1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/jhash.h> 8 #include <linux/filter.h> 9 #include <linux/rculist_nulls.h> 10 #include <linux/random.h> 11 #include <uapi/linux/btf.h> 12 #include <linux/rcupdate_trace.h> 13 #include <linux/btf_ids.h> 14 #include "percpu_freelist.h" 15 #include "bpf_lru_list.h" 16 #include "map_in_map.h" 17 18 #define HTAB_CREATE_FLAG_MASK \ 19 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ 20 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) 21 22 #define BATCH_OPS(_name) \ 23 .map_lookup_batch = \ 24 _name##_map_lookup_batch, \ 25 .map_lookup_and_delete_batch = \ 26 _name##_map_lookup_and_delete_batch, \ 27 .map_update_batch = \ 28 generic_map_update_batch, \ 29 .map_delete_batch = \ 30 generic_map_delete_batch 31 32 /* 33 * The bucket lock has two protection scopes: 34 * 35 * 1) Serializing concurrent operations from BPF programs on different 36 * CPUs 37 * 38 * 2) Serializing concurrent operations from BPF programs and sys_bpf() 39 * 40 * BPF programs can execute in any context including perf, kprobes and 41 * tracing. As there are almost no limits where perf, kprobes and tracing 42 * can be invoked from the lock operations need to be protected against 43 * deadlocks. Deadlocks can be caused by recursion and by an invocation in 44 * the lock held section when functions which acquire this lock are invoked 45 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU 46 * variable bpf_prog_active, which prevents BPF programs attached to perf 47 * events, kprobes and tracing to be invoked before the prior invocation 48 * from one of these contexts completed. sys_bpf() uses the same mechanism 49 * by pinning the task to the current CPU and incrementing the recursion 50 * protection across the map operation. 51 * 52 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain 53 * operations like memory allocations (even with GFP_ATOMIC) from atomic 54 * contexts. This is required because even with GFP_ATOMIC the memory 55 * allocator calls into code paths which acquire locks with long held lock 56 * sections. To ensure the deterministic behaviour these locks are regular 57 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only 58 * true atomic contexts on an RT kernel are the low level hardware 59 * handling, scheduling, low level interrupt handling, NMIs etc. None of 60 * these contexts should ever do memory allocations. 61 * 62 * As regular device interrupt handlers and soft interrupts are forced into 63 * thread context, the existing code which does 64 * spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*(); 65 * just works. 66 * 67 * In theory the BPF locks could be converted to regular spinlocks as well, 68 * but the bucket locks and percpu_freelist locks can be taken from 69 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be 70 * atomic contexts even on RT. These mechanisms require preallocated maps, 71 * so there is no need to invoke memory allocations within the lock held 72 * sections. 73 * 74 * BPF maps which need dynamic allocation are only used from (forced) 75 * thread context on RT and can therefore use regular spinlocks which in 76 * turn allows to invoke memory allocations from the lock held section. 77 * 78 * On a non RT kernel this distinction is neither possible nor required. 79 * spinlock maps to raw_spinlock and the extra code is optimized out by the 80 * compiler. 81 */ 82 struct bucket { 83 struct hlist_nulls_head head; 84 union { 85 raw_spinlock_t raw_lock; 86 spinlock_t lock; 87 }; 88 }; 89 90 #define HASHTAB_MAP_LOCK_COUNT 8 91 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1) 92 93 struct bpf_htab { 94 struct bpf_map map; 95 struct bucket *buckets; 96 void *elems; 97 union { 98 struct pcpu_freelist freelist; 99 struct bpf_lru lru; 100 }; 101 struct htab_elem *__percpu *extra_elems; 102 atomic_t count; /* number of elements in this hashtable */ 103 u32 n_buckets; /* number of hash buckets */ 104 u32 elem_size; /* size of each element in bytes */ 105 u32 hashrnd; 106 struct lock_class_key lockdep_key; 107 int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT]; 108 }; 109 110 /* each htab element is struct htab_elem + key + value */ 111 struct htab_elem { 112 union { 113 struct hlist_nulls_node hash_node; 114 struct { 115 void *padding; 116 union { 117 struct bpf_htab *htab; 118 struct pcpu_freelist_node fnode; 119 struct htab_elem *batch_flink; 120 }; 121 }; 122 }; 123 union { 124 struct rcu_head rcu; 125 struct bpf_lru_node lru_node; 126 }; 127 u32 hash; 128 char key[] __aligned(8); 129 }; 130 131 static inline bool htab_is_prealloc(const struct bpf_htab *htab) 132 { 133 return !(htab->map.map_flags & BPF_F_NO_PREALLOC); 134 } 135 136 static inline bool htab_use_raw_lock(const struct bpf_htab *htab) 137 { 138 return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab)); 139 } 140 141 static void htab_init_buckets(struct bpf_htab *htab) 142 { 143 unsigned int i; 144 145 for (i = 0; i < htab->n_buckets; i++) { 146 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); 147 if (htab_use_raw_lock(htab)) { 148 raw_spin_lock_init(&htab->buckets[i].raw_lock); 149 lockdep_set_class(&htab->buckets[i].raw_lock, 150 &htab->lockdep_key); 151 } else { 152 spin_lock_init(&htab->buckets[i].lock); 153 lockdep_set_class(&htab->buckets[i].lock, 154 &htab->lockdep_key); 155 } 156 cond_resched(); 157 } 158 } 159 160 static inline int htab_lock_bucket(const struct bpf_htab *htab, 161 struct bucket *b, u32 hash, 162 unsigned long *pflags) 163 { 164 unsigned long flags; 165 166 hash = hash & HASHTAB_MAP_LOCK_MASK; 167 168 migrate_disable(); 169 if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) { 170 __this_cpu_dec(*(htab->map_locked[hash])); 171 migrate_enable(); 172 return -EBUSY; 173 } 174 175 if (htab_use_raw_lock(htab)) 176 raw_spin_lock_irqsave(&b->raw_lock, flags); 177 else 178 spin_lock_irqsave(&b->lock, flags); 179 *pflags = flags; 180 181 return 0; 182 } 183 184 static inline void htab_unlock_bucket(const struct bpf_htab *htab, 185 struct bucket *b, u32 hash, 186 unsigned long flags) 187 { 188 hash = hash & HASHTAB_MAP_LOCK_MASK; 189 if (htab_use_raw_lock(htab)) 190 raw_spin_unlock_irqrestore(&b->raw_lock, flags); 191 else 192 spin_unlock_irqrestore(&b->lock, flags); 193 __this_cpu_dec(*(htab->map_locked[hash])); 194 migrate_enable(); 195 } 196 197 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); 198 199 static bool htab_is_lru(const struct bpf_htab *htab) 200 { 201 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || 202 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 203 } 204 205 static bool htab_is_percpu(const struct bpf_htab *htab) 206 { 207 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || 208 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 209 } 210 211 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, 212 void __percpu *pptr) 213 { 214 *(void __percpu **)(l->key + key_size) = pptr; 215 } 216 217 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) 218 { 219 return *(void __percpu **)(l->key + key_size); 220 } 221 222 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) 223 { 224 return *(void **)(l->key + roundup(map->key_size, 8)); 225 } 226 227 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) 228 { 229 return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size); 230 } 231 232 static bool htab_has_extra_elems(struct bpf_htab *htab) 233 { 234 return !htab_is_percpu(htab) && !htab_is_lru(htab); 235 } 236 237 static void htab_free_prealloced_timers(struct bpf_htab *htab) 238 { 239 u32 num_entries = htab->map.max_entries; 240 int i; 241 242 if (!map_value_has_timer(&htab->map)) 243 return; 244 if (htab_has_extra_elems(htab)) 245 num_entries += num_possible_cpus(); 246 247 for (i = 0; i < num_entries; i++) { 248 struct htab_elem *elem; 249 250 elem = get_htab_elem(htab, i); 251 bpf_timer_cancel_and_free(elem->key + 252 round_up(htab->map.key_size, 8) + 253 htab->map.timer_off); 254 cond_resched(); 255 } 256 } 257 258 static void htab_free_prealloced_kptrs(struct bpf_htab *htab) 259 { 260 u32 num_entries = htab->map.max_entries; 261 int i; 262 263 if (!map_value_has_kptrs(&htab->map)) 264 return; 265 if (htab_has_extra_elems(htab)) 266 num_entries += num_possible_cpus(); 267 268 for (i = 0; i < num_entries; i++) { 269 struct htab_elem *elem; 270 271 elem = get_htab_elem(htab, i); 272 bpf_map_free_kptrs(&htab->map, elem->key + round_up(htab->map.key_size, 8)); 273 cond_resched(); 274 } 275 } 276 277 static void htab_free_elems(struct bpf_htab *htab) 278 { 279 int i; 280 281 if (!htab_is_percpu(htab)) 282 goto free_elems; 283 284 for (i = 0; i < htab->map.max_entries; i++) { 285 void __percpu *pptr; 286 287 pptr = htab_elem_get_ptr(get_htab_elem(htab, i), 288 htab->map.key_size); 289 free_percpu(pptr); 290 cond_resched(); 291 } 292 free_elems: 293 bpf_map_area_free(htab->elems); 294 } 295 296 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock 297 * (bucket_lock). If both locks need to be acquired together, the lock 298 * order is always lru_lock -> bucket_lock and this only happens in 299 * bpf_lru_list.c logic. For example, certain code path of 300 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), 301 * will acquire lru_lock first followed by acquiring bucket_lock. 302 * 303 * In hashtab.c, to avoid deadlock, lock acquisition of 304 * bucket_lock followed by lru_lock is not allowed. In such cases, 305 * bucket_lock needs to be released first before acquiring lru_lock. 306 */ 307 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, 308 u32 hash) 309 { 310 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); 311 struct htab_elem *l; 312 313 if (node) { 314 l = container_of(node, struct htab_elem, lru_node); 315 memcpy(l->key, key, htab->map.key_size); 316 return l; 317 } 318 319 return NULL; 320 } 321 322 static int prealloc_init(struct bpf_htab *htab) 323 { 324 u32 num_entries = htab->map.max_entries; 325 int err = -ENOMEM, i; 326 327 if (htab_has_extra_elems(htab)) 328 num_entries += num_possible_cpus(); 329 330 htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries, 331 htab->map.numa_node); 332 if (!htab->elems) 333 return -ENOMEM; 334 335 if (!htab_is_percpu(htab)) 336 goto skip_percpu_elems; 337 338 for (i = 0; i < num_entries; i++) { 339 u32 size = round_up(htab->map.value_size, 8); 340 void __percpu *pptr; 341 342 pptr = bpf_map_alloc_percpu(&htab->map, size, 8, 343 GFP_USER | __GFP_NOWARN); 344 if (!pptr) 345 goto free_elems; 346 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, 347 pptr); 348 cond_resched(); 349 } 350 351 skip_percpu_elems: 352 if (htab_is_lru(htab)) 353 err = bpf_lru_init(&htab->lru, 354 htab->map.map_flags & BPF_F_NO_COMMON_LRU, 355 offsetof(struct htab_elem, hash) - 356 offsetof(struct htab_elem, lru_node), 357 htab_lru_map_delete_node, 358 htab); 359 else 360 err = pcpu_freelist_init(&htab->freelist); 361 362 if (err) 363 goto free_elems; 364 365 if (htab_is_lru(htab)) 366 bpf_lru_populate(&htab->lru, htab->elems, 367 offsetof(struct htab_elem, lru_node), 368 htab->elem_size, num_entries); 369 else 370 pcpu_freelist_populate(&htab->freelist, 371 htab->elems + offsetof(struct htab_elem, fnode), 372 htab->elem_size, num_entries); 373 374 return 0; 375 376 free_elems: 377 htab_free_elems(htab); 378 return err; 379 } 380 381 static void prealloc_destroy(struct bpf_htab *htab) 382 { 383 htab_free_elems(htab); 384 385 if (htab_is_lru(htab)) 386 bpf_lru_destroy(&htab->lru); 387 else 388 pcpu_freelist_destroy(&htab->freelist); 389 } 390 391 static int alloc_extra_elems(struct bpf_htab *htab) 392 { 393 struct htab_elem *__percpu *pptr, *l_new; 394 struct pcpu_freelist_node *l; 395 int cpu; 396 397 pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8, 398 GFP_USER | __GFP_NOWARN); 399 if (!pptr) 400 return -ENOMEM; 401 402 for_each_possible_cpu(cpu) { 403 l = pcpu_freelist_pop(&htab->freelist); 404 /* pop will succeed, since prealloc_init() 405 * preallocated extra num_possible_cpus elements 406 */ 407 l_new = container_of(l, struct htab_elem, fnode); 408 *per_cpu_ptr(pptr, cpu) = l_new; 409 } 410 htab->extra_elems = pptr; 411 return 0; 412 } 413 414 /* Called from syscall */ 415 static int htab_map_alloc_check(union bpf_attr *attr) 416 { 417 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 418 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 419 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 420 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 421 /* percpu_lru means each cpu has its own LRU list. 422 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 423 * the map's value itself is percpu. percpu_lru has 424 * nothing to do with the map's value. 425 */ 426 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 427 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 428 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); 429 int numa_node = bpf_map_attr_numa_node(attr); 430 431 BUILD_BUG_ON(offsetof(struct htab_elem, htab) != 432 offsetof(struct htab_elem, hash_node.pprev)); 433 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != 434 offsetof(struct htab_elem, hash_node.pprev)); 435 436 if (lru && !bpf_capable()) 437 /* LRU implementation is much complicated than other 438 * maps. Hence, limit to CAP_BPF. 439 */ 440 return -EPERM; 441 442 if (zero_seed && !capable(CAP_SYS_ADMIN)) 443 /* Guard against local DoS, and discourage production use. */ 444 return -EPERM; 445 446 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || 447 !bpf_map_flags_access_ok(attr->map_flags)) 448 return -EINVAL; 449 450 if (!lru && percpu_lru) 451 return -EINVAL; 452 453 if (lru && !prealloc) 454 return -ENOTSUPP; 455 456 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) 457 return -EINVAL; 458 459 /* check sanity of attributes. 460 * value_size == 0 may be allowed in the future to use map as a set 461 */ 462 if (attr->max_entries == 0 || attr->key_size == 0 || 463 attr->value_size == 0) 464 return -EINVAL; 465 466 if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE - 467 sizeof(struct htab_elem)) 468 /* if key_size + value_size is bigger, the user space won't be 469 * able to access the elements via bpf syscall. This check 470 * also makes sure that the elem_size doesn't overflow and it's 471 * kmalloc-able later in htab_map_update_elem() 472 */ 473 return -E2BIG; 474 475 return 0; 476 } 477 478 static struct bpf_map *htab_map_alloc(union bpf_attr *attr) 479 { 480 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 481 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 482 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 483 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 484 /* percpu_lru means each cpu has its own LRU list. 485 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 486 * the map's value itself is percpu. percpu_lru has 487 * nothing to do with the map's value. 488 */ 489 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 490 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 491 struct bpf_htab *htab; 492 int err, i; 493 494 htab = kzalloc(sizeof(*htab), GFP_USER | __GFP_ACCOUNT); 495 if (!htab) 496 return ERR_PTR(-ENOMEM); 497 498 lockdep_register_key(&htab->lockdep_key); 499 500 bpf_map_init_from_attr(&htab->map, attr); 501 502 if (percpu_lru) { 503 /* ensure each CPU's lru list has >=1 elements. 504 * since we are at it, make each lru list has the same 505 * number of elements. 506 */ 507 htab->map.max_entries = roundup(attr->max_entries, 508 num_possible_cpus()); 509 if (htab->map.max_entries < attr->max_entries) 510 htab->map.max_entries = rounddown(attr->max_entries, 511 num_possible_cpus()); 512 } 513 514 /* hash table size must be power of 2 */ 515 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); 516 517 htab->elem_size = sizeof(struct htab_elem) + 518 round_up(htab->map.key_size, 8); 519 if (percpu) 520 htab->elem_size += sizeof(void *); 521 else 522 htab->elem_size += round_up(htab->map.value_size, 8); 523 524 err = -E2BIG; 525 /* prevent zero size kmalloc and check for u32 overflow */ 526 if (htab->n_buckets == 0 || 527 htab->n_buckets > U32_MAX / sizeof(struct bucket)) 528 goto free_htab; 529 530 err = -ENOMEM; 531 htab->buckets = bpf_map_area_alloc(htab->n_buckets * 532 sizeof(struct bucket), 533 htab->map.numa_node); 534 if (!htab->buckets) 535 goto free_htab; 536 537 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) { 538 htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map, 539 sizeof(int), 540 sizeof(int), 541 GFP_USER); 542 if (!htab->map_locked[i]) 543 goto free_map_locked; 544 } 545 546 if (htab->map.map_flags & BPF_F_ZERO_SEED) 547 htab->hashrnd = 0; 548 else 549 htab->hashrnd = get_random_int(); 550 551 htab_init_buckets(htab); 552 553 if (prealloc) { 554 err = prealloc_init(htab); 555 if (err) 556 goto free_map_locked; 557 558 if (!percpu && !lru) { 559 /* lru itself can remove the least used element, so 560 * there is no need for an extra elem during map_update. 561 */ 562 err = alloc_extra_elems(htab); 563 if (err) 564 goto free_prealloc; 565 } 566 } 567 568 return &htab->map; 569 570 free_prealloc: 571 prealloc_destroy(htab); 572 free_map_locked: 573 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 574 free_percpu(htab->map_locked[i]); 575 bpf_map_area_free(htab->buckets); 576 free_htab: 577 lockdep_unregister_key(&htab->lockdep_key); 578 kfree(htab); 579 return ERR_PTR(err); 580 } 581 582 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) 583 { 584 return jhash(key, key_len, hashrnd); 585 } 586 587 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) 588 { 589 return &htab->buckets[hash & (htab->n_buckets - 1)]; 590 } 591 592 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) 593 { 594 return &__select_bucket(htab, hash)->head; 595 } 596 597 /* this lookup function can only be called with bucket lock taken */ 598 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, 599 void *key, u32 key_size) 600 { 601 struct hlist_nulls_node *n; 602 struct htab_elem *l; 603 604 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 605 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 606 return l; 607 608 return NULL; 609 } 610 611 /* can be called without bucket lock. it will repeat the loop in 612 * the unlikely event when elements moved from one bucket into another 613 * while link list is being walked 614 */ 615 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, 616 u32 hash, void *key, 617 u32 key_size, u32 n_buckets) 618 { 619 struct hlist_nulls_node *n; 620 struct htab_elem *l; 621 622 again: 623 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 624 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 625 return l; 626 627 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) 628 goto again; 629 630 return NULL; 631 } 632 633 /* Called from syscall or from eBPF program directly, so 634 * arguments have to match bpf_map_lookup_elem() exactly. 635 * The return value is adjusted by BPF instructions 636 * in htab_map_gen_lookup(). 637 */ 638 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) 639 { 640 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 641 struct hlist_nulls_head *head; 642 struct htab_elem *l; 643 u32 hash, key_size; 644 645 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 646 !rcu_read_lock_bh_held()); 647 648 key_size = map->key_size; 649 650 hash = htab_map_hash(key, key_size, htab->hashrnd); 651 652 head = select_bucket(htab, hash); 653 654 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 655 656 return l; 657 } 658 659 static void *htab_map_lookup_elem(struct bpf_map *map, void *key) 660 { 661 struct htab_elem *l = __htab_map_lookup_elem(map, key); 662 663 if (l) 664 return l->key + round_up(map->key_size, 8); 665 666 return NULL; 667 } 668 669 /* inline bpf_map_lookup_elem() call. 670 * Instead of: 671 * bpf_prog 672 * bpf_map_lookup_elem 673 * map->ops->map_lookup_elem 674 * htab_map_lookup_elem 675 * __htab_map_lookup_elem 676 * do: 677 * bpf_prog 678 * __htab_map_lookup_elem 679 */ 680 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 681 { 682 struct bpf_insn *insn = insn_buf; 683 const int ret = BPF_REG_0; 684 685 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 686 (void *(*)(struct bpf_map *map, void *key))NULL)); 687 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 688 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 689 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 690 offsetof(struct htab_elem, key) + 691 round_up(map->key_size, 8)); 692 return insn - insn_buf; 693 } 694 695 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, 696 void *key, const bool mark) 697 { 698 struct htab_elem *l = __htab_map_lookup_elem(map, key); 699 700 if (l) { 701 if (mark) 702 bpf_lru_node_set_ref(&l->lru_node); 703 return l->key + round_up(map->key_size, 8); 704 } 705 706 return NULL; 707 } 708 709 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) 710 { 711 return __htab_lru_map_lookup_elem(map, key, true); 712 } 713 714 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) 715 { 716 return __htab_lru_map_lookup_elem(map, key, false); 717 } 718 719 static int htab_lru_map_gen_lookup(struct bpf_map *map, 720 struct bpf_insn *insn_buf) 721 { 722 struct bpf_insn *insn = insn_buf; 723 const int ret = BPF_REG_0; 724 const int ref_reg = BPF_REG_1; 725 726 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 727 (void *(*)(struct bpf_map *map, void *key))NULL)); 728 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 729 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); 730 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, 731 offsetof(struct htab_elem, lru_node) + 732 offsetof(struct bpf_lru_node, ref)); 733 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); 734 *insn++ = BPF_ST_MEM(BPF_B, ret, 735 offsetof(struct htab_elem, lru_node) + 736 offsetof(struct bpf_lru_node, ref), 737 1); 738 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 739 offsetof(struct htab_elem, key) + 740 round_up(map->key_size, 8)); 741 return insn - insn_buf; 742 } 743 744 static void check_and_free_fields(struct bpf_htab *htab, 745 struct htab_elem *elem) 746 { 747 void *map_value = elem->key + round_up(htab->map.key_size, 8); 748 749 if (map_value_has_timer(&htab->map)) 750 bpf_timer_cancel_and_free(map_value + htab->map.timer_off); 751 if (map_value_has_kptrs(&htab->map)) 752 bpf_map_free_kptrs(&htab->map, map_value); 753 } 754 755 /* It is called from the bpf_lru_list when the LRU needs to delete 756 * older elements from the htab. 757 */ 758 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) 759 { 760 struct bpf_htab *htab = arg; 761 struct htab_elem *l = NULL, *tgt_l; 762 struct hlist_nulls_head *head; 763 struct hlist_nulls_node *n; 764 unsigned long flags; 765 struct bucket *b; 766 int ret; 767 768 tgt_l = container_of(node, struct htab_elem, lru_node); 769 b = __select_bucket(htab, tgt_l->hash); 770 head = &b->head; 771 772 ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags); 773 if (ret) 774 return false; 775 776 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 777 if (l == tgt_l) { 778 hlist_nulls_del_rcu(&l->hash_node); 779 check_and_free_fields(htab, l); 780 break; 781 } 782 783 htab_unlock_bucket(htab, b, tgt_l->hash, flags); 784 785 return l == tgt_l; 786 } 787 788 /* Called from syscall */ 789 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 790 { 791 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 792 struct hlist_nulls_head *head; 793 struct htab_elem *l, *next_l; 794 u32 hash, key_size; 795 int i = 0; 796 797 WARN_ON_ONCE(!rcu_read_lock_held()); 798 799 key_size = map->key_size; 800 801 if (!key) 802 goto find_first_elem; 803 804 hash = htab_map_hash(key, key_size, htab->hashrnd); 805 806 head = select_bucket(htab, hash); 807 808 /* lookup the key */ 809 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 810 811 if (!l) 812 goto find_first_elem; 813 814 /* key was found, get next key in the same bucket */ 815 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), 816 struct htab_elem, hash_node); 817 818 if (next_l) { 819 /* if next elem in this hash list is non-zero, just return it */ 820 memcpy(next_key, next_l->key, key_size); 821 return 0; 822 } 823 824 /* no more elements in this hash list, go to the next bucket */ 825 i = hash & (htab->n_buckets - 1); 826 i++; 827 828 find_first_elem: 829 /* iterate over buckets */ 830 for (; i < htab->n_buckets; i++) { 831 head = select_bucket(htab, i); 832 833 /* pick first element in the bucket */ 834 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), 835 struct htab_elem, hash_node); 836 if (next_l) { 837 /* if it's not empty, just return it */ 838 memcpy(next_key, next_l->key, key_size); 839 return 0; 840 } 841 } 842 843 /* iterated over all buckets and all elements */ 844 return -ENOENT; 845 } 846 847 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) 848 { 849 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) 850 free_percpu(htab_elem_get_ptr(l, htab->map.key_size)); 851 check_and_free_fields(htab, l); 852 kfree(l); 853 } 854 855 static void htab_elem_free_rcu(struct rcu_head *head) 856 { 857 struct htab_elem *l = container_of(head, struct htab_elem, rcu); 858 struct bpf_htab *htab = l->htab; 859 860 htab_elem_free(htab, l); 861 } 862 863 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l) 864 { 865 struct bpf_map *map = &htab->map; 866 void *ptr; 867 868 if (map->ops->map_fd_put_ptr) { 869 ptr = fd_htab_map_get_ptr(map, l); 870 map->ops->map_fd_put_ptr(ptr); 871 } 872 } 873 874 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) 875 { 876 htab_put_fd_value(htab, l); 877 878 if (htab_is_prealloc(htab)) { 879 check_and_free_fields(htab, l); 880 __pcpu_freelist_push(&htab->freelist, &l->fnode); 881 } else { 882 atomic_dec(&htab->count); 883 l->htab = htab; 884 call_rcu(&l->rcu, htab_elem_free_rcu); 885 } 886 } 887 888 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, 889 void *value, bool onallcpus) 890 { 891 if (!onallcpus) { 892 /* copy true value_size bytes */ 893 memcpy(this_cpu_ptr(pptr), value, htab->map.value_size); 894 } else { 895 u32 size = round_up(htab->map.value_size, 8); 896 int off = 0, cpu; 897 898 for_each_possible_cpu(cpu) { 899 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), 900 value + off, size); 901 off += size; 902 } 903 } 904 } 905 906 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr, 907 void *value, bool onallcpus) 908 { 909 /* When using prealloc and not setting the initial value on all cpus, 910 * zero-fill element values for other cpus (just as what happens when 911 * not using prealloc). Otherwise, bpf program has no way to ensure 912 * known initial values for cpus other than current one 913 * (onallcpus=false always when coming from bpf prog). 914 */ 915 if (htab_is_prealloc(htab) && !onallcpus) { 916 u32 size = round_up(htab->map.value_size, 8); 917 int current_cpu = raw_smp_processor_id(); 918 int cpu; 919 920 for_each_possible_cpu(cpu) { 921 if (cpu == current_cpu) 922 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value, 923 size); 924 else 925 memset(per_cpu_ptr(pptr, cpu), 0, size); 926 } 927 } else { 928 pcpu_copy_value(htab, pptr, value, onallcpus); 929 } 930 } 931 932 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) 933 { 934 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && 935 BITS_PER_LONG == 64; 936 } 937 938 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, 939 void *value, u32 key_size, u32 hash, 940 bool percpu, bool onallcpus, 941 struct htab_elem *old_elem) 942 { 943 u32 size = htab->map.value_size; 944 bool prealloc = htab_is_prealloc(htab); 945 struct htab_elem *l_new, **pl_new; 946 void __percpu *pptr; 947 948 if (prealloc) { 949 if (old_elem) { 950 /* if we're updating the existing element, 951 * use per-cpu extra elems to avoid freelist_pop/push 952 */ 953 pl_new = this_cpu_ptr(htab->extra_elems); 954 l_new = *pl_new; 955 htab_put_fd_value(htab, old_elem); 956 *pl_new = old_elem; 957 } else { 958 struct pcpu_freelist_node *l; 959 960 l = __pcpu_freelist_pop(&htab->freelist); 961 if (!l) 962 return ERR_PTR(-E2BIG); 963 l_new = container_of(l, struct htab_elem, fnode); 964 } 965 } else { 966 if (atomic_inc_return(&htab->count) > htab->map.max_entries) 967 if (!old_elem) { 968 /* when map is full and update() is replacing 969 * old element, it's ok to allocate, since 970 * old element will be freed immediately. 971 * Otherwise return an error 972 */ 973 l_new = ERR_PTR(-E2BIG); 974 goto dec_count; 975 } 976 l_new = bpf_map_kmalloc_node(&htab->map, htab->elem_size, 977 GFP_NOWAIT | __GFP_NOWARN, 978 htab->map.numa_node); 979 if (!l_new) { 980 l_new = ERR_PTR(-ENOMEM); 981 goto dec_count; 982 } 983 check_and_init_map_value(&htab->map, 984 l_new->key + round_up(key_size, 8)); 985 } 986 987 memcpy(l_new->key, key, key_size); 988 if (percpu) { 989 size = round_up(size, 8); 990 if (prealloc) { 991 pptr = htab_elem_get_ptr(l_new, key_size); 992 } else { 993 /* alloc_percpu zero-fills */ 994 pptr = bpf_map_alloc_percpu(&htab->map, size, 8, 995 GFP_NOWAIT | __GFP_NOWARN); 996 if (!pptr) { 997 kfree(l_new); 998 l_new = ERR_PTR(-ENOMEM); 999 goto dec_count; 1000 } 1001 } 1002 1003 pcpu_init_value(htab, pptr, value, onallcpus); 1004 1005 if (!prealloc) 1006 htab_elem_set_ptr(l_new, key_size, pptr); 1007 } else if (fd_htab_map_needs_adjust(htab)) { 1008 size = round_up(size, 8); 1009 memcpy(l_new->key + round_up(key_size, 8), value, size); 1010 } else { 1011 copy_map_value(&htab->map, 1012 l_new->key + round_up(key_size, 8), 1013 value); 1014 } 1015 1016 l_new->hash = hash; 1017 return l_new; 1018 dec_count: 1019 atomic_dec(&htab->count); 1020 return l_new; 1021 } 1022 1023 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, 1024 u64 map_flags) 1025 { 1026 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) 1027 /* elem already exists */ 1028 return -EEXIST; 1029 1030 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) 1031 /* elem doesn't exist, cannot update it */ 1032 return -ENOENT; 1033 1034 return 0; 1035 } 1036 1037 /* Called from syscall or from eBPF program */ 1038 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value, 1039 u64 map_flags) 1040 { 1041 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1042 struct htab_elem *l_new = NULL, *l_old; 1043 struct hlist_nulls_head *head; 1044 unsigned long flags; 1045 struct bucket *b; 1046 u32 key_size, hash; 1047 int ret; 1048 1049 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 1050 /* unknown flags */ 1051 return -EINVAL; 1052 1053 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1054 !rcu_read_lock_bh_held()); 1055 1056 key_size = map->key_size; 1057 1058 hash = htab_map_hash(key, key_size, htab->hashrnd); 1059 1060 b = __select_bucket(htab, hash); 1061 head = &b->head; 1062 1063 if (unlikely(map_flags & BPF_F_LOCK)) { 1064 if (unlikely(!map_value_has_spin_lock(map))) 1065 return -EINVAL; 1066 /* find an element without taking the bucket lock */ 1067 l_old = lookup_nulls_elem_raw(head, hash, key, key_size, 1068 htab->n_buckets); 1069 ret = check_flags(htab, l_old, map_flags); 1070 if (ret) 1071 return ret; 1072 if (l_old) { 1073 /* grab the element lock and update value in place */ 1074 copy_map_value_locked(map, 1075 l_old->key + round_up(key_size, 8), 1076 value, false); 1077 return 0; 1078 } 1079 /* fall through, grab the bucket lock and lookup again. 1080 * 99.9% chance that the element won't be found, 1081 * but second lookup under lock has to be done. 1082 */ 1083 } 1084 1085 ret = htab_lock_bucket(htab, b, hash, &flags); 1086 if (ret) 1087 return ret; 1088 1089 l_old = lookup_elem_raw(head, hash, key, key_size); 1090 1091 ret = check_flags(htab, l_old, map_flags); 1092 if (ret) 1093 goto err; 1094 1095 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { 1096 /* first lookup without the bucket lock didn't find the element, 1097 * but second lookup with the bucket lock found it. 1098 * This case is highly unlikely, but has to be dealt with: 1099 * grab the element lock in addition to the bucket lock 1100 * and update element in place 1101 */ 1102 copy_map_value_locked(map, 1103 l_old->key + round_up(key_size, 8), 1104 value, false); 1105 ret = 0; 1106 goto err; 1107 } 1108 1109 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, 1110 l_old); 1111 if (IS_ERR(l_new)) { 1112 /* all pre-allocated elements are in use or memory exhausted */ 1113 ret = PTR_ERR(l_new); 1114 goto err; 1115 } 1116 1117 /* add new element to the head of the list, so that 1118 * concurrent search will find it before old elem 1119 */ 1120 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1121 if (l_old) { 1122 hlist_nulls_del_rcu(&l_old->hash_node); 1123 if (!htab_is_prealloc(htab)) 1124 free_htab_elem(htab, l_old); 1125 else 1126 check_and_free_fields(htab, l_old); 1127 } 1128 ret = 0; 1129 err: 1130 htab_unlock_bucket(htab, b, hash, flags); 1131 return ret; 1132 } 1133 1134 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem) 1135 { 1136 check_and_free_fields(htab, elem); 1137 bpf_lru_push_free(&htab->lru, &elem->lru_node); 1138 } 1139 1140 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, 1141 u64 map_flags) 1142 { 1143 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1144 struct htab_elem *l_new, *l_old = NULL; 1145 struct hlist_nulls_head *head; 1146 unsigned long flags; 1147 struct bucket *b; 1148 u32 key_size, hash; 1149 int ret; 1150 1151 if (unlikely(map_flags > BPF_EXIST)) 1152 /* unknown flags */ 1153 return -EINVAL; 1154 1155 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1156 !rcu_read_lock_bh_held()); 1157 1158 key_size = map->key_size; 1159 1160 hash = htab_map_hash(key, key_size, htab->hashrnd); 1161 1162 b = __select_bucket(htab, hash); 1163 head = &b->head; 1164 1165 /* For LRU, we need to alloc before taking bucket's 1166 * spinlock because getting free nodes from LRU may need 1167 * to remove older elements from htab and this removal 1168 * operation will need a bucket lock. 1169 */ 1170 l_new = prealloc_lru_pop(htab, key, hash); 1171 if (!l_new) 1172 return -ENOMEM; 1173 copy_map_value(&htab->map, 1174 l_new->key + round_up(map->key_size, 8), value); 1175 1176 ret = htab_lock_bucket(htab, b, hash, &flags); 1177 if (ret) 1178 return ret; 1179 1180 l_old = lookup_elem_raw(head, hash, key, key_size); 1181 1182 ret = check_flags(htab, l_old, map_flags); 1183 if (ret) 1184 goto err; 1185 1186 /* add new element to the head of the list, so that 1187 * concurrent search will find it before old elem 1188 */ 1189 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1190 if (l_old) { 1191 bpf_lru_node_set_ref(&l_new->lru_node); 1192 hlist_nulls_del_rcu(&l_old->hash_node); 1193 } 1194 ret = 0; 1195 1196 err: 1197 htab_unlock_bucket(htab, b, hash, flags); 1198 1199 if (ret) 1200 htab_lru_push_free(htab, l_new); 1201 else if (l_old) 1202 htab_lru_push_free(htab, l_old); 1203 1204 return ret; 1205 } 1206 1207 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1208 void *value, u64 map_flags, 1209 bool onallcpus) 1210 { 1211 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1212 struct htab_elem *l_new = NULL, *l_old; 1213 struct hlist_nulls_head *head; 1214 unsigned long flags; 1215 struct bucket *b; 1216 u32 key_size, hash; 1217 int ret; 1218 1219 if (unlikely(map_flags > BPF_EXIST)) 1220 /* unknown flags */ 1221 return -EINVAL; 1222 1223 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1224 !rcu_read_lock_bh_held()); 1225 1226 key_size = map->key_size; 1227 1228 hash = htab_map_hash(key, key_size, htab->hashrnd); 1229 1230 b = __select_bucket(htab, hash); 1231 head = &b->head; 1232 1233 ret = htab_lock_bucket(htab, b, hash, &flags); 1234 if (ret) 1235 return ret; 1236 1237 l_old = lookup_elem_raw(head, hash, key, key_size); 1238 1239 ret = check_flags(htab, l_old, map_flags); 1240 if (ret) 1241 goto err; 1242 1243 if (l_old) { 1244 /* per-cpu hash map can update value in-place */ 1245 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1246 value, onallcpus); 1247 } else { 1248 l_new = alloc_htab_elem(htab, key, value, key_size, 1249 hash, true, onallcpus, NULL); 1250 if (IS_ERR(l_new)) { 1251 ret = PTR_ERR(l_new); 1252 goto err; 1253 } 1254 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1255 } 1256 ret = 0; 1257 err: 1258 htab_unlock_bucket(htab, b, hash, flags); 1259 return ret; 1260 } 1261 1262 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1263 void *value, u64 map_flags, 1264 bool onallcpus) 1265 { 1266 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1267 struct htab_elem *l_new = NULL, *l_old; 1268 struct hlist_nulls_head *head; 1269 unsigned long flags; 1270 struct bucket *b; 1271 u32 key_size, hash; 1272 int ret; 1273 1274 if (unlikely(map_flags > BPF_EXIST)) 1275 /* unknown flags */ 1276 return -EINVAL; 1277 1278 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1279 !rcu_read_lock_bh_held()); 1280 1281 key_size = map->key_size; 1282 1283 hash = htab_map_hash(key, key_size, htab->hashrnd); 1284 1285 b = __select_bucket(htab, hash); 1286 head = &b->head; 1287 1288 /* For LRU, we need to alloc before taking bucket's 1289 * spinlock because LRU's elem alloc may need 1290 * to remove older elem from htab and this removal 1291 * operation will need a bucket lock. 1292 */ 1293 if (map_flags != BPF_EXIST) { 1294 l_new = prealloc_lru_pop(htab, key, hash); 1295 if (!l_new) 1296 return -ENOMEM; 1297 } 1298 1299 ret = htab_lock_bucket(htab, b, hash, &flags); 1300 if (ret) 1301 return ret; 1302 1303 l_old = lookup_elem_raw(head, hash, key, key_size); 1304 1305 ret = check_flags(htab, l_old, map_flags); 1306 if (ret) 1307 goto err; 1308 1309 if (l_old) { 1310 bpf_lru_node_set_ref(&l_old->lru_node); 1311 1312 /* per-cpu hash map can update value in-place */ 1313 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1314 value, onallcpus); 1315 } else { 1316 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size), 1317 value, onallcpus); 1318 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1319 l_new = NULL; 1320 } 1321 ret = 0; 1322 err: 1323 htab_unlock_bucket(htab, b, hash, flags); 1324 if (l_new) 1325 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1326 return ret; 1327 } 1328 1329 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1330 void *value, u64 map_flags) 1331 { 1332 return __htab_percpu_map_update_elem(map, key, value, map_flags, false); 1333 } 1334 1335 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1336 void *value, u64 map_flags) 1337 { 1338 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, 1339 false); 1340 } 1341 1342 /* Called from syscall or from eBPF program */ 1343 static int htab_map_delete_elem(struct bpf_map *map, void *key) 1344 { 1345 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1346 struct hlist_nulls_head *head; 1347 struct bucket *b; 1348 struct htab_elem *l; 1349 unsigned long flags; 1350 u32 hash, key_size; 1351 int ret; 1352 1353 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1354 !rcu_read_lock_bh_held()); 1355 1356 key_size = map->key_size; 1357 1358 hash = htab_map_hash(key, key_size, htab->hashrnd); 1359 b = __select_bucket(htab, hash); 1360 head = &b->head; 1361 1362 ret = htab_lock_bucket(htab, b, hash, &flags); 1363 if (ret) 1364 return ret; 1365 1366 l = lookup_elem_raw(head, hash, key, key_size); 1367 1368 if (l) { 1369 hlist_nulls_del_rcu(&l->hash_node); 1370 free_htab_elem(htab, l); 1371 } else { 1372 ret = -ENOENT; 1373 } 1374 1375 htab_unlock_bucket(htab, b, hash, flags); 1376 return ret; 1377 } 1378 1379 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key) 1380 { 1381 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1382 struct hlist_nulls_head *head; 1383 struct bucket *b; 1384 struct htab_elem *l; 1385 unsigned long flags; 1386 u32 hash, key_size; 1387 int ret; 1388 1389 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1390 !rcu_read_lock_bh_held()); 1391 1392 key_size = map->key_size; 1393 1394 hash = htab_map_hash(key, key_size, htab->hashrnd); 1395 b = __select_bucket(htab, hash); 1396 head = &b->head; 1397 1398 ret = htab_lock_bucket(htab, b, hash, &flags); 1399 if (ret) 1400 return ret; 1401 1402 l = lookup_elem_raw(head, hash, key, key_size); 1403 1404 if (l) 1405 hlist_nulls_del_rcu(&l->hash_node); 1406 else 1407 ret = -ENOENT; 1408 1409 htab_unlock_bucket(htab, b, hash, flags); 1410 if (l) 1411 htab_lru_push_free(htab, l); 1412 return ret; 1413 } 1414 1415 static void delete_all_elements(struct bpf_htab *htab) 1416 { 1417 int i; 1418 1419 for (i = 0; i < htab->n_buckets; i++) { 1420 struct hlist_nulls_head *head = select_bucket(htab, i); 1421 struct hlist_nulls_node *n; 1422 struct htab_elem *l; 1423 1424 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1425 hlist_nulls_del_rcu(&l->hash_node); 1426 htab_elem_free(htab, l); 1427 } 1428 } 1429 } 1430 1431 static void htab_free_malloced_timers(struct bpf_htab *htab) 1432 { 1433 int i; 1434 1435 rcu_read_lock(); 1436 for (i = 0; i < htab->n_buckets; i++) { 1437 struct hlist_nulls_head *head = select_bucket(htab, i); 1438 struct hlist_nulls_node *n; 1439 struct htab_elem *l; 1440 1441 hlist_nulls_for_each_entry(l, n, head, hash_node) { 1442 /* We don't reset or free kptr on uref dropping to zero, 1443 * hence just free timer. 1444 */ 1445 bpf_timer_cancel_and_free(l->key + 1446 round_up(htab->map.key_size, 8) + 1447 htab->map.timer_off); 1448 } 1449 cond_resched_rcu(); 1450 } 1451 rcu_read_unlock(); 1452 } 1453 1454 static void htab_map_free_timers(struct bpf_map *map) 1455 { 1456 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1457 1458 /* We don't reset or free kptr on uref dropping to zero. */ 1459 if (!map_value_has_timer(&htab->map)) 1460 return; 1461 if (!htab_is_prealloc(htab)) 1462 htab_free_malloced_timers(htab); 1463 else 1464 htab_free_prealloced_timers(htab); 1465 } 1466 1467 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 1468 static void htab_map_free(struct bpf_map *map) 1469 { 1470 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1471 int i; 1472 1473 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. 1474 * bpf_free_used_maps() is called after bpf prog is no longer executing. 1475 * There is no need to synchronize_rcu() here to protect map elements. 1476 */ 1477 1478 /* some of free_htab_elem() callbacks for elements of this map may 1479 * not have executed. Wait for them. 1480 */ 1481 rcu_barrier(); 1482 if (!htab_is_prealloc(htab)) { 1483 delete_all_elements(htab); 1484 } else { 1485 htab_free_prealloced_kptrs(htab); 1486 prealloc_destroy(htab); 1487 } 1488 1489 bpf_map_free_kptr_off_tab(map); 1490 free_percpu(htab->extra_elems); 1491 bpf_map_area_free(htab->buckets); 1492 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 1493 free_percpu(htab->map_locked[i]); 1494 lockdep_unregister_key(&htab->lockdep_key); 1495 kfree(htab); 1496 } 1497 1498 static void htab_map_seq_show_elem(struct bpf_map *map, void *key, 1499 struct seq_file *m) 1500 { 1501 void *value; 1502 1503 rcu_read_lock(); 1504 1505 value = htab_map_lookup_elem(map, key); 1506 if (!value) { 1507 rcu_read_unlock(); 1508 return; 1509 } 1510 1511 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1512 seq_puts(m, ": "); 1513 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 1514 seq_puts(m, "\n"); 1515 1516 rcu_read_unlock(); 1517 } 1518 1519 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1520 void *value, bool is_lru_map, 1521 bool is_percpu, u64 flags) 1522 { 1523 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1524 struct hlist_nulls_head *head; 1525 unsigned long bflags; 1526 struct htab_elem *l; 1527 u32 hash, key_size; 1528 struct bucket *b; 1529 int ret; 1530 1531 key_size = map->key_size; 1532 1533 hash = htab_map_hash(key, key_size, htab->hashrnd); 1534 b = __select_bucket(htab, hash); 1535 head = &b->head; 1536 1537 ret = htab_lock_bucket(htab, b, hash, &bflags); 1538 if (ret) 1539 return ret; 1540 1541 l = lookup_elem_raw(head, hash, key, key_size); 1542 if (!l) { 1543 ret = -ENOENT; 1544 } else { 1545 if (is_percpu) { 1546 u32 roundup_value_size = round_up(map->value_size, 8); 1547 void __percpu *pptr; 1548 int off = 0, cpu; 1549 1550 pptr = htab_elem_get_ptr(l, key_size); 1551 for_each_possible_cpu(cpu) { 1552 bpf_long_memcpy(value + off, 1553 per_cpu_ptr(pptr, cpu), 1554 roundup_value_size); 1555 off += roundup_value_size; 1556 } 1557 } else { 1558 u32 roundup_key_size = round_up(map->key_size, 8); 1559 1560 if (flags & BPF_F_LOCK) 1561 copy_map_value_locked(map, value, l->key + 1562 roundup_key_size, 1563 true); 1564 else 1565 copy_map_value(map, value, l->key + 1566 roundup_key_size); 1567 check_and_init_map_value(map, value); 1568 } 1569 1570 hlist_nulls_del_rcu(&l->hash_node); 1571 if (!is_lru_map) 1572 free_htab_elem(htab, l); 1573 } 1574 1575 htab_unlock_bucket(htab, b, hash, bflags); 1576 1577 if (is_lru_map && l) 1578 htab_lru_push_free(htab, l); 1579 1580 return ret; 1581 } 1582 1583 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1584 void *value, u64 flags) 1585 { 1586 return __htab_map_lookup_and_delete_elem(map, key, value, false, false, 1587 flags); 1588 } 1589 1590 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1591 void *key, void *value, 1592 u64 flags) 1593 { 1594 return __htab_map_lookup_and_delete_elem(map, key, value, false, true, 1595 flags); 1596 } 1597 1598 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1599 void *value, u64 flags) 1600 { 1601 return __htab_map_lookup_and_delete_elem(map, key, value, true, false, 1602 flags); 1603 } 1604 1605 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1606 void *key, void *value, 1607 u64 flags) 1608 { 1609 return __htab_map_lookup_and_delete_elem(map, key, value, true, true, 1610 flags); 1611 } 1612 1613 static int 1614 __htab_map_lookup_and_delete_batch(struct bpf_map *map, 1615 const union bpf_attr *attr, 1616 union bpf_attr __user *uattr, 1617 bool do_delete, bool is_lru_map, 1618 bool is_percpu) 1619 { 1620 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1621 u32 bucket_cnt, total, key_size, value_size, roundup_key_size; 1622 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; 1623 void __user *uvalues = u64_to_user_ptr(attr->batch.values); 1624 void __user *ukeys = u64_to_user_ptr(attr->batch.keys); 1625 void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch); 1626 u32 batch, max_count, size, bucket_size, map_id; 1627 struct htab_elem *node_to_free = NULL; 1628 u64 elem_map_flags, map_flags; 1629 struct hlist_nulls_head *head; 1630 struct hlist_nulls_node *n; 1631 unsigned long flags = 0; 1632 bool locked = false; 1633 struct htab_elem *l; 1634 struct bucket *b; 1635 int ret = 0; 1636 1637 elem_map_flags = attr->batch.elem_flags; 1638 if ((elem_map_flags & ~BPF_F_LOCK) || 1639 ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map))) 1640 return -EINVAL; 1641 1642 map_flags = attr->batch.flags; 1643 if (map_flags) 1644 return -EINVAL; 1645 1646 max_count = attr->batch.count; 1647 if (!max_count) 1648 return 0; 1649 1650 if (put_user(0, &uattr->batch.count)) 1651 return -EFAULT; 1652 1653 batch = 0; 1654 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) 1655 return -EFAULT; 1656 1657 if (batch >= htab->n_buckets) 1658 return -ENOENT; 1659 1660 key_size = htab->map.key_size; 1661 roundup_key_size = round_up(htab->map.key_size, 8); 1662 value_size = htab->map.value_size; 1663 size = round_up(value_size, 8); 1664 if (is_percpu) 1665 value_size = size * num_possible_cpus(); 1666 total = 0; 1667 /* while experimenting with hash tables with sizes ranging from 10 to 1668 * 1000, it was observed that a bucket can have up to 5 entries. 1669 */ 1670 bucket_size = 5; 1671 1672 alloc: 1673 /* We cannot do copy_from_user or copy_to_user inside 1674 * the rcu_read_lock. Allocate enough space here. 1675 */ 1676 keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN); 1677 values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN); 1678 if (!keys || !values) { 1679 ret = -ENOMEM; 1680 goto after_loop; 1681 } 1682 1683 again: 1684 bpf_disable_instrumentation(); 1685 rcu_read_lock(); 1686 again_nocopy: 1687 dst_key = keys; 1688 dst_val = values; 1689 b = &htab->buckets[batch]; 1690 head = &b->head; 1691 /* do not grab the lock unless need it (bucket_cnt > 0). */ 1692 if (locked) { 1693 ret = htab_lock_bucket(htab, b, batch, &flags); 1694 if (ret) 1695 goto next_batch; 1696 } 1697 1698 bucket_cnt = 0; 1699 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 1700 bucket_cnt++; 1701 1702 if (bucket_cnt && !locked) { 1703 locked = true; 1704 goto again_nocopy; 1705 } 1706 1707 if (bucket_cnt > (max_count - total)) { 1708 if (total == 0) 1709 ret = -ENOSPC; 1710 /* Note that since bucket_cnt > 0 here, it is implicit 1711 * that the locked was grabbed, so release it. 1712 */ 1713 htab_unlock_bucket(htab, b, batch, flags); 1714 rcu_read_unlock(); 1715 bpf_enable_instrumentation(); 1716 goto after_loop; 1717 } 1718 1719 if (bucket_cnt > bucket_size) { 1720 bucket_size = bucket_cnt; 1721 /* Note that since bucket_cnt > 0 here, it is implicit 1722 * that the locked was grabbed, so release it. 1723 */ 1724 htab_unlock_bucket(htab, b, batch, flags); 1725 rcu_read_unlock(); 1726 bpf_enable_instrumentation(); 1727 kvfree(keys); 1728 kvfree(values); 1729 goto alloc; 1730 } 1731 1732 /* Next block is only safe to run if you have grabbed the lock */ 1733 if (!locked) 1734 goto next_batch; 1735 1736 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1737 memcpy(dst_key, l->key, key_size); 1738 1739 if (is_percpu) { 1740 int off = 0, cpu; 1741 void __percpu *pptr; 1742 1743 pptr = htab_elem_get_ptr(l, map->key_size); 1744 for_each_possible_cpu(cpu) { 1745 bpf_long_memcpy(dst_val + off, 1746 per_cpu_ptr(pptr, cpu), size); 1747 off += size; 1748 } 1749 } else { 1750 value = l->key + roundup_key_size; 1751 if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) { 1752 struct bpf_map **inner_map = value; 1753 1754 /* Actual value is the id of the inner map */ 1755 map_id = map->ops->map_fd_sys_lookup_elem(*inner_map); 1756 value = &map_id; 1757 } 1758 1759 if (elem_map_flags & BPF_F_LOCK) 1760 copy_map_value_locked(map, dst_val, value, 1761 true); 1762 else 1763 copy_map_value(map, dst_val, value); 1764 check_and_init_map_value(map, dst_val); 1765 } 1766 if (do_delete) { 1767 hlist_nulls_del_rcu(&l->hash_node); 1768 1769 /* bpf_lru_push_free() will acquire lru_lock, which 1770 * may cause deadlock. See comments in function 1771 * prealloc_lru_pop(). Let us do bpf_lru_push_free() 1772 * after releasing the bucket lock. 1773 */ 1774 if (is_lru_map) { 1775 l->batch_flink = node_to_free; 1776 node_to_free = l; 1777 } else { 1778 free_htab_elem(htab, l); 1779 } 1780 } 1781 dst_key += key_size; 1782 dst_val += value_size; 1783 } 1784 1785 htab_unlock_bucket(htab, b, batch, flags); 1786 locked = false; 1787 1788 while (node_to_free) { 1789 l = node_to_free; 1790 node_to_free = node_to_free->batch_flink; 1791 htab_lru_push_free(htab, l); 1792 } 1793 1794 next_batch: 1795 /* If we are not copying data, we can go to next bucket and avoid 1796 * unlocking the rcu. 1797 */ 1798 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { 1799 batch++; 1800 goto again_nocopy; 1801 } 1802 1803 rcu_read_unlock(); 1804 bpf_enable_instrumentation(); 1805 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, 1806 key_size * bucket_cnt) || 1807 copy_to_user(uvalues + total * value_size, values, 1808 value_size * bucket_cnt))) { 1809 ret = -EFAULT; 1810 goto after_loop; 1811 } 1812 1813 total += bucket_cnt; 1814 batch++; 1815 if (batch >= htab->n_buckets) { 1816 ret = -ENOENT; 1817 goto after_loop; 1818 } 1819 goto again; 1820 1821 after_loop: 1822 if (ret == -EFAULT) 1823 goto out; 1824 1825 /* copy # of entries and next batch */ 1826 ubatch = u64_to_user_ptr(attr->batch.out_batch); 1827 if (copy_to_user(ubatch, &batch, sizeof(batch)) || 1828 put_user(total, &uattr->batch.count)) 1829 ret = -EFAULT; 1830 1831 out: 1832 kvfree(keys); 1833 kvfree(values); 1834 return ret; 1835 } 1836 1837 static int 1838 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1839 union bpf_attr __user *uattr) 1840 { 1841 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1842 false, true); 1843 } 1844 1845 static int 1846 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1847 const union bpf_attr *attr, 1848 union bpf_attr __user *uattr) 1849 { 1850 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1851 false, true); 1852 } 1853 1854 static int 1855 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1856 union bpf_attr __user *uattr) 1857 { 1858 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1859 false, false); 1860 } 1861 1862 static int 1863 htab_map_lookup_and_delete_batch(struct bpf_map *map, 1864 const union bpf_attr *attr, 1865 union bpf_attr __user *uattr) 1866 { 1867 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1868 false, false); 1869 } 1870 1871 static int 1872 htab_lru_percpu_map_lookup_batch(struct bpf_map *map, 1873 const union bpf_attr *attr, 1874 union bpf_attr __user *uattr) 1875 { 1876 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1877 true, true); 1878 } 1879 1880 static int 1881 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1882 const union bpf_attr *attr, 1883 union bpf_attr __user *uattr) 1884 { 1885 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1886 true, true); 1887 } 1888 1889 static int 1890 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1891 union bpf_attr __user *uattr) 1892 { 1893 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1894 true, false); 1895 } 1896 1897 static int 1898 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, 1899 const union bpf_attr *attr, 1900 union bpf_attr __user *uattr) 1901 { 1902 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1903 true, false); 1904 } 1905 1906 struct bpf_iter_seq_hash_map_info { 1907 struct bpf_map *map; 1908 struct bpf_htab *htab; 1909 void *percpu_value_buf; // non-zero means percpu hash 1910 u32 bucket_id; 1911 u32 skip_elems; 1912 }; 1913 1914 static struct htab_elem * 1915 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info, 1916 struct htab_elem *prev_elem) 1917 { 1918 const struct bpf_htab *htab = info->htab; 1919 u32 skip_elems = info->skip_elems; 1920 u32 bucket_id = info->bucket_id; 1921 struct hlist_nulls_head *head; 1922 struct hlist_nulls_node *n; 1923 struct htab_elem *elem; 1924 struct bucket *b; 1925 u32 i, count; 1926 1927 if (bucket_id >= htab->n_buckets) 1928 return NULL; 1929 1930 /* try to find next elem in the same bucket */ 1931 if (prev_elem) { 1932 /* no update/deletion on this bucket, prev_elem should be still valid 1933 * and we won't skip elements. 1934 */ 1935 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node)); 1936 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node); 1937 if (elem) 1938 return elem; 1939 1940 /* not found, unlock and go to the next bucket */ 1941 b = &htab->buckets[bucket_id++]; 1942 rcu_read_unlock(); 1943 skip_elems = 0; 1944 } 1945 1946 for (i = bucket_id; i < htab->n_buckets; i++) { 1947 b = &htab->buckets[i]; 1948 rcu_read_lock(); 1949 1950 count = 0; 1951 head = &b->head; 1952 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 1953 if (count >= skip_elems) { 1954 info->bucket_id = i; 1955 info->skip_elems = count; 1956 return elem; 1957 } 1958 count++; 1959 } 1960 1961 rcu_read_unlock(); 1962 skip_elems = 0; 1963 } 1964 1965 info->bucket_id = i; 1966 info->skip_elems = 0; 1967 return NULL; 1968 } 1969 1970 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos) 1971 { 1972 struct bpf_iter_seq_hash_map_info *info = seq->private; 1973 struct htab_elem *elem; 1974 1975 elem = bpf_hash_map_seq_find_next(info, NULL); 1976 if (!elem) 1977 return NULL; 1978 1979 if (*pos == 0) 1980 ++*pos; 1981 return elem; 1982 } 1983 1984 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1985 { 1986 struct bpf_iter_seq_hash_map_info *info = seq->private; 1987 1988 ++*pos; 1989 ++info->skip_elems; 1990 return bpf_hash_map_seq_find_next(info, v); 1991 } 1992 1993 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem) 1994 { 1995 struct bpf_iter_seq_hash_map_info *info = seq->private; 1996 u32 roundup_key_size, roundup_value_size; 1997 struct bpf_iter__bpf_map_elem ctx = {}; 1998 struct bpf_map *map = info->map; 1999 struct bpf_iter_meta meta; 2000 int ret = 0, off = 0, cpu; 2001 struct bpf_prog *prog; 2002 void __percpu *pptr; 2003 2004 meta.seq = seq; 2005 prog = bpf_iter_get_info(&meta, elem == NULL); 2006 if (prog) { 2007 ctx.meta = &meta; 2008 ctx.map = info->map; 2009 if (elem) { 2010 roundup_key_size = round_up(map->key_size, 8); 2011 ctx.key = elem->key; 2012 if (!info->percpu_value_buf) { 2013 ctx.value = elem->key + roundup_key_size; 2014 } else { 2015 roundup_value_size = round_up(map->value_size, 8); 2016 pptr = htab_elem_get_ptr(elem, map->key_size); 2017 for_each_possible_cpu(cpu) { 2018 bpf_long_memcpy(info->percpu_value_buf + off, 2019 per_cpu_ptr(pptr, cpu), 2020 roundup_value_size); 2021 off += roundup_value_size; 2022 } 2023 ctx.value = info->percpu_value_buf; 2024 } 2025 } 2026 ret = bpf_iter_run_prog(prog, &ctx); 2027 } 2028 2029 return ret; 2030 } 2031 2032 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v) 2033 { 2034 return __bpf_hash_map_seq_show(seq, v); 2035 } 2036 2037 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v) 2038 { 2039 if (!v) 2040 (void)__bpf_hash_map_seq_show(seq, NULL); 2041 else 2042 rcu_read_unlock(); 2043 } 2044 2045 static int bpf_iter_init_hash_map(void *priv_data, 2046 struct bpf_iter_aux_info *aux) 2047 { 2048 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2049 struct bpf_map *map = aux->map; 2050 void *value_buf; 2051 u32 buf_size; 2052 2053 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || 2054 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { 2055 buf_size = round_up(map->value_size, 8) * num_possible_cpus(); 2056 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 2057 if (!value_buf) 2058 return -ENOMEM; 2059 2060 seq_info->percpu_value_buf = value_buf; 2061 } 2062 2063 bpf_map_inc_with_uref(map); 2064 seq_info->map = map; 2065 seq_info->htab = container_of(map, struct bpf_htab, map); 2066 return 0; 2067 } 2068 2069 static void bpf_iter_fini_hash_map(void *priv_data) 2070 { 2071 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2072 2073 bpf_map_put_with_uref(seq_info->map); 2074 kfree(seq_info->percpu_value_buf); 2075 } 2076 2077 static const struct seq_operations bpf_hash_map_seq_ops = { 2078 .start = bpf_hash_map_seq_start, 2079 .next = bpf_hash_map_seq_next, 2080 .stop = bpf_hash_map_seq_stop, 2081 .show = bpf_hash_map_seq_show, 2082 }; 2083 2084 static const struct bpf_iter_seq_info iter_seq_info = { 2085 .seq_ops = &bpf_hash_map_seq_ops, 2086 .init_seq_private = bpf_iter_init_hash_map, 2087 .fini_seq_private = bpf_iter_fini_hash_map, 2088 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info), 2089 }; 2090 2091 static int bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn, 2092 void *callback_ctx, u64 flags) 2093 { 2094 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2095 struct hlist_nulls_head *head; 2096 struct hlist_nulls_node *n; 2097 struct htab_elem *elem; 2098 u32 roundup_key_size; 2099 int i, num_elems = 0; 2100 void __percpu *pptr; 2101 struct bucket *b; 2102 void *key, *val; 2103 bool is_percpu; 2104 u64 ret = 0; 2105 2106 if (flags != 0) 2107 return -EINVAL; 2108 2109 is_percpu = htab_is_percpu(htab); 2110 2111 roundup_key_size = round_up(map->key_size, 8); 2112 /* disable migration so percpu value prepared here will be the 2113 * same as the one seen by the bpf program with bpf_map_lookup_elem(). 2114 */ 2115 if (is_percpu) 2116 migrate_disable(); 2117 for (i = 0; i < htab->n_buckets; i++) { 2118 b = &htab->buckets[i]; 2119 rcu_read_lock(); 2120 head = &b->head; 2121 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2122 key = elem->key; 2123 if (is_percpu) { 2124 /* current cpu value for percpu map */ 2125 pptr = htab_elem_get_ptr(elem, map->key_size); 2126 val = this_cpu_ptr(pptr); 2127 } else { 2128 val = elem->key + roundup_key_size; 2129 } 2130 num_elems++; 2131 ret = callback_fn((u64)(long)map, (u64)(long)key, 2132 (u64)(long)val, (u64)(long)callback_ctx, 0); 2133 /* return value: 0 - continue, 1 - stop and return */ 2134 if (ret) { 2135 rcu_read_unlock(); 2136 goto out; 2137 } 2138 } 2139 rcu_read_unlock(); 2140 } 2141 out: 2142 if (is_percpu) 2143 migrate_enable(); 2144 return num_elems; 2145 } 2146 2147 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab) 2148 const struct bpf_map_ops htab_map_ops = { 2149 .map_meta_equal = bpf_map_meta_equal, 2150 .map_alloc_check = htab_map_alloc_check, 2151 .map_alloc = htab_map_alloc, 2152 .map_free = htab_map_free, 2153 .map_get_next_key = htab_map_get_next_key, 2154 .map_release_uref = htab_map_free_timers, 2155 .map_lookup_elem = htab_map_lookup_elem, 2156 .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem, 2157 .map_update_elem = htab_map_update_elem, 2158 .map_delete_elem = htab_map_delete_elem, 2159 .map_gen_lookup = htab_map_gen_lookup, 2160 .map_seq_show_elem = htab_map_seq_show_elem, 2161 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2162 .map_for_each_callback = bpf_for_each_hash_elem, 2163 BATCH_OPS(htab), 2164 .map_btf_id = &htab_map_btf_ids[0], 2165 .iter_seq_info = &iter_seq_info, 2166 }; 2167 2168 const struct bpf_map_ops htab_lru_map_ops = { 2169 .map_meta_equal = bpf_map_meta_equal, 2170 .map_alloc_check = htab_map_alloc_check, 2171 .map_alloc = htab_map_alloc, 2172 .map_free = htab_map_free, 2173 .map_get_next_key = htab_map_get_next_key, 2174 .map_release_uref = htab_map_free_timers, 2175 .map_lookup_elem = htab_lru_map_lookup_elem, 2176 .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem, 2177 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, 2178 .map_update_elem = htab_lru_map_update_elem, 2179 .map_delete_elem = htab_lru_map_delete_elem, 2180 .map_gen_lookup = htab_lru_map_gen_lookup, 2181 .map_seq_show_elem = htab_map_seq_show_elem, 2182 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2183 .map_for_each_callback = bpf_for_each_hash_elem, 2184 BATCH_OPS(htab_lru), 2185 .map_btf_id = &htab_map_btf_ids[0], 2186 .iter_seq_info = &iter_seq_info, 2187 }; 2188 2189 /* Called from eBPF program */ 2190 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2191 { 2192 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2193 2194 if (l) 2195 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2196 else 2197 return NULL; 2198 } 2199 2200 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2201 { 2202 struct htab_elem *l; 2203 2204 if (cpu >= nr_cpu_ids) 2205 return NULL; 2206 2207 l = __htab_map_lookup_elem(map, key); 2208 if (l) 2209 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2210 else 2211 return NULL; 2212 } 2213 2214 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2215 { 2216 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2217 2218 if (l) { 2219 bpf_lru_node_set_ref(&l->lru_node); 2220 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2221 } 2222 2223 return NULL; 2224 } 2225 2226 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2227 { 2228 struct htab_elem *l; 2229 2230 if (cpu >= nr_cpu_ids) 2231 return NULL; 2232 2233 l = __htab_map_lookup_elem(map, key); 2234 if (l) { 2235 bpf_lru_node_set_ref(&l->lru_node); 2236 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2237 } 2238 2239 return NULL; 2240 } 2241 2242 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) 2243 { 2244 struct htab_elem *l; 2245 void __percpu *pptr; 2246 int ret = -ENOENT; 2247 int cpu, off = 0; 2248 u32 size; 2249 2250 /* per_cpu areas are zero-filled and bpf programs can only 2251 * access 'value_size' of them, so copying rounded areas 2252 * will not leak any kernel data 2253 */ 2254 size = round_up(map->value_size, 8); 2255 rcu_read_lock(); 2256 l = __htab_map_lookup_elem(map, key); 2257 if (!l) 2258 goto out; 2259 /* We do not mark LRU map element here in order to not mess up 2260 * eviction heuristics when user space does a map walk. 2261 */ 2262 pptr = htab_elem_get_ptr(l, map->key_size); 2263 for_each_possible_cpu(cpu) { 2264 bpf_long_memcpy(value + off, 2265 per_cpu_ptr(pptr, cpu), size); 2266 off += size; 2267 } 2268 ret = 0; 2269 out: 2270 rcu_read_unlock(); 2271 return ret; 2272 } 2273 2274 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2275 u64 map_flags) 2276 { 2277 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2278 int ret; 2279 2280 rcu_read_lock(); 2281 if (htab_is_lru(htab)) 2282 ret = __htab_lru_percpu_map_update_elem(map, key, value, 2283 map_flags, true); 2284 else 2285 ret = __htab_percpu_map_update_elem(map, key, value, map_flags, 2286 true); 2287 rcu_read_unlock(); 2288 2289 return ret; 2290 } 2291 2292 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, 2293 struct seq_file *m) 2294 { 2295 struct htab_elem *l; 2296 void __percpu *pptr; 2297 int cpu; 2298 2299 rcu_read_lock(); 2300 2301 l = __htab_map_lookup_elem(map, key); 2302 if (!l) { 2303 rcu_read_unlock(); 2304 return; 2305 } 2306 2307 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 2308 seq_puts(m, ": {\n"); 2309 pptr = htab_elem_get_ptr(l, map->key_size); 2310 for_each_possible_cpu(cpu) { 2311 seq_printf(m, "\tcpu%d: ", cpu); 2312 btf_type_seq_show(map->btf, map->btf_value_type_id, 2313 per_cpu_ptr(pptr, cpu), m); 2314 seq_puts(m, "\n"); 2315 } 2316 seq_puts(m, "}\n"); 2317 2318 rcu_read_unlock(); 2319 } 2320 2321 const struct bpf_map_ops htab_percpu_map_ops = { 2322 .map_meta_equal = bpf_map_meta_equal, 2323 .map_alloc_check = htab_map_alloc_check, 2324 .map_alloc = htab_map_alloc, 2325 .map_free = htab_map_free, 2326 .map_get_next_key = htab_map_get_next_key, 2327 .map_lookup_elem = htab_percpu_map_lookup_elem, 2328 .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem, 2329 .map_update_elem = htab_percpu_map_update_elem, 2330 .map_delete_elem = htab_map_delete_elem, 2331 .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem, 2332 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2333 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2334 .map_for_each_callback = bpf_for_each_hash_elem, 2335 BATCH_OPS(htab_percpu), 2336 .map_btf_id = &htab_map_btf_ids[0], 2337 .iter_seq_info = &iter_seq_info, 2338 }; 2339 2340 const struct bpf_map_ops htab_lru_percpu_map_ops = { 2341 .map_meta_equal = bpf_map_meta_equal, 2342 .map_alloc_check = htab_map_alloc_check, 2343 .map_alloc = htab_map_alloc, 2344 .map_free = htab_map_free, 2345 .map_get_next_key = htab_map_get_next_key, 2346 .map_lookup_elem = htab_lru_percpu_map_lookup_elem, 2347 .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem, 2348 .map_update_elem = htab_lru_percpu_map_update_elem, 2349 .map_delete_elem = htab_lru_map_delete_elem, 2350 .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem, 2351 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2352 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2353 .map_for_each_callback = bpf_for_each_hash_elem, 2354 BATCH_OPS(htab_lru_percpu), 2355 .map_btf_id = &htab_map_btf_ids[0], 2356 .iter_seq_info = &iter_seq_info, 2357 }; 2358 2359 static int fd_htab_map_alloc_check(union bpf_attr *attr) 2360 { 2361 if (attr->value_size != sizeof(u32)) 2362 return -EINVAL; 2363 return htab_map_alloc_check(attr); 2364 } 2365 2366 static void fd_htab_map_free(struct bpf_map *map) 2367 { 2368 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2369 struct hlist_nulls_node *n; 2370 struct hlist_nulls_head *head; 2371 struct htab_elem *l; 2372 int i; 2373 2374 for (i = 0; i < htab->n_buckets; i++) { 2375 head = select_bucket(htab, i); 2376 2377 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 2378 void *ptr = fd_htab_map_get_ptr(map, l); 2379 2380 map->ops->map_fd_put_ptr(ptr); 2381 } 2382 } 2383 2384 htab_map_free(map); 2385 } 2386 2387 /* only called from syscall */ 2388 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 2389 { 2390 void **ptr; 2391 int ret = 0; 2392 2393 if (!map->ops->map_fd_sys_lookup_elem) 2394 return -ENOTSUPP; 2395 2396 rcu_read_lock(); 2397 ptr = htab_map_lookup_elem(map, key); 2398 if (ptr) 2399 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); 2400 else 2401 ret = -ENOENT; 2402 rcu_read_unlock(); 2403 2404 return ret; 2405 } 2406 2407 /* only called from syscall */ 2408 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2409 void *key, void *value, u64 map_flags) 2410 { 2411 void *ptr; 2412 int ret; 2413 u32 ufd = *(u32 *)value; 2414 2415 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 2416 if (IS_ERR(ptr)) 2417 return PTR_ERR(ptr); 2418 2419 ret = htab_map_update_elem(map, key, &ptr, map_flags); 2420 if (ret) 2421 map->ops->map_fd_put_ptr(ptr); 2422 2423 return ret; 2424 } 2425 2426 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) 2427 { 2428 struct bpf_map *map, *inner_map_meta; 2429 2430 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 2431 if (IS_ERR(inner_map_meta)) 2432 return inner_map_meta; 2433 2434 map = htab_map_alloc(attr); 2435 if (IS_ERR(map)) { 2436 bpf_map_meta_free(inner_map_meta); 2437 return map; 2438 } 2439 2440 map->inner_map_meta = inner_map_meta; 2441 2442 return map; 2443 } 2444 2445 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) 2446 { 2447 struct bpf_map **inner_map = htab_map_lookup_elem(map, key); 2448 2449 if (!inner_map) 2450 return NULL; 2451 2452 return READ_ONCE(*inner_map); 2453 } 2454 2455 static int htab_of_map_gen_lookup(struct bpf_map *map, 2456 struct bpf_insn *insn_buf) 2457 { 2458 struct bpf_insn *insn = insn_buf; 2459 const int ret = BPF_REG_0; 2460 2461 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 2462 (void *(*)(struct bpf_map *map, void *key))NULL)); 2463 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 2464 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); 2465 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 2466 offsetof(struct htab_elem, key) + 2467 round_up(map->key_size, 8)); 2468 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 2469 2470 return insn - insn_buf; 2471 } 2472 2473 static void htab_of_map_free(struct bpf_map *map) 2474 { 2475 bpf_map_meta_free(map->inner_map_meta); 2476 fd_htab_map_free(map); 2477 } 2478 2479 const struct bpf_map_ops htab_of_maps_map_ops = { 2480 .map_alloc_check = fd_htab_map_alloc_check, 2481 .map_alloc = htab_of_map_alloc, 2482 .map_free = htab_of_map_free, 2483 .map_get_next_key = htab_map_get_next_key, 2484 .map_lookup_elem = htab_of_map_lookup_elem, 2485 .map_delete_elem = htab_map_delete_elem, 2486 .map_fd_get_ptr = bpf_map_fd_get_ptr, 2487 .map_fd_put_ptr = bpf_map_fd_put_ptr, 2488 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 2489 .map_gen_lookup = htab_of_map_gen_lookup, 2490 .map_check_btf = map_check_no_btf, 2491 BATCH_OPS(htab), 2492 .map_btf_id = &htab_map_btf_ids[0], 2493 }; 2494