1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/jhash.h> 8 #include <linux/filter.h> 9 #include <linux/rculist_nulls.h> 10 #include <linux/random.h> 11 #include <uapi/linux/btf.h> 12 #include <linux/rcupdate_trace.h> 13 #include <linux/btf_ids.h> 14 #include "percpu_freelist.h" 15 #include "bpf_lru_list.h" 16 #include "map_in_map.h" 17 18 #define HTAB_CREATE_FLAG_MASK \ 19 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ 20 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) 21 22 #define BATCH_OPS(_name) \ 23 .map_lookup_batch = \ 24 _name##_map_lookup_batch, \ 25 .map_lookup_and_delete_batch = \ 26 _name##_map_lookup_and_delete_batch, \ 27 .map_update_batch = \ 28 generic_map_update_batch, \ 29 .map_delete_batch = \ 30 generic_map_delete_batch 31 32 /* 33 * The bucket lock has two protection scopes: 34 * 35 * 1) Serializing concurrent operations from BPF programs on different 36 * CPUs 37 * 38 * 2) Serializing concurrent operations from BPF programs and sys_bpf() 39 * 40 * BPF programs can execute in any context including perf, kprobes and 41 * tracing. As there are almost no limits where perf, kprobes and tracing 42 * can be invoked from the lock operations need to be protected against 43 * deadlocks. Deadlocks can be caused by recursion and by an invocation in 44 * the lock held section when functions which acquire this lock are invoked 45 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU 46 * variable bpf_prog_active, which prevents BPF programs attached to perf 47 * events, kprobes and tracing to be invoked before the prior invocation 48 * from one of these contexts completed. sys_bpf() uses the same mechanism 49 * by pinning the task to the current CPU and incrementing the recursion 50 * protection across the map operation. 51 * 52 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain 53 * operations like memory allocations (even with GFP_ATOMIC) from atomic 54 * contexts. This is required because even with GFP_ATOMIC the memory 55 * allocator calls into code paths which acquire locks with long held lock 56 * sections. To ensure the deterministic behaviour these locks are regular 57 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only 58 * true atomic contexts on an RT kernel are the low level hardware 59 * handling, scheduling, low level interrupt handling, NMIs etc. None of 60 * these contexts should ever do memory allocations. 61 * 62 * As regular device interrupt handlers and soft interrupts are forced into 63 * thread context, the existing code which does 64 * spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*(); 65 * just works. 66 * 67 * In theory the BPF locks could be converted to regular spinlocks as well, 68 * but the bucket locks and percpu_freelist locks can be taken from 69 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be 70 * atomic contexts even on RT. These mechanisms require preallocated maps, 71 * so there is no need to invoke memory allocations within the lock held 72 * sections. 73 * 74 * BPF maps which need dynamic allocation are only used from (forced) 75 * thread context on RT and can therefore use regular spinlocks which in 76 * turn allows to invoke memory allocations from the lock held section. 77 * 78 * On a non RT kernel this distinction is neither possible nor required. 79 * spinlock maps to raw_spinlock and the extra code is optimized out by the 80 * compiler. 81 */ 82 struct bucket { 83 struct hlist_nulls_head head; 84 union { 85 raw_spinlock_t raw_lock; 86 spinlock_t lock; 87 }; 88 }; 89 90 #define HASHTAB_MAP_LOCK_COUNT 8 91 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1) 92 93 struct bpf_htab { 94 struct bpf_map map; 95 struct bucket *buckets; 96 void *elems; 97 union { 98 struct pcpu_freelist freelist; 99 struct bpf_lru lru; 100 }; 101 struct htab_elem *__percpu *extra_elems; 102 atomic_t count; /* number of elements in this hashtable */ 103 u32 n_buckets; /* number of hash buckets */ 104 u32 elem_size; /* size of each element in bytes */ 105 u32 hashrnd; 106 struct lock_class_key lockdep_key; 107 int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT]; 108 }; 109 110 /* each htab element is struct htab_elem + key + value */ 111 struct htab_elem { 112 union { 113 struct hlist_nulls_node hash_node; 114 struct { 115 void *padding; 116 union { 117 struct bpf_htab *htab; 118 struct pcpu_freelist_node fnode; 119 struct htab_elem *batch_flink; 120 }; 121 }; 122 }; 123 union { 124 struct rcu_head rcu; 125 struct bpf_lru_node lru_node; 126 }; 127 u32 hash; 128 char key[] __aligned(8); 129 }; 130 131 static inline bool htab_is_prealloc(const struct bpf_htab *htab) 132 { 133 return !(htab->map.map_flags & BPF_F_NO_PREALLOC); 134 } 135 136 static inline bool htab_use_raw_lock(const struct bpf_htab *htab) 137 { 138 return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab)); 139 } 140 141 static void htab_init_buckets(struct bpf_htab *htab) 142 { 143 unsigned int i; 144 145 for (i = 0; i < htab->n_buckets; i++) { 146 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); 147 if (htab_use_raw_lock(htab)) { 148 raw_spin_lock_init(&htab->buckets[i].raw_lock); 149 lockdep_set_class(&htab->buckets[i].raw_lock, 150 &htab->lockdep_key); 151 } else { 152 spin_lock_init(&htab->buckets[i].lock); 153 lockdep_set_class(&htab->buckets[i].lock, 154 &htab->lockdep_key); 155 } 156 cond_resched(); 157 } 158 } 159 160 static inline int htab_lock_bucket(const struct bpf_htab *htab, 161 struct bucket *b, u32 hash, 162 unsigned long *pflags) 163 { 164 unsigned long flags; 165 166 hash = hash & HASHTAB_MAP_LOCK_MASK; 167 168 migrate_disable(); 169 if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) { 170 __this_cpu_dec(*(htab->map_locked[hash])); 171 migrate_enable(); 172 return -EBUSY; 173 } 174 175 if (htab_use_raw_lock(htab)) 176 raw_spin_lock_irqsave(&b->raw_lock, flags); 177 else 178 spin_lock_irqsave(&b->lock, flags); 179 *pflags = flags; 180 181 return 0; 182 } 183 184 static inline void htab_unlock_bucket(const struct bpf_htab *htab, 185 struct bucket *b, u32 hash, 186 unsigned long flags) 187 { 188 hash = hash & HASHTAB_MAP_LOCK_MASK; 189 if (htab_use_raw_lock(htab)) 190 raw_spin_unlock_irqrestore(&b->raw_lock, flags); 191 else 192 spin_unlock_irqrestore(&b->lock, flags); 193 __this_cpu_dec(*(htab->map_locked[hash])); 194 migrate_enable(); 195 } 196 197 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); 198 199 static bool htab_is_lru(const struct bpf_htab *htab) 200 { 201 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || 202 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 203 } 204 205 static bool htab_is_percpu(const struct bpf_htab *htab) 206 { 207 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || 208 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 209 } 210 211 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, 212 void __percpu *pptr) 213 { 214 *(void __percpu **)(l->key + key_size) = pptr; 215 } 216 217 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) 218 { 219 return *(void __percpu **)(l->key + key_size); 220 } 221 222 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) 223 { 224 return *(void **)(l->key + roundup(map->key_size, 8)); 225 } 226 227 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) 228 { 229 return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size); 230 } 231 232 static bool htab_has_extra_elems(struct bpf_htab *htab) 233 { 234 return !htab_is_percpu(htab) && !htab_is_lru(htab); 235 } 236 237 static void htab_free_prealloced_timers(struct bpf_htab *htab) 238 { 239 u32 num_entries = htab->map.max_entries; 240 int i; 241 242 if (!map_value_has_timer(&htab->map)) 243 return; 244 if (htab_has_extra_elems(htab)) 245 num_entries += num_possible_cpus(); 246 247 for (i = 0; i < num_entries; i++) { 248 struct htab_elem *elem; 249 250 elem = get_htab_elem(htab, i); 251 bpf_timer_cancel_and_free(elem->key + 252 round_up(htab->map.key_size, 8) + 253 htab->map.timer_off); 254 cond_resched(); 255 } 256 } 257 258 static void htab_free_prealloced_kptrs(struct bpf_htab *htab) 259 { 260 u32 num_entries = htab->map.max_entries; 261 int i; 262 263 if (!map_value_has_kptrs(&htab->map)) 264 return; 265 if (htab_has_extra_elems(htab)) 266 num_entries += num_possible_cpus(); 267 268 for (i = 0; i < num_entries; i++) { 269 struct htab_elem *elem; 270 271 elem = get_htab_elem(htab, i); 272 bpf_map_free_kptrs(&htab->map, elem->key + round_up(htab->map.key_size, 8)); 273 cond_resched(); 274 } 275 } 276 277 static void htab_free_elems(struct bpf_htab *htab) 278 { 279 int i; 280 281 if (!htab_is_percpu(htab)) 282 goto free_elems; 283 284 for (i = 0; i < htab->map.max_entries; i++) { 285 void __percpu *pptr; 286 287 pptr = htab_elem_get_ptr(get_htab_elem(htab, i), 288 htab->map.key_size); 289 free_percpu(pptr); 290 cond_resched(); 291 } 292 free_elems: 293 bpf_map_area_free(htab->elems); 294 } 295 296 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock 297 * (bucket_lock). If both locks need to be acquired together, the lock 298 * order is always lru_lock -> bucket_lock and this only happens in 299 * bpf_lru_list.c logic. For example, certain code path of 300 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), 301 * will acquire lru_lock first followed by acquiring bucket_lock. 302 * 303 * In hashtab.c, to avoid deadlock, lock acquisition of 304 * bucket_lock followed by lru_lock is not allowed. In such cases, 305 * bucket_lock needs to be released first before acquiring lru_lock. 306 */ 307 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, 308 u32 hash) 309 { 310 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); 311 struct htab_elem *l; 312 313 if (node) { 314 u32 key_size = htab->map.key_size; 315 316 l = container_of(node, struct htab_elem, lru_node); 317 memcpy(l->key, key, key_size); 318 check_and_init_map_value(&htab->map, 319 l->key + round_up(key_size, 8)); 320 return l; 321 } 322 323 return NULL; 324 } 325 326 static int prealloc_init(struct bpf_htab *htab) 327 { 328 u32 num_entries = htab->map.max_entries; 329 int err = -ENOMEM, i; 330 331 if (htab_has_extra_elems(htab)) 332 num_entries += num_possible_cpus(); 333 334 htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries, 335 htab->map.numa_node); 336 if (!htab->elems) 337 return -ENOMEM; 338 339 if (!htab_is_percpu(htab)) 340 goto skip_percpu_elems; 341 342 for (i = 0; i < num_entries; i++) { 343 u32 size = round_up(htab->map.value_size, 8); 344 void __percpu *pptr; 345 346 pptr = bpf_map_alloc_percpu(&htab->map, size, 8, 347 GFP_USER | __GFP_NOWARN); 348 if (!pptr) 349 goto free_elems; 350 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, 351 pptr); 352 cond_resched(); 353 } 354 355 skip_percpu_elems: 356 if (htab_is_lru(htab)) 357 err = bpf_lru_init(&htab->lru, 358 htab->map.map_flags & BPF_F_NO_COMMON_LRU, 359 offsetof(struct htab_elem, hash) - 360 offsetof(struct htab_elem, lru_node), 361 htab_lru_map_delete_node, 362 htab); 363 else 364 err = pcpu_freelist_init(&htab->freelist); 365 366 if (err) 367 goto free_elems; 368 369 if (htab_is_lru(htab)) 370 bpf_lru_populate(&htab->lru, htab->elems, 371 offsetof(struct htab_elem, lru_node), 372 htab->elem_size, num_entries); 373 else 374 pcpu_freelist_populate(&htab->freelist, 375 htab->elems + offsetof(struct htab_elem, fnode), 376 htab->elem_size, num_entries); 377 378 return 0; 379 380 free_elems: 381 htab_free_elems(htab); 382 return err; 383 } 384 385 static void prealloc_destroy(struct bpf_htab *htab) 386 { 387 htab_free_elems(htab); 388 389 if (htab_is_lru(htab)) 390 bpf_lru_destroy(&htab->lru); 391 else 392 pcpu_freelist_destroy(&htab->freelist); 393 } 394 395 static int alloc_extra_elems(struct bpf_htab *htab) 396 { 397 struct htab_elem *__percpu *pptr, *l_new; 398 struct pcpu_freelist_node *l; 399 int cpu; 400 401 pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8, 402 GFP_USER | __GFP_NOWARN); 403 if (!pptr) 404 return -ENOMEM; 405 406 for_each_possible_cpu(cpu) { 407 l = pcpu_freelist_pop(&htab->freelist); 408 /* pop will succeed, since prealloc_init() 409 * preallocated extra num_possible_cpus elements 410 */ 411 l_new = container_of(l, struct htab_elem, fnode); 412 *per_cpu_ptr(pptr, cpu) = l_new; 413 } 414 htab->extra_elems = pptr; 415 return 0; 416 } 417 418 /* Called from syscall */ 419 static int htab_map_alloc_check(union bpf_attr *attr) 420 { 421 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 422 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 423 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 424 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 425 /* percpu_lru means each cpu has its own LRU list. 426 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 427 * the map's value itself is percpu. percpu_lru has 428 * nothing to do with the map's value. 429 */ 430 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 431 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 432 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); 433 int numa_node = bpf_map_attr_numa_node(attr); 434 435 BUILD_BUG_ON(offsetof(struct htab_elem, htab) != 436 offsetof(struct htab_elem, hash_node.pprev)); 437 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != 438 offsetof(struct htab_elem, hash_node.pprev)); 439 440 if (lru && !bpf_capable()) 441 /* LRU implementation is much complicated than other 442 * maps. Hence, limit to CAP_BPF. 443 */ 444 return -EPERM; 445 446 if (zero_seed && !capable(CAP_SYS_ADMIN)) 447 /* Guard against local DoS, and discourage production use. */ 448 return -EPERM; 449 450 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || 451 !bpf_map_flags_access_ok(attr->map_flags)) 452 return -EINVAL; 453 454 if (!lru && percpu_lru) 455 return -EINVAL; 456 457 if (lru && !prealloc) 458 return -ENOTSUPP; 459 460 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) 461 return -EINVAL; 462 463 /* check sanity of attributes. 464 * value_size == 0 may be allowed in the future to use map as a set 465 */ 466 if (attr->max_entries == 0 || attr->key_size == 0 || 467 attr->value_size == 0) 468 return -EINVAL; 469 470 if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE - 471 sizeof(struct htab_elem)) 472 /* if key_size + value_size is bigger, the user space won't be 473 * able to access the elements via bpf syscall. This check 474 * also makes sure that the elem_size doesn't overflow and it's 475 * kmalloc-able later in htab_map_update_elem() 476 */ 477 return -E2BIG; 478 479 return 0; 480 } 481 482 static struct bpf_map *htab_map_alloc(union bpf_attr *attr) 483 { 484 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 485 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 486 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 487 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 488 /* percpu_lru means each cpu has its own LRU list. 489 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 490 * the map's value itself is percpu. percpu_lru has 491 * nothing to do with the map's value. 492 */ 493 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 494 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 495 struct bpf_htab *htab; 496 int err, i; 497 498 htab = kzalloc(sizeof(*htab), GFP_USER | __GFP_ACCOUNT); 499 if (!htab) 500 return ERR_PTR(-ENOMEM); 501 502 lockdep_register_key(&htab->lockdep_key); 503 504 bpf_map_init_from_attr(&htab->map, attr); 505 506 if (percpu_lru) { 507 /* ensure each CPU's lru list has >=1 elements. 508 * since we are at it, make each lru list has the same 509 * number of elements. 510 */ 511 htab->map.max_entries = roundup(attr->max_entries, 512 num_possible_cpus()); 513 if (htab->map.max_entries < attr->max_entries) 514 htab->map.max_entries = rounddown(attr->max_entries, 515 num_possible_cpus()); 516 } 517 518 /* hash table size must be power of 2 */ 519 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); 520 521 htab->elem_size = sizeof(struct htab_elem) + 522 round_up(htab->map.key_size, 8); 523 if (percpu) 524 htab->elem_size += sizeof(void *); 525 else 526 htab->elem_size += round_up(htab->map.value_size, 8); 527 528 err = -E2BIG; 529 /* prevent zero size kmalloc and check for u32 overflow */ 530 if (htab->n_buckets == 0 || 531 htab->n_buckets > U32_MAX / sizeof(struct bucket)) 532 goto free_htab; 533 534 err = -ENOMEM; 535 htab->buckets = bpf_map_area_alloc(htab->n_buckets * 536 sizeof(struct bucket), 537 htab->map.numa_node); 538 if (!htab->buckets) 539 goto free_htab; 540 541 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) { 542 htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map, 543 sizeof(int), 544 sizeof(int), 545 GFP_USER); 546 if (!htab->map_locked[i]) 547 goto free_map_locked; 548 } 549 550 if (htab->map.map_flags & BPF_F_ZERO_SEED) 551 htab->hashrnd = 0; 552 else 553 htab->hashrnd = get_random_int(); 554 555 htab_init_buckets(htab); 556 557 if (prealloc) { 558 err = prealloc_init(htab); 559 if (err) 560 goto free_map_locked; 561 562 if (!percpu && !lru) { 563 /* lru itself can remove the least used element, so 564 * there is no need for an extra elem during map_update. 565 */ 566 err = alloc_extra_elems(htab); 567 if (err) 568 goto free_prealloc; 569 } 570 } 571 572 return &htab->map; 573 574 free_prealloc: 575 prealloc_destroy(htab); 576 free_map_locked: 577 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 578 free_percpu(htab->map_locked[i]); 579 bpf_map_area_free(htab->buckets); 580 free_htab: 581 lockdep_unregister_key(&htab->lockdep_key); 582 kfree(htab); 583 return ERR_PTR(err); 584 } 585 586 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) 587 { 588 return jhash(key, key_len, hashrnd); 589 } 590 591 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) 592 { 593 return &htab->buckets[hash & (htab->n_buckets - 1)]; 594 } 595 596 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) 597 { 598 return &__select_bucket(htab, hash)->head; 599 } 600 601 /* this lookup function can only be called with bucket lock taken */ 602 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, 603 void *key, u32 key_size) 604 { 605 struct hlist_nulls_node *n; 606 struct htab_elem *l; 607 608 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 609 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 610 return l; 611 612 return NULL; 613 } 614 615 /* can be called without bucket lock. it will repeat the loop in 616 * the unlikely event when elements moved from one bucket into another 617 * while link list is being walked 618 */ 619 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, 620 u32 hash, void *key, 621 u32 key_size, u32 n_buckets) 622 { 623 struct hlist_nulls_node *n; 624 struct htab_elem *l; 625 626 again: 627 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 628 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 629 return l; 630 631 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) 632 goto again; 633 634 return NULL; 635 } 636 637 /* Called from syscall or from eBPF program directly, so 638 * arguments have to match bpf_map_lookup_elem() exactly. 639 * The return value is adjusted by BPF instructions 640 * in htab_map_gen_lookup(). 641 */ 642 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) 643 { 644 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 645 struct hlist_nulls_head *head; 646 struct htab_elem *l; 647 u32 hash, key_size; 648 649 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 650 !rcu_read_lock_bh_held()); 651 652 key_size = map->key_size; 653 654 hash = htab_map_hash(key, key_size, htab->hashrnd); 655 656 head = select_bucket(htab, hash); 657 658 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 659 660 return l; 661 } 662 663 static void *htab_map_lookup_elem(struct bpf_map *map, void *key) 664 { 665 struct htab_elem *l = __htab_map_lookup_elem(map, key); 666 667 if (l) 668 return l->key + round_up(map->key_size, 8); 669 670 return NULL; 671 } 672 673 /* inline bpf_map_lookup_elem() call. 674 * Instead of: 675 * bpf_prog 676 * bpf_map_lookup_elem 677 * map->ops->map_lookup_elem 678 * htab_map_lookup_elem 679 * __htab_map_lookup_elem 680 * do: 681 * bpf_prog 682 * __htab_map_lookup_elem 683 */ 684 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 685 { 686 struct bpf_insn *insn = insn_buf; 687 const int ret = BPF_REG_0; 688 689 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 690 (void *(*)(struct bpf_map *map, void *key))NULL)); 691 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 692 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 693 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 694 offsetof(struct htab_elem, key) + 695 round_up(map->key_size, 8)); 696 return insn - insn_buf; 697 } 698 699 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, 700 void *key, const bool mark) 701 { 702 struct htab_elem *l = __htab_map_lookup_elem(map, key); 703 704 if (l) { 705 if (mark) 706 bpf_lru_node_set_ref(&l->lru_node); 707 return l->key + round_up(map->key_size, 8); 708 } 709 710 return NULL; 711 } 712 713 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) 714 { 715 return __htab_lru_map_lookup_elem(map, key, true); 716 } 717 718 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) 719 { 720 return __htab_lru_map_lookup_elem(map, key, false); 721 } 722 723 static int htab_lru_map_gen_lookup(struct bpf_map *map, 724 struct bpf_insn *insn_buf) 725 { 726 struct bpf_insn *insn = insn_buf; 727 const int ret = BPF_REG_0; 728 const int ref_reg = BPF_REG_1; 729 730 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 731 (void *(*)(struct bpf_map *map, void *key))NULL)); 732 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 733 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); 734 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, 735 offsetof(struct htab_elem, lru_node) + 736 offsetof(struct bpf_lru_node, ref)); 737 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); 738 *insn++ = BPF_ST_MEM(BPF_B, ret, 739 offsetof(struct htab_elem, lru_node) + 740 offsetof(struct bpf_lru_node, ref), 741 1); 742 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 743 offsetof(struct htab_elem, key) + 744 round_up(map->key_size, 8)); 745 return insn - insn_buf; 746 } 747 748 static void check_and_free_fields(struct bpf_htab *htab, 749 struct htab_elem *elem) 750 { 751 void *map_value = elem->key + round_up(htab->map.key_size, 8); 752 753 if (map_value_has_timer(&htab->map)) 754 bpf_timer_cancel_and_free(map_value + htab->map.timer_off); 755 if (map_value_has_kptrs(&htab->map)) 756 bpf_map_free_kptrs(&htab->map, map_value); 757 } 758 759 /* It is called from the bpf_lru_list when the LRU needs to delete 760 * older elements from the htab. 761 */ 762 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) 763 { 764 struct bpf_htab *htab = arg; 765 struct htab_elem *l = NULL, *tgt_l; 766 struct hlist_nulls_head *head; 767 struct hlist_nulls_node *n; 768 unsigned long flags; 769 struct bucket *b; 770 int ret; 771 772 tgt_l = container_of(node, struct htab_elem, lru_node); 773 b = __select_bucket(htab, tgt_l->hash); 774 head = &b->head; 775 776 ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags); 777 if (ret) 778 return false; 779 780 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 781 if (l == tgt_l) { 782 hlist_nulls_del_rcu(&l->hash_node); 783 check_and_free_fields(htab, l); 784 break; 785 } 786 787 htab_unlock_bucket(htab, b, tgt_l->hash, flags); 788 789 return l == tgt_l; 790 } 791 792 /* Called from syscall */ 793 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 794 { 795 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 796 struct hlist_nulls_head *head; 797 struct htab_elem *l, *next_l; 798 u32 hash, key_size; 799 int i = 0; 800 801 WARN_ON_ONCE(!rcu_read_lock_held()); 802 803 key_size = map->key_size; 804 805 if (!key) 806 goto find_first_elem; 807 808 hash = htab_map_hash(key, key_size, htab->hashrnd); 809 810 head = select_bucket(htab, hash); 811 812 /* lookup the key */ 813 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 814 815 if (!l) 816 goto find_first_elem; 817 818 /* key was found, get next key in the same bucket */ 819 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), 820 struct htab_elem, hash_node); 821 822 if (next_l) { 823 /* if next elem in this hash list is non-zero, just return it */ 824 memcpy(next_key, next_l->key, key_size); 825 return 0; 826 } 827 828 /* no more elements in this hash list, go to the next bucket */ 829 i = hash & (htab->n_buckets - 1); 830 i++; 831 832 find_first_elem: 833 /* iterate over buckets */ 834 for (; i < htab->n_buckets; i++) { 835 head = select_bucket(htab, i); 836 837 /* pick first element in the bucket */ 838 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), 839 struct htab_elem, hash_node); 840 if (next_l) { 841 /* if it's not empty, just return it */ 842 memcpy(next_key, next_l->key, key_size); 843 return 0; 844 } 845 } 846 847 /* iterated over all buckets and all elements */ 848 return -ENOENT; 849 } 850 851 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) 852 { 853 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) 854 free_percpu(htab_elem_get_ptr(l, htab->map.key_size)); 855 check_and_free_fields(htab, l); 856 kfree(l); 857 } 858 859 static void htab_elem_free_rcu(struct rcu_head *head) 860 { 861 struct htab_elem *l = container_of(head, struct htab_elem, rcu); 862 struct bpf_htab *htab = l->htab; 863 864 htab_elem_free(htab, l); 865 } 866 867 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l) 868 { 869 struct bpf_map *map = &htab->map; 870 void *ptr; 871 872 if (map->ops->map_fd_put_ptr) { 873 ptr = fd_htab_map_get_ptr(map, l); 874 map->ops->map_fd_put_ptr(ptr); 875 } 876 } 877 878 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) 879 { 880 htab_put_fd_value(htab, l); 881 882 if (htab_is_prealloc(htab)) { 883 check_and_free_fields(htab, l); 884 __pcpu_freelist_push(&htab->freelist, &l->fnode); 885 } else { 886 atomic_dec(&htab->count); 887 l->htab = htab; 888 call_rcu(&l->rcu, htab_elem_free_rcu); 889 } 890 } 891 892 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, 893 void *value, bool onallcpus) 894 { 895 if (!onallcpus) { 896 /* copy true value_size bytes */ 897 memcpy(this_cpu_ptr(pptr), value, htab->map.value_size); 898 } else { 899 u32 size = round_up(htab->map.value_size, 8); 900 int off = 0, cpu; 901 902 for_each_possible_cpu(cpu) { 903 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), 904 value + off, size); 905 off += size; 906 } 907 } 908 } 909 910 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr, 911 void *value, bool onallcpus) 912 { 913 /* When using prealloc and not setting the initial value on all cpus, 914 * zero-fill element values for other cpus (just as what happens when 915 * not using prealloc). Otherwise, bpf program has no way to ensure 916 * known initial values for cpus other than current one 917 * (onallcpus=false always when coming from bpf prog). 918 */ 919 if (htab_is_prealloc(htab) && !onallcpus) { 920 u32 size = round_up(htab->map.value_size, 8); 921 int current_cpu = raw_smp_processor_id(); 922 int cpu; 923 924 for_each_possible_cpu(cpu) { 925 if (cpu == current_cpu) 926 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value, 927 size); 928 else 929 memset(per_cpu_ptr(pptr, cpu), 0, size); 930 } 931 } else { 932 pcpu_copy_value(htab, pptr, value, onallcpus); 933 } 934 } 935 936 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) 937 { 938 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && 939 BITS_PER_LONG == 64; 940 } 941 942 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, 943 void *value, u32 key_size, u32 hash, 944 bool percpu, bool onallcpus, 945 struct htab_elem *old_elem) 946 { 947 u32 size = htab->map.value_size; 948 bool prealloc = htab_is_prealloc(htab); 949 struct htab_elem *l_new, **pl_new; 950 void __percpu *pptr; 951 952 if (prealloc) { 953 if (old_elem) { 954 /* if we're updating the existing element, 955 * use per-cpu extra elems to avoid freelist_pop/push 956 */ 957 pl_new = this_cpu_ptr(htab->extra_elems); 958 l_new = *pl_new; 959 htab_put_fd_value(htab, old_elem); 960 *pl_new = old_elem; 961 } else { 962 struct pcpu_freelist_node *l; 963 964 l = __pcpu_freelist_pop(&htab->freelist); 965 if (!l) 966 return ERR_PTR(-E2BIG); 967 l_new = container_of(l, struct htab_elem, fnode); 968 } 969 } else { 970 if (atomic_inc_return(&htab->count) > htab->map.max_entries) 971 if (!old_elem) { 972 /* when map is full and update() is replacing 973 * old element, it's ok to allocate, since 974 * old element will be freed immediately. 975 * Otherwise return an error 976 */ 977 l_new = ERR_PTR(-E2BIG); 978 goto dec_count; 979 } 980 l_new = bpf_map_kmalloc_node(&htab->map, htab->elem_size, 981 GFP_ATOMIC | __GFP_NOWARN, 982 htab->map.numa_node); 983 if (!l_new) { 984 l_new = ERR_PTR(-ENOMEM); 985 goto dec_count; 986 } 987 check_and_init_map_value(&htab->map, 988 l_new->key + round_up(key_size, 8)); 989 } 990 991 memcpy(l_new->key, key, key_size); 992 if (percpu) { 993 size = round_up(size, 8); 994 if (prealloc) { 995 pptr = htab_elem_get_ptr(l_new, key_size); 996 } else { 997 /* alloc_percpu zero-fills */ 998 pptr = bpf_map_alloc_percpu(&htab->map, size, 8, 999 GFP_ATOMIC | __GFP_NOWARN); 1000 if (!pptr) { 1001 kfree(l_new); 1002 l_new = ERR_PTR(-ENOMEM); 1003 goto dec_count; 1004 } 1005 } 1006 1007 pcpu_init_value(htab, pptr, value, onallcpus); 1008 1009 if (!prealloc) 1010 htab_elem_set_ptr(l_new, key_size, pptr); 1011 } else if (fd_htab_map_needs_adjust(htab)) { 1012 size = round_up(size, 8); 1013 memcpy(l_new->key + round_up(key_size, 8), value, size); 1014 } else { 1015 copy_map_value(&htab->map, 1016 l_new->key + round_up(key_size, 8), 1017 value); 1018 } 1019 1020 l_new->hash = hash; 1021 return l_new; 1022 dec_count: 1023 atomic_dec(&htab->count); 1024 return l_new; 1025 } 1026 1027 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, 1028 u64 map_flags) 1029 { 1030 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) 1031 /* elem already exists */ 1032 return -EEXIST; 1033 1034 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) 1035 /* elem doesn't exist, cannot update it */ 1036 return -ENOENT; 1037 1038 return 0; 1039 } 1040 1041 /* Called from syscall or from eBPF program */ 1042 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value, 1043 u64 map_flags) 1044 { 1045 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1046 struct htab_elem *l_new = NULL, *l_old; 1047 struct hlist_nulls_head *head; 1048 unsigned long flags; 1049 struct bucket *b; 1050 u32 key_size, hash; 1051 int ret; 1052 1053 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 1054 /* unknown flags */ 1055 return -EINVAL; 1056 1057 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1058 !rcu_read_lock_bh_held()); 1059 1060 key_size = map->key_size; 1061 1062 hash = htab_map_hash(key, key_size, htab->hashrnd); 1063 1064 b = __select_bucket(htab, hash); 1065 head = &b->head; 1066 1067 if (unlikely(map_flags & BPF_F_LOCK)) { 1068 if (unlikely(!map_value_has_spin_lock(map))) 1069 return -EINVAL; 1070 /* find an element without taking the bucket lock */ 1071 l_old = lookup_nulls_elem_raw(head, hash, key, key_size, 1072 htab->n_buckets); 1073 ret = check_flags(htab, l_old, map_flags); 1074 if (ret) 1075 return ret; 1076 if (l_old) { 1077 /* grab the element lock and update value in place */ 1078 copy_map_value_locked(map, 1079 l_old->key + round_up(key_size, 8), 1080 value, false); 1081 return 0; 1082 } 1083 /* fall through, grab the bucket lock and lookup again. 1084 * 99.9% chance that the element won't be found, 1085 * but second lookup under lock has to be done. 1086 */ 1087 } 1088 1089 ret = htab_lock_bucket(htab, b, hash, &flags); 1090 if (ret) 1091 return ret; 1092 1093 l_old = lookup_elem_raw(head, hash, key, key_size); 1094 1095 ret = check_flags(htab, l_old, map_flags); 1096 if (ret) 1097 goto err; 1098 1099 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { 1100 /* first lookup without the bucket lock didn't find the element, 1101 * but second lookup with the bucket lock found it. 1102 * This case is highly unlikely, but has to be dealt with: 1103 * grab the element lock in addition to the bucket lock 1104 * and update element in place 1105 */ 1106 copy_map_value_locked(map, 1107 l_old->key + round_up(key_size, 8), 1108 value, false); 1109 ret = 0; 1110 goto err; 1111 } 1112 1113 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, 1114 l_old); 1115 if (IS_ERR(l_new)) { 1116 /* all pre-allocated elements are in use or memory exhausted */ 1117 ret = PTR_ERR(l_new); 1118 goto err; 1119 } 1120 1121 /* add new element to the head of the list, so that 1122 * concurrent search will find it before old elem 1123 */ 1124 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1125 if (l_old) { 1126 hlist_nulls_del_rcu(&l_old->hash_node); 1127 if (!htab_is_prealloc(htab)) 1128 free_htab_elem(htab, l_old); 1129 else 1130 check_and_free_fields(htab, l_old); 1131 } 1132 ret = 0; 1133 err: 1134 htab_unlock_bucket(htab, b, hash, flags); 1135 return ret; 1136 } 1137 1138 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem) 1139 { 1140 check_and_free_fields(htab, elem); 1141 bpf_lru_push_free(&htab->lru, &elem->lru_node); 1142 } 1143 1144 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, 1145 u64 map_flags) 1146 { 1147 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1148 struct htab_elem *l_new, *l_old = NULL; 1149 struct hlist_nulls_head *head; 1150 unsigned long flags; 1151 struct bucket *b; 1152 u32 key_size, hash; 1153 int ret; 1154 1155 if (unlikely(map_flags > BPF_EXIST)) 1156 /* unknown flags */ 1157 return -EINVAL; 1158 1159 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1160 !rcu_read_lock_bh_held()); 1161 1162 key_size = map->key_size; 1163 1164 hash = htab_map_hash(key, key_size, htab->hashrnd); 1165 1166 b = __select_bucket(htab, hash); 1167 head = &b->head; 1168 1169 /* For LRU, we need to alloc before taking bucket's 1170 * spinlock because getting free nodes from LRU may need 1171 * to remove older elements from htab and this removal 1172 * operation will need a bucket lock. 1173 */ 1174 l_new = prealloc_lru_pop(htab, key, hash); 1175 if (!l_new) 1176 return -ENOMEM; 1177 copy_map_value(&htab->map, 1178 l_new->key + round_up(map->key_size, 8), value); 1179 1180 ret = htab_lock_bucket(htab, b, hash, &flags); 1181 if (ret) 1182 return ret; 1183 1184 l_old = lookup_elem_raw(head, hash, key, key_size); 1185 1186 ret = check_flags(htab, l_old, map_flags); 1187 if (ret) 1188 goto err; 1189 1190 /* add new element to the head of the list, so that 1191 * concurrent search will find it before old elem 1192 */ 1193 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1194 if (l_old) { 1195 bpf_lru_node_set_ref(&l_new->lru_node); 1196 hlist_nulls_del_rcu(&l_old->hash_node); 1197 } 1198 ret = 0; 1199 1200 err: 1201 htab_unlock_bucket(htab, b, hash, flags); 1202 1203 if (ret) 1204 htab_lru_push_free(htab, l_new); 1205 else if (l_old) 1206 htab_lru_push_free(htab, l_old); 1207 1208 return ret; 1209 } 1210 1211 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1212 void *value, u64 map_flags, 1213 bool onallcpus) 1214 { 1215 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1216 struct htab_elem *l_new = NULL, *l_old; 1217 struct hlist_nulls_head *head; 1218 unsigned long flags; 1219 struct bucket *b; 1220 u32 key_size, hash; 1221 int ret; 1222 1223 if (unlikely(map_flags > BPF_EXIST)) 1224 /* unknown flags */ 1225 return -EINVAL; 1226 1227 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1228 !rcu_read_lock_bh_held()); 1229 1230 key_size = map->key_size; 1231 1232 hash = htab_map_hash(key, key_size, htab->hashrnd); 1233 1234 b = __select_bucket(htab, hash); 1235 head = &b->head; 1236 1237 ret = htab_lock_bucket(htab, b, hash, &flags); 1238 if (ret) 1239 return ret; 1240 1241 l_old = lookup_elem_raw(head, hash, key, key_size); 1242 1243 ret = check_flags(htab, l_old, map_flags); 1244 if (ret) 1245 goto err; 1246 1247 if (l_old) { 1248 /* per-cpu hash map can update value in-place */ 1249 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1250 value, onallcpus); 1251 } else { 1252 l_new = alloc_htab_elem(htab, key, value, key_size, 1253 hash, true, onallcpus, NULL); 1254 if (IS_ERR(l_new)) { 1255 ret = PTR_ERR(l_new); 1256 goto err; 1257 } 1258 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1259 } 1260 ret = 0; 1261 err: 1262 htab_unlock_bucket(htab, b, hash, flags); 1263 return ret; 1264 } 1265 1266 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1267 void *value, u64 map_flags, 1268 bool onallcpus) 1269 { 1270 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1271 struct htab_elem *l_new = NULL, *l_old; 1272 struct hlist_nulls_head *head; 1273 unsigned long flags; 1274 struct bucket *b; 1275 u32 key_size, hash; 1276 int ret; 1277 1278 if (unlikely(map_flags > BPF_EXIST)) 1279 /* unknown flags */ 1280 return -EINVAL; 1281 1282 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1283 !rcu_read_lock_bh_held()); 1284 1285 key_size = map->key_size; 1286 1287 hash = htab_map_hash(key, key_size, htab->hashrnd); 1288 1289 b = __select_bucket(htab, hash); 1290 head = &b->head; 1291 1292 /* For LRU, we need to alloc before taking bucket's 1293 * spinlock because LRU's elem alloc may need 1294 * to remove older elem from htab and this removal 1295 * operation will need a bucket lock. 1296 */ 1297 if (map_flags != BPF_EXIST) { 1298 l_new = prealloc_lru_pop(htab, key, hash); 1299 if (!l_new) 1300 return -ENOMEM; 1301 } 1302 1303 ret = htab_lock_bucket(htab, b, hash, &flags); 1304 if (ret) 1305 return ret; 1306 1307 l_old = lookup_elem_raw(head, hash, key, key_size); 1308 1309 ret = check_flags(htab, l_old, map_flags); 1310 if (ret) 1311 goto err; 1312 1313 if (l_old) { 1314 bpf_lru_node_set_ref(&l_old->lru_node); 1315 1316 /* per-cpu hash map can update value in-place */ 1317 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1318 value, onallcpus); 1319 } else { 1320 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size), 1321 value, onallcpus); 1322 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1323 l_new = NULL; 1324 } 1325 ret = 0; 1326 err: 1327 htab_unlock_bucket(htab, b, hash, flags); 1328 if (l_new) 1329 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1330 return ret; 1331 } 1332 1333 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1334 void *value, u64 map_flags) 1335 { 1336 return __htab_percpu_map_update_elem(map, key, value, map_flags, false); 1337 } 1338 1339 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1340 void *value, u64 map_flags) 1341 { 1342 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, 1343 false); 1344 } 1345 1346 /* Called from syscall or from eBPF program */ 1347 static int htab_map_delete_elem(struct bpf_map *map, void *key) 1348 { 1349 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1350 struct hlist_nulls_head *head; 1351 struct bucket *b; 1352 struct htab_elem *l; 1353 unsigned long flags; 1354 u32 hash, key_size; 1355 int ret; 1356 1357 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1358 !rcu_read_lock_bh_held()); 1359 1360 key_size = map->key_size; 1361 1362 hash = htab_map_hash(key, key_size, htab->hashrnd); 1363 b = __select_bucket(htab, hash); 1364 head = &b->head; 1365 1366 ret = htab_lock_bucket(htab, b, hash, &flags); 1367 if (ret) 1368 return ret; 1369 1370 l = lookup_elem_raw(head, hash, key, key_size); 1371 1372 if (l) { 1373 hlist_nulls_del_rcu(&l->hash_node); 1374 free_htab_elem(htab, l); 1375 } else { 1376 ret = -ENOENT; 1377 } 1378 1379 htab_unlock_bucket(htab, b, hash, flags); 1380 return ret; 1381 } 1382 1383 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key) 1384 { 1385 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1386 struct hlist_nulls_head *head; 1387 struct bucket *b; 1388 struct htab_elem *l; 1389 unsigned long flags; 1390 u32 hash, key_size; 1391 int ret; 1392 1393 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1394 !rcu_read_lock_bh_held()); 1395 1396 key_size = map->key_size; 1397 1398 hash = htab_map_hash(key, key_size, htab->hashrnd); 1399 b = __select_bucket(htab, hash); 1400 head = &b->head; 1401 1402 ret = htab_lock_bucket(htab, b, hash, &flags); 1403 if (ret) 1404 return ret; 1405 1406 l = lookup_elem_raw(head, hash, key, key_size); 1407 1408 if (l) 1409 hlist_nulls_del_rcu(&l->hash_node); 1410 else 1411 ret = -ENOENT; 1412 1413 htab_unlock_bucket(htab, b, hash, flags); 1414 if (l) 1415 htab_lru_push_free(htab, l); 1416 return ret; 1417 } 1418 1419 static void delete_all_elements(struct bpf_htab *htab) 1420 { 1421 int i; 1422 1423 for (i = 0; i < htab->n_buckets; i++) { 1424 struct hlist_nulls_head *head = select_bucket(htab, i); 1425 struct hlist_nulls_node *n; 1426 struct htab_elem *l; 1427 1428 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1429 hlist_nulls_del_rcu(&l->hash_node); 1430 htab_elem_free(htab, l); 1431 } 1432 } 1433 } 1434 1435 static void htab_free_malloced_timers(struct bpf_htab *htab) 1436 { 1437 int i; 1438 1439 rcu_read_lock(); 1440 for (i = 0; i < htab->n_buckets; i++) { 1441 struct hlist_nulls_head *head = select_bucket(htab, i); 1442 struct hlist_nulls_node *n; 1443 struct htab_elem *l; 1444 1445 hlist_nulls_for_each_entry(l, n, head, hash_node) { 1446 /* We don't reset or free kptr on uref dropping to zero, 1447 * hence just free timer. 1448 */ 1449 bpf_timer_cancel_and_free(l->key + 1450 round_up(htab->map.key_size, 8) + 1451 htab->map.timer_off); 1452 } 1453 cond_resched_rcu(); 1454 } 1455 rcu_read_unlock(); 1456 } 1457 1458 static void htab_map_free_timers(struct bpf_map *map) 1459 { 1460 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1461 1462 /* We don't reset or free kptr on uref dropping to zero. */ 1463 if (!map_value_has_timer(&htab->map)) 1464 return; 1465 if (!htab_is_prealloc(htab)) 1466 htab_free_malloced_timers(htab); 1467 else 1468 htab_free_prealloced_timers(htab); 1469 } 1470 1471 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 1472 static void htab_map_free(struct bpf_map *map) 1473 { 1474 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1475 int i; 1476 1477 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. 1478 * bpf_free_used_maps() is called after bpf prog is no longer executing. 1479 * There is no need to synchronize_rcu() here to protect map elements. 1480 */ 1481 1482 /* some of free_htab_elem() callbacks for elements of this map may 1483 * not have executed. Wait for them. 1484 */ 1485 rcu_barrier(); 1486 if (!htab_is_prealloc(htab)) { 1487 delete_all_elements(htab); 1488 } else { 1489 htab_free_prealloced_kptrs(htab); 1490 prealloc_destroy(htab); 1491 } 1492 1493 bpf_map_free_kptr_off_tab(map); 1494 free_percpu(htab->extra_elems); 1495 bpf_map_area_free(htab->buckets); 1496 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 1497 free_percpu(htab->map_locked[i]); 1498 lockdep_unregister_key(&htab->lockdep_key); 1499 kfree(htab); 1500 } 1501 1502 static void htab_map_seq_show_elem(struct bpf_map *map, void *key, 1503 struct seq_file *m) 1504 { 1505 void *value; 1506 1507 rcu_read_lock(); 1508 1509 value = htab_map_lookup_elem(map, key); 1510 if (!value) { 1511 rcu_read_unlock(); 1512 return; 1513 } 1514 1515 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1516 seq_puts(m, ": "); 1517 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 1518 seq_puts(m, "\n"); 1519 1520 rcu_read_unlock(); 1521 } 1522 1523 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1524 void *value, bool is_lru_map, 1525 bool is_percpu, u64 flags) 1526 { 1527 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1528 struct hlist_nulls_head *head; 1529 unsigned long bflags; 1530 struct htab_elem *l; 1531 u32 hash, key_size; 1532 struct bucket *b; 1533 int ret; 1534 1535 key_size = map->key_size; 1536 1537 hash = htab_map_hash(key, key_size, htab->hashrnd); 1538 b = __select_bucket(htab, hash); 1539 head = &b->head; 1540 1541 ret = htab_lock_bucket(htab, b, hash, &bflags); 1542 if (ret) 1543 return ret; 1544 1545 l = lookup_elem_raw(head, hash, key, key_size); 1546 if (!l) { 1547 ret = -ENOENT; 1548 } else { 1549 if (is_percpu) { 1550 u32 roundup_value_size = round_up(map->value_size, 8); 1551 void __percpu *pptr; 1552 int off = 0, cpu; 1553 1554 pptr = htab_elem_get_ptr(l, key_size); 1555 for_each_possible_cpu(cpu) { 1556 bpf_long_memcpy(value + off, 1557 per_cpu_ptr(pptr, cpu), 1558 roundup_value_size); 1559 off += roundup_value_size; 1560 } 1561 } else { 1562 u32 roundup_key_size = round_up(map->key_size, 8); 1563 1564 if (flags & BPF_F_LOCK) 1565 copy_map_value_locked(map, value, l->key + 1566 roundup_key_size, 1567 true); 1568 else 1569 copy_map_value(map, value, l->key + 1570 roundup_key_size); 1571 check_and_init_map_value(map, value); 1572 } 1573 1574 hlist_nulls_del_rcu(&l->hash_node); 1575 if (!is_lru_map) 1576 free_htab_elem(htab, l); 1577 } 1578 1579 htab_unlock_bucket(htab, b, hash, bflags); 1580 1581 if (is_lru_map && l) 1582 htab_lru_push_free(htab, l); 1583 1584 return ret; 1585 } 1586 1587 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1588 void *value, u64 flags) 1589 { 1590 return __htab_map_lookup_and_delete_elem(map, key, value, false, false, 1591 flags); 1592 } 1593 1594 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1595 void *key, void *value, 1596 u64 flags) 1597 { 1598 return __htab_map_lookup_and_delete_elem(map, key, value, false, true, 1599 flags); 1600 } 1601 1602 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1603 void *value, u64 flags) 1604 { 1605 return __htab_map_lookup_and_delete_elem(map, key, value, true, false, 1606 flags); 1607 } 1608 1609 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1610 void *key, void *value, 1611 u64 flags) 1612 { 1613 return __htab_map_lookup_and_delete_elem(map, key, value, true, true, 1614 flags); 1615 } 1616 1617 static int 1618 __htab_map_lookup_and_delete_batch(struct bpf_map *map, 1619 const union bpf_attr *attr, 1620 union bpf_attr __user *uattr, 1621 bool do_delete, bool is_lru_map, 1622 bool is_percpu) 1623 { 1624 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1625 u32 bucket_cnt, total, key_size, value_size, roundup_key_size; 1626 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; 1627 void __user *uvalues = u64_to_user_ptr(attr->batch.values); 1628 void __user *ukeys = u64_to_user_ptr(attr->batch.keys); 1629 void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch); 1630 u32 batch, max_count, size, bucket_size, map_id; 1631 struct htab_elem *node_to_free = NULL; 1632 u64 elem_map_flags, map_flags; 1633 struct hlist_nulls_head *head; 1634 struct hlist_nulls_node *n; 1635 unsigned long flags = 0; 1636 bool locked = false; 1637 struct htab_elem *l; 1638 struct bucket *b; 1639 int ret = 0; 1640 1641 elem_map_flags = attr->batch.elem_flags; 1642 if ((elem_map_flags & ~BPF_F_LOCK) || 1643 ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map))) 1644 return -EINVAL; 1645 1646 map_flags = attr->batch.flags; 1647 if (map_flags) 1648 return -EINVAL; 1649 1650 max_count = attr->batch.count; 1651 if (!max_count) 1652 return 0; 1653 1654 if (put_user(0, &uattr->batch.count)) 1655 return -EFAULT; 1656 1657 batch = 0; 1658 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) 1659 return -EFAULT; 1660 1661 if (batch >= htab->n_buckets) 1662 return -ENOENT; 1663 1664 key_size = htab->map.key_size; 1665 roundup_key_size = round_up(htab->map.key_size, 8); 1666 value_size = htab->map.value_size; 1667 size = round_up(value_size, 8); 1668 if (is_percpu) 1669 value_size = size * num_possible_cpus(); 1670 total = 0; 1671 /* while experimenting with hash tables with sizes ranging from 10 to 1672 * 1000, it was observed that a bucket can have up to 5 entries. 1673 */ 1674 bucket_size = 5; 1675 1676 alloc: 1677 /* We cannot do copy_from_user or copy_to_user inside 1678 * the rcu_read_lock. Allocate enough space here. 1679 */ 1680 keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN); 1681 values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN); 1682 if (!keys || !values) { 1683 ret = -ENOMEM; 1684 goto after_loop; 1685 } 1686 1687 again: 1688 bpf_disable_instrumentation(); 1689 rcu_read_lock(); 1690 again_nocopy: 1691 dst_key = keys; 1692 dst_val = values; 1693 b = &htab->buckets[batch]; 1694 head = &b->head; 1695 /* do not grab the lock unless need it (bucket_cnt > 0). */ 1696 if (locked) { 1697 ret = htab_lock_bucket(htab, b, batch, &flags); 1698 if (ret) 1699 goto next_batch; 1700 } 1701 1702 bucket_cnt = 0; 1703 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 1704 bucket_cnt++; 1705 1706 if (bucket_cnt && !locked) { 1707 locked = true; 1708 goto again_nocopy; 1709 } 1710 1711 if (bucket_cnt > (max_count - total)) { 1712 if (total == 0) 1713 ret = -ENOSPC; 1714 /* Note that since bucket_cnt > 0 here, it is implicit 1715 * that the locked was grabbed, so release it. 1716 */ 1717 htab_unlock_bucket(htab, b, batch, flags); 1718 rcu_read_unlock(); 1719 bpf_enable_instrumentation(); 1720 goto after_loop; 1721 } 1722 1723 if (bucket_cnt > bucket_size) { 1724 bucket_size = bucket_cnt; 1725 /* Note that since bucket_cnt > 0 here, it is implicit 1726 * that the locked was grabbed, so release it. 1727 */ 1728 htab_unlock_bucket(htab, b, batch, flags); 1729 rcu_read_unlock(); 1730 bpf_enable_instrumentation(); 1731 kvfree(keys); 1732 kvfree(values); 1733 goto alloc; 1734 } 1735 1736 /* Next block is only safe to run if you have grabbed the lock */ 1737 if (!locked) 1738 goto next_batch; 1739 1740 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1741 memcpy(dst_key, l->key, key_size); 1742 1743 if (is_percpu) { 1744 int off = 0, cpu; 1745 void __percpu *pptr; 1746 1747 pptr = htab_elem_get_ptr(l, map->key_size); 1748 for_each_possible_cpu(cpu) { 1749 bpf_long_memcpy(dst_val + off, 1750 per_cpu_ptr(pptr, cpu), size); 1751 off += size; 1752 } 1753 } else { 1754 value = l->key + roundup_key_size; 1755 if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) { 1756 struct bpf_map **inner_map = value; 1757 1758 /* Actual value is the id of the inner map */ 1759 map_id = map->ops->map_fd_sys_lookup_elem(*inner_map); 1760 value = &map_id; 1761 } 1762 1763 if (elem_map_flags & BPF_F_LOCK) 1764 copy_map_value_locked(map, dst_val, value, 1765 true); 1766 else 1767 copy_map_value(map, dst_val, value); 1768 check_and_init_map_value(map, dst_val); 1769 } 1770 if (do_delete) { 1771 hlist_nulls_del_rcu(&l->hash_node); 1772 1773 /* bpf_lru_push_free() will acquire lru_lock, which 1774 * may cause deadlock. See comments in function 1775 * prealloc_lru_pop(). Let us do bpf_lru_push_free() 1776 * after releasing the bucket lock. 1777 */ 1778 if (is_lru_map) { 1779 l->batch_flink = node_to_free; 1780 node_to_free = l; 1781 } else { 1782 free_htab_elem(htab, l); 1783 } 1784 } 1785 dst_key += key_size; 1786 dst_val += value_size; 1787 } 1788 1789 htab_unlock_bucket(htab, b, batch, flags); 1790 locked = false; 1791 1792 while (node_to_free) { 1793 l = node_to_free; 1794 node_to_free = node_to_free->batch_flink; 1795 htab_lru_push_free(htab, l); 1796 } 1797 1798 next_batch: 1799 /* If we are not copying data, we can go to next bucket and avoid 1800 * unlocking the rcu. 1801 */ 1802 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { 1803 batch++; 1804 goto again_nocopy; 1805 } 1806 1807 rcu_read_unlock(); 1808 bpf_enable_instrumentation(); 1809 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, 1810 key_size * bucket_cnt) || 1811 copy_to_user(uvalues + total * value_size, values, 1812 value_size * bucket_cnt))) { 1813 ret = -EFAULT; 1814 goto after_loop; 1815 } 1816 1817 total += bucket_cnt; 1818 batch++; 1819 if (batch >= htab->n_buckets) { 1820 ret = -ENOENT; 1821 goto after_loop; 1822 } 1823 goto again; 1824 1825 after_loop: 1826 if (ret == -EFAULT) 1827 goto out; 1828 1829 /* copy # of entries and next batch */ 1830 ubatch = u64_to_user_ptr(attr->batch.out_batch); 1831 if (copy_to_user(ubatch, &batch, sizeof(batch)) || 1832 put_user(total, &uattr->batch.count)) 1833 ret = -EFAULT; 1834 1835 out: 1836 kvfree(keys); 1837 kvfree(values); 1838 return ret; 1839 } 1840 1841 static int 1842 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1843 union bpf_attr __user *uattr) 1844 { 1845 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1846 false, true); 1847 } 1848 1849 static int 1850 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1851 const union bpf_attr *attr, 1852 union bpf_attr __user *uattr) 1853 { 1854 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1855 false, true); 1856 } 1857 1858 static int 1859 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1860 union bpf_attr __user *uattr) 1861 { 1862 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1863 false, false); 1864 } 1865 1866 static int 1867 htab_map_lookup_and_delete_batch(struct bpf_map *map, 1868 const union bpf_attr *attr, 1869 union bpf_attr __user *uattr) 1870 { 1871 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1872 false, false); 1873 } 1874 1875 static int 1876 htab_lru_percpu_map_lookup_batch(struct bpf_map *map, 1877 const union bpf_attr *attr, 1878 union bpf_attr __user *uattr) 1879 { 1880 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1881 true, true); 1882 } 1883 1884 static int 1885 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1886 const union bpf_attr *attr, 1887 union bpf_attr __user *uattr) 1888 { 1889 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1890 true, true); 1891 } 1892 1893 static int 1894 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1895 union bpf_attr __user *uattr) 1896 { 1897 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1898 true, false); 1899 } 1900 1901 static int 1902 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, 1903 const union bpf_attr *attr, 1904 union bpf_attr __user *uattr) 1905 { 1906 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1907 true, false); 1908 } 1909 1910 struct bpf_iter_seq_hash_map_info { 1911 struct bpf_map *map; 1912 struct bpf_htab *htab; 1913 void *percpu_value_buf; // non-zero means percpu hash 1914 u32 bucket_id; 1915 u32 skip_elems; 1916 }; 1917 1918 static struct htab_elem * 1919 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info, 1920 struct htab_elem *prev_elem) 1921 { 1922 const struct bpf_htab *htab = info->htab; 1923 u32 skip_elems = info->skip_elems; 1924 u32 bucket_id = info->bucket_id; 1925 struct hlist_nulls_head *head; 1926 struct hlist_nulls_node *n; 1927 struct htab_elem *elem; 1928 struct bucket *b; 1929 u32 i, count; 1930 1931 if (bucket_id >= htab->n_buckets) 1932 return NULL; 1933 1934 /* try to find next elem in the same bucket */ 1935 if (prev_elem) { 1936 /* no update/deletion on this bucket, prev_elem should be still valid 1937 * and we won't skip elements. 1938 */ 1939 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node)); 1940 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node); 1941 if (elem) 1942 return elem; 1943 1944 /* not found, unlock and go to the next bucket */ 1945 b = &htab->buckets[bucket_id++]; 1946 rcu_read_unlock(); 1947 skip_elems = 0; 1948 } 1949 1950 for (i = bucket_id; i < htab->n_buckets; i++) { 1951 b = &htab->buckets[i]; 1952 rcu_read_lock(); 1953 1954 count = 0; 1955 head = &b->head; 1956 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 1957 if (count >= skip_elems) { 1958 info->bucket_id = i; 1959 info->skip_elems = count; 1960 return elem; 1961 } 1962 count++; 1963 } 1964 1965 rcu_read_unlock(); 1966 skip_elems = 0; 1967 } 1968 1969 info->bucket_id = i; 1970 info->skip_elems = 0; 1971 return NULL; 1972 } 1973 1974 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos) 1975 { 1976 struct bpf_iter_seq_hash_map_info *info = seq->private; 1977 struct htab_elem *elem; 1978 1979 elem = bpf_hash_map_seq_find_next(info, NULL); 1980 if (!elem) 1981 return NULL; 1982 1983 if (*pos == 0) 1984 ++*pos; 1985 return elem; 1986 } 1987 1988 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1989 { 1990 struct bpf_iter_seq_hash_map_info *info = seq->private; 1991 1992 ++*pos; 1993 ++info->skip_elems; 1994 return bpf_hash_map_seq_find_next(info, v); 1995 } 1996 1997 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem) 1998 { 1999 struct bpf_iter_seq_hash_map_info *info = seq->private; 2000 u32 roundup_key_size, roundup_value_size; 2001 struct bpf_iter__bpf_map_elem ctx = {}; 2002 struct bpf_map *map = info->map; 2003 struct bpf_iter_meta meta; 2004 int ret = 0, off = 0, cpu; 2005 struct bpf_prog *prog; 2006 void __percpu *pptr; 2007 2008 meta.seq = seq; 2009 prog = bpf_iter_get_info(&meta, elem == NULL); 2010 if (prog) { 2011 ctx.meta = &meta; 2012 ctx.map = info->map; 2013 if (elem) { 2014 roundup_key_size = round_up(map->key_size, 8); 2015 ctx.key = elem->key; 2016 if (!info->percpu_value_buf) { 2017 ctx.value = elem->key + roundup_key_size; 2018 } else { 2019 roundup_value_size = round_up(map->value_size, 8); 2020 pptr = htab_elem_get_ptr(elem, map->key_size); 2021 for_each_possible_cpu(cpu) { 2022 bpf_long_memcpy(info->percpu_value_buf + off, 2023 per_cpu_ptr(pptr, cpu), 2024 roundup_value_size); 2025 off += roundup_value_size; 2026 } 2027 ctx.value = info->percpu_value_buf; 2028 } 2029 } 2030 ret = bpf_iter_run_prog(prog, &ctx); 2031 } 2032 2033 return ret; 2034 } 2035 2036 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v) 2037 { 2038 return __bpf_hash_map_seq_show(seq, v); 2039 } 2040 2041 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v) 2042 { 2043 if (!v) 2044 (void)__bpf_hash_map_seq_show(seq, NULL); 2045 else 2046 rcu_read_unlock(); 2047 } 2048 2049 static int bpf_iter_init_hash_map(void *priv_data, 2050 struct bpf_iter_aux_info *aux) 2051 { 2052 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2053 struct bpf_map *map = aux->map; 2054 void *value_buf; 2055 u32 buf_size; 2056 2057 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || 2058 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { 2059 buf_size = round_up(map->value_size, 8) * num_possible_cpus(); 2060 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 2061 if (!value_buf) 2062 return -ENOMEM; 2063 2064 seq_info->percpu_value_buf = value_buf; 2065 } 2066 2067 seq_info->map = map; 2068 seq_info->htab = container_of(map, struct bpf_htab, map); 2069 return 0; 2070 } 2071 2072 static void bpf_iter_fini_hash_map(void *priv_data) 2073 { 2074 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2075 2076 kfree(seq_info->percpu_value_buf); 2077 } 2078 2079 static const struct seq_operations bpf_hash_map_seq_ops = { 2080 .start = bpf_hash_map_seq_start, 2081 .next = bpf_hash_map_seq_next, 2082 .stop = bpf_hash_map_seq_stop, 2083 .show = bpf_hash_map_seq_show, 2084 }; 2085 2086 static const struct bpf_iter_seq_info iter_seq_info = { 2087 .seq_ops = &bpf_hash_map_seq_ops, 2088 .init_seq_private = bpf_iter_init_hash_map, 2089 .fini_seq_private = bpf_iter_fini_hash_map, 2090 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info), 2091 }; 2092 2093 static int bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn, 2094 void *callback_ctx, u64 flags) 2095 { 2096 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2097 struct hlist_nulls_head *head; 2098 struct hlist_nulls_node *n; 2099 struct htab_elem *elem; 2100 u32 roundup_key_size; 2101 int i, num_elems = 0; 2102 void __percpu *pptr; 2103 struct bucket *b; 2104 void *key, *val; 2105 bool is_percpu; 2106 u64 ret = 0; 2107 2108 if (flags != 0) 2109 return -EINVAL; 2110 2111 is_percpu = htab_is_percpu(htab); 2112 2113 roundup_key_size = round_up(map->key_size, 8); 2114 /* disable migration so percpu value prepared here will be the 2115 * same as the one seen by the bpf program with bpf_map_lookup_elem(). 2116 */ 2117 if (is_percpu) 2118 migrate_disable(); 2119 for (i = 0; i < htab->n_buckets; i++) { 2120 b = &htab->buckets[i]; 2121 rcu_read_lock(); 2122 head = &b->head; 2123 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2124 key = elem->key; 2125 if (is_percpu) { 2126 /* current cpu value for percpu map */ 2127 pptr = htab_elem_get_ptr(elem, map->key_size); 2128 val = this_cpu_ptr(pptr); 2129 } else { 2130 val = elem->key + roundup_key_size; 2131 } 2132 num_elems++; 2133 ret = callback_fn((u64)(long)map, (u64)(long)key, 2134 (u64)(long)val, (u64)(long)callback_ctx, 0); 2135 /* return value: 0 - continue, 1 - stop and return */ 2136 if (ret) { 2137 rcu_read_unlock(); 2138 goto out; 2139 } 2140 } 2141 rcu_read_unlock(); 2142 } 2143 out: 2144 if (is_percpu) 2145 migrate_enable(); 2146 return num_elems; 2147 } 2148 2149 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab) 2150 const struct bpf_map_ops htab_map_ops = { 2151 .map_meta_equal = bpf_map_meta_equal, 2152 .map_alloc_check = htab_map_alloc_check, 2153 .map_alloc = htab_map_alloc, 2154 .map_free = htab_map_free, 2155 .map_get_next_key = htab_map_get_next_key, 2156 .map_release_uref = htab_map_free_timers, 2157 .map_lookup_elem = htab_map_lookup_elem, 2158 .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem, 2159 .map_update_elem = htab_map_update_elem, 2160 .map_delete_elem = htab_map_delete_elem, 2161 .map_gen_lookup = htab_map_gen_lookup, 2162 .map_seq_show_elem = htab_map_seq_show_elem, 2163 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2164 .map_for_each_callback = bpf_for_each_hash_elem, 2165 BATCH_OPS(htab), 2166 .map_btf_id = &htab_map_btf_ids[0], 2167 .iter_seq_info = &iter_seq_info, 2168 }; 2169 2170 const struct bpf_map_ops htab_lru_map_ops = { 2171 .map_meta_equal = bpf_map_meta_equal, 2172 .map_alloc_check = htab_map_alloc_check, 2173 .map_alloc = htab_map_alloc, 2174 .map_free = htab_map_free, 2175 .map_get_next_key = htab_map_get_next_key, 2176 .map_release_uref = htab_map_free_timers, 2177 .map_lookup_elem = htab_lru_map_lookup_elem, 2178 .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem, 2179 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, 2180 .map_update_elem = htab_lru_map_update_elem, 2181 .map_delete_elem = htab_lru_map_delete_elem, 2182 .map_gen_lookup = htab_lru_map_gen_lookup, 2183 .map_seq_show_elem = htab_map_seq_show_elem, 2184 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2185 .map_for_each_callback = bpf_for_each_hash_elem, 2186 BATCH_OPS(htab_lru), 2187 .map_btf_id = &htab_map_btf_ids[0], 2188 .iter_seq_info = &iter_seq_info, 2189 }; 2190 2191 /* Called from eBPF program */ 2192 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2193 { 2194 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2195 2196 if (l) 2197 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2198 else 2199 return NULL; 2200 } 2201 2202 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2203 { 2204 struct htab_elem *l; 2205 2206 if (cpu >= nr_cpu_ids) 2207 return NULL; 2208 2209 l = __htab_map_lookup_elem(map, key); 2210 if (l) 2211 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2212 else 2213 return NULL; 2214 } 2215 2216 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2217 { 2218 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2219 2220 if (l) { 2221 bpf_lru_node_set_ref(&l->lru_node); 2222 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2223 } 2224 2225 return NULL; 2226 } 2227 2228 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2229 { 2230 struct htab_elem *l; 2231 2232 if (cpu >= nr_cpu_ids) 2233 return NULL; 2234 2235 l = __htab_map_lookup_elem(map, key); 2236 if (l) { 2237 bpf_lru_node_set_ref(&l->lru_node); 2238 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2239 } 2240 2241 return NULL; 2242 } 2243 2244 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) 2245 { 2246 struct htab_elem *l; 2247 void __percpu *pptr; 2248 int ret = -ENOENT; 2249 int cpu, off = 0; 2250 u32 size; 2251 2252 /* per_cpu areas are zero-filled and bpf programs can only 2253 * access 'value_size' of them, so copying rounded areas 2254 * will not leak any kernel data 2255 */ 2256 size = round_up(map->value_size, 8); 2257 rcu_read_lock(); 2258 l = __htab_map_lookup_elem(map, key); 2259 if (!l) 2260 goto out; 2261 /* We do not mark LRU map element here in order to not mess up 2262 * eviction heuristics when user space does a map walk. 2263 */ 2264 pptr = htab_elem_get_ptr(l, map->key_size); 2265 for_each_possible_cpu(cpu) { 2266 bpf_long_memcpy(value + off, 2267 per_cpu_ptr(pptr, cpu), size); 2268 off += size; 2269 } 2270 ret = 0; 2271 out: 2272 rcu_read_unlock(); 2273 return ret; 2274 } 2275 2276 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2277 u64 map_flags) 2278 { 2279 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2280 int ret; 2281 2282 rcu_read_lock(); 2283 if (htab_is_lru(htab)) 2284 ret = __htab_lru_percpu_map_update_elem(map, key, value, 2285 map_flags, true); 2286 else 2287 ret = __htab_percpu_map_update_elem(map, key, value, map_flags, 2288 true); 2289 rcu_read_unlock(); 2290 2291 return ret; 2292 } 2293 2294 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, 2295 struct seq_file *m) 2296 { 2297 struct htab_elem *l; 2298 void __percpu *pptr; 2299 int cpu; 2300 2301 rcu_read_lock(); 2302 2303 l = __htab_map_lookup_elem(map, key); 2304 if (!l) { 2305 rcu_read_unlock(); 2306 return; 2307 } 2308 2309 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 2310 seq_puts(m, ": {\n"); 2311 pptr = htab_elem_get_ptr(l, map->key_size); 2312 for_each_possible_cpu(cpu) { 2313 seq_printf(m, "\tcpu%d: ", cpu); 2314 btf_type_seq_show(map->btf, map->btf_value_type_id, 2315 per_cpu_ptr(pptr, cpu), m); 2316 seq_puts(m, "\n"); 2317 } 2318 seq_puts(m, "}\n"); 2319 2320 rcu_read_unlock(); 2321 } 2322 2323 const struct bpf_map_ops htab_percpu_map_ops = { 2324 .map_meta_equal = bpf_map_meta_equal, 2325 .map_alloc_check = htab_map_alloc_check, 2326 .map_alloc = htab_map_alloc, 2327 .map_free = htab_map_free, 2328 .map_get_next_key = htab_map_get_next_key, 2329 .map_lookup_elem = htab_percpu_map_lookup_elem, 2330 .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem, 2331 .map_update_elem = htab_percpu_map_update_elem, 2332 .map_delete_elem = htab_map_delete_elem, 2333 .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem, 2334 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2335 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2336 .map_for_each_callback = bpf_for_each_hash_elem, 2337 BATCH_OPS(htab_percpu), 2338 .map_btf_id = &htab_map_btf_ids[0], 2339 .iter_seq_info = &iter_seq_info, 2340 }; 2341 2342 const struct bpf_map_ops htab_lru_percpu_map_ops = { 2343 .map_meta_equal = bpf_map_meta_equal, 2344 .map_alloc_check = htab_map_alloc_check, 2345 .map_alloc = htab_map_alloc, 2346 .map_free = htab_map_free, 2347 .map_get_next_key = htab_map_get_next_key, 2348 .map_lookup_elem = htab_lru_percpu_map_lookup_elem, 2349 .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem, 2350 .map_update_elem = htab_lru_percpu_map_update_elem, 2351 .map_delete_elem = htab_lru_map_delete_elem, 2352 .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem, 2353 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2354 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2355 .map_for_each_callback = bpf_for_each_hash_elem, 2356 BATCH_OPS(htab_lru_percpu), 2357 .map_btf_id = &htab_map_btf_ids[0], 2358 .iter_seq_info = &iter_seq_info, 2359 }; 2360 2361 static int fd_htab_map_alloc_check(union bpf_attr *attr) 2362 { 2363 if (attr->value_size != sizeof(u32)) 2364 return -EINVAL; 2365 return htab_map_alloc_check(attr); 2366 } 2367 2368 static void fd_htab_map_free(struct bpf_map *map) 2369 { 2370 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2371 struct hlist_nulls_node *n; 2372 struct hlist_nulls_head *head; 2373 struct htab_elem *l; 2374 int i; 2375 2376 for (i = 0; i < htab->n_buckets; i++) { 2377 head = select_bucket(htab, i); 2378 2379 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 2380 void *ptr = fd_htab_map_get_ptr(map, l); 2381 2382 map->ops->map_fd_put_ptr(ptr); 2383 } 2384 } 2385 2386 htab_map_free(map); 2387 } 2388 2389 /* only called from syscall */ 2390 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 2391 { 2392 void **ptr; 2393 int ret = 0; 2394 2395 if (!map->ops->map_fd_sys_lookup_elem) 2396 return -ENOTSUPP; 2397 2398 rcu_read_lock(); 2399 ptr = htab_map_lookup_elem(map, key); 2400 if (ptr) 2401 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); 2402 else 2403 ret = -ENOENT; 2404 rcu_read_unlock(); 2405 2406 return ret; 2407 } 2408 2409 /* only called from syscall */ 2410 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2411 void *key, void *value, u64 map_flags) 2412 { 2413 void *ptr; 2414 int ret; 2415 u32 ufd = *(u32 *)value; 2416 2417 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 2418 if (IS_ERR(ptr)) 2419 return PTR_ERR(ptr); 2420 2421 ret = htab_map_update_elem(map, key, &ptr, map_flags); 2422 if (ret) 2423 map->ops->map_fd_put_ptr(ptr); 2424 2425 return ret; 2426 } 2427 2428 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) 2429 { 2430 struct bpf_map *map, *inner_map_meta; 2431 2432 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 2433 if (IS_ERR(inner_map_meta)) 2434 return inner_map_meta; 2435 2436 map = htab_map_alloc(attr); 2437 if (IS_ERR(map)) { 2438 bpf_map_meta_free(inner_map_meta); 2439 return map; 2440 } 2441 2442 map->inner_map_meta = inner_map_meta; 2443 2444 return map; 2445 } 2446 2447 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) 2448 { 2449 struct bpf_map **inner_map = htab_map_lookup_elem(map, key); 2450 2451 if (!inner_map) 2452 return NULL; 2453 2454 return READ_ONCE(*inner_map); 2455 } 2456 2457 static int htab_of_map_gen_lookup(struct bpf_map *map, 2458 struct bpf_insn *insn_buf) 2459 { 2460 struct bpf_insn *insn = insn_buf; 2461 const int ret = BPF_REG_0; 2462 2463 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 2464 (void *(*)(struct bpf_map *map, void *key))NULL)); 2465 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 2466 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); 2467 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 2468 offsetof(struct htab_elem, key) + 2469 round_up(map->key_size, 8)); 2470 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 2471 2472 return insn - insn_buf; 2473 } 2474 2475 static void htab_of_map_free(struct bpf_map *map) 2476 { 2477 bpf_map_meta_free(map->inner_map_meta); 2478 fd_htab_map_free(map); 2479 } 2480 2481 const struct bpf_map_ops htab_of_maps_map_ops = { 2482 .map_alloc_check = fd_htab_map_alloc_check, 2483 .map_alloc = htab_of_map_alloc, 2484 .map_free = htab_of_map_free, 2485 .map_get_next_key = htab_map_get_next_key, 2486 .map_lookup_elem = htab_of_map_lookup_elem, 2487 .map_delete_elem = htab_map_delete_elem, 2488 .map_fd_get_ptr = bpf_map_fd_get_ptr, 2489 .map_fd_put_ptr = bpf_map_fd_put_ptr, 2490 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 2491 .map_gen_lookup = htab_of_map_gen_lookup, 2492 .map_check_btf = map_check_no_btf, 2493 BATCH_OPS(htab), 2494 .map_btf_id = &htab_map_btf_ids[0], 2495 }; 2496