xref: /linux/kernel/bpf/hashtab.c (revision f2745dc0ba3dadd8fa2b2c33f48253d78e133a12)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include <linux/rcupdate_trace.h>
13 #include <linux/btf_ids.h>
14 #include "percpu_freelist.h"
15 #include "bpf_lru_list.h"
16 #include "map_in_map.h"
17 
18 #define HTAB_CREATE_FLAG_MASK						\
19 	(BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |	\
20 	 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
21 
22 #define BATCH_OPS(_name)			\
23 	.map_lookup_batch =			\
24 	_name##_map_lookup_batch,		\
25 	.map_lookup_and_delete_batch =		\
26 	_name##_map_lookup_and_delete_batch,	\
27 	.map_update_batch =			\
28 	generic_map_update_batch,		\
29 	.map_delete_batch =			\
30 	generic_map_delete_batch
31 
32 /*
33  * The bucket lock has two protection scopes:
34  *
35  * 1) Serializing concurrent operations from BPF programs on different
36  *    CPUs
37  *
38  * 2) Serializing concurrent operations from BPF programs and sys_bpf()
39  *
40  * BPF programs can execute in any context including perf, kprobes and
41  * tracing. As there are almost no limits where perf, kprobes and tracing
42  * can be invoked from the lock operations need to be protected against
43  * deadlocks. Deadlocks can be caused by recursion and by an invocation in
44  * the lock held section when functions which acquire this lock are invoked
45  * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
46  * variable bpf_prog_active, which prevents BPF programs attached to perf
47  * events, kprobes and tracing to be invoked before the prior invocation
48  * from one of these contexts completed. sys_bpf() uses the same mechanism
49  * by pinning the task to the current CPU and incrementing the recursion
50  * protection across the map operation.
51  *
52  * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
53  * operations like memory allocations (even with GFP_ATOMIC) from atomic
54  * contexts. This is required because even with GFP_ATOMIC the memory
55  * allocator calls into code paths which acquire locks with long held lock
56  * sections. To ensure the deterministic behaviour these locks are regular
57  * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
58  * true atomic contexts on an RT kernel are the low level hardware
59  * handling, scheduling, low level interrupt handling, NMIs etc. None of
60  * these contexts should ever do memory allocations.
61  *
62  * As regular device interrupt handlers and soft interrupts are forced into
63  * thread context, the existing code which does
64  *   spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*();
65  * just works.
66  *
67  * In theory the BPF locks could be converted to regular spinlocks as well,
68  * but the bucket locks and percpu_freelist locks can be taken from
69  * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
70  * atomic contexts even on RT. These mechanisms require preallocated maps,
71  * so there is no need to invoke memory allocations within the lock held
72  * sections.
73  *
74  * BPF maps which need dynamic allocation are only used from (forced)
75  * thread context on RT and can therefore use regular spinlocks which in
76  * turn allows to invoke memory allocations from the lock held section.
77  *
78  * On a non RT kernel this distinction is neither possible nor required.
79  * spinlock maps to raw_spinlock and the extra code is optimized out by the
80  * compiler.
81  */
82 struct bucket {
83 	struct hlist_nulls_head head;
84 	union {
85 		raw_spinlock_t raw_lock;
86 		spinlock_t     lock;
87 	};
88 };
89 
90 #define HASHTAB_MAP_LOCK_COUNT 8
91 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
92 
93 struct bpf_htab {
94 	struct bpf_map map;
95 	struct bucket *buckets;
96 	void *elems;
97 	union {
98 		struct pcpu_freelist freelist;
99 		struct bpf_lru lru;
100 	};
101 	struct htab_elem *__percpu *extra_elems;
102 	atomic_t count;	/* number of elements in this hashtable */
103 	u32 n_buckets;	/* number of hash buckets */
104 	u32 elem_size;	/* size of each element in bytes */
105 	u32 hashrnd;
106 	struct lock_class_key lockdep_key;
107 	int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
108 };
109 
110 /* each htab element is struct htab_elem + key + value */
111 struct htab_elem {
112 	union {
113 		struct hlist_nulls_node hash_node;
114 		struct {
115 			void *padding;
116 			union {
117 				struct bpf_htab *htab;
118 				struct pcpu_freelist_node fnode;
119 				struct htab_elem *batch_flink;
120 			};
121 		};
122 	};
123 	union {
124 		struct rcu_head rcu;
125 		struct bpf_lru_node lru_node;
126 	};
127 	u32 hash;
128 	char key[] __aligned(8);
129 };
130 
131 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
132 {
133 	return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
134 }
135 
136 static inline bool htab_use_raw_lock(const struct bpf_htab *htab)
137 {
138 	return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab));
139 }
140 
141 static void htab_init_buckets(struct bpf_htab *htab)
142 {
143 	unsigned int i;
144 
145 	for (i = 0; i < htab->n_buckets; i++) {
146 		INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
147 		if (htab_use_raw_lock(htab)) {
148 			raw_spin_lock_init(&htab->buckets[i].raw_lock);
149 			lockdep_set_class(&htab->buckets[i].raw_lock,
150 					  &htab->lockdep_key);
151 		} else {
152 			spin_lock_init(&htab->buckets[i].lock);
153 			lockdep_set_class(&htab->buckets[i].lock,
154 					  &htab->lockdep_key);
155 		}
156 		cond_resched();
157 	}
158 }
159 
160 static inline int htab_lock_bucket(const struct bpf_htab *htab,
161 				   struct bucket *b, u32 hash,
162 				   unsigned long *pflags)
163 {
164 	unsigned long flags;
165 
166 	hash = hash & HASHTAB_MAP_LOCK_MASK;
167 
168 	migrate_disable();
169 	if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
170 		__this_cpu_dec(*(htab->map_locked[hash]));
171 		migrate_enable();
172 		return -EBUSY;
173 	}
174 
175 	if (htab_use_raw_lock(htab))
176 		raw_spin_lock_irqsave(&b->raw_lock, flags);
177 	else
178 		spin_lock_irqsave(&b->lock, flags);
179 	*pflags = flags;
180 
181 	return 0;
182 }
183 
184 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
185 				      struct bucket *b, u32 hash,
186 				      unsigned long flags)
187 {
188 	hash = hash & HASHTAB_MAP_LOCK_MASK;
189 	if (htab_use_raw_lock(htab))
190 		raw_spin_unlock_irqrestore(&b->raw_lock, flags);
191 	else
192 		spin_unlock_irqrestore(&b->lock, flags);
193 	__this_cpu_dec(*(htab->map_locked[hash]));
194 	migrate_enable();
195 }
196 
197 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
198 
199 static bool htab_is_lru(const struct bpf_htab *htab)
200 {
201 	return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
202 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
203 }
204 
205 static bool htab_is_percpu(const struct bpf_htab *htab)
206 {
207 	return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
208 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
209 }
210 
211 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
212 				     void __percpu *pptr)
213 {
214 	*(void __percpu **)(l->key + key_size) = pptr;
215 }
216 
217 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
218 {
219 	return *(void __percpu **)(l->key + key_size);
220 }
221 
222 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
223 {
224 	return *(void **)(l->key + roundup(map->key_size, 8));
225 }
226 
227 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
228 {
229 	return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
230 }
231 
232 static bool htab_has_extra_elems(struct bpf_htab *htab)
233 {
234 	return !htab_is_percpu(htab) && !htab_is_lru(htab);
235 }
236 
237 static void htab_free_prealloced_timers(struct bpf_htab *htab)
238 {
239 	u32 num_entries = htab->map.max_entries;
240 	int i;
241 
242 	if (!map_value_has_timer(&htab->map))
243 		return;
244 	if (htab_has_extra_elems(htab))
245 		num_entries += num_possible_cpus();
246 
247 	for (i = 0; i < num_entries; i++) {
248 		struct htab_elem *elem;
249 
250 		elem = get_htab_elem(htab, i);
251 		bpf_timer_cancel_and_free(elem->key +
252 					  round_up(htab->map.key_size, 8) +
253 					  htab->map.timer_off);
254 		cond_resched();
255 	}
256 }
257 
258 static void htab_free_prealloced_kptrs(struct bpf_htab *htab)
259 {
260 	u32 num_entries = htab->map.max_entries;
261 	int i;
262 
263 	if (!map_value_has_kptrs(&htab->map))
264 		return;
265 	if (htab_has_extra_elems(htab))
266 		num_entries += num_possible_cpus();
267 
268 	for (i = 0; i < num_entries; i++) {
269 		struct htab_elem *elem;
270 
271 		elem = get_htab_elem(htab, i);
272 		bpf_map_free_kptrs(&htab->map, elem->key + round_up(htab->map.key_size, 8));
273 		cond_resched();
274 	}
275 }
276 
277 static void htab_free_elems(struct bpf_htab *htab)
278 {
279 	int i;
280 
281 	if (!htab_is_percpu(htab))
282 		goto free_elems;
283 
284 	for (i = 0; i < htab->map.max_entries; i++) {
285 		void __percpu *pptr;
286 
287 		pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
288 					 htab->map.key_size);
289 		free_percpu(pptr);
290 		cond_resched();
291 	}
292 free_elems:
293 	bpf_map_area_free(htab->elems);
294 }
295 
296 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
297  * (bucket_lock). If both locks need to be acquired together, the lock
298  * order is always lru_lock -> bucket_lock and this only happens in
299  * bpf_lru_list.c logic. For example, certain code path of
300  * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
301  * will acquire lru_lock first followed by acquiring bucket_lock.
302  *
303  * In hashtab.c, to avoid deadlock, lock acquisition of
304  * bucket_lock followed by lru_lock is not allowed. In such cases,
305  * bucket_lock needs to be released first before acquiring lru_lock.
306  */
307 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
308 					  u32 hash)
309 {
310 	struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
311 	struct htab_elem *l;
312 
313 	if (node) {
314 		u32 key_size = htab->map.key_size;
315 
316 		l = container_of(node, struct htab_elem, lru_node);
317 		memcpy(l->key, key, key_size);
318 		check_and_init_map_value(&htab->map,
319 					 l->key + round_up(key_size, 8));
320 		return l;
321 	}
322 
323 	return NULL;
324 }
325 
326 static int prealloc_init(struct bpf_htab *htab)
327 {
328 	u32 num_entries = htab->map.max_entries;
329 	int err = -ENOMEM, i;
330 
331 	if (htab_has_extra_elems(htab))
332 		num_entries += num_possible_cpus();
333 
334 	htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries,
335 					 htab->map.numa_node);
336 	if (!htab->elems)
337 		return -ENOMEM;
338 
339 	if (!htab_is_percpu(htab))
340 		goto skip_percpu_elems;
341 
342 	for (i = 0; i < num_entries; i++) {
343 		u32 size = round_up(htab->map.value_size, 8);
344 		void __percpu *pptr;
345 
346 		pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
347 					    GFP_USER | __GFP_NOWARN);
348 		if (!pptr)
349 			goto free_elems;
350 		htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
351 				  pptr);
352 		cond_resched();
353 	}
354 
355 skip_percpu_elems:
356 	if (htab_is_lru(htab))
357 		err = bpf_lru_init(&htab->lru,
358 				   htab->map.map_flags & BPF_F_NO_COMMON_LRU,
359 				   offsetof(struct htab_elem, hash) -
360 				   offsetof(struct htab_elem, lru_node),
361 				   htab_lru_map_delete_node,
362 				   htab);
363 	else
364 		err = pcpu_freelist_init(&htab->freelist);
365 
366 	if (err)
367 		goto free_elems;
368 
369 	if (htab_is_lru(htab))
370 		bpf_lru_populate(&htab->lru, htab->elems,
371 				 offsetof(struct htab_elem, lru_node),
372 				 htab->elem_size, num_entries);
373 	else
374 		pcpu_freelist_populate(&htab->freelist,
375 				       htab->elems + offsetof(struct htab_elem, fnode),
376 				       htab->elem_size, num_entries);
377 
378 	return 0;
379 
380 free_elems:
381 	htab_free_elems(htab);
382 	return err;
383 }
384 
385 static void prealloc_destroy(struct bpf_htab *htab)
386 {
387 	htab_free_elems(htab);
388 
389 	if (htab_is_lru(htab))
390 		bpf_lru_destroy(&htab->lru);
391 	else
392 		pcpu_freelist_destroy(&htab->freelist);
393 }
394 
395 static int alloc_extra_elems(struct bpf_htab *htab)
396 {
397 	struct htab_elem *__percpu *pptr, *l_new;
398 	struct pcpu_freelist_node *l;
399 	int cpu;
400 
401 	pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8,
402 				    GFP_USER | __GFP_NOWARN);
403 	if (!pptr)
404 		return -ENOMEM;
405 
406 	for_each_possible_cpu(cpu) {
407 		l = pcpu_freelist_pop(&htab->freelist);
408 		/* pop will succeed, since prealloc_init()
409 		 * preallocated extra num_possible_cpus elements
410 		 */
411 		l_new = container_of(l, struct htab_elem, fnode);
412 		*per_cpu_ptr(pptr, cpu) = l_new;
413 	}
414 	htab->extra_elems = pptr;
415 	return 0;
416 }
417 
418 /* Called from syscall */
419 static int htab_map_alloc_check(union bpf_attr *attr)
420 {
421 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
422 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
423 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
424 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
425 	/* percpu_lru means each cpu has its own LRU list.
426 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
427 	 * the map's value itself is percpu.  percpu_lru has
428 	 * nothing to do with the map's value.
429 	 */
430 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
431 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
432 	bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
433 	int numa_node = bpf_map_attr_numa_node(attr);
434 
435 	BUILD_BUG_ON(offsetof(struct htab_elem, htab) !=
436 		     offsetof(struct htab_elem, hash_node.pprev));
437 	BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
438 		     offsetof(struct htab_elem, hash_node.pprev));
439 
440 	if (lru && !bpf_capable())
441 		/* LRU implementation is much complicated than other
442 		 * maps.  Hence, limit to CAP_BPF.
443 		 */
444 		return -EPERM;
445 
446 	if (zero_seed && !capable(CAP_SYS_ADMIN))
447 		/* Guard against local DoS, and discourage production use. */
448 		return -EPERM;
449 
450 	if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
451 	    !bpf_map_flags_access_ok(attr->map_flags))
452 		return -EINVAL;
453 
454 	if (!lru && percpu_lru)
455 		return -EINVAL;
456 
457 	if (lru && !prealloc)
458 		return -ENOTSUPP;
459 
460 	if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
461 		return -EINVAL;
462 
463 	/* check sanity of attributes.
464 	 * value_size == 0 may be allowed in the future to use map as a set
465 	 */
466 	if (attr->max_entries == 0 || attr->key_size == 0 ||
467 	    attr->value_size == 0)
468 		return -EINVAL;
469 
470 	if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
471 	   sizeof(struct htab_elem))
472 		/* if key_size + value_size is bigger, the user space won't be
473 		 * able to access the elements via bpf syscall. This check
474 		 * also makes sure that the elem_size doesn't overflow and it's
475 		 * kmalloc-able later in htab_map_update_elem()
476 		 */
477 		return -E2BIG;
478 
479 	return 0;
480 }
481 
482 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
483 {
484 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
485 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
486 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
487 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
488 	/* percpu_lru means each cpu has its own LRU list.
489 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
490 	 * the map's value itself is percpu.  percpu_lru has
491 	 * nothing to do with the map's value.
492 	 */
493 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
494 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
495 	struct bpf_htab *htab;
496 	int err, i;
497 
498 	htab = kzalloc(sizeof(*htab), GFP_USER | __GFP_ACCOUNT);
499 	if (!htab)
500 		return ERR_PTR(-ENOMEM);
501 
502 	lockdep_register_key(&htab->lockdep_key);
503 
504 	bpf_map_init_from_attr(&htab->map, attr);
505 
506 	if (percpu_lru) {
507 		/* ensure each CPU's lru list has >=1 elements.
508 		 * since we are at it, make each lru list has the same
509 		 * number of elements.
510 		 */
511 		htab->map.max_entries = roundup(attr->max_entries,
512 						num_possible_cpus());
513 		if (htab->map.max_entries < attr->max_entries)
514 			htab->map.max_entries = rounddown(attr->max_entries,
515 							  num_possible_cpus());
516 	}
517 
518 	/* hash table size must be power of 2 */
519 	htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
520 
521 	htab->elem_size = sizeof(struct htab_elem) +
522 			  round_up(htab->map.key_size, 8);
523 	if (percpu)
524 		htab->elem_size += sizeof(void *);
525 	else
526 		htab->elem_size += round_up(htab->map.value_size, 8);
527 
528 	err = -E2BIG;
529 	/* prevent zero size kmalloc and check for u32 overflow */
530 	if (htab->n_buckets == 0 ||
531 	    htab->n_buckets > U32_MAX / sizeof(struct bucket))
532 		goto free_htab;
533 
534 	err = -ENOMEM;
535 	htab->buckets = bpf_map_area_alloc(htab->n_buckets *
536 					   sizeof(struct bucket),
537 					   htab->map.numa_node);
538 	if (!htab->buckets)
539 		goto free_htab;
540 
541 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
542 		htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map,
543 							   sizeof(int),
544 							   sizeof(int),
545 							   GFP_USER);
546 		if (!htab->map_locked[i])
547 			goto free_map_locked;
548 	}
549 
550 	if (htab->map.map_flags & BPF_F_ZERO_SEED)
551 		htab->hashrnd = 0;
552 	else
553 		htab->hashrnd = get_random_int();
554 
555 	htab_init_buckets(htab);
556 
557 	if (prealloc) {
558 		err = prealloc_init(htab);
559 		if (err)
560 			goto free_map_locked;
561 
562 		if (!percpu && !lru) {
563 			/* lru itself can remove the least used element, so
564 			 * there is no need for an extra elem during map_update.
565 			 */
566 			err = alloc_extra_elems(htab);
567 			if (err)
568 				goto free_prealloc;
569 		}
570 	}
571 
572 	return &htab->map;
573 
574 free_prealloc:
575 	prealloc_destroy(htab);
576 free_map_locked:
577 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
578 		free_percpu(htab->map_locked[i]);
579 	bpf_map_area_free(htab->buckets);
580 free_htab:
581 	lockdep_unregister_key(&htab->lockdep_key);
582 	kfree(htab);
583 	return ERR_PTR(err);
584 }
585 
586 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
587 {
588 	return jhash(key, key_len, hashrnd);
589 }
590 
591 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
592 {
593 	return &htab->buckets[hash & (htab->n_buckets - 1)];
594 }
595 
596 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
597 {
598 	return &__select_bucket(htab, hash)->head;
599 }
600 
601 /* this lookup function can only be called with bucket lock taken */
602 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
603 					 void *key, u32 key_size)
604 {
605 	struct hlist_nulls_node *n;
606 	struct htab_elem *l;
607 
608 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
609 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
610 			return l;
611 
612 	return NULL;
613 }
614 
615 /* can be called without bucket lock. it will repeat the loop in
616  * the unlikely event when elements moved from one bucket into another
617  * while link list is being walked
618  */
619 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
620 					       u32 hash, void *key,
621 					       u32 key_size, u32 n_buckets)
622 {
623 	struct hlist_nulls_node *n;
624 	struct htab_elem *l;
625 
626 again:
627 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
628 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
629 			return l;
630 
631 	if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
632 		goto again;
633 
634 	return NULL;
635 }
636 
637 /* Called from syscall or from eBPF program directly, so
638  * arguments have to match bpf_map_lookup_elem() exactly.
639  * The return value is adjusted by BPF instructions
640  * in htab_map_gen_lookup().
641  */
642 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
643 {
644 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
645 	struct hlist_nulls_head *head;
646 	struct htab_elem *l;
647 	u32 hash, key_size;
648 
649 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
650 		     !rcu_read_lock_bh_held());
651 
652 	key_size = map->key_size;
653 
654 	hash = htab_map_hash(key, key_size, htab->hashrnd);
655 
656 	head = select_bucket(htab, hash);
657 
658 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
659 
660 	return l;
661 }
662 
663 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
664 {
665 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
666 
667 	if (l)
668 		return l->key + round_up(map->key_size, 8);
669 
670 	return NULL;
671 }
672 
673 /* inline bpf_map_lookup_elem() call.
674  * Instead of:
675  * bpf_prog
676  *   bpf_map_lookup_elem
677  *     map->ops->map_lookup_elem
678  *       htab_map_lookup_elem
679  *         __htab_map_lookup_elem
680  * do:
681  * bpf_prog
682  *   __htab_map_lookup_elem
683  */
684 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
685 {
686 	struct bpf_insn *insn = insn_buf;
687 	const int ret = BPF_REG_0;
688 
689 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
690 		     (void *(*)(struct bpf_map *map, void *key))NULL));
691 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
692 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
693 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
694 				offsetof(struct htab_elem, key) +
695 				round_up(map->key_size, 8));
696 	return insn - insn_buf;
697 }
698 
699 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
700 							void *key, const bool mark)
701 {
702 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
703 
704 	if (l) {
705 		if (mark)
706 			bpf_lru_node_set_ref(&l->lru_node);
707 		return l->key + round_up(map->key_size, 8);
708 	}
709 
710 	return NULL;
711 }
712 
713 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
714 {
715 	return __htab_lru_map_lookup_elem(map, key, true);
716 }
717 
718 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
719 {
720 	return __htab_lru_map_lookup_elem(map, key, false);
721 }
722 
723 static int htab_lru_map_gen_lookup(struct bpf_map *map,
724 				   struct bpf_insn *insn_buf)
725 {
726 	struct bpf_insn *insn = insn_buf;
727 	const int ret = BPF_REG_0;
728 	const int ref_reg = BPF_REG_1;
729 
730 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
731 		     (void *(*)(struct bpf_map *map, void *key))NULL));
732 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
733 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
734 	*insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
735 			      offsetof(struct htab_elem, lru_node) +
736 			      offsetof(struct bpf_lru_node, ref));
737 	*insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
738 	*insn++ = BPF_ST_MEM(BPF_B, ret,
739 			     offsetof(struct htab_elem, lru_node) +
740 			     offsetof(struct bpf_lru_node, ref),
741 			     1);
742 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
743 				offsetof(struct htab_elem, key) +
744 				round_up(map->key_size, 8));
745 	return insn - insn_buf;
746 }
747 
748 static void check_and_free_fields(struct bpf_htab *htab,
749 				  struct htab_elem *elem)
750 {
751 	void *map_value = elem->key + round_up(htab->map.key_size, 8);
752 
753 	if (map_value_has_timer(&htab->map))
754 		bpf_timer_cancel_and_free(map_value + htab->map.timer_off);
755 	if (map_value_has_kptrs(&htab->map))
756 		bpf_map_free_kptrs(&htab->map, map_value);
757 }
758 
759 /* It is called from the bpf_lru_list when the LRU needs to delete
760  * older elements from the htab.
761  */
762 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
763 {
764 	struct bpf_htab *htab = arg;
765 	struct htab_elem *l = NULL, *tgt_l;
766 	struct hlist_nulls_head *head;
767 	struct hlist_nulls_node *n;
768 	unsigned long flags;
769 	struct bucket *b;
770 	int ret;
771 
772 	tgt_l = container_of(node, struct htab_elem, lru_node);
773 	b = __select_bucket(htab, tgt_l->hash);
774 	head = &b->head;
775 
776 	ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
777 	if (ret)
778 		return false;
779 
780 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
781 		if (l == tgt_l) {
782 			hlist_nulls_del_rcu(&l->hash_node);
783 			check_and_free_fields(htab, l);
784 			break;
785 		}
786 
787 	htab_unlock_bucket(htab, b, tgt_l->hash, flags);
788 
789 	return l == tgt_l;
790 }
791 
792 /* Called from syscall */
793 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
794 {
795 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
796 	struct hlist_nulls_head *head;
797 	struct htab_elem *l, *next_l;
798 	u32 hash, key_size;
799 	int i = 0;
800 
801 	WARN_ON_ONCE(!rcu_read_lock_held());
802 
803 	key_size = map->key_size;
804 
805 	if (!key)
806 		goto find_first_elem;
807 
808 	hash = htab_map_hash(key, key_size, htab->hashrnd);
809 
810 	head = select_bucket(htab, hash);
811 
812 	/* lookup the key */
813 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
814 
815 	if (!l)
816 		goto find_first_elem;
817 
818 	/* key was found, get next key in the same bucket */
819 	next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
820 				  struct htab_elem, hash_node);
821 
822 	if (next_l) {
823 		/* if next elem in this hash list is non-zero, just return it */
824 		memcpy(next_key, next_l->key, key_size);
825 		return 0;
826 	}
827 
828 	/* no more elements in this hash list, go to the next bucket */
829 	i = hash & (htab->n_buckets - 1);
830 	i++;
831 
832 find_first_elem:
833 	/* iterate over buckets */
834 	for (; i < htab->n_buckets; i++) {
835 		head = select_bucket(htab, i);
836 
837 		/* pick first element in the bucket */
838 		next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
839 					  struct htab_elem, hash_node);
840 		if (next_l) {
841 			/* if it's not empty, just return it */
842 			memcpy(next_key, next_l->key, key_size);
843 			return 0;
844 		}
845 	}
846 
847 	/* iterated over all buckets and all elements */
848 	return -ENOENT;
849 }
850 
851 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
852 {
853 	if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
854 		free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
855 	check_and_free_fields(htab, l);
856 	kfree(l);
857 }
858 
859 static void htab_elem_free_rcu(struct rcu_head *head)
860 {
861 	struct htab_elem *l = container_of(head, struct htab_elem, rcu);
862 	struct bpf_htab *htab = l->htab;
863 
864 	htab_elem_free(htab, l);
865 }
866 
867 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
868 {
869 	struct bpf_map *map = &htab->map;
870 	void *ptr;
871 
872 	if (map->ops->map_fd_put_ptr) {
873 		ptr = fd_htab_map_get_ptr(map, l);
874 		map->ops->map_fd_put_ptr(ptr);
875 	}
876 }
877 
878 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
879 {
880 	htab_put_fd_value(htab, l);
881 
882 	if (htab_is_prealloc(htab)) {
883 		check_and_free_fields(htab, l);
884 		__pcpu_freelist_push(&htab->freelist, &l->fnode);
885 	} else {
886 		atomic_dec(&htab->count);
887 		l->htab = htab;
888 		call_rcu(&l->rcu, htab_elem_free_rcu);
889 	}
890 }
891 
892 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
893 			    void *value, bool onallcpus)
894 {
895 	if (!onallcpus) {
896 		/* copy true value_size bytes */
897 		memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
898 	} else {
899 		u32 size = round_up(htab->map.value_size, 8);
900 		int off = 0, cpu;
901 
902 		for_each_possible_cpu(cpu) {
903 			bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
904 					value + off, size);
905 			off += size;
906 		}
907 	}
908 }
909 
910 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
911 			    void *value, bool onallcpus)
912 {
913 	/* When using prealloc and not setting the initial value on all cpus,
914 	 * zero-fill element values for other cpus (just as what happens when
915 	 * not using prealloc). Otherwise, bpf program has no way to ensure
916 	 * known initial values for cpus other than current one
917 	 * (onallcpus=false always when coming from bpf prog).
918 	 */
919 	if (htab_is_prealloc(htab) && !onallcpus) {
920 		u32 size = round_up(htab->map.value_size, 8);
921 		int current_cpu = raw_smp_processor_id();
922 		int cpu;
923 
924 		for_each_possible_cpu(cpu) {
925 			if (cpu == current_cpu)
926 				bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value,
927 						size);
928 			else
929 				memset(per_cpu_ptr(pptr, cpu), 0, size);
930 		}
931 	} else {
932 		pcpu_copy_value(htab, pptr, value, onallcpus);
933 	}
934 }
935 
936 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
937 {
938 	return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
939 	       BITS_PER_LONG == 64;
940 }
941 
942 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
943 					 void *value, u32 key_size, u32 hash,
944 					 bool percpu, bool onallcpus,
945 					 struct htab_elem *old_elem)
946 {
947 	u32 size = htab->map.value_size;
948 	bool prealloc = htab_is_prealloc(htab);
949 	struct htab_elem *l_new, **pl_new;
950 	void __percpu *pptr;
951 
952 	if (prealloc) {
953 		if (old_elem) {
954 			/* if we're updating the existing element,
955 			 * use per-cpu extra elems to avoid freelist_pop/push
956 			 */
957 			pl_new = this_cpu_ptr(htab->extra_elems);
958 			l_new = *pl_new;
959 			htab_put_fd_value(htab, old_elem);
960 			*pl_new = old_elem;
961 		} else {
962 			struct pcpu_freelist_node *l;
963 
964 			l = __pcpu_freelist_pop(&htab->freelist);
965 			if (!l)
966 				return ERR_PTR(-E2BIG);
967 			l_new = container_of(l, struct htab_elem, fnode);
968 		}
969 	} else {
970 		if (atomic_inc_return(&htab->count) > htab->map.max_entries)
971 			if (!old_elem) {
972 				/* when map is full and update() is replacing
973 				 * old element, it's ok to allocate, since
974 				 * old element will be freed immediately.
975 				 * Otherwise return an error
976 				 */
977 				l_new = ERR_PTR(-E2BIG);
978 				goto dec_count;
979 			}
980 		l_new = bpf_map_kmalloc_node(&htab->map, htab->elem_size,
981 					     GFP_ATOMIC | __GFP_NOWARN,
982 					     htab->map.numa_node);
983 		if (!l_new) {
984 			l_new = ERR_PTR(-ENOMEM);
985 			goto dec_count;
986 		}
987 		check_and_init_map_value(&htab->map,
988 					 l_new->key + round_up(key_size, 8));
989 	}
990 
991 	memcpy(l_new->key, key, key_size);
992 	if (percpu) {
993 		size = round_up(size, 8);
994 		if (prealloc) {
995 			pptr = htab_elem_get_ptr(l_new, key_size);
996 		} else {
997 			/* alloc_percpu zero-fills */
998 			pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
999 						    GFP_ATOMIC | __GFP_NOWARN);
1000 			if (!pptr) {
1001 				kfree(l_new);
1002 				l_new = ERR_PTR(-ENOMEM);
1003 				goto dec_count;
1004 			}
1005 		}
1006 
1007 		pcpu_init_value(htab, pptr, value, onallcpus);
1008 
1009 		if (!prealloc)
1010 			htab_elem_set_ptr(l_new, key_size, pptr);
1011 	} else if (fd_htab_map_needs_adjust(htab)) {
1012 		size = round_up(size, 8);
1013 		memcpy(l_new->key + round_up(key_size, 8), value, size);
1014 	} else {
1015 		copy_map_value(&htab->map,
1016 			       l_new->key + round_up(key_size, 8),
1017 			       value);
1018 	}
1019 
1020 	l_new->hash = hash;
1021 	return l_new;
1022 dec_count:
1023 	atomic_dec(&htab->count);
1024 	return l_new;
1025 }
1026 
1027 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
1028 		       u64 map_flags)
1029 {
1030 	if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
1031 		/* elem already exists */
1032 		return -EEXIST;
1033 
1034 	if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
1035 		/* elem doesn't exist, cannot update it */
1036 		return -ENOENT;
1037 
1038 	return 0;
1039 }
1040 
1041 /* Called from syscall or from eBPF program */
1042 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
1043 				u64 map_flags)
1044 {
1045 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1046 	struct htab_elem *l_new = NULL, *l_old;
1047 	struct hlist_nulls_head *head;
1048 	unsigned long flags;
1049 	struct bucket *b;
1050 	u32 key_size, hash;
1051 	int ret;
1052 
1053 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
1054 		/* unknown flags */
1055 		return -EINVAL;
1056 
1057 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1058 		     !rcu_read_lock_bh_held());
1059 
1060 	key_size = map->key_size;
1061 
1062 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1063 
1064 	b = __select_bucket(htab, hash);
1065 	head = &b->head;
1066 
1067 	if (unlikely(map_flags & BPF_F_LOCK)) {
1068 		if (unlikely(!map_value_has_spin_lock(map)))
1069 			return -EINVAL;
1070 		/* find an element without taking the bucket lock */
1071 		l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
1072 					      htab->n_buckets);
1073 		ret = check_flags(htab, l_old, map_flags);
1074 		if (ret)
1075 			return ret;
1076 		if (l_old) {
1077 			/* grab the element lock and update value in place */
1078 			copy_map_value_locked(map,
1079 					      l_old->key + round_up(key_size, 8),
1080 					      value, false);
1081 			return 0;
1082 		}
1083 		/* fall through, grab the bucket lock and lookup again.
1084 		 * 99.9% chance that the element won't be found,
1085 		 * but second lookup under lock has to be done.
1086 		 */
1087 	}
1088 
1089 	ret = htab_lock_bucket(htab, b, hash, &flags);
1090 	if (ret)
1091 		return ret;
1092 
1093 	l_old = lookup_elem_raw(head, hash, key, key_size);
1094 
1095 	ret = check_flags(htab, l_old, map_flags);
1096 	if (ret)
1097 		goto err;
1098 
1099 	if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1100 		/* first lookup without the bucket lock didn't find the element,
1101 		 * but second lookup with the bucket lock found it.
1102 		 * This case is highly unlikely, but has to be dealt with:
1103 		 * grab the element lock in addition to the bucket lock
1104 		 * and update element in place
1105 		 */
1106 		copy_map_value_locked(map,
1107 				      l_old->key + round_up(key_size, 8),
1108 				      value, false);
1109 		ret = 0;
1110 		goto err;
1111 	}
1112 
1113 	l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1114 				l_old);
1115 	if (IS_ERR(l_new)) {
1116 		/* all pre-allocated elements are in use or memory exhausted */
1117 		ret = PTR_ERR(l_new);
1118 		goto err;
1119 	}
1120 
1121 	/* add new element to the head of the list, so that
1122 	 * concurrent search will find it before old elem
1123 	 */
1124 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1125 	if (l_old) {
1126 		hlist_nulls_del_rcu(&l_old->hash_node);
1127 		if (!htab_is_prealloc(htab))
1128 			free_htab_elem(htab, l_old);
1129 		else
1130 			check_and_free_fields(htab, l_old);
1131 	}
1132 	ret = 0;
1133 err:
1134 	htab_unlock_bucket(htab, b, hash, flags);
1135 	return ret;
1136 }
1137 
1138 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem)
1139 {
1140 	check_and_free_fields(htab, elem);
1141 	bpf_lru_push_free(&htab->lru, &elem->lru_node);
1142 }
1143 
1144 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1145 				    u64 map_flags)
1146 {
1147 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1148 	struct htab_elem *l_new, *l_old = NULL;
1149 	struct hlist_nulls_head *head;
1150 	unsigned long flags;
1151 	struct bucket *b;
1152 	u32 key_size, hash;
1153 	int ret;
1154 
1155 	if (unlikely(map_flags > BPF_EXIST))
1156 		/* unknown flags */
1157 		return -EINVAL;
1158 
1159 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1160 		     !rcu_read_lock_bh_held());
1161 
1162 	key_size = map->key_size;
1163 
1164 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1165 
1166 	b = __select_bucket(htab, hash);
1167 	head = &b->head;
1168 
1169 	/* For LRU, we need to alloc before taking bucket's
1170 	 * spinlock because getting free nodes from LRU may need
1171 	 * to remove older elements from htab and this removal
1172 	 * operation will need a bucket lock.
1173 	 */
1174 	l_new = prealloc_lru_pop(htab, key, hash);
1175 	if (!l_new)
1176 		return -ENOMEM;
1177 	copy_map_value(&htab->map,
1178 		       l_new->key + round_up(map->key_size, 8), value);
1179 
1180 	ret = htab_lock_bucket(htab, b, hash, &flags);
1181 	if (ret)
1182 		return ret;
1183 
1184 	l_old = lookup_elem_raw(head, hash, key, key_size);
1185 
1186 	ret = check_flags(htab, l_old, map_flags);
1187 	if (ret)
1188 		goto err;
1189 
1190 	/* add new element to the head of the list, so that
1191 	 * concurrent search will find it before old elem
1192 	 */
1193 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1194 	if (l_old) {
1195 		bpf_lru_node_set_ref(&l_new->lru_node);
1196 		hlist_nulls_del_rcu(&l_old->hash_node);
1197 	}
1198 	ret = 0;
1199 
1200 err:
1201 	htab_unlock_bucket(htab, b, hash, flags);
1202 
1203 	if (ret)
1204 		htab_lru_push_free(htab, l_new);
1205 	else if (l_old)
1206 		htab_lru_push_free(htab, l_old);
1207 
1208 	return ret;
1209 }
1210 
1211 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1212 					 void *value, u64 map_flags,
1213 					 bool onallcpus)
1214 {
1215 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1216 	struct htab_elem *l_new = NULL, *l_old;
1217 	struct hlist_nulls_head *head;
1218 	unsigned long flags;
1219 	struct bucket *b;
1220 	u32 key_size, hash;
1221 	int ret;
1222 
1223 	if (unlikely(map_flags > BPF_EXIST))
1224 		/* unknown flags */
1225 		return -EINVAL;
1226 
1227 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1228 		     !rcu_read_lock_bh_held());
1229 
1230 	key_size = map->key_size;
1231 
1232 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1233 
1234 	b = __select_bucket(htab, hash);
1235 	head = &b->head;
1236 
1237 	ret = htab_lock_bucket(htab, b, hash, &flags);
1238 	if (ret)
1239 		return ret;
1240 
1241 	l_old = lookup_elem_raw(head, hash, key, key_size);
1242 
1243 	ret = check_flags(htab, l_old, map_flags);
1244 	if (ret)
1245 		goto err;
1246 
1247 	if (l_old) {
1248 		/* per-cpu hash map can update value in-place */
1249 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1250 				value, onallcpus);
1251 	} else {
1252 		l_new = alloc_htab_elem(htab, key, value, key_size,
1253 					hash, true, onallcpus, NULL);
1254 		if (IS_ERR(l_new)) {
1255 			ret = PTR_ERR(l_new);
1256 			goto err;
1257 		}
1258 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1259 	}
1260 	ret = 0;
1261 err:
1262 	htab_unlock_bucket(htab, b, hash, flags);
1263 	return ret;
1264 }
1265 
1266 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1267 					     void *value, u64 map_flags,
1268 					     bool onallcpus)
1269 {
1270 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1271 	struct htab_elem *l_new = NULL, *l_old;
1272 	struct hlist_nulls_head *head;
1273 	unsigned long flags;
1274 	struct bucket *b;
1275 	u32 key_size, hash;
1276 	int ret;
1277 
1278 	if (unlikely(map_flags > BPF_EXIST))
1279 		/* unknown flags */
1280 		return -EINVAL;
1281 
1282 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1283 		     !rcu_read_lock_bh_held());
1284 
1285 	key_size = map->key_size;
1286 
1287 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1288 
1289 	b = __select_bucket(htab, hash);
1290 	head = &b->head;
1291 
1292 	/* For LRU, we need to alloc before taking bucket's
1293 	 * spinlock because LRU's elem alloc may need
1294 	 * to remove older elem from htab and this removal
1295 	 * operation will need a bucket lock.
1296 	 */
1297 	if (map_flags != BPF_EXIST) {
1298 		l_new = prealloc_lru_pop(htab, key, hash);
1299 		if (!l_new)
1300 			return -ENOMEM;
1301 	}
1302 
1303 	ret = htab_lock_bucket(htab, b, hash, &flags);
1304 	if (ret)
1305 		return ret;
1306 
1307 	l_old = lookup_elem_raw(head, hash, key, key_size);
1308 
1309 	ret = check_flags(htab, l_old, map_flags);
1310 	if (ret)
1311 		goto err;
1312 
1313 	if (l_old) {
1314 		bpf_lru_node_set_ref(&l_old->lru_node);
1315 
1316 		/* per-cpu hash map can update value in-place */
1317 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1318 				value, onallcpus);
1319 	} else {
1320 		pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1321 				value, onallcpus);
1322 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1323 		l_new = NULL;
1324 	}
1325 	ret = 0;
1326 err:
1327 	htab_unlock_bucket(htab, b, hash, flags);
1328 	if (l_new)
1329 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1330 	return ret;
1331 }
1332 
1333 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1334 				       void *value, u64 map_flags)
1335 {
1336 	return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1337 }
1338 
1339 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1340 					   void *value, u64 map_flags)
1341 {
1342 	return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1343 						 false);
1344 }
1345 
1346 /* Called from syscall or from eBPF program */
1347 static int htab_map_delete_elem(struct bpf_map *map, void *key)
1348 {
1349 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1350 	struct hlist_nulls_head *head;
1351 	struct bucket *b;
1352 	struct htab_elem *l;
1353 	unsigned long flags;
1354 	u32 hash, key_size;
1355 	int ret;
1356 
1357 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1358 		     !rcu_read_lock_bh_held());
1359 
1360 	key_size = map->key_size;
1361 
1362 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1363 	b = __select_bucket(htab, hash);
1364 	head = &b->head;
1365 
1366 	ret = htab_lock_bucket(htab, b, hash, &flags);
1367 	if (ret)
1368 		return ret;
1369 
1370 	l = lookup_elem_raw(head, hash, key, key_size);
1371 
1372 	if (l) {
1373 		hlist_nulls_del_rcu(&l->hash_node);
1374 		free_htab_elem(htab, l);
1375 	} else {
1376 		ret = -ENOENT;
1377 	}
1378 
1379 	htab_unlock_bucket(htab, b, hash, flags);
1380 	return ret;
1381 }
1382 
1383 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1384 {
1385 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1386 	struct hlist_nulls_head *head;
1387 	struct bucket *b;
1388 	struct htab_elem *l;
1389 	unsigned long flags;
1390 	u32 hash, key_size;
1391 	int ret;
1392 
1393 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1394 		     !rcu_read_lock_bh_held());
1395 
1396 	key_size = map->key_size;
1397 
1398 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1399 	b = __select_bucket(htab, hash);
1400 	head = &b->head;
1401 
1402 	ret = htab_lock_bucket(htab, b, hash, &flags);
1403 	if (ret)
1404 		return ret;
1405 
1406 	l = lookup_elem_raw(head, hash, key, key_size);
1407 
1408 	if (l)
1409 		hlist_nulls_del_rcu(&l->hash_node);
1410 	else
1411 		ret = -ENOENT;
1412 
1413 	htab_unlock_bucket(htab, b, hash, flags);
1414 	if (l)
1415 		htab_lru_push_free(htab, l);
1416 	return ret;
1417 }
1418 
1419 static void delete_all_elements(struct bpf_htab *htab)
1420 {
1421 	int i;
1422 
1423 	for (i = 0; i < htab->n_buckets; i++) {
1424 		struct hlist_nulls_head *head = select_bucket(htab, i);
1425 		struct hlist_nulls_node *n;
1426 		struct htab_elem *l;
1427 
1428 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1429 			hlist_nulls_del_rcu(&l->hash_node);
1430 			htab_elem_free(htab, l);
1431 		}
1432 	}
1433 }
1434 
1435 static void htab_free_malloced_timers(struct bpf_htab *htab)
1436 {
1437 	int i;
1438 
1439 	rcu_read_lock();
1440 	for (i = 0; i < htab->n_buckets; i++) {
1441 		struct hlist_nulls_head *head = select_bucket(htab, i);
1442 		struct hlist_nulls_node *n;
1443 		struct htab_elem *l;
1444 
1445 		hlist_nulls_for_each_entry(l, n, head, hash_node) {
1446 			/* We don't reset or free kptr on uref dropping to zero,
1447 			 * hence just free timer.
1448 			 */
1449 			bpf_timer_cancel_and_free(l->key +
1450 						  round_up(htab->map.key_size, 8) +
1451 						  htab->map.timer_off);
1452 		}
1453 		cond_resched_rcu();
1454 	}
1455 	rcu_read_unlock();
1456 }
1457 
1458 static void htab_map_free_timers(struct bpf_map *map)
1459 {
1460 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1461 
1462 	/* We don't reset or free kptr on uref dropping to zero. */
1463 	if (!map_value_has_timer(&htab->map))
1464 		return;
1465 	if (!htab_is_prealloc(htab))
1466 		htab_free_malloced_timers(htab);
1467 	else
1468 		htab_free_prealloced_timers(htab);
1469 }
1470 
1471 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1472 static void htab_map_free(struct bpf_map *map)
1473 {
1474 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1475 	int i;
1476 
1477 	/* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1478 	 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1479 	 * There is no need to synchronize_rcu() here to protect map elements.
1480 	 */
1481 
1482 	/* some of free_htab_elem() callbacks for elements of this map may
1483 	 * not have executed. Wait for them.
1484 	 */
1485 	rcu_barrier();
1486 	if (!htab_is_prealloc(htab)) {
1487 		delete_all_elements(htab);
1488 	} else {
1489 		htab_free_prealloced_kptrs(htab);
1490 		prealloc_destroy(htab);
1491 	}
1492 
1493 	bpf_map_free_kptr_off_tab(map);
1494 	free_percpu(htab->extra_elems);
1495 	bpf_map_area_free(htab->buckets);
1496 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
1497 		free_percpu(htab->map_locked[i]);
1498 	lockdep_unregister_key(&htab->lockdep_key);
1499 	kfree(htab);
1500 }
1501 
1502 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1503 				   struct seq_file *m)
1504 {
1505 	void *value;
1506 
1507 	rcu_read_lock();
1508 
1509 	value = htab_map_lookup_elem(map, key);
1510 	if (!value) {
1511 		rcu_read_unlock();
1512 		return;
1513 	}
1514 
1515 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1516 	seq_puts(m, ": ");
1517 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1518 	seq_puts(m, "\n");
1519 
1520 	rcu_read_unlock();
1521 }
1522 
1523 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1524 					     void *value, bool is_lru_map,
1525 					     bool is_percpu, u64 flags)
1526 {
1527 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1528 	struct hlist_nulls_head *head;
1529 	unsigned long bflags;
1530 	struct htab_elem *l;
1531 	u32 hash, key_size;
1532 	struct bucket *b;
1533 	int ret;
1534 
1535 	key_size = map->key_size;
1536 
1537 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1538 	b = __select_bucket(htab, hash);
1539 	head = &b->head;
1540 
1541 	ret = htab_lock_bucket(htab, b, hash, &bflags);
1542 	if (ret)
1543 		return ret;
1544 
1545 	l = lookup_elem_raw(head, hash, key, key_size);
1546 	if (!l) {
1547 		ret = -ENOENT;
1548 	} else {
1549 		if (is_percpu) {
1550 			u32 roundup_value_size = round_up(map->value_size, 8);
1551 			void __percpu *pptr;
1552 			int off = 0, cpu;
1553 
1554 			pptr = htab_elem_get_ptr(l, key_size);
1555 			for_each_possible_cpu(cpu) {
1556 				bpf_long_memcpy(value + off,
1557 						per_cpu_ptr(pptr, cpu),
1558 						roundup_value_size);
1559 				off += roundup_value_size;
1560 			}
1561 		} else {
1562 			u32 roundup_key_size = round_up(map->key_size, 8);
1563 
1564 			if (flags & BPF_F_LOCK)
1565 				copy_map_value_locked(map, value, l->key +
1566 						      roundup_key_size,
1567 						      true);
1568 			else
1569 				copy_map_value(map, value, l->key +
1570 					       roundup_key_size);
1571 			check_and_init_map_value(map, value);
1572 		}
1573 
1574 		hlist_nulls_del_rcu(&l->hash_node);
1575 		if (!is_lru_map)
1576 			free_htab_elem(htab, l);
1577 	}
1578 
1579 	htab_unlock_bucket(htab, b, hash, bflags);
1580 
1581 	if (is_lru_map && l)
1582 		htab_lru_push_free(htab, l);
1583 
1584 	return ret;
1585 }
1586 
1587 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1588 					   void *value, u64 flags)
1589 {
1590 	return __htab_map_lookup_and_delete_elem(map, key, value, false, false,
1591 						 flags);
1592 }
1593 
1594 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1595 						  void *key, void *value,
1596 						  u64 flags)
1597 {
1598 	return __htab_map_lookup_and_delete_elem(map, key, value, false, true,
1599 						 flags);
1600 }
1601 
1602 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1603 					       void *value, u64 flags)
1604 {
1605 	return __htab_map_lookup_and_delete_elem(map, key, value, true, false,
1606 						 flags);
1607 }
1608 
1609 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1610 						      void *key, void *value,
1611 						      u64 flags)
1612 {
1613 	return __htab_map_lookup_and_delete_elem(map, key, value, true, true,
1614 						 flags);
1615 }
1616 
1617 static int
1618 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1619 				   const union bpf_attr *attr,
1620 				   union bpf_attr __user *uattr,
1621 				   bool do_delete, bool is_lru_map,
1622 				   bool is_percpu)
1623 {
1624 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1625 	u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1626 	void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1627 	void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1628 	void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1629 	void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1630 	u32 batch, max_count, size, bucket_size, map_id;
1631 	struct htab_elem *node_to_free = NULL;
1632 	u64 elem_map_flags, map_flags;
1633 	struct hlist_nulls_head *head;
1634 	struct hlist_nulls_node *n;
1635 	unsigned long flags = 0;
1636 	bool locked = false;
1637 	struct htab_elem *l;
1638 	struct bucket *b;
1639 	int ret = 0;
1640 
1641 	elem_map_flags = attr->batch.elem_flags;
1642 	if ((elem_map_flags & ~BPF_F_LOCK) ||
1643 	    ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
1644 		return -EINVAL;
1645 
1646 	map_flags = attr->batch.flags;
1647 	if (map_flags)
1648 		return -EINVAL;
1649 
1650 	max_count = attr->batch.count;
1651 	if (!max_count)
1652 		return 0;
1653 
1654 	if (put_user(0, &uattr->batch.count))
1655 		return -EFAULT;
1656 
1657 	batch = 0;
1658 	if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1659 		return -EFAULT;
1660 
1661 	if (batch >= htab->n_buckets)
1662 		return -ENOENT;
1663 
1664 	key_size = htab->map.key_size;
1665 	roundup_key_size = round_up(htab->map.key_size, 8);
1666 	value_size = htab->map.value_size;
1667 	size = round_up(value_size, 8);
1668 	if (is_percpu)
1669 		value_size = size * num_possible_cpus();
1670 	total = 0;
1671 	/* while experimenting with hash tables with sizes ranging from 10 to
1672 	 * 1000, it was observed that a bucket can have up to 5 entries.
1673 	 */
1674 	bucket_size = 5;
1675 
1676 alloc:
1677 	/* We cannot do copy_from_user or copy_to_user inside
1678 	 * the rcu_read_lock. Allocate enough space here.
1679 	 */
1680 	keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN);
1681 	values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN);
1682 	if (!keys || !values) {
1683 		ret = -ENOMEM;
1684 		goto after_loop;
1685 	}
1686 
1687 again:
1688 	bpf_disable_instrumentation();
1689 	rcu_read_lock();
1690 again_nocopy:
1691 	dst_key = keys;
1692 	dst_val = values;
1693 	b = &htab->buckets[batch];
1694 	head = &b->head;
1695 	/* do not grab the lock unless need it (bucket_cnt > 0). */
1696 	if (locked) {
1697 		ret = htab_lock_bucket(htab, b, batch, &flags);
1698 		if (ret)
1699 			goto next_batch;
1700 	}
1701 
1702 	bucket_cnt = 0;
1703 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1704 		bucket_cnt++;
1705 
1706 	if (bucket_cnt && !locked) {
1707 		locked = true;
1708 		goto again_nocopy;
1709 	}
1710 
1711 	if (bucket_cnt > (max_count - total)) {
1712 		if (total == 0)
1713 			ret = -ENOSPC;
1714 		/* Note that since bucket_cnt > 0 here, it is implicit
1715 		 * that the locked was grabbed, so release it.
1716 		 */
1717 		htab_unlock_bucket(htab, b, batch, flags);
1718 		rcu_read_unlock();
1719 		bpf_enable_instrumentation();
1720 		goto after_loop;
1721 	}
1722 
1723 	if (bucket_cnt > bucket_size) {
1724 		bucket_size = bucket_cnt;
1725 		/* Note that since bucket_cnt > 0 here, it is implicit
1726 		 * that the locked was grabbed, so release it.
1727 		 */
1728 		htab_unlock_bucket(htab, b, batch, flags);
1729 		rcu_read_unlock();
1730 		bpf_enable_instrumentation();
1731 		kvfree(keys);
1732 		kvfree(values);
1733 		goto alloc;
1734 	}
1735 
1736 	/* Next block is only safe to run if you have grabbed the lock */
1737 	if (!locked)
1738 		goto next_batch;
1739 
1740 	hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1741 		memcpy(dst_key, l->key, key_size);
1742 
1743 		if (is_percpu) {
1744 			int off = 0, cpu;
1745 			void __percpu *pptr;
1746 
1747 			pptr = htab_elem_get_ptr(l, map->key_size);
1748 			for_each_possible_cpu(cpu) {
1749 				bpf_long_memcpy(dst_val + off,
1750 						per_cpu_ptr(pptr, cpu), size);
1751 				off += size;
1752 			}
1753 		} else {
1754 			value = l->key + roundup_key_size;
1755 			if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) {
1756 				struct bpf_map **inner_map = value;
1757 
1758 				 /* Actual value is the id of the inner map */
1759 				map_id = map->ops->map_fd_sys_lookup_elem(*inner_map);
1760 				value = &map_id;
1761 			}
1762 
1763 			if (elem_map_flags & BPF_F_LOCK)
1764 				copy_map_value_locked(map, dst_val, value,
1765 						      true);
1766 			else
1767 				copy_map_value(map, dst_val, value);
1768 			check_and_init_map_value(map, dst_val);
1769 		}
1770 		if (do_delete) {
1771 			hlist_nulls_del_rcu(&l->hash_node);
1772 
1773 			/* bpf_lru_push_free() will acquire lru_lock, which
1774 			 * may cause deadlock. See comments in function
1775 			 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1776 			 * after releasing the bucket lock.
1777 			 */
1778 			if (is_lru_map) {
1779 				l->batch_flink = node_to_free;
1780 				node_to_free = l;
1781 			} else {
1782 				free_htab_elem(htab, l);
1783 			}
1784 		}
1785 		dst_key += key_size;
1786 		dst_val += value_size;
1787 	}
1788 
1789 	htab_unlock_bucket(htab, b, batch, flags);
1790 	locked = false;
1791 
1792 	while (node_to_free) {
1793 		l = node_to_free;
1794 		node_to_free = node_to_free->batch_flink;
1795 		htab_lru_push_free(htab, l);
1796 	}
1797 
1798 next_batch:
1799 	/* If we are not copying data, we can go to next bucket and avoid
1800 	 * unlocking the rcu.
1801 	 */
1802 	if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1803 		batch++;
1804 		goto again_nocopy;
1805 	}
1806 
1807 	rcu_read_unlock();
1808 	bpf_enable_instrumentation();
1809 	if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1810 	    key_size * bucket_cnt) ||
1811 	    copy_to_user(uvalues + total * value_size, values,
1812 	    value_size * bucket_cnt))) {
1813 		ret = -EFAULT;
1814 		goto after_loop;
1815 	}
1816 
1817 	total += bucket_cnt;
1818 	batch++;
1819 	if (batch >= htab->n_buckets) {
1820 		ret = -ENOENT;
1821 		goto after_loop;
1822 	}
1823 	goto again;
1824 
1825 after_loop:
1826 	if (ret == -EFAULT)
1827 		goto out;
1828 
1829 	/* copy # of entries and next batch */
1830 	ubatch = u64_to_user_ptr(attr->batch.out_batch);
1831 	if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1832 	    put_user(total, &uattr->batch.count))
1833 		ret = -EFAULT;
1834 
1835 out:
1836 	kvfree(keys);
1837 	kvfree(values);
1838 	return ret;
1839 }
1840 
1841 static int
1842 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1843 			     union bpf_attr __user *uattr)
1844 {
1845 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1846 						  false, true);
1847 }
1848 
1849 static int
1850 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1851 					const union bpf_attr *attr,
1852 					union bpf_attr __user *uattr)
1853 {
1854 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1855 						  false, true);
1856 }
1857 
1858 static int
1859 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1860 		      union bpf_attr __user *uattr)
1861 {
1862 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1863 						  false, false);
1864 }
1865 
1866 static int
1867 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1868 				 const union bpf_attr *attr,
1869 				 union bpf_attr __user *uattr)
1870 {
1871 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1872 						  false, false);
1873 }
1874 
1875 static int
1876 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1877 				 const union bpf_attr *attr,
1878 				 union bpf_attr __user *uattr)
1879 {
1880 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1881 						  true, true);
1882 }
1883 
1884 static int
1885 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1886 					    const union bpf_attr *attr,
1887 					    union bpf_attr __user *uattr)
1888 {
1889 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1890 						  true, true);
1891 }
1892 
1893 static int
1894 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1895 			  union bpf_attr __user *uattr)
1896 {
1897 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1898 						  true, false);
1899 }
1900 
1901 static int
1902 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1903 				     const union bpf_attr *attr,
1904 				     union bpf_attr __user *uattr)
1905 {
1906 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1907 						  true, false);
1908 }
1909 
1910 struct bpf_iter_seq_hash_map_info {
1911 	struct bpf_map *map;
1912 	struct bpf_htab *htab;
1913 	void *percpu_value_buf; // non-zero means percpu hash
1914 	u32 bucket_id;
1915 	u32 skip_elems;
1916 };
1917 
1918 static struct htab_elem *
1919 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1920 			   struct htab_elem *prev_elem)
1921 {
1922 	const struct bpf_htab *htab = info->htab;
1923 	u32 skip_elems = info->skip_elems;
1924 	u32 bucket_id = info->bucket_id;
1925 	struct hlist_nulls_head *head;
1926 	struct hlist_nulls_node *n;
1927 	struct htab_elem *elem;
1928 	struct bucket *b;
1929 	u32 i, count;
1930 
1931 	if (bucket_id >= htab->n_buckets)
1932 		return NULL;
1933 
1934 	/* try to find next elem in the same bucket */
1935 	if (prev_elem) {
1936 		/* no update/deletion on this bucket, prev_elem should be still valid
1937 		 * and we won't skip elements.
1938 		 */
1939 		n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1940 		elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1941 		if (elem)
1942 			return elem;
1943 
1944 		/* not found, unlock and go to the next bucket */
1945 		b = &htab->buckets[bucket_id++];
1946 		rcu_read_unlock();
1947 		skip_elems = 0;
1948 	}
1949 
1950 	for (i = bucket_id; i < htab->n_buckets; i++) {
1951 		b = &htab->buckets[i];
1952 		rcu_read_lock();
1953 
1954 		count = 0;
1955 		head = &b->head;
1956 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1957 			if (count >= skip_elems) {
1958 				info->bucket_id = i;
1959 				info->skip_elems = count;
1960 				return elem;
1961 			}
1962 			count++;
1963 		}
1964 
1965 		rcu_read_unlock();
1966 		skip_elems = 0;
1967 	}
1968 
1969 	info->bucket_id = i;
1970 	info->skip_elems = 0;
1971 	return NULL;
1972 }
1973 
1974 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
1975 {
1976 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1977 	struct htab_elem *elem;
1978 
1979 	elem = bpf_hash_map_seq_find_next(info, NULL);
1980 	if (!elem)
1981 		return NULL;
1982 
1983 	if (*pos == 0)
1984 		++*pos;
1985 	return elem;
1986 }
1987 
1988 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1989 {
1990 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1991 
1992 	++*pos;
1993 	++info->skip_elems;
1994 	return bpf_hash_map_seq_find_next(info, v);
1995 }
1996 
1997 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
1998 {
1999 	struct bpf_iter_seq_hash_map_info *info = seq->private;
2000 	u32 roundup_key_size, roundup_value_size;
2001 	struct bpf_iter__bpf_map_elem ctx = {};
2002 	struct bpf_map *map = info->map;
2003 	struct bpf_iter_meta meta;
2004 	int ret = 0, off = 0, cpu;
2005 	struct bpf_prog *prog;
2006 	void __percpu *pptr;
2007 
2008 	meta.seq = seq;
2009 	prog = bpf_iter_get_info(&meta, elem == NULL);
2010 	if (prog) {
2011 		ctx.meta = &meta;
2012 		ctx.map = info->map;
2013 		if (elem) {
2014 			roundup_key_size = round_up(map->key_size, 8);
2015 			ctx.key = elem->key;
2016 			if (!info->percpu_value_buf) {
2017 				ctx.value = elem->key + roundup_key_size;
2018 			} else {
2019 				roundup_value_size = round_up(map->value_size, 8);
2020 				pptr = htab_elem_get_ptr(elem, map->key_size);
2021 				for_each_possible_cpu(cpu) {
2022 					bpf_long_memcpy(info->percpu_value_buf + off,
2023 							per_cpu_ptr(pptr, cpu),
2024 							roundup_value_size);
2025 					off += roundup_value_size;
2026 				}
2027 				ctx.value = info->percpu_value_buf;
2028 			}
2029 		}
2030 		ret = bpf_iter_run_prog(prog, &ctx);
2031 	}
2032 
2033 	return ret;
2034 }
2035 
2036 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
2037 {
2038 	return __bpf_hash_map_seq_show(seq, v);
2039 }
2040 
2041 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
2042 {
2043 	if (!v)
2044 		(void)__bpf_hash_map_seq_show(seq, NULL);
2045 	else
2046 		rcu_read_unlock();
2047 }
2048 
2049 static int bpf_iter_init_hash_map(void *priv_data,
2050 				  struct bpf_iter_aux_info *aux)
2051 {
2052 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2053 	struct bpf_map *map = aux->map;
2054 	void *value_buf;
2055 	u32 buf_size;
2056 
2057 	if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
2058 	    map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
2059 		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
2060 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
2061 		if (!value_buf)
2062 			return -ENOMEM;
2063 
2064 		seq_info->percpu_value_buf = value_buf;
2065 	}
2066 
2067 	seq_info->map = map;
2068 	seq_info->htab = container_of(map, struct bpf_htab, map);
2069 	return 0;
2070 }
2071 
2072 static void bpf_iter_fini_hash_map(void *priv_data)
2073 {
2074 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2075 
2076 	kfree(seq_info->percpu_value_buf);
2077 }
2078 
2079 static const struct seq_operations bpf_hash_map_seq_ops = {
2080 	.start	= bpf_hash_map_seq_start,
2081 	.next	= bpf_hash_map_seq_next,
2082 	.stop	= bpf_hash_map_seq_stop,
2083 	.show	= bpf_hash_map_seq_show,
2084 };
2085 
2086 static const struct bpf_iter_seq_info iter_seq_info = {
2087 	.seq_ops		= &bpf_hash_map_seq_ops,
2088 	.init_seq_private	= bpf_iter_init_hash_map,
2089 	.fini_seq_private	= bpf_iter_fini_hash_map,
2090 	.seq_priv_size		= sizeof(struct bpf_iter_seq_hash_map_info),
2091 };
2092 
2093 static int bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn,
2094 				  void *callback_ctx, u64 flags)
2095 {
2096 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2097 	struct hlist_nulls_head *head;
2098 	struct hlist_nulls_node *n;
2099 	struct htab_elem *elem;
2100 	u32 roundup_key_size;
2101 	int i, num_elems = 0;
2102 	void __percpu *pptr;
2103 	struct bucket *b;
2104 	void *key, *val;
2105 	bool is_percpu;
2106 	u64 ret = 0;
2107 
2108 	if (flags != 0)
2109 		return -EINVAL;
2110 
2111 	is_percpu = htab_is_percpu(htab);
2112 
2113 	roundup_key_size = round_up(map->key_size, 8);
2114 	/* disable migration so percpu value prepared here will be the
2115 	 * same as the one seen by the bpf program with bpf_map_lookup_elem().
2116 	 */
2117 	if (is_percpu)
2118 		migrate_disable();
2119 	for (i = 0; i < htab->n_buckets; i++) {
2120 		b = &htab->buckets[i];
2121 		rcu_read_lock();
2122 		head = &b->head;
2123 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
2124 			key = elem->key;
2125 			if (is_percpu) {
2126 				/* current cpu value for percpu map */
2127 				pptr = htab_elem_get_ptr(elem, map->key_size);
2128 				val = this_cpu_ptr(pptr);
2129 			} else {
2130 				val = elem->key + roundup_key_size;
2131 			}
2132 			num_elems++;
2133 			ret = callback_fn((u64)(long)map, (u64)(long)key,
2134 					  (u64)(long)val, (u64)(long)callback_ctx, 0);
2135 			/* return value: 0 - continue, 1 - stop and return */
2136 			if (ret) {
2137 				rcu_read_unlock();
2138 				goto out;
2139 			}
2140 		}
2141 		rcu_read_unlock();
2142 	}
2143 out:
2144 	if (is_percpu)
2145 		migrate_enable();
2146 	return num_elems;
2147 }
2148 
2149 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab)
2150 const struct bpf_map_ops htab_map_ops = {
2151 	.map_meta_equal = bpf_map_meta_equal,
2152 	.map_alloc_check = htab_map_alloc_check,
2153 	.map_alloc = htab_map_alloc,
2154 	.map_free = htab_map_free,
2155 	.map_get_next_key = htab_map_get_next_key,
2156 	.map_release_uref = htab_map_free_timers,
2157 	.map_lookup_elem = htab_map_lookup_elem,
2158 	.map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem,
2159 	.map_update_elem = htab_map_update_elem,
2160 	.map_delete_elem = htab_map_delete_elem,
2161 	.map_gen_lookup = htab_map_gen_lookup,
2162 	.map_seq_show_elem = htab_map_seq_show_elem,
2163 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2164 	.map_for_each_callback = bpf_for_each_hash_elem,
2165 	BATCH_OPS(htab),
2166 	.map_btf_id = &htab_map_btf_ids[0],
2167 	.iter_seq_info = &iter_seq_info,
2168 };
2169 
2170 const struct bpf_map_ops htab_lru_map_ops = {
2171 	.map_meta_equal = bpf_map_meta_equal,
2172 	.map_alloc_check = htab_map_alloc_check,
2173 	.map_alloc = htab_map_alloc,
2174 	.map_free = htab_map_free,
2175 	.map_get_next_key = htab_map_get_next_key,
2176 	.map_release_uref = htab_map_free_timers,
2177 	.map_lookup_elem = htab_lru_map_lookup_elem,
2178 	.map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem,
2179 	.map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
2180 	.map_update_elem = htab_lru_map_update_elem,
2181 	.map_delete_elem = htab_lru_map_delete_elem,
2182 	.map_gen_lookup = htab_lru_map_gen_lookup,
2183 	.map_seq_show_elem = htab_map_seq_show_elem,
2184 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2185 	.map_for_each_callback = bpf_for_each_hash_elem,
2186 	BATCH_OPS(htab_lru),
2187 	.map_btf_id = &htab_map_btf_ids[0],
2188 	.iter_seq_info = &iter_seq_info,
2189 };
2190 
2191 /* Called from eBPF program */
2192 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2193 {
2194 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
2195 
2196 	if (l)
2197 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2198 	else
2199 		return NULL;
2200 }
2201 
2202 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2203 {
2204 	struct htab_elem *l;
2205 
2206 	if (cpu >= nr_cpu_ids)
2207 		return NULL;
2208 
2209 	l = __htab_map_lookup_elem(map, key);
2210 	if (l)
2211 		return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2212 	else
2213 		return NULL;
2214 }
2215 
2216 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2217 {
2218 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
2219 
2220 	if (l) {
2221 		bpf_lru_node_set_ref(&l->lru_node);
2222 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2223 	}
2224 
2225 	return NULL;
2226 }
2227 
2228 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2229 {
2230 	struct htab_elem *l;
2231 
2232 	if (cpu >= nr_cpu_ids)
2233 		return NULL;
2234 
2235 	l = __htab_map_lookup_elem(map, key);
2236 	if (l) {
2237 		bpf_lru_node_set_ref(&l->lru_node);
2238 		return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2239 	}
2240 
2241 	return NULL;
2242 }
2243 
2244 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
2245 {
2246 	struct htab_elem *l;
2247 	void __percpu *pptr;
2248 	int ret = -ENOENT;
2249 	int cpu, off = 0;
2250 	u32 size;
2251 
2252 	/* per_cpu areas are zero-filled and bpf programs can only
2253 	 * access 'value_size' of them, so copying rounded areas
2254 	 * will not leak any kernel data
2255 	 */
2256 	size = round_up(map->value_size, 8);
2257 	rcu_read_lock();
2258 	l = __htab_map_lookup_elem(map, key);
2259 	if (!l)
2260 		goto out;
2261 	/* We do not mark LRU map element here in order to not mess up
2262 	 * eviction heuristics when user space does a map walk.
2263 	 */
2264 	pptr = htab_elem_get_ptr(l, map->key_size);
2265 	for_each_possible_cpu(cpu) {
2266 		bpf_long_memcpy(value + off,
2267 				per_cpu_ptr(pptr, cpu), size);
2268 		off += size;
2269 	}
2270 	ret = 0;
2271 out:
2272 	rcu_read_unlock();
2273 	return ret;
2274 }
2275 
2276 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2277 			   u64 map_flags)
2278 {
2279 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2280 	int ret;
2281 
2282 	rcu_read_lock();
2283 	if (htab_is_lru(htab))
2284 		ret = __htab_lru_percpu_map_update_elem(map, key, value,
2285 							map_flags, true);
2286 	else
2287 		ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
2288 						    true);
2289 	rcu_read_unlock();
2290 
2291 	return ret;
2292 }
2293 
2294 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
2295 					  struct seq_file *m)
2296 {
2297 	struct htab_elem *l;
2298 	void __percpu *pptr;
2299 	int cpu;
2300 
2301 	rcu_read_lock();
2302 
2303 	l = __htab_map_lookup_elem(map, key);
2304 	if (!l) {
2305 		rcu_read_unlock();
2306 		return;
2307 	}
2308 
2309 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
2310 	seq_puts(m, ": {\n");
2311 	pptr = htab_elem_get_ptr(l, map->key_size);
2312 	for_each_possible_cpu(cpu) {
2313 		seq_printf(m, "\tcpu%d: ", cpu);
2314 		btf_type_seq_show(map->btf, map->btf_value_type_id,
2315 				  per_cpu_ptr(pptr, cpu), m);
2316 		seq_puts(m, "\n");
2317 	}
2318 	seq_puts(m, "}\n");
2319 
2320 	rcu_read_unlock();
2321 }
2322 
2323 const struct bpf_map_ops htab_percpu_map_ops = {
2324 	.map_meta_equal = bpf_map_meta_equal,
2325 	.map_alloc_check = htab_map_alloc_check,
2326 	.map_alloc = htab_map_alloc,
2327 	.map_free = htab_map_free,
2328 	.map_get_next_key = htab_map_get_next_key,
2329 	.map_lookup_elem = htab_percpu_map_lookup_elem,
2330 	.map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem,
2331 	.map_update_elem = htab_percpu_map_update_elem,
2332 	.map_delete_elem = htab_map_delete_elem,
2333 	.map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem,
2334 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2335 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2336 	.map_for_each_callback = bpf_for_each_hash_elem,
2337 	BATCH_OPS(htab_percpu),
2338 	.map_btf_id = &htab_map_btf_ids[0],
2339 	.iter_seq_info = &iter_seq_info,
2340 };
2341 
2342 const struct bpf_map_ops htab_lru_percpu_map_ops = {
2343 	.map_meta_equal = bpf_map_meta_equal,
2344 	.map_alloc_check = htab_map_alloc_check,
2345 	.map_alloc = htab_map_alloc,
2346 	.map_free = htab_map_free,
2347 	.map_get_next_key = htab_map_get_next_key,
2348 	.map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2349 	.map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem,
2350 	.map_update_elem = htab_lru_percpu_map_update_elem,
2351 	.map_delete_elem = htab_lru_map_delete_elem,
2352 	.map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem,
2353 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2354 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2355 	.map_for_each_callback = bpf_for_each_hash_elem,
2356 	BATCH_OPS(htab_lru_percpu),
2357 	.map_btf_id = &htab_map_btf_ids[0],
2358 	.iter_seq_info = &iter_seq_info,
2359 };
2360 
2361 static int fd_htab_map_alloc_check(union bpf_attr *attr)
2362 {
2363 	if (attr->value_size != sizeof(u32))
2364 		return -EINVAL;
2365 	return htab_map_alloc_check(attr);
2366 }
2367 
2368 static void fd_htab_map_free(struct bpf_map *map)
2369 {
2370 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2371 	struct hlist_nulls_node *n;
2372 	struct hlist_nulls_head *head;
2373 	struct htab_elem *l;
2374 	int i;
2375 
2376 	for (i = 0; i < htab->n_buckets; i++) {
2377 		head = select_bucket(htab, i);
2378 
2379 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2380 			void *ptr = fd_htab_map_get_ptr(map, l);
2381 
2382 			map->ops->map_fd_put_ptr(ptr);
2383 		}
2384 	}
2385 
2386 	htab_map_free(map);
2387 }
2388 
2389 /* only called from syscall */
2390 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2391 {
2392 	void **ptr;
2393 	int ret = 0;
2394 
2395 	if (!map->ops->map_fd_sys_lookup_elem)
2396 		return -ENOTSUPP;
2397 
2398 	rcu_read_lock();
2399 	ptr = htab_map_lookup_elem(map, key);
2400 	if (ptr)
2401 		*value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2402 	else
2403 		ret = -ENOENT;
2404 	rcu_read_unlock();
2405 
2406 	return ret;
2407 }
2408 
2409 /* only called from syscall */
2410 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2411 				void *key, void *value, u64 map_flags)
2412 {
2413 	void *ptr;
2414 	int ret;
2415 	u32 ufd = *(u32 *)value;
2416 
2417 	ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2418 	if (IS_ERR(ptr))
2419 		return PTR_ERR(ptr);
2420 
2421 	ret = htab_map_update_elem(map, key, &ptr, map_flags);
2422 	if (ret)
2423 		map->ops->map_fd_put_ptr(ptr);
2424 
2425 	return ret;
2426 }
2427 
2428 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2429 {
2430 	struct bpf_map *map, *inner_map_meta;
2431 
2432 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2433 	if (IS_ERR(inner_map_meta))
2434 		return inner_map_meta;
2435 
2436 	map = htab_map_alloc(attr);
2437 	if (IS_ERR(map)) {
2438 		bpf_map_meta_free(inner_map_meta);
2439 		return map;
2440 	}
2441 
2442 	map->inner_map_meta = inner_map_meta;
2443 
2444 	return map;
2445 }
2446 
2447 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2448 {
2449 	struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
2450 
2451 	if (!inner_map)
2452 		return NULL;
2453 
2454 	return READ_ONCE(*inner_map);
2455 }
2456 
2457 static int htab_of_map_gen_lookup(struct bpf_map *map,
2458 				  struct bpf_insn *insn_buf)
2459 {
2460 	struct bpf_insn *insn = insn_buf;
2461 	const int ret = BPF_REG_0;
2462 
2463 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2464 		     (void *(*)(struct bpf_map *map, void *key))NULL));
2465 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
2466 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2467 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2468 				offsetof(struct htab_elem, key) +
2469 				round_up(map->key_size, 8));
2470 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2471 
2472 	return insn - insn_buf;
2473 }
2474 
2475 static void htab_of_map_free(struct bpf_map *map)
2476 {
2477 	bpf_map_meta_free(map->inner_map_meta);
2478 	fd_htab_map_free(map);
2479 }
2480 
2481 const struct bpf_map_ops htab_of_maps_map_ops = {
2482 	.map_alloc_check = fd_htab_map_alloc_check,
2483 	.map_alloc = htab_of_map_alloc,
2484 	.map_free = htab_of_map_free,
2485 	.map_get_next_key = htab_map_get_next_key,
2486 	.map_lookup_elem = htab_of_map_lookup_elem,
2487 	.map_delete_elem = htab_map_delete_elem,
2488 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
2489 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
2490 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2491 	.map_gen_lookup = htab_of_map_gen_lookup,
2492 	.map_check_btf = map_check_no_btf,
2493 	BATCH_OPS(htab),
2494 	.map_btf_id = &htab_map_btf_ids[0],
2495 };
2496