1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/jhash.h> 8 #include <linux/filter.h> 9 #include <linux/rculist_nulls.h> 10 #include <linux/random.h> 11 #include <uapi/linux/btf.h> 12 #include <linux/rcupdate_trace.h> 13 #include <linux/btf_ids.h> 14 #include "percpu_freelist.h" 15 #include "bpf_lru_list.h" 16 #include "map_in_map.h" 17 #include <linux/bpf_mem_alloc.h> 18 19 #define HTAB_CREATE_FLAG_MASK \ 20 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ 21 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) 22 23 #define BATCH_OPS(_name) \ 24 .map_lookup_batch = \ 25 _name##_map_lookup_batch, \ 26 .map_lookup_and_delete_batch = \ 27 _name##_map_lookup_and_delete_batch, \ 28 .map_update_batch = \ 29 generic_map_update_batch, \ 30 .map_delete_batch = \ 31 generic_map_delete_batch 32 33 /* 34 * The bucket lock has two protection scopes: 35 * 36 * 1) Serializing concurrent operations from BPF programs on different 37 * CPUs 38 * 39 * 2) Serializing concurrent operations from BPF programs and sys_bpf() 40 * 41 * BPF programs can execute in any context including perf, kprobes and 42 * tracing. As there are almost no limits where perf, kprobes and tracing 43 * can be invoked from the lock operations need to be protected against 44 * deadlocks. Deadlocks can be caused by recursion and by an invocation in 45 * the lock held section when functions which acquire this lock are invoked 46 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU 47 * variable bpf_prog_active, which prevents BPF programs attached to perf 48 * events, kprobes and tracing to be invoked before the prior invocation 49 * from one of these contexts completed. sys_bpf() uses the same mechanism 50 * by pinning the task to the current CPU and incrementing the recursion 51 * protection across the map operation. 52 * 53 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain 54 * operations like memory allocations (even with GFP_ATOMIC) from atomic 55 * contexts. This is required because even with GFP_ATOMIC the memory 56 * allocator calls into code paths which acquire locks with long held lock 57 * sections. To ensure the deterministic behaviour these locks are regular 58 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only 59 * true atomic contexts on an RT kernel are the low level hardware 60 * handling, scheduling, low level interrupt handling, NMIs etc. None of 61 * these contexts should ever do memory allocations. 62 * 63 * As regular device interrupt handlers and soft interrupts are forced into 64 * thread context, the existing code which does 65 * spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*(); 66 * just works. 67 * 68 * In theory the BPF locks could be converted to regular spinlocks as well, 69 * but the bucket locks and percpu_freelist locks can be taken from 70 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be 71 * atomic contexts even on RT. Before the introduction of bpf_mem_alloc, 72 * it is only safe to use raw spinlock for preallocated hash map on a RT kernel, 73 * because there is no memory allocation within the lock held sections. However 74 * after hash map was fully converted to use bpf_mem_alloc, there will be 75 * non-synchronous memory allocation for non-preallocated hash map, so it is 76 * safe to always use raw spinlock for bucket lock. 77 */ 78 struct bucket { 79 struct hlist_nulls_head head; 80 raw_spinlock_t raw_lock; 81 }; 82 83 #define HASHTAB_MAP_LOCK_COUNT 8 84 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1) 85 86 struct bpf_htab { 87 struct bpf_map map; 88 struct bpf_mem_alloc ma; 89 struct bpf_mem_alloc pcpu_ma; 90 struct bucket *buckets; 91 void *elems; 92 union { 93 struct pcpu_freelist freelist; 94 struct bpf_lru lru; 95 }; 96 struct htab_elem *__percpu *extra_elems; 97 /* number of elements in non-preallocated hashtable are kept 98 * in either pcount or count 99 */ 100 struct percpu_counter pcount; 101 atomic_t count; 102 bool use_percpu_counter; 103 u32 n_buckets; /* number of hash buckets */ 104 u32 elem_size; /* size of each element in bytes */ 105 u32 hashrnd; 106 struct lock_class_key lockdep_key; 107 int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT]; 108 }; 109 110 /* each htab element is struct htab_elem + key + value */ 111 struct htab_elem { 112 union { 113 struct hlist_nulls_node hash_node; 114 struct { 115 void *padding; 116 union { 117 struct pcpu_freelist_node fnode; 118 struct htab_elem *batch_flink; 119 }; 120 }; 121 }; 122 union { 123 /* pointer to per-cpu pointer */ 124 void *ptr_to_pptr; 125 struct bpf_lru_node lru_node; 126 }; 127 u32 hash; 128 char key[] __aligned(8); 129 }; 130 131 static inline bool htab_is_prealloc(const struct bpf_htab *htab) 132 { 133 return !(htab->map.map_flags & BPF_F_NO_PREALLOC); 134 } 135 136 static void htab_init_buckets(struct bpf_htab *htab) 137 { 138 unsigned int i; 139 140 for (i = 0; i < htab->n_buckets; i++) { 141 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); 142 raw_spin_lock_init(&htab->buckets[i].raw_lock); 143 lockdep_set_class(&htab->buckets[i].raw_lock, 144 &htab->lockdep_key); 145 cond_resched(); 146 } 147 } 148 149 static inline int htab_lock_bucket(const struct bpf_htab *htab, 150 struct bucket *b, u32 hash, 151 unsigned long *pflags) 152 { 153 unsigned long flags; 154 155 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); 156 157 preempt_disable(); 158 if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) { 159 __this_cpu_dec(*(htab->map_locked[hash])); 160 preempt_enable(); 161 return -EBUSY; 162 } 163 164 raw_spin_lock_irqsave(&b->raw_lock, flags); 165 *pflags = flags; 166 167 return 0; 168 } 169 170 static inline void htab_unlock_bucket(const struct bpf_htab *htab, 171 struct bucket *b, u32 hash, 172 unsigned long flags) 173 { 174 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); 175 raw_spin_unlock_irqrestore(&b->raw_lock, flags); 176 __this_cpu_dec(*(htab->map_locked[hash])); 177 preempt_enable(); 178 } 179 180 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); 181 182 static bool htab_is_lru(const struct bpf_htab *htab) 183 { 184 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || 185 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 186 } 187 188 static bool htab_is_percpu(const struct bpf_htab *htab) 189 { 190 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || 191 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 192 } 193 194 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, 195 void __percpu *pptr) 196 { 197 *(void __percpu **)(l->key + key_size) = pptr; 198 } 199 200 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) 201 { 202 return *(void __percpu **)(l->key + key_size); 203 } 204 205 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) 206 { 207 return *(void **)(l->key + roundup(map->key_size, 8)); 208 } 209 210 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) 211 { 212 return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size); 213 } 214 215 static bool htab_has_extra_elems(struct bpf_htab *htab) 216 { 217 return !htab_is_percpu(htab) && !htab_is_lru(htab); 218 } 219 220 static void htab_free_prealloced_timers(struct bpf_htab *htab) 221 { 222 u32 num_entries = htab->map.max_entries; 223 int i; 224 225 if (!btf_record_has_field(htab->map.record, BPF_TIMER)) 226 return; 227 if (htab_has_extra_elems(htab)) 228 num_entries += num_possible_cpus(); 229 230 for (i = 0; i < num_entries; i++) { 231 struct htab_elem *elem; 232 233 elem = get_htab_elem(htab, i); 234 bpf_obj_free_timer(htab->map.record, elem->key + round_up(htab->map.key_size, 8)); 235 cond_resched(); 236 } 237 } 238 239 static void htab_free_prealloced_fields(struct bpf_htab *htab) 240 { 241 u32 num_entries = htab->map.max_entries; 242 int i; 243 244 if (IS_ERR_OR_NULL(htab->map.record)) 245 return; 246 if (htab_has_extra_elems(htab)) 247 num_entries += num_possible_cpus(); 248 for (i = 0; i < num_entries; i++) { 249 struct htab_elem *elem; 250 251 elem = get_htab_elem(htab, i); 252 if (htab_is_percpu(htab)) { 253 void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); 254 int cpu; 255 256 for_each_possible_cpu(cpu) { 257 bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); 258 cond_resched(); 259 } 260 } else { 261 bpf_obj_free_fields(htab->map.record, elem->key + round_up(htab->map.key_size, 8)); 262 cond_resched(); 263 } 264 cond_resched(); 265 } 266 } 267 268 static void htab_free_elems(struct bpf_htab *htab) 269 { 270 int i; 271 272 if (!htab_is_percpu(htab)) 273 goto free_elems; 274 275 for (i = 0; i < htab->map.max_entries; i++) { 276 void __percpu *pptr; 277 278 pptr = htab_elem_get_ptr(get_htab_elem(htab, i), 279 htab->map.key_size); 280 free_percpu(pptr); 281 cond_resched(); 282 } 283 free_elems: 284 bpf_map_area_free(htab->elems); 285 } 286 287 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock 288 * (bucket_lock). If both locks need to be acquired together, the lock 289 * order is always lru_lock -> bucket_lock and this only happens in 290 * bpf_lru_list.c logic. For example, certain code path of 291 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), 292 * will acquire lru_lock first followed by acquiring bucket_lock. 293 * 294 * In hashtab.c, to avoid deadlock, lock acquisition of 295 * bucket_lock followed by lru_lock is not allowed. In such cases, 296 * bucket_lock needs to be released first before acquiring lru_lock. 297 */ 298 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, 299 u32 hash) 300 { 301 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); 302 struct htab_elem *l; 303 304 if (node) { 305 bpf_map_inc_elem_count(&htab->map); 306 l = container_of(node, struct htab_elem, lru_node); 307 memcpy(l->key, key, htab->map.key_size); 308 return l; 309 } 310 311 return NULL; 312 } 313 314 static int prealloc_init(struct bpf_htab *htab) 315 { 316 u32 num_entries = htab->map.max_entries; 317 int err = -ENOMEM, i; 318 319 if (htab_has_extra_elems(htab)) 320 num_entries += num_possible_cpus(); 321 322 htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries, 323 htab->map.numa_node); 324 if (!htab->elems) 325 return -ENOMEM; 326 327 if (!htab_is_percpu(htab)) 328 goto skip_percpu_elems; 329 330 for (i = 0; i < num_entries; i++) { 331 u32 size = round_up(htab->map.value_size, 8); 332 void __percpu *pptr; 333 334 pptr = bpf_map_alloc_percpu(&htab->map, size, 8, 335 GFP_USER | __GFP_NOWARN); 336 if (!pptr) 337 goto free_elems; 338 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, 339 pptr); 340 cond_resched(); 341 } 342 343 skip_percpu_elems: 344 if (htab_is_lru(htab)) 345 err = bpf_lru_init(&htab->lru, 346 htab->map.map_flags & BPF_F_NO_COMMON_LRU, 347 offsetof(struct htab_elem, hash) - 348 offsetof(struct htab_elem, lru_node), 349 htab_lru_map_delete_node, 350 htab); 351 else 352 err = pcpu_freelist_init(&htab->freelist); 353 354 if (err) 355 goto free_elems; 356 357 if (htab_is_lru(htab)) 358 bpf_lru_populate(&htab->lru, htab->elems, 359 offsetof(struct htab_elem, lru_node), 360 htab->elem_size, num_entries); 361 else 362 pcpu_freelist_populate(&htab->freelist, 363 htab->elems + offsetof(struct htab_elem, fnode), 364 htab->elem_size, num_entries); 365 366 return 0; 367 368 free_elems: 369 htab_free_elems(htab); 370 return err; 371 } 372 373 static void prealloc_destroy(struct bpf_htab *htab) 374 { 375 htab_free_elems(htab); 376 377 if (htab_is_lru(htab)) 378 bpf_lru_destroy(&htab->lru); 379 else 380 pcpu_freelist_destroy(&htab->freelist); 381 } 382 383 static int alloc_extra_elems(struct bpf_htab *htab) 384 { 385 struct htab_elem *__percpu *pptr, *l_new; 386 struct pcpu_freelist_node *l; 387 int cpu; 388 389 pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8, 390 GFP_USER | __GFP_NOWARN); 391 if (!pptr) 392 return -ENOMEM; 393 394 for_each_possible_cpu(cpu) { 395 l = pcpu_freelist_pop(&htab->freelist); 396 /* pop will succeed, since prealloc_init() 397 * preallocated extra num_possible_cpus elements 398 */ 399 l_new = container_of(l, struct htab_elem, fnode); 400 *per_cpu_ptr(pptr, cpu) = l_new; 401 } 402 htab->extra_elems = pptr; 403 return 0; 404 } 405 406 /* Called from syscall */ 407 static int htab_map_alloc_check(union bpf_attr *attr) 408 { 409 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 410 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 411 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 412 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 413 /* percpu_lru means each cpu has its own LRU list. 414 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 415 * the map's value itself is percpu. percpu_lru has 416 * nothing to do with the map's value. 417 */ 418 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 419 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 420 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); 421 int numa_node = bpf_map_attr_numa_node(attr); 422 423 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != 424 offsetof(struct htab_elem, hash_node.pprev)); 425 426 if (zero_seed && !capable(CAP_SYS_ADMIN)) 427 /* Guard against local DoS, and discourage production use. */ 428 return -EPERM; 429 430 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || 431 !bpf_map_flags_access_ok(attr->map_flags)) 432 return -EINVAL; 433 434 if (!lru && percpu_lru) 435 return -EINVAL; 436 437 if (lru && !prealloc) 438 return -ENOTSUPP; 439 440 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) 441 return -EINVAL; 442 443 /* check sanity of attributes. 444 * value_size == 0 may be allowed in the future to use map as a set 445 */ 446 if (attr->max_entries == 0 || attr->key_size == 0 || 447 attr->value_size == 0) 448 return -EINVAL; 449 450 if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE - 451 sizeof(struct htab_elem)) 452 /* if key_size + value_size is bigger, the user space won't be 453 * able to access the elements via bpf syscall. This check 454 * also makes sure that the elem_size doesn't overflow and it's 455 * kmalloc-able later in htab_map_update_elem() 456 */ 457 return -E2BIG; 458 459 return 0; 460 } 461 462 static struct bpf_map *htab_map_alloc(union bpf_attr *attr) 463 { 464 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 465 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 466 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 467 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 468 /* percpu_lru means each cpu has its own LRU list. 469 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 470 * the map's value itself is percpu. percpu_lru has 471 * nothing to do with the map's value. 472 */ 473 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 474 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 475 struct bpf_htab *htab; 476 int err, i; 477 478 htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE); 479 if (!htab) 480 return ERR_PTR(-ENOMEM); 481 482 lockdep_register_key(&htab->lockdep_key); 483 484 bpf_map_init_from_attr(&htab->map, attr); 485 486 if (percpu_lru) { 487 /* ensure each CPU's lru list has >=1 elements. 488 * since we are at it, make each lru list has the same 489 * number of elements. 490 */ 491 htab->map.max_entries = roundup(attr->max_entries, 492 num_possible_cpus()); 493 if (htab->map.max_entries < attr->max_entries) 494 htab->map.max_entries = rounddown(attr->max_entries, 495 num_possible_cpus()); 496 } 497 498 /* hash table size must be power of 2 */ 499 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); 500 501 htab->elem_size = sizeof(struct htab_elem) + 502 round_up(htab->map.key_size, 8); 503 if (percpu) 504 htab->elem_size += sizeof(void *); 505 else 506 htab->elem_size += round_up(htab->map.value_size, 8); 507 508 err = -E2BIG; 509 /* prevent zero size kmalloc and check for u32 overflow */ 510 if (htab->n_buckets == 0 || 511 htab->n_buckets > U32_MAX / sizeof(struct bucket)) 512 goto free_htab; 513 514 err = bpf_map_init_elem_count(&htab->map); 515 if (err) 516 goto free_htab; 517 518 err = -ENOMEM; 519 htab->buckets = bpf_map_area_alloc(htab->n_buckets * 520 sizeof(struct bucket), 521 htab->map.numa_node); 522 if (!htab->buckets) 523 goto free_elem_count; 524 525 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) { 526 htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map, 527 sizeof(int), 528 sizeof(int), 529 GFP_USER); 530 if (!htab->map_locked[i]) 531 goto free_map_locked; 532 } 533 534 if (htab->map.map_flags & BPF_F_ZERO_SEED) 535 htab->hashrnd = 0; 536 else 537 htab->hashrnd = get_random_u32(); 538 539 htab_init_buckets(htab); 540 541 /* compute_batch_value() computes batch value as num_online_cpus() * 2 542 * and __percpu_counter_compare() needs 543 * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus() 544 * for percpu_counter to be faster than atomic_t. In practice the average bpf 545 * hash map size is 10k, which means that a system with 64 cpus will fill 546 * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore 547 * define our own batch count as 32 then 10k hash map can be filled up to 80%: 548 * 10k - 8k > 32 _batch_ * 64 _cpus_ 549 * and __percpu_counter_compare() will still be fast. At that point hash map 550 * collisions will dominate its performance anyway. Assume that hash map filled 551 * to 50+% isn't going to be O(1) and use the following formula to choose 552 * between percpu_counter and atomic_t. 553 */ 554 #define PERCPU_COUNTER_BATCH 32 555 if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH) 556 htab->use_percpu_counter = true; 557 558 if (htab->use_percpu_counter) { 559 err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL); 560 if (err) 561 goto free_map_locked; 562 } 563 564 if (prealloc) { 565 err = prealloc_init(htab); 566 if (err) 567 goto free_map_locked; 568 569 if (!percpu && !lru) { 570 /* lru itself can remove the least used element, so 571 * there is no need for an extra elem during map_update. 572 */ 573 err = alloc_extra_elems(htab); 574 if (err) 575 goto free_prealloc; 576 } 577 } else { 578 err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false); 579 if (err) 580 goto free_map_locked; 581 if (percpu) { 582 err = bpf_mem_alloc_init(&htab->pcpu_ma, 583 round_up(htab->map.value_size, 8), true); 584 if (err) 585 goto free_map_locked; 586 } 587 } 588 589 return &htab->map; 590 591 free_prealloc: 592 prealloc_destroy(htab); 593 free_map_locked: 594 if (htab->use_percpu_counter) 595 percpu_counter_destroy(&htab->pcount); 596 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 597 free_percpu(htab->map_locked[i]); 598 bpf_map_area_free(htab->buckets); 599 bpf_mem_alloc_destroy(&htab->pcpu_ma); 600 bpf_mem_alloc_destroy(&htab->ma); 601 free_elem_count: 602 bpf_map_free_elem_count(&htab->map); 603 free_htab: 604 lockdep_unregister_key(&htab->lockdep_key); 605 bpf_map_area_free(htab); 606 return ERR_PTR(err); 607 } 608 609 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) 610 { 611 if (likely(key_len % 4 == 0)) 612 return jhash2(key, key_len / 4, hashrnd); 613 return jhash(key, key_len, hashrnd); 614 } 615 616 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) 617 { 618 return &htab->buckets[hash & (htab->n_buckets - 1)]; 619 } 620 621 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) 622 { 623 return &__select_bucket(htab, hash)->head; 624 } 625 626 /* this lookup function can only be called with bucket lock taken */ 627 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, 628 void *key, u32 key_size) 629 { 630 struct hlist_nulls_node *n; 631 struct htab_elem *l; 632 633 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 634 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 635 return l; 636 637 return NULL; 638 } 639 640 /* can be called without bucket lock. it will repeat the loop in 641 * the unlikely event when elements moved from one bucket into another 642 * while link list is being walked 643 */ 644 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, 645 u32 hash, void *key, 646 u32 key_size, u32 n_buckets) 647 { 648 struct hlist_nulls_node *n; 649 struct htab_elem *l; 650 651 again: 652 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 653 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 654 return l; 655 656 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) 657 goto again; 658 659 return NULL; 660 } 661 662 /* Called from syscall or from eBPF program directly, so 663 * arguments have to match bpf_map_lookup_elem() exactly. 664 * The return value is adjusted by BPF instructions 665 * in htab_map_gen_lookup(). 666 */ 667 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) 668 { 669 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 670 struct hlist_nulls_head *head; 671 struct htab_elem *l; 672 u32 hash, key_size; 673 674 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 675 !rcu_read_lock_bh_held()); 676 677 key_size = map->key_size; 678 679 hash = htab_map_hash(key, key_size, htab->hashrnd); 680 681 head = select_bucket(htab, hash); 682 683 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 684 685 return l; 686 } 687 688 static void *htab_map_lookup_elem(struct bpf_map *map, void *key) 689 { 690 struct htab_elem *l = __htab_map_lookup_elem(map, key); 691 692 if (l) 693 return l->key + round_up(map->key_size, 8); 694 695 return NULL; 696 } 697 698 /* inline bpf_map_lookup_elem() call. 699 * Instead of: 700 * bpf_prog 701 * bpf_map_lookup_elem 702 * map->ops->map_lookup_elem 703 * htab_map_lookup_elem 704 * __htab_map_lookup_elem 705 * do: 706 * bpf_prog 707 * __htab_map_lookup_elem 708 */ 709 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 710 { 711 struct bpf_insn *insn = insn_buf; 712 const int ret = BPF_REG_0; 713 714 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 715 (void *(*)(struct bpf_map *map, void *key))NULL)); 716 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 717 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 718 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 719 offsetof(struct htab_elem, key) + 720 round_up(map->key_size, 8)); 721 return insn - insn_buf; 722 } 723 724 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, 725 void *key, const bool mark) 726 { 727 struct htab_elem *l = __htab_map_lookup_elem(map, key); 728 729 if (l) { 730 if (mark) 731 bpf_lru_node_set_ref(&l->lru_node); 732 return l->key + round_up(map->key_size, 8); 733 } 734 735 return NULL; 736 } 737 738 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) 739 { 740 return __htab_lru_map_lookup_elem(map, key, true); 741 } 742 743 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) 744 { 745 return __htab_lru_map_lookup_elem(map, key, false); 746 } 747 748 static int htab_lru_map_gen_lookup(struct bpf_map *map, 749 struct bpf_insn *insn_buf) 750 { 751 struct bpf_insn *insn = insn_buf; 752 const int ret = BPF_REG_0; 753 const int ref_reg = BPF_REG_1; 754 755 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 756 (void *(*)(struct bpf_map *map, void *key))NULL)); 757 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 758 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); 759 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, 760 offsetof(struct htab_elem, lru_node) + 761 offsetof(struct bpf_lru_node, ref)); 762 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); 763 *insn++ = BPF_ST_MEM(BPF_B, ret, 764 offsetof(struct htab_elem, lru_node) + 765 offsetof(struct bpf_lru_node, ref), 766 1); 767 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 768 offsetof(struct htab_elem, key) + 769 round_up(map->key_size, 8)); 770 return insn - insn_buf; 771 } 772 773 static void check_and_free_fields(struct bpf_htab *htab, 774 struct htab_elem *elem) 775 { 776 if (htab_is_percpu(htab)) { 777 void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); 778 int cpu; 779 780 for_each_possible_cpu(cpu) 781 bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); 782 } else { 783 void *map_value = elem->key + round_up(htab->map.key_size, 8); 784 785 bpf_obj_free_fields(htab->map.record, map_value); 786 } 787 } 788 789 /* It is called from the bpf_lru_list when the LRU needs to delete 790 * older elements from the htab. 791 */ 792 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) 793 { 794 struct bpf_htab *htab = arg; 795 struct htab_elem *l = NULL, *tgt_l; 796 struct hlist_nulls_head *head; 797 struct hlist_nulls_node *n; 798 unsigned long flags; 799 struct bucket *b; 800 int ret; 801 802 tgt_l = container_of(node, struct htab_elem, lru_node); 803 b = __select_bucket(htab, tgt_l->hash); 804 head = &b->head; 805 806 ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags); 807 if (ret) 808 return false; 809 810 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 811 if (l == tgt_l) { 812 hlist_nulls_del_rcu(&l->hash_node); 813 check_and_free_fields(htab, l); 814 bpf_map_dec_elem_count(&htab->map); 815 break; 816 } 817 818 htab_unlock_bucket(htab, b, tgt_l->hash, flags); 819 820 return l == tgt_l; 821 } 822 823 /* Called from syscall */ 824 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 825 { 826 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 827 struct hlist_nulls_head *head; 828 struct htab_elem *l, *next_l; 829 u32 hash, key_size; 830 int i = 0; 831 832 WARN_ON_ONCE(!rcu_read_lock_held()); 833 834 key_size = map->key_size; 835 836 if (!key) 837 goto find_first_elem; 838 839 hash = htab_map_hash(key, key_size, htab->hashrnd); 840 841 head = select_bucket(htab, hash); 842 843 /* lookup the key */ 844 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 845 846 if (!l) 847 goto find_first_elem; 848 849 /* key was found, get next key in the same bucket */ 850 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), 851 struct htab_elem, hash_node); 852 853 if (next_l) { 854 /* if next elem in this hash list is non-zero, just return it */ 855 memcpy(next_key, next_l->key, key_size); 856 return 0; 857 } 858 859 /* no more elements in this hash list, go to the next bucket */ 860 i = hash & (htab->n_buckets - 1); 861 i++; 862 863 find_first_elem: 864 /* iterate over buckets */ 865 for (; i < htab->n_buckets; i++) { 866 head = select_bucket(htab, i); 867 868 /* pick first element in the bucket */ 869 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), 870 struct htab_elem, hash_node); 871 if (next_l) { 872 /* if it's not empty, just return it */ 873 memcpy(next_key, next_l->key, key_size); 874 return 0; 875 } 876 } 877 878 /* iterated over all buckets and all elements */ 879 return -ENOENT; 880 } 881 882 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) 883 { 884 check_and_free_fields(htab, l); 885 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) 886 bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr); 887 bpf_mem_cache_free(&htab->ma, l); 888 } 889 890 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l) 891 { 892 struct bpf_map *map = &htab->map; 893 void *ptr; 894 895 if (map->ops->map_fd_put_ptr) { 896 ptr = fd_htab_map_get_ptr(map, l); 897 map->ops->map_fd_put_ptr(ptr); 898 } 899 } 900 901 static bool is_map_full(struct bpf_htab *htab) 902 { 903 if (htab->use_percpu_counter) 904 return __percpu_counter_compare(&htab->pcount, htab->map.max_entries, 905 PERCPU_COUNTER_BATCH) >= 0; 906 return atomic_read(&htab->count) >= htab->map.max_entries; 907 } 908 909 static void inc_elem_count(struct bpf_htab *htab) 910 { 911 bpf_map_inc_elem_count(&htab->map); 912 913 if (htab->use_percpu_counter) 914 percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH); 915 else 916 atomic_inc(&htab->count); 917 } 918 919 static void dec_elem_count(struct bpf_htab *htab) 920 { 921 bpf_map_dec_elem_count(&htab->map); 922 923 if (htab->use_percpu_counter) 924 percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH); 925 else 926 atomic_dec(&htab->count); 927 } 928 929 930 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) 931 { 932 htab_put_fd_value(htab, l); 933 934 if (htab_is_prealloc(htab)) { 935 bpf_map_dec_elem_count(&htab->map); 936 check_and_free_fields(htab, l); 937 __pcpu_freelist_push(&htab->freelist, &l->fnode); 938 } else { 939 dec_elem_count(htab); 940 htab_elem_free(htab, l); 941 } 942 } 943 944 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, 945 void *value, bool onallcpus) 946 { 947 if (!onallcpus) { 948 /* copy true value_size bytes */ 949 copy_map_value(&htab->map, this_cpu_ptr(pptr), value); 950 } else { 951 u32 size = round_up(htab->map.value_size, 8); 952 int off = 0, cpu; 953 954 for_each_possible_cpu(cpu) { 955 copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value + off); 956 off += size; 957 } 958 } 959 } 960 961 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr, 962 void *value, bool onallcpus) 963 { 964 /* When not setting the initial value on all cpus, zero-fill element 965 * values for other cpus. Otherwise, bpf program has no way to ensure 966 * known initial values for cpus other than current one 967 * (onallcpus=false always when coming from bpf prog). 968 */ 969 if (!onallcpus) { 970 int current_cpu = raw_smp_processor_id(); 971 int cpu; 972 973 for_each_possible_cpu(cpu) { 974 if (cpu == current_cpu) 975 copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value); 976 else /* Since elem is preallocated, we cannot touch special fields */ 977 zero_map_value(&htab->map, per_cpu_ptr(pptr, cpu)); 978 } 979 } else { 980 pcpu_copy_value(htab, pptr, value, onallcpus); 981 } 982 } 983 984 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) 985 { 986 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && 987 BITS_PER_LONG == 64; 988 } 989 990 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, 991 void *value, u32 key_size, u32 hash, 992 bool percpu, bool onallcpus, 993 struct htab_elem *old_elem) 994 { 995 u32 size = htab->map.value_size; 996 bool prealloc = htab_is_prealloc(htab); 997 struct htab_elem *l_new, **pl_new; 998 void __percpu *pptr; 999 1000 if (prealloc) { 1001 if (old_elem) { 1002 /* if we're updating the existing element, 1003 * use per-cpu extra elems to avoid freelist_pop/push 1004 */ 1005 pl_new = this_cpu_ptr(htab->extra_elems); 1006 l_new = *pl_new; 1007 htab_put_fd_value(htab, old_elem); 1008 *pl_new = old_elem; 1009 } else { 1010 struct pcpu_freelist_node *l; 1011 1012 l = __pcpu_freelist_pop(&htab->freelist); 1013 if (!l) 1014 return ERR_PTR(-E2BIG); 1015 l_new = container_of(l, struct htab_elem, fnode); 1016 bpf_map_inc_elem_count(&htab->map); 1017 } 1018 } else { 1019 if (is_map_full(htab)) 1020 if (!old_elem) 1021 /* when map is full and update() is replacing 1022 * old element, it's ok to allocate, since 1023 * old element will be freed immediately. 1024 * Otherwise return an error 1025 */ 1026 return ERR_PTR(-E2BIG); 1027 inc_elem_count(htab); 1028 l_new = bpf_mem_cache_alloc(&htab->ma); 1029 if (!l_new) { 1030 l_new = ERR_PTR(-ENOMEM); 1031 goto dec_count; 1032 } 1033 } 1034 1035 memcpy(l_new->key, key, key_size); 1036 if (percpu) { 1037 if (prealloc) { 1038 pptr = htab_elem_get_ptr(l_new, key_size); 1039 } else { 1040 /* alloc_percpu zero-fills */ 1041 pptr = bpf_mem_cache_alloc(&htab->pcpu_ma); 1042 if (!pptr) { 1043 bpf_mem_cache_free(&htab->ma, l_new); 1044 l_new = ERR_PTR(-ENOMEM); 1045 goto dec_count; 1046 } 1047 l_new->ptr_to_pptr = pptr; 1048 pptr = *(void **)pptr; 1049 } 1050 1051 pcpu_init_value(htab, pptr, value, onallcpus); 1052 1053 if (!prealloc) 1054 htab_elem_set_ptr(l_new, key_size, pptr); 1055 } else if (fd_htab_map_needs_adjust(htab)) { 1056 size = round_up(size, 8); 1057 memcpy(l_new->key + round_up(key_size, 8), value, size); 1058 } else { 1059 copy_map_value(&htab->map, 1060 l_new->key + round_up(key_size, 8), 1061 value); 1062 } 1063 1064 l_new->hash = hash; 1065 return l_new; 1066 dec_count: 1067 dec_elem_count(htab); 1068 return l_new; 1069 } 1070 1071 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, 1072 u64 map_flags) 1073 { 1074 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) 1075 /* elem already exists */ 1076 return -EEXIST; 1077 1078 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) 1079 /* elem doesn't exist, cannot update it */ 1080 return -ENOENT; 1081 1082 return 0; 1083 } 1084 1085 /* Called from syscall or from eBPF program */ 1086 static long htab_map_update_elem(struct bpf_map *map, void *key, void *value, 1087 u64 map_flags) 1088 { 1089 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1090 struct htab_elem *l_new = NULL, *l_old; 1091 struct hlist_nulls_head *head; 1092 unsigned long flags; 1093 struct bucket *b; 1094 u32 key_size, hash; 1095 int ret; 1096 1097 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 1098 /* unknown flags */ 1099 return -EINVAL; 1100 1101 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1102 !rcu_read_lock_bh_held()); 1103 1104 key_size = map->key_size; 1105 1106 hash = htab_map_hash(key, key_size, htab->hashrnd); 1107 1108 b = __select_bucket(htab, hash); 1109 head = &b->head; 1110 1111 if (unlikely(map_flags & BPF_F_LOCK)) { 1112 if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK))) 1113 return -EINVAL; 1114 /* find an element without taking the bucket lock */ 1115 l_old = lookup_nulls_elem_raw(head, hash, key, key_size, 1116 htab->n_buckets); 1117 ret = check_flags(htab, l_old, map_flags); 1118 if (ret) 1119 return ret; 1120 if (l_old) { 1121 /* grab the element lock and update value in place */ 1122 copy_map_value_locked(map, 1123 l_old->key + round_up(key_size, 8), 1124 value, false); 1125 return 0; 1126 } 1127 /* fall through, grab the bucket lock and lookup again. 1128 * 99.9% chance that the element won't be found, 1129 * but second lookup under lock has to be done. 1130 */ 1131 } 1132 1133 ret = htab_lock_bucket(htab, b, hash, &flags); 1134 if (ret) 1135 return ret; 1136 1137 l_old = lookup_elem_raw(head, hash, key, key_size); 1138 1139 ret = check_flags(htab, l_old, map_flags); 1140 if (ret) 1141 goto err; 1142 1143 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { 1144 /* first lookup without the bucket lock didn't find the element, 1145 * but second lookup with the bucket lock found it. 1146 * This case is highly unlikely, but has to be dealt with: 1147 * grab the element lock in addition to the bucket lock 1148 * and update element in place 1149 */ 1150 copy_map_value_locked(map, 1151 l_old->key + round_up(key_size, 8), 1152 value, false); 1153 ret = 0; 1154 goto err; 1155 } 1156 1157 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, 1158 l_old); 1159 if (IS_ERR(l_new)) { 1160 /* all pre-allocated elements are in use or memory exhausted */ 1161 ret = PTR_ERR(l_new); 1162 goto err; 1163 } 1164 1165 /* add new element to the head of the list, so that 1166 * concurrent search will find it before old elem 1167 */ 1168 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1169 if (l_old) { 1170 hlist_nulls_del_rcu(&l_old->hash_node); 1171 if (!htab_is_prealloc(htab)) 1172 free_htab_elem(htab, l_old); 1173 else 1174 check_and_free_fields(htab, l_old); 1175 } 1176 ret = 0; 1177 err: 1178 htab_unlock_bucket(htab, b, hash, flags); 1179 return ret; 1180 } 1181 1182 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem) 1183 { 1184 check_and_free_fields(htab, elem); 1185 bpf_map_dec_elem_count(&htab->map); 1186 bpf_lru_push_free(&htab->lru, &elem->lru_node); 1187 } 1188 1189 static long htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, 1190 u64 map_flags) 1191 { 1192 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1193 struct htab_elem *l_new, *l_old = NULL; 1194 struct hlist_nulls_head *head; 1195 unsigned long flags; 1196 struct bucket *b; 1197 u32 key_size, hash; 1198 int ret; 1199 1200 if (unlikely(map_flags > BPF_EXIST)) 1201 /* unknown flags */ 1202 return -EINVAL; 1203 1204 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1205 !rcu_read_lock_bh_held()); 1206 1207 key_size = map->key_size; 1208 1209 hash = htab_map_hash(key, key_size, htab->hashrnd); 1210 1211 b = __select_bucket(htab, hash); 1212 head = &b->head; 1213 1214 /* For LRU, we need to alloc before taking bucket's 1215 * spinlock because getting free nodes from LRU may need 1216 * to remove older elements from htab and this removal 1217 * operation will need a bucket lock. 1218 */ 1219 l_new = prealloc_lru_pop(htab, key, hash); 1220 if (!l_new) 1221 return -ENOMEM; 1222 copy_map_value(&htab->map, 1223 l_new->key + round_up(map->key_size, 8), value); 1224 1225 ret = htab_lock_bucket(htab, b, hash, &flags); 1226 if (ret) 1227 goto err_lock_bucket; 1228 1229 l_old = lookup_elem_raw(head, hash, key, key_size); 1230 1231 ret = check_flags(htab, l_old, map_flags); 1232 if (ret) 1233 goto err; 1234 1235 /* add new element to the head of the list, so that 1236 * concurrent search will find it before old elem 1237 */ 1238 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1239 if (l_old) { 1240 bpf_lru_node_set_ref(&l_new->lru_node); 1241 hlist_nulls_del_rcu(&l_old->hash_node); 1242 } 1243 ret = 0; 1244 1245 err: 1246 htab_unlock_bucket(htab, b, hash, flags); 1247 1248 err_lock_bucket: 1249 if (ret) 1250 htab_lru_push_free(htab, l_new); 1251 else if (l_old) 1252 htab_lru_push_free(htab, l_old); 1253 1254 return ret; 1255 } 1256 1257 static long __htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1258 void *value, u64 map_flags, 1259 bool onallcpus) 1260 { 1261 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1262 struct htab_elem *l_new = NULL, *l_old; 1263 struct hlist_nulls_head *head; 1264 unsigned long flags; 1265 struct bucket *b; 1266 u32 key_size, hash; 1267 int ret; 1268 1269 if (unlikely(map_flags > BPF_EXIST)) 1270 /* unknown flags */ 1271 return -EINVAL; 1272 1273 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1274 !rcu_read_lock_bh_held()); 1275 1276 key_size = map->key_size; 1277 1278 hash = htab_map_hash(key, key_size, htab->hashrnd); 1279 1280 b = __select_bucket(htab, hash); 1281 head = &b->head; 1282 1283 ret = htab_lock_bucket(htab, b, hash, &flags); 1284 if (ret) 1285 return ret; 1286 1287 l_old = lookup_elem_raw(head, hash, key, key_size); 1288 1289 ret = check_flags(htab, l_old, map_flags); 1290 if (ret) 1291 goto err; 1292 1293 if (l_old) { 1294 /* per-cpu hash map can update value in-place */ 1295 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1296 value, onallcpus); 1297 } else { 1298 l_new = alloc_htab_elem(htab, key, value, key_size, 1299 hash, true, onallcpus, NULL); 1300 if (IS_ERR(l_new)) { 1301 ret = PTR_ERR(l_new); 1302 goto err; 1303 } 1304 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1305 } 1306 ret = 0; 1307 err: 1308 htab_unlock_bucket(htab, b, hash, flags); 1309 return ret; 1310 } 1311 1312 static long __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1313 void *value, u64 map_flags, 1314 bool onallcpus) 1315 { 1316 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1317 struct htab_elem *l_new = NULL, *l_old; 1318 struct hlist_nulls_head *head; 1319 unsigned long flags; 1320 struct bucket *b; 1321 u32 key_size, hash; 1322 int ret; 1323 1324 if (unlikely(map_flags > BPF_EXIST)) 1325 /* unknown flags */ 1326 return -EINVAL; 1327 1328 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1329 !rcu_read_lock_bh_held()); 1330 1331 key_size = map->key_size; 1332 1333 hash = htab_map_hash(key, key_size, htab->hashrnd); 1334 1335 b = __select_bucket(htab, hash); 1336 head = &b->head; 1337 1338 /* For LRU, we need to alloc before taking bucket's 1339 * spinlock because LRU's elem alloc may need 1340 * to remove older elem from htab and this removal 1341 * operation will need a bucket lock. 1342 */ 1343 if (map_flags != BPF_EXIST) { 1344 l_new = prealloc_lru_pop(htab, key, hash); 1345 if (!l_new) 1346 return -ENOMEM; 1347 } 1348 1349 ret = htab_lock_bucket(htab, b, hash, &flags); 1350 if (ret) 1351 goto err_lock_bucket; 1352 1353 l_old = lookup_elem_raw(head, hash, key, key_size); 1354 1355 ret = check_flags(htab, l_old, map_flags); 1356 if (ret) 1357 goto err; 1358 1359 if (l_old) { 1360 bpf_lru_node_set_ref(&l_old->lru_node); 1361 1362 /* per-cpu hash map can update value in-place */ 1363 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1364 value, onallcpus); 1365 } else { 1366 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size), 1367 value, onallcpus); 1368 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1369 l_new = NULL; 1370 } 1371 ret = 0; 1372 err: 1373 htab_unlock_bucket(htab, b, hash, flags); 1374 err_lock_bucket: 1375 if (l_new) { 1376 bpf_map_dec_elem_count(&htab->map); 1377 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1378 } 1379 return ret; 1380 } 1381 1382 static long htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1383 void *value, u64 map_flags) 1384 { 1385 return __htab_percpu_map_update_elem(map, key, value, map_flags, false); 1386 } 1387 1388 static long htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1389 void *value, u64 map_flags) 1390 { 1391 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, 1392 false); 1393 } 1394 1395 /* Called from syscall or from eBPF program */ 1396 static long htab_map_delete_elem(struct bpf_map *map, void *key) 1397 { 1398 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1399 struct hlist_nulls_head *head; 1400 struct bucket *b; 1401 struct htab_elem *l; 1402 unsigned long flags; 1403 u32 hash, key_size; 1404 int ret; 1405 1406 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1407 !rcu_read_lock_bh_held()); 1408 1409 key_size = map->key_size; 1410 1411 hash = htab_map_hash(key, key_size, htab->hashrnd); 1412 b = __select_bucket(htab, hash); 1413 head = &b->head; 1414 1415 ret = htab_lock_bucket(htab, b, hash, &flags); 1416 if (ret) 1417 return ret; 1418 1419 l = lookup_elem_raw(head, hash, key, key_size); 1420 1421 if (l) { 1422 hlist_nulls_del_rcu(&l->hash_node); 1423 free_htab_elem(htab, l); 1424 } else { 1425 ret = -ENOENT; 1426 } 1427 1428 htab_unlock_bucket(htab, b, hash, flags); 1429 return ret; 1430 } 1431 1432 static long htab_lru_map_delete_elem(struct bpf_map *map, void *key) 1433 { 1434 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1435 struct hlist_nulls_head *head; 1436 struct bucket *b; 1437 struct htab_elem *l; 1438 unsigned long flags; 1439 u32 hash, key_size; 1440 int ret; 1441 1442 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1443 !rcu_read_lock_bh_held()); 1444 1445 key_size = map->key_size; 1446 1447 hash = htab_map_hash(key, key_size, htab->hashrnd); 1448 b = __select_bucket(htab, hash); 1449 head = &b->head; 1450 1451 ret = htab_lock_bucket(htab, b, hash, &flags); 1452 if (ret) 1453 return ret; 1454 1455 l = lookup_elem_raw(head, hash, key, key_size); 1456 1457 if (l) 1458 hlist_nulls_del_rcu(&l->hash_node); 1459 else 1460 ret = -ENOENT; 1461 1462 htab_unlock_bucket(htab, b, hash, flags); 1463 if (l) 1464 htab_lru_push_free(htab, l); 1465 return ret; 1466 } 1467 1468 static void delete_all_elements(struct bpf_htab *htab) 1469 { 1470 int i; 1471 1472 /* It's called from a worker thread, so disable migration here, 1473 * since bpf_mem_cache_free() relies on that. 1474 */ 1475 migrate_disable(); 1476 for (i = 0; i < htab->n_buckets; i++) { 1477 struct hlist_nulls_head *head = select_bucket(htab, i); 1478 struct hlist_nulls_node *n; 1479 struct htab_elem *l; 1480 1481 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1482 hlist_nulls_del_rcu(&l->hash_node); 1483 htab_elem_free(htab, l); 1484 } 1485 } 1486 migrate_enable(); 1487 } 1488 1489 static void htab_free_malloced_timers(struct bpf_htab *htab) 1490 { 1491 int i; 1492 1493 rcu_read_lock(); 1494 for (i = 0; i < htab->n_buckets; i++) { 1495 struct hlist_nulls_head *head = select_bucket(htab, i); 1496 struct hlist_nulls_node *n; 1497 struct htab_elem *l; 1498 1499 hlist_nulls_for_each_entry(l, n, head, hash_node) { 1500 /* We only free timer on uref dropping to zero */ 1501 bpf_obj_free_timer(htab->map.record, l->key + round_up(htab->map.key_size, 8)); 1502 } 1503 cond_resched_rcu(); 1504 } 1505 rcu_read_unlock(); 1506 } 1507 1508 static void htab_map_free_timers(struct bpf_map *map) 1509 { 1510 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1511 1512 /* We only free timer on uref dropping to zero */ 1513 if (!btf_record_has_field(htab->map.record, BPF_TIMER)) 1514 return; 1515 if (!htab_is_prealloc(htab)) 1516 htab_free_malloced_timers(htab); 1517 else 1518 htab_free_prealloced_timers(htab); 1519 } 1520 1521 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 1522 static void htab_map_free(struct bpf_map *map) 1523 { 1524 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1525 int i; 1526 1527 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. 1528 * bpf_free_used_maps() is called after bpf prog is no longer executing. 1529 * There is no need to synchronize_rcu() here to protect map elements. 1530 */ 1531 1532 /* htab no longer uses call_rcu() directly. bpf_mem_alloc does it 1533 * underneath and is reponsible for waiting for callbacks to finish 1534 * during bpf_mem_alloc_destroy(). 1535 */ 1536 if (!htab_is_prealloc(htab)) { 1537 delete_all_elements(htab); 1538 } else { 1539 htab_free_prealloced_fields(htab); 1540 prealloc_destroy(htab); 1541 } 1542 1543 bpf_map_free_elem_count(map); 1544 free_percpu(htab->extra_elems); 1545 bpf_map_area_free(htab->buckets); 1546 bpf_mem_alloc_destroy(&htab->pcpu_ma); 1547 bpf_mem_alloc_destroy(&htab->ma); 1548 if (htab->use_percpu_counter) 1549 percpu_counter_destroy(&htab->pcount); 1550 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 1551 free_percpu(htab->map_locked[i]); 1552 lockdep_unregister_key(&htab->lockdep_key); 1553 bpf_map_area_free(htab); 1554 } 1555 1556 static void htab_map_seq_show_elem(struct bpf_map *map, void *key, 1557 struct seq_file *m) 1558 { 1559 void *value; 1560 1561 rcu_read_lock(); 1562 1563 value = htab_map_lookup_elem(map, key); 1564 if (!value) { 1565 rcu_read_unlock(); 1566 return; 1567 } 1568 1569 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1570 seq_puts(m, ": "); 1571 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 1572 seq_puts(m, "\n"); 1573 1574 rcu_read_unlock(); 1575 } 1576 1577 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1578 void *value, bool is_lru_map, 1579 bool is_percpu, u64 flags) 1580 { 1581 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1582 struct hlist_nulls_head *head; 1583 unsigned long bflags; 1584 struct htab_elem *l; 1585 u32 hash, key_size; 1586 struct bucket *b; 1587 int ret; 1588 1589 key_size = map->key_size; 1590 1591 hash = htab_map_hash(key, key_size, htab->hashrnd); 1592 b = __select_bucket(htab, hash); 1593 head = &b->head; 1594 1595 ret = htab_lock_bucket(htab, b, hash, &bflags); 1596 if (ret) 1597 return ret; 1598 1599 l = lookup_elem_raw(head, hash, key, key_size); 1600 if (!l) { 1601 ret = -ENOENT; 1602 } else { 1603 if (is_percpu) { 1604 u32 roundup_value_size = round_up(map->value_size, 8); 1605 void __percpu *pptr; 1606 int off = 0, cpu; 1607 1608 pptr = htab_elem_get_ptr(l, key_size); 1609 for_each_possible_cpu(cpu) { 1610 copy_map_value_long(&htab->map, value + off, per_cpu_ptr(pptr, cpu)); 1611 check_and_init_map_value(&htab->map, value + off); 1612 off += roundup_value_size; 1613 } 1614 } else { 1615 u32 roundup_key_size = round_up(map->key_size, 8); 1616 1617 if (flags & BPF_F_LOCK) 1618 copy_map_value_locked(map, value, l->key + 1619 roundup_key_size, 1620 true); 1621 else 1622 copy_map_value(map, value, l->key + 1623 roundup_key_size); 1624 /* Zeroing special fields in the temp buffer */ 1625 check_and_init_map_value(map, value); 1626 } 1627 1628 hlist_nulls_del_rcu(&l->hash_node); 1629 if (!is_lru_map) 1630 free_htab_elem(htab, l); 1631 } 1632 1633 htab_unlock_bucket(htab, b, hash, bflags); 1634 1635 if (is_lru_map && l) 1636 htab_lru_push_free(htab, l); 1637 1638 return ret; 1639 } 1640 1641 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1642 void *value, u64 flags) 1643 { 1644 return __htab_map_lookup_and_delete_elem(map, key, value, false, false, 1645 flags); 1646 } 1647 1648 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1649 void *key, void *value, 1650 u64 flags) 1651 { 1652 return __htab_map_lookup_and_delete_elem(map, key, value, false, true, 1653 flags); 1654 } 1655 1656 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1657 void *value, u64 flags) 1658 { 1659 return __htab_map_lookup_and_delete_elem(map, key, value, true, false, 1660 flags); 1661 } 1662 1663 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1664 void *key, void *value, 1665 u64 flags) 1666 { 1667 return __htab_map_lookup_and_delete_elem(map, key, value, true, true, 1668 flags); 1669 } 1670 1671 static int 1672 __htab_map_lookup_and_delete_batch(struct bpf_map *map, 1673 const union bpf_attr *attr, 1674 union bpf_attr __user *uattr, 1675 bool do_delete, bool is_lru_map, 1676 bool is_percpu) 1677 { 1678 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1679 u32 bucket_cnt, total, key_size, value_size, roundup_key_size; 1680 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; 1681 void __user *uvalues = u64_to_user_ptr(attr->batch.values); 1682 void __user *ukeys = u64_to_user_ptr(attr->batch.keys); 1683 void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch); 1684 u32 batch, max_count, size, bucket_size, map_id; 1685 struct htab_elem *node_to_free = NULL; 1686 u64 elem_map_flags, map_flags; 1687 struct hlist_nulls_head *head; 1688 struct hlist_nulls_node *n; 1689 unsigned long flags = 0; 1690 bool locked = false; 1691 struct htab_elem *l; 1692 struct bucket *b; 1693 int ret = 0; 1694 1695 elem_map_flags = attr->batch.elem_flags; 1696 if ((elem_map_flags & ~BPF_F_LOCK) || 1697 ((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK))) 1698 return -EINVAL; 1699 1700 map_flags = attr->batch.flags; 1701 if (map_flags) 1702 return -EINVAL; 1703 1704 max_count = attr->batch.count; 1705 if (!max_count) 1706 return 0; 1707 1708 if (put_user(0, &uattr->batch.count)) 1709 return -EFAULT; 1710 1711 batch = 0; 1712 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) 1713 return -EFAULT; 1714 1715 if (batch >= htab->n_buckets) 1716 return -ENOENT; 1717 1718 key_size = htab->map.key_size; 1719 roundup_key_size = round_up(htab->map.key_size, 8); 1720 value_size = htab->map.value_size; 1721 size = round_up(value_size, 8); 1722 if (is_percpu) 1723 value_size = size * num_possible_cpus(); 1724 total = 0; 1725 /* while experimenting with hash tables with sizes ranging from 10 to 1726 * 1000, it was observed that a bucket can have up to 5 entries. 1727 */ 1728 bucket_size = 5; 1729 1730 alloc: 1731 /* We cannot do copy_from_user or copy_to_user inside 1732 * the rcu_read_lock. Allocate enough space here. 1733 */ 1734 keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN); 1735 values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN); 1736 if (!keys || !values) { 1737 ret = -ENOMEM; 1738 goto after_loop; 1739 } 1740 1741 again: 1742 bpf_disable_instrumentation(); 1743 rcu_read_lock(); 1744 again_nocopy: 1745 dst_key = keys; 1746 dst_val = values; 1747 b = &htab->buckets[batch]; 1748 head = &b->head; 1749 /* do not grab the lock unless need it (bucket_cnt > 0). */ 1750 if (locked) { 1751 ret = htab_lock_bucket(htab, b, batch, &flags); 1752 if (ret) { 1753 rcu_read_unlock(); 1754 bpf_enable_instrumentation(); 1755 goto after_loop; 1756 } 1757 } 1758 1759 bucket_cnt = 0; 1760 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 1761 bucket_cnt++; 1762 1763 if (bucket_cnt && !locked) { 1764 locked = true; 1765 goto again_nocopy; 1766 } 1767 1768 if (bucket_cnt > (max_count - total)) { 1769 if (total == 0) 1770 ret = -ENOSPC; 1771 /* Note that since bucket_cnt > 0 here, it is implicit 1772 * that the locked was grabbed, so release it. 1773 */ 1774 htab_unlock_bucket(htab, b, batch, flags); 1775 rcu_read_unlock(); 1776 bpf_enable_instrumentation(); 1777 goto after_loop; 1778 } 1779 1780 if (bucket_cnt > bucket_size) { 1781 bucket_size = bucket_cnt; 1782 /* Note that since bucket_cnt > 0 here, it is implicit 1783 * that the locked was grabbed, so release it. 1784 */ 1785 htab_unlock_bucket(htab, b, batch, flags); 1786 rcu_read_unlock(); 1787 bpf_enable_instrumentation(); 1788 kvfree(keys); 1789 kvfree(values); 1790 goto alloc; 1791 } 1792 1793 /* Next block is only safe to run if you have grabbed the lock */ 1794 if (!locked) 1795 goto next_batch; 1796 1797 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1798 memcpy(dst_key, l->key, key_size); 1799 1800 if (is_percpu) { 1801 int off = 0, cpu; 1802 void __percpu *pptr; 1803 1804 pptr = htab_elem_get_ptr(l, map->key_size); 1805 for_each_possible_cpu(cpu) { 1806 copy_map_value_long(&htab->map, dst_val + off, per_cpu_ptr(pptr, cpu)); 1807 check_and_init_map_value(&htab->map, dst_val + off); 1808 off += size; 1809 } 1810 } else { 1811 value = l->key + roundup_key_size; 1812 if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) { 1813 struct bpf_map **inner_map = value; 1814 1815 /* Actual value is the id of the inner map */ 1816 map_id = map->ops->map_fd_sys_lookup_elem(*inner_map); 1817 value = &map_id; 1818 } 1819 1820 if (elem_map_flags & BPF_F_LOCK) 1821 copy_map_value_locked(map, dst_val, value, 1822 true); 1823 else 1824 copy_map_value(map, dst_val, value); 1825 /* Zeroing special fields in the temp buffer */ 1826 check_and_init_map_value(map, dst_val); 1827 } 1828 if (do_delete) { 1829 hlist_nulls_del_rcu(&l->hash_node); 1830 1831 /* bpf_lru_push_free() will acquire lru_lock, which 1832 * may cause deadlock. See comments in function 1833 * prealloc_lru_pop(). Let us do bpf_lru_push_free() 1834 * after releasing the bucket lock. 1835 */ 1836 if (is_lru_map) { 1837 l->batch_flink = node_to_free; 1838 node_to_free = l; 1839 } else { 1840 free_htab_elem(htab, l); 1841 } 1842 } 1843 dst_key += key_size; 1844 dst_val += value_size; 1845 } 1846 1847 htab_unlock_bucket(htab, b, batch, flags); 1848 locked = false; 1849 1850 while (node_to_free) { 1851 l = node_to_free; 1852 node_to_free = node_to_free->batch_flink; 1853 htab_lru_push_free(htab, l); 1854 } 1855 1856 next_batch: 1857 /* If we are not copying data, we can go to next bucket and avoid 1858 * unlocking the rcu. 1859 */ 1860 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { 1861 batch++; 1862 goto again_nocopy; 1863 } 1864 1865 rcu_read_unlock(); 1866 bpf_enable_instrumentation(); 1867 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, 1868 key_size * bucket_cnt) || 1869 copy_to_user(uvalues + total * value_size, values, 1870 value_size * bucket_cnt))) { 1871 ret = -EFAULT; 1872 goto after_loop; 1873 } 1874 1875 total += bucket_cnt; 1876 batch++; 1877 if (batch >= htab->n_buckets) { 1878 ret = -ENOENT; 1879 goto after_loop; 1880 } 1881 goto again; 1882 1883 after_loop: 1884 if (ret == -EFAULT) 1885 goto out; 1886 1887 /* copy # of entries and next batch */ 1888 ubatch = u64_to_user_ptr(attr->batch.out_batch); 1889 if (copy_to_user(ubatch, &batch, sizeof(batch)) || 1890 put_user(total, &uattr->batch.count)) 1891 ret = -EFAULT; 1892 1893 out: 1894 kvfree(keys); 1895 kvfree(values); 1896 return ret; 1897 } 1898 1899 static int 1900 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1901 union bpf_attr __user *uattr) 1902 { 1903 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1904 false, true); 1905 } 1906 1907 static int 1908 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1909 const union bpf_attr *attr, 1910 union bpf_attr __user *uattr) 1911 { 1912 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1913 false, true); 1914 } 1915 1916 static int 1917 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1918 union bpf_attr __user *uattr) 1919 { 1920 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1921 false, false); 1922 } 1923 1924 static int 1925 htab_map_lookup_and_delete_batch(struct bpf_map *map, 1926 const union bpf_attr *attr, 1927 union bpf_attr __user *uattr) 1928 { 1929 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1930 false, false); 1931 } 1932 1933 static int 1934 htab_lru_percpu_map_lookup_batch(struct bpf_map *map, 1935 const union bpf_attr *attr, 1936 union bpf_attr __user *uattr) 1937 { 1938 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1939 true, true); 1940 } 1941 1942 static int 1943 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1944 const union bpf_attr *attr, 1945 union bpf_attr __user *uattr) 1946 { 1947 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1948 true, true); 1949 } 1950 1951 static int 1952 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1953 union bpf_attr __user *uattr) 1954 { 1955 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1956 true, false); 1957 } 1958 1959 static int 1960 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, 1961 const union bpf_attr *attr, 1962 union bpf_attr __user *uattr) 1963 { 1964 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1965 true, false); 1966 } 1967 1968 struct bpf_iter_seq_hash_map_info { 1969 struct bpf_map *map; 1970 struct bpf_htab *htab; 1971 void *percpu_value_buf; // non-zero means percpu hash 1972 u32 bucket_id; 1973 u32 skip_elems; 1974 }; 1975 1976 static struct htab_elem * 1977 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info, 1978 struct htab_elem *prev_elem) 1979 { 1980 const struct bpf_htab *htab = info->htab; 1981 u32 skip_elems = info->skip_elems; 1982 u32 bucket_id = info->bucket_id; 1983 struct hlist_nulls_head *head; 1984 struct hlist_nulls_node *n; 1985 struct htab_elem *elem; 1986 struct bucket *b; 1987 u32 i, count; 1988 1989 if (bucket_id >= htab->n_buckets) 1990 return NULL; 1991 1992 /* try to find next elem in the same bucket */ 1993 if (prev_elem) { 1994 /* no update/deletion on this bucket, prev_elem should be still valid 1995 * and we won't skip elements. 1996 */ 1997 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node)); 1998 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node); 1999 if (elem) 2000 return elem; 2001 2002 /* not found, unlock and go to the next bucket */ 2003 b = &htab->buckets[bucket_id++]; 2004 rcu_read_unlock(); 2005 skip_elems = 0; 2006 } 2007 2008 for (i = bucket_id; i < htab->n_buckets; i++) { 2009 b = &htab->buckets[i]; 2010 rcu_read_lock(); 2011 2012 count = 0; 2013 head = &b->head; 2014 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2015 if (count >= skip_elems) { 2016 info->bucket_id = i; 2017 info->skip_elems = count; 2018 return elem; 2019 } 2020 count++; 2021 } 2022 2023 rcu_read_unlock(); 2024 skip_elems = 0; 2025 } 2026 2027 info->bucket_id = i; 2028 info->skip_elems = 0; 2029 return NULL; 2030 } 2031 2032 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos) 2033 { 2034 struct bpf_iter_seq_hash_map_info *info = seq->private; 2035 struct htab_elem *elem; 2036 2037 elem = bpf_hash_map_seq_find_next(info, NULL); 2038 if (!elem) 2039 return NULL; 2040 2041 if (*pos == 0) 2042 ++*pos; 2043 return elem; 2044 } 2045 2046 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2047 { 2048 struct bpf_iter_seq_hash_map_info *info = seq->private; 2049 2050 ++*pos; 2051 ++info->skip_elems; 2052 return bpf_hash_map_seq_find_next(info, v); 2053 } 2054 2055 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem) 2056 { 2057 struct bpf_iter_seq_hash_map_info *info = seq->private; 2058 u32 roundup_key_size, roundup_value_size; 2059 struct bpf_iter__bpf_map_elem ctx = {}; 2060 struct bpf_map *map = info->map; 2061 struct bpf_iter_meta meta; 2062 int ret = 0, off = 0, cpu; 2063 struct bpf_prog *prog; 2064 void __percpu *pptr; 2065 2066 meta.seq = seq; 2067 prog = bpf_iter_get_info(&meta, elem == NULL); 2068 if (prog) { 2069 ctx.meta = &meta; 2070 ctx.map = info->map; 2071 if (elem) { 2072 roundup_key_size = round_up(map->key_size, 8); 2073 ctx.key = elem->key; 2074 if (!info->percpu_value_buf) { 2075 ctx.value = elem->key + roundup_key_size; 2076 } else { 2077 roundup_value_size = round_up(map->value_size, 8); 2078 pptr = htab_elem_get_ptr(elem, map->key_size); 2079 for_each_possible_cpu(cpu) { 2080 copy_map_value_long(map, info->percpu_value_buf + off, 2081 per_cpu_ptr(pptr, cpu)); 2082 check_and_init_map_value(map, info->percpu_value_buf + off); 2083 off += roundup_value_size; 2084 } 2085 ctx.value = info->percpu_value_buf; 2086 } 2087 } 2088 ret = bpf_iter_run_prog(prog, &ctx); 2089 } 2090 2091 return ret; 2092 } 2093 2094 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v) 2095 { 2096 return __bpf_hash_map_seq_show(seq, v); 2097 } 2098 2099 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v) 2100 { 2101 if (!v) 2102 (void)__bpf_hash_map_seq_show(seq, NULL); 2103 else 2104 rcu_read_unlock(); 2105 } 2106 2107 static int bpf_iter_init_hash_map(void *priv_data, 2108 struct bpf_iter_aux_info *aux) 2109 { 2110 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2111 struct bpf_map *map = aux->map; 2112 void *value_buf; 2113 u32 buf_size; 2114 2115 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || 2116 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { 2117 buf_size = round_up(map->value_size, 8) * num_possible_cpus(); 2118 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 2119 if (!value_buf) 2120 return -ENOMEM; 2121 2122 seq_info->percpu_value_buf = value_buf; 2123 } 2124 2125 bpf_map_inc_with_uref(map); 2126 seq_info->map = map; 2127 seq_info->htab = container_of(map, struct bpf_htab, map); 2128 return 0; 2129 } 2130 2131 static void bpf_iter_fini_hash_map(void *priv_data) 2132 { 2133 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2134 2135 bpf_map_put_with_uref(seq_info->map); 2136 kfree(seq_info->percpu_value_buf); 2137 } 2138 2139 static const struct seq_operations bpf_hash_map_seq_ops = { 2140 .start = bpf_hash_map_seq_start, 2141 .next = bpf_hash_map_seq_next, 2142 .stop = bpf_hash_map_seq_stop, 2143 .show = bpf_hash_map_seq_show, 2144 }; 2145 2146 static const struct bpf_iter_seq_info iter_seq_info = { 2147 .seq_ops = &bpf_hash_map_seq_ops, 2148 .init_seq_private = bpf_iter_init_hash_map, 2149 .fini_seq_private = bpf_iter_fini_hash_map, 2150 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info), 2151 }; 2152 2153 static long bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn, 2154 void *callback_ctx, u64 flags) 2155 { 2156 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2157 struct hlist_nulls_head *head; 2158 struct hlist_nulls_node *n; 2159 struct htab_elem *elem; 2160 u32 roundup_key_size; 2161 int i, num_elems = 0; 2162 void __percpu *pptr; 2163 struct bucket *b; 2164 void *key, *val; 2165 bool is_percpu; 2166 u64 ret = 0; 2167 2168 if (flags != 0) 2169 return -EINVAL; 2170 2171 is_percpu = htab_is_percpu(htab); 2172 2173 roundup_key_size = round_up(map->key_size, 8); 2174 /* disable migration so percpu value prepared here will be the 2175 * same as the one seen by the bpf program with bpf_map_lookup_elem(). 2176 */ 2177 if (is_percpu) 2178 migrate_disable(); 2179 for (i = 0; i < htab->n_buckets; i++) { 2180 b = &htab->buckets[i]; 2181 rcu_read_lock(); 2182 head = &b->head; 2183 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2184 key = elem->key; 2185 if (is_percpu) { 2186 /* current cpu value for percpu map */ 2187 pptr = htab_elem_get_ptr(elem, map->key_size); 2188 val = this_cpu_ptr(pptr); 2189 } else { 2190 val = elem->key + roundup_key_size; 2191 } 2192 num_elems++; 2193 ret = callback_fn((u64)(long)map, (u64)(long)key, 2194 (u64)(long)val, (u64)(long)callback_ctx, 0); 2195 /* return value: 0 - continue, 1 - stop and return */ 2196 if (ret) { 2197 rcu_read_unlock(); 2198 goto out; 2199 } 2200 } 2201 rcu_read_unlock(); 2202 } 2203 out: 2204 if (is_percpu) 2205 migrate_enable(); 2206 return num_elems; 2207 } 2208 2209 static u64 htab_map_mem_usage(const struct bpf_map *map) 2210 { 2211 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2212 u32 value_size = round_up(htab->map.value_size, 8); 2213 bool prealloc = htab_is_prealloc(htab); 2214 bool percpu = htab_is_percpu(htab); 2215 bool lru = htab_is_lru(htab); 2216 u64 num_entries; 2217 u64 usage = sizeof(struct bpf_htab); 2218 2219 usage += sizeof(struct bucket) * htab->n_buckets; 2220 usage += sizeof(int) * num_possible_cpus() * HASHTAB_MAP_LOCK_COUNT; 2221 if (prealloc) { 2222 num_entries = map->max_entries; 2223 if (htab_has_extra_elems(htab)) 2224 num_entries += num_possible_cpus(); 2225 2226 usage += htab->elem_size * num_entries; 2227 2228 if (percpu) 2229 usage += value_size * num_possible_cpus() * num_entries; 2230 else if (!lru) 2231 usage += sizeof(struct htab_elem *) * num_possible_cpus(); 2232 } else { 2233 #define LLIST_NODE_SZ sizeof(struct llist_node) 2234 2235 num_entries = htab->use_percpu_counter ? 2236 percpu_counter_sum(&htab->pcount) : 2237 atomic_read(&htab->count); 2238 usage += (htab->elem_size + LLIST_NODE_SZ) * num_entries; 2239 if (percpu) { 2240 usage += (LLIST_NODE_SZ + sizeof(void *)) * num_entries; 2241 usage += value_size * num_possible_cpus() * num_entries; 2242 } 2243 } 2244 return usage; 2245 } 2246 2247 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab) 2248 const struct bpf_map_ops htab_map_ops = { 2249 .map_meta_equal = bpf_map_meta_equal, 2250 .map_alloc_check = htab_map_alloc_check, 2251 .map_alloc = htab_map_alloc, 2252 .map_free = htab_map_free, 2253 .map_get_next_key = htab_map_get_next_key, 2254 .map_release_uref = htab_map_free_timers, 2255 .map_lookup_elem = htab_map_lookup_elem, 2256 .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem, 2257 .map_update_elem = htab_map_update_elem, 2258 .map_delete_elem = htab_map_delete_elem, 2259 .map_gen_lookup = htab_map_gen_lookup, 2260 .map_seq_show_elem = htab_map_seq_show_elem, 2261 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2262 .map_for_each_callback = bpf_for_each_hash_elem, 2263 .map_mem_usage = htab_map_mem_usage, 2264 BATCH_OPS(htab), 2265 .map_btf_id = &htab_map_btf_ids[0], 2266 .iter_seq_info = &iter_seq_info, 2267 }; 2268 2269 const struct bpf_map_ops htab_lru_map_ops = { 2270 .map_meta_equal = bpf_map_meta_equal, 2271 .map_alloc_check = htab_map_alloc_check, 2272 .map_alloc = htab_map_alloc, 2273 .map_free = htab_map_free, 2274 .map_get_next_key = htab_map_get_next_key, 2275 .map_release_uref = htab_map_free_timers, 2276 .map_lookup_elem = htab_lru_map_lookup_elem, 2277 .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem, 2278 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, 2279 .map_update_elem = htab_lru_map_update_elem, 2280 .map_delete_elem = htab_lru_map_delete_elem, 2281 .map_gen_lookup = htab_lru_map_gen_lookup, 2282 .map_seq_show_elem = htab_map_seq_show_elem, 2283 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2284 .map_for_each_callback = bpf_for_each_hash_elem, 2285 .map_mem_usage = htab_map_mem_usage, 2286 BATCH_OPS(htab_lru), 2287 .map_btf_id = &htab_map_btf_ids[0], 2288 .iter_seq_info = &iter_seq_info, 2289 }; 2290 2291 /* Called from eBPF program */ 2292 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2293 { 2294 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2295 2296 if (l) 2297 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2298 else 2299 return NULL; 2300 } 2301 2302 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2303 { 2304 struct htab_elem *l; 2305 2306 if (cpu >= nr_cpu_ids) 2307 return NULL; 2308 2309 l = __htab_map_lookup_elem(map, key); 2310 if (l) 2311 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2312 else 2313 return NULL; 2314 } 2315 2316 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2317 { 2318 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2319 2320 if (l) { 2321 bpf_lru_node_set_ref(&l->lru_node); 2322 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2323 } 2324 2325 return NULL; 2326 } 2327 2328 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2329 { 2330 struct htab_elem *l; 2331 2332 if (cpu >= nr_cpu_ids) 2333 return NULL; 2334 2335 l = __htab_map_lookup_elem(map, key); 2336 if (l) { 2337 bpf_lru_node_set_ref(&l->lru_node); 2338 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2339 } 2340 2341 return NULL; 2342 } 2343 2344 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) 2345 { 2346 struct htab_elem *l; 2347 void __percpu *pptr; 2348 int ret = -ENOENT; 2349 int cpu, off = 0; 2350 u32 size; 2351 2352 /* per_cpu areas are zero-filled and bpf programs can only 2353 * access 'value_size' of them, so copying rounded areas 2354 * will not leak any kernel data 2355 */ 2356 size = round_up(map->value_size, 8); 2357 rcu_read_lock(); 2358 l = __htab_map_lookup_elem(map, key); 2359 if (!l) 2360 goto out; 2361 /* We do not mark LRU map element here in order to not mess up 2362 * eviction heuristics when user space does a map walk. 2363 */ 2364 pptr = htab_elem_get_ptr(l, map->key_size); 2365 for_each_possible_cpu(cpu) { 2366 copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu)); 2367 check_and_init_map_value(map, value + off); 2368 off += size; 2369 } 2370 ret = 0; 2371 out: 2372 rcu_read_unlock(); 2373 return ret; 2374 } 2375 2376 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2377 u64 map_flags) 2378 { 2379 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2380 int ret; 2381 2382 rcu_read_lock(); 2383 if (htab_is_lru(htab)) 2384 ret = __htab_lru_percpu_map_update_elem(map, key, value, 2385 map_flags, true); 2386 else 2387 ret = __htab_percpu_map_update_elem(map, key, value, map_flags, 2388 true); 2389 rcu_read_unlock(); 2390 2391 return ret; 2392 } 2393 2394 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, 2395 struct seq_file *m) 2396 { 2397 struct htab_elem *l; 2398 void __percpu *pptr; 2399 int cpu; 2400 2401 rcu_read_lock(); 2402 2403 l = __htab_map_lookup_elem(map, key); 2404 if (!l) { 2405 rcu_read_unlock(); 2406 return; 2407 } 2408 2409 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 2410 seq_puts(m, ": {\n"); 2411 pptr = htab_elem_get_ptr(l, map->key_size); 2412 for_each_possible_cpu(cpu) { 2413 seq_printf(m, "\tcpu%d: ", cpu); 2414 btf_type_seq_show(map->btf, map->btf_value_type_id, 2415 per_cpu_ptr(pptr, cpu), m); 2416 seq_puts(m, "\n"); 2417 } 2418 seq_puts(m, "}\n"); 2419 2420 rcu_read_unlock(); 2421 } 2422 2423 const struct bpf_map_ops htab_percpu_map_ops = { 2424 .map_meta_equal = bpf_map_meta_equal, 2425 .map_alloc_check = htab_map_alloc_check, 2426 .map_alloc = htab_map_alloc, 2427 .map_free = htab_map_free, 2428 .map_get_next_key = htab_map_get_next_key, 2429 .map_lookup_elem = htab_percpu_map_lookup_elem, 2430 .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem, 2431 .map_update_elem = htab_percpu_map_update_elem, 2432 .map_delete_elem = htab_map_delete_elem, 2433 .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem, 2434 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2435 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2436 .map_for_each_callback = bpf_for_each_hash_elem, 2437 .map_mem_usage = htab_map_mem_usage, 2438 BATCH_OPS(htab_percpu), 2439 .map_btf_id = &htab_map_btf_ids[0], 2440 .iter_seq_info = &iter_seq_info, 2441 }; 2442 2443 const struct bpf_map_ops htab_lru_percpu_map_ops = { 2444 .map_meta_equal = bpf_map_meta_equal, 2445 .map_alloc_check = htab_map_alloc_check, 2446 .map_alloc = htab_map_alloc, 2447 .map_free = htab_map_free, 2448 .map_get_next_key = htab_map_get_next_key, 2449 .map_lookup_elem = htab_lru_percpu_map_lookup_elem, 2450 .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem, 2451 .map_update_elem = htab_lru_percpu_map_update_elem, 2452 .map_delete_elem = htab_lru_map_delete_elem, 2453 .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem, 2454 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2455 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2456 .map_for_each_callback = bpf_for_each_hash_elem, 2457 .map_mem_usage = htab_map_mem_usage, 2458 BATCH_OPS(htab_lru_percpu), 2459 .map_btf_id = &htab_map_btf_ids[0], 2460 .iter_seq_info = &iter_seq_info, 2461 }; 2462 2463 static int fd_htab_map_alloc_check(union bpf_attr *attr) 2464 { 2465 if (attr->value_size != sizeof(u32)) 2466 return -EINVAL; 2467 return htab_map_alloc_check(attr); 2468 } 2469 2470 static void fd_htab_map_free(struct bpf_map *map) 2471 { 2472 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2473 struct hlist_nulls_node *n; 2474 struct hlist_nulls_head *head; 2475 struct htab_elem *l; 2476 int i; 2477 2478 for (i = 0; i < htab->n_buckets; i++) { 2479 head = select_bucket(htab, i); 2480 2481 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 2482 void *ptr = fd_htab_map_get_ptr(map, l); 2483 2484 map->ops->map_fd_put_ptr(ptr); 2485 } 2486 } 2487 2488 htab_map_free(map); 2489 } 2490 2491 /* only called from syscall */ 2492 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 2493 { 2494 void **ptr; 2495 int ret = 0; 2496 2497 if (!map->ops->map_fd_sys_lookup_elem) 2498 return -ENOTSUPP; 2499 2500 rcu_read_lock(); 2501 ptr = htab_map_lookup_elem(map, key); 2502 if (ptr) 2503 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); 2504 else 2505 ret = -ENOENT; 2506 rcu_read_unlock(); 2507 2508 return ret; 2509 } 2510 2511 /* only called from syscall */ 2512 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2513 void *key, void *value, u64 map_flags) 2514 { 2515 void *ptr; 2516 int ret; 2517 u32 ufd = *(u32 *)value; 2518 2519 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 2520 if (IS_ERR(ptr)) 2521 return PTR_ERR(ptr); 2522 2523 ret = htab_map_update_elem(map, key, &ptr, map_flags); 2524 if (ret) 2525 map->ops->map_fd_put_ptr(ptr); 2526 2527 return ret; 2528 } 2529 2530 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) 2531 { 2532 struct bpf_map *map, *inner_map_meta; 2533 2534 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 2535 if (IS_ERR(inner_map_meta)) 2536 return inner_map_meta; 2537 2538 map = htab_map_alloc(attr); 2539 if (IS_ERR(map)) { 2540 bpf_map_meta_free(inner_map_meta); 2541 return map; 2542 } 2543 2544 map->inner_map_meta = inner_map_meta; 2545 2546 return map; 2547 } 2548 2549 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) 2550 { 2551 struct bpf_map **inner_map = htab_map_lookup_elem(map, key); 2552 2553 if (!inner_map) 2554 return NULL; 2555 2556 return READ_ONCE(*inner_map); 2557 } 2558 2559 static int htab_of_map_gen_lookup(struct bpf_map *map, 2560 struct bpf_insn *insn_buf) 2561 { 2562 struct bpf_insn *insn = insn_buf; 2563 const int ret = BPF_REG_0; 2564 2565 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 2566 (void *(*)(struct bpf_map *map, void *key))NULL)); 2567 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 2568 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); 2569 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 2570 offsetof(struct htab_elem, key) + 2571 round_up(map->key_size, 8)); 2572 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 2573 2574 return insn - insn_buf; 2575 } 2576 2577 static void htab_of_map_free(struct bpf_map *map) 2578 { 2579 bpf_map_meta_free(map->inner_map_meta); 2580 fd_htab_map_free(map); 2581 } 2582 2583 const struct bpf_map_ops htab_of_maps_map_ops = { 2584 .map_alloc_check = fd_htab_map_alloc_check, 2585 .map_alloc = htab_of_map_alloc, 2586 .map_free = htab_of_map_free, 2587 .map_get_next_key = htab_map_get_next_key, 2588 .map_lookup_elem = htab_of_map_lookup_elem, 2589 .map_delete_elem = htab_map_delete_elem, 2590 .map_fd_get_ptr = bpf_map_fd_get_ptr, 2591 .map_fd_put_ptr = bpf_map_fd_put_ptr, 2592 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 2593 .map_gen_lookup = htab_of_map_gen_lookup, 2594 .map_check_btf = map_check_no_btf, 2595 .map_mem_usage = htab_map_mem_usage, 2596 BATCH_OPS(htab), 2597 .map_btf_id = &htab_map_btf_ids[0], 2598 }; 2599