xref: /linux/kernel/bpf/hashtab.c (revision d8793aca708602c676372b03d6493972457524af)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include "percpu_freelist.h"
13 #include "bpf_lru_list.h"
14 #include "map_in_map.h"
15 
16 #define HTAB_CREATE_FLAG_MASK						\
17 	(BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |	\
18 	 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
19 
20 #define BATCH_OPS(_name)			\
21 	.map_lookup_batch =			\
22 	_name##_map_lookup_batch,		\
23 	.map_lookup_and_delete_batch =		\
24 	_name##_map_lookup_and_delete_batch,	\
25 	.map_update_batch =			\
26 	generic_map_update_batch,		\
27 	.map_delete_batch =			\
28 	generic_map_delete_batch
29 
30 /*
31  * The bucket lock has two protection scopes:
32  *
33  * 1) Serializing concurrent operations from BPF programs on differrent
34  *    CPUs
35  *
36  * 2) Serializing concurrent operations from BPF programs and sys_bpf()
37  *
38  * BPF programs can execute in any context including perf, kprobes and
39  * tracing. As there are almost no limits where perf, kprobes and tracing
40  * can be invoked from the lock operations need to be protected against
41  * deadlocks. Deadlocks can be caused by recursion and by an invocation in
42  * the lock held section when functions which acquire this lock are invoked
43  * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
44  * variable bpf_prog_active, which prevents BPF programs attached to perf
45  * events, kprobes and tracing to be invoked before the prior invocation
46  * from one of these contexts completed. sys_bpf() uses the same mechanism
47  * by pinning the task to the current CPU and incrementing the recursion
48  * protection accross the map operation.
49  *
50  * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
51  * operations like memory allocations (even with GFP_ATOMIC) from atomic
52  * contexts. This is required because even with GFP_ATOMIC the memory
53  * allocator calls into code pathes which acquire locks with long held lock
54  * sections. To ensure the deterministic behaviour these locks are regular
55  * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
56  * true atomic contexts on an RT kernel are the low level hardware
57  * handling, scheduling, low level interrupt handling, NMIs etc. None of
58  * these contexts should ever do memory allocations.
59  *
60  * As regular device interrupt handlers and soft interrupts are forced into
61  * thread context, the existing code which does
62  *   spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*();
63  * just works.
64  *
65  * In theory the BPF locks could be converted to regular spinlocks as well,
66  * but the bucket locks and percpu_freelist locks can be taken from
67  * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
68  * atomic contexts even on RT. These mechanisms require preallocated maps,
69  * so there is no need to invoke memory allocations within the lock held
70  * sections.
71  *
72  * BPF maps which need dynamic allocation are only used from (forced)
73  * thread context on RT and can therefore use regular spinlocks which in
74  * turn allows to invoke memory allocations from the lock held section.
75  *
76  * On a non RT kernel this distinction is neither possible nor required.
77  * spinlock maps to raw_spinlock and the extra code is optimized out by the
78  * compiler.
79  */
80 struct bucket {
81 	struct hlist_nulls_head head;
82 	union {
83 		raw_spinlock_t raw_lock;
84 		spinlock_t     lock;
85 	};
86 };
87 
88 struct bpf_htab {
89 	struct bpf_map map;
90 	struct bucket *buckets;
91 	void *elems;
92 	union {
93 		struct pcpu_freelist freelist;
94 		struct bpf_lru lru;
95 	};
96 	struct htab_elem *__percpu *extra_elems;
97 	atomic_t count;	/* number of elements in this hashtable */
98 	u32 n_buckets;	/* number of hash buckets */
99 	u32 elem_size;	/* size of each element in bytes */
100 	u32 hashrnd;
101 };
102 
103 /* each htab element is struct htab_elem + key + value */
104 struct htab_elem {
105 	union {
106 		struct hlist_nulls_node hash_node;
107 		struct {
108 			void *padding;
109 			union {
110 				struct bpf_htab *htab;
111 				struct pcpu_freelist_node fnode;
112 				struct htab_elem *batch_flink;
113 			};
114 		};
115 	};
116 	union {
117 		struct rcu_head rcu;
118 		struct bpf_lru_node lru_node;
119 	};
120 	u32 hash;
121 	char key[] __aligned(8);
122 };
123 
124 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
125 {
126 	return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
127 }
128 
129 static inline bool htab_use_raw_lock(const struct bpf_htab *htab)
130 {
131 	return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab));
132 }
133 
134 static void htab_init_buckets(struct bpf_htab *htab)
135 {
136 	unsigned i;
137 
138 	for (i = 0; i < htab->n_buckets; i++) {
139 		INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
140 		if (htab_use_raw_lock(htab))
141 			raw_spin_lock_init(&htab->buckets[i].raw_lock);
142 		else
143 			spin_lock_init(&htab->buckets[i].lock);
144 	}
145 }
146 
147 static inline unsigned long htab_lock_bucket(const struct bpf_htab *htab,
148 					     struct bucket *b)
149 {
150 	unsigned long flags;
151 
152 	if (htab_use_raw_lock(htab))
153 		raw_spin_lock_irqsave(&b->raw_lock, flags);
154 	else
155 		spin_lock_irqsave(&b->lock, flags);
156 	return flags;
157 }
158 
159 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
160 				      struct bucket *b,
161 				      unsigned long flags)
162 {
163 	if (htab_use_raw_lock(htab))
164 		raw_spin_unlock_irqrestore(&b->raw_lock, flags);
165 	else
166 		spin_unlock_irqrestore(&b->lock, flags);
167 }
168 
169 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
170 
171 static bool htab_is_lru(const struct bpf_htab *htab)
172 {
173 	return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
174 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
175 }
176 
177 static bool htab_is_percpu(const struct bpf_htab *htab)
178 {
179 	return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
180 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
181 }
182 
183 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
184 				     void __percpu *pptr)
185 {
186 	*(void __percpu **)(l->key + key_size) = pptr;
187 }
188 
189 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
190 {
191 	return *(void __percpu **)(l->key + key_size);
192 }
193 
194 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
195 {
196 	return *(void **)(l->key + roundup(map->key_size, 8));
197 }
198 
199 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
200 {
201 	return (struct htab_elem *) (htab->elems + i * htab->elem_size);
202 }
203 
204 static void htab_free_elems(struct bpf_htab *htab)
205 {
206 	int i;
207 
208 	if (!htab_is_percpu(htab))
209 		goto free_elems;
210 
211 	for (i = 0; i < htab->map.max_entries; i++) {
212 		void __percpu *pptr;
213 
214 		pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
215 					 htab->map.key_size);
216 		free_percpu(pptr);
217 		cond_resched();
218 	}
219 free_elems:
220 	bpf_map_area_free(htab->elems);
221 }
222 
223 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
224  * (bucket_lock). If both locks need to be acquired together, the lock
225  * order is always lru_lock -> bucket_lock and this only happens in
226  * bpf_lru_list.c logic. For example, certain code path of
227  * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
228  * will acquire lru_lock first followed by acquiring bucket_lock.
229  *
230  * In hashtab.c, to avoid deadlock, lock acquisition of
231  * bucket_lock followed by lru_lock is not allowed. In such cases,
232  * bucket_lock needs to be released first before acquiring lru_lock.
233  */
234 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
235 					  u32 hash)
236 {
237 	struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
238 	struct htab_elem *l;
239 
240 	if (node) {
241 		l = container_of(node, struct htab_elem, lru_node);
242 		memcpy(l->key, key, htab->map.key_size);
243 		return l;
244 	}
245 
246 	return NULL;
247 }
248 
249 static int prealloc_init(struct bpf_htab *htab)
250 {
251 	u32 num_entries = htab->map.max_entries;
252 	int err = -ENOMEM, i;
253 
254 	if (!htab_is_percpu(htab) && !htab_is_lru(htab))
255 		num_entries += num_possible_cpus();
256 
257 	htab->elems = bpf_map_area_alloc(htab->elem_size * num_entries,
258 					 htab->map.numa_node);
259 	if (!htab->elems)
260 		return -ENOMEM;
261 
262 	if (!htab_is_percpu(htab))
263 		goto skip_percpu_elems;
264 
265 	for (i = 0; i < num_entries; i++) {
266 		u32 size = round_up(htab->map.value_size, 8);
267 		void __percpu *pptr;
268 
269 		pptr = __alloc_percpu_gfp(size, 8, GFP_USER | __GFP_NOWARN);
270 		if (!pptr)
271 			goto free_elems;
272 		htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
273 				  pptr);
274 		cond_resched();
275 	}
276 
277 skip_percpu_elems:
278 	if (htab_is_lru(htab))
279 		err = bpf_lru_init(&htab->lru,
280 				   htab->map.map_flags & BPF_F_NO_COMMON_LRU,
281 				   offsetof(struct htab_elem, hash) -
282 				   offsetof(struct htab_elem, lru_node),
283 				   htab_lru_map_delete_node,
284 				   htab);
285 	else
286 		err = pcpu_freelist_init(&htab->freelist);
287 
288 	if (err)
289 		goto free_elems;
290 
291 	if (htab_is_lru(htab))
292 		bpf_lru_populate(&htab->lru, htab->elems,
293 				 offsetof(struct htab_elem, lru_node),
294 				 htab->elem_size, num_entries);
295 	else
296 		pcpu_freelist_populate(&htab->freelist,
297 				       htab->elems + offsetof(struct htab_elem, fnode),
298 				       htab->elem_size, num_entries);
299 
300 	return 0;
301 
302 free_elems:
303 	htab_free_elems(htab);
304 	return err;
305 }
306 
307 static void prealloc_destroy(struct bpf_htab *htab)
308 {
309 	htab_free_elems(htab);
310 
311 	if (htab_is_lru(htab))
312 		bpf_lru_destroy(&htab->lru);
313 	else
314 		pcpu_freelist_destroy(&htab->freelist);
315 }
316 
317 static int alloc_extra_elems(struct bpf_htab *htab)
318 {
319 	struct htab_elem *__percpu *pptr, *l_new;
320 	struct pcpu_freelist_node *l;
321 	int cpu;
322 
323 	pptr = __alloc_percpu_gfp(sizeof(struct htab_elem *), 8,
324 				  GFP_USER | __GFP_NOWARN);
325 	if (!pptr)
326 		return -ENOMEM;
327 
328 	for_each_possible_cpu(cpu) {
329 		l = pcpu_freelist_pop(&htab->freelist);
330 		/* pop will succeed, since prealloc_init()
331 		 * preallocated extra num_possible_cpus elements
332 		 */
333 		l_new = container_of(l, struct htab_elem, fnode);
334 		*per_cpu_ptr(pptr, cpu) = l_new;
335 	}
336 	htab->extra_elems = pptr;
337 	return 0;
338 }
339 
340 /* Called from syscall */
341 static int htab_map_alloc_check(union bpf_attr *attr)
342 {
343 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
344 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
345 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
346 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
347 	/* percpu_lru means each cpu has its own LRU list.
348 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
349 	 * the map's value itself is percpu.  percpu_lru has
350 	 * nothing to do with the map's value.
351 	 */
352 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
353 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
354 	bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
355 	int numa_node = bpf_map_attr_numa_node(attr);
356 
357 	BUILD_BUG_ON(offsetof(struct htab_elem, htab) !=
358 		     offsetof(struct htab_elem, hash_node.pprev));
359 	BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
360 		     offsetof(struct htab_elem, hash_node.pprev));
361 
362 	if (lru && !bpf_capable())
363 		/* LRU implementation is much complicated than other
364 		 * maps.  Hence, limit to CAP_BPF.
365 		 */
366 		return -EPERM;
367 
368 	if (zero_seed && !capable(CAP_SYS_ADMIN))
369 		/* Guard against local DoS, and discourage production use. */
370 		return -EPERM;
371 
372 	if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
373 	    !bpf_map_flags_access_ok(attr->map_flags))
374 		return -EINVAL;
375 
376 	if (!lru && percpu_lru)
377 		return -EINVAL;
378 
379 	if (lru && !prealloc)
380 		return -ENOTSUPP;
381 
382 	if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
383 		return -EINVAL;
384 
385 	/* check sanity of attributes.
386 	 * value_size == 0 may be allowed in the future to use map as a set
387 	 */
388 	if (attr->max_entries == 0 || attr->key_size == 0 ||
389 	    attr->value_size == 0)
390 		return -EINVAL;
391 
392 	if (attr->key_size > MAX_BPF_STACK)
393 		/* eBPF programs initialize keys on stack, so they cannot be
394 		 * larger than max stack size
395 		 */
396 		return -E2BIG;
397 
398 	if (attr->value_size >= KMALLOC_MAX_SIZE -
399 	    MAX_BPF_STACK - sizeof(struct htab_elem))
400 		/* if value_size is bigger, the user space won't be able to
401 		 * access the elements via bpf syscall. This check also makes
402 		 * sure that the elem_size doesn't overflow and it's
403 		 * kmalloc-able later in htab_map_update_elem()
404 		 */
405 		return -E2BIG;
406 
407 	return 0;
408 }
409 
410 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
411 {
412 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
413 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
414 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
415 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
416 	/* percpu_lru means each cpu has its own LRU list.
417 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
418 	 * the map's value itself is percpu.  percpu_lru has
419 	 * nothing to do with the map's value.
420 	 */
421 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
422 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
423 	struct bpf_htab *htab;
424 	u64 cost;
425 	int err;
426 
427 	htab = kzalloc(sizeof(*htab), GFP_USER);
428 	if (!htab)
429 		return ERR_PTR(-ENOMEM);
430 
431 	bpf_map_init_from_attr(&htab->map, attr);
432 
433 	if (percpu_lru) {
434 		/* ensure each CPU's lru list has >=1 elements.
435 		 * since we are at it, make each lru list has the same
436 		 * number of elements.
437 		 */
438 		htab->map.max_entries = roundup(attr->max_entries,
439 						num_possible_cpus());
440 		if (htab->map.max_entries < attr->max_entries)
441 			htab->map.max_entries = rounddown(attr->max_entries,
442 							  num_possible_cpus());
443 	}
444 
445 	/* hash table size must be power of 2 */
446 	htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
447 
448 	htab->elem_size = sizeof(struct htab_elem) +
449 			  round_up(htab->map.key_size, 8);
450 	if (percpu)
451 		htab->elem_size += sizeof(void *);
452 	else
453 		htab->elem_size += round_up(htab->map.value_size, 8);
454 
455 	err = -E2BIG;
456 	/* prevent zero size kmalloc and check for u32 overflow */
457 	if (htab->n_buckets == 0 ||
458 	    htab->n_buckets > U32_MAX / sizeof(struct bucket))
459 		goto free_htab;
460 
461 	cost = (u64) htab->n_buckets * sizeof(struct bucket) +
462 	       (u64) htab->elem_size * htab->map.max_entries;
463 
464 	if (percpu)
465 		cost += (u64) round_up(htab->map.value_size, 8) *
466 			num_possible_cpus() * htab->map.max_entries;
467 	else
468 	       cost += (u64) htab->elem_size * num_possible_cpus();
469 
470 	/* if map size is larger than memlock limit, reject it */
471 	err = bpf_map_charge_init(&htab->map.memory, cost);
472 	if (err)
473 		goto free_htab;
474 
475 	err = -ENOMEM;
476 	htab->buckets = bpf_map_area_alloc(htab->n_buckets *
477 					   sizeof(struct bucket),
478 					   htab->map.numa_node);
479 	if (!htab->buckets)
480 		goto free_charge;
481 
482 	if (htab->map.map_flags & BPF_F_ZERO_SEED)
483 		htab->hashrnd = 0;
484 	else
485 		htab->hashrnd = get_random_int();
486 
487 	htab_init_buckets(htab);
488 
489 	if (prealloc) {
490 		err = prealloc_init(htab);
491 		if (err)
492 			goto free_buckets;
493 
494 		if (!percpu && !lru) {
495 			/* lru itself can remove the least used element, so
496 			 * there is no need for an extra elem during map_update.
497 			 */
498 			err = alloc_extra_elems(htab);
499 			if (err)
500 				goto free_prealloc;
501 		}
502 	}
503 
504 	return &htab->map;
505 
506 free_prealloc:
507 	prealloc_destroy(htab);
508 free_buckets:
509 	bpf_map_area_free(htab->buckets);
510 free_charge:
511 	bpf_map_charge_finish(&htab->map.memory);
512 free_htab:
513 	kfree(htab);
514 	return ERR_PTR(err);
515 }
516 
517 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
518 {
519 	return jhash(key, key_len, hashrnd);
520 }
521 
522 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
523 {
524 	return &htab->buckets[hash & (htab->n_buckets - 1)];
525 }
526 
527 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
528 {
529 	return &__select_bucket(htab, hash)->head;
530 }
531 
532 /* this lookup function can only be called with bucket lock taken */
533 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
534 					 void *key, u32 key_size)
535 {
536 	struct hlist_nulls_node *n;
537 	struct htab_elem *l;
538 
539 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
540 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
541 			return l;
542 
543 	return NULL;
544 }
545 
546 /* can be called without bucket lock. it will repeat the loop in
547  * the unlikely event when elements moved from one bucket into another
548  * while link list is being walked
549  */
550 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
551 					       u32 hash, void *key,
552 					       u32 key_size, u32 n_buckets)
553 {
554 	struct hlist_nulls_node *n;
555 	struct htab_elem *l;
556 
557 again:
558 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
559 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
560 			return l;
561 
562 	if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
563 		goto again;
564 
565 	return NULL;
566 }
567 
568 /* Called from syscall or from eBPF program directly, so
569  * arguments have to match bpf_map_lookup_elem() exactly.
570  * The return value is adjusted by BPF instructions
571  * in htab_map_gen_lookup().
572  */
573 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
574 {
575 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
576 	struct hlist_nulls_head *head;
577 	struct htab_elem *l;
578 	u32 hash, key_size;
579 
580 	/* Must be called with rcu_read_lock. */
581 	WARN_ON_ONCE(!rcu_read_lock_held());
582 
583 	key_size = map->key_size;
584 
585 	hash = htab_map_hash(key, key_size, htab->hashrnd);
586 
587 	head = select_bucket(htab, hash);
588 
589 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
590 
591 	return l;
592 }
593 
594 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
595 {
596 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
597 
598 	if (l)
599 		return l->key + round_up(map->key_size, 8);
600 
601 	return NULL;
602 }
603 
604 /* inline bpf_map_lookup_elem() call.
605  * Instead of:
606  * bpf_prog
607  *   bpf_map_lookup_elem
608  *     map->ops->map_lookup_elem
609  *       htab_map_lookup_elem
610  *         __htab_map_lookup_elem
611  * do:
612  * bpf_prog
613  *   __htab_map_lookup_elem
614  */
615 static u32 htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
616 {
617 	struct bpf_insn *insn = insn_buf;
618 	const int ret = BPF_REG_0;
619 
620 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
621 		     (void *(*)(struct bpf_map *map, void *key))NULL));
622 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
623 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
624 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
625 				offsetof(struct htab_elem, key) +
626 				round_up(map->key_size, 8));
627 	return insn - insn_buf;
628 }
629 
630 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
631 							void *key, const bool mark)
632 {
633 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
634 
635 	if (l) {
636 		if (mark)
637 			bpf_lru_node_set_ref(&l->lru_node);
638 		return l->key + round_up(map->key_size, 8);
639 	}
640 
641 	return NULL;
642 }
643 
644 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
645 {
646 	return __htab_lru_map_lookup_elem(map, key, true);
647 }
648 
649 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
650 {
651 	return __htab_lru_map_lookup_elem(map, key, false);
652 }
653 
654 static u32 htab_lru_map_gen_lookup(struct bpf_map *map,
655 				   struct bpf_insn *insn_buf)
656 {
657 	struct bpf_insn *insn = insn_buf;
658 	const int ret = BPF_REG_0;
659 	const int ref_reg = BPF_REG_1;
660 
661 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
662 		     (void *(*)(struct bpf_map *map, void *key))NULL));
663 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
664 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
665 	*insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
666 			      offsetof(struct htab_elem, lru_node) +
667 			      offsetof(struct bpf_lru_node, ref));
668 	*insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
669 	*insn++ = BPF_ST_MEM(BPF_B, ret,
670 			     offsetof(struct htab_elem, lru_node) +
671 			     offsetof(struct bpf_lru_node, ref),
672 			     1);
673 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
674 				offsetof(struct htab_elem, key) +
675 				round_up(map->key_size, 8));
676 	return insn - insn_buf;
677 }
678 
679 /* It is called from the bpf_lru_list when the LRU needs to delete
680  * older elements from the htab.
681  */
682 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
683 {
684 	struct bpf_htab *htab = (struct bpf_htab *)arg;
685 	struct htab_elem *l = NULL, *tgt_l;
686 	struct hlist_nulls_head *head;
687 	struct hlist_nulls_node *n;
688 	unsigned long flags;
689 	struct bucket *b;
690 
691 	tgt_l = container_of(node, struct htab_elem, lru_node);
692 	b = __select_bucket(htab, tgt_l->hash);
693 	head = &b->head;
694 
695 	flags = htab_lock_bucket(htab, b);
696 
697 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
698 		if (l == tgt_l) {
699 			hlist_nulls_del_rcu(&l->hash_node);
700 			break;
701 		}
702 
703 	htab_unlock_bucket(htab, b, flags);
704 
705 	return l == tgt_l;
706 }
707 
708 /* Called from syscall */
709 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
710 {
711 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
712 	struct hlist_nulls_head *head;
713 	struct htab_elem *l, *next_l;
714 	u32 hash, key_size;
715 	int i = 0;
716 
717 	WARN_ON_ONCE(!rcu_read_lock_held());
718 
719 	key_size = map->key_size;
720 
721 	if (!key)
722 		goto find_first_elem;
723 
724 	hash = htab_map_hash(key, key_size, htab->hashrnd);
725 
726 	head = select_bucket(htab, hash);
727 
728 	/* lookup the key */
729 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
730 
731 	if (!l)
732 		goto find_first_elem;
733 
734 	/* key was found, get next key in the same bucket */
735 	next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
736 				  struct htab_elem, hash_node);
737 
738 	if (next_l) {
739 		/* if next elem in this hash list is non-zero, just return it */
740 		memcpy(next_key, next_l->key, key_size);
741 		return 0;
742 	}
743 
744 	/* no more elements in this hash list, go to the next bucket */
745 	i = hash & (htab->n_buckets - 1);
746 	i++;
747 
748 find_first_elem:
749 	/* iterate over buckets */
750 	for (; i < htab->n_buckets; i++) {
751 		head = select_bucket(htab, i);
752 
753 		/* pick first element in the bucket */
754 		next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
755 					  struct htab_elem, hash_node);
756 		if (next_l) {
757 			/* if it's not empty, just return it */
758 			memcpy(next_key, next_l->key, key_size);
759 			return 0;
760 		}
761 	}
762 
763 	/* iterated over all buckets and all elements */
764 	return -ENOENT;
765 }
766 
767 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
768 {
769 	if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
770 		free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
771 	kfree(l);
772 }
773 
774 static void htab_elem_free_rcu(struct rcu_head *head)
775 {
776 	struct htab_elem *l = container_of(head, struct htab_elem, rcu);
777 	struct bpf_htab *htab = l->htab;
778 
779 	htab_elem_free(htab, l);
780 }
781 
782 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
783 {
784 	struct bpf_map *map = &htab->map;
785 
786 	if (map->ops->map_fd_put_ptr) {
787 		void *ptr = fd_htab_map_get_ptr(map, l);
788 
789 		map->ops->map_fd_put_ptr(ptr);
790 	}
791 
792 	if (htab_is_prealloc(htab)) {
793 		__pcpu_freelist_push(&htab->freelist, &l->fnode);
794 	} else {
795 		atomic_dec(&htab->count);
796 		l->htab = htab;
797 		call_rcu(&l->rcu, htab_elem_free_rcu);
798 	}
799 }
800 
801 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
802 			    void *value, bool onallcpus)
803 {
804 	if (!onallcpus) {
805 		/* copy true value_size bytes */
806 		memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
807 	} else {
808 		u32 size = round_up(htab->map.value_size, 8);
809 		int off = 0, cpu;
810 
811 		for_each_possible_cpu(cpu) {
812 			bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
813 					value + off, size);
814 			off += size;
815 		}
816 	}
817 }
818 
819 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
820 {
821 	return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
822 	       BITS_PER_LONG == 64;
823 }
824 
825 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
826 					 void *value, u32 key_size, u32 hash,
827 					 bool percpu, bool onallcpus,
828 					 struct htab_elem *old_elem)
829 {
830 	u32 size = htab->map.value_size;
831 	bool prealloc = htab_is_prealloc(htab);
832 	struct htab_elem *l_new, **pl_new;
833 	void __percpu *pptr;
834 
835 	if (prealloc) {
836 		if (old_elem) {
837 			/* if we're updating the existing element,
838 			 * use per-cpu extra elems to avoid freelist_pop/push
839 			 */
840 			pl_new = this_cpu_ptr(htab->extra_elems);
841 			l_new = *pl_new;
842 			*pl_new = old_elem;
843 		} else {
844 			struct pcpu_freelist_node *l;
845 
846 			l = __pcpu_freelist_pop(&htab->freelist);
847 			if (!l)
848 				return ERR_PTR(-E2BIG);
849 			l_new = container_of(l, struct htab_elem, fnode);
850 		}
851 	} else {
852 		if (atomic_inc_return(&htab->count) > htab->map.max_entries)
853 			if (!old_elem) {
854 				/* when map is full and update() is replacing
855 				 * old element, it's ok to allocate, since
856 				 * old element will be freed immediately.
857 				 * Otherwise return an error
858 				 */
859 				l_new = ERR_PTR(-E2BIG);
860 				goto dec_count;
861 			}
862 		l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN,
863 				     htab->map.numa_node);
864 		if (!l_new) {
865 			l_new = ERR_PTR(-ENOMEM);
866 			goto dec_count;
867 		}
868 		check_and_init_map_lock(&htab->map,
869 					l_new->key + round_up(key_size, 8));
870 	}
871 
872 	memcpy(l_new->key, key, key_size);
873 	if (percpu) {
874 		size = round_up(size, 8);
875 		if (prealloc) {
876 			pptr = htab_elem_get_ptr(l_new, key_size);
877 		} else {
878 			/* alloc_percpu zero-fills */
879 			pptr = __alloc_percpu_gfp(size, 8,
880 						  GFP_ATOMIC | __GFP_NOWARN);
881 			if (!pptr) {
882 				kfree(l_new);
883 				l_new = ERR_PTR(-ENOMEM);
884 				goto dec_count;
885 			}
886 		}
887 
888 		pcpu_copy_value(htab, pptr, value, onallcpus);
889 
890 		if (!prealloc)
891 			htab_elem_set_ptr(l_new, key_size, pptr);
892 	} else if (fd_htab_map_needs_adjust(htab)) {
893 		size = round_up(size, 8);
894 		memcpy(l_new->key + round_up(key_size, 8), value, size);
895 	} else {
896 		copy_map_value(&htab->map,
897 			       l_new->key + round_up(key_size, 8),
898 			       value);
899 	}
900 
901 	l_new->hash = hash;
902 	return l_new;
903 dec_count:
904 	atomic_dec(&htab->count);
905 	return l_new;
906 }
907 
908 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
909 		       u64 map_flags)
910 {
911 	if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
912 		/* elem already exists */
913 		return -EEXIST;
914 
915 	if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
916 		/* elem doesn't exist, cannot update it */
917 		return -ENOENT;
918 
919 	return 0;
920 }
921 
922 /* Called from syscall or from eBPF program */
923 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
924 				u64 map_flags)
925 {
926 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
927 	struct htab_elem *l_new = NULL, *l_old;
928 	struct hlist_nulls_head *head;
929 	unsigned long flags;
930 	struct bucket *b;
931 	u32 key_size, hash;
932 	int ret;
933 
934 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
935 		/* unknown flags */
936 		return -EINVAL;
937 
938 	WARN_ON_ONCE(!rcu_read_lock_held());
939 
940 	key_size = map->key_size;
941 
942 	hash = htab_map_hash(key, key_size, htab->hashrnd);
943 
944 	b = __select_bucket(htab, hash);
945 	head = &b->head;
946 
947 	if (unlikely(map_flags & BPF_F_LOCK)) {
948 		if (unlikely(!map_value_has_spin_lock(map)))
949 			return -EINVAL;
950 		/* find an element without taking the bucket lock */
951 		l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
952 					      htab->n_buckets);
953 		ret = check_flags(htab, l_old, map_flags);
954 		if (ret)
955 			return ret;
956 		if (l_old) {
957 			/* grab the element lock and update value in place */
958 			copy_map_value_locked(map,
959 					      l_old->key + round_up(key_size, 8),
960 					      value, false);
961 			return 0;
962 		}
963 		/* fall through, grab the bucket lock and lookup again.
964 		 * 99.9% chance that the element won't be found,
965 		 * but second lookup under lock has to be done.
966 		 */
967 	}
968 
969 	flags = htab_lock_bucket(htab, b);
970 
971 	l_old = lookup_elem_raw(head, hash, key, key_size);
972 
973 	ret = check_flags(htab, l_old, map_flags);
974 	if (ret)
975 		goto err;
976 
977 	if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
978 		/* first lookup without the bucket lock didn't find the element,
979 		 * but second lookup with the bucket lock found it.
980 		 * This case is highly unlikely, but has to be dealt with:
981 		 * grab the element lock in addition to the bucket lock
982 		 * and update element in place
983 		 */
984 		copy_map_value_locked(map,
985 				      l_old->key + round_up(key_size, 8),
986 				      value, false);
987 		ret = 0;
988 		goto err;
989 	}
990 
991 	l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
992 				l_old);
993 	if (IS_ERR(l_new)) {
994 		/* all pre-allocated elements are in use or memory exhausted */
995 		ret = PTR_ERR(l_new);
996 		goto err;
997 	}
998 
999 	/* add new element to the head of the list, so that
1000 	 * concurrent search will find it before old elem
1001 	 */
1002 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1003 	if (l_old) {
1004 		hlist_nulls_del_rcu(&l_old->hash_node);
1005 		if (!htab_is_prealloc(htab))
1006 			free_htab_elem(htab, l_old);
1007 	}
1008 	ret = 0;
1009 err:
1010 	htab_unlock_bucket(htab, b, flags);
1011 	return ret;
1012 }
1013 
1014 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1015 				    u64 map_flags)
1016 {
1017 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1018 	struct htab_elem *l_new, *l_old = NULL;
1019 	struct hlist_nulls_head *head;
1020 	unsigned long flags;
1021 	struct bucket *b;
1022 	u32 key_size, hash;
1023 	int ret;
1024 
1025 	if (unlikely(map_flags > BPF_EXIST))
1026 		/* unknown flags */
1027 		return -EINVAL;
1028 
1029 	WARN_ON_ONCE(!rcu_read_lock_held());
1030 
1031 	key_size = map->key_size;
1032 
1033 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1034 
1035 	b = __select_bucket(htab, hash);
1036 	head = &b->head;
1037 
1038 	/* For LRU, we need to alloc before taking bucket's
1039 	 * spinlock because getting free nodes from LRU may need
1040 	 * to remove older elements from htab and this removal
1041 	 * operation will need a bucket lock.
1042 	 */
1043 	l_new = prealloc_lru_pop(htab, key, hash);
1044 	if (!l_new)
1045 		return -ENOMEM;
1046 	memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size);
1047 
1048 	flags = htab_lock_bucket(htab, b);
1049 
1050 	l_old = lookup_elem_raw(head, hash, key, key_size);
1051 
1052 	ret = check_flags(htab, l_old, map_flags);
1053 	if (ret)
1054 		goto err;
1055 
1056 	/* add new element to the head of the list, so that
1057 	 * concurrent search will find it before old elem
1058 	 */
1059 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1060 	if (l_old) {
1061 		bpf_lru_node_set_ref(&l_new->lru_node);
1062 		hlist_nulls_del_rcu(&l_old->hash_node);
1063 	}
1064 	ret = 0;
1065 
1066 err:
1067 	htab_unlock_bucket(htab, b, flags);
1068 
1069 	if (ret)
1070 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1071 	else if (l_old)
1072 		bpf_lru_push_free(&htab->lru, &l_old->lru_node);
1073 
1074 	return ret;
1075 }
1076 
1077 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1078 					 void *value, u64 map_flags,
1079 					 bool onallcpus)
1080 {
1081 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1082 	struct htab_elem *l_new = NULL, *l_old;
1083 	struct hlist_nulls_head *head;
1084 	unsigned long flags;
1085 	struct bucket *b;
1086 	u32 key_size, hash;
1087 	int ret;
1088 
1089 	if (unlikely(map_flags > BPF_EXIST))
1090 		/* unknown flags */
1091 		return -EINVAL;
1092 
1093 	WARN_ON_ONCE(!rcu_read_lock_held());
1094 
1095 	key_size = map->key_size;
1096 
1097 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1098 
1099 	b = __select_bucket(htab, hash);
1100 	head = &b->head;
1101 
1102 	flags = htab_lock_bucket(htab, b);
1103 
1104 	l_old = lookup_elem_raw(head, hash, key, key_size);
1105 
1106 	ret = check_flags(htab, l_old, map_flags);
1107 	if (ret)
1108 		goto err;
1109 
1110 	if (l_old) {
1111 		/* per-cpu hash map can update value in-place */
1112 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1113 				value, onallcpus);
1114 	} else {
1115 		l_new = alloc_htab_elem(htab, key, value, key_size,
1116 					hash, true, onallcpus, NULL);
1117 		if (IS_ERR(l_new)) {
1118 			ret = PTR_ERR(l_new);
1119 			goto err;
1120 		}
1121 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1122 	}
1123 	ret = 0;
1124 err:
1125 	htab_unlock_bucket(htab, b, flags);
1126 	return ret;
1127 }
1128 
1129 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1130 					     void *value, u64 map_flags,
1131 					     bool onallcpus)
1132 {
1133 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1134 	struct htab_elem *l_new = NULL, *l_old;
1135 	struct hlist_nulls_head *head;
1136 	unsigned long flags;
1137 	struct bucket *b;
1138 	u32 key_size, hash;
1139 	int ret;
1140 
1141 	if (unlikely(map_flags > BPF_EXIST))
1142 		/* unknown flags */
1143 		return -EINVAL;
1144 
1145 	WARN_ON_ONCE(!rcu_read_lock_held());
1146 
1147 	key_size = map->key_size;
1148 
1149 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1150 
1151 	b = __select_bucket(htab, hash);
1152 	head = &b->head;
1153 
1154 	/* For LRU, we need to alloc before taking bucket's
1155 	 * spinlock because LRU's elem alloc may need
1156 	 * to remove older elem from htab and this removal
1157 	 * operation will need a bucket lock.
1158 	 */
1159 	if (map_flags != BPF_EXIST) {
1160 		l_new = prealloc_lru_pop(htab, key, hash);
1161 		if (!l_new)
1162 			return -ENOMEM;
1163 	}
1164 
1165 	flags = htab_lock_bucket(htab, b);
1166 
1167 	l_old = lookup_elem_raw(head, hash, key, key_size);
1168 
1169 	ret = check_flags(htab, l_old, map_flags);
1170 	if (ret)
1171 		goto err;
1172 
1173 	if (l_old) {
1174 		bpf_lru_node_set_ref(&l_old->lru_node);
1175 
1176 		/* per-cpu hash map can update value in-place */
1177 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1178 				value, onallcpus);
1179 	} else {
1180 		pcpu_copy_value(htab, htab_elem_get_ptr(l_new, key_size),
1181 				value, onallcpus);
1182 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1183 		l_new = NULL;
1184 	}
1185 	ret = 0;
1186 err:
1187 	htab_unlock_bucket(htab, b, flags);
1188 	if (l_new)
1189 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1190 	return ret;
1191 }
1192 
1193 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1194 				       void *value, u64 map_flags)
1195 {
1196 	return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1197 }
1198 
1199 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1200 					   void *value, u64 map_flags)
1201 {
1202 	return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1203 						 false);
1204 }
1205 
1206 /* Called from syscall or from eBPF program */
1207 static int htab_map_delete_elem(struct bpf_map *map, void *key)
1208 {
1209 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1210 	struct hlist_nulls_head *head;
1211 	struct bucket *b;
1212 	struct htab_elem *l;
1213 	unsigned long flags;
1214 	u32 hash, key_size;
1215 	int ret = -ENOENT;
1216 
1217 	WARN_ON_ONCE(!rcu_read_lock_held());
1218 
1219 	key_size = map->key_size;
1220 
1221 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1222 	b = __select_bucket(htab, hash);
1223 	head = &b->head;
1224 
1225 	flags = htab_lock_bucket(htab, b);
1226 
1227 	l = lookup_elem_raw(head, hash, key, key_size);
1228 
1229 	if (l) {
1230 		hlist_nulls_del_rcu(&l->hash_node);
1231 		free_htab_elem(htab, l);
1232 		ret = 0;
1233 	}
1234 
1235 	htab_unlock_bucket(htab, b, flags);
1236 	return ret;
1237 }
1238 
1239 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1240 {
1241 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1242 	struct hlist_nulls_head *head;
1243 	struct bucket *b;
1244 	struct htab_elem *l;
1245 	unsigned long flags;
1246 	u32 hash, key_size;
1247 	int ret = -ENOENT;
1248 
1249 	WARN_ON_ONCE(!rcu_read_lock_held());
1250 
1251 	key_size = map->key_size;
1252 
1253 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1254 	b = __select_bucket(htab, hash);
1255 	head = &b->head;
1256 
1257 	flags = htab_lock_bucket(htab, b);
1258 
1259 	l = lookup_elem_raw(head, hash, key, key_size);
1260 
1261 	if (l) {
1262 		hlist_nulls_del_rcu(&l->hash_node);
1263 		ret = 0;
1264 	}
1265 
1266 	htab_unlock_bucket(htab, b, flags);
1267 	if (l)
1268 		bpf_lru_push_free(&htab->lru, &l->lru_node);
1269 	return ret;
1270 }
1271 
1272 static void delete_all_elements(struct bpf_htab *htab)
1273 {
1274 	int i;
1275 
1276 	for (i = 0; i < htab->n_buckets; i++) {
1277 		struct hlist_nulls_head *head = select_bucket(htab, i);
1278 		struct hlist_nulls_node *n;
1279 		struct htab_elem *l;
1280 
1281 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1282 			hlist_nulls_del_rcu(&l->hash_node);
1283 			htab_elem_free(htab, l);
1284 		}
1285 	}
1286 }
1287 
1288 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1289 static void htab_map_free(struct bpf_map *map)
1290 {
1291 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1292 
1293 	/* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1294 	 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1295 	 * There is no need to synchronize_rcu() here to protect map elements.
1296 	 */
1297 
1298 	/* some of free_htab_elem() callbacks for elements of this map may
1299 	 * not have executed. Wait for them.
1300 	 */
1301 	rcu_barrier();
1302 	if (!htab_is_prealloc(htab))
1303 		delete_all_elements(htab);
1304 	else
1305 		prealloc_destroy(htab);
1306 
1307 	free_percpu(htab->extra_elems);
1308 	bpf_map_area_free(htab->buckets);
1309 	kfree(htab);
1310 }
1311 
1312 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1313 				   struct seq_file *m)
1314 {
1315 	void *value;
1316 
1317 	rcu_read_lock();
1318 
1319 	value = htab_map_lookup_elem(map, key);
1320 	if (!value) {
1321 		rcu_read_unlock();
1322 		return;
1323 	}
1324 
1325 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1326 	seq_puts(m, ": ");
1327 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1328 	seq_puts(m, "\n");
1329 
1330 	rcu_read_unlock();
1331 }
1332 
1333 static int
1334 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1335 				   const union bpf_attr *attr,
1336 				   union bpf_attr __user *uattr,
1337 				   bool do_delete, bool is_lru_map,
1338 				   bool is_percpu)
1339 {
1340 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1341 	u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1342 	void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1343 	void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1344 	void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1345 	void *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1346 	u32 batch, max_count, size, bucket_size;
1347 	struct htab_elem *node_to_free = NULL;
1348 	u64 elem_map_flags, map_flags;
1349 	struct hlist_nulls_head *head;
1350 	struct hlist_nulls_node *n;
1351 	unsigned long flags = 0;
1352 	bool locked = false;
1353 	struct htab_elem *l;
1354 	struct bucket *b;
1355 	int ret = 0;
1356 
1357 	elem_map_flags = attr->batch.elem_flags;
1358 	if ((elem_map_flags & ~BPF_F_LOCK) ||
1359 	    ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
1360 		return -EINVAL;
1361 
1362 	map_flags = attr->batch.flags;
1363 	if (map_flags)
1364 		return -EINVAL;
1365 
1366 	max_count = attr->batch.count;
1367 	if (!max_count)
1368 		return 0;
1369 
1370 	if (put_user(0, &uattr->batch.count))
1371 		return -EFAULT;
1372 
1373 	batch = 0;
1374 	if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1375 		return -EFAULT;
1376 
1377 	if (batch >= htab->n_buckets)
1378 		return -ENOENT;
1379 
1380 	key_size = htab->map.key_size;
1381 	roundup_key_size = round_up(htab->map.key_size, 8);
1382 	value_size = htab->map.value_size;
1383 	size = round_up(value_size, 8);
1384 	if (is_percpu)
1385 		value_size = size * num_possible_cpus();
1386 	total = 0;
1387 	/* while experimenting with hash tables with sizes ranging from 10 to
1388 	 * 1000, it was observed that a bucket can have upto 5 entries.
1389 	 */
1390 	bucket_size = 5;
1391 
1392 alloc:
1393 	/* We cannot do copy_from_user or copy_to_user inside
1394 	 * the rcu_read_lock. Allocate enough space here.
1395 	 */
1396 	keys = kvmalloc(key_size * bucket_size, GFP_USER | __GFP_NOWARN);
1397 	values = kvmalloc(value_size * bucket_size, GFP_USER | __GFP_NOWARN);
1398 	if (!keys || !values) {
1399 		ret = -ENOMEM;
1400 		goto after_loop;
1401 	}
1402 
1403 again:
1404 	bpf_disable_instrumentation();
1405 	rcu_read_lock();
1406 again_nocopy:
1407 	dst_key = keys;
1408 	dst_val = values;
1409 	b = &htab->buckets[batch];
1410 	head = &b->head;
1411 	/* do not grab the lock unless need it (bucket_cnt > 0). */
1412 	if (locked)
1413 		flags = htab_lock_bucket(htab, b);
1414 
1415 	bucket_cnt = 0;
1416 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1417 		bucket_cnt++;
1418 
1419 	if (bucket_cnt && !locked) {
1420 		locked = true;
1421 		goto again_nocopy;
1422 	}
1423 
1424 	if (bucket_cnt > (max_count - total)) {
1425 		if (total == 0)
1426 			ret = -ENOSPC;
1427 		/* Note that since bucket_cnt > 0 here, it is implicit
1428 		 * that the locked was grabbed, so release it.
1429 		 */
1430 		htab_unlock_bucket(htab, b, flags);
1431 		rcu_read_unlock();
1432 		bpf_enable_instrumentation();
1433 		goto after_loop;
1434 	}
1435 
1436 	if (bucket_cnt > bucket_size) {
1437 		bucket_size = bucket_cnt;
1438 		/* Note that since bucket_cnt > 0 here, it is implicit
1439 		 * that the locked was grabbed, so release it.
1440 		 */
1441 		htab_unlock_bucket(htab, b, flags);
1442 		rcu_read_unlock();
1443 		bpf_enable_instrumentation();
1444 		kvfree(keys);
1445 		kvfree(values);
1446 		goto alloc;
1447 	}
1448 
1449 	/* Next block is only safe to run if you have grabbed the lock */
1450 	if (!locked)
1451 		goto next_batch;
1452 
1453 	hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1454 		memcpy(dst_key, l->key, key_size);
1455 
1456 		if (is_percpu) {
1457 			int off = 0, cpu;
1458 			void __percpu *pptr;
1459 
1460 			pptr = htab_elem_get_ptr(l, map->key_size);
1461 			for_each_possible_cpu(cpu) {
1462 				bpf_long_memcpy(dst_val + off,
1463 						per_cpu_ptr(pptr, cpu), size);
1464 				off += size;
1465 			}
1466 		} else {
1467 			value = l->key + roundup_key_size;
1468 			if (elem_map_flags & BPF_F_LOCK)
1469 				copy_map_value_locked(map, dst_val, value,
1470 						      true);
1471 			else
1472 				copy_map_value(map, dst_val, value);
1473 			check_and_init_map_lock(map, dst_val);
1474 		}
1475 		if (do_delete) {
1476 			hlist_nulls_del_rcu(&l->hash_node);
1477 
1478 			/* bpf_lru_push_free() will acquire lru_lock, which
1479 			 * may cause deadlock. See comments in function
1480 			 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1481 			 * after releasing the bucket lock.
1482 			 */
1483 			if (is_lru_map) {
1484 				l->batch_flink = node_to_free;
1485 				node_to_free = l;
1486 			} else {
1487 				free_htab_elem(htab, l);
1488 			}
1489 		}
1490 		dst_key += key_size;
1491 		dst_val += value_size;
1492 	}
1493 
1494 	htab_unlock_bucket(htab, b, flags);
1495 	locked = false;
1496 
1497 	while (node_to_free) {
1498 		l = node_to_free;
1499 		node_to_free = node_to_free->batch_flink;
1500 		bpf_lru_push_free(&htab->lru, &l->lru_node);
1501 	}
1502 
1503 next_batch:
1504 	/* If we are not copying data, we can go to next bucket and avoid
1505 	 * unlocking the rcu.
1506 	 */
1507 	if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1508 		batch++;
1509 		goto again_nocopy;
1510 	}
1511 
1512 	rcu_read_unlock();
1513 	bpf_enable_instrumentation();
1514 	if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1515 	    key_size * bucket_cnt) ||
1516 	    copy_to_user(uvalues + total * value_size, values,
1517 	    value_size * bucket_cnt))) {
1518 		ret = -EFAULT;
1519 		goto after_loop;
1520 	}
1521 
1522 	total += bucket_cnt;
1523 	batch++;
1524 	if (batch >= htab->n_buckets) {
1525 		ret = -ENOENT;
1526 		goto after_loop;
1527 	}
1528 	goto again;
1529 
1530 after_loop:
1531 	if (ret == -EFAULT)
1532 		goto out;
1533 
1534 	/* copy # of entries and next batch */
1535 	ubatch = u64_to_user_ptr(attr->batch.out_batch);
1536 	if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1537 	    put_user(total, &uattr->batch.count))
1538 		ret = -EFAULT;
1539 
1540 out:
1541 	kvfree(keys);
1542 	kvfree(values);
1543 	return ret;
1544 }
1545 
1546 static int
1547 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1548 			     union bpf_attr __user *uattr)
1549 {
1550 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1551 						  false, true);
1552 }
1553 
1554 static int
1555 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1556 					const union bpf_attr *attr,
1557 					union bpf_attr __user *uattr)
1558 {
1559 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1560 						  false, true);
1561 }
1562 
1563 static int
1564 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1565 		      union bpf_attr __user *uattr)
1566 {
1567 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1568 						  false, false);
1569 }
1570 
1571 static int
1572 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1573 				 const union bpf_attr *attr,
1574 				 union bpf_attr __user *uattr)
1575 {
1576 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1577 						  false, false);
1578 }
1579 
1580 static int
1581 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1582 				 const union bpf_attr *attr,
1583 				 union bpf_attr __user *uattr)
1584 {
1585 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1586 						  true, true);
1587 }
1588 
1589 static int
1590 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1591 					    const union bpf_attr *attr,
1592 					    union bpf_attr __user *uattr)
1593 {
1594 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1595 						  true, true);
1596 }
1597 
1598 static int
1599 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1600 			  union bpf_attr __user *uattr)
1601 {
1602 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1603 						  true, false);
1604 }
1605 
1606 static int
1607 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1608 				     const union bpf_attr *attr,
1609 				     union bpf_attr __user *uattr)
1610 {
1611 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1612 						  true, false);
1613 }
1614 
1615 struct bpf_iter_seq_hash_map_info {
1616 	struct bpf_map *map;
1617 	struct bpf_htab *htab;
1618 	void *percpu_value_buf; // non-zero means percpu hash
1619 	unsigned long flags;
1620 	u32 bucket_id;
1621 	u32 skip_elems;
1622 };
1623 
1624 static struct htab_elem *
1625 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1626 			   struct htab_elem *prev_elem)
1627 {
1628 	const struct bpf_htab *htab = info->htab;
1629 	unsigned long flags = info->flags;
1630 	u32 skip_elems = info->skip_elems;
1631 	u32 bucket_id = info->bucket_id;
1632 	struct hlist_nulls_head *head;
1633 	struct hlist_nulls_node *n;
1634 	struct htab_elem *elem;
1635 	struct bucket *b;
1636 	u32 i, count;
1637 
1638 	if (bucket_id >= htab->n_buckets)
1639 		return NULL;
1640 
1641 	/* try to find next elem in the same bucket */
1642 	if (prev_elem) {
1643 		/* no update/deletion on this bucket, prev_elem should be still valid
1644 		 * and we won't skip elements.
1645 		 */
1646 		n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1647 		elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1648 		if (elem)
1649 			return elem;
1650 
1651 		/* not found, unlock and go to the next bucket */
1652 		b = &htab->buckets[bucket_id++];
1653 		htab_unlock_bucket(htab, b, flags);
1654 		skip_elems = 0;
1655 	}
1656 
1657 	for (i = bucket_id; i < htab->n_buckets; i++) {
1658 		b = &htab->buckets[i];
1659 		flags = htab_lock_bucket(htab, b);
1660 
1661 		count = 0;
1662 		head = &b->head;
1663 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1664 			if (count >= skip_elems) {
1665 				info->flags = flags;
1666 				info->bucket_id = i;
1667 				info->skip_elems = count;
1668 				return elem;
1669 			}
1670 			count++;
1671 		}
1672 
1673 		htab_unlock_bucket(htab, b, flags);
1674 		skip_elems = 0;
1675 	}
1676 
1677 	info->bucket_id = i;
1678 	info->skip_elems = 0;
1679 	return NULL;
1680 }
1681 
1682 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
1683 {
1684 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1685 	struct htab_elem *elem;
1686 
1687 	elem = bpf_hash_map_seq_find_next(info, NULL);
1688 	if (!elem)
1689 		return NULL;
1690 
1691 	if (*pos == 0)
1692 		++*pos;
1693 	return elem;
1694 }
1695 
1696 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1697 {
1698 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1699 
1700 	++*pos;
1701 	++info->skip_elems;
1702 	return bpf_hash_map_seq_find_next(info, v);
1703 }
1704 
1705 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
1706 {
1707 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1708 	u32 roundup_key_size, roundup_value_size;
1709 	struct bpf_iter__bpf_map_elem ctx = {};
1710 	struct bpf_map *map = info->map;
1711 	struct bpf_iter_meta meta;
1712 	int ret = 0, off = 0, cpu;
1713 	struct bpf_prog *prog;
1714 	void __percpu *pptr;
1715 
1716 	meta.seq = seq;
1717 	prog = bpf_iter_get_info(&meta, elem == NULL);
1718 	if (prog) {
1719 		ctx.meta = &meta;
1720 		ctx.map = info->map;
1721 		if (elem) {
1722 			roundup_key_size = round_up(map->key_size, 8);
1723 			ctx.key = elem->key;
1724 			if (!info->percpu_value_buf) {
1725 				ctx.value = elem->key + roundup_key_size;
1726 			} else {
1727 				roundup_value_size = round_up(map->value_size, 8);
1728 				pptr = htab_elem_get_ptr(elem, map->key_size);
1729 				for_each_possible_cpu(cpu) {
1730 					bpf_long_memcpy(info->percpu_value_buf + off,
1731 							per_cpu_ptr(pptr, cpu),
1732 							roundup_value_size);
1733 					off += roundup_value_size;
1734 				}
1735 				ctx.value = info->percpu_value_buf;
1736 			}
1737 		}
1738 		ret = bpf_iter_run_prog(prog, &ctx);
1739 	}
1740 
1741 	return ret;
1742 }
1743 
1744 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
1745 {
1746 	return __bpf_hash_map_seq_show(seq, v);
1747 }
1748 
1749 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
1750 {
1751 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1752 
1753 	if (!v)
1754 		(void)__bpf_hash_map_seq_show(seq, NULL);
1755 	else
1756 		htab_unlock_bucket(info->htab,
1757 				   &info->htab->buckets[info->bucket_id],
1758 				   info->flags);
1759 }
1760 
1761 static int bpf_iter_init_hash_map(void *priv_data,
1762 				  struct bpf_iter_aux_info *aux)
1763 {
1764 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1765 	struct bpf_map *map = aux->map;
1766 	void *value_buf;
1767 	u32 buf_size;
1768 
1769 	if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
1770 	    map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
1771 		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
1772 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
1773 		if (!value_buf)
1774 			return -ENOMEM;
1775 
1776 		seq_info->percpu_value_buf = value_buf;
1777 	}
1778 
1779 	seq_info->map = map;
1780 	seq_info->htab = container_of(map, struct bpf_htab, map);
1781 	return 0;
1782 }
1783 
1784 static void bpf_iter_fini_hash_map(void *priv_data)
1785 {
1786 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1787 
1788 	kfree(seq_info->percpu_value_buf);
1789 }
1790 
1791 static const struct seq_operations bpf_hash_map_seq_ops = {
1792 	.start	= bpf_hash_map_seq_start,
1793 	.next	= bpf_hash_map_seq_next,
1794 	.stop	= bpf_hash_map_seq_stop,
1795 	.show	= bpf_hash_map_seq_show,
1796 };
1797 
1798 static const struct bpf_iter_seq_info iter_seq_info = {
1799 	.seq_ops		= &bpf_hash_map_seq_ops,
1800 	.init_seq_private	= bpf_iter_init_hash_map,
1801 	.fini_seq_private	= bpf_iter_fini_hash_map,
1802 	.seq_priv_size		= sizeof(struct bpf_iter_seq_hash_map_info),
1803 };
1804 
1805 static int htab_map_btf_id;
1806 const struct bpf_map_ops htab_map_ops = {
1807 	.map_alloc_check = htab_map_alloc_check,
1808 	.map_alloc = htab_map_alloc,
1809 	.map_free = htab_map_free,
1810 	.map_get_next_key = htab_map_get_next_key,
1811 	.map_lookup_elem = htab_map_lookup_elem,
1812 	.map_update_elem = htab_map_update_elem,
1813 	.map_delete_elem = htab_map_delete_elem,
1814 	.map_gen_lookup = htab_map_gen_lookup,
1815 	.map_seq_show_elem = htab_map_seq_show_elem,
1816 	BATCH_OPS(htab),
1817 	.map_btf_name = "bpf_htab",
1818 	.map_btf_id = &htab_map_btf_id,
1819 	.iter_seq_info = &iter_seq_info,
1820 };
1821 
1822 static int htab_lru_map_btf_id;
1823 const struct bpf_map_ops htab_lru_map_ops = {
1824 	.map_alloc_check = htab_map_alloc_check,
1825 	.map_alloc = htab_map_alloc,
1826 	.map_free = htab_map_free,
1827 	.map_get_next_key = htab_map_get_next_key,
1828 	.map_lookup_elem = htab_lru_map_lookup_elem,
1829 	.map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
1830 	.map_update_elem = htab_lru_map_update_elem,
1831 	.map_delete_elem = htab_lru_map_delete_elem,
1832 	.map_gen_lookup = htab_lru_map_gen_lookup,
1833 	.map_seq_show_elem = htab_map_seq_show_elem,
1834 	BATCH_OPS(htab_lru),
1835 	.map_btf_name = "bpf_htab",
1836 	.map_btf_id = &htab_lru_map_btf_id,
1837 	.iter_seq_info = &iter_seq_info,
1838 };
1839 
1840 /* Called from eBPF program */
1841 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1842 {
1843 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
1844 
1845 	if (l)
1846 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1847 	else
1848 		return NULL;
1849 }
1850 
1851 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1852 {
1853 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
1854 
1855 	if (l) {
1856 		bpf_lru_node_set_ref(&l->lru_node);
1857 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1858 	}
1859 
1860 	return NULL;
1861 }
1862 
1863 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
1864 {
1865 	struct htab_elem *l;
1866 	void __percpu *pptr;
1867 	int ret = -ENOENT;
1868 	int cpu, off = 0;
1869 	u32 size;
1870 
1871 	/* per_cpu areas are zero-filled and bpf programs can only
1872 	 * access 'value_size' of them, so copying rounded areas
1873 	 * will not leak any kernel data
1874 	 */
1875 	size = round_up(map->value_size, 8);
1876 	rcu_read_lock();
1877 	l = __htab_map_lookup_elem(map, key);
1878 	if (!l)
1879 		goto out;
1880 	/* We do not mark LRU map element here in order to not mess up
1881 	 * eviction heuristics when user space does a map walk.
1882 	 */
1883 	pptr = htab_elem_get_ptr(l, map->key_size);
1884 	for_each_possible_cpu(cpu) {
1885 		bpf_long_memcpy(value + off,
1886 				per_cpu_ptr(pptr, cpu), size);
1887 		off += size;
1888 	}
1889 	ret = 0;
1890 out:
1891 	rcu_read_unlock();
1892 	return ret;
1893 }
1894 
1895 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
1896 			   u64 map_flags)
1897 {
1898 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1899 	int ret;
1900 
1901 	rcu_read_lock();
1902 	if (htab_is_lru(htab))
1903 		ret = __htab_lru_percpu_map_update_elem(map, key, value,
1904 							map_flags, true);
1905 	else
1906 		ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
1907 						    true);
1908 	rcu_read_unlock();
1909 
1910 	return ret;
1911 }
1912 
1913 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
1914 					  struct seq_file *m)
1915 {
1916 	struct htab_elem *l;
1917 	void __percpu *pptr;
1918 	int cpu;
1919 
1920 	rcu_read_lock();
1921 
1922 	l = __htab_map_lookup_elem(map, key);
1923 	if (!l) {
1924 		rcu_read_unlock();
1925 		return;
1926 	}
1927 
1928 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1929 	seq_puts(m, ": {\n");
1930 	pptr = htab_elem_get_ptr(l, map->key_size);
1931 	for_each_possible_cpu(cpu) {
1932 		seq_printf(m, "\tcpu%d: ", cpu);
1933 		btf_type_seq_show(map->btf, map->btf_value_type_id,
1934 				  per_cpu_ptr(pptr, cpu), m);
1935 		seq_puts(m, "\n");
1936 	}
1937 	seq_puts(m, "}\n");
1938 
1939 	rcu_read_unlock();
1940 }
1941 
1942 static int htab_percpu_map_btf_id;
1943 const struct bpf_map_ops htab_percpu_map_ops = {
1944 	.map_alloc_check = htab_map_alloc_check,
1945 	.map_alloc = htab_map_alloc,
1946 	.map_free = htab_map_free,
1947 	.map_get_next_key = htab_map_get_next_key,
1948 	.map_lookup_elem = htab_percpu_map_lookup_elem,
1949 	.map_update_elem = htab_percpu_map_update_elem,
1950 	.map_delete_elem = htab_map_delete_elem,
1951 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
1952 	BATCH_OPS(htab_percpu),
1953 	.map_btf_name = "bpf_htab",
1954 	.map_btf_id = &htab_percpu_map_btf_id,
1955 	.iter_seq_info = &iter_seq_info,
1956 };
1957 
1958 static int htab_lru_percpu_map_btf_id;
1959 const struct bpf_map_ops htab_lru_percpu_map_ops = {
1960 	.map_alloc_check = htab_map_alloc_check,
1961 	.map_alloc = htab_map_alloc,
1962 	.map_free = htab_map_free,
1963 	.map_get_next_key = htab_map_get_next_key,
1964 	.map_lookup_elem = htab_lru_percpu_map_lookup_elem,
1965 	.map_update_elem = htab_lru_percpu_map_update_elem,
1966 	.map_delete_elem = htab_lru_map_delete_elem,
1967 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
1968 	BATCH_OPS(htab_lru_percpu),
1969 	.map_btf_name = "bpf_htab",
1970 	.map_btf_id = &htab_lru_percpu_map_btf_id,
1971 	.iter_seq_info = &iter_seq_info,
1972 };
1973 
1974 static int fd_htab_map_alloc_check(union bpf_attr *attr)
1975 {
1976 	if (attr->value_size != sizeof(u32))
1977 		return -EINVAL;
1978 	return htab_map_alloc_check(attr);
1979 }
1980 
1981 static void fd_htab_map_free(struct bpf_map *map)
1982 {
1983 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1984 	struct hlist_nulls_node *n;
1985 	struct hlist_nulls_head *head;
1986 	struct htab_elem *l;
1987 	int i;
1988 
1989 	for (i = 0; i < htab->n_buckets; i++) {
1990 		head = select_bucket(htab, i);
1991 
1992 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1993 			void *ptr = fd_htab_map_get_ptr(map, l);
1994 
1995 			map->ops->map_fd_put_ptr(ptr);
1996 		}
1997 	}
1998 
1999 	htab_map_free(map);
2000 }
2001 
2002 /* only called from syscall */
2003 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2004 {
2005 	void **ptr;
2006 	int ret = 0;
2007 
2008 	if (!map->ops->map_fd_sys_lookup_elem)
2009 		return -ENOTSUPP;
2010 
2011 	rcu_read_lock();
2012 	ptr = htab_map_lookup_elem(map, key);
2013 	if (ptr)
2014 		*value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2015 	else
2016 		ret = -ENOENT;
2017 	rcu_read_unlock();
2018 
2019 	return ret;
2020 }
2021 
2022 /* only called from syscall */
2023 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2024 				void *key, void *value, u64 map_flags)
2025 {
2026 	void *ptr;
2027 	int ret;
2028 	u32 ufd = *(u32 *)value;
2029 
2030 	ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2031 	if (IS_ERR(ptr))
2032 		return PTR_ERR(ptr);
2033 
2034 	ret = htab_map_update_elem(map, key, &ptr, map_flags);
2035 	if (ret)
2036 		map->ops->map_fd_put_ptr(ptr);
2037 
2038 	return ret;
2039 }
2040 
2041 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2042 {
2043 	struct bpf_map *map, *inner_map_meta;
2044 
2045 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2046 	if (IS_ERR(inner_map_meta))
2047 		return inner_map_meta;
2048 
2049 	map = htab_map_alloc(attr);
2050 	if (IS_ERR(map)) {
2051 		bpf_map_meta_free(inner_map_meta);
2052 		return map;
2053 	}
2054 
2055 	map->inner_map_meta = inner_map_meta;
2056 
2057 	return map;
2058 }
2059 
2060 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2061 {
2062 	struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
2063 
2064 	if (!inner_map)
2065 		return NULL;
2066 
2067 	return READ_ONCE(*inner_map);
2068 }
2069 
2070 static u32 htab_of_map_gen_lookup(struct bpf_map *map,
2071 				  struct bpf_insn *insn_buf)
2072 {
2073 	struct bpf_insn *insn = insn_buf;
2074 	const int ret = BPF_REG_0;
2075 
2076 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2077 		     (void *(*)(struct bpf_map *map, void *key))NULL));
2078 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
2079 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2080 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2081 				offsetof(struct htab_elem, key) +
2082 				round_up(map->key_size, 8));
2083 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2084 
2085 	return insn - insn_buf;
2086 }
2087 
2088 static void htab_of_map_free(struct bpf_map *map)
2089 {
2090 	bpf_map_meta_free(map->inner_map_meta);
2091 	fd_htab_map_free(map);
2092 }
2093 
2094 static int htab_of_maps_map_btf_id;
2095 const struct bpf_map_ops htab_of_maps_map_ops = {
2096 	.map_alloc_check = fd_htab_map_alloc_check,
2097 	.map_alloc = htab_of_map_alloc,
2098 	.map_free = htab_of_map_free,
2099 	.map_get_next_key = htab_map_get_next_key,
2100 	.map_lookup_elem = htab_of_map_lookup_elem,
2101 	.map_delete_elem = htab_map_delete_elem,
2102 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
2103 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
2104 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2105 	.map_gen_lookup = htab_of_map_gen_lookup,
2106 	.map_check_btf = map_check_no_btf,
2107 	.map_btf_name = "bpf_htab",
2108 	.map_btf_id = &htab_of_maps_map_btf_id,
2109 };
2110