)();
3445 	for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) {
3446 		__get_kernel_nofault(&sc, s__ign, char, err_out);
3447 		if (sc == c)
3448 			return i;
3449 		if (sc == '\0')
3450 			return -ENOENT;
3451 		s__ign++;
3452 	}
3453 	return i == XATTR_SIZE_MAX ? -E2BIG : -ENOENT;
3454 err_out:
3455 	return -EFAULT;
3456 }
3457 
3458 /**
3459  * bpf_strchr - Find the first occurrence of a character in a string
3460  * @s__ign: The string to be searched
3461  * @c: The character to search for
3462  *
3463  * Note that the %NUL-terminator is considered part of the string, and can
3464  * be searched for.
3465  *
3466  * Return:
3467  * * >=0      - The index of the first occurrence of @c within @s__ign
3468  * * %-ENOENT - @c not found in @s__ign
3469  * * %-EFAULT - Cannot read @s__ign
3470  * * %-E2BIG  - @s__ign is too large
3471  * * %-ERANGE - @s__ign is outside of kernel address space
3472  */
3473 __bpf_kfunc int bpf_strchr(const char *s__ign, char c)
3474 {
3475 	return bpf_strnchr(s__ign, XATTR_SIZE_MAX, c);
3476 }
3477 
3478 /**
3479  * bpf_strchrnul - Find and return a character in a string, or end of string
3480  * @s__ign: The string to be searched
3481  * @c: The character to search for
3482  *
3483  * Return:
3484  * * >=0      - Index of the first occurrence of @c within @s__ign or index of
3485  *              the null byte at the end of @s__ign when @c is not found
3486  * * %-EFAULT - Cannot read @s__ign
3487  * * %-E2BIG  - @s__ign is too large
3488  * * %-ERANGE - @s__ign is outside of kernel address space
3489  */
3490 __bpf_kfunc int bpf_strchrnul(const char *s__ign, char c)
3491 {
3492 	char sc;
3493 	int i;
3494 
3495 	if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3496 		return -ERANGE;
3497 
3498 	guard(pagefault)();
3499 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3500 		__get_kernel_nofault(&sc, s__ign, char, err_out);
3501 		if (sc == '\0' || sc == c)
3502 			return i;
3503 		s__ign++;
3504 	}
3505 	return -E2BIG;
3506 err_out:
3507 	return -EFAULT;
3508 }
3509 
3510 /**
3511  * bpf_strrchr - Find the last occurrence of a character in a string
3512  * @s__ign: The string to be searched
3513  * @c: The character to search for
3514  *
3515  * Return:
3516  * * >=0      - Index of the last occurrence of @c within @s__ign
3517  * * %-ENOENT - @c not found in @s__ign
3518  * * %-EFAULT - Cannot read @s__ign
3519  * * %-E2BIG  - @s__ign is too large
3520  * * %-ERANGE - @s__ign is outside of kernel address space
3521  */
3522 __bpf_kfunc int bpf_strrchr(const char *s__ign, int c)
3523 {
3524 	char sc;
3525 	int i, last = -ENOENT;
3526 
3527 	if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3528 		return -ERANGE;
3529 
3530 	guard(pagefault)();
3531 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3532 		__get_kernel_nofault(&sc, s__ign, char, err_out);
3533 		if (sc == c)
3534 			last = i;
3535 		if (sc == '\0')
3536 			return last;
3537 		s__ign++;
3538 	}
3539 	return -E2BIG;
3540 err_out:
3541 	return -EFAULT;
3542 }
3543 
3544 /**
3545  * bpf_strnlen - Calculate the length of a length-limited string
3546  * @s__ign: The string
3547  * @count: The maximum number of characters to count
3548  *
3549  * Return:
3550  * * >=0      - The length of @s__ign
3551  * * %-EFAULT - Cannot read @s__ign
3552  * * %-E2BIG  - @s__ign is too large
3553  * * %-ERANGE - @s__ign is outside of kernel address space
3554  */
3555 __bpf_kfunc int bpf_strnlen(const char *s__ign, size_t count)
3556 {
3557 	char c;
3558 	int i;
3559 
3560 	if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3561 		return -ERANGE;
3562 
3563 	guard(pagefault)();
3564 	for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) {
3565 		__get_kernel_nofault(&c, s__ign, char, err_out);
3566 		if (c == '\0')
3567 			return i;
3568 		s__ign++;
3569 	}
3570 	return i == XATTR_SIZE_MAX ? -E2BIG : i;
3571 err_out:
3572 	return -EFAULT;
3573 }
3574 
3575 /**
3576  * bpf_strlen - Calculate the length of a string
3577  * @s__ign: The string
3578  *
3579  * Return:
3580  * * >=0      - The length of @s__ign
3581  * * %-EFAULT - Cannot read @s__ign
3582  * * %-E2BIG  - @s__ign is too large
3583  * * %-ERANGE - @s__ign is outside of kernel address space
3584  */
3585 __bpf_kfunc int bpf_strlen(const char *s__ign)
3586 {
3587 	return bpf_strnlen(s__ign, XATTR_SIZE_MAX);
3588 }
3589 
3590 /**
3591  * bpf_strspn - Calculate the length of the initial substring of @s__ign which
3592  *              only contains letters in @accept__ign
3593  * @s__ign: The string to be searched
3594  * @accept__ign: The string to search for
3595  *
3596  * Return:
3597  * * >=0      - The length of the initial substring of @s__ign which only
3598  *              contains letters from @accept__ign
3599  * * %-EFAULT - Cannot read one of the strings
3600  * * %-E2BIG  - One of the strings is too large
3601  * * %-ERANGE - One of the strings is outside of kernel address space
3602  */
3603 __bpf_kfunc int bpf_strspn(const char *s__ign, const char *accept__ign)
3604 {
3605 	char cs, ca;
3606 	int i, j;
3607 
3608 	if (!copy_from_kernel_nofault_allowed(s__ign, 1) ||
3609 	    !copy_from_kernel_nofault_allowed(accept__ign, 1)) {
3610 		return -ERANGE;
3611 	}
3612 
3613 	guard(pagefault)();
3614 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3615 		__get_kernel_nofault(&cs, s__ign, char, err_out);
3616 		if (cs == '\0')
3617 			return i;
3618 		for (j = 0; j < XATTR_SIZE_MAX; j++) {
3619 			__get_kernel_nofault(&ca, accept__ign + j, char, err_out);
3620 			if (cs == ca || ca == '\0')
3621 				break;
3622 		}
3623 		if (j == XATTR_SIZE_MAX)
3624 			return -E2BIG;
3625 		if (ca == '\0')
3626 			return i;
3627 		s__ign++;
3628 	}
3629 	return -E2BIG;
3630 err_out:
3631 	return -EFAULT;
3632 }
3633 
3634 /**
3635  * bpf_strcspn - Calculate the length of the initial substring of @s__ign which
3636  *               does not contain letters in @reject__ign
3637  * @s__ign: The string to be searched
3638  * @reject__ign: The string to search for
3639  *
3640  * Return:
3641  * * >=0      - The length of the initial substring of @s__ign which does not
3642  *              contain letters from @reject__ign
3643  * * %-EFAULT - Cannot read one of the strings
3644  * * %-E2BIG  - One of the strings is too large
3645  * * %-ERANGE - One of the strings is outside of kernel address space
3646  */
3647 __bpf_kfunc int bpf_strcspn(const char *s__ign, const char *reject__ign)
3648 {
3649 	char cs, cr;
3650 	int i, j;
3651 
3652 	if (!copy_from_kernel_nofault_allowed(s__ign, 1) ||
3653 	    !copy_from_kernel_nofault_allowed(reject__ign, 1)) {
3654 		return -ERANGE;
3655 	}
3656 
3657 	guard(pagefault)();
3658 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3659 		__get_kernel_nofault(&cs, s__ign, char, err_out);
3660 		if (cs == '\0')
3661 			return i;
3662 		for (j = 0; j < XATTR_SIZE_MAX; j++) {
3663 			__get_kernel_nofault(&cr, reject__ign + j, char, err_out);
3664 			if (cs == cr || cr == '\0')
3665 				break;
3666 		}
3667 		if (j == XATTR_SIZE_MAX)
3668 			return -E2BIG;
3669 		if (cr != '\0')
3670 			return i;
3671 		s__ign++;
3672 	}
3673 	return -E2BIG;
3674 err_out:
3675 	return -EFAULT;
3676 }
3677 
3678 /**
3679  * bpf_strnstr - Find the first substring in a length-limited string
3680  * @s1__ign: The string to be searched
3681  * @s2__ign: The string to search for
3682  * @len: the maximum number of characters to search
3683  *
3684  * Return:
3685  * * >=0      - Index of the first character of the first occurrence of @s2__ign
3686  *              within the first @len characters of @s1__ign
3687  * * %-ENOENT - @s2__ign not found in the first @len characters of @s1__ign
3688  * * %-EFAULT - Cannot read one of the strings
3689  * * %-E2BIG  - One of the strings is too large
3690  * * %-ERANGE - One of the strings is outside of kernel address space
3691  */
3692 __bpf_kfunc int bpf_strnstr(const char *s1__ign, const char *s2__ign, size_t len)
3693 {
3694 	char c1, c2;
3695 	int i, j;
3696 
3697 	if (!copy_from_kernel_nofault_allowed(s1__ign, 1) ||
3698 	    !copy_from_kernel_nofault_allowed(s2__ign, 1)) {
3699 		return -ERANGE;
3700 	}
3701 
3702 	guard(pagefault)();
3703 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3704 		for (j = 0; i + j <= len && j < XATTR_SIZE_MAX; j++) {
3705 			__get_kernel_nofault(&c2, s2__ign + j, char, err_out);
3706 			if (c2 == '\0')
3707 				return i;
3708 			/*
3709 			 * We allow reading an extra byte from s2 (note the
3710 			 * `i + j <= len` above) to cover the case when s2 is
3711 			 * a suffix of the first len chars of s1.
3712 			 */
3713 			if (i + j == len)
3714 				break;
3715 			__get_kernel_nofault(&c1, s1__ign + j, char, err_out);
3716 			if (c1 == '\0')
3717 				return -ENOENT;
3718 			if (c1 != c2)
3719 				break;
3720 		}
3721 		if (j == XATTR_SIZE_MAX)
3722 			return -E2BIG;
3723 		if (i + j == len)
3724 			return -ENOENT;
3725 		s1__ign++;
3726 	}
3727 	return -E2BIG;
3728 err_out:
3729 	return -EFAULT;
3730 }
3731 
3732 /**
3733  * bpf_strstr - Find the first substring in a string
3734  * @s1__ign: The string to be searched
3735  * @s2__ign: The string to search for
3736  *
3737  * Return:
3738  * * >=0      - Index of the first character of the first occurrence of @s2__ign
3739  *              within @s1__ign
3740  * * %-ENOENT - @s2__ign is not a substring of @s1__ign
3741  * * %-EFAULT - Cannot read one of the strings
3742  * * %-E2BIG  - One of the strings is too large
3743  * * %-ERANGE - One of the strings is outside of kernel address space
3744  */
3745 __bpf_kfunc int bpf_strstr(const char *s1__ign, const char *s2__ign)
3746 {
3747 	return bpf_strnstr(s1__ign, s2__ign, XATTR_SIZE_MAX);
3748 }
3749 #ifdef CONFIG_KEYS
3750 /**
3751  * bpf_lookup_user_key - lookup a key by its serial
3752  * @serial: key handle serial number
3753  * @flags: lookup-specific flags
3754  *
3755  * Search a key with a given *serial* and the provided *flags*.
3756  * If found, increment the reference count of the key by one, and
3757  * return it in the bpf_key structure.
3758  *
3759  * The bpf_key structure must be passed to bpf_key_put() when done
3760  * with it, so that the key reference count is decremented and the
3761  * bpf_key structure is freed.
3762  *
3763  * Permission checks are deferred to the time the key is used by
3764  * one of the available key-specific kfuncs.
3765  *
3766  * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
3767  * special keyring (e.g. session keyring), if it doesn't yet exist.
3768  * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
3769  * for the key construction, and to retrieve uninstantiated keys (keys
3770  * without data attached to them).
3771  *
3772  * Return: a bpf_key pointer with a valid key pointer if the key is found, a
3773  *         NULL pointer otherwise.
3774  */
3775 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(s32 serial, u64 flags)
3776 {
3777 	key_ref_t key_ref;
3778 	struct bpf_key *bkey;
3779 
3780 	if (flags & ~KEY_LOOKUP_ALL)
3781 		return NULL;
3782 
3783 	/*
3784 	 * Permission check is deferred until the key is used, as the
3785 	 * intent of the caller is unknown here.
3786 	 */
3787 	key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
3788 	if (IS_ERR(key_ref))
3789 		return NULL;
3790 
3791 	bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
3792 	if (!bkey) {
3793 		key_put(key_ref_to_ptr(key_ref));
3794 		return NULL;
3795 	}
3796 
3797 	bkey->key = key_ref_to_ptr(key_ref);
3798 	bkey->has_ref = true;
3799 
3800 	return bkey;
3801 }
3802 
3803 /**
3804  * bpf_lookup_system_key - lookup a key by a system-defined ID
3805  * @id: key ID
3806  *
3807  * Obtain a bpf_key structure with a key pointer set to the passed key ID.
3808  * The key pointer is marked as invalid, to prevent bpf_key_put() from
3809  * attempting to decrement the key reference count on that pointer. The key
3810  * pointer set in such way is currently understood only by
3811  * verify_pkcs7_signature().
3812  *
3813  * Set *id* to one of the values defined in include/linux/verification.h:
3814  * 0 for the primary keyring (immutable keyring of system keys);
3815  * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
3816  * (where keys can be added only if they are vouched for by existing keys
3817  * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
3818  * keyring (primarily used by the integrity subsystem to verify a kexec'ed
3819  * kerned image and, possibly, the initramfs signature).
3820  *
3821  * Return: a bpf_key pointer with an invalid key pointer set from the
3822  *         pre-determined ID on success, a NULL pointer otherwise
3823  */
3824 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id)
3825 {
3826 	struct bpf_key *bkey;
3827 
3828 	if (system_keyring_id_check(id) < 0)
3829 		return NULL;
3830 
3831 	bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
3832 	if (!bkey)
3833 		return NULL;
3834 
3835 	bkey->key = (struct key *)(unsigned long)id;
3836 	bkey->has_ref = false;
3837 
3838 	return bkey;
3839 }
3840 
3841 /**
3842  * bpf_key_put - decrement key reference count if key is valid and free bpf_key
3843  * @bkey: bpf_key structure
3844  *
3845  * Decrement the reference count of the key inside *bkey*, if the pointer
3846  * is valid, and free *bkey*.
3847  */
3848 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey)
3849 {
3850 	if (bkey->has_ref)
3851 		key_put(bkey->key);
3852 
3853 	kfree(bkey);
3854 }
3855 
3856 /**
3857  * bpf_verify_pkcs7_signature - verify a PKCS#7 signature
3858  * @data_p: data to verify
3859  * @sig_p: signature of the data
3860  * @trusted_keyring: keyring with keys trusted for signature verification
3861  *
3862  * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
3863  * with keys in a keyring referenced by *trusted_keyring*.
3864  *
3865  * Return: 0 on success, a negative value on error.
3866  */
3867 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p,
3868 			       struct bpf_dynptr *sig_p,
3869 			       struct bpf_key *trusted_keyring)
3870 {
3871 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
3872 	struct bpf_dynptr_kern *data_ptr = (struct bpf_dynptr_kern *)data_p;
3873 	struct bpf_dynptr_kern *sig_ptr = (struct bpf_dynptr_kern *)sig_p;
3874 	const void *data, *sig;
3875 	u32 data_len, sig_len;
3876 	int ret;
3877 
3878 	if (trusted_keyring->has_ref) {
3879 		/*
3880 		 * Do the permission check deferred in bpf_lookup_user_key().
3881 		 * See bpf_lookup_user_key() for more details.
3882 		 *
3883 		 * A call to key_task_permission() here would be redundant, as
3884 		 * it is already done by keyring_search() called by
3885 		 * find_asymmetric_key().
3886 		 */
3887 		ret = key_validate(trusted_keyring->key);
3888 		if (ret < 0)
3889 			return ret;
3890 	}
3891 
3892 	data_len = __bpf_dynptr_size(data_ptr);
3893 	data = __bpf_dynptr_data(data_ptr, data_len);
3894 	sig_len = __bpf_dynptr_size(sig_ptr);
3895 	sig = __bpf_dynptr_data(sig_ptr, sig_len);
3896 
3897 	return verify_pkcs7_signature(data, data_len, sig, sig_len,
3898 				      trusted_keyring->key,
3899 				      VERIFYING_BPF_SIGNATURE, NULL,
3900 				      NULL);
3901 #else
3902 	return -EOPNOTSUPP;
3903 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
3904 }
3905 #endif /* CONFIG_KEYS */
3906 
3907 typedef int (*bpf_task_work_callback_t)(struct bpf_map *map, void *key, void *value);
3908 
3909 enum bpf_task_work_state {
3910 	/* bpf_task_work is ready to be used */
3911 	BPF_TW_STANDBY = 0,
3912 	/* irq work scheduling in progress */
3913 	BPF_TW_PENDING,
3914 	/* task work scheduling in progress */
3915 	BPF_TW_SCHEDULING,
3916 	/* task work is scheduled successfully */
3917 	BPF_TW_SCHEDULED,
3918 	/* callback is running */
3919 	BPF_TW_RUNNING,
3920 	/* associated BPF map value is deleted */
3921 	BPF_TW_FREED,
3922 };
3923 
3924 struct bpf_task_work_ctx {
3925 	enum bpf_task_work_state state;
3926 	refcount_t refcnt;
3927 	struct callback_head work;
3928 	struct irq_work irq_work;
3929 	/* bpf_prog that schedules task work */
3930 	struct bpf_prog *prog;
3931 	/* task for which callback is scheduled */
3932 	struct task_struct *task;
3933 	/* the map and map value associated with this context */
3934 	struct bpf_map *map;
3935 	void *map_val;
3936 	enum task_work_notify_mode mode;
3937 	bpf_task_work_callback_t callback_fn;
3938 	struct rcu_head rcu;
3939 } __aligned(8);
3940 
3941 /* Actual type for struct bpf_task_work */
3942 struct bpf_task_work_kern {
3943 	struct bpf_task_work_ctx *ctx;
3944 };
3945 
3946 static void bpf_task_work_ctx_reset(struct bpf_task_work_ctx *ctx)
3947 {
3948 	if (ctx->prog) {
3949 		bpf_prog_put(ctx->prog);
3950 		ctx->prog = NULL;
3951 	}
3952 	if (ctx->task) {
3953 		bpf_task_release(ctx->task);
3954 		ctx->task = NULL;
3955 	}
3956 }
3957 
3958 static bool bpf_task_work_ctx_tryget(struct bpf_task_work_ctx *ctx)
3959 {
3960 	return refcount_inc_not_zero(&ctx->refcnt);
3961 }
3962 
3963 static void bpf_task_work_ctx_put(struct bpf_task_work_ctx *ctx)
3964 {
3965 	if (!refcount_dec_and_test(&ctx->refcnt))
3966 		return;
3967 
3968 	bpf_task_work_ctx_reset(ctx);
3969 
3970 	/* bpf_mem_free expects migration to be disabled */
3971 	migrate_disable();
3972 	bpf_mem_free(&bpf_global_ma, ctx);
3973 	migrate_enable();
3974 }
3975 
3976 static void bpf_task_work_cancel(struct bpf_task_work_ctx *ctx)
3977 {
3978 	/*
3979 	 * Scheduled task_work callback holds ctx ref, so if we successfully
3980 	 * cancelled, we put that ref on callback's behalf. If we couldn't
3981 	 * cancel, callback will inevitably run or has already completed
3982 	 * running, and it would have taken care of its ctx ref itself.
3983 	 */
3984 	if (task_work_cancel(ctx->task, &ctx->work))
3985 		bpf_task_work_ctx_put(ctx);
3986 }
3987 
3988 static void bpf_task_work_callback(struct callback_head *cb)
3989 {
3990 	struct bpf_task_work_ctx *ctx = container_of(cb, struct bpf_task_work_ctx, work);
3991 	enum bpf_task_work_state state;
3992 	u32 idx;
3993 	void *key;
3994 
3995 	/* Read lock is needed to protect ctx and map key/value access */
3996 	guard(rcu_tasks_trace)();
3997 	/*
3998 	 * This callback may start running before bpf_task_work_irq() switched to
3999 	 * SCHEDULED state, so handle both transition variants SCHEDULING|SCHEDULED -> RUNNING.
4000 	 */
4001 	state = cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_RUNNING);
4002 	if (state == BPF_TW_SCHEDULED)
4003 		state = cmpxchg(&ctx->state, BPF_TW_SCHEDULED, BPF_TW_RUNNING);
4004 	if (state == BPF_TW_FREED) {
4005 		bpf_task_work_ctx_put(ctx);
4006 		return;
4007 	}
4008 
4009 	key = (void *)map_key_from_value(ctx->map, ctx->map_val, &idx);
4010 
4011 	migrate_disable();
4012 	ctx->callback_fn(ctx->map, key, ctx->map_val);
4013 	migrate_enable();
4014 
4015 	bpf_task_work_ctx_reset(ctx);
4016 	(void)cmpxchg(&ctx->state, BPF_TW_RUNNING, BPF_TW_STANDBY);
4017 
4018 	bpf_task_work_ctx_put(ctx);
4019 }
4020 
4021 static void bpf_task_work_irq(struct irq_work *irq_work)
4022 {
4023 	struct bpf_task_work_ctx *ctx = container_of(irq_work, struct bpf_task_work_ctx, irq_work);
4024 	enum bpf_task_work_state state;
4025 	int err;
4026 
4027 	guard(rcu_tasks_trace)();
4028 
4029 	if (cmpxchg(&ctx->state, BPF_TW_PENDING, BPF_TW_SCHEDULING) != BPF_TW_PENDING) {
4030 		bpf_task_work_ctx_put(ctx);
4031 		return;
4032 	}
4033 
4034 	err = task_work_add(ctx->task, &ctx->work, ctx->mode);
4035 	if (err) {
4036 		bpf_task_work_ctx_reset(ctx);
4037 		/*
4038 		 * try to switch back to STANDBY for another task_work reuse, but we might have
4039 		 * gone to FREED already, which is fine as we already cleaned up after ourselves
4040 		 */
4041 		(void)cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_STANDBY);
4042 		bpf_task_work_ctx_put(ctx);
4043 		return;
4044 	}
4045 
4046 	/*
4047 	 * It's technically possible for just scheduled task_work callback to
4048 	 * complete running by now, going SCHEDULING -> RUNNING and then
4049 	 * dropping its ctx refcount. Instead of capturing extra ref just to
4050 	 * protected below ctx->state access, we rely on RCU protection to
4051 	 * perform below SCHEDULING -> SCHEDULED attempt.
4052 	 */
4053 	state = cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_SCHEDULED);
4054 	if (state == BPF_TW_FREED)
4055 		bpf_task_work_cancel(ctx); /* clean up if we switched into FREED state */
4056 }
4057 
4058 static struct bpf_task_work_ctx *bpf_task_work_fetch_ctx(struct bpf_task_work *tw,
4059 							 struct bpf_map *map)
4060 {
4061 	struct bpf_task_work_kern *twk = (void *)tw;
4062 	struct bpf_task_work_ctx *ctx, *old_ctx;
4063 
4064 	ctx = READ_ONCE(twk->ctx);
4065 	if (ctx)
4066 		return ctx;
4067 
4068 	ctx = bpf_mem_alloc(&bpf_global_ma, sizeof(struct bpf_task_work_ctx));
4069 	if (!ctx)
4070 		return ERR_PTR(-ENOMEM);
4071 
4072 	memset(ctx, 0, sizeof(*ctx));
4073 	refcount_set(&ctx->refcnt, 1); /* map's own ref */
4074 	ctx->state = BPF_TW_STANDBY;
4075 
4076 	old_ctx = cmpxchg(&twk->ctx, NULL, ctx);
4077 	if (old_ctx) {
4078 		/*
4079 		 * tw->ctx is set by concurrent BPF program, release allocated
4080 		 * memory and try to reuse already set context.
4081 		 */
4082 		bpf_mem_free(&bpf_global_ma, ctx);
4083 		return old_ctx;
4084 	}
4085 
4086 	return ctx; /* Success */
4087 }
4088 
4089 static struct bpf_task_work_ctx *bpf_task_work_acquire_ctx(struct bpf_task_work *tw,
4090 							   struct bpf_map *map)
4091 {
4092 	struct bpf_task_work_ctx *ctx;
4093 
4094 	ctx = bpf_task_work_fetch_ctx(tw, map);
4095 	if (IS_ERR(ctx))
4096 		return ctx;
4097 
4098 	/* try to get ref for task_work callback to hold */
4099 	if (!bpf_task_work_ctx_tryget(ctx))
4100 		return ERR_PTR(-EBUSY);
4101 
4102 	if (cmpxchg(&ctx->state, BPF_TW_STANDBY, BPF_TW_PENDING) != BPF_TW_STANDBY) {
4103 		/* lost acquiring race or map_release_uref() stole it from us, put ref and bail */
4104 		bpf_task_work_ctx_put(ctx);
4105 		return ERR_PTR(-EBUSY);
4106 	}
4107 
4108 	/*
4109 	 * If no process or bpffs is holding a reference to the map, no new callbacks should be
4110 	 * scheduled. This does not address any race or correctness issue, but rather is a policy
4111 	 * choice: dropping user references should stop everything.
4112 	 */
4113 	if (!atomic64_read(&map->usercnt)) {
4114 		/* drop ref we just got for task_work callback itself */
4115 		bpf_task_work_ctx_put(ctx);
4116 		/* transfer map's ref into cancel_and_free() */
4117 		bpf_task_work_cancel_and_free(tw);
4118 		return ERR_PTR(-EBUSY);
4119 	}
4120 
4121 	return ctx;
4122 }
4123 
4124 static int bpf_task_work_schedule(struct task_struct *task, struct bpf_task_work *tw,
4125 				  struct bpf_map *map, bpf_task_work_callback_t callback_fn,
4126 				  struct bpf_prog_aux *aux, enum task_work_notify_mode mode)
4127 {
4128 	struct bpf_prog *prog;
4129 	struct bpf_task_work_ctx *ctx;
4130 	int err;
4131 
4132 	BTF_TYPE_EMIT(struct bpf_task_work);
4133 
4134 	prog = bpf_prog_inc_not_zero(aux->prog);
4135 	if (IS_ERR(prog))
4136 		return -EBADF;
4137 	task = bpf_task_acquire(task);
4138 	if (!task) {
4139 		err = -EBADF;
4140 		goto release_prog;
4141 	}
4142 
4143 	ctx = bpf_task_work_acquire_ctx(tw, map);
4144 	if (IS_ERR(ctx)) {
4145 		err = PTR_ERR(ctx);
4146 		goto release_all;
4147 	}
4148 
4149 	ctx->task = task;
4150 	ctx->callback_fn = callback_fn;
4151 	ctx->prog = prog;
4152 	ctx->mode = mode;
4153 	ctx->map = map;
4154 	ctx->map_val = (void *)tw - map->record->task_work_off;
4155 	init_task_work(&ctx->work, bpf_task_work_callback);
4156 	init_irq_work(&ctx->irq_work, bpf_task_work_irq);
4157 
4158 	irq_work_queue(&ctx->irq_work);
4159 	return 0;
4160 
4161 release_all:
4162 	bpf_task_release(task);
4163 release_prog:
4164 	bpf_prog_put(prog);
4165 	return err;
4166 }
4167 
4168 /**
4169  * bpf_task_work_schedule_signal - Schedule BPF callback using task_work_add with TWA_SIGNAL mode
4170  * @task: Task struct for which callback should be scheduled
4171  * @tw: Pointer to struct bpf_task_work in BPF map value for internal bookkeeping
4172  * @map__map: bpf_map that embeds struct bpf_task_work in the values
4173  * @callback: pointer to BPF subprogram to call
4174  * @aux__prog: user should pass NULL
4175  *
4176  * Return: 0 if task work has been scheduled successfully, negative error code otherwise
4177  */
4178 __bpf_kfunc int bpf_task_work_schedule_signal(struct task_struct *task, struct bpf_task_work *tw,
4179 					      void *map__map, bpf_task_work_callback_t callback,
4180 					      void *aux__prog)
4181 {
4182 	return bpf_task_work_schedule(task, tw, map__map, callback, aux__prog, TWA_SIGNAL);
4183 }
4184 
4185 /**
4186  * bpf_task_work_schedule_resume - Schedule BPF callback using task_work_add with TWA_RESUME mode
4187  * @task: Task struct for which callback should be scheduled
4188  * @tw: Pointer to struct bpf_task_work in BPF map value for internal bookkeeping
4189  * @map__map: bpf_map that embeds struct bpf_task_work in the values
4190  * @callback: pointer to BPF subprogram to call
4191  * @aux__prog: user should pass NULL
4192  *
4193  * Return: 0 if task work has been scheduled successfully, negative error code otherwise
4194  */
4195 __bpf_kfunc int bpf_task_work_schedule_resume(struct task_struct *task, struct bpf_task_work *tw,
4196 					      void *map__map, bpf_task_work_callback_t callback,
4197 					      void *aux__prog)
4198 {
4199 	return bpf_task_work_schedule(task, tw, map__map, callback, aux__prog, TWA_RESUME);
4200 }
4201 
4202 __bpf_kfunc_end_defs();
4203 
4204 static void bpf_task_work_cancel_scheduled(struct irq_work *irq_work)
4205 {
4206 	struct bpf_task_work_ctx *ctx = container_of(irq_work, struct bpf_task_work_ctx, irq_work);
4207 
4208 	bpf_task_work_cancel(ctx); /* this might put task_work callback's ref */
4209 	bpf_task_work_ctx_put(ctx); /* and here we put map's own ref that was transferred to us */
4210 }
4211 
4212 void bpf_task_work_cancel_and_free(void *val)
4213 {
4214 	struct bpf_task_work_kern *twk = val;
4215 	struct bpf_task_work_ctx *ctx;
4216 	enum bpf_task_work_state state;
4217 
4218 	ctx = xchg(&twk->ctx, NULL);
4219 	if (!ctx)
4220 		return;
4221 
4222 	state = xchg(&ctx->state, BPF_TW_FREED);
4223 	if (state == BPF_TW_SCHEDULED) {
4224 		/* run in irq_work to avoid locks in NMI */
4225 		init_irq_work(&ctx->irq_work, bpf_task_work_cancel_scheduled);
4226 		irq_work_queue(&ctx->irq_work);
4227 		return;
4228 	}
4229 
4230 	bpf_task_work_ctx_put(ctx); /* put bpf map's ref */
4231 }
4232 
4233 BTF_KFUNCS_START(generic_btf_ids)
4234 #ifdef CONFIG_CRASH_DUMP
4235 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
4236 #endif
4237 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
4238 BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
4239 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
4240 BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE)
4241 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU)
4242 BTF_ID_FLAGS(func, bpf_list_push_front_impl)
4243 BTF_ID_FLAGS(func, bpf_list_push_back_impl)
4244 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
4245 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
4246 BTF_ID_FLAGS(func, bpf_list_front, KF_RET_NULL)
4247 BTF_ID_FLAGS(func, bpf_list_back, KF_RET_NULL)
4248 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
4249 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
4250 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
4251 BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
4252 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
4253 BTF_ID_FLAGS(func, bpf_rbtree_root, KF_RET_NULL)
4254 BTF_ID_FLAGS(func, bpf_rbtree_left, KF_RET_NULL)
4255 BTF_ID_FLAGS(func, bpf_rbtree_right, KF_RET_NULL)
4256 
4257 #ifdef CONFIG_CGROUPS
4258 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
4259 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
4260 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
4261 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
4262 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
4263 BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
4264 #endif
4265 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
4266 BTF_ID_FLAGS(func, bpf_task_from_vpid, KF_ACQUIRE | KF_RET_NULL)
4267 BTF_ID_FLAGS(func, bpf_throw)
4268 #ifdef CONFIG_BPF_EVENTS
4269 BTF_ID_FLAGS(func, bpf_send_signal_task, KF_TRUSTED_ARGS)
4270 #endif
4271 #ifdef CONFIG_KEYS
4272 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
4273 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
4274 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
4275 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
4276 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
4277 #endif
4278 #endif
4279 BTF_KFUNCS_END(generic_btf_ids)
4280 
4281 static const struct btf_kfunc_id_set generic_kfunc_set = {
4282 	.owner = THIS_MODULE,
4283 	.set   = &generic_btf_ids,
4284 };
4285 
4286 
4287 BTF_ID_LIST(generic_dtor_ids)
4288 BTF_ID(struct, task_struct)
4289 BTF_ID(func, bpf_task_release_dtor)
4290 #ifdef CONFIG_CGROUPS
4291 BTF_ID(struct, cgroup)
4292 BTF_ID(func, bpf_cgroup_release_dtor)
4293 #endif
4294 
4295 BTF_KFUNCS_START(common_btf_ids)
4296 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx, KF_FASTCALL)
4297 BTF_ID_FLAGS(func, bpf_rdonly_cast, KF_FASTCALL)
4298 BTF_ID_FLAGS(func, bpf_rcu_read_lock)
4299 BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
4300 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
4301 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
4302 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
4303 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
4304 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
4305 BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU)
4306 BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL)
4307 BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY)
4308 #ifdef CONFIG_CGROUPS
4309 BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS)
4310 BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL)
4311 BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY)
4312 BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
4313 BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL)
4314 BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY)
4315 #endif
4316 BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
4317 BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL)
4318 BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY)
4319 BTF_ID_FLAGS(func, bpf_dynptr_adjust)
4320 BTF_ID_FLAGS(func, bpf_dynptr_is_null)
4321 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
4322 BTF_ID_FLAGS(func, bpf_dynptr_size)
4323 BTF_ID_FLAGS(func, bpf_dynptr_clone)
4324 BTF_ID_FLAGS(func, bpf_dynptr_copy)
4325 BTF_ID_FLAGS(func, bpf_dynptr_memset)
4326 #ifdef CONFIG_NET
4327 BTF_ID_FLAGS(func, bpf_modify_return_test_tp)
4328 #endif
4329 BTF_ID_FLAGS(func, bpf_wq_init)
4330 BTF_ID_FLAGS(func, bpf_wq_set_callback_impl)
4331 BTF_ID_FLAGS(func, bpf_wq_start)
4332 BTF_ID_FLAGS(func, bpf_preempt_disable)
4333 BTF_ID_FLAGS(func, bpf_preempt_enable)
4334 BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW)
4335 BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL)
4336 BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY)
4337 BTF_ID_FLAGS(func, bpf_copy_from_user_str, KF_SLEEPABLE)
4338 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str, KF_SLEEPABLE)
4339 BTF_ID_FLAGS(func, bpf_get_kmem_cache)
4340 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_new, KF_ITER_NEW | KF_SLEEPABLE)
4341 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
4342 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
4343 BTF_ID_FLAGS(func, bpf_local_irq_save)
4344 BTF_ID_FLAGS(func, bpf_local_irq_restore)
4345 BTF_ID_FLAGS(func, bpf_probe_read_user_dynptr)
4346 BTF_ID_FLAGS(func, bpf_probe_read_kernel_dynptr)
4347 BTF_ID_FLAGS(func, bpf_probe_read_user_str_dynptr)
4348 BTF_ID_FLAGS(func, bpf_probe_read_kernel_str_dynptr)
4349 BTF_ID_FLAGS(func, bpf_copy_from_user_dynptr, KF_SLEEPABLE)
4350 BTF_ID_FLAGS(func, bpf_copy_from_user_str_dynptr, KF_SLEEPABLE)
4351 BTF_ID_FLAGS(func, bpf_copy_from_user_task_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS)
4352 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS)
4353 #ifdef CONFIG_DMA_SHARED_BUFFER
4354 BTF_ID_FLAGS(func, bpf_iter_dmabuf_new, KF_ITER_NEW | KF_SLEEPABLE)
4355 BTF_ID_FLAGS(func, bpf_iter_dmabuf_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
4356 BTF_ID_FLAGS(func, bpf_iter_dmabuf_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
4357 #endif
4358 BTF_ID_FLAGS(func, __bpf_trap)
4359 BTF_ID_FLAGS(func, bpf_strcmp);
4360 BTF_ID_FLAGS(func, bpf_strcasecmp);
4361 BTF_ID_FLAGS(func, bpf_strchr);
4362 BTF_ID_FLAGS(func, bpf_strchrnul);
4363 BTF_ID_FLAGS(func, bpf_strnchr);
4364 BTF_ID_FLAGS(func, bpf_strrchr);
4365 BTF_ID_FLAGS(func, bpf_strlen);
4366 BTF_ID_FLAGS(func, bpf_strnlen);
4367 BTF_ID_FLAGS(func, bpf_strspn);
4368 BTF_ID_FLAGS(func, bpf_strcspn);
4369 BTF_ID_FLAGS(func, bpf_strstr);
4370 BTF_ID_FLAGS(func, bpf_strnstr);
4371 #if defined(CONFIG_BPF_LSM) && defined(CONFIG_CGROUPS)
4372 BTF_ID_FLAGS(func, bpf_cgroup_read_xattr, KF_RCU)
4373 #endif
4374 BTF_ID_FLAGS(func, bpf_stream_vprintk, KF_TRUSTED_ARGS)
4375 BTF_ID_FLAGS(func, bpf_task_work_schedule_signal, KF_TRUSTED_ARGS)
4376 BTF_ID_FLAGS(func, bpf_task_work_schedule_resume, KF_TRUSTED_ARGS)
4377 BTF_KFUNCS_END(common_btf_ids)
4378 
4379 static const struct btf_kfunc_id_set common_kfunc_set = {
4380 	.owner = THIS_MODULE,
4381 	.set   = &common_btf_ids,
4382 };
4383 
4384 static int __init kfunc_init(void)
4385 {
4386 	int ret;
4387 	const struct btf_id_dtor_kfunc generic_dtors[] = {
4388 		{
4389 			.btf_id       = generic_dtor_ids[0],
4390 			.kfunc_btf_id = generic_dtor_ids[1]
4391 		},
4392 #ifdef CONFIG_CGROUPS
4393 		{
4394 			.btf_id       = generic_dtor_ids[2],
4395 			.kfunc_btf_id = generic_dtor_ids[3]
4396 		},
4397 #endif
4398 	};
4399 
4400 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
4401 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
4402 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set);
4403 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
4404 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set);
4405 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &generic_kfunc_set);
4406 	ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
4407 						  ARRAY_SIZE(generic_dtors),
4408 						  THIS_MODULE);
4409 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
4410 }
4411 
4412 late_initcall(kfunc_init);
4413 
4414 /* Get a pointer to dynptr data up to len bytes for read only access. If
4415  * the dynptr doesn't have continuous data up to len bytes, return NULL.
4416  */
4417 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len)
4418 {
4419 	const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr;
4420 
4421 	return bpf_dynptr_slice(p, 0, NULL, len);
4422 }
4423 
4424 /* Get a pointer to dynptr data up to len bytes for read write access. If
4425  * the dynptr doesn't have continuous data up to len bytes, or the dynptr
4426  * is read only, return NULL.
4427  */
4428 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len)
4429 {
4430 	if (__bpf_dynptr_is_rdonly(ptr))
4431 		return NULL;
4432 	return (void *)__bpf_dynptr_data(ptr, len);
4433 }
4434