xref: /linux/kernel/bpf/hashtab.c (revision ed30aef3c864f99111e16d4ea5cf29488d99a278)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include <linux/rcupdate_trace.h>
13 #include "percpu_freelist.h"
14 #include "bpf_lru_list.h"
15 #include "map_in_map.h"
16 
17 #define HTAB_CREATE_FLAG_MASK						\
18 	(BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |	\
19 	 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
20 
21 #define BATCH_OPS(_name)			\
22 	.map_lookup_batch =			\
23 	_name##_map_lookup_batch,		\
24 	.map_lookup_and_delete_batch =		\
25 	_name##_map_lookup_and_delete_batch,	\
26 	.map_update_batch =			\
27 	generic_map_update_batch,		\
28 	.map_delete_batch =			\
29 	generic_map_delete_batch
30 
31 /*
32  * The bucket lock has two protection scopes:
33  *
34  * 1) Serializing concurrent operations from BPF programs on differrent
35  *    CPUs
36  *
37  * 2) Serializing concurrent operations from BPF programs and sys_bpf()
38  *
39  * BPF programs can execute in any context including perf, kprobes and
40  * tracing. As there are almost no limits where perf, kprobes and tracing
41  * can be invoked from the lock operations need to be protected against
42  * deadlocks. Deadlocks can be caused by recursion and by an invocation in
43  * the lock held section when functions which acquire this lock are invoked
44  * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
45  * variable bpf_prog_active, which prevents BPF programs attached to perf
46  * events, kprobes and tracing to be invoked before the prior invocation
47  * from one of these contexts completed. sys_bpf() uses the same mechanism
48  * by pinning the task to the current CPU and incrementing the recursion
49  * protection accross the map operation.
50  *
51  * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
52  * operations like memory allocations (even with GFP_ATOMIC) from atomic
53  * contexts. This is required because even with GFP_ATOMIC the memory
54  * allocator calls into code pathes which acquire locks with long held lock
55  * sections. To ensure the deterministic behaviour these locks are regular
56  * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
57  * true atomic contexts on an RT kernel are the low level hardware
58  * handling, scheduling, low level interrupt handling, NMIs etc. None of
59  * these contexts should ever do memory allocations.
60  *
61  * As regular device interrupt handlers and soft interrupts are forced into
62  * thread context, the existing code which does
63  *   spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*();
64  * just works.
65  *
66  * In theory the BPF locks could be converted to regular spinlocks as well,
67  * but the bucket locks and percpu_freelist locks can be taken from
68  * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
69  * atomic contexts even on RT. These mechanisms require preallocated maps,
70  * so there is no need to invoke memory allocations within the lock held
71  * sections.
72  *
73  * BPF maps which need dynamic allocation are only used from (forced)
74  * thread context on RT and can therefore use regular spinlocks which in
75  * turn allows to invoke memory allocations from the lock held section.
76  *
77  * On a non RT kernel this distinction is neither possible nor required.
78  * spinlock maps to raw_spinlock and the extra code is optimized out by the
79  * compiler.
80  */
81 struct bucket {
82 	struct hlist_nulls_head head;
83 	union {
84 		raw_spinlock_t raw_lock;
85 		spinlock_t     lock;
86 	};
87 };
88 
89 #define HASHTAB_MAP_LOCK_COUNT 8
90 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
91 
92 struct bpf_htab {
93 	struct bpf_map map;
94 	struct bucket *buckets;
95 	void *elems;
96 	union {
97 		struct pcpu_freelist freelist;
98 		struct bpf_lru lru;
99 	};
100 	struct htab_elem *__percpu *extra_elems;
101 	atomic_t count;	/* number of elements in this hashtable */
102 	u32 n_buckets;	/* number of hash buckets */
103 	u32 elem_size;	/* size of each element in bytes */
104 	u32 hashrnd;
105 	struct lock_class_key lockdep_key;
106 	int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
107 };
108 
109 /* each htab element is struct htab_elem + key + value */
110 struct htab_elem {
111 	union {
112 		struct hlist_nulls_node hash_node;
113 		struct {
114 			void *padding;
115 			union {
116 				struct bpf_htab *htab;
117 				struct pcpu_freelist_node fnode;
118 				struct htab_elem *batch_flink;
119 			};
120 		};
121 	};
122 	union {
123 		struct rcu_head rcu;
124 		struct bpf_lru_node lru_node;
125 	};
126 	u32 hash;
127 	char key[] __aligned(8);
128 };
129 
130 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
131 {
132 	return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
133 }
134 
135 static inline bool htab_use_raw_lock(const struct bpf_htab *htab)
136 {
137 	return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab));
138 }
139 
140 static void htab_init_buckets(struct bpf_htab *htab)
141 {
142 	unsigned i;
143 
144 	for (i = 0; i < htab->n_buckets; i++) {
145 		INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
146 		if (htab_use_raw_lock(htab)) {
147 			raw_spin_lock_init(&htab->buckets[i].raw_lock);
148 			lockdep_set_class(&htab->buckets[i].raw_lock,
149 					  &htab->lockdep_key);
150 		} else {
151 			spin_lock_init(&htab->buckets[i].lock);
152 			lockdep_set_class(&htab->buckets[i].lock,
153 					  &htab->lockdep_key);
154 		}
155 	}
156 }
157 
158 static inline int htab_lock_bucket(const struct bpf_htab *htab,
159 				   struct bucket *b, u32 hash,
160 				   unsigned long *pflags)
161 {
162 	unsigned long flags;
163 
164 	hash = hash & HASHTAB_MAP_LOCK_MASK;
165 
166 	migrate_disable();
167 	if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
168 		__this_cpu_dec(*(htab->map_locked[hash]));
169 		migrate_enable();
170 		return -EBUSY;
171 	}
172 
173 	if (htab_use_raw_lock(htab))
174 		raw_spin_lock_irqsave(&b->raw_lock, flags);
175 	else
176 		spin_lock_irqsave(&b->lock, flags);
177 	*pflags = flags;
178 
179 	return 0;
180 }
181 
182 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
183 				      struct bucket *b, u32 hash,
184 				      unsigned long flags)
185 {
186 	hash = hash & HASHTAB_MAP_LOCK_MASK;
187 	if (htab_use_raw_lock(htab))
188 		raw_spin_unlock_irqrestore(&b->raw_lock, flags);
189 	else
190 		spin_unlock_irqrestore(&b->lock, flags);
191 	__this_cpu_dec(*(htab->map_locked[hash]));
192 	migrate_enable();
193 }
194 
195 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
196 
197 static bool htab_is_lru(const struct bpf_htab *htab)
198 {
199 	return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
200 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
201 }
202 
203 static bool htab_is_percpu(const struct bpf_htab *htab)
204 {
205 	return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
206 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
207 }
208 
209 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
210 				     void __percpu *pptr)
211 {
212 	*(void __percpu **)(l->key + key_size) = pptr;
213 }
214 
215 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
216 {
217 	return *(void __percpu **)(l->key + key_size);
218 }
219 
220 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
221 {
222 	return *(void **)(l->key + roundup(map->key_size, 8));
223 }
224 
225 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
226 {
227 	return (struct htab_elem *) (htab->elems + i * htab->elem_size);
228 }
229 
230 static void htab_free_elems(struct bpf_htab *htab)
231 {
232 	int i;
233 
234 	if (!htab_is_percpu(htab))
235 		goto free_elems;
236 
237 	for (i = 0; i < htab->map.max_entries; i++) {
238 		void __percpu *pptr;
239 
240 		pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
241 					 htab->map.key_size);
242 		free_percpu(pptr);
243 		cond_resched();
244 	}
245 free_elems:
246 	bpf_map_area_free(htab->elems);
247 }
248 
249 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
250  * (bucket_lock). If both locks need to be acquired together, the lock
251  * order is always lru_lock -> bucket_lock and this only happens in
252  * bpf_lru_list.c logic. For example, certain code path of
253  * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
254  * will acquire lru_lock first followed by acquiring bucket_lock.
255  *
256  * In hashtab.c, to avoid deadlock, lock acquisition of
257  * bucket_lock followed by lru_lock is not allowed. In such cases,
258  * bucket_lock needs to be released first before acquiring lru_lock.
259  */
260 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
261 					  u32 hash)
262 {
263 	struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
264 	struct htab_elem *l;
265 
266 	if (node) {
267 		l = container_of(node, struct htab_elem, lru_node);
268 		memcpy(l->key, key, htab->map.key_size);
269 		return l;
270 	}
271 
272 	return NULL;
273 }
274 
275 static int prealloc_init(struct bpf_htab *htab)
276 {
277 	u32 num_entries = htab->map.max_entries;
278 	int err = -ENOMEM, i;
279 
280 	if (!htab_is_percpu(htab) && !htab_is_lru(htab))
281 		num_entries += num_possible_cpus();
282 
283 	htab->elems = bpf_map_area_alloc(htab->elem_size * num_entries,
284 					 htab->map.numa_node);
285 	if (!htab->elems)
286 		return -ENOMEM;
287 
288 	if (!htab_is_percpu(htab))
289 		goto skip_percpu_elems;
290 
291 	for (i = 0; i < num_entries; i++) {
292 		u32 size = round_up(htab->map.value_size, 8);
293 		void __percpu *pptr;
294 
295 		pptr = __alloc_percpu_gfp(size, 8, GFP_USER | __GFP_NOWARN);
296 		if (!pptr)
297 			goto free_elems;
298 		htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
299 				  pptr);
300 		cond_resched();
301 	}
302 
303 skip_percpu_elems:
304 	if (htab_is_lru(htab))
305 		err = bpf_lru_init(&htab->lru,
306 				   htab->map.map_flags & BPF_F_NO_COMMON_LRU,
307 				   offsetof(struct htab_elem, hash) -
308 				   offsetof(struct htab_elem, lru_node),
309 				   htab_lru_map_delete_node,
310 				   htab);
311 	else
312 		err = pcpu_freelist_init(&htab->freelist);
313 
314 	if (err)
315 		goto free_elems;
316 
317 	if (htab_is_lru(htab))
318 		bpf_lru_populate(&htab->lru, htab->elems,
319 				 offsetof(struct htab_elem, lru_node),
320 				 htab->elem_size, num_entries);
321 	else
322 		pcpu_freelist_populate(&htab->freelist,
323 				       htab->elems + offsetof(struct htab_elem, fnode),
324 				       htab->elem_size, num_entries);
325 
326 	return 0;
327 
328 free_elems:
329 	htab_free_elems(htab);
330 	return err;
331 }
332 
333 static void prealloc_destroy(struct bpf_htab *htab)
334 {
335 	htab_free_elems(htab);
336 
337 	if (htab_is_lru(htab))
338 		bpf_lru_destroy(&htab->lru);
339 	else
340 		pcpu_freelist_destroy(&htab->freelist);
341 }
342 
343 static int alloc_extra_elems(struct bpf_htab *htab)
344 {
345 	struct htab_elem *__percpu *pptr, *l_new;
346 	struct pcpu_freelist_node *l;
347 	int cpu;
348 
349 	pptr = __alloc_percpu_gfp(sizeof(struct htab_elem *), 8,
350 				  GFP_USER | __GFP_NOWARN);
351 	if (!pptr)
352 		return -ENOMEM;
353 
354 	for_each_possible_cpu(cpu) {
355 		l = pcpu_freelist_pop(&htab->freelist);
356 		/* pop will succeed, since prealloc_init()
357 		 * preallocated extra num_possible_cpus elements
358 		 */
359 		l_new = container_of(l, struct htab_elem, fnode);
360 		*per_cpu_ptr(pptr, cpu) = l_new;
361 	}
362 	htab->extra_elems = pptr;
363 	return 0;
364 }
365 
366 /* Called from syscall */
367 static int htab_map_alloc_check(union bpf_attr *attr)
368 {
369 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
370 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
371 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
372 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
373 	/* percpu_lru means each cpu has its own LRU list.
374 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
375 	 * the map's value itself is percpu.  percpu_lru has
376 	 * nothing to do with the map's value.
377 	 */
378 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
379 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
380 	bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
381 	int numa_node = bpf_map_attr_numa_node(attr);
382 
383 	BUILD_BUG_ON(offsetof(struct htab_elem, htab) !=
384 		     offsetof(struct htab_elem, hash_node.pprev));
385 	BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
386 		     offsetof(struct htab_elem, hash_node.pprev));
387 
388 	if (lru && !bpf_capable())
389 		/* LRU implementation is much complicated than other
390 		 * maps.  Hence, limit to CAP_BPF.
391 		 */
392 		return -EPERM;
393 
394 	if (zero_seed && !capable(CAP_SYS_ADMIN))
395 		/* Guard against local DoS, and discourage production use. */
396 		return -EPERM;
397 
398 	if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
399 	    !bpf_map_flags_access_ok(attr->map_flags))
400 		return -EINVAL;
401 
402 	if (!lru && percpu_lru)
403 		return -EINVAL;
404 
405 	if (lru && !prealloc)
406 		return -ENOTSUPP;
407 
408 	if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
409 		return -EINVAL;
410 
411 	/* check sanity of attributes.
412 	 * value_size == 0 may be allowed in the future to use map as a set
413 	 */
414 	if (attr->max_entries == 0 || attr->key_size == 0 ||
415 	    attr->value_size == 0)
416 		return -EINVAL;
417 
418 	if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
419 	   sizeof(struct htab_elem))
420 		/* if key_size + value_size is bigger, the user space won't be
421 		 * able to access the elements via bpf syscall. This check
422 		 * also makes sure that the elem_size doesn't overflow and it's
423 		 * kmalloc-able later in htab_map_update_elem()
424 		 */
425 		return -E2BIG;
426 
427 	return 0;
428 }
429 
430 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
431 {
432 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
433 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
434 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
435 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
436 	/* percpu_lru means each cpu has its own LRU list.
437 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
438 	 * the map's value itself is percpu.  percpu_lru has
439 	 * nothing to do with the map's value.
440 	 */
441 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
442 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
443 	struct bpf_htab *htab;
444 	int err, i;
445 	u64 cost;
446 
447 	htab = kzalloc(sizeof(*htab), GFP_USER);
448 	if (!htab)
449 		return ERR_PTR(-ENOMEM);
450 
451 	lockdep_register_key(&htab->lockdep_key);
452 
453 	bpf_map_init_from_attr(&htab->map, attr);
454 
455 	if (percpu_lru) {
456 		/* ensure each CPU's lru list has >=1 elements.
457 		 * since we are at it, make each lru list has the same
458 		 * number of elements.
459 		 */
460 		htab->map.max_entries = roundup(attr->max_entries,
461 						num_possible_cpus());
462 		if (htab->map.max_entries < attr->max_entries)
463 			htab->map.max_entries = rounddown(attr->max_entries,
464 							  num_possible_cpus());
465 	}
466 
467 	/* hash table size must be power of 2 */
468 	htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
469 
470 	htab->elem_size = sizeof(struct htab_elem) +
471 			  round_up(htab->map.key_size, 8);
472 	if (percpu)
473 		htab->elem_size += sizeof(void *);
474 	else
475 		htab->elem_size += round_up(htab->map.value_size, 8);
476 
477 	err = -E2BIG;
478 	/* prevent zero size kmalloc and check for u32 overflow */
479 	if (htab->n_buckets == 0 ||
480 	    htab->n_buckets > U32_MAX / sizeof(struct bucket))
481 		goto free_htab;
482 
483 	cost = (u64) htab->n_buckets * sizeof(struct bucket) +
484 	       (u64) htab->elem_size * htab->map.max_entries;
485 
486 	if (percpu)
487 		cost += (u64) round_up(htab->map.value_size, 8) *
488 			num_possible_cpus() * htab->map.max_entries;
489 	else
490 	       cost += (u64) htab->elem_size * num_possible_cpus();
491 
492 	/* if map size is larger than memlock limit, reject it */
493 	err = bpf_map_charge_init(&htab->map.memory, cost);
494 	if (err)
495 		goto free_htab;
496 
497 	err = -ENOMEM;
498 	htab->buckets = bpf_map_area_alloc(htab->n_buckets *
499 					   sizeof(struct bucket),
500 					   htab->map.numa_node);
501 	if (!htab->buckets)
502 		goto free_charge;
503 
504 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
505 		htab->map_locked[i] = __alloc_percpu_gfp(sizeof(int),
506 							 sizeof(int), GFP_USER);
507 		if (!htab->map_locked[i])
508 			goto free_map_locked;
509 	}
510 
511 	if (htab->map.map_flags & BPF_F_ZERO_SEED)
512 		htab->hashrnd = 0;
513 	else
514 		htab->hashrnd = get_random_int();
515 
516 	htab_init_buckets(htab);
517 
518 	if (prealloc) {
519 		err = prealloc_init(htab);
520 		if (err)
521 			goto free_map_locked;
522 
523 		if (!percpu && !lru) {
524 			/* lru itself can remove the least used element, so
525 			 * there is no need for an extra elem during map_update.
526 			 */
527 			err = alloc_extra_elems(htab);
528 			if (err)
529 				goto free_prealloc;
530 		}
531 	}
532 
533 	return &htab->map;
534 
535 free_prealloc:
536 	prealloc_destroy(htab);
537 free_map_locked:
538 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
539 		free_percpu(htab->map_locked[i]);
540 	bpf_map_area_free(htab->buckets);
541 free_charge:
542 	bpf_map_charge_finish(&htab->map.memory);
543 free_htab:
544 	lockdep_unregister_key(&htab->lockdep_key);
545 	kfree(htab);
546 	return ERR_PTR(err);
547 }
548 
549 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
550 {
551 	return jhash(key, key_len, hashrnd);
552 }
553 
554 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
555 {
556 	return &htab->buckets[hash & (htab->n_buckets - 1)];
557 }
558 
559 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
560 {
561 	return &__select_bucket(htab, hash)->head;
562 }
563 
564 /* this lookup function can only be called with bucket lock taken */
565 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
566 					 void *key, u32 key_size)
567 {
568 	struct hlist_nulls_node *n;
569 	struct htab_elem *l;
570 
571 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
572 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
573 			return l;
574 
575 	return NULL;
576 }
577 
578 /* can be called without bucket lock. it will repeat the loop in
579  * the unlikely event when elements moved from one bucket into another
580  * while link list is being walked
581  */
582 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
583 					       u32 hash, void *key,
584 					       u32 key_size, u32 n_buckets)
585 {
586 	struct hlist_nulls_node *n;
587 	struct htab_elem *l;
588 
589 again:
590 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
591 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
592 			return l;
593 
594 	if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
595 		goto again;
596 
597 	return NULL;
598 }
599 
600 /* Called from syscall or from eBPF program directly, so
601  * arguments have to match bpf_map_lookup_elem() exactly.
602  * The return value is adjusted by BPF instructions
603  * in htab_map_gen_lookup().
604  */
605 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
606 {
607 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
608 	struct hlist_nulls_head *head;
609 	struct htab_elem *l;
610 	u32 hash, key_size;
611 
612 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
613 
614 	key_size = map->key_size;
615 
616 	hash = htab_map_hash(key, key_size, htab->hashrnd);
617 
618 	head = select_bucket(htab, hash);
619 
620 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
621 
622 	return l;
623 }
624 
625 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
626 {
627 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
628 
629 	if (l)
630 		return l->key + round_up(map->key_size, 8);
631 
632 	return NULL;
633 }
634 
635 /* inline bpf_map_lookup_elem() call.
636  * Instead of:
637  * bpf_prog
638  *   bpf_map_lookup_elem
639  *     map->ops->map_lookup_elem
640  *       htab_map_lookup_elem
641  *         __htab_map_lookup_elem
642  * do:
643  * bpf_prog
644  *   __htab_map_lookup_elem
645  */
646 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
647 {
648 	struct bpf_insn *insn = insn_buf;
649 	const int ret = BPF_REG_0;
650 
651 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
652 		     (void *(*)(struct bpf_map *map, void *key))NULL));
653 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
654 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
655 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
656 				offsetof(struct htab_elem, key) +
657 				round_up(map->key_size, 8));
658 	return insn - insn_buf;
659 }
660 
661 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
662 							void *key, const bool mark)
663 {
664 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
665 
666 	if (l) {
667 		if (mark)
668 			bpf_lru_node_set_ref(&l->lru_node);
669 		return l->key + round_up(map->key_size, 8);
670 	}
671 
672 	return NULL;
673 }
674 
675 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
676 {
677 	return __htab_lru_map_lookup_elem(map, key, true);
678 }
679 
680 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
681 {
682 	return __htab_lru_map_lookup_elem(map, key, false);
683 }
684 
685 static int htab_lru_map_gen_lookup(struct bpf_map *map,
686 				   struct bpf_insn *insn_buf)
687 {
688 	struct bpf_insn *insn = insn_buf;
689 	const int ret = BPF_REG_0;
690 	const int ref_reg = BPF_REG_1;
691 
692 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
693 		     (void *(*)(struct bpf_map *map, void *key))NULL));
694 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
695 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
696 	*insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
697 			      offsetof(struct htab_elem, lru_node) +
698 			      offsetof(struct bpf_lru_node, ref));
699 	*insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
700 	*insn++ = BPF_ST_MEM(BPF_B, ret,
701 			     offsetof(struct htab_elem, lru_node) +
702 			     offsetof(struct bpf_lru_node, ref),
703 			     1);
704 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
705 				offsetof(struct htab_elem, key) +
706 				round_up(map->key_size, 8));
707 	return insn - insn_buf;
708 }
709 
710 /* It is called from the bpf_lru_list when the LRU needs to delete
711  * older elements from the htab.
712  */
713 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
714 {
715 	struct bpf_htab *htab = (struct bpf_htab *)arg;
716 	struct htab_elem *l = NULL, *tgt_l;
717 	struct hlist_nulls_head *head;
718 	struct hlist_nulls_node *n;
719 	unsigned long flags;
720 	struct bucket *b;
721 	int ret;
722 
723 	tgt_l = container_of(node, struct htab_elem, lru_node);
724 	b = __select_bucket(htab, tgt_l->hash);
725 	head = &b->head;
726 
727 	ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
728 	if (ret)
729 		return false;
730 
731 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
732 		if (l == tgt_l) {
733 			hlist_nulls_del_rcu(&l->hash_node);
734 			break;
735 		}
736 
737 	htab_unlock_bucket(htab, b, tgt_l->hash, flags);
738 
739 	return l == tgt_l;
740 }
741 
742 /* Called from syscall */
743 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
744 {
745 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
746 	struct hlist_nulls_head *head;
747 	struct htab_elem *l, *next_l;
748 	u32 hash, key_size;
749 	int i = 0;
750 
751 	WARN_ON_ONCE(!rcu_read_lock_held());
752 
753 	key_size = map->key_size;
754 
755 	if (!key)
756 		goto find_first_elem;
757 
758 	hash = htab_map_hash(key, key_size, htab->hashrnd);
759 
760 	head = select_bucket(htab, hash);
761 
762 	/* lookup the key */
763 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
764 
765 	if (!l)
766 		goto find_first_elem;
767 
768 	/* key was found, get next key in the same bucket */
769 	next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
770 				  struct htab_elem, hash_node);
771 
772 	if (next_l) {
773 		/* if next elem in this hash list is non-zero, just return it */
774 		memcpy(next_key, next_l->key, key_size);
775 		return 0;
776 	}
777 
778 	/* no more elements in this hash list, go to the next bucket */
779 	i = hash & (htab->n_buckets - 1);
780 	i++;
781 
782 find_first_elem:
783 	/* iterate over buckets */
784 	for (; i < htab->n_buckets; i++) {
785 		head = select_bucket(htab, i);
786 
787 		/* pick first element in the bucket */
788 		next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
789 					  struct htab_elem, hash_node);
790 		if (next_l) {
791 			/* if it's not empty, just return it */
792 			memcpy(next_key, next_l->key, key_size);
793 			return 0;
794 		}
795 	}
796 
797 	/* iterated over all buckets and all elements */
798 	return -ENOENT;
799 }
800 
801 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
802 {
803 	if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
804 		free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
805 	kfree(l);
806 }
807 
808 static void htab_elem_free_rcu(struct rcu_head *head)
809 {
810 	struct htab_elem *l = container_of(head, struct htab_elem, rcu);
811 	struct bpf_htab *htab = l->htab;
812 
813 	htab_elem_free(htab, l);
814 }
815 
816 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
817 {
818 	struct bpf_map *map = &htab->map;
819 	void *ptr;
820 
821 	if (map->ops->map_fd_put_ptr) {
822 		ptr = fd_htab_map_get_ptr(map, l);
823 		map->ops->map_fd_put_ptr(ptr);
824 	}
825 }
826 
827 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
828 {
829 	htab_put_fd_value(htab, l);
830 
831 	if (htab_is_prealloc(htab)) {
832 		__pcpu_freelist_push(&htab->freelist, &l->fnode);
833 	} else {
834 		atomic_dec(&htab->count);
835 		l->htab = htab;
836 		call_rcu(&l->rcu, htab_elem_free_rcu);
837 	}
838 }
839 
840 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
841 			    void *value, bool onallcpus)
842 {
843 	if (!onallcpus) {
844 		/* copy true value_size bytes */
845 		memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
846 	} else {
847 		u32 size = round_up(htab->map.value_size, 8);
848 		int off = 0, cpu;
849 
850 		for_each_possible_cpu(cpu) {
851 			bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
852 					value + off, size);
853 			off += size;
854 		}
855 	}
856 }
857 
858 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
859 			    void *value, bool onallcpus)
860 {
861 	/* When using prealloc and not setting the initial value on all cpus,
862 	 * zero-fill element values for other cpus (just as what happens when
863 	 * not using prealloc). Otherwise, bpf program has no way to ensure
864 	 * known initial values for cpus other than current one
865 	 * (onallcpus=false always when coming from bpf prog).
866 	 */
867 	if (htab_is_prealloc(htab) && !onallcpus) {
868 		u32 size = round_up(htab->map.value_size, 8);
869 		int current_cpu = raw_smp_processor_id();
870 		int cpu;
871 
872 		for_each_possible_cpu(cpu) {
873 			if (cpu == current_cpu)
874 				bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value,
875 						size);
876 			else
877 				memset(per_cpu_ptr(pptr, cpu), 0, size);
878 		}
879 	} else {
880 		pcpu_copy_value(htab, pptr, value, onallcpus);
881 	}
882 }
883 
884 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
885 {
886 	return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
887 	       BITS_PER_LONG == 64;
888 }
889 
890 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
891 					 void *value, u32 key_size, u32 hash,
892 					 bool percpu, bool onallcpus,
893 					 struct htab_elem *old_elem)
894 {
895 	u32 size = htab->map.value_size;
896 	bool prealloc = htab_is_prealloc(htab);
897 	struct htab_elem *l_new, **pl_new;
898 	void __percpu *pptr;
899 
900 	if (prealloc) {
901 		if (old_elem) {
902 			/* if we're updating the existing element,
903 			 * use per-cpu extra elems to avoid freelist_pop/push
904 			 */
905 			pl_new = this_cpu_ptr(htab->extra_elems);
906 			l_new = *pl_new;
907 			htab_put_fd_value(htab, old_elem);
908 			*pl_new = old_elem;
909 		} else {
910 			struct pcpu_freelist_node *l;
911 
912 			l = __pcpu_freelist_pop(&htab->freelist);
913 			if (!l)
914 				return ERR_PTR(-E2BIG);
915 			l_new = container_of(l, struct htab_elem, fnode);
916 		}
917 	} else {
918 		if (atomic_inc_return(&htab->count) > htab->map.max_entries)
919 			if (!old_elem) {
920 				/* when map is full and update() is replacing
921 				 * old element, it's ok to allocate, since
922 				 * old element will be freed immediately.
923 				 * Otherwise return an error
924 				 */
925 				l_new = ERR_PTR(-E2BIG);
926 				goto dec_count;
927 			}
928 		l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN,
929 				     htab->map.numa_node);
930 		if (!l_new) {
931 			l_new = ERR_PTR(-ENOMEM);
932 			goto dec_count;
933 		}
934 		check_and_init_map_lock(&htab->map,
935 					l_new->key + round_up(key_size, 8));
936 	}
937 
938 	memcpy(l_new->key, key, key_size);
939 	if (percpu) {
940 		size = round_up(size, 8);
941 		if (prealloc) {
942 			pptr = htab_elem_get_ptr(l_new, key_size);
943 		} else {
944 			/* alloc_percpu zero-fills */
945 			pptr = __alloc_percpu_gfp(size, 8,
946 						  GFP_ATOMIC | __GFP_NOWARN);
947 			if (!pptr) {
948 				kfree(l_new);
949 				l_new = ERR_PTR(-ENOMEM);
950 				goto dec_count;
951 			}
952 		}
953 
954 		pcpu_init_value(htab, pptr, value, onallcpus);
955 
956 		if (!prealloc)
957 			htab_elem_set_ptr(l_new, key_size, pptr);
958 	} else if (fd_htab_map_needs_adjust(htab)) {
959 		size = round_up(size, 8);
960 		memcpy(l_new->key + round_up(key_size, 8), value, size);
961 	} else {
962 		copy_map_value(&htab->map,
963 			       l_new->key + round_up(key_size, 8),
964 			       value);
965 	}
966 
967 	l_new->hash = hash;
968 	return l_new;
969 dec_count:
970 	atomic_dec(&htab->count);
971 	return l_new;
972 }
973 
974 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
975 		       u64 map_flags)
976 {
977 	if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
978 		/* elem already exists */
979 		return -EEXIST;
980 
981 	if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
982 		/* elem doesn't exist, cannot update it */
983 		return -ENOENT;
984 
985 	return 0;
986 }
987 
988 /* Called from syscall or from eBPF program */
989 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
990 				u64 map_flags)
991 {
992 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
993 	struct htab_elem *l_new = NULL, *l_old;
994 	struct hlist_nulls_head *head;
995 	unsigned long flags;
996 	struct bucket *b;
997 	u32 key_size, hash;
998 	int ret;
999 
1000 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
1001 		/* unknown flags */
1002 		return -EINVAL;
1003 
1004 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1005 
1006 	key_size = map->key_size;
1007 
1008 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1009 
1010 	b = __select_bucket(htab, hash);
1011 	head = &b->head;
1012 
1013 	if (unlikely(map_flags & BPF_F_LOCK)) {
1014 		if (unlikely(!map_value_has_spin_lock(map)))
1015 			return -EINVAL;
1016 		/* find an element without taking the bucket lock */
1017 		l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
1018 					      htab->n_buckets);
1019 		ret = check_flags(htab, l_old, map_flags);
1020 		if (ret)
1021 			return ret;
1022 		if (l_old) {
1023 			/* grab the element lock and update value in place */
1024 			copy_map_value_locked(map,
1025 					      l_old->key + round_up(key_size, 8),
1026 					      value, false);
1027 			return 0;
1028 		}
1029 		/* fall through, grab the bucket lock and lookup again.
1030 		 * 99.9% chance that the element won't be found,
1031 		 * but second lookup under lock has to be done.
1032 		 */
1033 	}
1034 
1035 	ret = htab_lock_bucket(htab, b, hash, &flags);
1036 	if (ret)
1037 		return ret;
1038 
1039 	l_old = lookup_elem_raw(head, hash, key, key_size);
1040 
1041 	ret = check_flags(htab, l_old, map_flags);
1042 	if (ret)
1043 		goto err;
1044 
1045 	if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1046 		/* first lookup without the bucket lock didn't find the element,
1047 		 * but second lookup with the bucket lock found it.
1048 		 * This case is highly unlikely, but has to be dealt with:
1049 		 * grab the element lock in addition to the bucket lock
1050 		 * and update element in place
1051 		 */
1052 		copy_map_value_locked(map,
1053 				      l_old->key + round_up(key_size, 8),
1054 				      value, false);
1055 		ret = 0;
1056 		goto err;
1057 	}
1058 
1059 	l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1060 				l_old);
1061 	if (IS_ERR(l_new)) {
1062 		/* all pre-allocated elements are in use or memory exhausted */
1063 		ret = PTR_ERR(l_new);
1064 		goto err;
1065 	}
1066 
1067 	/* add new element to the head of the list, so that
1068 	 * concurrent search will find it before old elem
1069 	 */
1070 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1071 	if (l_old) {
1072 		hlist_nulls_del_rcu(&l_old->hash_node);
1073 		if (!htab_is_prealloc(htab))
1074 			free_htab_elem(htab, l_old);
1075 	}
1076 	ret = 0;
1077 err:
1078 	htab_unlock_bucket(htab, b, hash, flags);
1079 	return ret;
1080 }
1081 
1082 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1083 				    u64 map_flags)
1084 {
1085 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1086 	struct htab_elem *l_new, *l_old = NULL;
1087 	struct hlist_nulls_head *head;
1088 	unsigned long flags;
1089 	struct bucket *b;
1090 	u32 key_size, hash;
1091 	int ret;
1092 
1093 	if (unlikely(map_flags > BPF_EXIST))
1094 		/* unknown flags */
1095 		return -EINVAL;
1096 
1097 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1098 
1099 	key_size = map->key_size;
1100 
1101 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1102 
1103 	b = __select_bucket(htab, hash);
1104 	head = &b->head;
1105 
1106 	/* For LRU, we need to alloc before taking bucket's
1107 	 * spinlock because getting free nodes from LRU may need
1108 	 * to remove older elements from htab and this removal
1109 	 * operation will need a bucket lock.
1110 	 */
1111 	l_new = prealloc_lru_pop(htab, key, hash);
1112 	if (!l_new)
1113 		return -ENOMEM;
1114 	memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size);
1115 
1116 	ret = htab_lock_bucket(htab, b, hash, &flags);
1117 	if (ret)
1118 		return ret;
1119 
1120 	l_old = lookup_elem_raw(head, hash, key, key_size);
1121 
1122 	ret = check_flags(htab, l_old, map_flags);
1123 	if (ret)
1124 		goto err;
1125 
1126 	/* add new element to the head of the list, so that
1127 	 * concurrent search will find it before old elem
1128 	 */
1129 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1130 	if (l_old) {
1131 		bpf_lru_node_set_ref(&l_new->lru_node);
1132 		hlist_nulls_del_rcu(&l_old->hash_node);
1133 	}
1134 	ret = 0;
1135 
1136 err:
1137 	htab_unlock_bucket(htab, b, hash, flags);
1138 
1139 	if (ret)
1140 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1141 	else if (l_old)
1142 		bpf_lru_push_free(&htab->lru, &l_old->lru_node);
1143 
1144 	return ret;
1145 }
1146 
1147 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1148 					 void *value, u64 map_flags,
1149 					 bool onallcpus)
1150 {
1151 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1152 	struct htab_elem *l_new = NULL, *l_old;
1153 	struct hlist_nulls_head *head;
1154 	unsigned long flags;
1155 	struct bucket *b;
1156 	u32 key_size, hash;
1157 	int ret;
1158 
1159 	if (unlikely(map_flags > BPF_EXIST))
1160 		/* unknown flags */
1161 		return -EINVAL;
1162 
1163 	WARN_ON_ONCE(!rcu_read_lock_held());
1164 
1165 	key_size = map->key_size;
1166 
1167 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1168 
1169 	b = __select_bucket(htab, hash);
1170 	head = &b->head;
1171 
1172 	ret = htab_lock_bucket(htab, b, hash, &flags);
1173 	if (ret)
1174 		return ret;
1175 
1176 	l_old = lookup_elem_raw(head, hash, key, key_size);
1177 
1178 	ret = check_flags(htab, l_old, map_flags);
1179 	if (ret)
1180 		goto err;
1181 
1182 	if (l_old) {
1183 		/* per-cpu hash map can update value in-place */
1184 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1185 				value, onallcpus);
1186 	} else {
1187 		l_new = alloc_htab_elem(htab, key, value, key_size,
1188 					hash, true, onallcpus, NULL);
1189 		if (IS_ERR(l_new)) {
1190 			ret = PTR_ERR(l_new);
1191 			goto err;
1192 		}
1193 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1194 	}
1195 	ret = 0;
1196 err:
1197 	htab_unlock_bucket(htab, b, hash, flags);
1198 	return ret;
1199 }
1200 
1201 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1202 					     void *value, u64 map_flags,
1203 					     bool onallcpus)
1204 {
1205 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1206 	struct htab_elem *l_new = NULL, *l_old;
1207 	struct hlist_nulls_head *head;
1208 	unsigned long flags;
1209 	struct bucket *b;
1210 	u32 key_size, hash;
1211 	int ret;
1212 
1213 	if (unlikely(map_flags > BPF_EXIST))
1214 		/* unknown flags */
1215 		return -EINVAL;
1216 
1217 	WARN_ON_ONCE(!rcu_read_lock_held());
1218 
1219 	key_size = map->key_size;
1220 
1221 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1222 
1223 	b = __select_bucket(htab, hash);
1224 	head = &b->head;
1225 
1226 	/* For LRU, we need to alloc before taking bucket's
1227 	 * spinlock because LRU's elem alloc may need
1228 	 * to remove older elem from htab and this removal
1229 	 * operation will need a bucket lock.
1230 	 */
1231 	if (map_flags != BPF_EXIST) {
1232 		l_new = prealloc_lru_pop(htab, key, hash);
1233 		if (!l_new)
1234 			return -ENOMEM;
1235 	}
1236 
1237 	ret = htab_lock_bucket(htab, b, hash, &flags);
1238 	if (ret)
1239 		return ret;
1240 
1241 	l_old = lookup_elem_raw(head, hash, key, key_size);
1242 
1243 	ret = check_flags(htab, l_old, map_flags);
1244 	if (ret)
1245 		goto err;
1246 
1247 	if (l_old) {
1248 		bpf_lru_node_set_ref(&l_old->lru_node);
1249 
1250 		/* per-cpu hash map can update value in-place */
1251 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1252 				value, onallcpus);
1253 	} else {
1254 		pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1255 				value, onallcpus);
1256 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1257 		l_new = NULL;
1258 	}
1259 	ret = 0;
1260 err:
1261 	htab_unlock_bucket(htab, b, hash, flags);
1262 	if (l_new)
1263 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1264 	return ret;
1265 }
1266 
1267 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1268 				       void *value, u64 map_flags)
1269 {
1270 	return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1271 }
1272 
1273 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1274 					   void *value, u64 map_flags)
1275 {
1276 	return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1277 						 false);
1278 }
1279 
1280 /* Called from syscall or from eBPF program */
1281 static int htab_map_delete_elem(struct bpf_map *map, void *key)
1282 {
1283 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1284 	struct hlist_nulls_head *head;
1285 	struct bucket *b;
1286 	struct htab_elem *l;
1287 	unsigned long flags;
1288 	u32 hash, key_size;
1289 	int ret;
1290 
1291 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1292 
1293 	key_size = map->key_size;
1294 
1295 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1296 	b = __select_bucket(htab, hash);
1297 	head = &b->head;
1298 
1299 	ret = htab_lock_bucket(htab, b, hash, &flags);
1300 	if (ret)
1301 		return ret;
1302 
1303 	l = lookup_elem_raw(head, hash, key, key_size);
1304 
1305 	if (l) {
1306 		hlist_nulls_del_rcu(&l->hash_node);
1307 		free_htab_elem(htab, l);
1308 	} else {
1309 		ret = -ENOENT;
1310 	}
1311 
1312 	htab_unlock_bucket(htab, b, hash, flags);
1313 	return ret;
1314 }
1315 
1316 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1317 {
1318 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1319 	struct hlist_nulls_head *head;
1320 	struct bucket *b;
1321 	struct htab_elem *l;
1322 	unsigned long flags;
1323 	u32 hash, key_size;
1324 	int ret;
1325 
1326 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1327 
1328 	key_size = map->key_size;
1329 
1330 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1331 	b = __select_bucket(htab, hash);
1332 	head = &b->head;
1333 
1334 	ret = htab_lock_bucket(htab, b, hash, &flags);
1335 	if (ret)
1336 		return ret;
1337 
1338 	l = lookup_elem_raw(head, hash, key, key_size);
1339 
1340 	if (l)
1341 		hlist_nulls_del_rcu(&l->hash_node);
1342 	else
1343 		ret = -ENOENT;
1344 
1345 	htab_unlock_bucket(htab, b, hash, flags);
1346 	if (l)
1347 		bpf_lru_push_free(&htab->lru, &l->lru_node);
1348 	return ret;
1349 }
1350 
1351 static void delete_all_elements(struct bpf_htab *htab)
1352 {
1353 	int i;
1354 
1355 	for (i = 0; i < htab->n_buckets; i++) {
1356 		struct hlist_nulls_head *head = select_bucket(htab, i);
1357 		struct hlist_nulls_node *n;
1358 		struct htab_elem *l;
1359 
1360 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1361 			hlist_nulls_del_rcu(&l->hash_node);
1362 			htab_elem_free(htab, l);
1363 		}
1364 	}
1365 }
1366 
1367 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1368 static void htab_map_free(struct bpf_map *map)
1369 {
1370 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1371 	int i;
1372 
1373 	/* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1374 	 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1375 	 * There is no need to synchronize_rcu() here to protect map elements.
1376 	 */
1377 
1378 	/* some of free_htab_elem() callbacks for elements of this map may
1379 	 * not have executed. Wait for them.
1380 	 */
1381 	rcu_barrier();
1382 	if (!htab_is_prealloc(htab))
1383 		delete_all_elements(htab);
1384 	else
1385 		prealloc_destroy(htab);
1386 
1387 	free_percpu(htab->extra_elems);
1388 	bpf_map_area_free(htab->buckets);
1389 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
1390 		free_percpu(htab->map_locked[i]);
1391 	lockdep_unregister_key(&htab->lockdep_key);
1392 	kfree(htab);
1393 }
1394 
1395 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1396 				   struct seq_file *m)
1397 {
1398 	void *value;
1399 
1400 	rcu_read_lock();
1401 
1402 	value = htab_map_lookup_elem(map, key);
1403 	if (!value) {
1404 		rcu_read_unlock();
1405 		return;
1406 	}
1407 
1408 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1409 	seq_puts(m, ": ");
1410 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1411 	seq_puts(m, "\n");
1412 
1413 	rcu_read_unlock();
1414 }
1415 
1416 static int
1417 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1418 				   const union bpf_attr *attr,
1419 				   union bpf_attr __user *uattr,
1420 				   bool do_delete, bool is_lru_map,
1421 				   bool is_percpu)
1422 {
1423 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1424 	u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1425 	void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1426 	void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1427 	void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1428 	void *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1429 	u32 batch, max_count, size, bucket_size;
1430 	struct htab_elem *node_to_free = NULL;
1431 	u64 elem_map_flags, map_flags;
1432 	struct hlist_nulls_head *head;
1433 	struct hlist_nulls_node *n;
1434 	unsigned long flags = 0;
1435 	bool locked = false;
1436 	struct htab_elem *l;
1437 	struct bucket *b;
1438 	int ret = 0;
1439 
1440 	elem_map_flags = attr->batch.elem_flags;
1441 	if ((elem_map_flags & ~BPF_F_LOCK) ||
1442 	    ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
1443 		return -EINVAL;
1444 
1445 	map_flags = attr->batch.flags;
1446 	if (map_flags)
1447 		return -EINVAL;
1448 
1449 	max_count = attr->batch.count;
1450 	if (!max_count)
1451 		return 0;
1452 
1453 	if (put_user(0, &uattr->batch.count))
1454 		return -EFAULT;
1455 
1456 	batch = 0;
1457 	if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1458 		return -EFAULT;
1459 
1460 	if (batch >= htab->n_buckets)
1461 		return -ENOENT;
1462 
1463 	key_size = htab->map.key_size;
1464 	roundup_key_size = round_up(htab->map.key_size, 8);
1465 	value_size = htab->map.value_size;
1466 	size = round_up(value_size, 8);
1467 	if (is_percpu)
1468 		value_size = size * num_possible_cpus();
1469 	total = 0;
1470 	/* while experimenting with hash tables with sizes ranging from 10 to
1471 	 * 1000, it was observed that a bucket can have upto 5 entries.
1472 	 */
1473 	bucket_size = 5;
1474 
1475 alloc:
1476 	/* We cannot do copy_from_user or copy_to_user inside
1477 	 * the rcu_read_lock. Allocate enough space here.
1478 	 */
1479 	keys = kvmalloc(key_size * bucket_size, GFP_USER | __GFP_NOWARN);
1480 	values = kvmalloc(value_size * bucket_size, GFP_USER | __GFP_NOWARN);
1481 	if (!keys || !values) {
1482 		ret = -ENOMEM;
1483 		goto after_loop;
1484 	}
1485 
1486 again:
1487 	bpf_disable_instrumentation();
1488 	rcu_read_lock();
1489 again_nocopy:
1490 	dst_key = keys;
1491 	dst_val = values;
1492 	b = &htab->buckets[batch];
1493 	head = &b->head;
1494 	/* do not grab the lock unless need it (bucket_cnt > 0). */
1495 	if (locked) {
1496 		ret = htab_lock_bucket(htab, b, batch, &flags);
1497 		if (ret)
1498 			goto next_batch;
1499 	}
1500 
1501 	bucket_cnt = 0;
1502 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1503 		bucket_cnt++;
1504 
1505 	if (bucket_cnt && !locked) {
1506 		locked = true;
1507 		goto again_nocopy;
1508 	}
1509 
1510 	if (bucket_cnt > (max_count - total)) {
1511 		if (total == 0)
1512 			ret = -ENOSPC;
1513 		/* Note that since bucket_cnt > 0 here, it is implicit
1514 		 * that the locked was grabbed, so release it.
1515 		 */
1516 		htab_unlock_bucket(htab, b, batch, flags);
1517 		rcu_read_unlock();
1518 		bpf_enable_instrumentation();
1519 		goto after_loop;
1520 	}
1521 
1522 	if (bucket_cnt > bucket_size) {
1523 		bucket_size = bucket_cnt;
1524 		/* Note that since bucket_cnt > 0 here, it is implicit
1525 		 * that the locked was grabbed, so release it.
1526 		 */
1527 		htab_unlock_bucket(htab, b, batch, flags);
1528 		rcu_read_unlock();
1529 		bpf_enable_instrumentation();
1530 		kvfree(keys);
1531 		kvfree(values);
1532 		goto alloc;
1533 	}
1534 
1535 	/* Next block is only safe to run if you have grabbed the lock */
1536 	if (!locked)
1537 		goto next_batch;
1538 
1539 	hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1540 		memcpy(dst_key, l->key, key_size);
1541 
1542 		if (is_percpu) {
1543 			int off = 0, cpu;
1544 			void __percpu *pptr;
1545 
1546 			pptr = htab_elem_get_ptr(l, map->key_size);
1547 			for_each_possible_cpu(cpu) {
1548 				bpf_long_memcpy(dst_val + off,
1549 						per_cpu_ptr(pptr, cpu), size);
1550 				off += size;
1551 			}
1552 		} else {
1553 			value = l->key + roundup_key_size;
1554 			if (elem_map_flags & BPF_F_LOCK)
1555 				copy_map_value_locked(map, dst_val, value,
1556 						      true);
1557 			else
1558 				copy_map_value(map, dst_val, value);
1559 			check_and_init_map_lock(map, dst_val);
1560 		}
1561 		if (do_delete) {
1562 			hlist_nulls_del_rcu(&l->hash_node);
1563 
1564 			/* bpf_lru_push_free() will acquire lru_lock, which
1565 			 * may cause deadlock. See comments in function
1566 			 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1567 			 * after releasing the bucket lock.
1568 			 */
1569 			if (is_lru_map) {
1570 				l->batch_flink = node_to_free;
1571 				node_to_free = l;
1572 			} else {
1573 				free_htab_elem(htab, l);
1574 			}
1575 		}
1576 		dst_key += key_size;
1577 		dst_val += value_size;
1578 	}
1579 
1580 	htab_unlock_bucket(htab, b, batch, flags);
1581 	locked = false;
1582 
1583 	while (node_to_free) {
1584 		l = node_to_free;
1585 		node_to_free = node_to_free->batch_flink;
1586 		bpf_lru_push_free(&htab->lru, &l->lru_node);
1587 	}
1588 
1589 next_batch:
1590 	/* If we are not copying data, we can go to next bucket and avoid
1591 	 * unlocking the rcu.
1592 	 */
1593 	if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1594 		batch++;
1595 		goto again_nocopy;
1596 	}
1597 
1598 	rcu_read_unlock();
1599 	bpf_enable_instrumentation();
1600 	if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1601 	    key_size * bucket_cnt) ||
1602 	    copy_to_user(uvalues + total * value_size, values,
1603 	    value_size * bucket_cnt))) {
1604 		ret = -EFAULT;
1605 		goto after_loop;
1606 	}
1607 
1608 	total += bucket_cnt;
1609 	batch++;
1610 	if (batch >= htab->n_buckets) {
1611 		ret = -ENOENT;
1612 		goto after_loop;
1613 	}
1614 	goto again;
1615 
1616 after_loop:
1617 	if (ret == -EFAULT)
1618 		goto out;
1619 
1620 	/* copy # of entries and next batch */
1621 	ubatch = u64_to_user_ptr(attr->batch.out_batch);
1622 	if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1623 	    put_user(total, &uattr->batch.count))
1624 		ret = -EFAULT;
1625 
1626 out:
1627 	kvfree(keys);
1628 	kvfree(values);
1629 	return ret;
1630 }
1631 
1632 static int
1633 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1634 			     union bpf_attr __user *uattr)
1635 {
1636 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1637 						  false, true);
1638 }
1639 
1640 static int
1641 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1642 					const union bpf_attr *attr,
1643 					union bpf_attr __user *uattr)
1644 {
1645 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1646 						  false, true);
1647 }
1648 
1649 static int
1650 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1651 		      union bpf_attr __user *uattr)
1652 {
1653 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1654 						  false, false);
1655 }
1656 
1657 static int
1658 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1659 				 const union bpf_attr *attr,
1660 				 union bpf_attr __user *uattr)
1661 {
1662 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1663 						  false, false);
1664 }
1665 
1666 static int
1667 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1668 				 const union bpf_attr *attr,
1669 				 union bpf_attr __user *uattr)
1670 {
1671 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1672 						  true, true);
1673 }
1674 
1675 static int
1676 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1677 					    const union bpf_attr *attr,
1678 					    union bpf_attr __user *uattr)
1679 {
1680 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1681 						  true, true);
1682 }
1683 
1684 static int
1685 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1686 			  union bpf_attr __user *uattr)
1687 {
1688 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1689 						  true, false);
1690 }
1691 
1692 static int
1693 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1694 				     const union bpf_attr *attr,
1695 				     union bpf_attr __user *uattr)
1696 {
1697 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1698 						  true, false);
1699 }
1700 
1701 struct bpf_iter_seq_hash_map_info {
1702 	struct bpf_map *map;
1703 	struct bpf_htab *htab;
1704 	void *percpu_value_buf; // non-zero means percpu hash
1705 	u32 bucket_id;
1706 	u32 skip_elems;
1707 };
1708 
1709 static struct htab_elem *
1710 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1711 			   struct htab_elem *prev_elem)
1712 {
1713 	const struct bpf_htab *htab = info->htab;
1714 	u32 skip_elems = info->skip_elems;
1715 	u32 bucket_id = info->bucket_id;
1716 	struct hlist_nulls_head *head;
1717 	struct hlist_nulls_node *n;
1718 	struct htab_elem *elem;
1719 	struct bucket *b;
1720 	u32 i, count;
1721 
1722 	if (bucket_id >= htab->n_buckets)
1723 		return NULL;
1724 
1725 	/* try to find next elem in the same bucket */
1726 	if (prev_elem) {
1727 		/* no update/deletion on this bucket, prev_elem should be still valid
1728 		 * and we won't skip elements.
1729 		 */
1730 		n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1731 		elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1732 		if (elem)
1733 			return elem;
1734 
1735 		/* not found, unlock and go to the next bucket */
1736 		b = &htab->buckets[bucket_id++];
1737 		rcu_read_unlock();
1738 		skip_elems = 0;
1739 	}
1740 
1741 	for (i = bucket_id; i < htab->n_buckets; i++) {
1742 		b = &htab->buckets[i];
1743 		rcu_read_lock();
1744 
1745 		count = 0;
1746 		head = &b->head;
1747 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1748 			if (count >= skip_elems) {
1749 				info->bucket_id = i;
1750 				info->skip_elems = count;
1751 				return elem;
1752 			}
1753 			count++;
1754 		}
1755 
1756 		rcu_read_unlock();
1757 		skip_elems = 0;
1758 	}
1759 
1760 	info->bucket_id = i;
1761 	info->skip_elems = 0;
1762 	return NULL;
1763 }
1764 
1765 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
1766 {
1767 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1768 	struct htab_elem *elem;
1769 
1770 	elem = bpf_hash_map_seq_find_next(info, NULL);
1771 	if (!elem)
1772 		return NULL;
1773 
1774 	if (*pos == 0)
1775 		++*pos;
1776 	return elem;
1777 }
1778 
1779 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1780 {
1781 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1782 
1783 	++*pos;
1784 	++info->skip_elems;
1785 	return bpf_hash_map_seq_find_next(info, v);
1786 }
1787 
1788 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
1789 {
1790 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1791 	u32 roundup_key_size, roundup_value_size;
1792 	struct bpf_iter__bpf_map_elem ctx = {};
1793 	struct bpf_map *map = info->map;
1794 	struct bpf_iter_meta meta;
1795 	int ret = 0, off = 0, cpu;
1796 	struct bpf_prog *prog;
1797 	void __percpu *pptr;
1798 
1799 	meta.seq = seq;
1800 	prog = bpf_iter_get_info(&meta, elem == NULL);
1801 	if (prog) {
1802 		ctx.meta = &meta;
1803 		ctx.map = info->map;
1804 		if (elem) {
1805 			roundup_key_size = round_up(map->key_size, 8);
1806 			ctx.key = elem->key;
1807 			if (!info->percpu_value_buf) {
1808 				ctx.value = elem->key + roundup_key_size;
1809 			} else {
1810 				roundup_value_size = round_up(map->value_size, 8);
1811 				pptr = htab_elem_get_ptr(elem, map->key_size);
1812 				for_each_possible_cpu(cpu) {
1813 					bpf_long_memcpy(info->percpu_value_buf + off,
1814 							per_cpu_ptr(pptr, cpu),
1815 							roundup_value_size);
1816 					off += roundup_value_size;
1817 				}
1818 				ctx.value = info->percpu_value_buf;
1819 			}
1820 		}
1821 		ret = bpf_iter_run_prog(prog, &ctx);
1822 	}
1823 
1824 	return ret;
1825 }
1826 
1827 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
1828 {
1829 	return __bpf_hash_map_seq_show(seq, v);
1830 }
1831 
1832 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
1833 {
1834 	if (!v)
1835 		(void)__bpf_hash_map_seq_show(seq, NULL);
1836 	else
1837 		rcu_read_unlock();
1838 }
1839 
1840 static int bpf_iter_init_hash_map(void *priv_data,
1841 				  struct bpf_iter_aux_info *aux)
1842 {
1843 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1844 	struct bpf_map *map = aux->map;
1845 	void *value_buf;
1846 	u32 buf_size;
1847 
1848 	if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
1849 	    map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
1850 		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
1851 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
1852 		if (!value_buf)
1853 			return -ENOMEM;
1854 
1855 		seq_info->percpu_value_buf = value_buf;
1856 	}
1857 
1858 	seq_info->map = map;
1859 	seq_info->htab = container_of(map, struct bpf_htab, map);
1860 	return 0;
1861 }
1862 
1863 static void bpf_iter_fini_hash_map(void *priv_data)
1864 {
1865 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1866 
1867 	kfree(seq_info->percpu_value_buf);
1868 }
1869 
1870 static const struct seq_operations bpf_hash_map_seq_ops = {
1871 	.start	= bpf_hash_map_seq_start,
1872 	.next	= bpf_hash_map_seq_next,
1873 	.stop	= bpf_hash_map_seq_stop,
1874 	.show	= bpf_hash_map_seq_show,
1875 };
1876 
1877 static const struct bpf_iter_seq_info iter_seq_info = {
1878 	.seq_ops		= &bpf_hash_map_seq_ops,
1879 	.init_seq_private	= bpf_iter_init_hash_map,
1880 	.fini_seq_private	= bpf_iter_fini_hash_map,
1881 	.seq_priv_size		= sizeof(struct bpf_iter_seq_hash_map_info),
1882 };
1883 
1884 static int htab_map_btf_id;
1885 const struct bpf_map_ops htab_map_ops = {
1886 	.map_meta_equal = bpf_map_meta_equal,
1887 	.map_alloc_check = htab_map_alloc_check,
1888 	.map_alloc = htab_map_alloc,
1889 	.map_free = htab_map_free,
1890 	.map_get_next_key = htab_map_get_next_key,
1891 	.map_lookup_elem = htab_map_lookup_elem,
1892 	.map_update_elem = htab_map_update_elem,
1893 	.map_delete_elem = htab_map_delete_elem,
1894 	.map_gen_lookup = htab_map_gen_lookup,
1895 	.map_seq_show_elem = htab_map_seq_show_elem,
1896 	BATCH_OPS(htab),
1897 	.map_btf_name = "bpf_htab",
1898 	.map_btf_id = &htab_map_btf_id,
1899 	.iter_seq_info = &iter_seq_info,
1900 };
1901 
1902 static int htab_lru_map_btf_id;
1903 const struct bpf_map_ops htab_lru_map_ops = {
1904 	.map_meta_equal = bpf_map_meta_equal,
1905 	.map_alloc_check = htab_map_alloc_check,
1906 	.map_alloc = htab_map_alloc,
1907 	.map_free = htab_map_free,
1908 	.map_get_next_key = htab_map_get_next_key,
1909 	.map_lookup_elem = htab_lru_map_lookup_elem,
1910 	.map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
1911 	.map_update_elem = htab_lru_map_update_elem,
1912 	.map_delete_elem = htab_lru_map_delete_elem,
1913 	.map_gen_lookup = htab_lru_map_gen_lookup,
1914 	.map_seq_show_elem = htab_map_seq_show_elem,
1915 	BATCH_OPS(htab_lru),
1916 	.map_btf_name = "bpf_htab",
1917 	.map_btf_id = &htab_lru_map_btf_id,
1918 	.iter_seq_info = &iter_seq_info,
1919 };
1920 
1921 /* Called from eBPF program */
1922 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1923 {
1924 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
1925 
1926 	if (l)
1927 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1928 	else
1929 		return NULL;
1930 }
1931 
1932 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1933 {
1934 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
1935 
1936 	if (l) {
1937 		bpf_lru_node_set_ref(&l->lru_node);
1938 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1939 	}
1940 
1941 	return NULL;
1942 }
1943 
1944 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
1945 {
1946 	struct htab_elem *l;
1947 	void __percpu *pptr;
1948 	int ret = -ENOENT;
1949 	int cpu, off = 0;
1950 	u32 size;
1951 
1952 	/* per_cpu areas are zero-filled and bpf programs can only
1953 	 * access 'value_size' of them, so copying rounded areas
1954 	 * will not leak any kernel data
1955 	 */
1956 	size = round_up(map->value_size, 8);
1957 	rcu_read_lock();
1958 	l = __htab_map_lookup_elem(map, key);
1959 	if (!l)
1960 		goto out;
1961 	/* We do not mark LRU map element here in order to not mess up
1962 	 * eviction heuristics when user space does a map walk.
1963 	 */
1964 	pptr = htab_elem_get_ptr(l, map->key_size);
1965 	for_each_possible_cpu(cpu) {
1966 		bpf_long_memcpy(value + off,
1967 				per_cpu_ptr(pptr, cpu), size);
1968 		off += size;
1969 	}
1970 	ret = 0;
1971 out:
1972 	rcu_read_unlock();
1973 	return ret;
1974 }
1975 
1976 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
1977 			   u64 map_flags)
1978 {
1979 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1980 	int ret;
1981 
1982 	rcu_read_lock();
1983 	if (htab_is_lru(htab))
1984 		ret = __htab_lru_percpu_map_update_elem(map, key, value,
1985 							map_flags, true);
1986 	else
1987 		ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
1988 						    true);
1989 	rcu_read_unlock();
1990 
1991 	return ret;
1992 }
1993 
1994 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
1995 					  struct seq_file *m)
1996 {
1997 	struct htab_elem *l;
1998 	void __percpu *pptr;
1999 	int cpu;
2000 
2001 	rcu_read_lock();
2002 
2003 	l = __htab_map_lookup_elem(map, key);
2004 	if (!l) {
2005 		rcu_read_unlock();
2006 		return;
2007 	}
2008 
2009 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
2010 	seq_puts(m, ": {\n");
2011 	pptr = htab_elem_get_ptr(l, map->key_size);
2012 	for_each_possible_cpu(cpu) {
2013 		seq_printf(m, "\tcpu%d: ", cpu);
2014 		btf_type_seq_show(map->btf, map->btf_value_type_id,
2015 				  per_cpu_ptr(pptr, cpu), m);
2016 		seq_puts(m, "\n");
2017 	}
2018 	seq_puts(m, "}\n");
2019 
2020 	rcu_read_unlock();
2021 }
2022 
2023 static int htab_percpu_map_btf_id;
2024 const struct bpf_map_ops htab_percpu_map_ops = {
2025 	.map_meta_equal = bpf_map_meta_equal,
2026 	.map_alloc_check = htab_map_alloc_check,
2027 	.map_alloc = htab_map_alloc,
2028 	.map_free = htab_map_free,
2029 	.map_get_next_key = htab_map_get_next_key,
2030 	.map_lookup_elem = htab_percpu_map_lookup_elem,
2031 	.map_update_elem = htab_percpu_map_update_elem,
2032 	.map_delete_elem = htab_map_delete_elem,
2033 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2034 	BATCH_OPS(htab_percpu),
2035 	.map_btf_name = "bpf_htab",
2036 	.map_btf_id = &htab_percpu_map_btf_id,
2037 	.iter_seq_info = &iter_seq_info,
2038 };
2039 
2040 static int htab_lru_percpu_map_btf_id;
2041 const struct bpf_map_ops htab_lru_percpu_map_ops = {
2042 	.map_meta_equal = bpf_map_meta_equal,
2043 	.map_alloc_check = htab_map_alloc_check,
2044 	.map_alloc = htab_map_alloc,
2045 	.map_free = htab_map_free,
2046 	.map_get_next_key = htab_map_get_next_key,
2047 	.map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2048 	.map_update_elem = htab_lru_percpu_map_update_elem,
2049 	.map_delete_elem = htab_lru_map_delete_elem,
2050 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2051 	BATCH_OPS(htab_lru_percpu),
2052 	.map_btf_name = "bpf_htab",
2053 	.map_btf_id = &htab_lru_percpu_map_btf_id,
2054 	.iter_seq_info = &iter_seq_info,
2055 };
2056 
2057 static int fd_htab_map_alloc_check(union bpf_attr *attr)
2058 {
2059 	if (attr->value_size != sizeof(u32))
2060 		return -EINVAL;
2061 	return htab_map_alloc_check(attr);
2062 }
2063 
2064 static void fd_htab_map_free(struct bpf_map *map)
2065 {
2066 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2067 	struct hlist_nulls_node *n;
2068 	struct hlist_nulls_head *head;
2069 	struct htab_elem *l;
2070 	int i;
2071 
2072 	for (i = 0; i < htab->n_buckets; i++) {
2073 		head = select_bucket(htab, i);
2074 
2075 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2076 			void *ptr = fd_htab_map_get_ptr(map, l);
2077 
2078 			map->ops->map_fd_put_ptr(ptr);
2079 		}
2080 	}
2081 
2082 	htab_map_free(map);
2083 }
2084 
2085 /* only called from syscall */
2086 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2087 {
2088 	void **ptr;
2089 	int ret = 0;
2090 
2091 	if (!map->ops->map_fd_sys_lookup_elem)
2092 		return -ENOTSUPP;
2093 
2094 	rcu_read_lock();
2095 	ptr = htab_map_lookup_elem(map, key);
2096 	if (ptr)
2097 		*value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2098 	else
2099 		ret = -ENOENT;
2100 	rcu_read_unlock();
2101 
2102 	return ret;
2103 }
2104 
2105 /* only called from syscall */
2106 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2107 				void *key, void *value, u64 map_flags)
2108 {
2109 	void *ptr;
2110 	int ret;
2111 	u32 ufd = *(u32 *)value;
2112 
2113 	ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2114 	if (IS_ERR(ptr))
2115 		return PTR_ERR(ptr);
2116 
2117 	ret = htab_map_update_elem(map, key, &ptr, map_flags);
2118 	if (ret)
2119 		map->ops->map_fd_put_ptr(ptr);
2120 
2121 	return ret;
2122 }
2123 
2124 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2125 {
2126 	struct bpf_map *map, *inner_map_meta;
2127 
2128 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2129 	if (IS_ERR(inner_map_meta))
2130 		return inner_map_meta;
2131 
2132 	map = htab_map_alloc(attr);
2133 	if (IS_ERR(map)) {
2134 		bpf_map_meta_free(inner_map_meta);
2135 		return map;
2136 	}
2137 
2138 	map->inner_map_meta = inner_map_meta;
2139 
2140 	return map;
2141 }
2142 
2143 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2144 {
2145 	struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
2146 
2147 	if (!inner_map)
2148 		return NULL;
2149 
2150 	return READ_ONCE(*inner_map);
2151 }
2152 
2153 static int htab_of_map_gen_lookup(struct bpf_map *map,
2154 				  struct bpf_insn *insn_buf)
2155 {
2156 	struct bpf_insn *insn = insn_buf;
2157 	const int ret = BPF_REG_0;
2158 
2159 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2160 		     (void *(*)(struct bpf_map *map, void *key))NULL));
2161 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
2162 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2163 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2164 				offsetof(struct htab_elem, key) +
2165 				round_up(map->key_size, 8));
2166 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2167 
2168 	return insn - insn_buf;
2169 }
2170 
2171 static void htab_of_map_free(struct bpf_map *map)
2172 {
2173 	bpf_map_meta_free(map->inner_map_meta);
2174 	fd_htab_map_free(map);
2175 }
2176 
2177 static int htab_of_maps_map_btf_id;
2178 const struct bpf_map_ops htab_of_maps_map_ops = {
2179 	.map_alloc_check = fd_htab_map_alloc_check,
2180 	.map_alloc = htab_of_map_alloc,
2181 	.map_free = htab_of_map_free,
2182 	.map_get_next_key = htab_map_get_next_key,
2183 	.map_lookup_elem = htab_of_map_lookup_elem,
2184 	.map_delete_elem = htab_map_delete_elem,
2185 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
2186 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
2187 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2188 	.map_gen_lookup = htab_of_map_gen_lookup,
2189 	.map_check_btf = map_check_no_btf,
2190 	.map_btf_name = "bpf_htab",
2191 	.map_btf_id = &htab_of_maps_map_btf_id,
2192 };
2193