xref: /linux/kernel/bpf/hashtab.c (revision c9d23f9657cabfd2836a096bf6eddf8df2cf1434)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include <linux/rcupdate_trace.h>
13 #include <linux/btf_ids.h>
14 #include "percpu_freelist.h"
15 #include "bpf_lru_list.h"
16 #include "map_in_map.h"
17 #include <linux/bpf_mem_alloc.h>
18 
19 #define HTAB_CREATE_FLAG_MASK						\
20 	(BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |	\
21 	 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
22 
23 #define BATCH_OPS(_name)			\
24 	.map_lookup_batch =			\
25 	_name##_map_lookup_batch,		\
26 	.map_lookup_and_delete_batch =		\
27 	_name##_map_lookup_and_delete_batch,	\
28 	.map_update_batch =			\
29 	generic_map_update_batch,		\
30 	.map_delete_batch =			\
31 	generic_map_delete_batch
32 
33 /*
34  * The bucket lock has two protection scopes:
35  *
36  * 1) Serializing concurrent operations from BPF programs on different
37  *    CPUs
38  *
39  * 2) Serializing concurrent operations from BPF programs and sys_bpf()
40  *
41  * BPF programs can execute in any context including perf, kprobes and
42  * tracing. As there are almost no limits where perf, kprobes and tracing
43  * can be invoked from the lock operations need to be protected against
44  * deadlocks. Deadlocks can be caused by recursion and by an invocation in
45  * the lock held section when functions which acquire this lock are invoked
46  * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
47  * variable bpf_prog_active, which prevents BPF programs attached to perf
48  * events, kprobes and tracing to be invoked before the prior invocation
49  * from one of these contexts completed. sys_bpf() uses the same mechanism
50  * by pinning the task to the current CPU and incrementing the recursion
51  * protection across the map operation.
52  *
53  * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
54  * operations like memory allocations (even with GFP_ATOMIC) from atomic
55  * contexts. This is required because even with GFP_ATOMIC the memory
56  * allocator calls into code paths which acquire locks with long held lock
57  * sections. To ensure the deterministic behaviour these locks are regular
58  * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
59  * true atomic contexts on an RT kernel are the low level hardware
60  * handling, scheduling, low level interrupt handling, NMIs etc. None of
61  * these contexts should ever do memory allocations.
62  *
63  * As regular device interrupt handlers and soft interrupts are forced into
64  * thread context, the existing code which does
65  *   spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*();
66  * just works.
67  *
68  * In theory the BPF locks could be converted to regular spinlocks as well,
69  * but the bucket locks and percpu_freelist locks can be taken from
70  * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
71  * atomic contexts even on RT. Before the introduction of bpf_mem_alloc,
72  * it is only safe to use raw spinlock for preallocated hash map on a RT kernel,
73  * because there is no memory allocation within the lock held sections. However
74  * after hash map was fully converted to use bpf_mem_alloc, there will be
75  * non-synchronous memory allocation for non-preallocated hash map, so it is
76  * safe to always use raw spinlock for bucket lock.
77  */
78 struct bucket {
79 	struct hlist_nulls_head head;
80 	raw_spinlock_t raw_lock;
81 };
82 
83 #define HASHTAB_MAP_LOCK_COUNT 8
84 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
85 
86 struct bpf_htab {
87 	struct bpf_map map;
88 	struct bpf_mem_alloc ma;
89 	struct bpf_mem_alloc pcpu_ma;
90 	struct bucket *buckets;
91 	void *elems;
92 	union {
93 		struct pcpu_freelist freelist;
94 		struct bpf_lru lru;
95 	};
96 	struct htab_elem *__percpu *extra_elems;
97 	/* number of elements in non-preallocated hashtable are kept
98 	 * in either pcount or count
99 	 */
100 	struct percpu_counter pcount;
101 	atomic_t count;
102 	bool use_percpu_counter;
103 	u32 n_buckets;	/* number of hash buckets */
104 	u32 elem_size;	/* size of each element in bytes */
105 	u32 hashrnd;
106 	struct lock_class_key lockdep_key;
107 	int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
108 };
109 
110 /* each htab element is struct htab_elem + key + value */
111 struct htab_elem {
112 	union {
113 		struct hlist_nulls_node hash_node;
114 		struct {
115 			void *padding;
116 			union {
117 				struct pcpu_freelist_node fnode;
118 				struct htab_elem *batch_flink;
119 			};
120 		};
121 	};
122 	union {
123 		/* pointer to per-cpu pointer */
124 		void *ptr_to_pptr;
125 		struct bpf_lru_node lru_node;
126 	};
127 	u32 hash;
128 	char key[] __aligned(8);
129 };
130 
131 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
132 {
133 	return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
134 }
135 
136 static void htab_init_buckets(struct bpf_htab *htab)
137 {
138 	unsigned int i;
139 
140 	for (i = 0; i < htab->n_buckets; i++) {
141 		INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
142 		raw_spin_lock_init(&htab->buckets[i].raw_lock);
143 		lockdep_set_class(&htab->buckets[i].raw_lock,
144 					  &htab->lockdep_key);
145 		cond_resched();
146 	}
147 }
148 
149 static inline int htab_lock_bucket(const struct bpf_htab *htab,
150 				   struct bucket *b, u32 hash,
151 				   unsigned long *pflags)
152 {
153 	unsigned long flags;
154 
155 	hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1);
156 
157 	preempt_disable();
158 	if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
159 		__this_cpu_dec(*(htab->map_locked[hash]));
160 		preempt_enable();
161 		return -EBUSY;
162 	}
163 
164 	raw_spin_lock_irqsave(&b->raw_lock, flags);
165 	*pflags = flags;
166 
167 	return 0;
168 }
169 
170 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
171 				      struct bucket *b, u32 hash,
172 				      unsigned long flags)
173 {
174 	hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1);
175 	raw_spin_unlock_irqrestore(&b->raw_lock, flags);
176 	__this_cpu_dec(*(htab->map_locked[hash]));
177 	preempt_enable();
178 }
179 
180 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
181 
182 static bool htab_is_lru(const struct bpf_htab *htab)
183 {
184 	return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
185 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
186 }
187 
188 static bool htab_is_percpu(const struct bpf_htab *htab)
189 {
190 	return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
191 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
192 }
193 
194 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
195 				     void __percpu *pptr)
196 {
197 	*(void __percpu **)(l->key + key_size) = pptr;
198 }
199 
200 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
201 {
202 	return *(void __percpu **)(l->key + key_size);
203 }
204 
205 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
206 {
207 	return *(void **)(l->key + roundup(map->key_size, 8));
208 }
209 
210 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
211 {
212 	return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
213 }
214 
215 static bool htab_has_extra_elems(struct bpf_htab *htab)
216 {
217 	return !htab_is_percpu(htab) && !htab_is_lru(htab);
218 }
219 
220 static void htab_free_prealloced_timers(struct bpf_htab *htab)
221 {
222 	u32 num_entries = htab->map.max_entries;
223 	int i;
224 
225 	if (!btf_record_has_field(htab->map.record, BPF_TIMER))
226 		return;
227 	if (htab_has_extra_elems(htab))
228 		num_entries += num_possible_cpus();
229 
230 	for (i = 0; i < num_entries; i++) {
231 		struct htab_elem *elem;
232 
233 		elem = get_htab_elem(htab, i);
234 		bpf_obj_free_timer(htab->map.record, elem->key + round_up(htab->map.key_size, 8));
235 		cond_resched();
236 	}
237 }
238 
239 static void htab_free_prealloced_fields(struct bpf_htab *htab)
240 {
241 	u32 num_entries = htab->map.max_entries;
242 	int i;
243 
244 	if (IS_ERR_OR_NULL(htab->map.record))
245 		return;
246 	if (htab_has_extra_elems(htab))
247 		num_entries += num_possible_cpus();
248 	for (i = 0; i < num_entries; i++) {
249 		struct htab_elem *elem;
250 
251 		elem = get_htab_elem(htab, i);
252 		if (htab_is_percpu(htab)) {
253 			void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size);
254 			int cpu;
255 
256 			for_each_possible_cpu(cpu) {
257 				bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu));
258 				cond_resched();
259 			}
260 		} else {
261 			bpf_obj_free_fields(htab->map.record, elem->key + round_up(htab->map.key_size, 8));
262 			cond_resched();
263 		}
264 		cond_resched();
265 	}
266 }
267 
268 static void htab_free_elems(struct bpf_htab *htab)
269 {
270 	int i;
271 
272 	if (!htab_is_percpu(htab))
273 		goto free_elems;
274 
275 	for (i = 0; i < htab->map.max_entries; i++) {
276 		void __percpu *pptr;
277 
278 		pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
279 					 htab->map.key_size);
280 		free_percpu(pptr);
281 		cond_resched();
282 	}
283 free_elems:
284 	bpf_map_area_free(htab->elems);
285 }
286 
287 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
288  * (bucket_lock). If both locks need to be acquired together, the lock
289  * order is always lru_lock -> bucket_lock and this only happens in
290  * bpf_lru_list.c logic. For example, certain code path of
291  * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
292  * will acquire lru_lock first followed by acquiring bucket_lock.
293  *
294  * In hashtab.c, to avoid deadlock, lock acquisition of
295  * bucket_lock followed by lru_lock is not allowed. In such cases,
296  * bucket_lock needs to be released first before acquiring lru_lock.
297  */
298 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
299 					  u32 hash)
300 {
301 	struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
302 	struct htab_elem *l;
303 
304 	if (node) {
305 		l = container_of(node, struct htab_elem, lru_node);
306 		memcpy(l->key, key, htab->map.key_size);
307 		return l;
308 	}
309 
310 	return NULL;
311 }
312 
313 static int prealloc_init(struct bpf_htab *htab)
314 {
315 	u32 num_entries = htab->map.max_entries;
316 	int err = -ENOMEM, i;
317 
318 	if (htab_has_extra_elems(htab))
319 		num_entries += num_possible_cpus();
320 
321 	htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries,
322 					 htab->map.numa_node);
323 	if (!htab->elems)
324 		return -ENOMEM;
325 
326 	if (!htab_is_percpu(htab))
327 		goto skip_percpu_elems;
328 
329 	for (i = 0; i < num_entries; i++) {
330 		u32 size = round_up(htab->map.value_size, 8);
331 		void __percpu *pptr;
332 
333 		pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
334 					    GFP_USER | __GFP_NOWARN);
335 		if (!pptr)
336 			goto free_elems;
337 		htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
338 				  pptr);
339 		cond_resched();
340 	}
341 
342 skip_percpu_elems:
343 	if (htab_is_lru(htab))
344 		err = bpf_lru_init(&htab->lru,
345 				   htab->map.map_flags & BPF_F_NO_COMMON_LRU,
346 				   offsetof(struct htab_elem, hash) -
347 				   offsetof(struct htab_elem, lru_node),
348 				   htab_lru_map_delete_node,
349 				   htab);
350 	else
351 		err = pcpu_freelist_init(&htab->freelist);
352 
353 	if (err)
354 		goto free_elems;
355 
356 	if (htab_is_lru(htab))
357 		bpf_lru_populate(&htab->lru, htab->elems,
358 				 offsetof(struct htab_elem, lru_node),
359 				 htab->elem_size, num_entries);
360 	else
361 		pcpu_freelist_populate(&htab->freelist,
362 				       htab->elems + offsetof(struct htab_elem, fnode),
363 				       htab->elem_size, num_entries);
364 
365 	return 0;
366 
367 free_elems:
368 	htab_free_elems(htab);
369 	return err;
370 }
371 
372 static void prealloc_destroy(struct bpf_htab *htab)
373 {
374 	htab_free_elems(htab);
375 
376 	if (htab_is_lru(htab))
377 		bpf_lru_destroy(&htab->lru);
378 	else
379 		pcpu_freelist_destroy(&htab->freelist);
380 }
381 
382 static int alloc_extra_elems(struct bpf_htab *htab)
383 {
384 	struct htab_elem *__percpu *pptr, *l_new;
385 	struct pcpu_freelist_node *l;
386 	int cpu;
387 
388 	pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8,
389 				    GFP_USER | __GFP_NOWARN);
390 	if (!pptr)
391 		return -ENOMEM;
392 
393 	for_each_possible_cpu(cpu) {
394 		l = pcpu_freelist_pop(&htab->freelist);
395 		/* pop will succeed, since prealloc_init()
396 		 * preallocated extra num_possible_cpus elements
397 		 */
398 		l_new = container_of(l, struct htab_elem, fnode);
399 		*per_cpu_ptr(pptr, cpu) = l_new;
400 	}
401 	htab->extra_elems = pptr;
402 	return 0;
403 }
404 
405 /* Called from syscall */
406 static int htab_map_alloc_check(union bpf_attr *attr)
407 {
408 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
409 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
410 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
411 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
412 	/* percpu_lru means each cpu has its own LRU list.
413 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
414 	 * the map's value itself is percpu.  percpu_lru has
415 	 * nothing to do with the map's value.
416 	 */
417 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
418 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
419 	bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
420 	int numa_node = bpf_map_attr_numa_node(attr);
421 
422 	BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
423 		     offsetof(struct htab_elem, hash_node.pprev));
424 
425 	if (lru && !bpf_capable())
426 		/* LRU implementation is much complicated than other
427 		 * maps.  Hence, limit to CAP_BPF.
428 		 */
429 		return -EPERM;
430 
431 	if (zero_seed && !capable(CAP_SYS_ADMIN))
432 		/* Guard against local DoS, and discourage production use. */
433 		return -EPERM;
434 
435 	if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
436 	    !bpf_map_flags_access_ok(attr->map_flags))
437 		return -EINVAL;
438 
439 	if (!lru && percpu_lru)
440 		return -EINVAL;
441 
442 	if (lru && !prealloc)
443 		return -ENOTSUPP;
444 
445 	if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
446 		return -EINVAL;
447 
448 	/* check sanity of attributes.
449 	 * value_size == 0 may be allowed in the future to use map as a set
450 	 */
451 	if (attr->max_entries == 0 || attr->key_size == 0 ||
452 	    attr->value_size == 0)
453 		return -EINVAL;
454 
455 	if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
456 	   sizeof(struct htab_elem))
457 		/* if key_size + value_size is bigger, the user space won't be
458 		 * able to access the elements via bpf syscall. This check
459 		 * also makes sure that the elem_size doesn't overflow and it's
460 		 * kmalloc-able later in htab_map_update_elem()
461 		 */
462 		return -E2BIG;
463 
464 	return 0;
465 }
466 
467 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
468 {
469 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
470 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
471 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
472 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
473 	/* percpu_lru means each cpu has its own LRU list.
474 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
475 	 * the map's value itself is percpu.  percpu_lru has
476 	 * nothing to do with the map's value.
477 	 */
478 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
479 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
480 	struct bpf_htab *htab;
481 	int err, i;
482 
483 	htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE);
484 	if (!htab)
485 		return ERR_PTR(-ENOMEM);
486 
487 	lockdep_register_key(&htab->lockdep_key);
488 
489 	bpf_map_init_from_attr(&htab->map, attr);
490 
491 	if (percpu_lru) {
492 		/* ensure each CPU's lru list has >=1 elements.
493 		 * since we are at it, make each lru list has the same
494 		 * number of elements.
495 		 */
496 		htab->map.max_entries = roundup(attr->max_entries,
497 						num_possible_cpus());
498 		if (htab->map.max_entries < attr->max_entries)
499 			htab->map.max_entries = rounddown(attr->max_entries,
500 							  num_possible_cpus());
501 	}
502 
503 	/* hash table size must be power of 2 */
504 	htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
505 
506 	htab->elem_size = sizeof(struct htab_elem) +
507 			  round_up(htab->map.key_size, 8);
508 	if (percpu)
509 		htab->elem_size += sizeof(void *);
510 	else
511 		htab->elem_size += round_up(htab->map.value_size, 8);
512 
513 	err = -E2BIG;
514 	/* prevent zero size kmalloc and check for u32 overflow */
515 	if (htab->n_buckets == 0 ||
516 	    htab->n_buckets > U32_MAX / sizeof(struct bucket))
517 		goto free_htab;
518 
519 	err = -ENOMEM;
520 	htab->buckets = bpf_map_area_alloc(htab->n_buckets *
521 					   sizeof(struct bucket),
522 					   htab->map.numa_node);
523 	if (!htab->buckets)
524 		goto free_htab;
525 
526 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
527 		htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map,
528 							   sizeof(int),
529 							   sizeof(int),
530 							   GFP_USER);
531 		if (!htab->map_locked[i])
532 			goto free_map_locked;
533 	}
534 
535 	if (htab->map.map_flags & BPF_F_ZERO_SEED)
536 		htab->hashrnd = 0;
537 	else
538 		htab->hashrnd = get_random_u32();
539 
540 	htab_init_buckets(htab);
541 
542 /* compute_batch_value() computes batch value as num_online_cpus() * 2
543  * and __percpu_counter_compare() needs
544  * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus()
545  * for percpu_counter to be faster than atomic_t. In practice the average bpf
546  * hash map size is 10k, which means that a system with 64 cpus will fill
547  * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore
548  * define our own batch count as 32 then 10k hash map can be filled up to 80%:
549  * 10k - 8k > 32 _batch_ * 64 _cpus_
550  * and __percpu_counter_compare() will still be fast. At that point hash map
551  * collisions will dominate its performance anyway. Assume that hash map filled
552  * to 50+% isn't going to be O(1) and use the following formula to choose
553  * between percpu_counter and atomic_t.
554  */
555 #define PERCPU_COUNTER_BATCH 32
556 	if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH)
557 		htab->use_percpu_counter = true;
558 
559 	if (htab->use_percpu_counter) {
560 		err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL);
561 		if (err)
562 			goto free_map_locked;
563 	}
564 
565 	if (prealloc) {
566 		err = prealloc_init(htab);
567 		if (err)
568 			goto free_map_locked;
569 
570 		if (!percpu && !lru) {
571 			/* lru itself can remove the least used element, so
572 			 * there is no need for an extra elem during map_update.
573 			 */
574 			err = alloc_extra_elems(htab);
575 			if (err)
576 				goto free_prealloc;
577 		}
578 	} else {
579 		err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false);
580 		if (err)
581 			goto free_map_locked;
582 		if (percpu) {
583 			err = bpf_mem_alloc_init(&htab->pcpu_ma,
584 						 round_up(htab->map.value_size, 8), true);
585 			if (err)
586 				goto free_map_locked;
587 		}
588 	}
589 
590 	return &htab->map;
591 
592 free_prealloc:
593 	prealloc_destroy(htab);
594 free_map_locked:
595 	if (htab->use_percpu_counter)
596 		percpu_counter_destroy(&htab->pcount);
597 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
598 		free_percpu(htab->map_locked[i]);
599 	bpf_map_area_free(htab->buckets);
600 	bpf_mem_alloc_destroy(&htab->pcpu_ma);
601 	bpf_mem_alloc_destroy(&htab->ma);
602 free_htab:
603 	lockdep_unregister_key(&htab->lockdep_key);
604 	bpf_map_area_free(htab);
605 	return ERR_PTR(err);
606 }
607 
608 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
609 {
610 	return jhash(key, key_len, hashrnd);
611 }
612 
613 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
614 {
615 	return &htab->buckets[hash & (htab->n_buckets - 1)];
616 }
617 
618 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
619 {
620 	return &__select_bucket(htab, hash)->head;
621 }
622 
623 /* this lookup function can only be called with bucket lock taken */
624 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
625 					 void *key, u32 key_size)
626 {
627 	struct hlist_nulls_node *n;
628 	struct htab_elem *l;
629 
630 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
631 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
632 			return l;
633 
634 	return NULL;
635 }
636 
637 /* can be called without bucket lock. it will repeat the loop in
638  * the unlikely event when elements moved from one bucket into another
639  * while link list is being walked
640  */
641 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
642 					       u32 hash, void *key,
643 					       u32 key_size, u32 n_buckets)
644 {
645 	struct hlist_nulls_node *n;
646 	struct htab_elem *l;
647 
648 again:
649 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
650 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
651 			return l;
652 
653 	if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
654 		goto again;
655 
656 	return NULL;
657 }
658 
659 /* Called from syscall or from eBPF program directly, so
660  * arguments have to match bpf_map_lookup_elem() exactly.
661  * The return value is adjusted by BPF instructions
662  * in htab_map_gen_lookup().
663  */
664 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
665 {
666 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
667 	struct hlist_nulls_head *head;
668 	struct htab_elem *l;
669 	u32 hash, key_size;
670 
671 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
672 		     !rcu_read_lock_bh_held());
673 
674 	key_size = map->key_size;
675 
676 	hash = htab_map_hash(key, key_size, htab->hashrnd);
677 
678 	head = select_bucket(htab, hash);
679 
680 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
681 
682 	return l;
683 }
684 
685 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
686 {
687 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
688 
689 	if (l)
690 		return l->key + round_up(map->key_size, 8);
691 
692 	return NULL;
693 }
694 
695 /* inline bpf_map_lookup_elem() call.
696  * Instead of:
697  * bpf_prog
698  *   bpf_map_lookup_elem
699  *     map->ops->map_lookup_elem
700  *       htab_map_lookup_elem
701  *         __htab_map_lookup_elem
702  * do:
703  * bpf_prog
704  *   __htab_map_lookup_elem
705  */
706 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
707 {
708 	struct bpf_insn *insn = insn_buf;
709 	const int ret = BPF_REG_0;
710 
711 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
712 		     (void *(*)(struct bpf_map *map, void *key))NULL));
713 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
714 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
715 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
716 				offsetof(struct htab_elem, key) +
717 				round_up(map->key_size, 8));
718 	return insn - insn_buf;
719 }
720 
721 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
722 							void *key, const bool mark)
723 {
724 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
725 
726 	if (l) {
727 		if (mark)
728 			bpf_lru_node_set_ref(&l->lru_node);
729 		return l->key + round_up(map->key_size, 8);
730 	}
731 
732 	return NULL;
733 }
734 
735 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
736 {
737 	return __htab_lru_map_lookup_elem(map, key, true);
738 }
739 
740 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
741 {
742 	return __htab_lru_map_lookup_elem(map, key, false);
743 }
744 
745 static int htab_lru_map_gen_lookup(struct bpf_map *map,
746 				   struct bpf_insn *insn_buf)
747 {
748 	struct bpf_insn *insn = insn_buf;
749 	const int ret = BPF_REG_0;
750 	const int ref_reg = BPF_REG_1;
751 
752 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
753 		     (void *(*)(struct bpf_map *map, void *key))NULL));
754 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
755 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
756 	*insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
757 			      offsetof(struct htab_elem, lru_node) +
758 			      offsetof(struct bpf_lru_node, ref));
759 	*insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
760 	*insn++ = BPF_ST_MEM(BPF_B, ret,
761 			     offsetof(struct htab_elem, lru_node) +
762 			     offsetof(struct bpf_lru_node, ref),
763 			     1);
764 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
765 				offsetof(struct htab_elem, key) +
766 				round_up(map->key_size, 8));
767 	return insn - insn_buf;
768 }
769 
770 static void check_and_free_fields(struct bpf_htab *htab,
771 				  struct htab_elem *elem)
772 {
773 	if (htab_is_percpu(htab)) {
774 		void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size);
775 		int cpu;
776 
777 		for_each_possible_cpu(cpu)
778 			bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu));
779 	} else {
780 		void *map_value = elem->key + round_up(htab->map.key_size, 8);
781 
782 		bpf_obj_free_fields(htab->map.record, map_value);
783 	}
784 }
785 
786 /* It is called from the bpf_lru_list when the LRU needs to delete
787  * older elements from the htab.
788  */
789 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
790 {
791 	struct bpf_htab *htab = arg;
792 	struct htab_elem *l = NULL, *tgt_l;
793 	struct hlist_nulls_head *head;
794 	struct hlist_nulls_node *n;
795 	unsigned long flags;
796 	struct bucket *b;
797 	int ret;
798 
799 	tgt_l = container_of(node, struct htab_elem, lru_node);
800 	b = __select_bucket(htab, tgt_l->hash);
801 	head = &b->head;
802 
803 	ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
804 	if (ret)
805 		return false;
806 
807 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
808 		if (l == tgt_l) {
809 			hlist_nulls_del_rcu(&l->hash_node);
810 			check_and_free_fields(htab, l);
811 			break;
812 		}
813 
814 	htab_unlock_bucket(htab, b, tgt_l->hash, flags);
815 
816 	return l == tgt_l;
817 }
818 
819 /* Called from syscall */
820 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
821 {
822 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
823 	struct hlist_nulls_head *head;
824 	struct htab_elem *l, *next_l;
825 	u32 hash, key_size;
826 	int i = 0;
827 
828 	WARN_ON_ONCE(!rcu_read_lock_held());
829 
830 	key_size = map->key_size;
831 
832 	if (!key)
833 		goto find_first_elem;
834 
835 	hash = htab_map_hash(key, key_size, htab->hashrnd);
836 
837 	head = select_bucket(htab, hash);
838 
839 	/* lookup the key */
840 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
841 
842 	if (!l)
843 		goto find_first_elem;
844 
845 	/* key was found, get next key in the same bucket */
846 	next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
847 				  struct htab_elem, hash_node);
848 
849 	if (next_l) {
850 		/* if next elem in this hash list is non-zero, just return it */
851 		memcpy(next_key, next_l->key, key_size);
852 		return 0;
853 	}
854 
855 	/* no more elements in this hash list, go to the next bucket */
856 	i = hash & (htab->n_buckets - 1);
857 	i++;
858 
859 find_first_elem:
860 	/* iterate over buckets */
861 	for (; i < htab->n_buckets; i++) {
862 		head = select_bucket(htab, i);
863 
864 		/* pick first element in the bucket */
865 		next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
866 					  struct htab_elem, hash_node);
867 		if (next_l) {
868 			/* if it's not empty, just return it */
869 			memcpy(next_key, next_l->key, key_size);
870 			return 0;
871 		}
872 	}
873 
874 	/* iterated over all buckets and all elements */
875 	return -ENOENT;
876 }
877 
878 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
879 {
880 	check_and_free_fields(htab, l);
881 	if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
882 		bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr);
883 	bpf_mem_cache_free(&htab->ma, l);
884 }
885 
886 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
887 {
888 	struct bpf_map *map = &htab->map;
889 	void *ptr;
890 
891 	if (map->ops->map_fd_put_ptr) {
892 		ptr = fd_htab_map_get_ptr(map, l);
893 		map->ops->map_fd_put_ptr(ptr);
894 	}
895 }
896 
897 static bool is_map_full(struct bpf_htab *htab)
898 {
899 	if (htab->use_percpu_counter)
900 		return __percpu_counter_compare(&htab->pcount, htab->map.max_entries,
901 						PERCPU_COUNTER_BATCH) >= 0;
902 	return atomic_read(&htab->count) >= htab->map.max_entries;
903 }
904 
905 static void inc_elem_count(struct bpf_htab *htab)
906 {
907 	if (htab->use_percpu_counter)
908 		percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH);
909 	else
910 		atomic_inc(&htab->count);
911 }
912 
913 static void dec_elem_count(struct bpf_htab *htab)
914 {
915 	if (htab->use_percpu_counter)
916 		percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH);
917 	else
918 		atomic_dec(&htab->count);
919 }
920 
921 
922 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
923 {
924 	htab_put_fd_value(htab, l);
925 
926 	if (htab_is_prealloc(htab)) {
927 		check_and_free_fields(htab, l);
928 		__pcpu_freelist_push(&htab->freelist, &l->fnode);
929 	} else {
930 		dec_elem_count(htab);
931 		htab_elem_free(htab, l);
932 	}
933 }
934 
935 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
936 			    void *value, bool onallcpus)
937 {
938 	if (!onallcpus) {
939 		/* copy true value_size bytes */
940 		copy_map_value(&htab->map, this_cpu_ptr(pptr), value);
941 	} else {
942 		u32 size = round_up(htab->map.value_size, 8);
943 		int off = 0, cpu;
944 
945 		for_each_possible_cpu(cpu) {
946 			copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value + off);
947 			off += size;
948 		}
949 	}
950 }
951 
952 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
953 			    void *value, bool onallcpus)
954 {
955 	/* When not setting the initial value on all cpus, zero-fill element
956 	 * values for other cpus. Otherwise, bpf program has no way to ensure
957 	 * known initial values for cpus other than current one
958 	 * (onallcpus=false always when coming from bpf prog).
959 	 */
960 	if (!onallcpus) {
961 		int current_cpu = raw_smp_processor_id();
962 		int cpu;
963 
964 		for_each_possible_cpu(cpu) {
965 			if (cpu == current_cpu)
966 				copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value);
967 			else /* Since elem is preallocated, we cannot touch special fields */
968 				zero_map_value(&htab->map, per_cpu_ptr(pptr, cpu));
969 		}
970 	} else {
971 		pcpu_copy_value(htab, pptr, value, onallcpus);
972 	}
973 }
974 
975 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
976 {
977 	return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
978 	       BITS_PER_LONG == 64;
979 }
980 
981 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
982 					 void *value, u32 key_size, u32 hash,
983 					 bool percpu, bool onallcpus,
984 					 struct htab_elem *old_elem)
985 {
986 	u32 size = htab->map.value_size;
987 	bool prealloc = htab_is_prealloc(htab);
988 	struct htab_elem *l_new, **pl_new;
989 	void __percpu *pptr;
990 
991 	if (prealloc) {
992 		if (old_elem) {
993 			/* if we're updating the existing element,
994 			 * use per-cpu extra elems to avoid freelist_pop/push
995 			 */
996 			pl_new = this_cpu_ptr(htab->extra_elems);
997 			l_new = *pl_new;
998 			htab_put_fd_value(htab, old_elem);
999 			*pl_new = old_elem;
1000 		} else {
1001 			struct pcpu_freelist_node *l;
1002 
1003 			l = __pcpu_freelist_pop(&htab->freelist);
1004 			if (!l)
1005 				return ERR_PTR(-E2BIG);
1006 			l_new = container_of(l, struct htab_elem, fnode);
1007 		}
1008 	} else {
1009 		if (is_map_full(htab))
1010 			if (!old_elem)
1011 				/* when map is full and update() is replacing
1012 				 * old element, it's ok to allocate, since
1013 				 * old element will be freed immediately.
1014 				 * Otherwise return an error
1015 				 */
1016 				return ERR_PTR(-E2BIG);
1017 		inc_elem_count(htab);
1018 		l_new = bpf_mem_cache_alloc(&htab->ma);
1019 		if (!l_new) {
1020 			l_new = ERR_PTR(-ENOMEM);
1021 			goto dec_count;
1022 		}
1023 	}
1024 
1025 	memcpy(l_new->key, key, key_size);
1026 	if (percpu) {
1027 		if (prealloc) {
1028 			pptr = htab_elem_get_ptr(l_new, key_size);
1029 		} else {
1030 			/* alloc_percpu zero-fills */
1031 			pptr = bpf_mem_cache_alloc(&htab->pcpu_ma);
1032 			if (!pptr) {
1033 				bpf_mem_cache_free(&htab->ma, l_new);
1034 				l_new = ERR_PTR(-ENOMEM);
1035 				goto dec_count;
1036 			}
1037 			l_new->ptr_to_pptr = pptr;
1038 			pptr = *(void **)pptr;
1039 		}
1040 
1041 		pcpu_init_value(htab, pptr, value, onallcpus);
1042 
1043 		if (!prealloc)
1044 			htab_elem_set_ptr(l_new, key_size, pptr);
1045 	} else if (fd_htab_map_needs_adjust(htab)) {
1046 		size = round_up(size, 8);
1047 		memcpy(l_new->key + round_up(key_size, 8), value, size);
1048 	} else {
1049 		copy_map_value(&htab->map,
1050 			       l_new->key + round_up(key_size, 8),
1051 			       value);
1052 	}
1053 
1054 	l_new->hash = hash;
1055 	return l_new;
1056 dec_count:
1057 	dec_elem_count(htab);
1058 	return l_new;
1059 }
1060 
1061 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
1062 		       u64 map_flags)
1063 {
1064 	if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
1065 		/* elem already exists */
1066 		return -EEXIST;
1067 
1068 	if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
1069 		/* elem doesn't exist, cannot update it */
1070 		return -ENOENT;
1071 
1072 	return 0;
1073 }
1074 
1075 /* Called from syscall or from eBPF program */
1076 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
1077 				u64 map_flags)
1078 {
1079 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1080 	struct htab_elem *l_new = NULL, *l_old;
1081 	struct hlist_nulls_head *head;
1082 	unsigned long flags;
1083 	struct bucket *b;
1084 	u32 key_size, hash;
1085 	int ret;
1086 
1087 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
1088 		/* unknown flags */
1089 		return -EINVAL;
1090 
1091 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1092 		     !rcu_read_lock_bh_held());
1093 
1094 	key_size = map->key_size;
1095 
1096 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1097 
1098 	b = __select_bucket(htab, hash);
1099 	head = &b->head;
1100 
1101 	if (unlikely(map_flags & BPF_F_LOCK)) {
1102 		if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK)))
1103 			return -EINVAL;
1104 		/* find an element without taking the bucket lock */
1105 		l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
1106 					      htab->n_buckets);
1107 		ret = check_flags(htab, l_old, map_flags);
1108 		if (ret)
1109 			return ret;
1110 		if (l_old) {
1111 			/* grab the element lock and update value in place */
1112 			copy_map_value_locked(map,
1113 					      l_old->key + round_up(key_size, 8),
1114 					      value, false);
1115 			return 0;
1116 		}
1117 		/* fall through, grab the bucket lock and lookup again.
1118 		 * 99.9% chance that the element won't be found,
1119 		 * but second lookup under lock has to be done.
1120 		 */
1121 	}
1122 
1123 	ret = htab_lock_bucket(htab, b, hash, &flags);
1124 	if (ret)
1125 		return ret;
1126 
1127 	l_old = lookup_elem_raw(head, hash, key, key_size);
1128 
1129 	ret = check_flags(htab, l_old, map_flags);
1130 	if (ret)
1131 		goto err;
1132 
1133 	if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1134 		/* first lookup without the bucket lock didn't find the element,
1135 		 * but second lookup with the bucket lock found it.
1136 		 * This case is highly unlikely, but has to be dealt with:
1137 		 * grab the element lock in addition to the bucket lock
1138 		 * and update element in place
1139 		 */
1140 		copy_map_value_locked(map,
1141 				      l_old->key + round_up(key_size, 8),
1142 				      value, false);
1143 		ret = 0;
1144 		goto err;
1145 	}
1146 
1147 	l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1148 				l_old);
1149 	if (IS_ERR(l_new)) {
1150 		/* all pre-allocated elements are in use or memory exhausted */
1151 		ret = PTR_ERR(l_new);
1152 		goto err;
1153 	}
1154 
1155 	/* add new element to the head of the list, so that
1156 	 * concurrent search will find it before old elem
1157 	 */
1158 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1159 	if (l_old) {
1160 		hlist_nulls_del_rcu(&l_old->hash_node);
1161 		if (!htab_is_prealloc(htab))
1162 			free_htab_elem(htab, l_old);
1163 		else
1164 			check_and_free_fields(htab, l_old);
1165 	}
1166 	ret = 0;
1167 err:
1168 	htab_unlock_bucket(htab, b, hash, flags);
1169 	return ret;
1170 }
1171 
1172 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem)
1173 {
1174 	check_and_free_fields(htab, elem);
1175 	bpf_lru_push_free(&htab->lru, &elem->lru_node);
1176 }
1177 
1178 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1179 				    u64 map_flags)
1180 {
1181 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1182 	struct htab_elem *l_new, *l_old = NULL;
1183 	struct hlist_nulls_head *head;
1184 	unsigned long flags;
1185 	struct bucket *b;
1186 	u32 key_size, hash;
1187 	int ret;
1188 
1189 	if (unlikely(map_flags > BPF_EXIST))
1190 		/* unknown flags */
1191 		return -EINVAL;
1192 
1193 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1194 		     !rcu_read_lock_bh_held());
1195 
1196 	key_size = map->key_size;
1197 
1198 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1199 
1200 	b = __select_bucket(htab, hash);
1201 	head = &b->head;
1202 
1203 	/* For LRU, we need to alloc before taking bucket's
1204 	 * spinlock because getting free nodes from LRU may need
1205 	 * to remove older elements from htab and this removal
1206 	 * operation will need a bucket lock.
1207 	 */
1208 	l_new = prealloc_lru_pop(htab, key, hash);
1209 	if (!l_new)
1210 		return -ENOMEM;
1211 	copy_map_value(&htab->map,
1212 		       l_new->key + round_up(map->key_size, 8), value);
1213 
1214 	ret = htab_lock_bucket(htab, b, hash, &flags);
1215 	if (ret)
1216 		return ret;
1217 
1218 	l_old = lookup_elem_raw(head, hash, key, key_size);
1219 
1220 	ret = check_flags(htab, l_old, map_flags);
1221 	if (ret)
1222 		goto err;
1223 
1224 	/* add new element to the head of the list, so that
1225 	 * concurrent search will find it before old elem
1226 	 */
1227 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1228 	if (l_old) {
1229 		bpf_lru_node_set_ref(&l_new->lru_node);
1230 		hlist_nulls_del_rcu(&l_old->hash_node);
1231 	}
1232 	ret = 0;
1233 
1234 err:
1235 	htab_unlock_bucket(htab, b, hash, flags);
1236 
1237 	if (ret)
1238 		htab_lru_push_free(htab, l_new);
1239 	else if (l_old)
1240 		htab_lru_push_free(htab, l_old);
1241 
1242 	return ret;
1243 }
1244 
1245 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1246 					 void *value, u64 map_flags,
1247 					 bool onallcpus)
1248 {
1249 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1250 	struct htab_elem *l_new = NULL, *l_old;
1251 	struct hlist_nulls_head *head;
1252 	unsigned long flags;
1253 	struct bucket *b;
1254 	u32 key_size, hash;
1255 	int ret;
1256 
1257 	if (unlikely(map_flags > BPF_EXIST))
1258 		/* unknown flags */
1259 		return -EINVAL;
1260 
1261 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1262 		     !rcu_read_lock_bh_held());
1263 
1264 	key_size = map->key_size;
1265 
1266 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1267 
1268 	b = __select_bucket(htab, hash);
1269 	head = &b->head;
1270 
1271 	ret = htab_lock_bucket(htab, b, hash, &flags);
1272 	if (ret)
1273 		return ret;
1274 
1275 	l_old = lookup_elem_raw(head, hash, key, key_size);
1276 
1277 	ret = check_flags(htab, l_old, map_flags);
1278 	if (ret)
1279 		goto err;
1280 
1281 	if (l_old) {
1282 		/* per-cpu hash map can update value in-place */
1283 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1284 				value, onallcpus);
1285 	} else {
1286 		l_new = alloc_htab_elem(htab, key, value, key_size,
1287 					hash, true, onallcpus, NULL);
1288 		if (IS_ERR(l_new)) {
1289 			ret = PTR_ERR(l_new);
1290 			goto err;
1291 		}
1292 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1293 	}
1294 	ret = 0;
1295 err:
1296 	htab_unlock_bucket(htab, b, hash, flags);
1297 	return ret;
1298 }
1299 
1300 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1301 					     void *value, u64 map_flags,
1302 					     bool onallcpus)
1303 {
1304 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1305 	struct htab_elem *l_new = NULL, *l_old;
1306 	struct hlist_nulls_head *head;
1307 	unsigned long flags;
1308 	struct bucket *b;
1309 	u32 key_size, hash;
1310 	int ret;
1311 
1312 	if (unlikely(map_flags > BPF_EXIST))
1313 		/* unknown flags */
1314 		return -EINVAL;
1315 
1316 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1317 		     !rcu_read_lock_bh_held());
1318 
1319 	key_size = map->key_size;
1320 
1321 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1322 
1323 	b = __select_bucket(htab, hash);
1324 	head = &b->head;
1325 
1326 	/* For LRU, we need to alloc before taking bucket's
1327 	 * spinlock because LRU's elem alloc may need
1328 	 * to remove older elem from htab and this removal
1329 	 * operation will need a bucket lock.
1330 	 */
1331 	if (map_flags != BPF_EXIST) {
1332 		l_new = prealloc_lru_pop(htab, key, hash);
1333 		if (!l_new)
1334 			return -ENOMEM;
1335 	}
1336 
1337 	ret = htab_lock_bucket(htab, b, hash, &flags);
1338 	if (ret)
1339 		return ret;
1340 
1341 	l_old = lookup_elem_raw(head, hash, key, key_size);
1342 
1343 	ret = check_flags(htab, l_old, map_flags);
1344 	if (ret)
1345 		goto err;
1346 
1347 	if (l_old) {
1348 		bpf_lru_node_set_ref(&l_old->lru_node);
1349 
1350 		/* per-cpu hash map can update value in-place */
1351 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1352 				value, onallcpus);
1353 	} else {
1354 		pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1355 				value, onallcpus);
1356 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1357 		l_new = NULL;
1358 	}
1359 	ret = 0;
1360 err:
1361 	htab_unlock_bucket(htab, b, hash, flags);
1362 	if (l_new)
1363 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1364 	return ret;
1365 }
1366 
1367 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1368 				       void *value, u64 map_flags)
1369 {
1370 	return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1371 }
1372 
1373 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1374 					   void *value, u64 map_flags)
1375 {
1376 	return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1377 						 false);
1378 }
1379 
1380 /* Called from syscall or from eBPF program */
1381 static int htab_map_delete_elem(struct bpf_map *map, void *key)
1382 {
1383 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1384 	struct hlist_nulls_head *head;
1385 	struct bucket *b;
1386 	struct htab_elem *l;
1387 	unsigned long flags;
1388 	u32 hash, key_size;
1389 	int ret;
1390 
1391 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1392 		     !rcu_read_lock_bh_held());
1393 
1394 	key_size = map->key_size;
1395 
1396 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1397 	b = __select_bucket(htab, hash);
1398 	head = &b->head;
1399 
1400 	ret = htab_lock_bucket(htab, b, hash, &flags);
1401 	if (ret)
1402 		return ret;
1403 
1404 	l = lookup_elem_raw(head, hash, key, key_size);
1405 
1406 	if (l) {
1407 		hlist_nulls_del_rcu(&l->hash_node);
1408 		free_htab_elem(htab, l);
1409 	} else {
1410 		ret = -ENOENT;
1411 	}
1412 
1413 	htab_unlock_bucket(htab, b, hash, flags);
1414 	return ret;
1415 }
1416 
1417 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1418 {
1419 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1420 	struct hlist_nulls_head *head;
1421 	struct bucket *b;
1422 	struct htab_elem *l;
1423 	unsigned long flags;
1424 	u32 hash, key_size;
1425 	int ret;
1426 
1427 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1428 		     !rcu_read_lock_bh_held());
1429 
1430 	key_size = map->key_size;
1431 
1432 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1433 	b = __select_bucket(htab, hash);
1434 	head = &b->head;
1435 
1436 	ret = htab_lock_bucket(htab, b, hash, &flags);
1437 	if (ret)
1438 		return ret;
1439 
1440 	l = lookup_elem_raw(head, hash, key, key_size);
1441 
1442 	if (l)
1443 		hlist_nulls_del_rcu(&l->hash_node);
1444 	else
1445 		ret = -ENOENT;
1446 
1447 	htab_unlock_bucket(htab, b, hash, flags);
1448 	if (l)
1449 		htab_lru_push_free(htab, l);
1450 	return ret;
1451 }
1452 
1453 static void delete_all_elements(struct bpf_htab *htab)
1454 {
1455 	int i;
1456 
1457 	/* It's called from a worker thread, so disable migration here,
1458 	 * since bpf_mem_cache_free() relies on that.
1459 	 */
1460 	migrate_disable();
1461 	for (i = 0; i < htab->n_buckets; i++) {
1462 		struct hlist_nulls_head *head = select_bucket(htab, i);
1463 		struct hlist_nulls_node *n;
1464 		struct htab_elem *l;
1465 
1466 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1467 			hlist_nulls_del_rcu(&l->hash_node);
1468 			htab_elem_free(htab, l);
1469 		}
1470 	}
1471 	migrate_enable();
1472 }
1473 
1474 static void htab_free_malloced_timers(struct bpf_htab *htab)
1475 {
1476 	int i;
1477 
1478 	rcu_read_lock();
1479 	for (i = 0; i < htab->n_buckets; i++) {
1480 		struct hlist_nulls_head *head = select_bucket(htab, i);
1481 		struct hlist_nulls_node *n;
1482 		struct htab_elem *l;
1483 
1484 		hlist_nulls_for_each_entry(l, n, head, hash_node) {
1485 			/* We only free timer on uref dropping to zero */
1486 			bpf_obj_free_timer(htab->map.record, l->key + round_up(htab->map.key_size, 8));
1487 		}
1488 		cond_resched_rcu();
1489 	}
1490 	rcu_read_unlock();
1491 }
1492 
1493 static void htab_map_free_timers(struct bpf_map *map)
1494 {
1495 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1496 
1497 	/* We only free timer on uref dropping to zero */
1498 	if (!btf_record_has_field(htab->map.record, BPF_TIMER))
1499 		return;
1500 	if (!htab_is_prealloc(htab))
1501 		htab_free_malloced_timers(htab);
1502 	else
1503 		htab_free_prealloced_timers(htab);
1504 }
1505 
1506 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1507 static void htab_map_free(struct bpf_map *map)
1508 {
1509 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1510 	int i;
1511 
1512 	/* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1513 	 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1514 	 * There is no need to synchronize_rcu() here to protect map elements.
1515 	 */
1516 
1517 	/* htab no longer uses call_rcu() directly. bpf_mem_alloc does it
1518 	 * underneath and is reponsible for waiting for callbacks to finish
1519 	 * during bpf_mem_alloc_destroy().
1520 	 */
1521 	if (!htab_is_prealloc(htab)) {
1522 		delete_all_elements(htab);
1523 	} else {
1524 		htab_free_prealloced_fields(htab);
1525 		prealloc_destroy(htab);
1526 	}
1527 
1528 	free_percpu(htab->extra_elems);
1529 	bpf_map_area_free(htab->buckets);
1530 	bpf_mem_alloc_destroy(&htab->pcpu_ma);
1531 	bpf_mem_alloc_destroy(&htab->ma);
1532 	if (htab->use_percpu_counter)
1533 		percpu_counter_destroy(&htab->pcount);
1534 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
1535 		free_percpu(htab->map_locked[i]);
1536 	lockdep_unregister_key(&htab->lockdep_key);
1537 	bpf_map_area_free(htab);
1538 }
1539 
1540 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1541 				   struct seq_file *m)
1542 {
1543 	void *value;
1544 
1545 	rcu_read_lock();
1546 
1547 	value = htab_map_lookup_elem(map, key);
1548 	if (!value) {
1549 		rcu_read_unlock();
1550 		return;
1551 	}
1552 
1553 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1554 	seq_puts(m, ": ");
1555 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1556 	seq_puts(m, "\n");
1557 
1558 	rcu_read_unlock();
1559 }
1560 
1561 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1562 					     void *value, bool is_lru_map,
1563 					     bool is_percpu, u64 flags)
1564 {
1565 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1566 	struct hlist_nulls_head *head;
1567 	unsigned long bflags;
1568 	struct htab_elem *l;
1569 	u32 hash, key_size;
1570 	struct bucket *b;
1571 	int ret;
1572 
1573 	key_size = map->key_size;
1574 
1575 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1576 	b = __select_bucket(htab, hash);
1577 	head = &b->head;
1578 
1579 	ret = htab_lock_bucket(htab, b, hash, &bflags);
1580 	if (ret)
1581 		return ret;
1582 
1583 	l = lookup_elem_raw(head, hash, key, key_size);
1584 	if (!l) {
1585 		ret = -ENOENT;
1586 	} else {
1587 		if (is_percpu) {
1588 			u32 roundup_value_size = round_up(map->value_size, 8);
1589 			void __percpu *pptr;
1590 			int off = 0, cpu;
1591 
1592 			pptr = htab_elem_get_ptr(l, key_size);
1593 			for_each_possible_cpu(cpu) {
1594 				copy_map_value_long(&htab->map, value + off, per_cpu_ptr(pptr, cpu));
1595 				check_and_init_map_value(&htab->map, value + off);
1596 				off += roundup_value_size;
1597 			}
1598 		} else {
1599 			u32 roundup_key_size = round_up(map->key_size, 8);
1600 
1601 			if (flags & BPF_F_LOCK)
1602 				copy_map_value_locked(map, value, l->key +
1603 						      roundup_key_size,
1604 						      true);
1605 			else
1606 				copy_map_value(map, value, l->key +
1607 					       roundup_key_size);
1608 			/* Zeroing special fields in the temp buffer */
1609 			check_and_init_map_value(map, value);
1610 		}
1611 
1612 		hlist_nulls_del_rcu(&l->hash_node);
1613 		if (!is_lru_map)
1614 			free_htab_elem(htab, l);
1615 	}
1616 
1617 	htab_unlock_bucket(htab, b, hash, bflags);
1618 
1619 	if (is_lru_map && l)
1620 		htab_lru_push_free(htab, l);
1621 
1622 	return ret;
1623 }
1624 
1625 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1626 					   void *value, u64 flags)
1627 {
1628 	return __htab_map_lookup_and_delete_elem(map, key, value, false, false,
1629 						 flags);
1630 }
1631 
1632 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1633 						  void *key, void *value,
1634 						  u64 flags)
1635 {
1636 	return __htab_map_lookup_and_delete_elem(map, key, value, false, true,
1637 						 flags);
1638 }
1639 
1640 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1641 					       void *value, u64 flags)
1642 {
1643 	return __htab_map_lookup_and_delete_elem(map, key, value, true, false,
1644 						 flags);
1645 }
1646 
1647 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1648 						      void *key, void *value,
1649 						      u64 flags)
1650 {
1651 	return __htab_map_lookup_and_delete_elem(map, key, value, true, true,
1652 						 flags);
1653 }
1654 
1655 static int
1656 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1657 				   const union bpf_attr *attr,
1658 				   union bpf_attr __user *uattr,
1659 				   bool do_delete, bool is_lru_map,
1660 				   bool is_percpu)
1661 {
1662 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1663 	u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1664 	void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1665 	void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1666 	void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1667 	void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1668 	u32 batch, max_count, size, bucket_size, map_id;
1669 	struct htab_elem *node_to_free = NULL;
1670 	u64 elem_map_flags, map_flags;
1671 	struct hlist_nulls_head *head;
1672 	struct hlist_nulls_node *n;
1673 	unsigned long flags = 0;
1674 	bool locked = false;
1675 	struct htab_elem *l;
1676 	struct bucket *b;
1677 	int ret = 0;
1678 
1679 	elem_map_flags = attr->batch.elem_flags;
1680 	if ((elem_map_flags & ~BPF_F_LOCK) ||
1681 	    ((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK)))
1682 		return -EINVAL;
1683 
1684 	map_flags = attr->batch.flags;
1685 	if (map_flags)
1686 		return -EINVAL;
1687 
1688 	max_count = attr->batch.count;
1689 	if (!max_count)
1690 		return 0;
1691 
1692 	if (put_user(0, &uattr->batch.count))
1693 		return -EFAULT;
1694 
1695 	batch = 0;
1696 	if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1697 		return -EFAULT;
1698 
1699 	if (batch >= htab->n_buckets)
1700 		return -ENOENT;
1701 
1702 	key_size = htab->map.key_size;
1703 	roundup_key_size = round_up(htab->map.key_size, 8);
1704 	value_size = htab->map.value_size;
1705 	size = round_up(value_size, 8);
1706 	if (is_percpu)
1707 		value_size = size * num_possible_cpus();
1708 	total = 0;
1709 	/* while experimenting with hash tables with sizes ranging from 10 to
1710 	 * 1000, it was observed that a bucket can have up to 5 entries.
1711 	 */
1712 	bucket_size = 5;
1713 
1714 alloc:
1715 	/* We cannot do copy_from_user or copy_to_user inside
1716 	 * the rcu_read_lock. Allocate enough space here.
1717 	 */
1718 	keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN);
1719 	values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN);
1720 	if (!keys || !values) {
1721 		ret = -ENOMEM;
1722 		goto after_loop;
1723 	}
1724 
1725 again:
1726 	bpf_disable_instrumentation();
1727 	rcu_read_lock();
1728 again_nocopy:
1729 	dst_key = keys;
1730 	dst_val = values;
1731 	b = &htab->buckets[batch];
1732 	head = &b->head;
1733 	/* do not grab the lock unless need it (bucket_cnt > 0). */
1734 	if (locked) {
1735 		ret = htab_lock_bucket(htab, b, batch, &flags);
1736 		if (ret) {
1737 			rcu_read_unlock();
1738 			bpf_enable_instrumentation();
1739 			goto after_loop;
1740 		}
1741 	}
1742 
1743 	bucket_cnt = 0;
1744 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1745 		bucket_cnt++;
1746 
1747 	if (bucket_cnt && !locked) {
1748 		locked = true;
1749 		goto again_nocopy;
1750 	}
1751 
1752 	if (bucket_cnt > (max_count - total)) {
1753 		if (total == 0)
1754 			ret = -ENOSPC;
1755 		/* Note that since bucket_cnt > 0 here, it is implicit
1756 		 * that the locked was grabbed, so release it.
1757 		 */
1758 		htab_unlock_bucket(htab, b, batch, flags);
1759 		rcu_read_unlock();
1760 		bpf_enable_instrumentation();
1761 		goto after_loop;
1762 	}
1763 
1764 	if (bucket_cnt > bucket_size) {
1765 		bucket_size = bucket_cnt;
1766 		/* Note that since bucket_cnt > 0 here, it is implicit
1767 		 * that the locked was grabbed, so release it.
1768 		 */
1769 		htab_unlock_bucket(htab, b, batch, flags);
1770 		rcu_read_unlock();
1771 		bpf_enable_instrumentation();
1772 		kvfree(keys);
1773 		kvfree(values);
1774 		goto alloc;
1775 	}
1776 
1777 	/* Next block is only safe to run if you have grabbed the lock */
1778 	if (!locked)
1779 		goto next_batch;
1780 
1781 	hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1782 		memcpy(dst_key, l->key, key_size);
1783 
1784 		if (is_percpu) {
1785 			int off = 0, cpu;
1786 			void __percpu *pptr;
1787 
1788 			pptr = htab_elem_get_ptr(l, map->key_size);
1789 			for_each_possible_cpu(cpu) {
1790 				copy_map_value_long(&htab->map, dst_val + off, per_cpu_ptr(pptr, cpu));
1791 				check_and_init_map_value(&htab->map, dst_val + off);
1792 				off += size;
1793 			}
1794 		} else {
1795 			value = l->key + roundup_key_size;
1796 			if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) {
1797 				struct bpf_map **inner_map = value;
1798 
1799 				 /* Actual value is the id of the inner map */
1800 				map_id = map->ops->map_fd_sys_lookup_elem(*inner_map);
1801 				value = &map_id;
1802 			}
1803 
1804 			if (elem_map_flags & BPF_F_LOCK)
1805 				copy_map_value_locked(map, dst_val, value,
1806 						      true);
1807 			else
1808 				copy_map_value(map, dst_val, value);
1809 			/* Zeroing special fields in the temp buffer */
1810 			check_and_init_map_value(map, dst_val);
1811 		}
1812 		if (do_delete) {
1813 			hlist_nulls_del_rcu(&l->hash_node);
1814 
1815 			/* bpf_lru_push_free() will acquire lru_lock, which
1816 			 * may cause deadlock. See comments in function
1817 			 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1818 			 * after releasing the bucket lock.
1819 			 */
1820 			if (is_lru_map) {
1821 				l->batch_flink = node_to_free;
1822 				node_to_free = l;
1823 			} else {
1824 				free_htab_elem(htab, l);
1825 			}
1826 		}
1827 		dst_key += key_size;
1828 		dst_val += value_size;
1829 	}
1830 
1831 	htab_unlock_bucket(htab, b, batch, flags);
1832 	locked = false;
1833 
1834 	while (node_to_free) {
1835 		l = node_to_free;
1836 		node_to_free = node_to_free->batch_flink;
1837 		htab_lru_push_free(htab, l);
1838 	}
1839 
1840 next_batch:
1841 	/* If we are not copying data, we can go to next bucket and avoid
1842 	 * unlocking the rcu.
1843 	 */
1844 	if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1845 		batch++;
1846 		goto again_nocopy;
1847 	}
1848 
1849 	rcu_read_unlock();
1850 	bpf_enable_instrumentation();
1851 	if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1852 	    key_size * bucket_cnt) ||
1853 	    copy_to_user(uvalues + total * value_size, values,
1854 	    value_size * bucket_cnt))) {
1855 		ret = -EFAULT;
1856 		goto after_loop;
1857 	}
1858 
1859 	total += bucket_cnt;
1860 	batch++;
1861 	if (batch >= htab->n_buckets) {
1862 		ret = -ENOENT;
1863 		goto after_loop;
1864 	}
1865 	goto again;
1866 
1867 after_loop:
1868 	if (ret == -EFAULT)
1869 		goto out;
1870 
1871 	/* copy # of entries and next batch */
1872 	ubatch = u64_to_user_ptr(attr->batch.out_batch);
1873 	if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1874 	    put_user(total, &uattr->batch.count))
1875 		ret = -EFAULT;
1876 
1877 out:
1878 	kvfree(keys);
1879 	kvfree(values);
1880 	return ret;
1881 }
1882 
1883 static int
1884 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1885 			     union bpf_attr __user *uattr)
1886 {
1887 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1888 						  false, true);
1889 }
1890 
1891 static int
1892 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1893 					const union bpf_attr *attr,
1894 					union bpf_attr __user *uattr)
1895 {
1896 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1897 						  false, true);
1898 }
1899 
1900 static int
1901 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1902 		      union bpf_attr __user *uattr)
1903 {
1904 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1905 						  false, false);
1906 }
1907 
1908 static int
1909 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1910 				 const union bpf_attr *attr,
1911 				 union bpf_attr __user *uattr)
1912 {
1913 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1914 						  false, false);
1915 }
1916 
1917 static int
1918 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1919 				 const union bpf_attr *attr,
1920 				 union bpf_attr __user *uattr)
1921 {
1922 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1923 						  true, true);
1924 }
1925 
1926 static int
1927 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1928 					    const union bpf_attr *attr,
1929 					    union bpf_attr __user *uattr)
1930 {
1931 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1932 						  true, true);
1933 }
1934 
1935 static int
1936 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1937 			  union bpf_attr __user *uattr)
1938 {
1939 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1940 						  true, false);
1941 }
1942 
1943 static int
1944 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1945 				     const union bpf_attr *attr,
1946 				     union bpf_attr __user *uattr)
1947 {
1948 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1949 						  true, false);
1950 }
1951 
1952 struct bpf_iter_seq_hash_map_info {
1953 	struct bpf_map *map;
1954 	struct bpf_htab *htab;
1955 	void *percpu_value_buf; // non-zero means percpu hash
1956 	u32 bucket_id;
1957 	u32 skip_elems;
1958 };
1959 
1960 static struct htab_elem *
1961 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1962 			   struct htab_elem *prev_elem)
1963 {
1964 	const struct bpf_htab *htab = info->htab;
1965 	u32 skip_elems = info->skip_elems;
1966 	u32 bucket_id = info->bucket_id;
1967 	struct hlist_nulls_head *head;
1968 	struct hlist_nulls_node *n;
1969 	struct htab_elem *elem;
1970 	struct bucket *b;
1971 	u32 i, count;
1972 
1973 	if (bucket_id >= htab->n_buckets)
1974 		return NULL;
1975 
1976 	/* try to find next elem in the same bucket */
1977 	if (prev_elem) {
1978 		/* no update/deletion on this bucket, prev_elem should be still valid
1979 		 * and we won't skip elements.
1980 		 */
1981 		n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1982 		elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1983 		if (elem)
1984 			return elem;
1985 
1986 		/* not found, unlock and go to the next bucket */
1987 		b = &htab->buckets[bucket_id++];
1988 		rcu_read_unlock();
1989 		skip_elems = 0;
1990 	}
1991 
1992 	for (i = bucket_id; i < htab->n_buckets; i++) {
1993 		b = &htab->buckets[i];
1994 		rcu_read_lock();
1995 
1996 		count = 0;
1997 		head = &b->head;
1998 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1999 			if (count >= skip_elems) {
2000 				info->bucket_id = i;
2001 				info->skip_elems = count;
2002 				return elem;
2003 			}
2004 			count++;
2005 		}
2006 
2007 		rcu_read_unlock();
2008 		skip_elems = 0;
2009 	}
2010 
2011 	info->bucket_id = i;
2012 	info->skip_elems = 0;
2013 	return NULL;
2014 }
2015 
2016 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
2017 {
2018 	struct bpf_iter_seq_hash_map_info *info = seq->private;
2019 	struct htab_elem *elem;
2020 
2021 	elem = bpf_hash_map_seq_find_next(info, NULL);
2022 	if (!elem)
2023 		return NULL;
2024 
2025 	if (*pos == 0)
2026 		++*pos;
2027 	return elem;
2028 }
2029 
2030 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2031 {
2032 	struct bpf_iter_seq_hash_map_info *info = seq->private;
2033 
2034 	++*pos;
2035 	++info->skip_elems;
2036 	return bpf_hash_map_seq_find_next(info, v);
2037 }
2038 
2039 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
2040 {
2041 	struct bpf_iter_seq_hash_map_info *info = seq->private;
2042 	u32 roundup_key_size, roundup_value_size;
2043 	struct bpf_iter__bpf_map_elem ctx = {};
2044 	struct bpf_map *map = info->map;
2045 	struct bpf_iter_meta meta;
2046 	int ret = 0, off = 0, cpu;
2047 	struct bpf_prog *prog;
2048 	void __percpu *pptr;
2049 
2050 	meta.seq = seq;
2051 	prog = bpf_iter_get_info(&meta, elem == NULL);
2052 	if (prog) {
2053 		ctx.meta = &meta;
2054 		ctx.map = info->map;
2055 		if (elem) {
2056 			roundup_key_size = round_up(map->key_size, 8);
2057 			ctx.key = elem->key;
2058 			if (!info->percpu_value_buf) {
2059 				ctx.value = elem->key + roundup_key_size;
2060 			} else {
2061 				roundup_value_size = round_up(map->value_size, 8);
2062 				pptr = htab_elem_get_ptr(elem, map->key_size);
2063 				for_each_possible_cpu(cpu) {
2064 					copy_map_value_long(map, info->percpu_value_buf + off,
2065 							    per_cpu_ptr(pptr, cpu));
2066 					check_and_init_map_value(map, info->percpu_value_buf + off);
2067 					off += roundup_value_size;
2068 				}
2069 				ctx.value = info->percpu_value_buf;
2070 			}
2071 		}
2072 		ret = bpf_iter_run_prog(prog, &ctx);
2073 	}
2074 
2075 	return ret;
2076 }
2077 
2078 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
2079 {
2080 	return __bpf_hash_map_seq_show(seq, v);
2081 }
2082 
2083 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
2084 {
2085 	if (!v)
2086 		(void)__bpf_hash_map_seq_show(seq, NULL);
2087 	else
2088 		rcu_read_unlock();
2089 }
2090 
2091 static int bpf_iter_init_hash_map(void *priv_data,
2092 				  struct bpf_iter_aux_info *aux)
2093 {
2094 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2095 	struct bpf_map *map = aux->map;
2096 	void *value_buf;
2097 	u32 buf_size;
2098 
2099 	if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
2100 	    map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
2101 		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
2102 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
2103 		if (!value_buf)
2104 			return -ENOMEM;
2105 
2106 		seq_info->percpu_value_buf = value_buf;
2107 	}
2108 
2109 	bpf_map_inc_with_uref(map);
2110 	seq_info->map = map;
2111 	seq_info->htab = container_of(map, struct bpf_htab, map);
2112 	return 0;
2113 }
2114 
2115 static void bpf_iter_fini_hash_map(void *priv_data)
2116 {
2117 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2118 
2119 	bpf_map_put_with_uref(seq_info->map);
2120 	kfree(seq_info->percpu_value_buf);
2121 }
2122 
2123 static const struct seq_operations bpf_hash_map_seq_ops = {
2124 	.start	= bpf_hash_map_seq_start,
2125 	.next	= bpf_hash_map_seq_next,
2126 	.stop	= bpf_hash_map_seq_stop,
2127 	.show	= bpf_hash_map_seq_show,
2128 };
2129 
2130 static const struct bpf_iter_seq_info iter_seq_info = {
2131 	.seq_ops		= &bpf_hash_map_seq_ops,
2132 	.init_seq_private	= bpf_iter_init_hash_map,
2133 	.fini_seq_private	= bpf_iter_fini_hash_map,
2134 	.seq_priv_size		= sizeof(struct bpf_iter_seq_hash_map_info),
2135 };
2136 
2137 static int bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn,
2138 				  void *callback_ctx, u64 flags)
2139 {
2140 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2141 	struct hlist_nulls_head *head;
2142 	struct hlist_nulls_node *n;
2143 	struct htab_elem *elem;
2144 	u32 roundup_key_size;
2145 	int i, num_elems = 0;
2146 	void __percpu *pptr;
2147 	struct bucket *b;
2148 	void *key, *val;
2149 	bool is_percpu;
2150 	u64 ret = 0;
2151 
2152 	if (flags != 0)
2153 		return -EINVAL;
2154 
2155 	is_percpu = htab_is_percpu(htab);
2156 
2157 	roundup_key_size = round_up(map->key_size, 8);
2158 	/* disable migration so percpu value prepared here will be the
2159 	 * same as the one seen by the bpf program with bpf_map_lookup_elem().
2160 	 */
2161 	if (is_percpu)
2162 		migrate_disable();
2163 	for (i = 0; i < htab->n_buckets; i++) {
2164 		b = &htab->buckets[i];
2165 		rcu_read_lock();
2166 		head = &b->head;
2167 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
2168 			key = elem->key;
2169 			if (is_percpu) {
2170 				/* current cpu value for percpu map */
2171 				pptr = htab_elem_get_ptr(elem, map->key_size);
2172 				val = this_cpu_ptr(pptr);
2173 			} else {
2174 				val = elem->key + roundup_key_size;
2175 			}
2176 			num_elems++;
2177 			ret = callback_fn((u64)(long)map, (u64)(long)key,
2178 					  (u64)(long)val, (u64)(long)callback_ctx, 0);
2179 			/* return value: 0 - continue, 1 - stop and return */
2180 			if (ret) {
2181 				rcu_read_unlock();
2182 				goto out;
2183 			}
2184 		}
2185 		rcu_read_unlock();
2186 	}
2187 out:
2188 	if (is_percpu)
2189 		migrate_enable();
2190 	return num_elems;
2191 }
2192 
2193 static u64 htab_map_mem_usage(const struct bpf_map *map)
2194 {
2195 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2196 	u32 value_size = round_up(htab->map.value_size, 8);
2197 	bool prealloc = htab_is_prealloc(htab);
2198 	bool percpu = htab_is_percpu(htab);
2199 	bool lru = htab_is_lru(htab);
2200 	u64 num_entries;
2201 	u64 usage = sizeof(struct bpf_htab);
2202 
2203 	usage += sizeof(struct bucket) * htab->n_buckets;
2204 	usage += sizeof(int) * num_possible_cpus() * HASHTAB_MAP_LOCK_COUNT;
2205 	if (prealloc) {
2206 		num_entries = map->max_entries;
2207 		if (htab_has_extra_elems(htab))
2208 			num_entries += num_possible_cpus();
2209 
2210 		usage += htab->elem_size * num_entries;
2211 
2212 		if (percpu)
2213 			usage += value_size * num_possible_cpus() * num_entries;
2214 		else if (!lru)
2215 			usage += sizeof(struct htab_elem *) * num_possible_cpus();
2216 	} else {
2217 #define LLIST_NODE_SZ sizeof(struct llist_node)
2218 
2219 		num_entries = htab->use_percpu_counter ?
2220 					  percpu_counter_sum(&htab->pcount) :
2221 					  atomic_read(&htab->count);
2222 		usage += (htab->elem_size + LLIST_NODE_SZ) * num_entries;
2223 		if (percpu) {
2224 			usage += (LLIST_NODE_SZ + sizeof(void *)) * num_entries;
2225 			usage += value_size * num_possible_cpus() * num_entries;
2226 		}
2227 	}
2228 	return usage;
2229 }
2230 
2231 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab)
2232 const struct bpf_map_ops htab_map_ops = {
2233 	.map_meta_equal = bpf_map_meta_equal,
2234 	.map_alloc_check = htab_map_alloc_check,
2235 	.map_alloc = htab_map_alloc,
2236 	.map_free = htab_map_free,
2237 	.map_get_next_key = htab_map_get_next_key,
2238 	.map_release_uref = htab_map_free_timers,
2239 	.map_lookup_elem = htab_map_lookup_elem,
2240 	.map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem,
2241 	.map_update_elem = htab_map_update_elem,
2242 	.map_delete_elem = htab_map_delete_elem,
2243 	.map_gen_lookup = htab_map_gen_lookup,
2244 	.map_seq_show_elem = htab_map_seq_show_elem,
2245 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2246 	.map_for_each_callback = bpf_for_each_hash_elem,
2247 	.map_mem_usage = htab_map_mem_usage,
2248 	BATCH_OPS(htab),
2249 	.map_btf_id = &htab_map_btf_ids[0],
2250 	.iter_seq_info = &iter_seq_info,
2251 };
2252 
2253 const struct bpf_map_ops htab_lru_map_ops = {
2254 	.map_meta_equal = bpf_map_meta_equal,
2255 	.map_alloc_check = htab_map_alloc_check,
2256 	.map_alloc = htab_map_alloc,
2257 	.map_free = htab_map_free,
2258 	.map_get_next_key = htab_map_get_next_key,
2259 	.map_release_uref = htab_map_free_timers,
2260 	.map_lookup_elem = htab_lru_map_lookup_elem,
2261 	.map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem,
2262 	.map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
2263 	.map_update_elem = htab_lru_map_update_elem,
2264 	.map_delete_elem = htab_lru_map_delete_elem,
2265 	.map_gen_lookup = htab_lru_map_gen_lookup,
2266 	.map_seq_show_elem = htab_map_seq_show_elem,
2267 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2268 	.map_for_each_callback = bpf_for_each_hash_elem,
2269 	.map_mem_usage = htab_map_mem_usage,
2270 	BATCH_OPS(htab_lru),
2271 	.map_btf_id = &htab_map_btf_ids[0],
2272 	.iter_seq_info = &iter_seq_info,
2273 };
2274 
2275 /* Called from eBPF program */
2276 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2277 {
2278 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
2279 
2280 	if (l)
2281 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2282 	else
2283 		return NULL;
2284 }
2285 
2286 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2287 {
2288 	struct htab_elem *l;
2289 
2290 	if (cpu >= nr_cpu_ids)
2291 		return NULL;
2292 
2293 	l = __htab_map_lookup_elem(map, key);
2294 	if (l)
2295 		return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2296 	else
2297 		return NULL;
2298 }
2299 
2300 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2301 {
2302 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
2303 
2304 	if (l) {
2305 		bpf_lru_node_set_ref(&l->lru_node);
2306 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2307 	}
2308 
2309 	return NULL;
2310 }
2311 
2312 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2313 {
2314 	struct htab_elem *l;
2315 
2316 	if (cpu >= nr_cpu_ids)
2317 		return NULL;
2318 
2319 	l = __htab_map_lookup_elem(map, key);
2320 	if (l) {
2321 		bpf_lru_node_set_ref(&l->lru_node);
2322 		return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2323 	}
2324 
2325 	return NULL;
2326 }
2327 
2328 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
2329 {
2330 	struct htab_elem *l;
2331 	void __percpu *pptr;
2332 	int ret = -ENOENT;
2333 	int cpu, off = 0;
2334 	u32 size;
2335 
2336 	/* per_cpu areas are zero-filled and bpf programs can only
2337 	 * access 'value_size' of them, so copying rounded areas
2338 	 * will not leak any kernel data
2339 	 */
2340 	size = round_up(map->value_size, 8);
2341 	rcu_read_lock();
2342 	l = __htab_map_lookup_elem(map, key);
2343 	if (!l)
2344 		goto out;
2345 	/* We do not mark LRU map element here in order to not mess up
2346 	 * eviction heuristics when user space does a map walk.
2347 	 */
2348 	pptr = htab_elem_get_ptr(l, map->key_size);
2349 	for_each_possible_cpu(cpu) {
2350 		copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu));
2351 		check_and_init_map_value(map, value + off);
2352 		off += size;
2353 	}
2354 	ret = 0;
2355 out:
2356 	rcu_read_unlock();
2357 	return ret;
2358 }
2359 
2360 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2361 			   u64 map_flags)
2362 {
2363 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2364 	int ret;
2365 
2366 	rcu_read_lock();
2367 	if (htab_is_lru(htab))
2368 		ret = __htab_lru_percpu_map_update_elem(map, key, value,
2369 							map_flags, true);
2370 	else
2371 		ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
2372 						    true);
2373 	rcu_read_unlock();
2374 
2375 	return ret;
2376 }
2377 
2378 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
2379 					  struct seq_file *m)
2380 {
2381 	struct htab_elem *l;
2382 	void __percpu *pptr;
2383 	int cpu;
2384 
2385 	rcu_read_lock();
2386 
2387 	l = __htab_map_lookup_elem(map, key);
2388 	if (!l) {
2389 		rcu_read_unlock();
2390 		return;
2391 	}
2392 
2393 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
2394 	seq_puts(m, ": {\n");
2395 	pptr = htab_elem_get_ptr(l, map->key_size);
2396 	for_each_possible_cpu(cpu) {
2397 		seq_printf(m, "\tcpu%d: ", cpu);
2398 		btf_type_seq_show(map->btf, map->btf_value_type_id,
2399 				  per_cpu_ptr(pptr, cpu), m);
2400 		seq_puts(m, "\n");
2401 	}
2402 	seq_puts(m, "}\n");
2403 
2404 	rcu_read_unlock();
2405 }
2406 
2407 const struct bpf_map_ops htab_percpu_map_ops = {
2408 	.map_meta_equal = bpf_map_meta_equal,
2409 	.map_alloc_check = htab_map_alloc_check,
2410 	.map_alloc = htab_map_alloc,
2411 	.map_free = htab_map_free,
2412 	.map_get_next_key = htab_map_get_next_key,
2413 	.map_lookup_elem = htab_percpu_map_lookup_elem,
2414 	.map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem,
2415 	.map_update_elem = htab_percpu_map_update_elem,
2416 	.map_delete_elem = htab_map_delete_elem,
2417 	.map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem,
2418 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2419 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2420 	.map_for_each_callback = bpf_for_each_hash_elem,
2421 	.map_mem_usage = htab_map_mem_usage,
2422 	BATCH_OPS(htab_percpu),
2423 	.map_btf_id = &htab_map_btf_ids[0],
2424 	.iter_seq_info = &iter_seq_info,
2425 };
2426 
2427 const struct bpf_map_ops htab_lru_percpu_map_ops = {
2428 	.map_meta_equal = bpf_map_meta_equal,
2429 	.map_alloc_check = htab_map_alloc_check,
2430 	.map_alloc = htab_map_alloc,
2431 	.map_free = htab_map_free,
2432 	.map_get_next_key = htab_map_get_next_key,
2433 	.map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2434 	.map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem,
2435 	.map_update_elem = htab_lru_percpu_map_update_elem,
2436 	.map_delete_elem = htab_lru_map_delete_elem,
2437 	.map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem,
2438 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2439 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2440 	.map_for_each_callback = bpf_for_each_hash_elem,
2441 	.map_mem_usage = htab_map_mem_usage,
2442 	BATCH_OPS(htab_lru_percpu),
2443 	.map_btf_id = &htab_map_btf_ids[0],
2444 	.iter_seq_info = &iter_seq_info,
2445 };
2446 
2447 static int fd_htab_map_alloc_check(union bpf_attr *attr)
2448 {
2449 	if (attr->value_size != sizeof(u32))
2450 		return -EINVAL;
2451 	return htab_map_alloc_check(attr);
2452 }
2453 
2454 static void fd_htab_map_free(struct bpf_map *map)
2455 {
2456 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2457 	struct hlist_nulls_node *n;
2458 	struct hlist_nulls_head *head;
2459 	struct htab_elem *l;
2460 	int i;
2461 
2462 	for (i = 0; i < htab->n_buckets; i++) {
2463 		head = select_bucket(htab, i);
2464 
2465 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2466 			void *ptr = fd_htab_map_get_ptr(map, l);
2467 
2468 			map->ops->map_fd_put_ptr(ptr);
2469 		}
2470 	}
2471 
2472 	htab_map_free(map);
2473 }
2474 
2475 /* only called from syscall */
2476 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2477 {
2478 	void **ptr;
2479 	int ret = 0;
2480 
2481 	if (!map->ops->map_fd_sys_lookup_elem)
2482 		return -ENOTSUPP;
2483 
2484 	rcu_read_lock();
2485 	ptr = htab_map_lookup_elem(map, key);
2486 	if (ptr)
2487 		*value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2488 	else
2489 		ret = -ENOENT;
2490 	rcu_read_unlock();
2491 
2492 	return ret;
2493 }
2494 
2495 /* only called from syscall */
2496 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2497 				void *key, void *value, u64 map_flags)
2498 {
2499 	void *ptr;
2500 	int ret;
2501 	u32 ufd = *(u32 *)value;
2502 
2503 	ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2504 	if (IS_ERR(ptr))
2505 		return PTR_ERR(ptr);
2506 
2507 	ret = htab_map_update_elem(map, key, &ptr, map_flags);
2508 	if (ret)
2509 		map->ops->map_fd_put_ptr(ptr);
2510 
2511 	return ret;
2512 }
2513 
2514 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2515 {
2516 	struct bpf_map *map, *inner_map_meta;
2517 
2518 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2519 	if (IS_ERR(inner_map_meta))
2520 		return inner_map_meta;
2521 
2522 	map = htab_map_alloc(attr);
2523 	if (IS_ERR(map)) {
2524 		bpf_map_meta_free(inner_map_meta);
2525 		return map;
2526 	}
2527 
2528 	map->inner_map_meta = inner_map_meta;
2529 
2530 	return map;
2531 }
2532 
2533 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2534 {
2535 	struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
2536 
2537 	if (!inner_map)
2538 		return NULL;
2539 
2540 	return READ_ONCE(*inner_map);
2541 }
2542 
2543 static int htab_of_map_gen_lookup(struct bpf_map *map,
2544 				  struct bpf_insn *insn_buf)
2545 {
2546 	struct bpf_insn *insn = insn_buf;
2547 	const int ret = BPF_REG_0;
2548 
2549 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2550 		     (void *(*)(struct bpf_map *map, void *key))NULL));
2551 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
2552 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2553 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2554 				offsetof(struct htab_elem, key) +
2555 				round_up(map->key_size, 8));
2556 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2557 
2558 	return insn - insn_buf;
2559 }
2560 
2561 static void htab_of_map_free(struct bpf_map *map)
2562 {
2563 	bpf_map_meta_free(map->inner_map_meta);
2564 	fd_htab_map_free(map);
2565 }
2566 
2567 const struct bpf_map_ops htab_of_maps_map_ops = {
2568 	.map_alloc_check = fd_htab_map_alloc_check,
2569 	.map_alloc = htab_of_map_alloc,
2570 	.map_free = htab_of_map_free,
2571 	.map_get_next_key = htab_map_get_next_key,
2572 	.map_lookup_elem = htab_of_map_lookup_elem,
2573 	.map_delete_elem = htab_map_delete_elem,
2574 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
2575 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
2576 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2577 	.map_gen_lookup = htab_of_map_gen_lookup,
2578 	.map_check_btf = map_check_no_btf,
2579 	.map_mem_usage = htab_map_mem_usage,
2580 	BATCH_OPS(htab),
2581 	.map_btf_id = &htab_map_btf_ids[0],
2582 };
2583