1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/jhash.h> 8 #include <linux/filter.h> 9 #include <linux/rculist_nulls.h> 10 #include <linux/rcupdate_wait.h> 11 #include <linux/random.h> 12 #include <uapi/linux/btf.h> 13 #include <linux/rcupdate_trace.h> 14 #include <linux/btf_ids.h> 15 #include "percpu_freelist.h" 16 #include "bpf_lru_list.h" 17 #include "map_in_map.h" 18 #include <linux/bpf_mem_alloc.h> 19 20 #define HTAB_CREATE_FLAG_MASK \ 21 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ 22 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) 23 24 #define BATCH_OPS(_name) \ 25 .map_lookup_batch = \ 26 _name##_map_lookup_batch, \ 27 .map_lookup_and_delete_batch = \ 28 _name##_map_lookup_and_delete_batch, \ 29 .map_update_batch = \ 30 generic_map_update_batch, \ 31 .map_delete_batch = \ 32 generic_map_delete_batch 33 34 /* 35 * The bucket lock has two protection scopes: 36 * 37 * 1) Serializing concurrent operations from BPF programs on different 38 * CPUs 39 * 40 * 2) Serializing concurrent operations from BPF programs and sys_bpf() 41 * 42 * BPF programs can execute in any context including perf, kprobes and 43 * tracing. As there are almost no limits where perf, kprobes and tracing 44 * can be invoked from the lock operations need to be protected against 45 * deadlocks. Deadlocks can be caused by recursion and by an invocation in 46 * the lock held section when functions which acquire this lock are invoked 47 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU 48 * variable bpf_prog_active, which prevents BPF programs attached to perf 49 * events, kprobes and tracing to be invoked before the prior invocation 50 * from one of these contexts completed. sys_bpf() uses the same mechanism 51 * by pinning the task to the current CPU and incrementing the recursion 52 * protection across the map operation. 53 * 54 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain 55 * operations like memory allocations (even with GFP_ATOMIC) from atomic 56 * contexts. This is required because even with GFP_ATOMIC the memory 57 * allocator calls into code paths which acquire locks with long held lock 58 * sections. To ensure the deterministic behaviour these locks are regular 59 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only 60 * true atomic contexts on an RT kernel are the low level hardware 61 * handling, scheduling, low level interrupt handling, NMIs etc. None of 62 * these contexts should ever do memory allocations. 63 * 64 * As regular device interrupt handlers and soft interrupts are forced into 65 * thread context, the existing code which does 66 * spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*(); 67 * just works. 68 * 69 * In theory the BPF locks could be converted to regular spinlocks as well, 70 * but the bucket locks and percpu_freelist locks can be taken from 71 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be 72 * atomic contexts even on RT. Before the introduction of bpf_mem_alloc, 73 * it is only safe to use raw spinlock for preallocated hash map on a RT kernel, 74 * because there is no memory allocation within the lock held sections. However 75 * after hash map was fully converted to use bpf_mem_alloc, there will be 76 * non-synchronous memory allocation for non-preallocated hash map, so it is 77 * safe to always use raw spinlock for bucket lock. 78 */ 79 struct bucket { 80 struct hlist_nulls_head head; 81 raw_spinlock_t raw_lock; 82 }; 83 84 #define HASHTAB_MAP_LOCK_COUNT 8 85 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1) 86 87 struct bpf_htab { 88 struct bpf_map map; 89 struct bpf_mem_alloc ma; 90 struct bpf_mem_alloc pcpu_ma; 91 struct bucket *buckets; 92 void *elems; 93 union { 94 struct pcpu_freelist freelist; 95 struct bpf_lru lru; 96 }; 97 struct htab_elem *__percpu *extra_elems; 98 /* number of elements in non-preallocated hashtable are kept 99 * in either pcount or count 100 */ 101 struct percpu_counter pcount; 102 atomic_t count; 103 bool use_percpu_counter; 104 u32 n_buckets; /* number of hash buckets */ 105 u32 elem_size; /* size of each element in bytes */ 106 u32 hashrnd; 107 struct lock_class_key lockdep_key; 108 int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT]; 109 }; 110 111 /* each htab element is struct htab_elem + key + value */ 112 struct htab_elem { 113 union { 114 struct hlist_nulls_node hash_node; 115 struct { 116 void *padding; 117 union { 118 struct pcpu_freelist_node fnode; 119 struct htab_elem *batch_flink; 120 }; 121 }; 122 }; 123 union { 124 /* pointer to per-cpu pointer */ 125 void *ptr_to_pptr; 126 struct bpf_lru_node lru_node; 127 }; 128 u32 hash; 129 char key[] __aligned(8); 130 }; 131 132 static inline bool htab_is_prealloc(const struct bpf_htab *htab) 133 { 134 return !(htab->map.map_flags & BPF_F_NO_PREALLOC); 135 } 136 137 static void htab_init_buckets(struct bpf_htab *htab) 138 { 139 unsigned int i; 140 141 for (i = 0; i < htab->n_buckets; i++) { 142 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); 143 raw_spin_lock_init(&htab->buckets[i].raw_lock); 144 lockdep_set_class(&htab->buckets[i].raw_lock, 145 &htab->lockdep_key); 146 cond_resched(); 147 } 148 } 149 150 static inline int htab_lock_bucket(const struct bpf_htab *htab, 151 struct bucket *b, u32 hash, 152 unsigned long *pflags) 153 { 154 unsigned long flags; 155 156 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); 157 158 preempt_disable(); 159 local_irq_save(flags); 160 if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) { 161 __this_cpu_dec(*(htab->map_locked[hash])); 162 local_irq_restore(flags); 163 preempt_enable(); 164 return -EBUSY; 165 } 166 167 raw_spin_lock(&b->raw_lock); 168 *pflags = flags; 169 170 return 0; 171 } 172 173 static inline void htab_unlock_bucket(const struct bpf_htab *htab, 174 struct bucket *b, u32 hash, 175 unsigned long flags) 176 { 177 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); 178 raw_spin_unlock(&b->raw_lock); 179 __this_cpu_dec(*(htab->map_locked[hash])); 180 local_irq_restore(flags); 181 preempt_enable(); 182 } 183 184 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); 185 186 static bool htab_is_lru(const struct bpf_htab *htab) 187 { 188 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || 189 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 190 } 191 192 static bool htab_is_percpu(const struct bpf_htab *htab) 193 { 194 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || 195 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 196 } 197 198 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, 199 void __percpu *pptr) 200 { 201 *(void __percpu **)(l->key + key_size) = pptr; 202 } 203 204 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) 205 { 206 return *(void __percpu **)(l->key + key_size); 207 } 208 209 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) 210 { 211 return *(void **)(l->key + roundup(map->key_size, 8)); 212 } 213 214 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) 215 { 216 return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size); 217 } 218 219 static bool htab_has_extra_elems(struct bpf_htab *htab) 220 { 221 return !htab_is_percpu(htab) && !htab_is_lru(htab); 222 } 223 224 static void htab_free_prealloced_timers_and_wq(struct bpf_htab *htab) 225 { 226 u32 num_entries = htab->map.max_entries; 227 int i; 228 229 if (htab_has_extra_elems(htab)) 230 num_entries += num_possible_cpus(); 231 232 for (i = 0; i < num_entries; i++) { 233 struct htab_elem *elem; 234 235 elem = get_htab_elem(htab, i); 236 if (btf_record_has_field(htab->map.record, BPF_TIMER)) 237 bpf_obj_free_timer(htab->map.record, 238 elem->key + round_up(htab->map.key_size, 8)); 239 if (btf_record_has_field(htab->map.record, BPF_WORKQUEUE)) 240 bpf_obj_free_workqueue(htab->map.record, 241 elem->key + round_up(htab->map.key_size, 8)); 242 cond_resched(); 243 } 244 } 245 246 static void htab_free_prealloced_fields(struct bpf_htab *htab) 247 { 248 u32 num_entries = htab->map.max_entries; 249 int i; 250 251 if (IS_ERR_OR_NULL(htab->map.record)) 252 return; 253 if (htab_has_extra_elems(htab)) 254 num_entries += num_possible_cpus(); 255 for (i = 0; i < num_entries; i++) { 256 struct htab_elem *elem; 257 258 elem = get_htab_elem(htab, i); 259 if (htab_is_percpu(htab)) { 260 void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); 261 int cpu; 262 263 for_each_possible_cpu(cpu) { 264 bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); 265 cond_resched(); 266 } 267 } else { 268 bpf_obj_free_fields(htab->map.record, elem->key + round_up(htab->map.key_size, 8)); 269 cond_resched(); 270 } 271 cond_resched(); 272 } 273 } 274 275 static void htab_free_elems(struct bpf_htab *htab) 276 { 277 int i; 278 279 if (!htab_is_percpu(htab)) 280 goto free_elems; 281 282 for (i = 0; i < htab->map.max_entries; i++) { 283 void __percpu *pptr; 284 285 pptr = htab_elem_get_ptr(get_htab_elem(htab, i), 286 htab->map.key_size); 287 free_percpu(pptr); 288 cond_resched(); 289 } 290 free_elems: 291 bpf_map_area_free(htab->elems); 292 } 293 294 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock 295 * (bucket_lock). If both locks need to be acquired together, the lock 296 * order is always lru_lock -> bucket_lock and this only happens in 297 * bpf_lru_list.c logic. For example, certain code path of 298 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), 299 * will acquire lru_lock first followed by acquiring bucket_lock. 300 * 301 * In hashtab.c, to avoid deadlock, lock acquisition of 302 * bucket_lock followed by lru_lock is not allowed. In such cases, 303 * bucket_lock needs to be released first before acquiring lru_lock. 304 */ 305 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, 306 u32 hash) 307 { 308 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); 309 struct htab_elem *l; 310 311 if (node) { 312 bpf_map_inc_elem_count(&htab->map); 313 l = container_of(node, struct htab_elem, lru_node); 314 memcpy(l->key, key, htab->map.key_size); 315 return l; 316 } 317 318 return NULL; 319 } 320 321 static int prealloc_init(struct bpf_htab *htab) 322 { 323 u32 num_entries = htab->map.max_entries; 324 int err = -ENOMEM, i; 325 326 if (htab_has_extra_elems(htab)) 327 num_entries += num_possible_cpus(); 328 329 htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries, 330 htab->map.numa_node); 331 if (!htab->elems) 332 return -ENOMEM; 333 334 if (!htab_is_percpu(htab)) 335 goto skip_percpu_elems; 336 337 for (i = 0; i < num_entries; i++) { 338 u32 size = round_up(htab->map.value_size, 8); 339 void __percpu *pptr; 340 341 pptr = bpf_map_alloc_percpu(&htab->map, size, 8, 342 GFP_USER | __GFP_NOWARN); 343 if (!pptr) 344 goto free_elems; 345 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, 346 pptr); 347 cond_resched(); 348 } 349 350 skip_percpu_elems: 351 if (htab_is_lru(htab)) 352 err = bpf_lru_init(&htab->lru, 353 htab->map.map_flags & BPF_F_NO_COMMON_LRU, 354 offsetof(struct htab_elem, hash) - 355 offsetof(struct htab_elem, lru_node), 356 htab_lru_map_delete_node, 357 htab); 358 else 359 err = pcpu_freelist_init(&htab->freelist); 360 361 if (err) 362 goto free_elems; 363 364 if (htab_is_lru(htab)) 365 bpf_lru_populate(&htab->lru, htab->elems, 366 offsetof(struct htab_elem, lru_node), 367 htab->elem_size, num_entries); 368 else 369 pcpu_freelist_populate(&htab->freelist, 370 htab->elems + offsetof(struct htab_elem, fnode), 371 htab->elem_size, num_entries); 372 373 return 0; 374 375 free_elems: 376 htab_free_elems(htab); 377 return err; 378 } 379 380 static void prealloc_destroy(struct bpf_htab *htab) 381 { 382 htab_free_elems(htab); 383 384 if (htab_is_lru(htab)) 385 bpf_lru_destroy(&htab->lru); 386 else 387 pcpu_freelist_destroy(&htab->freelist); 388 } 389 390 static int alloc_extra_elems(struct bpf_htab *htab) 391 { 392 struct htab_elem *__percpu *pptr, *l_new; 393 struct pcpu_freelist_node *l; 394 int cpu; 395 396 pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8, 397 GFP_USER | __GFP_NOWARN); 398 if (!pptr) 399 return -ENOMEM; 400 401 for_each_possible_cpu(cpu) { 402 l = pcpu_freelist_pop(&htab->freelist); 403 /* pop will succeed, since prealloc_init() 404 * preallocated extra num_possible_cpus elements 405 */ 406 l_new = container_of(l, struct htab_elem, fnode); 407 *per_cpu_ptr(pptr, cpu) = l_new; 408 } 409 htab->extra_elems = pptr; 410 return 0; 411 } 412 413 /* Called from syscall */ 414 static int htab_map_alloc_check(union bpf_attr *attr) 415 { 416 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 417 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 418 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 419 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 420 /* percpu_lru means each cpu has its own LRU list. 421 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 422 * the map's value itself is percpu. percpu_lru has 423 * nothing to do with the map's value. 424 */ 425 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 426 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 427 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); 428 int numa_node = bpf_map_attr_numa_node(attr); 429 430 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != 431 offsetof(struct htab_elem, hash_node.pprev)); 432 433 if (zero_seed && !capable(CAP_SYS_ADMIN)) 434 /* Guard against local DoS, and discourage production use. */ 435 return -EPERM; 436 437 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || 438 !bpf_map_flags_access_ok(attr->map_flags)) 439 return -EINVAL; 440 441 if (!lru && percpu_lru) 442 return -EINVAL; 443 444 if (lru && !prealloc) 445 return -ENOTSUPP; 446 447 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) 448 return -EINVAL; 449 450 /* check sanity of attributes. 451 * value_size == 0 may be allowed in the future to use map as a set 452 */ 453 if (attr->max_entries == 0 || attr->key_size == 0 || 454 attr->value_size == 0) 455 return -EINVAL; 456 457 if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE - 458 sizeof(struct htab_elem)) 459 /* if key_size + value_size is bigger, the user space won't be 460 * able to access the elements via bpf syscall. This check 461 * also makes sure that the elem_size doesn't overflow and it's 462 * kmalloc-able later in htab_map_update_elem() 463 */ 464 return -E2BIG; 465 /* percpu map value size is bound by PCPU_MIN_UNIT_SIZE */ 466 if (percpu && round_up(attr->value_size, 8) > PCPU_MIN_UNIT_SIZE) 467 return -E2BIG; 468 469 return 0; 470 } 471 472 static struct bpf_map *htab_map_alloc(union bpf_attr *attr) 473 { 474 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 475 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 476 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 477 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 478 /* percpu_lru means each cpu has its own LRU list. 479 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 480 * the map's value itself is percpu. percpu_lru has 481 * nothing to do with the map's value. 482 */ 483 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 484 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 485 struct bpf_htab *htab; 486 int err, i; 487 488 htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE); 489 if (!htab) 490 return ERR_PTR(-ENOMEM); 491 492 lockdep_register_key(&htab->lockdep_key); 493 494 bpf_map_init_from_attr(&htab->map, attr); 495 496 if (percpu_lru) { 497 /* ensure each CPU's lru list has >=1 elements. 498 * since we are at it, make each lru list has the same 499 * number of elements. 500 */ 501 htab->map.max_entries = roundup(attr->max_entries, 502 num_possible_cpus()); 503 if (htab->map.max_entries < attr->max_entries) 504 htab->map.max_entries = rounddown(attr->max_entries, 505 num_possible_cpus()); 506 } 507 508 /* hash table size must be power of 2; roundup_pow_of_two() can overflow 509 * into UB on 32-bit arches, so check that first 510 */ 511 err = -E2BIG; 512 if (htab->map.max_entries > 1UL << 31) 513 goto free_htab; 514 515 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); 516 517 htab->elem_size = sizeof(struct htab_elem) + 518 round_up(htab->map.key_size, 8); 519 if (percpu) 520 htab->elem_size += sizeof(void *); 521 else 522 htab->elem_size += round_up(htab->map.value_size, 8); 523 524 /* check for u32 overflow */ 525 if (htab->n_buckets > U32_MAX / sizeof(struct bucket)) 526 goto free_htab; 527 528 err = bpf_map_init_elem_count(&htab->map); 529 if (err) 530 goto free_htab; 531 532 err = -ENOMEM; 533 htab->buckets = bpf_map_area_alloc(htab->n_buckets * 534 sizeof(struct bucket), 535 htab->map.numa_node); 536 if (!htab->buckets) 537 goto free_elem_count; 538 539 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) { 540 htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map, 541 sizeof(int), 542 sizeof(int), 543 GFP_USER); 544 if (!htab->map_locked[i]) 545 goto free_map_locked; 546 } 547 548 if (htab->map.map_flags & BPF_F_ZERO_SEED) 549 htab->hashrnd = 0; 550 else 551 htab->hashrnd = get_random_u32(); 552 553 htab_init_buckets(htab); 554 555 /* compute_batch_value() computes batch value as num_online_cpus() * 2 556 * and __percpu_counter_compare() needs 557 * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus() 558 * for percpu_counter to be faster than atomic_t. In practice the average bpf 559 * hash map size is 10k, which means that a system with 64 cpus will fill 560 * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore 561 * define our own batch count as 32 then 10k hash map can be filled up to 80%: 562 * 10k - 8k > 32 _batch_ * 64 _cpus_ 563 * and __percpu_counter_compare() will still be fast. At that point hash map 564 * collisions will dominate its performance anyway. Assume that hash map filled 565 * to 50+% isn't going to be O(1) and use the following formula to choose 566 * between percpu_counter and atomic_t. 567 */ 568 #define PERCPU_COUNTER_BATCH 32 569 if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH) 570 htab->use_percpu_counter = true; 571 572 if (htab->use_percpu_counter) { 573 err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL); 574 if (err) 575 goto free_map_locked; 576 } 577 578 if (prealloc) { 579 err = prealloc_init(htab); 580 if (err) 581 goto free_map_locked; 582 583 if (!percpu && !lru) { 584 /* lru itself can remove the least used element, so 585 * there is no need for an extra elem during map_update. 586 */ 587 err = alloc_extra_elems(htab); 588 if (err) 589 goto free_prealloc; 590 } 591 } else { 592 err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false); 593 if (err) 594 goto free_map_locked; 595 if (percpu) { 596 err = bpf_mem_alloc_init(&htab->pcpu_ma, 597 round_up(htab->map.value_size, 8), true); 598 if (err) 599 goto free_map_locked; 600 } 601 } 602 603 return &htab->map; 604 605 free_prealloc: 606 prealloc_destroy(htab); 607 free_map_locked: 608 if (htab->use_percpu_counter) 609 percpu_counter_destroy(&htab->pcount); 610 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 611 free_percpu(htab->map_locked[i]); 612 bpf_map_area_free(htab->buckets); 613 bpf_mem_alloc_destroy(&htab->pcpu_ma); 614 bpf_mem_alloc_destroy(&htab->ma); 615 free_elem_count: 616 bpf_map_free_elem_count(&htab->map); 617 free_htab: 618 lockdep_unregister_key(&htab->lockdep_key); 619 bpf_map_area_free(htab); 620 return ERR_PTR(err); 621 } 622 623 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) 624 { 625 if (likely(key_len % 4 == 0)) 626 return jhash2(key, key_len / 4, hashrnd); 627 return jhash(key, key_len, hashrnd); 628 } 629 630 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) 631 { 632 return &htab->buckets[hash & (htab->n_buckets - 1)]; 633 } 634 635 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) 636 { 637 return &__select_bucket(htab, hash)->head; 638 } 639 640 /* this lookup function can only be called with bucket lock taken */ 641 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, 642 void *key, u32 key_size) 643 { 644 struct hlist_nulls_node *n; 645 struct htab_elem *l; 646 647 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 648 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 649 return l; 650 651 return NULL; 652 } 653 654 /* can be called without bucket lock. it will repeat the loop in 655 * the unlikely event when elements moved from one bucket into another 656 * while link list is being walked 657 */ 658 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, 659 u32 hash, void *key, 660 u32 key_size, u32 n_buckets) 661 { 662 struct hlist_nulls_node *n; 663 struct htab_elem *l; 664 665 again: 666 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 667 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 668 return l; 669 670 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) 671 goto again; 672 673 return NULL; 674 } 675 676 /* Called from syscall or from eBPF program directly, so 677 * arguments have to match bpf_map_lookup_elem() exactly. 678 * The return value is adjusted by BPF instructions 679 * in htab_map_gen_lookup(). 680 */ 681 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) 682 { 683 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 684 struct hlist_nulls_head *head; 685 struct htab_elem *l; 686 u32 hash, key_size; 687 688 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 689 !rcu_read_lock_bh_held()); 690 691 key_size = map->key_size; 692 693 hash = htab_map_hash(key, key_size, htab->hashrnd); 694 695 head = select_bucket(htab, hash); 696 697 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 698 699 return l; 700 } 701 702 static void *htab_map_lookup_elem(struct bpf_map *map, void *key) 703 { 704 struct htab_elem *l = __htab_map_lookup_elem(map, key); 705 706 if (l) 707 return l->key + round_up(map->key_size, 8); 708 709 return NULL; 710 } 711 712 /* inline bpf_map_lookup_elem() call. 713 * Instead of: 714 * bpf_prog 715 * bpf_map_lookup_elem 716 * map->ops->map_lookup_elem 717 * htab_map_lookup_elem 718 * __htab_map_lookup_elem 719 * do: 720 * bpf_prog 721 * __htab_map_lookup_elem 722 */ 723 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 724 { 725 struct bpf_insn *insn = insn_buf; 726 const int ret = BPF_REG_0; 727 728 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 729 (void *(*)(struct bpf_map *map, void *key))NULL)); 730 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 731 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 732 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 733 offsetof(struct htab_elem, key) + 734 round_up(map->key_size, 8)); 735 return insn - insn_buf; 736 } 737 738 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, 739 void *key, const bool mark) 740 { 741 struct htab_elem *l = __htab_map_lookup_elem(map, key); 742 743 if (l) { 744 if (mark) 745 bpf_lru_node_set_ref(&l->lru_node); 746 return l->key + round_up(map->key_size, 8); 747 } 748 749 return NULL; 750 } 751 752 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) 753 { 754 return __htab_lru_map_lookup_elem(map, key, true); 755 } 756 757 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) 758 { 759 return __htab_lru_map_lookup_elem(map, key, false); 760 } 761 762 static int htab_lru_map_gen_lookup(struct bpf_map *map, 763 struct bpf_insn *insn_buf) 764 { 765 struct bpf_insn *insn = insn_buf; 766 const int ret = BPF_REG_0; 767 const int ref_reg = BPF_REG_1; 768 769 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 770 (void *(*)(struct bpf_map *map, void *key))NULL)); 771 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 772 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); 773 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, 774 offsetof(struct htab_elem, lru_node) + 775 offsetof(struct bpf_lru_node, ref)); 776 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); 777 *insn++ = BPF_ST_MEM(BPF_B, ret, 778 offsetof(struct htab_elem, lru_node) + 779 offsetof(struct bpf_lru_node, ref), 780 1); 781 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 782 offsetof(struct htab_elem, key) + 783 round_up(map->key_size, 8)); 784 return insn - insn_buf; 785 } 786 787 static void check_and_free_fields(struct bpf_htab *htab, 788 struct htab_elem *elem) 789 { 790 if (htab_is_percpu(htab)) { 791 void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); 792 int cpu; 793 794 for_each_possible_cpu(cpu) 795 bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); 796 } else { 797 void *map_value = elem->key + round_up(htab->map.key_size, 8); 798 799 bpf_obj_free_fields(htab->map.record, map_value); 800 } 801 } 802 803 /* It is called from the bpf_lru_list when the LRU needs to delete 804 * older elements from the htab. 805 */ 806 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) 807 { 808 struct bpf_htab *htab = arg; 809 struct htab_elem *l = NULL, *tgt_l; 810 struct hlist_nulls_head *head; 811 struct hlist_nulls_node *n; 812 unsigned long flags; 813 struct bucket *b; 814 int ret; 815 816 tgt_l = container_of(node, struct htab_elem, lru_node); 817 b = __select_bucket(htab, tgt_l->hash); 818 head = &b->head; 819 820 ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags); 821 if (ret) 822 return false; 823 824 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 825 if (l == tgt_l) { 826 hlist_nulls_del_rcu(&l->hash_node); 827 check_and_free_fields(htab, l); 828 bpf_map_dec_elem_count(&htab->map); 829 break; 830 } 831 832 htab_unlock_bucket(htab, b, tgt_l->hash, flags); 833 834 return l == tgt_l; 835 } 836 837 /* Called from syscall */ 838 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 839 { 840 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 841 struct hlist_nulls_head *head; 842 struct htab_elem *l, *next_l; 843 u32 hash, key_size; 844 int i = 0; 845 846 WARN_ON_ONCE(!rcu_read_lock_held()); 847 848 key_size = map->key_size; 849 850 if (!key) 851 goto find_first_elem; 852 853 hash = htab_map_hash(key, key_size, htab->hashrnd); 854 855 head = select_bucket(htab, hash); 856 857 /* lookup the key */ 858 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 859 860 if (!l) 861 goto find_first_elem; 862 863 /* key was found, get next key in the same bucket */ 864 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), 865 struct htab_elem, hash_node); 866 867 if (next_l) { 868 /* if next elem in this hash list is non-zero, just return it */ 869 memcpy(next_key, next_l->key, key_size); 870 return 0; 871 } 872 873 /* no more elements in this hash list, go to the next bucket */ 874 i = hash & (htab->n_buckets - 1); 875 i++; 876 877 find_first_elem: 878 /* iterate over buckets */ 879 for (; i < htab->n_buckets; i++) { 880 head = select_bucket(htab, i); 881 882 /* pick first element in the bucket */ 883 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), 884 struct htab_elem, hash_node); 885 if (next_l) { 886 /* if it's not empty, just return it */ 887 memcpy(next_key, next_l->key, key_size); 888 return 0; 889 } 890 } 891 892 /* iterated over all buckets and all elements */ 893 return -ENOENT; 894 } 895 896 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) 897 { 898 check_and_free_fields(htab, l); 899 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) 900 bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr); 901 bpf_mem_cache_free(&htab->ma, l); 902 } 903 904 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l) 905 { 906 struct bpf_map *map = &htab->map; 907 void *ptr; 908 909 if (map->ops->map_fd_put_ptr) { 910 ptr = fd_htab_map_get_ptr(map, l); 911 map->ops->map_fd_put_ptr(map, ptr, true); 912 } 913 } 914 915 static bool is_map_full(struct bpf_htab *htab) 916 { 917 if (htab->use_percpu_counter) 918 return __percpu_counter_compare(&htab->pcount, htab->map.max_entries, 919 PERCPU_COUNTER_BATCH) >= 0; 920 return atomic_read(&htab->count) >= htab->map.max_entries; 921 } 922 923 static void inc_elem_count(struct bpf_htab *htab) 924 { 925 bpf_map_inc_elem_count(&htab->map); 926 927 if (htab->use_percpu_counter) 928 percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH); 929 else 930 atomic_inc(&htab->count); 931 } 932 933 static void dec_elem_count(struct bpf_htab *htab) 934 { 935 bpf_map_dec_elem_count(&htab->map); 936 937 if (htab->use_percpu_counter) 938 percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH); 939 else 940 atomic_dec(&htab->count); 941 } 942 943 944 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) 945 { 946 htab_put_fd_value(htab, l); 947 948 if (htab_is_prealloc(htab)) { 949 bpf_map_dec_elem_count(&htab->map); 950 check_and_free_fields(htab, l); 951 __pcpu_freelist_push(&htab->freelist, &l->fnode); 952 } else { 953 dec_elem_count(htab); 954 htab_elem_free(htab, l); 955 } 956 } 957 958 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, 959 void *value, bool onallcpus) 960 { 961 if (!onallcpus) { 962 /* copy true value_size bytes */ 963 copy_map_value(&htab->map, this_cpu_ptr(pptr), value); 964 } else { 965 u32 size = round_up(htab->map.value_size, 8); 966 int off = 0, cpu; 967 968 for_each_possible_cpu(cpu) { 969 copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value + off); 970 off += size; 971 } 972 } 973 } 974 975 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr, 976 void *value, bool onallcpus) 977 { 978 /* When not setting the initial value on all cpus, zero-fill element 979 * values for other cpus. Otherwise, bpf program has no way to ensure 980 * known initial values for cpus other than current one 981 * (onallcpus=false always when coming from bpf prog). 982 */ 983 if (!onallcpus) { 984 int current_cpu = raw_smp_processor_id(); 985 int cpu; 986 987 for_each_possible_cpu(cpu) { 988 if (cpu == current_cpu) 989 copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value); 990 else /* Since elem is preallocated, we cannot touch special fields */ 991 zero_map_value(&htab->map, per_cpu_ptr(pptr, cpu)); 992 } 993 } else { 994 pcpu_copy_value(htab, pptr, value, onallcpus); 995 } 996 } 997 998 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) 999 { 1000 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && 1001 BITS_PER_LONG == 64; 1002 } 1003 1004 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, 1005 void *value, u32 key_size, u32 hash, 1006 bool percpu, bool onallcpus, 1007 struct htab_elem *old_elem) 1008 { 1009 u32 size = htab->map.value_size; 1010 bool prealloc = htab_is_prealloc(htab); 1011 struct htab_elem *l_new, **pl_new; 1012 void __percpu *pptr; 1013 1014 if (prealloc) { 1015 if (old_elem) { 1016 /* if we're updating the existing element, 1017 * use per-cpu extra elems to avoid freelist_pop/push 1018 */ 1019 pl_new = this_cpu_ptr(htab->extra_elems); 1020 l_new = *pl_new; 1021 htab_put_fd_value(htab, old_elem); 1022 *pl_new = old_elem; 1023 } else { 1024 struct pcpu_freelist_node *l; 1025 1026 l = __pcpu_freelist_pop(&htab->freelist); 1027 if (!l) 1028 return ERR_PTR(-E2BIG); 1029 l_new = container_of(l, struct htab_elem, fnode); 1030 bpf_map_inc_elem_count(&htab->map); 1031 } 1032 } else { 1033 if (is_map_full(htab)) 1034 if (!old_elem) 1035 /* when map is full and update() is replacing 1036 * old element, it's ok to allocate, since 1037 * old element will be freed immediately. 1038 * Otherwise return an error 1039 */ 1040 return ERR_PTR(-E2BIG); 1041 inc_elem_count(htab); 1042 l_new = bpf_mem_cache_alloc(&htab->ma); 1043 if (!l_new) { 1044 l_new = ERR_PTR(-ENOMEM); 1045 goto dec_count; 1046 } 1047 } 1048 1049 memcpy(l_new->key, key, key_size); 1050 if (percpu) { 1051 if (prealloc) { 1052 pptr = htab_elem_get_ptr(l_new, key_size); 1053 } else { 1054 /* alloc_percpu zero-fills */ 1055 void *ptr = bpf_mem_cache_alloc(&htab->pcpu_ma); 1056 1057 if (!ptr) { 1058 bpf_mem_cache_free(&htab->ma, l_new); 1059 l_new = ERR_PTR(-ENOMEM); 1060 goto dec_count; 1061 } 1062 l_new->ptr_to_pptr = ptr; 1063 pptr = *(void __percpu **)ptr; 1064 } 1065 1066 pcpu_init_value(htab, pptr, value, onallcpus); 1067 1068 if (!prealloc) 1069 htab_elem_set_ptr(l_new, key_size, pptr); 1070 } else if (fd_htab_map_needs_adjust(htab)) { 1071 size = round_up(size, 8); 1072 memcpy(l_new->key + round_up(key_size, 8), value, size); 1073 } else { 1074 copy_map_value(&htab->map, 1075 l_new->key + round_up(key_size, 8), 1076 value); 1077 } 1078 1079 l_new->hash = hash; 1080 return l_new; 1081 dec_count: 1082 dec_elem_count(htab); 1083 return l_new; 1084 } 1085 1086 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, 1087 u64 map_flags) 1088 { 1089 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) 1090 /* elem already exists */ 1091 return -EEXIST; 1092 1093 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) 1094 /* elem doesn't exist, cannot update it */ 1095 return -ENOENT; 1096 1097 return 0; 1098 } 1099 1100 /* Called from syscall or from eBPF program */ 1101 static long htab_map_update_elem(struct bpf_map *map, void *key, void *value, 1102 u64 map_flags) 1103 { 1104 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1105 struct htab_elem *l_new = NULL, *l_old; 1106 struct hlist_nulls_head *head; 1107 unsigned long flags; 1108 struct bucket *b; 1109 u32 key_size, hash; 1110 int ret; 1111 1112 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 1113 /* unknown flags */ 1114 return -EINVAL; 1115 1116 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1117 !rcu_read_lock_bh_held()); 1118 1119 key_size = map->key_size; 1120 1121 hash = htab_map_hash(key, key_size, htab->hashrnd); 1122 1123 b = __select_bucket(htab, hash); 1124 head = &b->head; 1125 1126 if (unlikely(map_flags & BPF_F_LOCK)) { 1127 if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK))) 1128 return -EINVAL; 1129 /* find an element without taking the bucket lock */ 1130 l_old = lookup_nulls_elem_raw(head, hash, key, key_size, 1131 htab->n_buckets); 1132 ret = check_flags(htab, l_old, map_flags); 1133 if (ret) 1134 return ret; 1135 if (l_old) { 1136 /* grab the element lock and update value in place */ 1137 copy_map_value_locked(map, 1138 l_old->key + round_up(key_size, 8), 1139 value, false); 1140 return 0; 1141 } 1142 /* fall through, grab the bucket lock and lookup again. 1143 * 99.9% chance that the element won't be found, 1144 * but second lookup under lock has to be done. 1145 */ 1146 } 1147 1148 ret = htab_lock_bucket(htab, b, hash, &flags); 1149 if (ret) 1150 return ret; 1151 1152 l_old = lookup_elem_raw(head, hash, key, key_size); 1153 1154 ret = check_flags(htab, l_old, map_flags); 1155 if (ret) 1156 goto err; 1157 1158 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { 1159 /* first lookup without the bucket lock didn't find the element, 1160 * but second lookup with the bucket lock found it. 1161 * This case is highly unlikely, but has to be dealt with: 1162 * grab the element lock in addition to the bucket lock 1163 * and update element in place 1164 */ 1165 copy_map_value_locked(map, 1166 l_old->key + round_up(key_size, 8), 1167 value, false); 1168 ret = 0; 1169 goto err; 1170 } 1171 1172 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, 1173 l_old); 1174 if (IS_ERR(l_new)) { 1175 /* all pre-allocated elements are in use or memory exhausted */ 1176 ret = PTR_ERR(l_new); 1177 goto err; 1178 } 1179 1180 /* add new element to the head of the list, so that 1181 * concurrent search will find it before old elem 1182 */ 1183 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1184 if (l_old) { 1185 hlist_nulls_del_rcu(&l_old->hash_node); 1186 if (!htab_is_prealloc(htab)) 1187 free_htab_elem(htab, l_old); 1188 else 1189 check_and_free_fields(htab, l_old); 1190 } 1191 ret = 0; 1192 err: 1193 htab_unlock_bucket(htab, b, hash, flags); 1194 return ret; 1195 } 1196 1197 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem) 1198 { 1199 check_and_free_fields(htab, elem); 1200 bpf_map_dec_elem_count(&htab->map); 1201 bpf_lru_push_free(&htab->lru, &elem->lru_node); 1202 } 1203 1204 static long htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, 1205 u64 map_flags) 1206 { 1207 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1208 struct htab_elem *l_new, *l_old = NULL; 1209 struct hlist_nulls_head *head; 1210 unsigned long flags; 1211 struct bucket *b; 1212 u32 key_size, hash; 1213 int ret; 1214 1215 if (unlikely(map_flags > BPF_EXIST)) 1216 /* unknown flags */ 1217 return -EINVAL; 1218 1219 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1220 !rcu_read_lock_bh_held()); 1221 1222 key_size = map->key_size; 1223 1224 hash = htab_map_hash(key, key_size, htab->hashrnd); 1225 1226 b = __select_bucket(htab, hash); 1227 head = &b->head; 1228 1229 /* For LRU, we need to alloc before taking bucket's 1230 * spinlock because getting free nodes from LRU may need 1231 * to remove older elements from htab and this removal 1232 * operation will need a bucket lock. 1233 */ 1234 l_new = prealloc_lru_pop(htab, key, hash); 1235 if (!l_new) 1236 return -ENOMEM; 1237 copy_map_value(&htab->map, 1238 l_new->key + round_up(map->key_size, 8), value); 1239 1240 ret = htab_lock_bucket(htab, b, hash, &flags); 1241 if (ret) 1242 goto err_lock_bucket; 1243 1244 l_old = lookup_elem_raw(head, hash, key, key_size); 1245 1246 ret = check_flags(htab, l_old, map_flags); 1247 if (ret) 1248 goto err; 1249 1250 /* add new element to the head of the list, so that 1251 * concurrent search will find it before old elem 1252 */ 1253 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1254 if (l_old) { 1255 bpf_lru_node_set_ref(&l_new->lru_node); 1256 hlist_nulls_del_rcu(&l_old->hash_node); 1257 } 1258 ret = 0; 1259 1260 err: 1261 htab_unlock_bucket(htab, b, hash, flags); 1262 1263 err_lock_bucket: 1264 if (ret) 1265 htab_lru_push_free(htab, l_new); 1266 else if (l_old) 1267 htab_lru_push_free(htab, l_old); 1268 1269 return ret; 1270 } 1271 1272 static long __htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1273 void *value, u64 map_flags, 1274 bool onallcpus) 1275 { 1276 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1277 struct htab_elem *l_new = NULL, *l_old; 1278 struct hlist_nulls_head *head; 1279 unsigned long flags; 1280 struct bucket *b; 1281 u32 key_size, hash; 1282 int ret; 1283 1284 if (unlikely(map_flags > BPF_EXIST)) 1285 /* unknown flags */ 1286 return -EINVAL; 1287 1288 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1289 !rcu_read_lock_bh_held()); 1290 1291 key_size = map->key_size; 1292 1293 hash = htab_map_hash(key, key_size, htab->hashrnd); 1294 1295 b = __select_bucket(htab, hash); 1296 head = &b->head; 1297 1298 ret = htab_lock_bucket(htab, b, hash, &flags); 1299 if (ret) 1300 return ret; 1301 1302 l_old = lookup_elem_raw(head, hash, key, key_size); 1303 1304 ret = check_flags(htab, l_old, map_flags); 1305 if (ret) 1306 goto err; 1307 1308 if (l_old) { 1309 /* per-cpu hash map can update value in-place */ 1310 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1311 value, onallcpus); 1312 } else { 1313 l_new = alloc_htab_elem(htab, key, value, key_size, 1314 hash, true, onallcpus, NULL); 1315 if (IS_ERR(l_new)) { 1316 ret = PTR_ERR(l_new); 1317 goto err; 1318 } 1319 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1320 } 1321 ret = 0; 1322 err: 1323 htab_unlock_bucket(htab, b, hash, flags); 1324 return ret; 1325 } 1326 1327 static long __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1328 void *value, u64 map_flags, 1329 bool onallcpus) 1330 { 1331 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1332 struct htab_elem *l_new = NULL, *l_old; 1333 struct hlist_nulls_head *head; 1334 unsigned long flags; 1335 struct bucket *b; 1336 u32 key_size, hash; 1337 int ret; 1338 1339 if (unlikely(map_flags > BPF_EXIST)) 1340 /* unknown flags */ 1341 return -EINVAL; 1342 1343 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1344 !rcu_read_lock_bh_held()); 1345 1346 key_size = map->key_size; 1347 1348 hash = htab_map_hash(key, key_size, htab->hashrnd); 1349 1350 b = __select_bucket(htab, hash); 1351 head = &b->head; 1352 1353 /* For LRU, we need to alloc before taking bucket's 1354 * spinlock because LRU's elem alloc may need 1355 * to remove older elem from htab and this removal 1356 * operation will need a bucket lock. 1357 */ 1358 if (map_flags != BPF_EXIST) { 1359 l_new = prealloc_lru_pop(htab, key, hash); 1360 if (!l_new) 1361 return -ENOMEM; 1362 } 1363 1364 ret = htab_lock_bucket(htab, b, hash, &flags); 1365 if (ret) 1366 goto err_lock_bucket; 1367 1368 l_old = lookup_elem_raw(head, hash, key, key_size); 1369 1370 ret = check_flags(htab, l_old, map_flags); 1371 if (ret) 1372 goto err; 1373 1374 if (l_old) { 1375 bpf_lru_node_set_ref(&l_old->lru_node); 1376 1377 /* per-cpu hash map can update value in-place */ 1378 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1379 value, onallcpus); 1380 } else { 1381 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size), 1382 value, onallcpus); 1383 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1384 l_new = NULL; 1385 } 1386 ret = 0; 1387 err: 1388 htab_unlock_bucket(htab, b, hash, flags); 1389 err_lock_bucket: 1390 if (l_new) { 1391 bpf_map_dec_elem_count(&htab->map); 1392 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1393 } 1394 return ret; 1395 } 1396 1397 static long htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1398 void *value, u64 map_flags) 1399 { 1400 return __htab_percpu_map_update_elem(map, key, value, map_flags, false); 1401 } 1402 1403 static long htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1404 void *value, u64 map_flags) 1405 { 1406 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, 1407 false); 1408 } 1409 1410 /* Called from syscall or from eBPF program */ 1411 static long htab_map_delete_elem(struct bpf_map *map, void *key) 1412 { 1413 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1414 struct hlist_nulls_head *head; 1415 struct bucket *b; 1416 struct htab_elem *l; 1417 unsigned long flags; 1418 u32 hash, key_size; 1419 int ret; 1420 1421 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1422 !rcu_read_lock_bh_held()); 1423 1424 key_size = map->key_size; 1425 1426 hash = htab_map_hash(key, key_size, htab->hashrnd); 1427 b = __select_bucket(htab, hash); 1428 head = &b->head; 1429 1430 ret = htab_lock_bucket(htab, b, hash, &flags); 1431 if (ret) 1432 return ret; 1433 1434 l = lookup_elem_raw(head, hash, key, key_size); 1435 1436 if (l) { 1437 hlist_nulls_del_rcu(&l->hash_node); 1438 free_htab_elem(htab, l); 1439 } else { 1440 ret = -ENOENT; 1441 } 1442 1443 htab_unlock_bucket(htab, b, hash, flags); 1444 return ret; 1445 } 1446 1447 static long htab_lru_map_delete_elem(struct bpf_map *map, void *key) 1448 { 1449 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1450 struct hlist_nulls_head *head; 1451 struct bucket *b; 1452 struct htab_elem *l; 1453 unsigned long flags; 1454 u32 hash, key_size; 1455 int ret; 1456 1457 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1458 !rcu_read_lock_bh_held()); 1459 1460 key_size = map->key_size; 1461 1462 hash = htab_map_hash(key, key_size, htab->hashrnd); 1463 b = __select_bucket(htab, hash); 1464 head = &b->head; 1465 1466 ret = htab_lock_bucket(htab, b, hash, &flags); 1467 if (ret) 1468 return ret; 1469 1470 l = lookup_elem_raw(head, hash, key, key_size); 1471 1472 if (l) 1473 hlist_nulls_del_rcu(&l->hash_node); 1474 else 1475 ret = -ENOENT; 1476 1477 htab_unlock_bucket(htab, b, hash, flags); 1478 if (l) 1479 htab_lru_push_free(htab, l); 1480 return ret; 1481 } 1482 1483 static void delete_all_elements(struct bpf_htab *htab) 1484 { 1485 int i; 1486 1487 /* It's called from a worker thread, so disable migration here, 1488 * since bpf_mem_cache_free() relies on that. 1489 */ 1490 migrate_disable(); 1491 for (i = 0; i < htab->n_buckets; i++) { 1492 struct hlist_nulls_head *head = select_bucket(htab, i); 1493 struct hlist_nulls_node *n; 1494 struct htab_elem *l; 1495 1496 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1497 hlist_nulls_del_rcu(&l->hash_node); 1498 htab_elem_free(htab, l); 1499 } 1500 cond_resched(); 1501 } 1502 migrate_enable(); 1503 } 1504 1505 static void htab_free_malloced_timers_and_wq(struct bpf_htab *htab) 1506 { 1507 int i; 1508 1509 rcu_read_lock(); 1510 for (i = 0; i < htab->n_buckets; i++) { 1511 struct hlist_nulls_head *head = select_bucket(htab, i); 1512 struct hlist_nulls_node *n; 1513 struct htab_elem *l; 1514 1515 hlist_nulls_for_each_entry(l, n, head, hash_node) { 1516 /* We only free timer on uref dropping to zero */ 1517 if (btf_record_has_field(htab->map.record, BPF_TIMER)) 1518 bpf_obj_free_timer(htab->map.record, 1519 l->key + round_up(htab->map.key_size, 8)); 1520 if (btf_record_has_field(htab->map.record, BPF_WORKQUEUE)) 1521 bpf_obj_free_workqueue(htab->map.record, 1522 l->key + round_up(htab->map.key_size, 8)); 1523 } 1524 cond_resched_rcu(); 1525 } 1526 rcu_read_unlock(); 1527 } 1528 1529 static void htab_map_free_timers_and_wq(struct bpf_map *map) 1530 { 1531 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1532 1533 /* We only free timer and workqueue on uref dropping to zero */ 1534 if (btf_record_has_field(htab->map.record, BPF_TIMER | BPF_WORKQUEUE)) { 1535 if (!htab_is_prealloc(htab)) 1536 htab_free_malloced_timers_and_wq(htab); 1537 else 1538 htab_free_prealloced_timers_and_wq(htab); 1539 } 1540 } 1541 1542 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 1543 static void htab_map_free(struct bpf_map *map) 1544 { 1545 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1546 int i; 1547 1548 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. 1549 * bpf_free_used_maps() is called after bpf prog is no longer executing. 1550 * There is no need to synchronize_rcu() here to protect map elements. 1551 */ 1552 1553 /* htab no longer uses call_rcu() directly. bpf_mem_alloc does it 1554 * underneath and is responsible for waiting for callbacks to finish 1555 * during bpf_mem_alloc_destroy(). 1556 */ 1557 if (!htab_is_prealloc(htab)) { 1558 delete_all_elements(htab); 1559 } else { 1560 htab_free_prealloced_fields(htab); 1561 prealloc_destroy(htab); 1562 } 1563 1564 bpf_map_free_elem_count(map); 1565 free_percpu(htab->extra_elems); 1566 bpf_map_area_free(htab->buckets); 1567 bpf_mem_alloc_destroy(&htab->pcpu_ma); 1568 bpf_mem_alloc_destroy(&htab->ma); 1569 if (htab->use_percpu_counter) 1570 percpu_counter_destroy(&htab->pcount); 1571 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 1572 free_percpu(htab->map_locked[i]); 1573 lockdep_unregister_key(&htab->lockdep_key); 1574 bpf_map_area_free(htab); 1575 } 1576 1577 static void htab_map_seq_show_elem(struct bpf_map *map, void *key, 1578 struct seq_file *m) 1579 { 1580 void *value; 1581 1582 rcu_read_lock(); 1583 1584 value = htab_map_lookup_elem(map, key); 1585 if (!value) { 1586 rcu_read_unlock(); 1587 return; 1588 } 1589 1590 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1591 seq_puts(m, ": "); 1592 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 1593 seq_putc(m, '\n'); 1594 1595 rcu_read_unlock(); 1596 } 1597 1598 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1599 void *value, bool is_lru_map, 1600 bool is_percpu, u64 flags) 1601 { 1602 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1603 struct hlist_nulls_head *head; 1604 unsigned long bflags; 1605 struct htab_elem *l; 1606 u32 hash, key_size; 1607 struct bucket *b; 1608 int ret; 1609 1610 key_size = map->key_size; 1611 1612 hash = htab_map_hash(key, key_size, htab->hashrnd); 1613 b = __select_bucket(htab, hash); 1614 head = &b->head; 1615 1616 ret = htab_lock_bucket(htab, b, hash, &bflags); 1617 if (ret) 1618 return ret; 1619 1620 l = lookup_elem_raw(head, hash, key, key_size); 1621 if (!l) { 1622 ret = -ENOENT; 1623 } else { 1624 if (is_percpu) { 1625 u32 roundup_value_size = round_up(map->value_size, 8); 1626 void __percpu *pptr; 1627 int off = 0, cpu; 1628 1629 pptr = htab_elem_get_ptr(l, key_size); 1630 for_each_possible_cpu(cpu) { 1631 copy_map_value_long(&htab->map, value + off, per_cpu_ptr(pptr, cpu)); 1632 check_and_init_map_value(&htab->map, value + off); 1633 off += roundup_value_size; 1634 } 1635 } else { 1636 u32 roundup_key_size = round_up(map->key_size, 8); 1637 1638 if (flags & BPF_F_LOCK) 1639 copy_map_value_locked(map, value, l->key + 1640 roundup_key_size, 1641 true); 1642 else 1643 copy_map_value(map, value, l->key + 1644 roundup_key_size); 1645 /* Zeroing special fields in the temp buffer */ 1646 check_and_init_map_value(map, value); 1647 } 1648 1649 hlist_nulls_del_rcu(&l->hash_node); 1650 if (!is_lru_map) 1651 free_htab_elem(htab, l); 1652 } 1653 1654 htab_unlock_bucket(htab, b, hash, bflags); 1655 1656 if (is_lru_map && l) 1657 htab_lru_push_free(htab, l); 1658 1659 return ret; 1660 } 1661 1662 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1663 void *value, u64 flags) 1664 { 1665 return __htab_map_lookup_and_delete_elem(map, key, value, false, false, 1666 flags); 1667 } 1668 1669 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1670 void *key, void *value, 1671 u64 flags) 1672 { 1673 return __htab_map_lookup_and_delete_elem(map, key, value, false, true, 1674 flags); 1675 } 1676 1677 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1678 void *value, u64 flags) 1679 { 1680 return __htab_map_lookup_and_delete_elem(map, key, value, true, false, 1681 flags); 1682 } 1683 1684 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1685 void *key, void *value, 1686 u64 flags) 1687 { 1688 return __htab_map_lookup_and_delete_elem(map, key, value, true, true, 1689 flags); 1690 } 1691 1692 static int 1693 __htab_map_lookup_and_delete_batch(struct bpf_map *map, 1694 const union bpf_attr *attr, 1695 union bpf_attr __user *uattr, 1696 bool do_delete, bool is_lru_map, 1697 bool is_percpu) 1698 { 1699 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1700 u32 bucket_cnt, total, key_size, value_size, roundup_key_size; 1701 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; 1702 void __user *uvalues = u64_to_user_ptr(attr->batch.values); 1703 void __user *ukeys = u64_to_user_ptr(attr->batch.keys); 1704 void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch); 1705 u32 batch, max_count, size, bucket_size, map_id; 1706 struct htab_elem *node_to_free = NULL; 1707 u64 elem_map_flags, map_flags; 1708 struct hlist_nulls_head *head; 1709 struct hlist_nulls_node *n; 1710 unsigned long flags = 0; 1711 bool locked = false; 1712 struct htab_elem *l; 1713 struct bucket *b; 1714 int ret = 0; 1715 1716 elem_map_flags = attr->batch.elem_flags; 1717 if ((elem_map_flags & ~BPF_F_LOCK) || 1718 ((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK))) 1719 return -EINVAL; 1720 1721 map_flags = attr->batch.flags; 1722 if (map_flags) 1723 return -EINVAL; 1724 1725 max_count = attr->batch.count; 1726 if (!max_count) 1727 return 0; 1728 1729 if (put_user(0, &uattr->batch.count)) 1730 return -EFAULT; 1731 1732 batch = 0; 1733 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) 1734 return -EFAULT; 1735 1736 if (batch >= htab->n_buckets) 1737 return -ENOENT; 1738 1739 key_size = htab->map.key_size; 1740 roundup_key_size = round_up(htab->map.key_size, 8); 1741 value_size = htab->map.value_size; 1742 size = round_up(value_size, 8); 1743 if (is_percpu) 1744 value_size = size * num_possible_cpus(); 1745 total = 0; 1746 /* while experimenting with hash tables with sizes ranging from 10 to 1747 * 1000, it was observed that a bucket can have up to 5 entries. 1748 */ 1749 bucket_size = 5; 1750 1751 alloc: 1752 /* We cannot do copy_from_user or copy_to_user inside 1753 * the rcu_read_lock. Allocate enough space here. 1754 */ 1755 keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN); 1756 values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN); 1757 if (!keys || !values) { 1758 ret = -ENOMEM; 1759 goto after_loop; 1760 } 1761 1762 again: 1763 bpf_disable_instrumentation(); 1764 rcu_read_lock(); 1765 again_nocopy: 1766 dst_key = keys; 1767 dst_val = values; 1768 b = &htab->buckets[batch]; 1769 head = &b->head; 1770 /* do not grab the lock unless need it (bucket_cnt > 0). */ 1771 if (locked) { 1772 ret = htab_lock_bucket(htab, b, batch, &flags); 1773 if (ret) { 1774 rcu_read_unlock(); 1775 bpf_enable_instrumentation(); 1776 goto after_loop; 1777 } 1778 } 1779 1780 bucket_cnt = 0; 1781 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 1782 bucket_cnt++; 1783 1784 if (bucket_cnt && !locked) { 1785 locked = true; 1786 goto again_nocopy; 1787 } 1788 1789 if (bucket_cnt > (max_count - total)) { 1790 if (total == 0) 1791 ret = -ENOSPC; 1792 /* Note that since bucket_cnt > 0 here, it is implicit 1793 * that the locked was grabbed, so release it. 1794 */ 1795 htab_unlock_bucket(htab, b, batch, flags); 1796 rcu_read_unlock(); 1797 bpf_enable_instrumentation(); 1798 goto after_loop; 1799 } 1800 1801 if (bucket_cnt > bucket_size) { 1802 bucket_size = bucket_cnt; 1803 /* Note that since bucket_cnt > 0 here, it is implicit 1804 * that the locked was grabbed, so release it. 1805 */ 1806 htab_unlock_bucket(htab, b, batch, flags); 1807 rcu_read_unlock(); 1808 bpf_enable_instrumentation(); 1809 kvfree(keys); 1810 kvfree(values); 1811 goto alloc; 1812 } 1813 1814 /* Next block is only safe to run if you have grabbed the lock */ 1815 if (!locked) 1816 goto next_batch; 1817 1818 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1819 memcpy(dst_key, l->key, key_size); 1820 1821 if (is_percpu) { 1822 int off = 0, cpu; 1823 void __percpu *pptr; 1824 1825 pptr = htab_elem_get_ptr(l, map->key_size); 1826 for_each_possible_cpu(cpu) { 1827 copy_map_value_long(&htab->map, dst_val + off, per_cpu_ptr(pptr, cpu)); 1828 check_and_init_map_value(&htab->map, dst_val + off); 1829 off += size; 1830 } 1831 } else { 1832 value = l->key + roundup_key_size; 1833 if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) { 1834 struct bpf_map **inner_map = value; 1835 1836 /* Actual value is the id of the inner map */ 1837 map_id = map->ops->map_fd_sys_lookup_elem(*inner_map); 1838 value = &map_id; 1839 } 1840 1841 if (elem_map_flags & BPF_F_LOCK) 1842 copy_map_value_locked(map, dst_val, value, 1843 true); 1844 else 1845 copy_map_value(map, dst_val, value); 1846 /* Zeroing special fields in the temp buffer */ 1847 check_and_init_map_value(map, dst_val); 1848 } 1849 if (do_delete) { 1850 hlist_nulls_del_rcu(&l->hash_node); 1851 1852 /* bpf_lru_push_free() will acquire lru_lock, which 1853 * may cause deadlock. See comments in function 1854 * prealloc_lru_pop(). Let us do bpf_lru_push_free() 1855 * after releasing the bucket lock. 1856 */ 1857 if (is_lru_map) { 1858 l->batch_flink = node_to_free; 1859 node_to_free = l; 1860 } else { 1861 free_htab_elem(htab, l); 1862 } 1863 } 1864 dst_key += key_size; 1865 dst_val += value_size; 1866 } 1867 1868 htab_unlock_bucket(htab, b, batch, flags); 1869 locked = false; 1870 1871 while (node_to_free) { 1872 l = node_to_free; 1873 node_to_free = node_to_free->batch_flink; 1874 htab_lru_push_free(htab, l); 1875 } 1876 1877 next_batch: 1878 /* If we are not copying data, we can go to next bucket and avoid 1879 * unlocking the rcu. 1880 */ 1881 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { 1882 batch++; 1883 goto again_nocopy; 1884 } 1885 1886 rcu_read_unlock(); 1887 bpf_enable_instrumentation(); 1888 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, 1889 key_size * bucket_cnt) || 1890 copy_to_user(uvalues + total * value_size, values, 1891 value_size * bucket_cnt))) { 1892 ret = -EFAULT; 1893 goto after_loop; 1894 } 1895 1896 total += bucket_cnt; 1897 batch++; 1898 if (batch >= htab->n_buckets) { 1899 ret = -ENOENT; 1900 goto after_loop; 1901 } 1902 goto again; 1903 1904 after_loop: 1905 if (ret == -EFAULT) 1906 goto out; 1907 1908 /* copy # of entries and next batch */ 1909 ubatch = u64_to_user_ptr(attr->batch.out_batch); 1910 if (copy_to_user(ubatch, &batch, sizeof(batch)) || 1911 put_user(total, &uattr->batch.count)) 1912 ret = -EFAULT; 1913 1914 out: 1915 kvfree(keys); 1916 kvfree(values); 1917 return ret; 1918 } 1919 1920 static int 1921 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1922 union bpf_attr __user *uattr) 1923 { 1924 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1925 false, true); 1926 } 1927 1928 static int 1929 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1930 const union bpf_attr *attr, 1931 union bpf_attr __user *uattr) 1932 { 1933 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1934 false, true); 1935 } 1936 1937 static int 1938 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1939 union bpf_attr __user *uattr) 1940 { 1941 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1942 false, false); 1943 } 1944 1945 static int 1946 htab_map_lookup_and_delete_batch(struct bpf_map *map, 1947 const union bpf_attr *attr, 1948 union bpf_attr __user *uattr) 1949 { 1950 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1951 false, false); 1952 } 1953 1954 static int 1955 htab_lru_percpu_map_lookup_batch(struct bpf_map *map, 1956 const union bpf_attr *attr, 1957 union bpf_attr __user *uattr) 1958 { 1959 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1960 true, true); 1961 } 1962 1963 static int 1964 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1965 const union bpf_attr *attr, 1966 union bpf_attr __user *uattr) 1967 { 1968 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1969 true, true); 1970 } 1971 1972 static int 1973 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1974 union bpf_attr __user *uattr) 1975 { 1976 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1977 true, false); 1978 } 1979 1980 static int 1981 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, 1982 const union bpf_attr *attr, 1983 union bpf_attr __user *uattr) 1984 { 1985 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1986 true, false); 1987 } 1988 1989 struct bpf_iter_seq_hash_map_info { 1990 struct bpf_map *map; 1991 struct bpf_htab *htab; 1992 void *percpu_value_buf; // non-zero means percpu hash 1993 u32 bucket_id; 1994 u32 skip_elems; 1995 }; 1996 1997 static struct htab_elem * 1998 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info, 1999 struct htab_elem *prev_elem) 2000 { 2001 const struct bpf_htab *htab = info->htab; 2002 u32 skip_elems = info->skip_elems; 2003 u32 bucket_id = info->bucket_id; 2004 struct hlist_nulls_head *head; 2005 struct hlist_nulls_node *n; 2006 struct htab_elem *elem; 2007 struct bucket *b; 2008 u32 i, count; 2009 2010 if (bucket_id >= htab->n_buckets) 2011 return NULL; 2012 2013 /* try to find next elem in the same bucket */ 2014 if (prev_elem) { 2015 /* no update/deletion on this bucket, prev_elem should be still valid 2016 * and we won't skip elements. 2017 */ 2018 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node)); 2019 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node); 2020 if (elem) 2021 return elem; 2022 2023 /* not found, unlock and go to the next bucket */ 2024 b = &htab->buckets[bucket_id++]; 2025 rcu_read_unlock(); 2026 skip_elems = 0; 2027 } 2028 2029 for (i = bucket_id; i < htab->n_buckets; i++) { 2030 b = &htab->buckets[i]; 2031 rcu_read_lock(); 2032 2033 count = 0; 2034 head = &b->head; 2035 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2036 if (count >= skip_elems) { 2037 info->bucket_id = i; 2038 info->skip_elems = count; 2039 return elem; 2040 } 2041 count++; 2042 } 2043 2044 rcu_read_unlock(); 2045 skip_elems = 0; 2046 } 2047 2048 info->bucket_id = i; 2049 info->skip_elems = 0; 2050 return NULL; 2051 } 2052 2053 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos) 2054 { 2055 struct bpf_iter_seq_hash_map_info *info = seq->private; 2056 struct htab_elem *elem; 2057 2058 elem = bpf_hash_map_seq_find_next(info, NULL); 2059 if (!elem) 2060 return NULL; 2061 2062 if (*pos == 0) 2063 ++*pos; 2064 return elem; 2065 } 2066 2067 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2068 { 2069 struct bpf_iter_seq_hash_map_info *info = seq->private; 2070 2071 ++*pos; 2072 ++info->skip_elems; 2073 return bpf_hash_map_seq_find_next(info, v); 2074 } 2075 2076 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem) 2077 { 2078 struct bpf_iter_seq_hash_map_info *info = seq->private; 2079 u32 roundup_key_size, roundup_value_size; 2080 struct bpf_iter__bpf_map_elem ctx = {}; 2081 struct bpf_map *map = info->map; 2082 struct bpf_iter_meta meta; 2083 int ret = 0, off = 0, cpu; 2084 struct bpf_prog *prog; 2085 void __percpu *pptr; 2086 2087 meta.seq = seq; 2088 prog = bpf_iter_get_info(&meta, elem == NULL); 2089 if (prog) { 2090 ctx.meta = &meta; 2091 ctx.map = info->map; 2092 if (elem) { 2093 roundup_key_size = round_up(map->key_size, 8); 2094 ctx.key = elem->key; 2095 if (!info->percpu_value_buf) { 2096 ctx.value = elem->key + roundup_key_size; 2097 } else { 2098 roundup_value_size = round_up(map->value_size, 8); 2099 pptr = htab_elem_get_ptr(elem, map->key_size); 2100 for_each_possible_cpu(cpu) { 2101 copy_map_value_long(map, info->percpu_value_buf + off, 2102 per_cpu_ptr(pptr, cpu)); 2103 check_and_init_map_value(map, info->percpu_value_buf + off); 2104 off += roundup_value_size; 2105 } 2106 ctx.value = info->percpu_value_buf; 2107 } 2108 } 2109 ret = bpf_iter_run_prog(prog, &ctx); 2110 } 2111 2112 return ret; 2113 } 2114 2115 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v) 2116 { 2117 return __bpf_hash_map_seq_show(seq, v); 2118 } 2119 2120 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v) 2121 { 2122 if (!v) 2123 (void)__bpf_hash_map_seq_show(seq, NULL); 2124 else 2125 rcu_read_unlock(); 2126 } 2127 2128 static int bpf_iter_init_hash_map(void *priv_data, 2129 struct bpf_iter_aux_info *aux) 2130 { 2131 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2132 struct bpf_map *map = aux->map; 2133 void *value_buf; 2134 u32 buf_size; 2135 2136 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || 2137 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { 2138 buf_size = round_up(map->value_size, 8) * num_possible_cpus(); 2139 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 2140 if (!value_buf) 2141 return -ENOMEM; 2142 2143 seq_info->percpu_value_buf = value_buf; 2144 } 2145 2146 bpf_map_inc_with_uref(map); 2147 seq_info->map = map; 2148 seq_info->htab = container_of(map, struct bpf_htab, map); 2149 return 0; 2150 } 2151 2152 static void bpf_iter_fini_hash_map(void *priv_data) 2153 { 2154 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2155 2156 bpf_map_put_with_uref(seq_info->map); 2157 kfree(seq_info->percpu_value_buf); 2158 } 2159 2160 static const struct seq_operations bpf_hash_map_seq_ops = { 2161 .start = bpf_hash_map_seq_start, 2162 .next = bpf_hash_map_seq_next, 2163 .stop = bpf_hash_map_seq_stop, 2164 .show = bpf_hash_map_seq_show, 2165 }; 2166 2167 static const struct bpf_iter_seq_info iter_seq_info = { 2168 .seq_ops = &bpf_hash_map_seq_ops, 2169 .init_seq_private = bpf_iter_init_hash_map, 2170 .fini_seq_private = bpf_iter_fini_hash_map, 2171 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info), 2172 }; 2173 2174 static long bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn, 2175 void *callback_ctx, u64 flags) 2176 { 2177 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2178 struct hlist_nulls_head *head; 2179 struct hlist_nulls_node *n; 2180 struct htab_elem *elem; 2181 u32 roundup_key_size; 2182 int i, num_elems = 0; 2183 void __percpu *pptr; 2184 struct bucket *b; 2185 void *key, *val; 2186 bool is_percpu; 2187 u64 ret = 0; 2188 2189 if (flags != 0) 2190 return -EINVAL; 2191 2192 is_percpu = htab_is_percpu(htab); 2193 2194 roundup_key_size = round_up(map->key_size, 8); 2195 /* disable migration so percpu value prepared here will be the 2196 * same as the one seen by the bpf program with bpf_map_lookup_elem(). 2197 */ 2198 if (is_percpu) 2199 migrate_disable(); 2200 for (i = 0; i < htab->n_buckets; i++) { 2201 b = &htab->buckets[i]; 2202 rcu_read_lock(); 2203 head = &b->head; 2204 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2205 key = elem->key; 2206 if (is_percpu) { 2207 /* current cpu value for percpu map */ 2208 pptr = htab_elem_get_ptr(elem, map->key_size); 2209 val = this_cpu_ptr(pptr); 2210 } else { 2211 val = elem->key + roundup_key_size; 2212 } 2213 num_elems++; 2214 ret = callback_fn((u64)(long)map, (u64)(long)key, 2215 (u64)(long)val, (u64)(long)callback_ctx, 0); 2216 /* return value: 0 - continue, 1 - stop and return */ 2217 if (ret) { 2218 rcu_read_unlock(); 2219 goto out; 2220 } 2221 } 2222 rcu_read_unlock(); 2223 } 2224 out: 2225 if (is_percpu) 2226 migrate_enable(); 2227 return num_elems; 2228 } 2229 2230 static u64 htab_map_mem_usage(const struct bpf_map *map) 2231 { 2232 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2233 u32 value_size = round_up(htab->map.value_size, 8); 2234 bool prealloc = htab_is_prealloc(htab); 2235 bool percpu = htab_is_percpu(htab); 2236 bool lru = htab_is_lru(htab); 2237 u64 num_entries; 2238 u64 usage = sizeof(struct bpf_htab); 2239 2240 usage += sizeof(struct bucket) * htab->n_buckets; 2241 usage += sizeof(int) * num_possible_cpus() * HASHTAB_MAP_LOCK_COUNT; 2242 if (prealloc) { 2243 num_entries = map->max_entries; 2244 if (htab_has_extra_elems(htab)) 2245 num_entries += num_possible_cpus(); 2246 2247 usage += htab->elem_size * num_entries; 2248 2249 if (percpu) 2250 usage += value_size * num_possible_cpus() * num_entries; 2251 else if (!lru) 2252 usage += sizeof(struct htab_elem *) * num_possible_cpus(); 2253 } else { 2254 #define LLIST_NODE_SZ sizeof(struct llist_node) 2255 2256 num_entries = htab->use_percpu_counter ? 2257 percpu_counter_sum(&htab->pcount) : 2258 atomic_read(&htab->count); 2259 usage += (htab->elem_size + LLIST_NODE_SZ) * num_entries; 2260 if (percpu) { 2261 usage += (LLIST_NODE_SZ + sizeof(void *)) * num_entries; 2262 usage += value_size * num_possible_cpus() * num_entries; 2263 } 2264 } 2265 return usage; 2266 } 2267 2268 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab) 2269 const struct bpf_map_ops htab_map_ops = { 2270 .map_meta_equal = bpf_map_meta_equal, 2271 .map_alloc_check = htab_map_alloc_check, 2272 .map_alloc = htab_map_alloc, 2273 .map_free = htab_map_free, 2274 .map_get_next_key = htab_map_get_next_key, 2275 .map_release_uref = htab_map_free_timers_and_wq, 2276 .map_lookup_elem = htab_map_lookup_elem, 2277 .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem, 2278 .map_update_elem = htab_map_update_elem, 2279 .map_delete_elem = htab_map_delete_elem, 2280 .map_gen_lookup = htab_map_gen_lookup, 2281 .map_seq_show_elem = htab_map_seq_show_elem, 2282 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2283 .map_for_each_callback = bpf_for_each_hash_elem, 2284 .map_mem_usage = htab_map_mem_usage, 2285 BATCH_OPS(htab), 2286 .map_btf_id = &htab_map_btf_ids[0], 2287 .iter_seq_info = &iter_seq_info, 2288 }; 2289 2290 const struct bpf_map_ops htab_lru_map_ops = { 2291 .map_meta_equal = bpf_map_meta_equal, 2292 .map_alloc_check = htab_map_alloc_check, 2293 .map_alloc = htab_map_alloc, 2294 .map_free = htab_map_free, 2295 .map_get_next_key = htab_map_get_next_key, 2296 .map_release_uref = htab_map_free_timers_and_wq, 2297 .map_lookup_elem = htab_lru_map_lookup_elem, 2298 .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem, 2299 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, 2300 .map_update_elem = htab_lru_map_update_elem, 2301 .map_delete_elem = htab_lru_map_delete_elem, 2302 .map_gen_lookup = htab_lru_map_gen_lookup, 2303 .map_seq_show_elem = htab_map_seq_show_elem, 2304 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2305 .map_for_each_callback = bpf_for_each_hash_elem, 2306 .map_mem_usage = htab_map_mem_usage, 2307 BATCH_OPS(htab_lru), 2308 .map_btf_id = &htab_map_btf_ids[0], 2309 .iter_seq_info = &iter_seq_info, 2310 }; 2311 2312 /* Called from eBPF program */ 2313 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2314 { 2315 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2316 2317 if (l) 2318 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2319 else 2320 return NULL; 2321 } 2322 2323 /* inline bpf_map_lookup_elem() call for per-CPU hashmap */ 2324 static int htab_percpu_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 2325 { 2326 struct bpf_insn *insn = insn_buf; 2327 2328 if (!bpf_jit_supports_percpu_insn()) 2329 return -EOPNOTSUPP; 2330 2331 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 2332 (void *(*)(struct bpf_map *map, void *key))NULL)); 2333 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 2334 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3); 2335 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 2336 offsetof(struct htab_elem, key) + map->key_size); 2337 *insn++ = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0); 2338 *insn++ = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); 2339 2340 return insn - insn_buf; 2341 } 2342 2343 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2344 { 2345 struct htab_elem *l; 2346 2347 if (cpu >= nr_cpu_ids) 2348 return NULL; 2349 2350 l = __htab_map_lookup_elem(map, key); 2351 if (l) 2352 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2353 else 2354 return NULL; 2355 } 2356 2357 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2358 { 2359 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2360 2361 if (l) { 2362 bpf_lru_node_set_ref(&l->lru_node); 2363 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2364 } 2365 2366 return NULL; 2367 } 2368 2369 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2370 { 2371 struct htab_elem *l; 2372 2373 if (cpu >= nr_cpu_ids) 2374 return NULL; 2375 2376 l = __htab_map_lookup_elem(map, key); 2377 if (l) { 2378 bpf_lru_node_set_ref(&l->lru_node); 2379 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2380 } 2381 2382 return NULL; 2383 } 2384 2385 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) 2386 { 2387 struct htab_elem *l; 2388 void __percpu *pptr; 2389 int ret = -ENOENT; 2390 int cpu, off = 0; 2391 u32 size; 2392 2393 /* per_cpu areas are zero-filled and bpf programs can only 2394 * access 'value_size' of them, so copying rounded areas 2395 * will not leak any kernel data 2396 */ 2397 size = round_up(map->value_size, 8); 2398 rcu_read_lock(); 2399 l = __htab_map_lookup_elem(map, key); 2400 if (!l) 2401 goto out; 2402 /* We do not mark LRU map element here in order to not mess up 2403 * eviction heuristics when user space does a map walk. 2404 */ 2405 pptr = htab_elem_get_ptr(l, map->key_size); 2406 for_each_possible_cpu(cpu) { 2407 copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu)); 2408 check_and_init_map_value(map, value + off); 2409 off += size; 2410 } 2411 ret = 0; 2412 out: 2413 rcu_read_unlock(); 2414 return ret; 2415 } 2416 2417 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2418 u64 map_flags) 2419 { 2420 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2421 int ret; 2422 2423 rcu_read_lock(); 2424 if (htab_is_lru(htab)) 2425 ret = __htab_lru_percpu_map_update_elem(map, key, value, 2426 map_flags, true); 2427 else 2428 ret = __htab_percpu_map_update_elem(map, key, value, map_flags, 2429 true); 2430 rcu_read_unlock(); 2431 2432 return ret; 2433 } 2434 2435 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, 2436 struct seq_file *m) 2437 { 2438 struct htab_elem *l; 2439 void __percpu *pptr; 2440 int cpu; 2441 2442 rcu_read_lock(); 2443 2444 l = __htab_map_lookup_elem(map, key); 2445 if (!l) { 2446 rcu_read_unlock(); 2447 return; 2448 } 2449 2450 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 2451 seq_puts(m, ": {\n"); 2452 pptr = htab_elem_get_ptr(l, map->key_size); 2453 for_each_possible_cpu(cpu) { 2454 seq_printf(m, "\tcpu%d: ", cpu); 2455 btf_type_seq_show(map->btf, map->btf_value_type_id, 2456 per_cpu_ptr(pptr, cpu), m); 2457 seq_putc(m, '\n'); 2458 } 2459 seq_puts(m, "}\n"); 2460 2461 rcu_read_unlock(); 2462 } 2463 2464 const struct bpf_map_ops htab_percpu_map_ops = { 2465 .map_meta_equal = bpf_map_meta_equal, 2466 .map_alloc_check = htab_map_alloc_check, 2467 .map_alloc = htab_map_alloc, 2468 .map_free = htab_map_free, 2469 .map_get_next_key = htab_map_get_next_key, 2470 .map_lookup_elem = htab_percpu_map_lookup_elem, 2471 .map_gen_lookup = htab_percpu_map_gen_lookup, 2472 .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem, 2473 .map_update_elem = htab_percpu_map_update_elem, 2474 .map_delete_elem = htab_map_delete_elem, 2475 .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem, 2476 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2477 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2478 .map_for_each_callback = bpf_for_each_hash_elem, 2479 .map_mem_usage = htab_map_mem_usage, 2480 BATCH_OPS(htab_percpu), 2481 .map_btf_id = &htab_map_btf_ids[0], 2482 .iter_seq_info = &iter_seq_info, 2483 }; 2484 2485 const struct bpf_map_ops htab_lru_percpu_map_ops = { 2486 .map_meta_equal = bpf_map_meta_equal, 2487 .map_alloc_check = htab_map_alloc_check, 2488 .map_alloc = htab_map_alloc, 2489 .map_free = htab_map_free, 2490 .map_get_next_key = htab_map_get_next_key, 2491 .map_lookup_elem = htab_lru_percpu_map_lookup_elem, 2492 .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem, 2493 .map_update_elem = htab_lru_percpu_map_update_elem, 2494 .map_delete_elem = htab_lru_map_delete_elem, 2495 .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem, 2496 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2497 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2498 .map_for_each_callback = bpf_for_each_hash_elem, 2499 .map_mem_usage = htab_map_mem_usage, 2500 BATCH_OPS(htab_lru_percpu), 2501 .map_btf_id = &htab_map_btf_ids[0], 2502 .iter_seq_info = &iter_seq_info, 2503 }; 2504 2505 static int fd_htab_map_alloc_check(union bpf_attr *attr) 2506 { 2507 if (attr->value_size != sizeof(u32)) 2508 return -EINVAL; 2509 return htab_map_alloc_check(attr); 2510 } 2511 2512 static void fd_htab_map_free(struct bpf_map *map) 2513 { 2514 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2515 struct hlist_nulls_node *n; 2516 struct hlist_nulls_head *head; 2517 struct htab_elem *l; 2518 int i; 2519 2520 for (i = 0; i < htab->n_buckets; i++) { 2521 head = select_bucket(htab, i); 2522 2523 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 2524 void *ptr = fd_htab_map_get_ptr(map, l); 2525 2526 map->ops->map_fd_put_ptr(map, ptr, false); 2527 } 2528 } 2529 2530 htab_map_free(map); 2531 } 2532 2533 /* only called from syscall */ 2534 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 2535 { 2536 void **ptr; 2537 int ret = 0; 2538 2539 if (!map->ops->map_fd_sys_lookup_elem) 2540 return -ENOTSUPP; 2541 2542 rcu_read_lock(); 2543 ptr = htab_map_lookup_elem(map, key); 2544 if (ptr) 2545 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); 2546 else 2547 ret = -ENOENT; 2548 rcu_read_unlock(); 2549 2550 return ret; 2551 } 2552 2553 /* only called from syscall */ 2554 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2555 void *key, void *value, u64 map_flags) 2556 { 2557 void *ptr; 2558 int ret; 2559 u32 ufd = *(u32 *)value; 2560 2561 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 2562 if (IS_ERR(ptr)) 2563 return PTR_ERR(ptr); 2564 2565 /* The htab bucket lock is always held during update operations in fd 2566 * htab map, and the following rcu_read_lock() is only used to avoid 2567 * the WARN_ON_ONCE in htab_map_update_elem(). 2568 */ 2569 rcu_read_lock(); 2570 ret = htab_map_update_elem(map, key, &ptr, map_flags); 2571 rcu_read_unlock(); 2572 if (ret) 2573 map->ops->map_fd_put_ptr(map, ptr, false); 2574 2575 return ret; 2576 } 2577 2578 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) 2579 { 2580 struct bpf_map *map, *inner_map_meta; 2581 2582 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 2583 if (IS_ERR(inner_map_meta)) 2584 return inner_map_meta; 2585 2586 map = htab_map_alloc(attr); 2587 if (IS_ERR(map)) { 2588 bpf_map_meta_free(inner_map_meta); 2589 return map; 2590 } 2591 2592 map->inner_map_meta = inner_map_meta; 2593 2594 return map; 2595 } 2596 2597 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) 2598 { 2599 struct bpf_map **inner_map = htab_map_lookup_elem(map, key); 2600 2601 if (!inner_map) 2602 return NULL; 2603 2604 return READ_ONCE(*inner_map); 2605 } 2606 2607 static int htab_of_map_gen_lookup(struct bpf_map *map, 2608 struct bpf_insn *insn_buf) 2609 { 2610 struct bpf_insn *insn = insn_buf; 2611 const int ret = BPF_REG_0; 2612 2613 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 2614 (void *(*)(struct bpf_map *map, void *key))NULL)); 2615 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 2616 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); 2617 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 2618 offsetof(struct htab_elem, key) + 2619 round_up(map->key_size, 8)); 2620 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 2621 2622 return insn - insn_buf; 2623 } 2624 2625 static void htab_of_map_free(struct bpf_map *map) 2626 { 2627 bpf_map_meta_free(map->inner_map_meta); 2628 fd_htab_map_free(map); 2629 } 2630 2631 const struct bpf_map_ops htab_of_maps_map_ops = { 2632 .map_alloc_check = fd_htab_map_alloc_check, 2633 .map_alloc = htab_of_map_alloc, 2634 .map_free = htab_of_map_free, 2635 .map_get_next_key = htab_map_get_next_key, 2636 .map_lookup_elem = htab_of_map_lookup_elem, 2637 .map_delete_elem = htab_map_delete_elem, 2638 .map_fd_get_ptr = bpf_map_fd_get_ptr, 2639 .map_fd_put_ptr = bpf_map_fd_put_ptr, 2640 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 2641 .map_gen_lookup = htab_of_map_gen_lookup, 2642 .map_check_btf = map_check_no_btf, 2643 .map_mem_usage = htab_map_mem_usage, 2644 BATCH_OPS(htab), 2645 .map_btf_id = &htab_map_btf_ids[0], 2646 }; 2647